
VALIDATION TOOLS

FOR

COMPLEX DIGITAL DESIGNS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Chian-Min Richard Ho

November 1996

ii

 Copyright by Chian-Min Richard Ho 1996

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Mark A. Horowitz (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

David L. Dill

I certify that I have read this dissertation and that in my opinion it is fully adequate,

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Oyekunle Olukotun

Approved for the University Committee on Graduate Studies:

iv

Abstract

The functional validation of a state-of-the-art digital design is usually a laborious, ad

hoc and open-ended task. Many circuits, and especially modern processors, are too com-

plex to be formally verified in their entirety. Instead, simulation of a register transfer level

(RTL) model is used to determine whether the design conforms to the specification for a

particular set of test vectors which will hopefully cover all the important and interesting

corner cases of the design. Unfortunately, creating a good test vector suite is difficult.

This research explores techniques to make the validation task more systematic, auto-

mated and efficient. This can be accomplished by using information embedded in the RTL

model to extract the set of “interesting behaviors” of the design, represented as interacting

finite state machines (FSM). These behaviors include things like multiple or concurrent

events, rare corner cases and long control paths, combinations of which tend to lead to

bugs. If all of these interesting behaviors of the RTL could be tested in simulation, the

degree of confidence that the design is correct would be substantially higher. This work

provides two tools towards this end. First, a test vector generator is described that uses this

information to produce a series of test vectors that will exercise all the implemented

behaviors of the design in RTL simulation. Secondly, the information can be used as the

basis for coverage analysis of a pre-existing test vector suite. The degree to which a test

vector suite covers the important tests is known as thecoverage of the suite. Previous cov-

erage metrics have relied on measures such as the number of toggles on a node in the cir-

cuit or code block execution counts. These metrics often give good first order indications

of how thorough each part of a circuit has been exercised by test vectors. However, they

do not usually give an accurate picture of whether the important test cases involving mul-

tiple or concurrent events have been exercised. In this thesis, a new method is proposed of

analyzing test vector suite coverage based on projecting a minimized control state graph

onto control signals that enter the datapath part of the design, yielding a meaningful metric

and providing detailed feedback to the designers about missing tests.

The fundamental problem facing any technique that uses state exploration, as these

do, is state space explosion. The exponential growth of the state graph limits the complex-

ity of the models that can be dealt with. Two techniques are proposed to minimize this

v

problem; first, a dynamic state graph pruning algorithm based on static analysis of the

model structure to provide an exact minimization and second, approximation of the state

graph with an estimation of the state space in a more compact representation. These tech-

niques help delay the onset of state explosion, allowing useful information to be obtained

and utilized by designers, even for complex designs. Results and practical experiences of

applying these techniques to the design of the node controller (MAGIC) of the Stanford

FLASH Multiprocessor project are given.

vi

Acknowledgments

I arrived at Stanford University in the Fall of 1990 with only a vague notion of want-

ing to earn a Doctorate Degree, not knowing what exactly I wanted to work on or how to

set about it. I thrashed about for a year trying to find direction. Then I persuaded Mark

Horowitz to become my advisor, and I think that was probably my best decision at Stan-

ford. Mark has not only been a source of excellent advice, enlightening discussions and

excellent questions, but has also been an enormous well-spring of encouragement over the

years.

My thanks and appreciation also go out to David Dill, for all his patience and tutor-

ship. My conversations with Dave always helped put my work in context and often led to

further ideas and refinements.

I also with to thank Kunle Olukotun for bravely agreeing to serve on my Reading

Committee at a time when this dissertation was still a vague jumble of ideas.

This work grew as part of the Stanford FLASH Multiprocessor project and I am

indebted to its team members for their friendship and humor. In no particular order: Jeff

Kuskin, Dave Ofelt, Mark Heinrich, John Heinlein, Jules Bergmann, Dave Nakahira, Joel

Baxter, Ravi Sound, Hema Kapadia, Shankar Govindaraju, Rich Simoni, Ziyad Hakura.

I want to thank my parents and brother Jenson for always believing in me and encour-

aging me to keep pushing forward with my work.

But most of all, I want to thank my new bride Sandy, whose eternal patience, loving

smiles, and tender words made everything possible.

vii

Table of Contents

Abstract iv

Acknowledgments vi

Table of Contents vii

List of Tables x

List of Figures xi

Chapter 1. Introduction 1

1.1 Overview of Thesis . 3

Chapter 2. Background 6

2.1 Design Validation through Simulation . 6

2.1.1 Validation Test Vectors . 11
2.1.2 Measuring Validation. 13

2.2 Formal Hardware Verification . 15

2.2.1 Reachability Analysis . 16
2.2.2 Equivalence Checking with Logic 17

2.3 Using Formal Techniques in Validation. 18

Chapter 3. Capturing Interesting Test Behaviors 20

3.1 Focus on Control Logic . 20

3.2 Validation Methodology based on Control Interactions. 21

3.3 RTL-to-FSM Translation . 24

3.3.1 Semantic Issues . 25
3.3.2 Identifying Control-Logic 28
3.3.3 Abstracting the Design. 29

3.4 State-Enumeration Tool . 32

3.5 Discussion. 34

Chapter 4. Validation Vector Generation 35

4.1 Paths through the State Graph. 35

4.2 Converting to Test-Vectors. 37

4.3 Undetectable Bugs . 40

viii

4.4 Stanford FLASH Memory Controller Example 42

4.4.1 Protocol Processor Test Generation. 44
4.4.2 Protocol Processor Bugs 46

4.5 Related Work . 49

4.6 Discussion. 49

Chapter 5. Validation Coverage Analysis 52

5.1 Graph Redundancies . 53

5.2 Graph pruning using Static Analysis for Don’t Cares 54

5.2.1 Static Analysis of Kill Sets 56
5.2.2 Dynamic Pruning with Don’t Cares. 57

5.3 Control Events . 63

5.3.1 Coverage Property . 65
5.3.2 Control Event Graph . 66

5.4 Over-Generalized Environment . 68

5.4.1 Case 1: Illegal Sequence from Reset 69
5.4.2 Case 2: No Bubble in Cache Refill 71
5.4.3 Interface Assertions . 71

5.5 Incremental Feedback . 74

Chapter 6. Coping with State Space Explosion 76

6.1 State Graph Approximation . 77

6.2 Approximation from Exact Partitions. 78

6.2.1 Exact Partitions Algorithm 78
6.3 Approximating the Transition Function 83

6.3.1 Choice of Approximation Variables 84
6.4 Related Work in State Graph Approximation. 85

6.4.1 Other Approximation Techniques for Validation 86
6.5 FLASH Coverage Results. 87

Chapter 7. Conclusions 89

References 94

ix

List of Tables

Table 1. Errata Classification of MIPS R4000 . 21

Table 2. PP Instruction Classes. 44

Table 3. PP State Enumeration Results. 45

Table 4. Test Vector Generation Statistics . 46

Table 5. Synopsis of Discovered Bugs . 47

Table 6. Dynamic Pruning Results (5MByte Hash Table) 58

Table 7. State variable kill sets comparison . 61

Table 8. Constraints in Approximated Instr. Fetch Unit. 81

Table 9. Different Approximated Variables for Inbox 85

Table 10. Coverage Results . 87

x

List of Figures

Figure 1. Processor simulation with Instruction-Level-Simulator 9

Figure 2. Simulation with Self-Checking Vectors and Snoopers 10

Figure 3. Validation Methodology based on Control Interactions 22

Figure 4. Non-deterministic Environment . 23

Figure 5. Problematic MPP State Assignment . 26

Figure 6. Breaking up state-to-state assignments in MPP 27

Figure 7. Code examples of transparent latch (a) and edge-triggered flop (b). 28

Figure 8. State Annotation Example. 29

Figure 9. Transitive Fan-In Algorithm . 30

Figure 10. Murϕ State-Space Exploration Algorithm 33

Figure 11. Tour Generation Algorithm. 36

Figure 12. Converting Transition Edge to Test-Vector 37

Figure 13. Sample Transition Condition Mapping . 39

Figure 14. Erroneous FSM Implementation with more Behaviors. 41

Figure 15. Erroneous FSM Implementation with fewer Behaviors 42

Figure 16. MAGIC Block Diagram . 43

Figure 17. PP Abstract FSM model . 45

Figure 18. Bug #5 Timing Diagram (Glitch Masked) 48

Figure 19. Bug #5 Timing Diagram (Garbage written) 48

Figure 20. Don’t Care variable due to code structure. 55

Figure 21. List of RTL Structures where a Kill-Set may be possible. 56

Figure 22. Static Analysis for Kill Sets . 57

Figure 23. Dynamic Pruning Algorithm . 58

Figure 24. Relative Pruned State-Space Size . 59

Figure 25. Relative Running Times . 60

Figure 26. Correlation of kill sets and state reduction 61

Figure 27. Growth of Relative Overhead . 62

Figure 28. Example of State Graph Redundancy . 64

Figure 29. Independent State Variables . 66

Figure 30. Counter fed by Non-Deterministic Input. 68

xi

Figure 31. Illegal Sequence from Reset . 70

Figure 32. Illegal Bubble in Cache Refill . 72

Figure 33. Converting a Constraint to a Snooper . 73

Figure 34. Approximating the State Graph. 78

Figure 35. Approximation of Exact Partitions . 79

Figure 36. Conversion of State-Graph to Transition Function 80

Figure 37. Approximating Graph leads to Non-deterministic FSM 81

Figure 38. Non-deterministic FSM . 82

1

Chapter 1. Introduction

Ongoing semiconductor process technology improvements are resulting in progres-

sively smaller feature sizes and continually better yields. This trend has given circuit

designers more silicon area on each die in which to pack ever increasing amounts of func-

tionality. As a result, digital designs are progressively becoming faster and more complex.

These trends make the task of verifying that the design is free of functional bugs increas-

ingly difficult. Larger designs tend to have more concurrent interactions, all of which

require testing. And as the number of these interactions grow, the ability of humans to

track and think up tests for them diminishes. At the same time, business considerations

such as time-to-market pressure designers to produce working silicon in the fewest num-

ber oftapeouts (sending the design for fabrication). There is also pressure to avoid a nega-

tive public image that results from a serious bug getting into a shipping product [Mer94].

The result of these trends is that functional correctness checking poses an increasingly

hard and important challenge to design teams.

One approach to this problem is to use formal verification techniques, discussed in

more detail in Chapter 2. These strive to show categorically that a property is true or not

true in a design. They show a great deal of promise and have successfully verified many

important properties of large designs. However, because of issues of complexity, state-

space or representation size, these techniques have tended to work with models of designs

that are either relatively small or have been abstracted in order to focus on one aspect of

the verification problem. There remain unresolved issues when working with many of the

2

large designs produced by the semiconductor industry. These unresolved issues have pre-

vented the widespread adoption of formal techniques for functional correctness proofs.

In the absence of a method to completely verify designs, simulation of a detailed reg-

ister transfer level (RTL) description has been utilized. Simulation cannot realistically be

expected to exhaustively test all the operations of a non-trivial design, but with a set of

well-designed test vectors, it can provide a certain confidence level. Unfortunately, since

simulation is relatively slow, of the order of hundreds of cycles per second or slower, and

well-designed test vectors are hard to create, thisvalidation taskoften consumes as much

resources as the design process. The introduction of cycle-based simulators and hardware

emulation technology [GBC+95] will alleviate this problem to some extent, but achieving

exhaustive simulation is impossible. Even at a speed of 100MHz, which is aggressive with

existing technology, it would take approximately 325 years to exhaustively simulate a

small design of about 300 bits of state.

Current validation techniques rely heavily on test cases that are composed by the

designer to stress particular functions of the design. These tests, sometimes calleddirected

tests, are meant to exercise the circuit through all its important functionality by directing

the simulation towards what are considered interesting situations. These include all varia-

tions of the basic functionality of the design as well as combinations of different functions

which can occur concurrently. A good suite of validation tests will be able to exercise the

design through all its basic functions and many of its more complex, concurrent functions.

Unfortunately, the job of thinking up and writing tests for all the combinations of concur-

rent functions is a difficult and laborious one for a human designer. And quite often, a

complex or rare situation that is overlooked by the designer, resulting in incorrect opera-

tion, may also be overlooked by the test writer, leaving a bug in the design.

To deal with this possibility, many designers also employpseudo-random test vectors

in simulation after basic functionality has been checked with directed tests. The goal is to

inject randomness into as many of the inputs of a design as possible to stir up situations

missed by the designer and the directed tests. A typical example for processor designs is to

randomly assert exceptions. Pseudo-random tests have proven to be very effective at find-

ing bugs, by causing situations to occur in simulation that were missed by the test writer.

3

Together, directed and pseudo-random tests, run in simulation, form the backbone of

the traditional validation methodology. Although they do a reasonable job, the difficulty of

making these test vectors effective grows as designs grow more complex. The limitation is

that it is infeasible for a human to figure out all the possible interactions that require test-

ing in a non-trivial design. On the other hand, pseudo-random tests provide the ability to

stochastically reach lots of the interactions, but cannot guarantee that all will be reached in

a reasonable amount of time. It is also difficult to know how many of the interactions have

been tested with pseudo-random vectors, making it hard to decide when to stop. There

remains a gap between the desired correctness confidence level for many designs and cur-

rent validation techniques.

1.1 Overview of Thesis

What is needed is some form of instrumentation to guide and measure the validation

process so that progress can be judged quantitatively. One such measure is the reachable

product state space of the control finite state machines (FSM). In simple terms, the FSMs

of a design encode its behaviors. Each individual FSM controls one aspect of the design’s

behavior. The combination of all the FSMs acting in concert on all the inputs determine

the global behavior of a design. Although many errors arise because individual FSMs or

the combinational logic derived from them are wrong, these tend to be easy to discover in

simulation by directed tests aimed at basic functionality. However, when two or more

FSMs communicate or jointly control a behavior, then the task of testing each such inter-

action manually becomes hard. Apart from the combinatorial explosion of cases, it is fre-

quently difficult to keep track of and create each in a test vector.

Though it is often hard to find all the interactions in a design manually, this informa-

tion is encoded in the register transfer level (RTL) model of a design, which is a detailed

description of the intended implementation. It would be very useful if this information

could be utilized automatically with minimal user assistance. Then, validation tools could

use this information either to create tests or to measure coverage. It turns out that for

designs that try to separate control and datapath sections, such extraction of the control

FSMs mostly automatically is possible. In fact, if the RTL is written in a synthesizable

subset of a hardware description language (HDL), such as Verilog [TM91], then this

extraction is relatively straightforward. The non-trivial aspect is identification of which

4

logic constitutes control and which datapath. The approach taken in this work is to obtain

hints from the designer, and is described in Chapter 3.

Once the control FSMs have been extracted, the global behavior of the design can be

found by enumerating all the possible states that the communicating FSMs can reach. This

is a technique used in formal verification to prove properties about every state of a design.

For validation work, the important information is the reachable state space. Each state in

the global state graph represents an interaction between the FSMs. Hence, it provides a

map of all the interactions in the design. If the simulated test vectors manage to reach

every state and edge of the global state graph, then the confidence level of its correctness

would be high. For this work, the FSM enumeration tool is derived from work done in

[DDH+92] and is described in Chapter 3.

Using the full global state space of the control FSMs provides a quantitative measure

of test vector completeness with respect to implemented FSM interactions. If the state

space can be found exactly, this not only provides a way to measure testing progress, but

can provide a map of how to test those interactions. If the inputs to the control FSM model

correspond to inputs to the RTL design that can be manipulated by test vectors, then it is

possible to generate test vectors automatically that would cause the RTL to follow a par-

ticular path through the global state space. Chapter 4 discusses an example of this type of

test vector generation and its limitations.

Unfortunately, test vector generation is not possible for all designs for several rea-

sons, including explosion of the global state space, the inability to provide correctness

checking using these vectors in some designs, and the inability to control some inputs

needed by this type of test vector. In cases where these issues cannot be overcome, the glo-

bal state space can still provide a useful measure of the completeness of functional testing,

in other words, coverage analysis.

The experience of using this method of coverage analysis in a real design example,

the node controller of the FLASH multiprocessor [KOH+94], demonstrates that coverage

information about state space can be overwhelming when presented directly without filter-

ing for relevance. This makes it difficult to use in a practical setting. This observation

leads to a method, presented in Chapter 5, that projects the full state space onto the signals

that directly affect the datapath portion of the design. Using this projection on the state

5

space leads to incremental coverage feedback that pinpoints the missing tests in their sim-

plest forms, which is easier to use.

Using the full control FSM state space for test vector generation and coverage analy-

sis is appealing from a completeness viewpoint. However, for many realistic and interest-

ing designs, the global state space of the control FSMs is too large to be found and

manipulated with reasonable computing resources. The state space explosion problem

plagues all formal verification techniques that attempt to find the reachable states of a

model. However, validation uses the state space in a less strict manner than formal verifi-

cation generally does. It is not always necessary to retain the full global state space to

obtain useful coverage information, especially basic coverage information. Hence, it is

still productive to approximate the state space with one that requires less memory and run-

time but retains properties of the full space. The basic idea is to retain the state variables

that the designer believes will interact in interesting ways, and remove variables that have

small impacts on the full state space. The problem is that the approximate state graph will

either miss real states or create states that do not really exist in the full state graph. Heuris-

tics and issues related to approximation of the state space are discussed in Chapter 6,

along with some results of coverage analysis using an approximation of the state space of

some of the units of FLASH. These show that despite errors in the approximation, useful

information can still be obtained to guide the validation task for complex designs.

The remaining chapters describe in detail the process and the practical experiences of

using automatically extracted control state to guide and assist validation.

6

Chapter 2. Background

This chapter first reviews the most common methods of validation in use today to bet-

ter understand the nature of the problem and the limitations of current simulation based

approaches. To try to provide better validation, some researchers have taken a different

approach to the problem and used formal methods to try to definitively prove properties

about the design. These are described next. While this group has made enormous progress,

there are still a number of problems when trying to prove properties of real implementa-

tions and some of these limitations are also discussed. Though both approaches have sig-

nificant limitations, using techniques from formal verification to aid simulation looks like

a promising new area. One such approach is described in the following chapters, using

design examples from the FLASH project.

2.1 Design Validation through Simulation

When using simulation for validation, the first question that needs to be answered is

how the designer can tell when the simulation is correct, or more to the point, when it is

incorrect. This choice of simulation framework can determine the type of validation test

vectors that can be used.

There are two common simulation frameworks used for design validation. In the first

framework, called theco-simulation framework, a second, possibly more abstract, execut-

able model is written without reference to the RTL. This is often called agolden model.

The two models are then co-simulated using the same set of test vectors and the resulting

7

operations are compared for equality. The assumption is that a bug in one model will not

appear in the other. In other words, bugs will not be correlated in the two models. Hence,

every non-equality, or mismatch, is tracked down to discover which model is incorrect.

This framework is convenient because the two models check each other’s correctness.

There is no need to have test vectors that check for specific results, which are difficult to

write. Instead, much simpler tests, such as the pseudo-random test vectors that are dis-

cussed in the next section, can be used which simply exercise the design. This makes these

tests amenable to automatic generation.

However, this framework puts many stringent requirements on the two models being

used. The first is that the two models must have state that can be compared for equiva-

lence. This can be difficult to achieve for many designs. If the two models are at different

abstraction levels, state that exists in one model may not exist or may not correspond

exactly in the other model. For example, an implementation of a design with pipelined

operations will likely have state that does not correspond exactly with state in a non-pipe-

lined model of the design.

The second requirement is that there must exist synchronization points at which the

corresponding state of the two models can be compared for equivalence. At these points,

any transient states of the models have been resolved and comparison can occur. In the

simplest cases, a single event can signal such a state, for example, the writeback stage of a

processor design. In other cases, the synchronization point is more complex and may

involve history of the operations. One natural way to think about synchronization points is

to consider them as the end of some abstract operation of the design. The comparison then

checks that the operation was performed correctly. This is an especially good perspective

if one of the models represents the operation more abstractly than the other. In such a

view, complex synchronization points arise because different operations may have differ-

ent termination events, which can be used to recognize the end of the operation; and they

have optimizations that can start the next operation without passing through an idle state.

This tends to make the synchronization point a complex condition that needs to examine

the history of operations.

The third requirement is that arbitration points in the design match up exactly in the

two models for both to perform the same sequence of operations. Specifically, in a design

that performs arbitration, the arrival sequence, and possibly arrival times, of data to the

8

arbitration logic is important to ensure that the two models stay in agreement about the

correct operation. If the arbitration point makes different decisions in the two models, all

notions of state comparison is lost thereafter. For arbitration logic to make the same deci-

sion, at the minimum, it is necessary to preserve the same partial order of data arrival. If

the two models are both cycle accurate, this is not too difficult. However, when one model

is more abstract than the other, the exact timing of data arrival may be lost in the more

abstract model, resulting in different decisions.

