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Abstract

Although shrinking geometries and larger VLSI chips have produced faster systems,
they have also imposed greater demands on the speed of the design tools. These de-
mands are exacerbated by the iterative nature of the design process whereby circuits are
repeatedly modified and verified.

The VLSI design tools described in this thesis reduce design time by operating in-
crementally. An incremental tool takes advantage of the fact that most design changes
affect only part of the circuit; thus, many of the computations performed while verifying
a modified design are identical to those performed during previous verification runs. By
reusing previous results, incremental tools can confine their work to the sections of the
design affected by the changes, thereby allowing modifications to be verified in a time
proportional to the size of the changes rather than the size of the design.

The incremental system described in this thesis consists of two components: simulator
and circuit extractor. The simulator, I7sim, is a logic plus timing simulator that employs a
switched-resistor MOSFET model that accurately simulates circuits at the transistor level.
Irsim allows designers to modify the circuit being simulated and then incrementally update
the waveforms of the sections of the circuit whose behavior is altered by the changes. To
accomplish this, Irsim maintains a history of circuit activity during simulation and only
resimulates the sections of the circuit that deviate from their history.

The circuit extractor is embedded within a hierarchical layout editor; it operates by
identifying circuit changes from the layout modifications, and producing the circuit-level
transformations needed to update the circuit’s network. To accomplish this, the extractor
keeps track of the modified layout areas and then extracts only the circuits contained
within the modified areas from the layouts before and after the modifications; it then
compares the graphs of the extracted subcircuits and reports the differences as network
transformations.

Applicability of the system is demonstrated by stepping through the final phases of
a large VLSI design. The results show that the incremental tools reduced design cycle
runtime by an average of two orders of magnitude.
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Chapter 1
Introduction

The term very large scale integration (VLSI) refiects the remarkable changes that the field
of electronics has undergone over the past few decades. In the 1940’s electronic circuit
design was synonymous with relays and vacuum tubes. Some 10 years after its invention
in 1947, the transistor had largely supplanted those two devices. Today, as a result of
continued progress in semiconductor technology, a complex electronic system consisting
of millions of transistors can be fabricated in a single micro-electronic chip. While VLSI
technology is still evolving, the use of integrated circuits is now firmly established; from
watches to personal computers, they have, in some way, influenced every facet of our
society. This revolutionary change in the conceptualization and fabrication of electronic
systems has obliterated traditional design methodologies; the days when a circuit was
tested on a board and errors were corrected using wires and sclder are long gone.

The explosion in complexity made possible by the advent of VLSI has made the
use of computer tools essential to the design process. A variety of tools supporting all
phases of the design process have been developed and are relied upon by virtually every
designer of integrated circuits. Computer tools can not only cope with the masses of
data that would overwhelm a human designer, but they can also verify the functionality
and determine the performance of a design before it goes through an expensive and
time consuming fabrication process. Once a circuit is fabricated, finding errors becomes
extremely difficult since the problems associated with attaching probes to microscopic
wires severely limit the number of signals available for examination or manipulation. But
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verification is more than just a convenience for detecting errors, it allows designers to
explore different alternatives and improvements in ways that may be otherwise impractical
or impossible.

While higher levels of integration havc led to improvements in cost, size, power
and performance of integrated circuits, they have also imposed greater demands on the
tools used to design them. More complex circuits also need more tests, hence the time
required to design and verify them grows more than linearly with their size. As circuits
become larger, the computational requirements quickly outstrip the effectiveness of the
tools. Consequently, attempts to build larger VLSI circuits are being increasingly limited
by our ability to verify them.

Much work has been done to improve the basic performance of the tools. Most ap-
proaches, however, consider design and verification as separate processes; thus failing to
recognize the iterative nature of the design process whereby the same design is repeat-
edly modified and verified. As a result, most existing tools are batch-oriented: they read
a complete description of the circuit and operate on the entire design. If a section of
the circuit is changed, the entire design must be verified again, regardless of how small
the change or how large the design. For large designs, this approach has resulted in
intolerably long turnaround times.

Problem

Behavioral

S cification

@oglc Desngnj—{ Venfyj

. '

S — n@xrcult DesngD——CVenfyj

'. . —
----------- nC Layout }C Extract }-C Verifyj

""""""""" - Fabricate

Figure 1.1: A simplified view of the VLSI design process
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Ideally, a single forward pass through all the design steps would take a behavioral
description into a layout suitable for fabrication (following the dashed arrows of Fig-
ure 1.1). But that is rarely the case; even with the use of modern design methodologies,
a designer typically iterates many times between designing a section of the circuit and
verifying that its implementation is correct.