With these requirements, making two models agree for all legal input sequences is a

difficult task. In many cases, it is tantamount to writing two detailed implementation mod-

els. In addition, the two models need to be written without reference to the other for the

assumption about uncorrelated bugs to be true. For many designs, creating two models

that meet these requirements is prohibitively expensive in terms of resources. So, despite

the advantage that test vector creation is simpler with this framework, it is not in wide-

spread use for general circuits. But for circuits where these requirements are met, it can be

a very powerful validation tool.

One large class of designs where this framework is feasible and in widespread use is

processor designs. For these circuits, instruction-level simulators can be used to compare

architectural state, namely the register file, the program counter and the processor status

register. The synchronization point is usually when data is written back to the register file.

And in general, there are no difficult arbiters in the design. A typical setup of this frame-

work is shown in Figure 1. Such a framework is extremely amenable to pseudo-random

and other automatic test vector generation methods.

In the many cases where the co-simulation framework cannot be applied, the second

simulation framework, called theself-checking framework, can be used, in which test vec-

tors are self-checking. That is, the test vectors are encoded with a way to check for

expected results. In this case, only the RTL implementation model is simulated. This

removes the need to develop a second model for co-simulation. However, the burden of

correctness checking now falls on the test vectors themselves, which must perform checks

on expected data values during and at the end of each test to ensure correctness. This has

disadvantages: first, it is much harder to write such test vectors that make meaningful

checks after complex sequences of operations. These tests are sufficiently hard that it

becomes extremely difficult to create an automatic test vector generator. This makes it one

9

of the bottlenecks of current validation efforts. To create a good suite of such self-check-

ing test vectors requires a large team of test writers to work for many months, an expen-

sive, error-prone and time-consuming step in the design process. Secondly, such test

vectors will usually require maintenance during the design process to keep up with design

changes so that they will continue to provide the correct expected result and that they con-

tinue to test the circuit. A third problem is that errors that arise during the test may not

show up until long after they occur in the circuit, either because the erroneous result takes

a while to show up in state that can be checked, or because tests tend to perform their

checks after long sequences of operations. This makes debugging harder. In addition, a

related serious disadvantage is that it is possible for errors to arise in the design and not be

caught in the checks made by the test vector. In particular, it is difficult to hand-write test

vectors that check all possible failure conditions in a non-trivial design. Many errors may

actually occur but not get caught with the directed check performed by the test vector.

Figure 1. Processor simulation with Instruction-Level-Simulator

Test Vectors

Processor
State

(Reg. File)

Processor
State

(Reg. File)

Instruction N

Instruction N+1

Instruction N
(writeback)

Instruction N+1
(writeback)

Pipeline
State(s)

Instruction Level
Simulator

Implementation
RTL Model

Compare

Compare

10

To address this last disadvantage, RTL simulation in this framework is often supple-

mented with simulation code, calledsnoopers, that check for error conditions during sim-

ulation of the test vectors. Snoopers are simply designer provided checkers that monitor

signals and signal combinations in the RTL during simulation. They have the ability to

check the detailed operation of the design and can indicate errors close to the source.

These are usually not too difficult to write since they are generally localized and small. In

addition, unlike a co-simulation model, these checkers do not need to model the expected

behavior of the design, they just have to check for obvious errors. Examples are checks for

mutual exclusion of signals, absence of unknown, or ‘X’, values and state consistency

checks. Although there is no method to ensure that all possible snoopers have been pro-

vided by the designers, they provide valuable additional checks on the design that supple-

ment the self-checks done by the test vectors. A typical set up is shown in Figure 2.

Figure 2. Simulation with Self-Checking Vectors and Snoopers

Self-Checking Test Vectors

Implementation
Stage N

Stage N+1

Stage N+2

Stage N+3

Any Signal

‘X’?

Mutual
Exclusion
of Signals?

Watch
Transactions

Snooper

Snooper

Snooper

Simulated on RTL Model

11

Given these two general paradigms, the choice of a simulation framework is basically

the choice of how to determine correctness of the test vectors that will be simulated. The

co-simulation framework generally provides good checking across large parts of a design,

but has many difficult requirements that must be satisfied for it to work. If these require-

ments can be met, this is clearly the better validation framework. An example using this

framework is the processor portion of the Stanford FLASH project, which is described in

more detail in Chapter 4.

The self-checking framework is much easier to setup initially than a co-simulation

one, but suffers from less complete correctness checking, even with the addition of snoop-

ers. However, for many general circuits, excluding processor designs, this is the more

common framework in use because of the difficulty of creating a golden model. Since it is

difficult to create an automatic self-checking test vector generator, coverage analysis can

be performed instead to assist test writers achieve better validation results with this frame-

work, and this is described in Chapter 5.

2.1.1 Validation Test Vectors

When validating a design with simulation, the quality of the results depends in large

part on the test vectors that are run in the simulation. For a bug in the design to be found,

the test vectors must exercise the erroneous logic. Good quality directed test vectors are

time consuming to produce by hand, but in general, this is the only method of obtaining

test vectors that can be used with the self-checking framework. These tests are generally

difficult to write because the test writer must have detailed knowledge of the design imple-

mentation in order to successfully exercise all the corner cases and subsequently deter-

mine what the correct result should be. For complex interactions between multiple control

sections of a design, it is even harder to fully consider all possible outcomes and craft tests

that can exercise them. The biggest danger is that an important interaction is overlooked

and never tested. This is a common mistake that leads to bugs which are only discovered

much later in the design process, when it is more expensive to fix. Hence it is important to

have a method of determining whether important test cases have been overlooked when

using hand-written directed tests.

When a co-simulation framework is used, automatic test vector generators can be uti-

lized to a greater extent. These techniques generally use some form of pseudo-randomiza-

tion to create many tests from a single test description. There are numerous examples of

12

test vector generation in this manner: [ABD+91], [ABG+92], [And92], [KN95],

[MSY+95] and [WGK90]. These produce random test patterns, which are possibly tar-

geted orbiased towards certain simulation events. Biasing simply raises the probability of

rare events or interactions with the hope of stirring up untested situations. For example, if

an input to a design that is being generated has 10 possible values, then a fair distribution

would produce each of the possible values with equal likelihood. But if the generator is

biased towards 1 of the values, then that value would appear more frequently in the stream

of generated values. In this way, the test vectors can be directed towards particular events.

These events are normally worry cases identified by the designer as requiring extra testing

due to the complexity of the section of logic handling that input value.

Typically, random tests are simulated for hundreds of millions of cycles. When they

are usable, that is, when a co-simulation framework is feasible, random generators have

the advantage of being relatively simple to set up and can find most of the obvious and

many of the complex bugs in a design quickly. A lot of their power stems from the fact

that they can generate test interactions not thought of by test writers and designers. This

comes about simply because these tests put together lots of random interactions. Over a

long period of generation, the probability of exercising many of the complex interactions

increases. And in theory, if test generation can proceed indefinitely, all possible interac-

tions should eventually be created. Of course, this is not possible in a real design environ-

ment with finite resources. In addition, without some other method to assist, there is no

good way to measure the progress of random test vectors in order to estimate when and if

certain interactions will get tested. Hence, pseudo-random test vectors, although

extremely useful validation tools, are not a systematic method to validate a design.

A second class of automatic test vector generators are constraint based ones, which

try to be a little smarter in their choice of random values. The AVPGen system, [CI92],

[CIJ+93] and [CIJ+94], uses templates of constraints to create tests that stress a design in

corner-cases. The basic idea here is that tests are written in a slightly more abstract form,

where exact values of variables and inputs are not fixed in the test description. Instead,

constraints are placed on the variables, which are kept symbolically. Test vectors can then

be generated from these templates by pseudo-randomly assigning actual values, that meet

the constraints, to the symbolic variables. The templates can also be interleaved as

directed by the test writer to test event interleavings. A constraint solver is used to resolve

constraints from the templates being interleaved to produce a series of new templates

13

which can then be used for further generation. Typically, various small stress cases are

written in the form of test templates. For example, one template may specify a pipelined-

microprocessor instruction sequence that forces data-dependencies across cycles. Then,

different templates are composed and the constraints of each template are resolved. An

actual test sequence is then created by taking the templates and assigning random values

to the unconstrained components. This technique can be utilized in both the co-simulation

framework and the self-checking one since the basic set of test templates, which are hand-

written, may be self-checking.

The power of this technique is that it allows a test writer to think up corner cases and

create templates for them. The constraint solver is then responsible for interleaving them

and finally assigning actual values to form the test vectors. This late binding of values is

powerful because it allows the same templates to be used with many different actual test

values. One way to look at this technique is as a method to introduce randomness into

hand-written directed tests. The randomness takes the form of different interleavings of

templates and the form of different actual values of variables. The shortcoming of this

technique is that it still requires design knowledge from humans to create meaningful test

templates. It is useful in that the work of each test writer is multiplied into several possible

tests, but it still does not provide a method to systematically find all the interactions in a

design that need to be tested. This, like all the techniques described so far, leaves open the

possibility that important test cases are not exercised with no way to alert the test writer of

this fact. The next section talks about techniques to measure validation progress. This is

important to validation since the current test vector creation techniques, just described,

cannot give any indication of how well they are doing or whether they are testing interest-

ing things.

2.1.2 Measuring Validation

When test vectors are simulated, it is necessary to check whether they really do exer-

cise the design as intended. Sometimes, vectors do not set the necessary conditions, or the

design undergoes changes, making the vectors ineffective at testing the interactions they

were originally designed for. In addition, the decision to tapeout, though often dependent

on market forces, should really be made based on projected completion of the validation

task. There are several ways this can be tracked and these are discussed next.

14

One commonly used method is to track the bug discovery rate and when it becomes

flat and low for some length of time, the design is fabricated, [Cla90]. This metric is

highly dependent on the quality of the test vectors, since it assumes a constant stream of

different, high quality vectors. Only if this is provided will this measure be truly represen-

tative of the degree of design completion. The problem is that the rate of creating new,

good quality test vectors almost never stays constant. Usually, whenever a new method of

test vector creation is tried, a burst of bugs are found since new methods have a good

chance of exercising new interactions. As use of the new test creation method matures, the

bug rate drops until the next method is introduced. Hence, bug discovery rate is a better

productivity measure than a validation completion measure. It certainly does not say any-

thing about which interactions in a design have been tested and which have not.

Other linear metrics, like node-toggle, line, or code-block coverage, used in [And92],

[KN95], [WGK90] and [WT95], provide some indication of whether all parts of a design

have been tested. Node-toggle coverage measures whether each node in a circuit has been

exercised and how often during validation. Clearly, a node that has never toggled indicates

logic that has never been tested. In general, this is not good for validation. But even after

all nodes have been toggled at least once, this measure can be useful to get a better balance

of toggles across nodes in a circuit. This would help ensure that all parts of a circuit

received about equal amounts of testing, to a first order.

Line and code-block coverage are similar to node-toggle coverage, except that they

measure execution of lines or code-blocks1 in the RTL description during tests. The infor-

mation content is fundamentally equivalent to node-toggle coverage. If any line or code-

block of the RTL description is not executed, this will generally translate into one or more

nodes that do not toggle. One extension to line coverage is branch-taken coverage. This

tracks the direction taken at each branch in the RTL code. This provides more information

about the behavior of the design. For example, if one code-block can be reached from two

different branches, then branch-taken coverage will indicate whether the code-block has

been reached from both points, something that line and code-block coverage would not

indicate.

1A code-block is a basic block of the RTL description.

15

Although these measures are based on the linear coverage of code rather than the

function of the design, they provide a good baseline measure of testing completeness.

While they cannot indicate accurately whether logic interactions have been tested, they do

ensure coverage of basic functionality before such interactions are considered. If these

basic measures do not indicate high coverage, then further, more detailed interaction cov-

erage measures as described in Chapter 5, will not provide much additional useful infor-

mation. They will indicate a slew of missing cases, simply because one basic test may

have been missing. In this situation, it is easier to identify the basic case with the basic

coverage metrics, then proceed to the complex interactions involving that basic case.

Once basic measures have indicated good coverage, more probing measures can be

used to guide the later stages of validation. One such method attempts to measure valida-

tion coverage in a manner analogous to thestuck-at faults of manufacturing fault test cov-

erage [KS92]. In this technique,design errors are specified which represent types of errors

that may occur in RTL, for example, using the wrong gate in a combinational circuit. This

is the analog of stuck-at-faults, which model possible manufacturing defects. A design is

analyzed to determine where all the design errors may exist, that is, where each of the

design errors could possibly be found in the design. Then, analysis measures how many of

the design errors can be detected by a test vector suite. Coverage improves with this tech-

nique when test suites are capable of uncovering more of the design errors. Conceptually,

this approach is appealing because it tries to identify where errors may occur and then

grades the test vectors based on their ability to exercise that code. The largest problem

with this approach is developing a credible set of design errors. In fault coverage, the

stuck-at fault model has a basis in manufacturing defects, lending credence to the method-

ology. However, design errors do not have a widely accepted corresponding phenomenon

which they model. In addition, it is not clear that exercising all such design errors is feasi-

ble using a finite amount of resources.

2.2 Formal Hardware Verification

The previous section described the most common approaches to validation currently

available using simulation. The biggest problem is that there is no systematic technique to

create test vectors that can exercise all the complex interactions in a design. Coverage

analysis can guide test vector creation to areas where more testing is required, but current

16

techniques provide practical information only up to single FSM arc coverage. Complex

interactions can still be missed.

One response to these problems is to use formal verification techniques. These

attempt to categorically prove or disprove properties about a design. This is in contrast to

validation by simulation, which can never categorically declare a correct design, since a

complex design can never be exhaustively simulated. If one of these formal verification

methods can be applied, it provides a powerful and definitive statement. However, most

have limitations, so it is important to understand when each technique can be applied and

what results can be expected.

2.2.1 Reachability Analysis

One of the simplest formal techniques is to take a description of a design and find all

the possible states that it can ever get into. This state space exploration [BZ83], provides a

straightforward method of exploring the range of possible behaviors of a system and

checking whether any of the resulting states violates asafety property2. This technique is

powerful since it checks every reachable state in a system for an error. There is no doubt

when this technique returns an answer, unlike validation, which can never return a doubt-

free answer of “no errors found”. In addition, one of the by-products of the state explora-

tion is usually a sequence from the reset state to any error states, which helps debugging

greatly. Such techniques are extremely useful for checking properties of protocols [PD96].

The main drawback is that often, the state space grows too large to handle, a phenomenon

known asstate space explosion. State space explosion occurs because every additional bit

added to the state description potentially doubles the state space. There have been tech-

niques developed that can find reductions in the state space that needs to be explored with-

out compromising the property check [IpD93], but these also are best applied to protocol

verification.

An alternative to using an explicit representation to store the set of reachable states is

to use binary decision diagrams (BDD) [Bry86]. BDDs are a compact and canonical repre-

sentation of a boolean expression. They can be used to implicitly store the set of reachable

states found in state space exploration. When done in this way, reachability analysis is

called symbolic because each BDD may represent a large number of states. In many cases,

2A safety property is an assertion that must hold in every state.

17

this can extend the size of the state space that can be explored far beyond the size that can

be explicitly represented. There are also algorithms that can directly operate on BDDs to

formally verify properties, a process known as model checking. Model checking is the

verification of properties, some of which may involve paths of the state graph and not just

states, against the design. This is utilized with success in [Lon93], [CYF94] and

[CGH+95]. In model checking work with BDDs,temporal logic properties can also be

checked. Temporal logic is a means to express properties which are true over a period of

time. These temporal properties look for problems such aslivelock (no forward progress)

and processstarvation(execution fairness between processes).

Although BDDs have the advantage that they have the potential to represent large

numbers of states using very little memory, they too can suffer from a type of explosion.

The size of the BDDs needed to represent a design is dependent on the order of the vari-

ables in the BDD. With a bad ordering, the size can grow exponentially large. The biggest

problem related to this is that it can be very difficult to predict in advance the size of the

BDDs required for a particular design. Even relatively small designs can experience a

BDD blow-up. This can make the usefulness of BDDs limited unless their use is carefully

crafted to preclude this.

2.2.2 Equivalence Checking with Logic

Another formal approach, one that does not attempt to use properties of the state

space of a design is the work of [BuD94] and [JDB95]. These attempt to prove the equiv-

alence of two models of a design, one written with implementation details such as pipe-

lines, and one without. Fundamentally, this is a formalization of the co-simulation method

of validation, which also compares two models for equivalence. The difference is that this

technique attempts to prove it for all possible input values to the design. To reduce the

complexity of the task, they use a logic ofuninterpreted functions to create the two mod-

els. An uninterpreted function treats operations, such as add or shift, as black boxes and

does not try to evaluate it, which reduces the complexity of the equivalence check. In this

way, datapath operations are abstracted, that is, they are not evaluated. Instead, the opera-

tion is simply carried along in the logic expression of the operation. Avalidity checker,

which decides whether two logic expressions are equal, then proves that the two models

are equivalent, thus showing that the implementation (pipelined model) is correct with

respect to the specification (unpipelined model).

18

This work attempts to avoid the state explosion problem of reachability analysis com-

pletely. Instead of considering states, it examines possible operations. It is powerful

because it can show equivalence for all inputs of a design. However, it is not yet ready for

widespread usage for a couple of reasons. First, the explosion problem, though not in

terms of states, still arises in checking of equivalence of the logic expressions, which can

take a very long time and use a great deal of memory. Secondly, and possibly more impor-

tantly, this method requires two models of a design to be written in a special logic. This

amount of work seems prohibitively high, especially since some abstraction of the design

must occur in order to make the technique feasible. This introduces the possibility of

errors being masked or introduced by the abstraction.

Another use of logic has been to utilizetheorem provers to show that a formal

description of the design satisfies a set of properties. A theorem prover takes a description

of a design as a set of axioms which state properties of the design. It then accepts queries

about other properties which the designer wants to know, for example, whether it is result

of an operation can ever be wrong. The theorem prover then uses inference rules to deter-

mine the answer to the query. This has been done in [Cyr94] and [MLK96]. These meth-

ods are difficult for designers to use because they require familiarity with the logic

language and theorem proving techniques. Though powerful, these cannot be utilized in a

normal design environment yet.

2.3 Using Formal Techniques in Validation

At the beginning of this chapter, we saw that the hard problem with using simulation

for validation is the task of creating good test vectors that can exercise all the complex

interactions in a design. None of the current methods can reliably get close to this goal.

The first aspect of this problem is just knowing which interactions have been missed by

test vectors. Current coverage measures provide basic measures but stop short of being

able to accurately identify complex interactions that need to be tested. The end result is

that currently, validation tends to be an ad hoc and unreliable method to fully test designs.

Formal verification techniques were proposed to solve many of these problems. And

although they have made great strides forward, none as yet has shown the capability of

handling large design implementations in a general way.

19

A possible hybrid approach is to try to borrow formal techniques to help the valida-

tion task. This holds the possibility that some of the properties of formal verification, such

as completeness, can be introduced into validation. Current validation practices lack a

good measure of which interactions need testing and which have been tested. One possible

approach is to use reachability analysis, or state space enumeration, to quantify the inter-

actions in the control logic of a design. This would provide a definitive and meaningful

measure of validation progress. This was done in [HMA95] and [HH96]. In [HMA95], the

basic technique is described which extracts the control FSMs from an RTL description.

Coverage is then measured in terms of arc coverage of the global control FSM, which is

found by symbolic reachability analysis. This provides a comprehensive coverage metric

of all the interactions in a design, as will be described in Chapter 3. However, when

applied to large designs as in [HH96], this metric turns out to be too conservative. In order

to achieve good coverage numbers on this metric, a redundant number of tests need to be

simulated. This dilutes the quality of the metric and makes the validation task unnecessar-

ily lengthy. Instead, the common practical implementation of this technique is to measure

coverage on single FSMs. Like the basic coverage measures, this is useful and necessary.

And like the basic coverage measures, it also does not provide enough information about

the complex interactions in a design that need testing. The work in this thesis extends

these ideas and attempts to address the issue of deriving a usable, quality coverage metric.

Although the problem of state space explosion arises when state space enumeration is

used, validation utilizes the state space information in a less rigid manner than formal ver-

ification. This leads to possible reduction and approximation methods that can not be

effectively used in formal verification. As will be seen in later chapters, sometimes the

exact state space can be reduced and still retain important information for validation. In

this way, validation can be guided much more effectively than with any current method.

This will be discussed in Chapter 5. But first, the process of extracting useful validation

information is described in detail in the next chapter.

20

Chapter 3. Capturing Interesting Test Behaviors

As the previous chapter showed, the critical problem for simulation based validation

is the creation of stimulus vectors that fully exercise the design. This chapter shows one

approach for obtaining the needed information for vector generation by extracting the con-

trol flow directly from the implementation description. This is done by translating the RTL

to a set of cooperating finite-state-machines (FSMs), and consequently finding all the

states that are reachable from reset. This global state graph containsall the possible

behaviors of the design. We focus on trying to exercise the machine through the control

state since the control bugs are usually the hardest ones to find, as Section 3.1 shows. To

exercise the machine through all possible control interactions is a two step process:

extracting the control logic and then finding all possible transitions. These steps are

described in Section 3.3 and Section 3.4. Uses of the transition information to generate

test vectors and for coverage analysis are described in the following chapters.

3.1 Focus on Control Logic

Common wisdom from practicing hardware designers involved in microprocessor

design is that the majority of bugs that were found only after silicon was produced was the

result of multiple, rare and unexpected control interactions. The published errata lists for

the MIPS R4000 [Mips94] gives some evidence to back this assertion. The errata repre-

sent those bugs which not only made it to silicon, but also slipped through to production.

These are the bugs that cost the most, both in terms of the cost of an addition spin of sili-

con and also in terms of delayed time-to-market and are a good target for validation tools.

21

The bugs can be classified into three categories: the first represent those due to an

error in the datapath section of the design; the second due to isolated errors in the control

logic; and the third arise when multiple control actions or events occur concurrently. The

results of this classification are shown in Table 1.

Multiple event bugs are difficult to find because they require several control interac-

tions to occur in a particular sequence or with some specific timing relation. Creating test

vectors that can exerciseall such situations is difficult with random-generators and nearly

impossible when hand-written. Given the large number of difficult bugs that occur due to

control interactions, we target our validation tools to try to cover this area more com-

pletely.

3.2 Validation Methodology based on Control Interactions

The approach described here is to capture the control logic description from the RTL

description. This is then used to find all the possible control interactions in the logic. And

finally, this information can be used for validation: either test vector generation or cover-

age analysis based on control interactions. These steps are shown in Figure 3.

In the first step, thetranslator extracts the pertinent control logic FSMs from an RTL

description written in Verilog. The assumption made here is that the Verilog already has a

coarse partitioning for synthesis into control and datapath sections. Verilog that does not

satisfy this assumption can be translated, but would require more designer input to ensure

that a good partition of control and datapath is obtained. Then, to extract the minimal con-

trol logic from the control section, the user is asked to annotate the Verilog further with

comment-embedded directives that highlight some of the important state variables in the

control logic. The translator then applies atransitive fan-inalgorithm to capture the logic

which those state variables depend on. The transitive fan-in algorithm simply finds all the

Table 1. Errata Classification of MIPS R4000

Bug Class Number of
Bugs

% of Total

Pipeline/Datapath ONLY bugs 3 6.5%

Single Control Logic Bugs 17 37.0%

Multiple Event Bugs 26 56.5%

Total Reported Errata 46 100.0%

22

logic that sets the value of the highlighted state variables. It then iterates, looking for the

logic that sets that logic and so forth. The process stops at the module boundary of the

control logic, based on the coarse partitioning for synthesis. The extracted logic is then

combined with a description of the environment of the FSM model.

The environment acts as an input generator to the FSM model of the control logic. In

general, these inputs are either primary inputs to the design, or they represent signals from

the datapath, which is not captured by the translator. The most general environment is one

which generates any input at any time, known as anon-deterministic environment. In the

Structural
Verilog

Environment
Model

FSM Model

State Graph

State Dumps
from Vectors

Test VectorsMissing Tests

Figure 3. Validation Methodology based on Control Interactions

Translator

State Exploration

Control Interaction
Use

23

context of finding the global state-graph, non-determinism means trying all possible input

sequences in all cycles, shown in Figure 4.

The non-deterministic (ND) environment can also provide an abstraction of the inter-

face. For example, a 32-bit address to a cache in a processor design can often be abstractly

represented by an ND environment that provides a single bit indicating whether the

address will cause a hit or a miss in the cache. This models the control logic effects of the

address on the cache by a single bit, as illustrated by theCacheMiss signal shown in Fig-

ure 4. This often simplifies the control logic model of a design. This is discussed in more

detail later in this chapter. The ND environment provides the most generality since it cap-

tures all possible behaviors of the FSM model. If a test vector suite manages to exercise all

interactions of the FSM model under the full ND environment, we can conservatively

assume good coverage of the control interactions. As we will see in Section 5.4, some-

times the ND environment is too general and leads to control behaviors that are not possi-

ble in the hardware. When this situation arises, extra constraints can be placed on the

environment in the form of input generators that do not take all possible values on every

cycle.

The second step of the methodology is state space exploration of the control FSMs.

For this, the FSM description language used is a descendant of Murϕ [DDH+92] called

Figure 4. Non-deterministic Environment

Datapath
State1

State3State2

Exhaustive
State-Space

Search

InstrIsStore

OutboxFull

External
Inputs

CacheMiss

InstrIsStore

OutboxFull

FSM

CacheMiss

Represents
32-bit

address

24

MPP (Murϕ ++). MPP takes the FSM description of the system and finds all its reachable

states from reset. It produces a global state graph and hash table of states which are used in

the third step. These first two steps serve to capture the control logic interactions and are

described in detail in Section 3.3 and Section 3.4.

The third step in the toolset uses the control logic interactions to either generate test

vectors or to perform coverage analysis. To generate vectors, paths through the control

graph are found that improve the testing coverage. Each edge of this path results in the

generation of a single test vector. This process and algorithm are presented in Chapter 4.

To calculate coverage, the program reads state dumps from a test suite run in simula-

tion on the RTL. These state transitions are marked on the control graph and the individual

state variables, giving a coverage metric. Detailed feedback is given to the designers in the

form of transition edges not exercised. This process and some of the practical problems

encountered applying this algorithm to the models in the FLASH project are described in

Chapter 5.

3.3 RTL-to-FSM Translation

One shortcoming of many of today’s formal verification techniques is that many

require re-writing the design in a particular language. This introduces the possibility that

errors are missed or introduced in the translation step. This is especially true where the

translation also incorporates an abstraction step. The possibility of error in the translation

step can be avoided with the use of an automatic translator, as used in the HSIS and VIS

suite of tools [Ber93], [CYB93]. These translate a model written in a hardware description

language (HDL), such as Verilog [TM91], to intermediate languages used in further pro-

cessing. Direct translation offers a more faithful representation of the design, as well as

the ability to more easily track changes.

Hence, the first step in capturing control logic interactions is to translate the Verilog

description of the design into an FSM modeling language1. The translator takes synthesiz-

able Verilog as input, and produces MPP code as output. For the most part, translation

1This work also focussed on Verilog as the RTL description language. The other commonly used alter-
native is VHDL [Ash96]. Conceptually, the only requirements for a VHDL front-end to the methodology is
synthesizability of the design.

25

between structural Verilog and MPP is a straightforward syntactic rewrite. The subset and

style of Verilog that is accepted by the translator is similar to the subset that would synthe-

size well using Synopsys tools. Transparent latches, as well as edge-triggered flops, are

recognized. However, there are a few semantic issues that require some care to ensure cor-

rect translation of the control logic.

3.3.1 Semantic Issues

The most important semantic issue is to ensure that the event-based concurrency

model of Verilog is preserved when going to MPP, which has a cycle-based concurrency

model. In Verilog, when a variable changes value, an event is posted to the simulator. If

any other variables aresensitized to, or dependent on, that value, they will be updated and

further events posted. In this way, textual ordering of assignments is made irrelevant to the

concurrency model. Where this matters is assignment to a state variable. In Verilog,

assignment to areg data type is potentially capable of holding state. If coded correctly

(without a race condition), state assignments should also be made so that they are indepen-

dent of textual order2. However, in MPP, assignments are evaluated once, in their textual

order, every cycle. This may lead to problems if a state-variable is directly used as an input

to another state-variable assignment, as shown in Figure 5.

The intended behavior of the Verilog is for simultaneous assignments toStateA and

StateC. A straightforward translation to MPP would result in the wrong concurrency

model. However, MPP does give the correct concurrency model for non-state variables,

that is, assignments towires are independent of textual ordering, and wire assignments are

always evaluated beforeany state assignments are done. This provides the fix for the

above problem. If the translator ensures that awire appears between every state-assign-

ment, we get the desired behavior where every state assignment occurs simultaneously

using the previous values for other state-variables. Hence, if the translator ever finds a

state variable read directly by another state variable in the Verilog, it inserts a wire assign-

ment in between, as shown in Figure 6. Since MPP evaluates itswire variables (called

FLOW) prior to its state variables, this results in all state assignments using the previous

values of state variables that appear in the right-hand-side. Although this example is spe-

cific to MPP as an FSM enumeration tool, the underlying problem is preservation of an

2If not, different simulator implementations may result in different results. For transparent latches, this
is done by sensitizing the assignment to all variables that it depends on. For edge-triggered flops, this is done
by using a non-blocking delayed assign.

26

event-based concurrency model when translating to some other concurrency model. This

issue will arise in some form with most FSM enumeration tools.

The translator must also be able to infer all state assignments in Verilog because MPP

requires that state variables are explicitly defined. There are several ways in which a vari-

able can be made to hold state. As part of the coding style adopted, all state elements were

required to be either:

• transparent latches encoded with a fully-sensitizedalways block, or

• edge-triggered flops encoded with a non-blocking, delayed assignment.

The general semantic issue is identification of state. This is also the primary reason

the translator is restricted to a synthesizable subset of Verilog. With this restriction, all

state, explicit or implied, can be inferred from the structural equivalent of the description.

Figure 5. Problematic MPP State Assignment

always @(posedge Phi1)

StateA <= #5 StateB;

always @(posedge Phi1)

StateC <= #5 StateA;

StateA = StateB;

StateC = StateA;

Previous Values:

StateA = 1;

StateB = 2;

StateC = 3;

Updated Values:

StateA = 2;

StateB = 2;

StateC = 1;

Updated Values:

StateA = 2;

StateB = 2;

StateC = 2;

Verilog MPP

27

However, an unsynthesizable description may contain implicit state encoded as delays,

that is, state is created by placing long delays between assignment statements to the same

variable. Such a coding style is described asbehavioral and can not, in general, be synthe-

sized automatically. For exactly the same reasons, the RTL translator cannot generally

infer state in such a description, hence behavioral descriptions cannot be used as input to

the methodology.

Figure 6. Breaking up state-to-state assignments in MPP

always @(posedge Phi1)

stateA <= #5 stateB;

always @(posedge Phi1)

stateC <= #5 stateA;

stateA(“stateA”, 0, 2, STATE);

stateB(“stateB”, 0, 2, STATE);

stateC(“stateC”, 0, 2, STATE);

temp1(“temp1”, 0, 2, FLOW);

temp2(“temp2”, 0, 2, FLOW);

MPPIF (Phi1);

stateA = temp1;

temp1 = stateB;

MPPIF (Phi1);

stateC = temp2;

temp2 = stateA;

Original Verilog
code from Figure 5.

stateC gets the value of
stateA in the previous cycle.

Translate to MPP Code

FLOW variables are
evaluated first every cycle.

The FLOW variables
get the previous values of

the STATE variables.

The new assignment to
STATE variables from the
FLOW variables ensure

stateC gets the correct value.

28

3.3.2 Identifying Control-Logic

A harder task for the translator is determining which parts of the RTL description are

required for the control logic FSM modeling. We assume that the RTL we get from the

designers already has a coarse level of partitioning between control logic and datapath,

which has been done for synthesis. However, even within the control sections, not all the

logic present is required to create the FSM model. For example, there may be some logic

that takes an output from an FSM and modifies it to control a datapath element. This addi-

tional information might not be wanted in the FSM description, which focuses on the logic

that determines possible next state values.

To capture only the logic that directly determines the next state function, atransitive

fan-in algorithm is used. For this, the designer is asked to point out some of the important

state variables in the RTL by annotating the Verilog with comment-embedded directives.

The annotation is done once for a design and as long as changes to the design are not too

drastic, it remains constant for a particular FSM model. An example of the non-intrusive

annotation is shown in Figure 8. In general, only the state variables of the major FSM need

to be annotated. These are usually assigned values inswitch statements in code destined

for synthesis.

The transitive fan-in algorithm is given in Figure 9. It maintains a stack of variables

that are found to berequired by the FSM logic. Initially, only variables that are named in

the annotations are placed in therequired stack. It also maintains aprovided set, which

always @(Phi1 or condition or input)

if (Phi1 & condition)

latch = input;

always @(Phi1)

if (condition)

latch <= #5 input;

Figure 7. Code examples of transparent latch (a) and edge-triggered flop (b).

(a)

(b)

29

holds the variables that have already been included in the translated logic. As each vari-

able is popped from therequired stack and placed in theprovidedset, the algorithm scans

the RTL searching for other variables that help determine its next value. Each of these is

compared to the set of variables already found and placed in theprovided set. Any vari-

able not already in theprovided set is added to therequired stack. This continues until the

stack is empty. All logic that sets the value of a variable in therequired set is translated.

The net effect of the transitive fan-in algorithm is that all logic that determines the next-

state value of the annotated variables is translated, up to the module boundary. The algo-

rithm stops at the module boundary because this acts as a naturalabstraction interface.

Abstraction is discussed in the next section.

If multiple modules are translated together, some cross-module checking of depen-

dences is performed. In particular, if one module requires a signal as an input and it is gen-

erated by another module, a dependence is created. The logic in the other module for that

signal is labeledrequired even if it was not otherwise needed. In this way, only signals that

represent inputs from the datapath or external environment are left to be driven by the

environment.

3.3.3 Abstracting the Design

The inputs to the FSM model specified by the transitive fan-in algorithm and not gen-

erated by logic within some other module must be driven by the non-deterministic (ND)

environment. The ND environment provides an abstract model of the datapath and exter-

nal signals that is more general than the real hardware. In other words, it generates more

// v2m:state stateVar_x

always @(posedge Phi1) begin

switch (presState_v) begin

case ‘IDLE:

if (CacheMiss_v)

stateVar_x = ‘MISS_START;

else

stateVar_x = ‘IDLE;

Figure 8. State Annotation Example

State
Annotation

State Variable

of FSM

30

/* Transitive Fan-In Algorithm */

initialize REQUIRED queue to NULL;

initialize PROVIDED set to NULL;

do {

current_var = POP top of REQUIRED queue;

/* If we popped a var, mark it as provided. */

if (current_var != NULL) {

Add current_var to PROVIDED set;

}

for (each RTL statement) {

switch (statement type) {

case ANNOTATION: push variable onto REQUIRED queue;

/* User specified state variable */

case CONTINUOUS_ASSIGNMENT:

case PROCEDURAL_ASSIGNMENT:{

/* Procedural assign requires further case analysis of statements allowable

in procedural always block to find the assign statement */

if (assign tocurrent_var) {

Mark statement for translation;/* Generate this line of code */

for (all variables in RHS of assign) {

/* All variables that are read */

if (variables not in PROVIDED) {

/* This var not in generated code */

push variable onto REQUIRED;

}

}

default: {

ignore statement;

}

}

} while (REQUIRED not empty);

Figure 9. Transitive Fan-In Algorithm

31

possible signal combinations than really occur. This makes the environment much easier

to model. For example, if a design has two inputs that have a constraint that they can never

both be asserted ‘on’ at the same time, an ND environment can be created by using two

inputs that assert ‘on’ independently. While this is easier to write, it leads to the input

combination that should not really happen in the real design, namely, both asserted ‘on’.

When this happens, if the design has been created with knowledge of the illegal inputs, it

is possible that afalse error can arise. This is where an error is signalled by the validation

framework, but is caused by bad input combinations rather than a genuine design problem.

Such false errors are distracting and can hide real bugs in a large dump of error reports.

They can be removed by adjusting the environment model to be more accurate and model

the input constraints. The use of such constraints in the FLASH examples are discussed in

Section 5.4.3.

Apart from being simpler to write, an environment model can provide some abstrac-

tion of the design. For example, consider the program counter (PC) of a processor design.

Let us say this is a 32-bit register. Its impact on the control logic of the processor would

normally enter the control module as a 1-bit signal that indicates whether the address in

the PC resulted in ahit or miss in the instruction cache. That is, whether the cache needs to

be refilled or not for this address. The actual address is not relevant to this part of the con-

trol logic, which controls the cache refill operation. Hence, the single bit acts as a natural

abstraction of the 32-bit PC. Instead of requiring a 32-bit input and trying all 232 possible

combinations, only the 2 combinations of the single bit need to be tried. This saves the

amount of work that must be done on every state and also saves the state space that would

be used to store the 32-bit address.

The user must provide the ND-environment as an MPP file that is concatenated to the

MPP file created by the translator. In its simplest form, this just drives every input to the

FSM with a non-deterministic value. At a later stage, if more constraints on the inputs are

needed, this environment file is changed to provide the constraint, which are written as

C++ methods. Adding constraints is not difficult and not very time-consuming. The diffi-

cult part is determining what constraints need to be added. The most effective method

used in the FLASH project was to use no extra constraints initially. All errors were then

tracked down. If the error was a false error, the cause was tracked back to the input value

that was wrongly generated. A constraint could then be added. This method is the safest

since it constrains the inputs to the minimum possible. The experience from FLASH was

32

that bad inputs quickly manifested themselves as catastrophic errors that were not difficult

to track down, if the person tracking down the problem had basic familiarity with the

design.

Although some datapath abstractions such as the program counter are usually easy to

abstract with the ND-environment, other abstractions require more effort from the user.

The most common abstraction is to group signals into equivalence classes. An example of

this is given in Section 4.4 where decoded instructions to a processor are grouped into

instruction classes. In general, this requires knowledge of the design and must be done

manually. The benefit of finding abstractions is that the state space of the control FSMs

may be reduced. This can improve running time or memory requirements of the validation

tools, and in the best cases, even bring designs that might be too large otherwise, into the

realm of the feasible.

3.4 State-Enumeration Tool

The second step in the design validation methodology is the state space exploration of

the FSM model. This process attempts to find the set of reachable states of the model from

reset. There are several techniques available to do this, usingexplicit and implicit meth-

ods. The technique used in this work is an explicit method derived from Murϕ [DDH+92],

called MPP. This decision was a pragmatic one since the state enumeration tool was

already under development at Stanford. However, conceptually, an implicit state enumera-

tor utilizing BDDs could also be used in its place. This gives the possibility of manipulat-

ing much larger symbolic state spaces.

Murϕ, and all its descendents, use anexplicit hash table to store states found during

state enumeration. The FSM model is represented as a set ofguarded rules that encode the

next-state function of the system. A guarded rule is simply a condition followed by an

atomic action. If the condition evaluates to true, the action can be executed. These rules

are executed, orfired, in a non-deterministic fashion, which means that all rules are tried

for every state. When a rule is fired, the next state of the system is found and looked up in

the hash table. If the state is present, it means that it had been previously found and we can

33

ignore it now. Otherwise, we add it to the hash table, and put it in the queue of states to be

explored.

The system starts with just the reset state in the queue and hash table. All the rules are

fired and the resulting states are looked up in the hash table. Any that are not present are

added to the queue. This process continues until the queue is empty, meaning the entire

state space has been found. This process allows modeling of asynchronous systems. Each

rule corresponds to a single FSM, so firing every rule at every state leads to trying all pos-

sible interleavings of asynchronous events.

To better model synchronous digital systems, a variant of Murϕ was created, called

Synchronous Murϕ and later MPP, that groups rules together to be fired simultaneously.

The rules fired together represent the lock-step execution of a synchronous design. By

synchronizing the execution of rules, a cycle-based concurrency model is obtained. This

synchronous concurrency model provides an implicit edge-triggered clock for the state

variables of the design. This needs to be turned into an explicit clock for latch designs

with multi-phase clocking.

In the next chapter, a technique for generating test-vectors from the state graph is pre-

sented. For this technique to operate, the state enumeration tool must mark the conditions

under which a transition edge occurs. For MPP, these conditions are simply the values of

Hash
Table

Queue

Top

Bottom

Statebeing
Explored

New State Old
State

Figure 10. Murϕ State-Space Exploration Algorithm

34

the non-deterministic variables that resulted in that particular edge. This corresponds to

thefiring of a particularrule in the Murϕ algorithm.

3.5 Discussion

In this chapter, a methodology was given for extracting and using control logic infor-

mation from the implementation of a design. A procedure was given to mostly automati-

cally extract the FSM description and to explore the state space. This automatic translation

step is important to remove possible human errors when creating a model of the design.

Though conceptually simple, the translator has hidden within the algorithm, a mini-syn-

thesis step. Fortunately, in this work, the FSM language chosen has a semantics similar

enough to synthesizable Verilog that RTL analysis is limited to mostly state inference.

However, in general, the RTL must be understood in order to convert it to another format

with different semantics. From this requirement, the restriction that the RTL model be

synthesizable arises.

As mentioned before, the largest issue for state enumeration is state space explosion.

Limiting the logic under consideration to only control removes a large amount of state

explosion due to wide bit-width state elements in the datapath, for example, 32 bit regis-

ters holding data values. And using an ND environment to abstract components outside

the control FSMs also helps. However, for many interesting designs, full state space enu-

meration will suffer from explosion and be difficult or impossible to complete with finite

computing resources. Ways of obtaining useful information for validation despite this will

be discussed in Chapter 6. In the next two chapters, the procedures to utilize the control

logic interaction information to assist and guide the validation task are fleshed out.

35

Chapter 4. Validation Vector Generation

One of the two possible operations in the last stage of the validation methodology is

generation of test vectors from the control state graph. The goal here is to generate test

vectors that cause the simulation to exercise every arc in the graph. Since the graph is cre-

ated by automatic extraction from the detailed hardware description, the test-vectors gen-

erated should be capable of causing the same transitions to occur in the RTL simulation.

However, since this generation process is fundamentally a guided random algorithm, it

assumes the presence of a correctness checkinggolden model, as described in

Section 2.1.1.

There are two parts to test vector generation from the control state graph. First, paths

through the graph need to be found that cover each transition edge at least once. Secondly,

the path needs to be converted to a test vector that can be run in simulation. These are dis-

cussed in the next sections.

4.1 Paths through the State Graph

To maximize the potential for finding bugs in the design, every possible edge in the

control graph should be executed atleast once. This corresponds to trying every interac-

tion of the control logic at least once. A series of arc transitions that traverses every arc at

least once is known as atransition tour. A transition tour that traverses every arcexactly

once is known as aEuler Tour. However, a Euler Tour can only be found for symmetric

graphs that are strongly-connected [Hol91]. The general problem of finding a transition

36

tour in a non-symmetric strongly-connected graph is called the Chinese Postman Problem

[EJ72] and is most frequently encountered in the field of protocol conformance testing,

which has developed algorithms for finding such tours in polynomial time [Hol91]. How-

ever, the validation methodology does not require a strict transition tour and in fact, there

are good reasons not to use a single transition tour. To make concurrent simulation possi-

ble and to limit the simulation time needed to reach any bugs found, we break up the tran-

sition tour into smaller components that all start from the reset state. In this case, the

requirement is that the union of all the arc transitions taken by all the tour components

cover all the arcs in the state graph. Since we are generating inputs to a simulator, we try

to avoid operations which are costly in simulation, namely backtracking and setting the

system to a particular state. Instead, we allow traversing an edge multiple times and pro-

hibit backtracking. This strategy leads to adepth-first search of the graph, since this trans-

lates naturally to the simulator advancing cycle-by-cycle. We use agreedy algorithm

which performs a depth-first style search (ExtendPath) of the full graph, using each transi-

GenerateTours () {
state = InitialState;
open output file to write tour;

do {
do {

/* Depth first traversal generating a vector for every edge traversed. States can be
 visited multiple times as long as there is an untraversed edge from that state. */

state = ExtendPath (state);

/* When ExtendPath cannot find a state with untraversed edges, perform a breadth first
 search looking for any state that has an untraversed edge. If found, generate the vectors
 to reach this state from the point ExtendPath stopped at. */

state = ExploreBFS (state);

} while (we can find a state with an untraversed edge) &&
(number of instr. generated <= MAX instructions per file);

close output file and open new output file to write new tour;

/* Explore phase - check whole graph for any remaining untraversed edges. */
state = ExploreBFS(InitialState);

} while (there exists a state with an untraversed edge);
Remove empty last output file;

}

Figure 11. Tour Generation Algorithm

37

tion edge as part of the tour. This proceeds until an untraversed edge cannot be found. At

this point, the algorithm goes into anexplore phase looking in a breadth-first manner for

an untraversed edge but without adding edges to the tour. Once found, the shortest path

from the point whereExtendPath stopped to the untraversed edge is added to the tour and

ExtendPath can continue. If such a node cannot be found, the algorithm starts a new tour

starting from the reset state. This continues until no new tours can be found even from

reset. The algorithm used to create this set of partial-tours is shown, as pseudo-code in

Figure 11.

4.2 Converting to Test-Vectors

Converting from a transition tour to test vectors requires that the RTL simulation be

driven to take the transitions specified in the tour. As we saw in Section 3.4, MPP marks

each transition edge with one of the sets of values of thenon-deterministic variables that

resulted in that edge. Hence, the values marked on each transition edge tell us what the

datapath and external input values must be in order to cause that edge to be taken in RTL

simulation. The task of test vector generation is to cause these values to occur at the

appropriate time during simulation. This can be made to happen in a couple of ways.

The most direct method is simply to take control of a signal in the Verilog simulation

through theFORCE/RELEASE commands, as demonstrated in Figure 12. This allows

Figure 12. Converting Transition Edge to Test-Vector

0

1 2

InputA = 0
InputB = 1

InputA = 0
InputB = 0

Desired
Path force InputA = 0;

force InputB = 0;

#cycle_period;

force InputA = 0;
force InputB = 1;

#cycle_period

Verilog

38

direct manipulation of the events simulated. However, care must be taken not to force an

illegal operation that would lead to a false error in the simulation. For example, in a pro-

cessor design, one of the signals that would likely be controlled is an indication from the

caches of ahit or miss of the last access. Forcing this signal to indicate ahit would cause a

false error in the simulation if the simulated data was not in the cache. There are many

examples of situations where the values of signals are constrained in similar ways. Many

of these constraints can be accounted for by modeling them in the ND environment of the

FSM model. This constrains the inputs to the FSM model with the result that the illegal

inputs are never generated since they do not appear in the global state graph. When an

input cannot be constrained in the ND environment, extra attention must be paid to setting

up the simulation to not produce false errors. For the cache example just given, this can be

achieved by pre-loading the cache and limiting each test so that information in the cache is

never removed.

The other way to cause particular transitions to happen is to choose the data that is

read by the simulation. An example is the simulated instruction in a processor design,

which is provided as data to the Verilog simulation. Here, generation of an instruction

stream provides the necessary control without direct Verilog intervention. The instructions

are read by the simulation and executed. By choosing the sequence of instruction types

that are executed, control over signals derived from the instruction can be achieved. With

this method, some pseudo-random choices often need to be made. Recall that the ND

environment model provides some abstraction of the interface signals. For example, the

instructions of a processor can be grouped into equivalence classes that impact the control

logic in the same way. Hence, during test generation, when it is time to choose the instruc-

tion that is to be used as data for the simulation, any member of an equivalence class can

be chosen. Similarly, pieces of the data that do not affect the control logic can be randomly

chosen.

In general, the inputs being generated by the FSM environment model need to be

assigned values during simulation. During test vector generation, each of these input val-

ues must be assigned a value. This correspondence between values in the FSM model and

actual wires in the simulation, or data to be simulated, is made in thetransition condition

mapping. This is a per-model file written with information about the design to give a

meaningful representation of the test vector in RTL simulation, one that causes the desired

39

input values to appear at the right control inputs. The mapping also specifies how to

choose the random parts of test patterns. A sample mapping file is shown in Figure 13.

For this method of test vector generation to work well, the controlled signals must sat-

isfy a correspondence requirement in the two models that will be co-simulated. That is, the

signal must either exist in both models or it must have a simple mapping to appropriate

signals in the two models. In the simple case where the signal exists in both models, then

the same sequence of forced signal values is applied. In general, this works well for exter-

nal inputs to a model, such as a databus or communication channel, or some other archi-

tectural feature that must appear in both models.

The other simple case is where the signal can be totally ignored in one model because

it represents an implementation detail completely abstracted by the other model. An exam-

ple of this is the cache miss signal of a processor. In an abstract instruction level simulator,

a cache miss is treated as a nop (no operation) so the signal only needs to be applied to the

detailed implementation model.

The third, and hardest, case is that a signal in one model needs to be represented by

different signals in the other model. In this case, the mapping between values of signals in

one model and the other needs to be given so that the two versions of test vectors can be

Figure 13. Sample Transition Condition Mapping

 /* Generate A-side instructions */
 if (condEval (cond, "InstrDecodeA.NextInstr") == OTHER_INSTR) {
 switch (random()%4) {
 case 0: /* ALU 3 op */
 fprintf (F_ins, "\t%s\t%s, %s, %s\n",
 AluInstr[random()%NUM_ALU],
 DRegisters[destReg],
 srcReg(),
 srcReg());
 break;

case 1: /* ALU Immediate */
 fprintf (F_ins, "\t%s\t%s, %s, %d\n",
 AluiInstr[random()%NUM_ALUI],
 DRegisters[destReg],
 srcReg(),
 random()%myRaise(2,16) - myRaise(2,15) +1);
 break;

Get the value of this
variable.

Randomly choose type
of instruction from

class.

Randomly fill in
fields of instruction.

40

generated. In general, this can be difficult. The most common occurrence of this situation

is when the two models to be co-simulated have different boundaries, that is, they enclose

different amounts of logic from a design. In this case, the same signal may be present in

both models but may be masked by additional logic in one. In particular, one situation

where this may occur is when a golden model has been written that encapsulates addi-

tional functionality, for example, a design along with an interface bus and the arbiter of the

bus. A likely scenario is that the FSM translation from the RTL would stop at the bus

boundary of the design. Hence, test vectors would be generated at this interface, but the

equivalent vectors for the golden model require additional abstraction to include the bus

and arbiter.

Creating test vectors for a model with additional logic is possible by reasoning back-

ward through the logic. The additional logic is incorporated into the transition condition

mapping so that the values of signals needed to cause a particular FSM transition is deter-

mined in terms of inputs to the additional logic. If the additional logic is purely combina-

tional, this is not too difficult. The harder situation is when there is sequential logic that

must be reasoned through. In this case, the state must be modeled and tracked in the tran-

sition condition mapping code. This is practical only for small amounts of sequential

logic. Fortunately, this is the case in most validation environments.

4.3 Undetectable Bugs

The ability of this technique to detect bugs in the design relies on two things. Firstly,

the bugs must manifest as data value differences between the two models being co-simu-

lated. Any behavior that is not modeled in the more abstract model (specification) cannot

be checked for correctness. For example, if the specification is not cycle accurate, perfor-

mance bugs in the implementation might not be found. In addition, errors common to both

descriptions cannot be detected.

Secondly, the technique tries to expose bugs by exercising all control edges in the

state transition graph. However, an implementation detail of the state enumeration tool

leads to the possibility of missing test cases. During state enumeration, MPP only keeps

the first set of non-deterministic variable values that results in a new transition edge. Any

further sets of values resulting in the same edge is discarded in the standard algorithm.

This gives space savings based on the implemented data structures but has the potential of

41

overlooking important tests. By enumerating on the implementation FSM, we capture a

class of bugs where the implementation has more behaviors than the specification as dem-

onstrated in Figure 14. When the “c” transition of the implementation is simulated, the dif-

ference with the specification is exposed and hopefully the error will be detected.

However, there does exist a situation in which this methodology might fail to find a bug as

shown in Figure 15. For this example, let us assume that the implementation erroneously

performs the same state transition for both input “a” and “c”. However, in the state enu-

meration, each arc is labelled with the first condition leading to a new state, so either “a”

or “c” will label the arc depending on which is tried first, but not both. If “a” labels the arc,

then the wrong “c” transition will never be exercised to expose the bug. This case can be

caught by performing the state enumeration on both the implementation FSM and an

abstract model of the specification FSM. However, in many cases, there may not be an

easily obtainable specification FSM for a general piece of logic.

This is an example of a more general issue: namely, whenever test vector generation

is based on the implementation of a design, there is a chance that the implementation is

missing some specified functionality. The most trivial example is when the implementa-

tion is completely missing a functional unit, for example the ALU shifter in a processor

design. Test vectors generated from the implementation cannot detect that the shifter is

missing, but if a shift instruction were to be simulated, this omission would quickly show

up. This argument can be applied in both directions. If test vector generation was based on

the specified behavior, then implementation corner-cases could not be created. To be abso-

a

b

A B

A

B

C

a

b

c

Specification

Implementation

FSM

FSM

Figure 14. Erroneous FSM Implementation with more Behaviors

42

lutely sure, test vector generation would need to be performed from both directions. How-

ever, this is not generally practical as just mentioned because it can be difficult to

automatically obtain an FSM description of the specification. The correct way to avoid

this problem is to ensure a set of test vectors are also created that test basic functionality of

the design. With this, confidence can be obtained that there are no major blocks of logic

that are missing.

4.4 Stanford FLASH Memory Controller Example

This research was performed as part of the Stanford FLASH (FLexible Architecture

for SHared memory) multiprocessor project [KOH+94]. The FLASH machine was

designed to allow the two programming paradigms of shared-memory and message-pass-

ing to co-exist on the same hardware. In order to achieve this, a flexible memory control-

ler, called MAGIC (Memory And General Interconnect Controller), was designed and

built. MAGIC contains an embedded RISC-processor core; some interfaces that manage

and queue requests from several sources including a network and a host processor; an

internal scheduler and a DRAM controller. This is the circuit whose validation was the

driving force for this work.

To optimize latency and throughput, MAGIC is split into specialized data handling

and control logic sections. The control logic performs operations related to memory man-

agement, be it directory-based cache-coherence or cache-only-memory-architecture

(COMA) or other protocols. These operations follow the same general sequence of

b

A B

A

B

C

a

b

c

Specification

Implementation

FSM

FSM

d

Figure 15. Erroneous FSM Implementation with fewer Behaviors

a, c

43

actions: dispatch based on the type of the incoming message; some updating of informa-

tion; and possibly dispatch of a new message. This sequence forms the basis of a control

macro-pipeline which corresponds to the major functional units of MAGIC as shown in

Figure 16.

Arguably, the most complex component of the design is the embedded processor core,

known as the Protocol Processor (PP). This is a 64-bit, dual-issue, DLX-based [HP90]

processor with an aggressive memory system. The chip, which will be fabricated by LSI

Logic using a semi-custom gate-array, will be about 250k gate-equivalents.

The Protocol Processor (PP) unit of MAGIC was used an example for this work. The

results below were obtained using a version of the PP prior to final functionality freeze

and timing optimizations. In general, processors have two classes of stimuli that affect

control: the instruction stream and input signals from external sources. As long as both

these sources of stimuli are controlled in the RTL simulation, the model should take the

same state-transition arcs as the transition tour.

This work focused on modeling the memory system and the stall machine. Several

abstractions were necessary to make the PP model state space small enough to handle. As

previously mentioned, some natural abstractions existed, such as the 1-bit hit/miss signal

for the caches that took the place of 32-bit addresses. Another natural abstraction was to

group instructions into equivalence classes. The control logic takes in decoded signals that

DP

Inbox

Outbox

Memory
Control

PI NI I/O

Protocol Processor

Processor Network I/O

PI NI I/O Software
Queue Head

Inbox

Outbox

PI NI I/O

Memory
Control

MAGIC
Instruction

Cache

MAGIC
Instruction

Cache

MAGIC
Instruction

Cache

MAGIC
Data

Cache

Figure 16. MAGIC Block Diagram

44

represents types of operations, for example, all ALU operations result in the same control

signal values. For this work with the PP model, 5 instruction classes were used, shown in

Table 2.

Flow of control instructions, such as branches and jumps, are not explicitly modeled

here. For this work, they were introduced randomly into the instruction stream with a

known outcome. This gives a random testing of branches while testing all other interac-

tions.

Other abstractions for the PP include the pipeline registers, the caches and the pro-

gram counter. In this model, one of the properties of the design that helped to keep the

state space small is the global stall mechanism. Whenever one of the major FSMs

becomes active, a stall signal to the other FSMs keep most of them idle until the operation

is complete. The abstract model is shown in Figure 17. In this figure, the functionality that

was abstracted is shown as rectangular boxes whereas the FSMs that were modeled are

shown as ovals. Although this figure looks complex, the important features are that there

are a small number of interacting FSMs (6), with a handful of constrained abstract compo-

nents generated in the ND-environment. The remaining inputs to the FSM model were left

unconstrained. The environment did not require much effort to create and did not need

substantive changes while the RTL progressed towards completion.

4.4.1 Protocol Processor Test Generation

This abstract FSM model was run through the tool-set. The state space exploration

results are shown in Table 3. One interesting fact to note is that although 98 bits of state

Table 2. PP Instruction Classes

Instruction
Class Effect on Control Logic

ALU Has no effect since there are no exceptions in the PP.

LD Execution of a load can cause transitions in load/store FSMs.

SD Execution of a store can cause transitions in load/store FSMs.

SWITCH A switch instruction executed while the Inbox is not ready causes a
pipeline stall.

SEND A send instruction executed while the Outbox is not ready causes a
pipeline stall.

45

were necessary to hold the state vector, only about 218 states were actually reachable from

reset. One of the reasons for this was that the FSMs interlocked to a great extent. In other

words, when one FSM was active, many of the others were held in their previous states

until that operation was complete.

The results of transition tour generation are shown in Table 4. These results show that

simulating the complete set of vectors is achievable and on average a modest number of

instructions (7) is needed to test each arc. In addition, breaking up traces into smaller com-

Table 3. PP State Enumeration Results

Number of States 229,571

Number of bits per State 98

Execution Time (on DecStation 5000/240) 5.1 cpu hours

Memory Requirement 34 MB

Number of Edges in State Graph 1,172,848

IFetch Reg Exe Mem WB

Stall FSM

ICache

FSM
Refill

DCache
Refill
FSM

Cache
Conflict

FSM

Fill/Spill
FSM

Abstract
I-Cache

Abstract
PC

Abstract

Decoder
Instruct.

Hit/Miss

Instructions Decoded
Instructions

ICacheMiss

IStall

Stall

Cache
Controller

Stallable
Instruction

Externally

Load/Store
Instruction

DStall

Abstract
D-Cache

State

Conflict Stall

External Stall

Condition

DCacheMiss

To Memory
Controller

DReq IReq

IReq

Registers
Pipeline
Abstract

Figure 17. PP Abstract FSM model

46

ponents does not add much overhead, which is fortunate since it is extremely helpful in

reducing the time needed to rerun a simulation to reach a bug.

It might seem strange at first that the same number of traces were generated in both

cases. It turns out that the PP model has numerous edges in the graph that can only be

reached from reset. These edges represent different initial conditions for the inputs to the

model and the traces needed to reach these edges cannot be combined with others. This

gives us the lower bound on the number of traces needed to cover all edges in the model

(1,296 for the PP model). Without an instruction limit, over 99% of the instructions were

generated in the first trace and the remaining 1295 short traces were needed to cover dif-

ferent initial conditions. With the instruction limit, many of the edges in the state graph

that were originally covered by trace 1 are spread out among later traces. A total of 853

traces were terminated due to the 10,000 instruction limit which suggests that it took 854

traces to cover most of the edges originally covered in the first trace. The remaining 442

traces covered the remaining initial conditions.

4.4.2 Protocol Processor Bugs

The automatically generated test vectors were used to drive the RTL model of the PP

and the resulting register file values were compared to an instruction-level simulator. Sev-

eral non-trivial bugs were discovered that were not uncovered using hand-written or ran-

Table 4. Test Vector Generation Statistics

With no limit With trace limit
(10,000 instructions)

Number of Traces Generated 1,296 1,296

Total number of edge travers-
als generated

21,200,173 21,252,235

Total number of instructions
generated

8,521,468 8,557,660

Generation time (on DecSta-
tion 5000/240)

44.8 cpu hours 53.7 cpu hours

Estimated simulation time @
100Hz (total)

58.9 hours 59.0 hours

Longest Single Trace 21,197,977 edges 144,520 edges

Estimated simulation time @
100Hz (longest trace)

58.9 hours 24 mins.

47

domly generated test vectors. The test vectors were run on the PP Verilog model after it

had been partitioned for synthesis and was considered fairly mature. All bugs that were

found using other methods were found using this technique. In addition, Table 5 shows

some bugs found using the generated vectors but not found by other methods over the

course of a couple of months of testing and debugging both software and the design.

Bug #5 is illustrative of the improbable interactions that are involved in some bugs

which make them hard to detect. The situation leading to the bug was a load that missed in

the data cache followed by any other load or store instruction. The first load required

retrieval of a line from memory to cache. With critical-word-first restart, the first word

returned from memory was driven onto a bus (Membus) leading to the register file. The

bug existed as a glitch on the signal that indicated valid data on the Membus, as shown in

Table 5. Synopsis of Discovered Bugs

Bug Description (Summary of Bug followed by Explanation)

1 Interface miscommunication between PP’s cache controller and the Memory Controller.
Qualification of an interface signal was needed, but the two units thought that the other would
perform it. The bug manifested itself as incorrect data being returned to the I-Cache.

2 Latch not qualified on all stall conditions and lost data.
On a simultaneous I & D Cache miss, the latch holding the data that was to be returned after the
D-Cache refill was not qualified on the I-Stall and lost its data by the time the I-Cache miss was
serviced.

3 Cache conflict stall can cause wrong address to be used on the stalled load.
The address used in the load of a conflict stall was not held during the stall. If there was no fol-
lowing instruction that used the address bus of the cache (any load/store instruction), then the
correct address from the load remained. However, if the load in the conflict stall was followed
by another load/store instruction, then the address of the following load/store was erroneously
used.

4 I-Stall fix-up cycle lost if I-Stall condition occurs during Mem-Stall.
The I-Cache refill machine takes a cycle to restore the correct values to the instruction registers
after an I-Stall. However, it was not qualified on MemStall, so was lost if the I-Stall condition
arose after MemStall was asserted. This can happen if aswitch or send is executing in the
stalled instruction and the external unit (Inbox or Outbox) signals the PP to wait.

5 Glitch on bus valid signal allowsZ values to be latched on a load that missed followed by any
other load/store instruction interrupted by an external stall condition.
This bug is explained in detail in the text.

6 Cache conflict stall with D-Cache hit and simultaneous I-stall results in stale data being loaded.
A cache conflict stall occurs because of the split store operation. When the address of the load
following a store is the same as the store, a conflict stall is taken to write out the store data
before loading it. When there is a simultaneous I-stall caused by an external condition, the load
receives the stale data instead of the newly written data.

48

Figure 18. The glitch was caused by the presence of a load or store instruction in the pipe

following the load that missed and it occurred after the critical word was driven, thereby

overwriting it with potential garbage because the bus is at high impedance at this time.

However, the logic which implemented the refill was still erroneously implementing an

older restart policy. So, it then drove the required data onto Membus a second time, giving

the correct result to the register file. This in itself is a performance bug which result com-

parison does not find. The correctness bug exists only if an external stall condition arose

between the time of the glitch and the second write, preventing the second write from

occurring, leaving garbage in the register file, as shown in the timing diagram of Figure

18. In actual hardware, it would have occasionally shown up as corrupted data and its

reproducibility would have been limited because of the requirement of a stall arising from

another asynchronously operating unit.

Glitch

Data

Figure 18. Bug #5 Timing Diagram (Glitch Masked)

Membus

Membus

External

Window of Vulnerability

data1 data1

Valid

 Stall

masking glitch
re-written

Glitch

Figure 19. Bug #5 Timing Diagram (Garbage written)

Membus

Membus

External

Window of Opportunity

data1

Valid

 Stall

External Stall
at “right”
time leads
to corrupted
register value

Garbage on
Membus

49

This is an example of the types of bugs that are the result of a series of interactions in

the control logic that may be overlooked using traditional validation methods. Easily gen-

erating this rare interaction is the advantage of using control interactions modeled as FSM.

4.5 Related Work

At the very highest level, using a state graph to map out the testing requirements of a

design is not new. This is utilized heavily in the field onnetwork protocol conformance

testing. Network protocol conformance testing addresses the question of whether an

implementation of a network protocol actually satisfies the specification. Quite often, the

implementation is provided as a black-box and conformance is tested through a suite of

test vectors and expected responses. The protocol will often contain a substantial number

of states, all of which must be exercised. To make this task even harder, there is usually

limited observability of internal states and controllability is through the external inputs

only.

Like the test vector generation technique described in this chapter, network protocol

conformance testing uses the idea of achinese postman tour as defined in [EJ73]. One

problem encountered in network protocol conformance testing that is not faced in design

validation is theobservability andcontrollability constraints. Special sequences ofunique

inputs/outputs (UIO) need to be developed to determine exactly what state transition was

taken for a particular test vector in the implementation [ADL+91]. This is generally not

necessary for design validation since we have access to the internal state of the simulators

used for validation. However, these techniques may prove useful if validation tests were to

be used for conformance testing of hardware parts. Further details and a good overview of

how state space enumeration techniques used for protocol testing can be found in [Hol91].

4.6 Discussion

The limiting constraint of this approach is the size of the global state space of the

design. In order for the transition tours to be created, the full state space must be obtained

first. Our experience with FLASH indicates that as designs mature, the size of the state

space grows. This is normally the result of timing requirements: more logic is introduced

to pre-compute results, logic is modified for optimal timing and additional registers are

50

introduced to break timing paths. In most practical designs, the state space quickly grows

large. The abstractions used in this chapter can postpone the point when the state space

becomes unmanageable, but is not a general solution. Instead, a possible solution is to

more closely link the state space enumeration, test generation and simulation so that parts

of the state space can be exercised without requiring that the entire state space be found

first. In the end, the goal is to validate the design and find bugs. Even if test generation in

this manner cannot achieve complete coverage because the state space is too large, it may

still be able to uncover errors in parts of the design that might be hard to test with any

other technique.

A general limitation of this test vector generation technique that was not encountered

to any great extent is the issue of controlling internal nodes of the design. For this tech-

nique to work well, it must be possible to take over a signal in simulation without cata-

strophic results. If the protocols on the interfaces were more complex, the test generation

algorithm may not be as straightforward, or the protocols might need to be programmed

into the transition condition mapping. The features of a design that make it amenable to

this technique are probably the same as those that would make it suitable for pseudo-ran-

dom testing.

This test generation process can actually be viewed as guided random generation. At

each cycle, the algorithm looks for a new path to take that covers a state transition edge

that had not previously been taken. If there are multiple candidates, a random choice is

made. Also, for many of the abstractions, a choice needs to be made about the particular

signal(s) or data from the equivalence class. The consequence of this random generation is

that the test vectors require an automatic correctness check, such as agolden model simu-

lator. This works well for some models which have a simulation model which is naturally

more abstract than the implementation model, such as processors. However, there are

many pieces of logic that depend so much on particular signal timings that the task of cre-

ating a second simulation model of the design equates to re-writing the RTL.

In the FLASH project, an attempt was made to create an abstract model of theInbox

unit to be used as agolden model. Our hope was that it would be possible to create a

model that could accept a sequence of inputs and produce the same outputs without creat-

ing a completely cycle-accurate model. It turns out that within theInbox unit, there is

some arbitration between inputs and a general purpose bus which could change internal

51

state of the unit. In order to produce the same output, the abstract model needed such a

degree of cycle-accuracy, that it reproduced the Verilog RTL and in fact became based on

it. This contamination makes thegolden model less effective or even useless as a correct-

ness checker. For designs such as this, the effort of creating the second model may over-

whelm the benefit it buys and instead of random test generation, coverage analysis of self-

checking tests should be used, as described in the next chapter.

52

Chapter 5. Validation Coverage Analysis

The previous chapter discussed using control interaction information from state enu-

meration to generate test vectors. Test vector generation works well when a design has two

models that can be co-simulated with the same vectors in order to check correctness.

However, there are many designs or components of a design where this is not feasible. In

these cases, the control interaction information can still be utilized to provide coverage

analysis to guide creation of self-checking test vectors.

The coverage measure described in this chapter is based on state space reachability

analysis. The basis for this metric is that bugs in a design cannot be discovered if the con-

trol paths leading to it are not exercised in simulation. By reporting a coverage measure

based on the state graph of the control logic, the likelihood of creating test vectors that

encounter bugs which are the result of rare interactions, should be much higher. The prob-

lem when this was tried in practice is that, very often, the coverage reported is very low. In

this situation, designers have difficulty relating the coverage numbers to missing tests in

the test vector suite. What is required is an incremental infusion of coverage information

so that attention can be focussed on the simplest missing tests initially, before progressing

to the more complex ones. In fact, it is extremely difficult, if not impossible, to provide a

single definitive number that can indicate when validation is complete. Each individual or

combination of FSMs has a coverage measure that conveys valuable information to

designers. And at the core of validation, the really useful information comes from finding

missing test cases rather than reporting numbers which require numerous footnotes to

53

explain their exact meaning. There are just too many ways to reduce and remove informa-

tion that significantly change the coverage number reported. With this in mind, an

approach is described in this chapter which tries to focus on identifying the useful infor-

mation. Often this means taking smaller pieces of the coverage measure and making these

high before taking the next piece.

The basic coverage metric is obtained simply by logging the state transitions observed

in the RTL model during simulation with test vectors. The test vectors can be generated by

pseudo-random techniques or be hand-written directed tests. The coverage is then repre-

sented as a state-coverage metric and an edge-coverage metric:

5.1 Graph Redundancies

This state space calculation of coverage is more useful than more simplistic measures,

such as node-toggle coverage because it takes interactions into account. However, it often

produces an excessive testing requirement for the design. Taking the state graph from a

model that has been directly translated from RTL turns out to have a great number of

redundancies, which are states that do not necessarily need to be tested, resulting in low

coverage numbers. This in itself is not a bad thing, but the consequence is that the analysis

points out a very large number of state interactions that may not have been tested. If many

of the tests are redundant, that is, they have little potential for finding bugs, then the task

of finding the truly missed and needed tests among the large number of unneeded tests

becomes a hurdle to getting useful feedback from the analysis.

Detailed examination of the FLASH design examples revealed three sources of state

graph redundancies. Firstly, the structure of the RTL code leads to some bits beingdon’t

SCM (State Coverage Metric) =
Number of States Visited in Tests

Total Reachable States in State Graph

ECM (Edge Coverage Metric) =
Number of Edges Visited in Tests

Total Reachable Edges in State Graph

54

care values in certain situations. The value of these bits does not affect the next state and

they can be used to reduce the size of the state graph. Secondly, an important property of

test vectors is that they attempt to exercise conflicts for resources in the design, and bugs

arise when a resource conflict actually occurs. When considered in terms of their ability to

exercise different resource requirements, many sequences through the state graph result in

the same testing potential. In other words, they exercise the same resource contentions.

These can be coalesced to reduce the testing obligation that the coverage analysis imposes

on the design. Thirdly, in many cases, the environment of the FSM, which is really the

input generator, is too general and results in illegal states being reached in the FSM model.

These illegal sequences are prevented from occurring in the real hardware by constraints

on other components, so the real hardware cannot reach some of the states which eventu-

ally get reported as uncovered by the analysis. In these instances, the environment needs

to be constrained to produce legal sequences only.

Together, these three problems conspire to produce a mountain of interaction tests

that are reported by the straight-forward state graph coverage analysis. Buried among

these are the tests that have high potential for discovering bugs. To find these important

tests, each of these three problems need to be addressed and a solution found that removes

the redundant information. Each problem is discussed further in the following sections

and solutions proposed, with supporting data from the FLASH examples. One pragmatic

conclusion of this work with the FLASH design was that incremental coverage informa-

tion is the most valuable. Not only does it allow the designer to deal with smaller amounts

of information at a time, it also aids in identifying redundancies early, when they are easier

to spot.

5.2 Graph pruning using Static Analysis for Don’t Cares

In many large designs, it is often true that portions of the state space are equivalent,

meaning that pairs or groups of states can be represented by a single state without loss of

information. Many techniques [KVB+95] have been proposed to find such equivalences

and hence reduce the state space. Most of these have used the original graph as a starting

point for finding equivalences, making them ineffective at dealing with the state explosion

problem. However, when dealing with state graphs derived automatically from RTL

descriptions, many equivalences can be traced back directly to the structure of the RTL.

As a consequence of the logic structure, some sections of the resulting state graph will

55

inevitably be equivalent. For example, in Figure 20 we have a global state variable that is

composed of two component variables and we show a portion of the RTL code that sets

the next state. AssumeStateB is set every cycle from an input. In this situation, the value

of StateB is irrelevant whenStateA is not equal to zero and can always safely be set to zero

without losing any information. This is true sinceStateB is not even looked at when

StateA is not zero and sinceStateB is set every cycle from the input, the next global state is

the same no matter what valueStateB is. So the sixteen possible values ofStateB can be

coalesced into a single representative state, reducing the overall state space.

This minimization can be done with any RTL construct where evaluation of a state

variable is dependent on the value of a different variable and it can be shown that the state

variable will receive a new value before it can next be used. This is analogous to the kill

set in compilers [ASU88], where a register is considereddead, or unused, after it is last

read and before it has a new value written to it. For state space exploration, different val-

ues in that dead register show up redundantly as multiple states in the state graph, whereas

it is sufficient to just zero it without losing any information.

It would be possible to analyze the RTL structure very carefully to figure out depen-

dencies and generate a complete kill set for each variable. However, to be of real help in

managing state explosion, pruning the state graph must occur dynamically and with mini-

mum overhead. Hence, we introduce slightly stronger constraints on the kill set to make

recognition of pruning situations easy. Instead of doing multi-cycle analysis to figure out

when a variable is written, we will impose the constraint that the variable to be pruned

must be written every cycle. With this restriction, it is only necessary to determine if the

variable to be pruned is read on any particular cycle. If not, it can be zeroed for that cycle.

Figure 20. Don’t Care variable due to code structure

if (StateA == 2’h0) begin
if (StateB == 4’h1) begin

StateA = <value1>
end
else begin

StateA = <value2>
end

StateA StateB

Global State Variable

2-bits 4-bits

01 03

05

56

5.2.1 Static Analysis of Kill Sets

Analysis of the RTL for kill sets occurs once the state variables in the design have

been determined. For each of the state variables, we look for structures where the variable

would not get read. A partial list of these structures is given in Figure 21. For every vari-

able that is not read on occasion, we check the RTL to see if that variable gets a new value

on every cycle. If so, we can construct a binary decision diagram (BDD) to represent the

set of conditions where it can be ignored. The BDD simply encodes the values of the other

state variables that allow us to treat the variable being considered adon’t care value. The

example in Figure 22 demonstrates this analysis.

The BDD in Figure 22 (b) represents the contexts in whichStateC can be ignored,

based on the RTL shown in Figure 22 (a). This basically says thatStateC can be ignored

unlessStateA takes the value 2 andStateB takes the value 1. In all other situations,StateC

is adon’t care. This analysis is done for every state variable independently, except in the

• Variable occurs in only one branch of an if-then-else statement.

• Variable occurs in a subset of all case branches

• Variable is in a binary expression whose value is solely determined by the
other variable, for example(0 AND x) or (1 OR x) .

if (varX & varZ) begin
varX = varY + 1;

else
varX = varZ + 3;

end

read_stmts(varY) = OR(context, varZ)

read_stmts(varZ) = OR(context,

OR(varX, OR(!varX, !varZ)));

read_stmts(varZ) = bdd_one;

varX = varY & varZ;

read_expr(varY) = bdd_one

read_expr(varZ) = OR(context, varY)

Figure 21. List of RTL Structures where a Kill-Set may be possible

57

case of binary expressions, where one must not turn both arguments into adon’t care on

the basis that the other will determine the value of the expression. A BDD is created for

each variable, which is then used in the dynamic pruning.

To keep the dynamic portion of the algorithm simple, hence minimizing its overhead,

the variables that form the support of the BDDs of the kill sets need to be state variables.

The support of the BDD is the set of variables that compose the BDD. In other words, the

value of the BDD when evaluated depends on these variables. If any of these variables are

not state, they need to be iteratively replaced until only state variables form the support.

This allows the dynamic algorithm to operate based on the value of the current state alone,

without requiring any information about the transition function. Otherwise, the pruning

algorithm would be required to evaluate portions of the state function for each state, which

is a slow operation.

5.2.2 Dynamic Pruning with Don’t Cares

Once the kill sets have been determined for every state variable, we simply modify

the state enumeration tool to check the kill sets whenever it finds a state and is about to

check its hash table. The algorithm, shown in Figure 23, checks the current state to see if it

is one of the situations in which a state variable is adon’t care. If so, it zeroes out that vari-

able before the hash table lookup, making all states that differ only in that state variable

equivalent. As shown in the figure, this algorithm is quadratic in the number of bits in the

state variable. This overhead plays an increasingly larger part of the running time as the

number of bits increase. For some models, the state space savings will compensate for the

overhead to reduce the running time. In other models, this overhead will be much larger

if (StateA == 2’h2) begin
Var1 = StateB & StateC;

else
Var1 = StateC;

end

StateA[1]

StateA[0]

StateB

0

0

01

(a) (b)

Figure 22. Static Analysis for Kill Sets

(StateC is read)

58

than the running time of the unpruned model. However, running time alone is not the

deciding factor in determining the benefit of pruning. By reducing the state space, pruning

serves to focus attention on the core states of the model that need to be tested. This issue

will be revisited later in this section with the benefit of empirical data.

Even with the more stringent conditions for kill set creation that we imposed for effi-

ciency reasons, we found that this dynamic pruning could provide good results with exam-

ples from the FLASH project, shown in Table 6.

Table 6. Dynamic Pruning Results (5MByte Hash Table)

Unit of
Design

State
Bits

Input
Patterns

Full Graph
Size

 Size with
Dynamic
Pruning Reduction

Full Graph
Running

Time

Pruned
Graph

Running
Time

Protocol
Processor

120 1,536 36,826 27,258 26.0% 1,229.4s 7,712.9s

InstrFetch 50 3,072 193,320 159,530 17.5% 9,482.5s 13,111.8s

PP
LoadStore

72 128 Space Out
>277,570

244,937 >11.8% 24,556.0s
(6.8 hrs.)

53,039.2s
(14.7 hrs.)

Inbox 24 524,288 4,960 484 90.2% 831.3s 93.7s

Outbox 10 65,536 164 70 57.3% 274.8s 112.7s

IO 86 > 232 4,896 3,209 34.5% 917.2s 4449.8s

Figure 23. Dynamic Pruning Algorithm

CheckPrune() {
state = MakeBDD (currentState);

FOR EACH bit in currentState {
if (AND(state, killset(bit)) != bdd_zero) {

currentState[bit] = 0;
}

}

O(n)

O(n)
O(n2)

59

These results are also plotted as graphs to illustrate the relative state space reductions,

shown in Figure 24 and as the relative running times, shown in Figure 25.

These results show that for some models, such as theInbox, pruning resulted in a sub-

stantial decrease in the state space size and running time. Clearly, this is a case where the

state space reduction offset the running-time overhead and came out ahead. In the median

case of theInstruction Fetchunit, we see a more modest decrease in the state space, but

this is not sufficient to offset the increased running time. In the worse case, theProtocol

Processorunit, we observe only a modest savings from pruning and incur a large runtime

overhead cost.

One encouraging observation from these results is that there was some pruning reduc-

tion in all units. This suggests that kill sets arise in RTL somewhat independently of the

coding style since these four units represent four different designers. It is also important to

note that it is acceptable to incur a slightly higher running time during state space explora-

tion to secure a smaller state graph. The smaller state graph will have fewer redundancies

leading to higher quality validation results based on it. However, it would be preferable to

Figure 24. Relative Pruned State-Space Size

60

know the degree of reduction possible and the expected overhead for a model prior to run-

ning it. In some cases, pruning may be too costly in terms of runtime overhead and

expected to achieve only a small state space reduction. ThePP model shown above falls

into this category.

There are two factors that affect how much state space reduction pruning achieves.

The first is thepruning potential of a design. This is the amount of reduction that might be

reasonably expected given the number of kill sets that have been found. The size of the

kill sets is determined by how often the design sets up situations in which a don’t care

state bit occurs. This can be measured to some degree by the number of state variables for

which the kill set is non-empty. This information is available after the translation analysis

Figure 25. Relative Running Times

61

step, before the state enumeration step. Table 7 lists the percentages of state variables that

have non-empty kill sets for the FLASH examples. The data indicates a strong correlation

between the number of state variables with a non-empty kill set and the amount of state

reduction that can be expected. The correlation data is also presented in graphical form in

Figure 26.

Table 7. State variable kill sets comparison

Unit
Total State-
Variables

with Kill-Sets
% with Kill

Sets

% State
Reduction
Observed

Protocol Processor 85 17 20.0% 26.0%

PP Instr. Fetch 28 7 25.0% 17.5%

PP LoadStore 57 10 17.5% >11.8%

Inbox 22 16 72.7% 90.2%

Outbox 7 4 57.1% 57.3%

IO 57 11 19.3% 34.5%

Figure 26. Correlation of kill sets and state reduction

62

Although the correlation is not perfect, for the three units that could be explored with

all possible inputs (Inbox, Outbox andIO), the amount of state reduction was at least as

much as the percentage of state variables with a kill set. For thePP, InstructionFetch and

LoadStore units, only a fraction of the possible inputs were used in order to keep the state

space manageable. In these cases, in particular theInstructionFetch andLoadStore cases,

the full reduction potential of pruning does not seem to be realized.

We would expect the runtime overhead of dynamic pruning to track the O(n2) cost of

the algorithm. The growth in the relative overheads is plotted in Figure 27. The numbers

in this graph were normalized to the PP model for comparison purposes. The outlying data

point for the IO was due to a particularly small state-space given the relatively large num-

ber of state bits. This seems to be a result of the IO design. This graph shows the expected

quadratic running time of the algorithm as predicted in Figure 23. However, the more

important fact is that it is possiblea priori to guess the likely state space savings and the

anticipated runtime overhead of using dynamic pruning immediately after the static analy-

sis phase. This provides a method of deciding whether to proceed with dynamic pruning

or not for a particular design.

Figure 27. Growth of Relative Overhead

63

From the empirical data of six design models, it seems that dynamic graph pruning

has the potential to find and remove a substantial number of equivalent states in the state

graph. Intuitively, its effectiveness depends on the number of times a kill set is activated in

the course of state enumeration. Consequently, if some of the inputs to the model are held

at fixed values, the amount of pruning observed drops, sometimes reaching the point

where no reduction occurs. The explanation for this is that the fixed inputs prevent the

graph search reaching the situations where the kill sets get activated. However, when all

the inputs are allowed to take all values, the data presented indicates that there is, to a first

degree, a correlation between the number of kill sets discovered in static analysis and the

number of times a kill set gets activated. This is probably becausedon’t care situations in

the RTL code are randomly distributed.

The correlation between the number of state bits in the model and the runtime over-

head can be traced back to the dynamic algorithm. Together, these two properties give a

good indication of the amount of state savings and the overhead that can be expected for a

given FSM model. These can be used to decide after the static analysis but prior to the

state space exploration whether pruning should be utilized. This is important since the

state space exploration is the more time-consuming process and a good educated guess

about the outcome of pruning can optimize the use of computing resources.

5.3 Control Events

The previous section talked about the first of three sources of redundancies in the con-

trol state graph that acted to dilute the coverage measurement, making it harder to extract

the important information. The second source of redundancies in the state graph arise

when the graph is examined with validation in mind. With this viewpoint, some of the test-

ing requirements of the full state graph turn out to be equivalent.

Since thefull control state graph of a design is a comprehensive representation of its

control behaviors, the natural procedure would be to require that every edge in the graph is

exercised. However, our experience in using control state graphs for coverage analysis has

been that it is often difficult to obtain test vectors from designers and test writers that exer-

cise every transition edge, except for the simplest of circuits. One reason is that in many

designs, not all control transitions that appear in the full control state graph need to be

exercised to fully test functionality. A typical example is shown in Figure 28.

64

In this example, there are three variables, two of which control the datapath (Var1 and

Var2), with the third read only by the FSM representingVar2. If we take the full control

state graph, we have 8 states and 16 edges that need to be exercised in tests. However,

some of these edges represent redundant tests. For example, the edge is

equivalent to from a testing viewpoint since the datapath observes the same

sets of commands from both edges.Var3 can be ignored since its contribution to the

behavior of the design has been madeexplicit by the state space exploration that com-

posed the individual FSMs. It does not directly control the datapath, so it is sufficient to

exercise the edge . This simply says that one or the other of those edges need to

be tested, but not necessarily both. By applying this principle to the entire state graph, we

obtain the reduced graph shown in the lower right of Figure 28. This graph contains only

the variables that directly or through some combinational logic control the datapath, called

datapath control variables, and has just 4 states and 5 edges that need to be exercised.

We can generalize this observation by redefining the important tests in terms of possi-

blecontrol events.

Figure 28. Example of State Graph Redundancy

Var 1 Var 2 Var 3

1

2

3

A

B

C D

X

Y

1AX 1AY

2BX 2BY

3CX 3CY 3DX 3DY

1A

2B

3C 3D

C D X Y

(Latches Input)

Full Graph

Graph with
Vars that control

datapathVar 1 & Var2 control Datapath

2BX 3CX→
2BX 3CY→

2B 3C→

65

Definition:

A control event is an equivalence class of states which have identical values for the

datapath control variables.

In other words, a control event represents a particular set of commands to the datap-

ath. Intuitively, this gives a better measure of an interesting event than a simple cross-

product of all control state variables since it takes into account which variables actually

control the datapath actions and focuses our attention on the control-datapath interface.

5.3.1 Coverage Property

Using the control event graph allows us to focus on the interface between the control

logic and the datapath. It makes the assumption that the sequence of operations seen by

the datapath is the important information, not the timing of signals to the datapath. For

example, if the datapath is capable of tracking the number of occurrences it sees of a par-

ticular control signal and taking action only after it sees some number, then this sequence-

only assumption is violated. In other words, control events assume that the datapath per-

forms the same operation given the same control signals. In effect, we treat some of the

control edges in the full state graph as equivalent and claim that testing any one of those

edges is sufficient to cover all of them. The assumption this makes is that the datapath

does not hold any control state, so that only the sequencing of datapath commands matter,

not their timing and duration.

The state variables that are not included in the control event graph also need to be

accounted for in some way for coverage. These variables, which we callindependent state

variables, have had their entire contribution to the state space made explicit by the full

state graph. However, it is still necessary to check that each individual variable has been

exercised. The example in Figure 29 demonstrates this. Here we have twoindependent

state variables,Var2 andVar3 and a control event graph consisting ofVar1. The transition

from stateB to stateC in the control event graph is taken if eitherVar2 is in stateY or Var3

is in state3. Hence, the control event graph might be fully covered even if one of the inde-

pendent variables does not make all of its individual transitions. By requiring that each

state variable, independent or otherwise, is fully exercised through its individual state

graph, a better coverage metric is obtained without incurring the cost of a state graph

66

cross-product. This decreases the testing requirements while keeping all interaction infor-

mation that affects the datapath.

Putting this together, we see that the full coverage property is comprised of two con-

ditions:

• Each individual state variable is transition-covered.

• The control event graph is transition-covered.

As a matter of pragmatics, the first condition should be satisfied before attempting the

second since if the individual state variables are not transition-covered, then it is likely

that there are large sections of the control event graph that will not be covered also. The

degree to which these conditions are satisfied serve as the coverage metrics.

5.3.2 Control Event Graph

A graph of control events can be created by projecting the full control state graph

onto the set of datapath control variables. This graph represents all possible sequences of

control events as given by the RTL description.

A precise definition of the control event graph requires introducing some additional

mathematical definitions. We assume that there is a set of state variablesV in the original

design. Each state in the original state graph can be regarded as a function that maps each

variable inV to a value (for simplicity, we assume that all values are drawn from a single

domain, which we will callD). Hence, the type of a states in the original graph is .

A

B

C D

Y or 2 Z or 3

Figure 29. Independent State Variables

X

Y Z

1

2 3

Var 1
Var 2 Var 3

(independent) (independent)

V D→

67

The set of datapath control variablesV' is a subset ofV. We wish to define theprojec-

tion of the original state graph onto a state graph whose state variables are restricted toV'.

Let S be a set of states mappingV to D. The projection ofS ontoV' (written proj(S, V')) is

a set S' of statess’ : where iff there exists an such that

when .

With the projection function, we can formally describe the control event graph as a

projection from the full control state graph. Assume that the full control state graph,G, is

represented by the standard 6-tuple (Σ, O, S, s0, δ, λ), whereΣ is the input alphabet,O is

the output alphabet,S is the finite set of states, s0 is the start state,δ is the next state func-

tion (δ:) andλ is the output function (λ:). To get the control event

graph, we apply theproj function to the set of states of G using the set of datapath control

variables for the projection. We also map the transition and output functions to this pro-

jected set of states by simply applyingproj on the arguments. For example, if in the full

control state graph there is a transition , then in the control event graph,

the projected transition would be . Similarly for the out-

put function. Note that theproj function creates a non-deterministic FSM [HU79], which

coverage analysis uses to track when transition edges are taken without reference to the

transition conditions.

So, the control event graph,Ge, which is the projection ofG onto the set of datapath-

visible state variables,ρ, is the 6-tuple (Σ, O, Se, se0, δe, λe), whereSe is the set of pro-

jected states ofS, described formally as (); the start

state is the simple projectionse0 = proj(s0, ρ); and the transition and output functions are

derived as above giving (δe:) and (λe:), where2X represents

the power set ofX, which is the set of all subsets ofX [HU79].

The analysis of the RTL to determine which state variables are visible to the datapath

occurs in the translator also. This analysis determines which variables need to be part of

the control event graph. Any variable that directly, or through some combinational logic,

is an output of the module needs to be included. This analysis is a simplified version of the

transitive fan-in algorithm of Section 3.3.2.

This section described a method to isolate and focus attention on the control logic-to-

datapath interface. By using this as a coverage measure instead of just the control state

V′ D→ s′ S′∈ s S∈
s v() s v′()= v V′∈

S Σ× S→ S Σ× O→

sn input1× sm→
proj sn() input1× proj sm()→

s S se proj s ρ,() se Se∈⇔=,∈∀

Se Σ× 2
Se→ Se Σ× 2O→

68

variables, many validation redundancies can be removed from the state graph. This helps

to identify the state variables that can be tested independently, which reduces the state

cross-products that need to be tested. The third source of redundancy over general envi-

ronments is discussed in the next section.

5.4 Over-Generalized Environment

When an environment is under-constrained, or over-generalized. In other words, the

inputs are allowed to follow sequences that are not possible in the real hardware. This has

the potential of pushing the FSM model into states that cannot really be reached in hard-

ware. These illegal states, which may actually be an entire sub-tree, then get reported as

uncovered interactions, which only serve to conceal the interactions which really do need

to be tested. A good example is the counter shown in Figure 30.

When the input to the counter is a non-deterministic variable, the counter will step

through every value for every state in the rest of the design because thesignal event will

be tried in all possible states. However, in the real hardware the FSM logic might be trying

to refill a cache line and the counter is keeping track of how many datawords have been

retrieved so far. In this case, it only makes sense forsignal to occur during a cache miss

refill and not at any other time. The result of the ND-modeling is that the counter will

increment even during non-cache miss periods, making the state space several times larger

Figure 30. Counter fed by Non-Deterministic Input

0

1

2

3

4

5

6

7

Signal

Signal

Signal

SignalSignal

Signal

Signal

Signal

Idle

Reset

Idle

Done

Count == 7

Other
FSM
Logic

Counter
Reset

Wait
for Done

Counter

Non-Deterministic Input

69

than it really is. The state space explosion problem is already very severe and this explora-

tion of unreachable states exacerbates it unnecessarily. Once identified, problem areas like

this can be dealt with on an individual basis. In the case of the counter, the ND-variable

that producessignal can be replaced with a more accurate model that produces it only dur-

ing periods where it makes sense.

The experiences of applying the coverage toolset to the instruction fetch (ifetch) unit

of the PP illustrates how these illegal sequences arise in real designs, how they can be

found and can be removed from the FSM model. Two examples are presented.

5.4.1 Case 1: Illegal Sequence from Reset

The InstructionFetch FSM model was approximated and partitioned from the full PP

as described in Section 6.1 to create a manageable state graph. The model started off with

a fully general non-deterministic environment where all inputs were allowed to take on all

their possible values every cycle in all combinations. When the state graph and coverage

information were presented to the designer, several unreachable product states were

quickly identified. The states of the individual FSMs in question were encoded into the

RTL, but it was believed that the product state was impossible to reach. There are two pos-

sible explanations: the state was an artifact of the approximation process, which is

described in Section 6.1; or the environment was too general and produced a path through

the FSM that was not possible in the real hardware.

To determine which explanation was responsible, the sequence of events that led to

the illegal state was derived from the state graph. The sequence indicated that a path from

reset was possible, shown in Figure 31.

Initially, Reset_v is asserted, keeping both theIFetch andCacheCtrl FSMs in

their initial states. However, if an instruction cache miss was indicated during this time,

the latchICReq_v would transition from0 to 1 and hold that value. On reset, the lines of

the instruction cache hold invalid data, so this condition is the normal action. When

Reset_v is dropped, the FSMs act on the cache miss and transition. Unfortunately,

ICReq_v is not normally expected to contain a1 unless theIFetch FSM has transi-

tioned to stateWaitOK . This condition is true, enforced by the transition function, except

for the case whereReset_v is asserted. The end result is that the combined FSMs reach

a state withWaitOK andCC_I , which eventually leads thecacheCtrl FSM to state

70

CC_II which is “illegal”. The stateCC_II represents an instruction cache miss taken

while servicing an instruction cache miss, which is impossible for this particular design.

When this sequence was analyzed and compared against what the RTL simulation

really did, it was discovered that the signalMCBusy_v, from the memory controller unit

of MAGIC, would always be asserted whenReset_v was asserted and remain asserted

for a large number of cycles afterReset_v was dropped. As shown in the sequence, this

prevents the cacheCtrl FSM from transitioning toCC_I . By the timeMCBusy_v was

dropped, the danger was over because theInstructionFetch FSM was in stateWaitOK ,

ready to move on to its next state, and never visiting the illegal state combination.

The analysis of this illegal sequence led to two benefits: firstly, the environment

model for the FSM model was constrained so thatMCBusy_v would be asserted for the

duration ofReset_v plus a few cycles. This removed the illegal sequence and helped to

reduce the state space a little. Secondly, analyzing the sequence provided insight into the

working of the design in a rare corner case that the designers were not fully aware of. It

also made explicit an assertion about the interface properties of theMCBusy_v signal that

Figure 31. Illegal Sequence from Reset

CacheHit 0 CC_Empty

CacheHit CC_Empty1

WaitOK 1 CC_I

IFetch FSM ICReq_v CacheCtrl FSM

Reset_v = 1
MCBusy_v = 0
Match_b_v = 1

Reset_v = 0
MCBusy = 0
Match_b_v = 1

ICReq_v &
!MCBusy_vMatch_b_v &

!Reset_v

Reset_v Match_b_v &
CacheHit

CacheMiss is
indicated while
Reset is active

When Reset is
dropped, design enters:
WaitOK, CC_I state
which leads to
illegal state.

INPUTS

71

was implicit in the design. This is potentially useful as future changes for timing or func-

tionality could change the method of generating this signal and nullify this assertion.

5.4.2 Case 2: No Bubble in Cache Refill

After fixing the environment to enforce theMCBusy_v assertion, the illegal state in

the state graph still showed up, with a different event sequence. This sequence is shown in

Figure 32.

In this sequence, during an instruction cache refill sequence, theInstructionFetch

FSM determines that the refill is complete when the 15th word is returned from main

memory. TheCacheCtrl FSM, on the other hand, waits for the 16th word before signaling

its completion. Hence, if the final word of the cache refill is delayed for some reason, the

FSMs get into the illegal states where theInstructionFetch FSM isIDLE and the cacheC-

trl FSM is not.

The constraint provided by the hardware in this case is that once a refill starts, the

memory controller guarantees that all sixteen words of a cache line will be returned in

consecutive cycles without any bubbles. In an older version of the design, this was not

always true, because main memory in this design is protected with a 1-bit error-correcting,

2-bit error-detecting code (ECC). If error-correction was required, some words could be

delayed. The important point here is that implicit assumptions made about interfaces

between units can change over the course of design. These assumptions often need to be

made explicit in the environment model, which is useful for the design process as well as

these validation tools.

5.4.3 Interface Assertions

These two examples from FLASH illustrate the types of interactions that get high-

lighted by using control logic state graphs. They also show how using state graphs can

make explicit some of the assertions implicitly used in an interface. In both of the exam-

ples, the correct operation of the design relied on an understanding of the interface

between units designed by different people that was not written down formally or infor-

mally in any documentation or code comment.

72

By starting the FSM model with the most general environment and constraining it

only when it generates clearly illegal sequences, we stress the assumptions made about

interfaces. Each constraint added to the environment makes explicit an assertion about the

Figure 32. Illegal Bubble in Cache Refill

WaitOK 15 CC_I

ReFetch1 CC_I15

ReFetch2 15 CC_I

IFetch FSM xferCnt CacheCtrl FSM

DPDataValid_v=0

INPUTS

CacheHit 15 CC_I

WaitOK 14 CC_I

DPDataValid_v=0

DPDataValid_v=0

DPDataValid_v=1

xferCnt==15

xferCnt!=15
xferCnt==15 &
DPDataValid_v

DPDataValid_v

!DPDataValid_v

!DPDataValid_v

!DPDataValid_v

xferCnt==15 &
DPDataValid_v

xferCnt==15 &
DPDataValid_v

xferCnt==15 &
DPDataValid_v

On 15th word of
cacheline refill,
IFetch FSM restarts
instruction fetch

CacheCtrl waits for
16th word before
returning to IDLE

If 16th word delayed,
IFetch will complete
restart without final
word

73

interface. Even if these assertions are clearly understood by the designers, making them

explicit helps when changes or timing modifications are done at a later stage.

The interface assertions can also be encoded assnoopers, described in Section 2.1,

that are run with the RTL in simulation. This adds another correctness check to the RTL

simulation. The automatic conversion of an environment constraint to asnooper is shown

in Figure 33.

The simple FSM constraint that forcesMCBusy_v to be1 wheneverReset_v is

asserted is shown. WhenReset_v is not asserted,MCBusy_v is allowed to take on any

value, indicated by theX. In the FSM model, theX is anon-deterministic variable. The

equivalent Verilog snooper demonstrates the conversion, annotated with the translation

rules.

Figure 33. Converting a Constraint to a Snooper

MPPIF (Reset_f);

MCBusy_v = 1;

MPPELSE;

/* Either 0 or 1 */

MCBusy_v = X;

MPPENDIF;

always @(Reset_f) begin

if (Reset_f) begin

if (MCBusy_v != 1) begin

‘SNOOPER_ERROR;

end

end

else begin

/* No error condition here */

end

end

Syntactic translation of control
flow statements.

Convert assignments to conditional
check for assignment.

Full sensitization of always
statement on conditionals and

RHS of assigns.

Assignment to ‘X’ cannot
produce an error.

FSM Constraint

Verilog Snooper

74

5.5 Incremental Feedback

After these three sources of redundancies were addressed, the coverage numbers for

the FLASH units were more in line with the expectations of the designers. The missed

interactions that the coverage tool reported actually corresponded to real test situations

that were not exercised. This was important for tool credibility in a design team setting.

By providing feedback that could be understood and related back to the RTL, it was possi-

ble to figure out where the missing tests were.

In practical terms, this means that the best feedback to give to designers is in terms of

simple measures first, then progessing to more complex measures. So, the first thing to do

is to give coverage information about the individual FSMs. This has multiple advantages.

From a user’s viewpoint, this is the simplest to understand and the most effective at point-

ing out problems in the test vector suite. If a state or a transition remains untested on an

individual FSM, this is an important missing test. It is also relatively easy to repair since

many states and transitions on a single FSM represent basic functionality. From a cover-

age viewpoint, identifying a missing state on a single FSM translates to finding the com-

mon factor in a set of missing states that span several FSM. In other words, if a state is

missing from a single FSM, then when several FSM are considered together, there will be

many missing product states that include the missing single state. By building the cover-

age measure up, the multiplication of missing states does not dilute the later measures of

product control states.

A coverage metric should not be considered a single static measure. It should be

treated as a guide to further improve validation. As such, it can be used to progressively

consider more complex interactions up to and including control events. In this way, cover-

age analysis should always present a horizon of information just a little beyond the current

validation task so that the most pertinent information is identified at each stage rather than

being lost in a mound of derivative information, and the user can more easily digest and

act upon it.

Up till now, these techniques describe a method to analyze coverage with an exact

state graph. Unfortunately, for many designs, the state space is inherently large and finding

the full state graph becomes a problem. Ideally for these models, some useful information

can still be obtained from the control logic FSMs and utilized to guide validation. This is

75

an important issue to ensure the validation tools are not restricted to small design exam-

ples and is the subject of the next chapter.

76

Chapter 6. Coping with State Space Explosion

The previous chapter described a method of using the control state graph of an imple-

mentation to obtain concise coverage information. This technique works for designs

where the control logic can be captured and fully enumerated. But, as with any method

that utilizes state space exploration, thestate space explosion problem limits the size of

the designs that can be dealt with. State space explosion is the name given to the exponen-

tial increase in the number of states with respect to the number of state bits. Experience

with the FLASH project has been that state space blow-up can strike rapidly with even

small changes in the RTL. In general, the design increases in complexity as it undergoes

timing tweaks: logic is moved around to improve critical paths, some functions become

pre-computed with a select, and some moved into other units. Overall, interfaces become

less clean and more state is introduced as part of the design process.

For the validation tools to be useful for practical designs, they need to be able to deal

with state space explosion in a graceful manner. Simply declaring that a design is too large

and cannot be handled would not be an acceptable outcome of the methodology. One

approach is an approximation method that lets designers get an approximation of the state

space of a large design using a smaller representation. This allows coverage analysis and

code generation to proceed on the approximate graph, which may point out areas of a large

design which require more validation effort.

77

6.1 State Graph Approximation

Dynamic graph pruning, described in Section 5.2, helps to keep the state space from

growing unnecessarily. It finds situations in which states are equivalent and can be repre-

sented by any of the states of the equivalence class. However, for many large designs, the

actual state space is extremely large and graph pruning alone cannot keep the state graph

manageable. For these cases, it is still important to obtain information to aid designers, but

exact information may not be practical.

Using control events as the measure of interesting behaviors in a design can be

viewed as taking an approximation of the full state graph. In particular, it is an approxima-

tion based on the heuristic that the important state variables are those that directly control

the datapath. However, since the control event graph is projected from the full state graph,

this approximation has a high correlation to the original graph. Every state in the control

event graph representsat least one state in the original graph. The drawback is that for

some models, the control event graph may be manageable in size, but the intermediate full

state graph is large.

One method of approximation is to reverse the order of operations to obtain the con-

trol event graph. Namely, project the state variables in the transition function first, and

then find the set of reachable states, as shown in Figure 34. The approximation step con-

sists of projecting the states onto a subset of the state variables. The variables that are not

in the projection are said to beapproximated. Although any state variable can be approxi-

mated, the selection of these variables can have an impact on the quality of the approxima-

tion process, resulting in the introduction of unreachable states. This choice of

approximation variables is discussed further in Section 6.3.1.

Reversing the sequence of operations avoids generating the full state graph. However,

since the approximation is no longer based on the exact graph, there is a danger that it will

be incorrect in significant ways. The error depends on how the approximation of the tran-

sition function is made. Two techniques for approximation are compared in the following

sections.

78

6.2 Approximation from Exact Partitions

One method of forming the approximation is to divide the design into a number of

partitions, each of which can be fully enumerated in a reasonable amount of time and

memory. An approximation can then be made of each partition and an approximate transi-

tion function created from this. The global approximation is then generated by combining

the transition functions of each of the partitions. This process is shown in Figure 35.

This approach to approximation is intuitively appealing because it breaks the design

into smaller components. Since the approximation is taken on these smaller, fully enumer-

ated components, it is likely to be more accurate. This accuracy takes the form of only

generating approximate states that correspond to at least one real state found in the enu-

meration.

6.2.1 Exact Partitions Algorithm

The algorithm for approximating based on exact partitions has three steps. First, the

state graph of each partition is enumerated, treating state variables from other partitions as

primary inputs. As mentioned while describing the environment of the FSM model in

Chapter 3, primary inputs are treated as non-deterministic variables that take all their pos-

Figure 34. Approximating the State Graph

State

Approximate

Approximate

State
Enumeration

Enumeration

Control
Event Graph

Full State
Graph

Approximate
Transition
Function

Full
Transition
Function

State
Explosion

79

sible values on every cycle. In other words, the constraining information provided by state

variables in other partitions is discarded during the state enumeration. This results in state

graphs for each partition which are over-approximations of the actual behaviors.

The approximation step is then performed on each individual partition graph. This is

just a projection of the state vector onto a subset of the variables. During the projection

operation, the approximated variables are compared against the approximated variables of

the other states in the equivalence class. If any of the approximated bits are the same, these

are kept. This provides additional constraints when the individual partitions are recom-

bined, which help to keep the approximation close to the actual graph.

Figure 35. Approximation of Exact Partitions

Transition Function for Full Model

Transition
Function

Partition 1

Exact Graph

Partition 1

Approx. Graph

Transition Fn.

Approximate Transition Fn. for Full Model

Full Approx. Graph

Enumerate

Approximate

Graph-to-Transition Function

Transition
Function

Partition N

Exact Graph

Partition N

Approx. Graph

Transition Fn.

Transition fns.
are joined to

give an approx.
transition fn for

full graph.

80

Once each partition state graph has been approximated, they need to be brought

together to form the approximate graph of the full model. This can be achieved by con-

verting the individual graphs back into a transition function. This process is mechanical,

as demonstrated in Figure 36. A single state variable is used to represent all the states of

the graph. The transition function is then a straightforward translation of the edges out

from each state. The FSM can be regarded as a Moore machine where the outputs are the

state variables. The approximated variables are also generated as outputs for the other par-

titions to use as constraints. If an approximated variable holds a definite value in one of

the approximated states, this information is kept. Otherwise, the variables is treated as an

unknown1 and takes all its possible values on every cycle.

After the transition functions are generated for each partition, they are combined into

a single transition function for the full model. This can then be explored by MPP to gener-

ate the full approximate graph. Theaccuracy of the approximation is enhanced if more

constraints are present between the partitions. This corresponds to how many states in

each partition graph have definite values for the approximated variables. If there are more

definite values, then the full transition function is more constrained, leading to a more

1Represented as “X” in Figure 36

Figure 36. Conversion of State-Graph to Transition Function

00 X0

01 10 10 XX

State Variables

Approximated
Variables

Input1 !Input1

switch (state)
{

case (0):
sVar = 0;
Bit1 = X;
Bit0 = 0;
if (Input1)

state = 1;
else

state = 2;
case (1):

sVar = 1;
Bit1 = 1;

0

1 2

sVar Bit1 Bit0

X is a
non-deterministic

variable

Equivalent Transition Function

81

accurate graph. The number of states in the approximated graph for one section of the PP

Instruction Fetch unit with definite values for the approximated variables is shown in

Table 8, indicating that such constraints do exist for many variables.

The problem with this method of forming the approximate graph is that the transition

function created by joining the transition functions of the partitions is anon-deterministic

FSM(ND-FSM). An ND-FSM is generated because each approximated state represents an

equivalence class of states. Some of these states will have transition-edges with overlap-

ping conditions that lead to different approximated states. This requires a non-determinis-

tic FSM to model the graph. An example is shown in Figure 37. Two states, A and B are

approximated with a single state, abstract state AB. On any input condition, state A goes

Table 8. Constraints in Approximated Instr. Fetch Unit

Variable States withX States with0 States with1
% with

Constraints

AInstr 72 2 4 7.7%

Reset_v 23 53 2 70.5%

Stall_x 72 4 2 7.7%

rICStall_v 38 1 39 51.3%

xferCnt_v 44 30 4 43.6%

Figure 37. Approximating Graph leads to Non-deterministic FSM

A B

C D

Abstract State
AB

State A always goes to C
State B always goes to D

Abstract state AB
non-deterministically

goes to C or D

82

to state C while state B goes to state D. So, the abstract state AB can go to either C or D on

any input condition.

In general, a non-deterministic FSM [HU79] is one where the conditions on the tran-

sition edges from a state are not mutually exclusive. In other words, given a source state

and a set of inputs, there may be more than one valid destination state, as demonstrated in

Figure 38. From state 1, if input A and input B are observed, the next state may be either

state 2 or state 4. A non-deterministic FSM merely specifies the possible destination states

and the conditionsnecessary to get there. The expressive powers of a non-deterministic

FSM and a deterministic FSM are equal, as shown in [HU79]. However, a deterministic

FSM may require more states to represent the same functionality.

The non-determinism in ND-FSMs should not be confused with the non-deterministic

variables given as inputs to thedeterministic FSMs modeled by MPP. MPP providesnon-

determinism in the form of variables that are assigned values based on the rule being fired.

These special variables (which cannot beSTATE variables), are declared with a range of

possible values. Each rule takes a different combination of values for these variables. This

results in each of these variables taking all of their possible values in every cycle. This

provides non-determinism in the sense that at each cycle, these variables are completely

unconstrained.

In order to find the approximation of the full graph from the combined transition

function, a mechanism for state enumeration of non-deterministic FSMs is required. MPP

Figure 38. Non-deterministic FSM

A

A&B

!A

1

2

3

4

83

cannot handle such a model directly. It can be simulated by introducing a further variable

into the model which provides the non-determinism. This variable (non-deterministic in

the MPP sense), chooses theset of transition rules that will be fired in a particular cycle.

The transition rules in eachset are guaranteed to be mutually exclusive, allowing MPP to

operate correctly. A straightforward implementation of this policy is to assign aset to each

state in the equivalence class. This guarantees the mutual exclusiveness of each transition

edge in aset. This policy was implemented for the FLASH examples. Unfortunately, the

transition functions became too large to compile with GCC version 2.6.3. To effectively

pursue this method of approximation, a state exploration tool capable of handling non-

deterministic FSMs is required.

6.3 Approximating the Transition Function

Although there is support for the intuition that the previous method of approximation

would give a good representation of the state space, the difficulty of efficiently exploring

the state space of a non-deterministic FSM forced exploration of other algorithms.

An alternative method of obtaining the approximate graph of the full model without

first generating the exact full graph is to approximate the transition function of the full

model. This can be done by replacing the approximation variables with non-deterministic

variables. Instead of using the transition function to set those values, they are allowed to

take all their possible values every cycle. This provides an over-approximation of the tran-

sition function, in other words produces a state graph that is a superset of the real graph.

The advantage of this method is that it does not require a state enumerator that is

capable of handling non-deterministic FSMs, as the previous method did. The disadvan-

tage is that all constraints on the approximated variables is lost. However, as the number

of states in an equivalence class grows, the likelihood of the approximated variables hav-

ing a definite value decreases. For models with a lot of approximation, there is likely to be

no difference in the final graph between approximating the transition function and approx-

imating the exact partition graphs, as described in the previous section.

Creating the approximate transition function is a straightforward replacement of the

variables that are to be approximated with a non-deterministic variable. This occurs in the

translator, which knows about code dependencies and can remove statements that assign

84

values to the approximated variable. The list of variables to be approximated is given by

the user in a file.

6.3.1 Choice of Approximation Variables

The choice of variables to approximate can have a large impact on the accuracy of the

resulting graph. There are a few heuristics which seem to help keep the important infor-

mation in the graph. The first is that many of the crucial state variables are multi-bit,

whereas many of the less consequential ones are single-bit variables. The exception to this

are multi-bit counters, many of which can be approximated.

A second heuristic that has worked well is to approximate variables that depend on

the primary inputs of the model. This approximation has the effect of moving the model

boundary inwards, putting some state outside. The greater the dependency on the inputs,

the better this heuristic works. In the optimal case of a state variable that merely latches a

primary input, this gives an exact reduction of the state space without losing information

about the remaining state variables. If there is some dependency on other state variables,

the resulting state graph may be under-constrained and lead to illegal states or edges.

A corollary to the second heuristic is that state variables that connect multi-bit vari-

ables should not be approximated. If they are, constraint information between the multi-bit

variables is lost and we may degenerate to a simple cross-product of states. Quite often, if

constraint information between the multi-bit variables is kept, the combined state is

smaller than the cross-product. To illustrate the effect of this heuristic, the Inbox unit was

approximated in different ways and the resulting graphs compared to the exact graph.

These results are presented in Table 9.

85

The variable forceJTMiss_s latches an input to the module, while

choseSomeNIQueue_s connects up state variables from one portion of the design to

another. For each of these variables, the state graph was found, based on approximation of

that variable. The number of states and edges are shown in the columns labelled “approxi-

mate states” and “approximate edges”. The exact full graph representation was also found

and then projected onto the state variables used in the approximate graphs. This provides a

comparison of what the projected states should be and what the approximation found. The

number of states and edges from the exact graph are shown in the columns labelled “actual

states” and “actual edges”.

The encouraging news is that for the small Inbox model, the approximate graphs had

the same number of states as the projections from the real graphs. However the approxi-

mate graphs found more edges than the projections showed should exist. This is a result of

the under-constraining of the model, resulting in unreachable edges being found in the

approximate graph. This empirical data point suggests that if an approximation is taken

for a variable that connects other state variables, the resulting over-approximation is much

worse than approximations of variables near the boundary of the design.

6.4 Related Work in State Graph Approximation

Graph approximation has been used in other formal methods work. However, the

needs of approximation for validation are different from the needs of approximation for

formal verification. In [AIK+95] and [DH95], real-time infinite state spaces were approxi-

mated by finite state spaces representing time intervals. Though effective in their domain,

the concept of interval states does not translate directly to validation. The work of

[CHM+93] and [CHM+94] bears more similarities to the graph approximations described

here. In this work, a large state space was partitioned into smaller sub-graphs with state-

variables from other sub-graphs being treated as primary inputs2. This gives an over-

approximation of the true state space, but allows verification to occur on each sub-graph.

Table 9. Different Approximated Variables for Inbox

Variable
Approximate

States
Actual
States

Approximate
Edges

Actual
Edges

%
Wrong

choseSomeNIQueue_s 424 424 6,250 5,275 18.5%

forceJTMiss_s 322 322 4,943 4,887 1.2%

86

If no error is found in the over-approximation, then there is no error in the true state graph.

This approximation technique of treating some state variables as primary inputs is also

used in the techniques described here.

6.4.1 Other Approximation Techniques for Validation

Another method to approximate the state graph is to partition a large model by break-

ing it apart and using a non-deterministic environment for each of the subsequent sub-

modules. The non-deterministic environment is less constrained than the real component

which it replaces. Hence, it generates all the possible output sequences of the original, but

contains less state. Unfortunately, it will likely generate many illegal sequences too, which

may then lead to illegal or phantom states in the global model. This has the impact of

diluting the quality of the coverage metric, but it does not miss any states and edges that

need testing. The advantage of partitioning is that it allows more details of each sub-mod-

ule to be kept. This may help for places in a design where more focussed attention is

desired. The disadvantage is that constraints from the other sub-modules are lost and so

illegal input sequences may be generated, leading to numerous false errors.

Another similar technique is to replace a single, state-intensive module with an

approximation. For example, ann-bit, 1-hot component may be replaced with a non-deter-

ministic generator than produces justn different values randomly, with no state. This

would give a superset of the full behavior while removing state from the state graph. This

replacement is useful in the situations where it can identified and a simple approximate

model exists. This was used to a small degree in the FLASH examples.

The two approximation techniques described earlier and those mentioned above pro-

vide an over-approximation of the full state space, meaning they represent more states

than really exist. However an under-approximation can also be taken. There are a couple

of methods to do under-approximation of the state space. The simplest method to get an

under-approximation of the full state space is to restrict some of the inputs to the model to

fixed values. This acts to prune portions of the state space, giving a subset approximation

of the full state space. This is useful to probe certain behaviors of the design, where only a

subset of the possible inputs are wanted. For example, if we want to generate test vectors

from an exact portion of a large state graph. However, when used for general coverage

2A primary input is treated as a non-deterministic value that takes all its possible values every cycle.

87

analysis, it suffers from not having a mapping for all exact states. When the state dumps

from logging a test vector are coverage marked on an under-approximated graph, there

can be many states in the dumps that have no corresponding state in the approximate

graph. In other words, the diagnostic value of the coverage analysis is reduced since many

of the test vectors may end up being thrown away if they are not in the portion of the state

graph explored.

This under-approximation technique, though useful for reducing the amount of state

that needs to be handled, suffers from not having an indication of the full state space. For

coverage, the important information is often found in the interactions between different

parts of the design. Under-approximation throws much of this information away. Under-

approximation was attempted with the FLASH design examples. However, the results

were poor. Whenever the simulated test vectors wandered outside the under-approximated

state space, the coverage numbers would drop dramatically and the output would be filled

with states that could not be marked for coverage in the state graph. In contrast, over-

approximation uses all the simulated test vector information and overall provides a better

picture of the validation status.

6.5 FLASH Coverage Results

Four design examples from FLASH were analyzed for validation coverage. These

designs were run through the full methodology as described in Chapter 3. For the units of

the Protocol Processor (Instruction Fetch and LoadStore), approximation using approxi-

mated transition functions (Section 6.3) was needed to keep the state space manageable.

For all the units, graph pruning, control events and removal of illegal input sequences

were employed to remove redundancies in the state graph. More attention and effort was

focussed on some units due to manpower constraints. As can be seen from the results in

Table 10, these units (Instruction Fetch, Inbox and Outbox), have a much higher coverage

Table 10. Coverage Results

Protocol
Processor

Instruction
Fetch Load Store Inbox Outbox IO

Graph States 22,080a 1,586a 12,192a 426 52 3,209

Graph Edges 2,189,553 14,455 1,106,688 3,968 506 70,211

88

measure than the other units. For comparison, the coverage of the full state graph is also

shown. The same design and set of test vectors were applied and the resulting coverage

calculated using the two methods.

The value from the coverage results shown here is in the underlying benefits felt by

the designers in having missing test cases brought to their attention in a manner they could

act upon without excessive additional effort. Using incremental coverage measures in con-

cert with the other techniques presented allowed the vital information to percolate to the

surface. Additional tests were written in the course of this work that were identified by

these incremental state space coverage metrics.

a. Graph approximated.
b. Designers narrowed variables in control events in some cases to remove independent variables.

Control Eventb

States
76 17 132 28 14 142

Control Event
Edges

184 47 532 236 62 1,778

Simulated Test
Cycles

794,342 391,967 685,683 249,336 101,756 67,828

Full State
Coverage

< 0.1% < 0.1% < 0.1% 19.3% 53.6% < 0.1%

Full Edge
Coverage

< 0.1% < 0.1% < 0.1% 3.0% 13.8% < 0.1%

Control Event
State Coverage

30.3% 94.1% 28.8% 82.1% 92.9% 16.3%

Control Event
Edge Coverage

26.6% 59.6% 12.4% 28.0% 54.8% 6.7

Table 10. Coverage Results

Protocol
Processor

Instruction
Fetch Load Store Inbox Outbox IO

89

Chapter 7. Conclusions

Fundamentally, circuits are complex entities, hard to completely understand and con-

sequently hard to validate. Hence it is easy to see why functional validation for complex

digital designs is such a difficult task that absorbs a large amount of resources. Until

recently, there have been few tools or accepted methodologies that could assist designers.

Existing validation techniques suffer from problems with creating and evaluating a good

test vector suite that can be used in simulation. On the other hand, formal verification tech-

niques still require time and effort to mature into general purpose tools. The combination

of the two approaches seems to provide a promising method of dealing with large imple-

mentations by using simulation to verify the design, and using techniques from formal

methods to guide the simulation into meaningful areas.

The approach described in this thesis attempts to extract control logic information

from an implementation model of the design. It then uses this information to discover the

range of possible behaviors of the design, which maps out the required validation testing.

In some cases, it can even generate the required test vectors directly. A number of issues

and obstacles arose in the course of investigating how the control logic information could

be used to guide validation. These will be discussed in this chapter.

When simulation is used to verify a design, the first issue that must be addressed is

how the user can tell whether the design did the right thing during simulation. One good

solution is a more abstract golden model that can be co-simulated with the RTL imple-

90

mentation. This can automatically perform state-comparison checks throughout the simu-

lation, catching errors close to their source. However, for the reasons described in Chapter

3, creating a useful golden model for general designs is difficult. The alternative is to use

self-checking test vectors, which are much more limited. These tend to only check for cer-

tain operations to be completed correctly, those targeted by the test itself. Sometimes,

other errors may arise in a test but not get caught because the test was not checking all

possible errors in the design. And when they do catch bugs, it can be difficult to isolate the

exact cause because the error check is often far separated in time from the error source.

Hence, although the self-checking validation framework is commonly used, it may be a

weak correctness check. This is a problem because even the most comprehensive suite of

test vectors are of limited use if the validation framework allows bugs to be exercised and

not caught.

One technique of addressing the shortcomings of self-checking test vectors is to intro-

duce snoopers into a simulation. Snoopers are a good method of finding errors that operate

with any validation framework. These low level checks give much greater visibility of

errors in a design, allowing them to be caught close to their source. If enough snoopers are

used in simulation, automatic test vector generation can be utilized even without a golden

model. The problem with snoopers is that it is difficult to know when enough have been

placed in the simulation. Since these are hand-written using design knowledge, they are

also not trivial to derive. On the other hand, since they tend to be localized and small, they

are not as hard to create as a golden model. An open question is whether good snoopers

can be created automatically so that low-level, comprehensive checks can be performed

on a model. This would open up the possibility of more automatic test vector generation

without requiring the effort of writing a golden model.

The second major issue encountered in this thesis is the exponential state space explo-

sion problem. This work started out with the guess and hope that the state space of a par-

ticular class of designs, namely processors, would be manageable with careful

abstractions. We set out to test this hypothesis with the processor section of the FLASH

node controller. The results given in Chapter 4 show that for a particular design, at a par-

ticular stage in the design process, the state space can be manageable. And when this is the

case, good validation results can be achieved by automatically generating test vectors to

exercise all the interactions. However, further investigation showed that the state space

continues to grow as the design matures towards tapeout. In particular, as timing analysis

91

is performed, logic is changed to reduce cycle times. This takes the form of more pre-com-

putation, introducing registers to break multi-cycle timing paths, and simply changing the

way the logic performed its computation to shorten paths. The general conclusion is that

for any realistic design that is meant to be fabricated, the state space will ultimately

explode and techniques that can operate in spite of that are required.

The results from Chapter 4 also show how useful automatic test vector generation

from the control state graph can be at uncovering bugs due to interactions. The biggest

problem with the algorithm presented is that the three steps in the process (translation to

an FSM model, state-enumeration, and use of the state graph for test generation or cover-

age analysis), are disjoint, meaning that each step must terminate before the next step can

start. This is due partly to the experimental nature of the work at the time and partly due to

practical constraints on tool development, namely, using a pre-existing state enumeration

tool. This makes the method vulnerable to state space explosion, which in this case pre-

vented further exploration of the technique. However, if the steps of the method could be

overlapped, so that the full state space does not need to be found before test generation can

start, then perhaps progress can be made towards finding bugs even if the full state space

is never fully enumerated. Such an approach would provide automatic test vector genera-

tion despite large state spaces.

Since the test vector generation method could not be pursued, given the lack of a

golden model and the onset of state space explosion, this thesis went on to use the interac-

tion information from the control FSMs for coverage analysis. A rather unexpected con-

clusion from the investigation is that FSM product state information is difficult to use as a

coverage measure. A critical issue is knowing how the coverage information actually cor-

responds to missing tests. Control events represent a measure of validation effort that is

almost complete with respect to control interactions in the datapath. However, the prag-

matic experience of this effort is that much of the useful information comes from the sim-

ple interactions of small numbers of FSMs that are built up to form products. Control

events give a maximal product, but in the process of increasing coverage to that level, the

single FSM and small product FSM coverage measures provide valuable feedback. Single

FSM transition coverage, in general, ensures that basic design functionality is exercised.

At the other extreme, product states composed of a large (greater than five) number of

FSMs have the problem of being difficult to interpret. Our experience was that designers

had difficulty understanding the significance of such large product states, unless the

92

machines were closely related in function. What this means is that with large product

states, even if a missing transition was presented to the designer, the test vector needed to

exercise that transition could not always be created or even formulated. Clearly, this is the

exact situation where automatic test vector generation would have been useful. The end

result was that the most value was obtained from coverage information on a small number

of FSMs, since these could easily be translated back into missing tests.

From a usability viewpoint, one of the problems of the methodology presented in this

thesis was the occurrence of false errors. A false error is an error indicated by the method,

but is actually an artifact of the technique and not representative of a genuine design prob-

lem. False errors arose from two sources; improperly constrained inputs to the FSM model

from the ND environment and approximation of the state space, with the larger problem

being the illegal input sequences from the ND environment. The examples in Chapter 5

showed that it is usually not difficult to provide the necessary input constraints once they

are identified. The effort comes from identifying the correct constraints. This involves

detailed knowledge of the timing and behavior of the interface signals. As a result of this

requirement for design expertise, and also partially because an unconstrained input tends

to catch more errors, this work took the approach of finding all the possible errors and sub-

sequently identifying the false errors and adding constraints only when they became nec-

essary. This initially appeared to be the more conservative and easier approach. However,

the practical reality of false errors is that they rob credibility from a methodology in the

eyes of designers. The lesson I believe this points to is that extra effort at the front-end of

a methodology that can reduce the rate of false errors repays itself rapidly in terms of

usability. If the necessary input constraints had been introduced much earlier, less effort

would have been required following false errors.

The final issue brought up in this thesis is whether approximation is a good way to

handle the state space explosion problem for validation work. This question can be

answered in two ways. If one assumes or requires that the full state space be found, then I

believe that approximation is the best method of handling state space explosion. The most

obvious need for the full state space is in coverage analysis which wants to know how

much of the total state space transitions have been exercised and how much remains.

Although BDDs provide a good way to represent large numbers of states in a compact rep-

resentation, BDDs are also subject to an explosion if they have a bad variable order. The

question is really whether there is a compact representation of large state spaces. An

93

approximation is a representation that throws away some of the information about the

state graph, hopefully only a small amount of the core FSM interactions. At this time,

there does not appear to be any robustexact representation of large state spaces. The sec-

ond way to answer the question is to remove the premise that the full state space needs to

be found. As mentioned before, validation uses the state space as a map for testing

requirements. That means that useful work can still be performed without the full state

graph. This is an alternative to approximation and promising alternative for future work.

There remains much work to be done to create validation tools that can readily assist

designers uncover all the hard bugs in designs. The work presented in this thesis puts for-

ward the use of the control state space graph as a guide to the control interactions present

in a circuit. Using this information, test vectors can be generated or coverage analysis per-

formed. While much work remains to be done, the techniques proposed in this thesis

present promising new tools for validation for complex digital designs.

94

References

[ABD+91] A. Aharon, A. Bar-David, D. Dorfman et. al., “Verification of the IBM
RISC System/6000 by a dynamic biased pseudo-random test program gen-
erator”, InIBM Systems Journal, Vol. 30, No. 4, 1991.

[ABG+92] Ali M. Ahi, Gregory D. Burroughs, Audrey B. Gore et al., “Design Verifi-
cation of the HP 9000 Series 700 PA-RISC Workstations”, InHewlett-
Packard Journal, August 1992.

[ADL+91] Alfred V. Aho, Anton T. Dahbura, David Lee and M. Umit Uyar, “An Op-
timization Technique for Protocol Conformance Test Generation Based on
UIO Sequences and Rural Chinese Postman Tours.” InIEEE Transactions
on Communications, Vol. 39, No. 11, November 1991.

[AGL+95] Aharon Aharon, Dave Goodman, Moshe Levinger, Yossi Lichtenstein,
Yossi Malka, Charlotte Metzger, Moshe Molcho, Gil Shurek, “Test Pro-
gram Generation for Functional Verification of PowerPC Processors in
IBM”, In Proceedings of Design Automation Conference, June 1995.

[AIK+95] R. Alur, A. Itai, R. P. Kurshan, and M. Yannakakis, “Timing Verification
by Successive Approximation”. InInformation and Computation, Vol. 118,
No.1 April 1995, pages 142-157.

[AIK+92] R. Alur, A. Itai, R. P. Kurshan, and M. Yannakakis, “Timing Verification
by Successive Approximation”. InProceedings of Computer Aided Verifi-
cation 1992, June 1992.

95

[And92] Walker Anderson, “Logical Verification of the NVAX CPU Chip Design”,
In Digital Technical Journal, Vol.4 No.3, Summer 1992.

[AK95] David P. Appenzeller, Andreas Kuehlmann, “Formal Verification of a Pow-
erPC Microprocessor”, InProceedings of the International Conference on
Computer Design 1995, October 1995.

[Ash96] Peter J. Ashenden, “The designer's guide to VHDL”, Morgan Kaufmann
Publishers, 1996.

[ASU88] Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman.Compilers, Principles, Tech-
niques, and Tools, Addison-Wesley Publishers, 1988.

[BeB94] Derek L. Beatty and Randal E. Bryant, “Formally Verifying a Microproces-
sor using a Simulation Methodology.” InProceedings of Design Automa-
tion Conference, June 1994.

[Ber93] Berkeley CAD Group, “Revisiting BLIF-MV, An Intermediate Format for
Verification and Synthesis of Hierarchial Networks of FSMs”,HSIS Distri-
bution, 1993.

[BhD94] Vishal Bhagwati and Srinivas Devadas, “Automatic Verification of Pipe-
lined Microprocessors.” InProceedings of Design Automation Conference,
June 1994.

[BM83] D. L. Bird, C. U. Munoz, "Automatic Generation of Random Self-Checking
Test Cases", InIBM Systems Journal, Vol. 22, No. 3, pages 229-245, 1993.

[BRS93] U. Bruning, G. Radke and J. Sladky, “State-Machine-Development-Tool
for High-Level-Design Entry and Simulation”, InProceedings of Interna-
tional Conference on Computer Design, October 1993.

[Bry86] Randal E. Bryant, “Graph-Based Algorithms for Boolean Function Manip-
ulation”, In IEEE Transactions on Computers, C-35(8). pages 677-691. Au-
gust 1986.

[Bry90] Randal E. Bryant, “A Methodology for Hardware Verification Based on
Logic Simulation”,Carnegie-Mellon University Technical Report CMU-
CS-90-122. March 1990.

[BuD94] Jerry R. Burch and David L. Dill, “Automatic Verification of Pipelined Mi-
croprocessor Control.” InProceedings of Conference on Computer-Aided
Verification, June 21-23 1994.

96

[BZ83] D. Brand and P. Zafiropulo, “On Communicating Finite State Machines”,
In Journal of the ACM, Vol. 30, No. 2, pages 323-342, 1983.

[CAB+95] A. Cao, A. Adalal, J. Bauman, “CAD Methodology for the Design of Ul-
traSPARC-I Microprocessor at Sun Microsystems Inc”, In Proceedings of
Design Automation Conference, June 1995.

[CGH+95] Edmund M. Clarke, Orna Grumberg, H. Hiraishi, S. Jha, D. E. Long, K. L.
McMillan, L. A. Ness, “Verification of the Futurebus+ Cache Coherence
Protocol”, InFormal Methods in System Design, Vol.6, No.2, pages 217-32,
March 1995.

[CGL91] Edmund M. Clarke, Orna Grumberg, David E. Long, “Model Checking and
Abstraction”, InProceedings of ACM Symposium on Principles of Pro-
gramming Languages, January 1992.

[Cho78] Tsun S. Chow, “Testing Software Design Modeled by Finite State Ma-
chines,” InIEEE Transactions on Software Engineering, Vol. 4, No. 3, pag-
es 178-187, May 1978.

[CHM+93] Hyunwoo Cho, Gary D. Hachtel, Enrico Macii, Bernard Plessier, Fabio
Somenzi, “Algorithms for Approximate FSM Traversal”, InProceedings of
Design Automation Conference 30, June 1993.

[CHM+94] Hyunwoo Cho, Gary D. Hachtel, Enrico Macii, Massimo Poncino, Fabio
Somenzi, “A State Space Decomposition Algorithm for Approximate FSM
Traversal”, In Proceedings of the European Design and Test Conference.
EDAC 94. February 1994.

[CI92] Ashok K. Chandra and Vijay S. Iyengar, “Constraint Solving for Test Case
Generation”, InProceedings of the International Conference on Compter
Design, 1992.

[CIJ+94] A. K. Chandra, V. S. Iyengar, R. V. Jawalekar, M. P. Mullen, I. Nair and B.
K. Rosen, “Architectural Verification of Processors Using Symbolic In-
struction Graphs”,IBM Research Report, September 1994.

[CIJ+93] A. Chandra, V. Iyengar, D. Jameson, R. Jawalekar, I. Nair and B. Rosen,
“AVPGEN - A Test Generator for Architecture Verification”, In IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 3, No.
2, pages 188-200, 1993.

[Cla90] Douglas W. Clark, “Bugs are Good: A Problem-Oriented Approach to the
Management of Design Engineering.” InResearch Technology Manage-
ment, Vol. 33, No. 3, pages 23-27, May-June 1990.

97

[CP88] Paolo Camurati and Paolo Prinetto, “Formal Verification of Hardware Cor-
rectness: Introduction and Survey of Current Research” InComputer, July
1988.

[CQC95] Gianpiero Cabodi, Stefano Quer, Paolo Camurati, “Extending Equivalence
Class Computation to Large FSMs”, InProceedings of the International
Conference on Computer Design, October 1995.

[CS95] David A. Cyrluk and M. K. Srivas, “Theorem Proving: Not an Esoteric Di-
vision, but a Unifying Framework for Industrial Verification”, InProceed-
ings of the International Conference on Computer Design, October 1995.

[CSC93] Pinhong Chen, Jyuo-Min Shyu and Liang-Gee Chen, “Hardware Verifica-
tion Using Symbolic State Transition Graphs”, InProceedings of the Inter-
national Conference on Computer Aided Design, November 1993.

[CYB93] Szu-Tsung Cheng, Gary York and Robert K. Brayton, “VL2MV: A Com-
piler from Verilog to BLIF-MV”, HSIS Distribution, 1993.

[CYF94] Ben Chen, Masami Yamazaki and Masahiro Fujita, “Bug Identification of a
Real Chip Design by Symbolic Model Checking”, InProceedings of the Eu-
ropean Design Automation Conference, EDAC 1994.

[Cyr94] David Cyrluk, “Microprocessor Verification in PVS”, Unpublished.

[DDH+92] David L. Dill, Andreas J. Drexler, Alan J. Hu and C. Han Yang, “Protocol
Verification as a Hardware Design Aid”, InProceedings of International
Conference on Computer Design, October 1992.

[DH95] David L. Dill and Howard Wong-Toi, “Verification of Real-Time Systems
by Successive Over and Under Approximation”, InProceedings of Comput-
er Aided Verification 1995, June 1995.

[Dil88] David L. Dill, “Trace Theory for Automatic Hierarchical Verification of
Speed-Independent Circuits”, InAdvanced Research in VLSI, Proceedings
of the Fifth MIT Conference, March 1988.

[EJ73] Jack Edmonds and Ellis L. Johnson, “Matching, Euler Tours and The Chi-
nese Postman.” InMathematical Programming, Vol. 5, pages 88-124,
1973.

[Gat94] James Gateley, “Logic Emulation Aids Design Process”, InASIC & EDA,
July 1994.

98

[GBC+95] James Gateley, Miriam Blatt, Dennis Chen , et. al. “UltraSPARC-I Emula-
tion”, In Proceedings of Design Automation Conference, June 1995.

[GDN92] Abhijit Ghosh, Srinivas Devadas and A. Richard Newton.Sequential Logic
Testing and Verification, Kluwer Academic Publishers, 1992.

[Goe81] Prabhakar Goel, “An Implicit Enumeration Algorithm to Generate Tests
for Combinational Logic Circuits”, InIEEE Transactions on Computers,
Vol. C-30, No. 3, March 1981.

[HB95] Ramin Hojati, Robert K. Brayton, “Automatic Datapath Abstraction In
Hardware Systems”, InComputer Aided Verification, June 1995.

[HeP90] John L. Hennessy and David A. Patterson.Computer Architecture: A
Quantitative Approach, Morgan Kaufmann, San Mateo, CA, 1990.

[HH96] Richard C. Ho and Mark A. Horowitz, “Validation Coverage Analysis for
Complex Digital Designs”, InProceedings of the International Conference
on Computer Aided Design, San Jose, California, November 1996.

[HMA95] Yatin V. Hoskote, Dinos Moundanos, Jacob A. Abraham, “Automatic
Extraction of the Control Flow Machine and Application to Evaluating
Coverage of Verification Vectors”, InProceedings of the IEEE Interna-
tional Conference on Computer Design: VLSI in Computers & Processors,
October 1995.

[HMK96] Anoosh Hosseini, Dimitrios Mavroidis, Pavlos Konas, “Code Generation
and Analysis for the Functional Verification of Microprocessors”, InPro-
ceedings of the Design Automation Conference, June 1996.

[Hol85] Gerald J. Holzmann, “Tracing Protocols”, InAT&T Technical Journal, Vol.
64, No. 10, December 1985

[Hol91] Gerald J. Holzmann,Design and Validation of Computer Protocols, Pren-
tice Hall Software Series, 1991.

[HP90] John L. Hennessy and David A. Patterson, Computer Architecture: A
Quantitative Approach, Morgan Kaufmann Publishers, 1990.

[HU79] John E. Hopcroft and Jeffrey D. Ullman,Introduction to Automata Theory,
Languages and Computation, Addison-Wesley Publishing Company, 1979.

99

[IKN+94] Hiroaki Iwashita, Satoshi Kowatari, Tsuneo Nakata and Fumiyasu Hirose,
“Automatic Test Program Generation for Pipelined Processors”, InPro-
ceedings of the International Conference on Computer Aided Design,
November 1994.

[IpD93] C. Norris Ip and David L. Dill, “Efficient Verification of Symmetric Con-
current Systems”, InProceedings of the International Conference on Com-
puter Design, November 1993.

[JDB95] Robert B. Jones, David L. Dill, Jerry R. Burch, “Efficient Validity Check-
ing for Processor Verification”, InProceedings of the International Confer-
ence on Computer Aided Design, November 1995.

[JMF95] Jawahar Jain, Rajarshi Mukherjee, Masahiro Fujita, “Advanced Verifica-
tion Techniques Based on Learning”, InProceedings of Design Automation
Conference, June 1995.

[JP96] Kevin D. Jones, John P. Privitera, “The Automatic Generation of Func-
tional Test Vectors for Rambus Designs”, InProceedings of the Design
Automation Conference, June 1996.

[KLM95] D. Knapp, T. Ly, D. MacMillen, R. Miller, “Behavioral Synthesis Method-
ology for HDL-Based Specification and Validation”, InProceedings of
Design Automation Conference, June 1995.

[KN95] Michael Kantrowitz and Lisa M. Noack, “Functional Verification of a Mul-
tiple-issue, Pipelined, Superscalar Alpha Processor - the Alpha 21164 CPU
Chip”, In Digital Technical Journal, Vol. 7 No. 1, Fall 1995.

[KNS96] Michael Kantrowitz, Lisa M. Moack, Will Sherwood, “I’m done Simulat-
ing; Now what? Functional Coverage/Correctness Analysis of the DEC-
Chip 21164 Alpha Microprocessor”, InProceedings of the Design
Automation Conference, June 1996.

[KOH+94] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel Bax-
ter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John Hen-
nessy. “The Stanford FLASH Multiprocessor”. InProceedings of the 21st
International Symposium on Computer Architecture, pages 302-313, April
1994.

[KS92] Sungho Kang and Stephen A. Szygenda, “Modeling and Simulation of
Design Errors”, InProceedings of the IEEE International Conference on
Computer Design: VLSI in Computers & Processors, October 1992.

100

{KS94] Sungho Kang and Stephen A. Szygenda, “Design Validation: Comparing
Theoretical and Empirical Results of Design Error Modeling” InIEEE
Design and Test of Computers, Vol. 11 No.1 March 1994.

[KSF+95] Jainendra Kumar, Noel Strader, Jeff Freeman, Michael Miller, “Emulation
Verification of the Motorola 68060”, InProceedings of the IEEE Interna-
tional Conference on Computer Design: VLSI in Computers & Processors,
October 1995.

[KVB+95] Timothy Kam, Tiziano Villa, Robert Brayton and Alberto Sangiovanni-
Vincentelli, “Implicit State Minimization of Non-Deterministic FSMs”, In
Proceedings of the IEEE International Conference on Computer Design:
VLSI in Computers & Processors, October 1995.

[LO95] Jeremy Levitt and Kunle Olukotun, “An Inductive Formal Verification
Methodology for Pipelined Microprocessors”, InProceedings of Design
Automation Conference, June 1996.

[LTN90] Bill Lin, Herve J. Touati, A. Richard Newton, “Don’t Care Minimization of
Multi-Level Sequential Logic Networks”, InProceedings of the Interna-
tional Conference on Computer Aided Design, November 1990.

[MD95] Charles H. Malley and Max Dieudonne, “Logic Verification Methodology
for PowerPC Microprocessors”, InProceedings of Design Automation
Conference, June 1995.

[MDW+89] Hi-Keung Tony Ma, Srinivas Devadas, Ruey-Sing Wei, Alberto Sangio-
vanni Vincentelli, “Logic Verification Algorithms and Their Parallel Imple-
mentation”, InIEEE Transactions on Computer-Aided Design, Vol. 8 no. 2
February 1989.

[Mer94] Dean Takahashi, “Pentium’s flaw may have been hard to prevent”. InSan
Jose Mercury News, Thurday December 1, 1994, pages 1A & 20A.

[Mips94] Mips Technology Incorporated, “R4000PC/SC, Processor Revision 2.2 and
3.0 Errata.”. At http://www.mips.com/HTMLs/R4000_PC_bugs.html

[MPS92] Enrico Macii, Bernard Plessier, Fabio Somenzi, “Verification of Systems
Containing Counters”, InProceedings of the International Conference on
Computer Aided Design, November 1992.

[MSY+95] Carlos Montemayor, Marie Sullivan, Jen-Tien Yen, Pete Wilson, Richard
Evers, “Multiprocessor Design Verification for the PowerPC 620 Micro-
processor”, InProceedings of the International Conference on Computer
Design, October 1995.

101

[NJK94] B. E. Nelson and R. B. Jones and D. A. Kirkpatrick, “Simulation event pat-
tern checking with PROTO”, InProceedings of the International Confer-
ence on Simulation and Hardware Description Languages (SHDL),
January 1994.

[PoD92] Fong Pong and Michel Dubois, “The Verification of Cache Coherence Pro-
tocols”, InProceedings of 5th Annual ACM Symopsium on Parallel Algo-
rithm and Architecture, 1992.

[PoD94] Fong Pong and Michel Dubois, “Formal Verification of Complex Coher-
ence Protocols Using Symbolic State Models”,University of Southern Cal-
ifornia Technical Report CENG-94-01. January 1994.

[RPG+94] Elizabeth M. Rudnick, Janak H. Patel, Gary S. Greenstein and Thomas M.
Niermann, “Sequential Circuit Test Generation in a Genetic Algorithm
Framework”, In Proceedings of Design Automation Conference, June
1994.

[RS95] Kavita Ravi and Fabio Somenzi, “High-Density Reachability Analysis”, In
Proceedings of Design Automation Conference, June 1995.

[SG96] Sanjay Sanwant, Paul Giordano, “RTL Emulation: The Next Leap in Sys-
tem Verification”, InProceedings of the Design Automation Conference,
June 1996.

[Sid90] Deepinder P. Sidhu, “Protocol Testing: The First Ten Years, The Next Ten
Years”, InProtocol, Specification, Testing and Verification X, 1990.

[SrB90] Mandayam Srivas and Mark Bickford, “Formal Verification of a Pipelined
Microprocessor”, InIEEE Software, September 1990.

[TaK93] Sofiene Tahar and Ramayya Kumar, “Towards a Methodology for the For-
mal Hierarchical Verification of RISC Processors”, InProceedings of the
International Conference on Computer Aided Design, October 1993.

[TM91] Donald E. Thomas and Philip R. Moorby,The Verilog Hardware Descrip-
tion Language, Kluwer Academic Publishers, 1991.

[VTA+93] P. Vishakantaiah, T. Thomas, J.A. Abraham and M.S. Abadir, “AMBI-
ANT:Automatic Generation of Behavioral Modifications for Testability”,
In Proceedings of the International Conference on Computer Aided
Design, October 1993.

102

[VWK95] Peter Vanbekbergen, Albert Wang and Kurt Keutzer, “A Design and Vali-
dation System for Asynchronous Circuits”, InProceedings of Design Auto-
mation Conference, June 1995.

[Wes89] Colin H. West, “Protocol Validation in Complex Systems”, In Computer
Communication Review, Vol. 19, No.4, pages 303-312, September 1989.

[WGK90] David A. Wood, Garth A. Gibson, Randy H. Katz, “Verifying a Multipro-
cessor Cache Controller using Random Test Generation”, InIEEE Design
& Test of Computers, August 1990.

[WT95] Tsu-Hua Wang and Chong Guan Tan, “Practical Code Coverage for Ver-
ilog”, In International Verilog HDL Conference, March 1995.

[YGM+95] Lawrence Yang, David Gao, Jamshid Mostoufi, Raju Joshi, Paul Loewen-
stein, “System Design Methodology of UltraSPARC-I”, In Proceedings of
Design Automation Conference, June 1995.