Since at each step, the designer has incomplete knowledge of the design problem,
she must estimate some important characteristics of the underlying sections. Once those
sections are completed, the design can be tested to ensure that the estimates were correct.
If the estimates were wrong, the process must be repeated, this time using the information
gained from the previous design. Thus, design is intrinsically an iterative process con-
sisting of what might be called design cycles. Since removing the cycles would require
designers to have perfect foresight, there does not seem to be any way to completely
remove the cycles. Nonetheless, the time spent in these cycles can be greatly reduced by
building tools capable of working together in short design loops. A key observation is
that designer productivity is determined by the time spent in these cycles; not the time
spent in any one step. '

The tools described in this thesis work together to operate incrementally. Incremental
tools can reduce the time required to verify a modified design by confining their work
to the sections of the design affected by the changes. This allows verification to be
performed in a time proportional to the size of the changes rather than the size of the
entire design. Since many changes are small, they have minor implications on the overall
design. Therefore, by confining their work to the sections affected by these changes,
incremental tools can compute the effect of the changes very quickly.

An incremental tool can confine its work to the affected sections of a modified design
by tracking the designer’s changes and reusing the information already gathered during
previous cycles. Unaffected sections need not be recomputed since that information is
already available. By making effective use of prior information an incremental tool can
reduce the amount of redundant work, thereby allowing the designer to explore the design
space yet receive quick feedback on the quality of the design.
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1.1 Incremental System Overview

The incremental system presented in this thesis is shown in Figure 1.2. The system
consists of three stages, corresponding to the three steps of the last design cycle shown
in Figure 1.1: layout, circuit extraction, and verification.

Layout Incremental
Extraction
(Magic) (Chapter 3)
i
User

Interface ] | Incremental
Simulation
(Chapter 2)

Waveform

Analyzer -
- -
— LT

Figure 1.2: Incremental system overview

Layout is performed using the Magic layout editor[35]. Magic has been instrumented
to perform incremental circuit extraction by producing a circuit level description of the
modifications. Verification is performed using Irsim[40], an incremental version of the
switch-level simulator Rsim[49]. Feedback to the user is in the form of a graphic wave-
form analyzer that can display the state of any node in the circuit for any time frame.

Much as incremental techniques are applicable to a variety of verification tools, the
focus of this thesis is on simulation since it is an effective and, by and large, the most

widely used verification method.
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There are several reasons for working at the layout level. First, it is at this level
that the circuit is almost complete, the design comes to a crunch, and the need for fast
response is most keenly felt. Second, many of the more subtle errors arising from the
connection of several blocks are discovered at this level. Third, actual circuit behavior
can only be correctly estimated until transistor sizes and the unavoidable interconnect
parasitics are extracted from the layout. Finally, Magic is the most commonly used tool
for creating circuits in the Stanford design environment, thus providing a large pool of
test circuits for which no other description is available.

1.2 Organization

The next chapter explores incremental simulation techniques. After surveying previous
work on incremental simulation, we describe the implementation of an incremental logic
plus timing simulator based on Rsim’s switched-resistor MOSFET model. In addition,
we analyze the efficiency of the simulator and evaluate its worst-case performance.

Chapter Three investigates techniques to incrementally extract the circuit modifica-
tions from the changes made to the circuit’s mask-level description or layout. After
discussing the approaches adopted by other researchers, we describe our implementation
of a circuit extractor capable of updating the circuit description in time proportional to
the size of the modifications.

Chapter Four demonstrates the applicability of incremental methods in a real design
situation. We analyze the performance of the incremental tools when used to fix and
simulate the various design flaws that occurred during the design of a VLSI micropro-
cessor. Additionally, the efficiency of the incremental tools is compared with that of the
conventional (batch) tools.

Finally, Chapter Five presents a synopsis of our experience with incremental tech-
niques, summarizes the contributions of this thesis, and discusses areas for further re-

search.



Chapter 2
Incremental Simulation

Simulators are tools used by designers to verify the functionality and performance of a
design before it is fabricated. To use a simulator, the designer provides a netlist describing
the design in terms of components and nodes; a node being essentially a wire used to
connect components with one another. The designer then specifies input vectors, a series
of voltages or logic levels to be applied at certain nodes, and calls on the simulator to
evaluate the network and predict the voltages or logic levels of other nodes in the circuit.
This process continues until the designer is satisfied that the circuit meets its required
specifications. If it does not, the designer then modifies the circuit and simulates it again.
Using a conventional simulator, with each set of changes, the designer must create a new
netlist and repeat the whole process over the entire circuit. An incremental simulator,
on the other hand, allows the designer to modify the circuit being simulated and then to
incrementally update the simulation results of the parts of the circuit whose behavior is
altered by the modifications. To accomplish this, the simulator saves a history of circuit
behavior during the initial simulation, and then uses this history to confine subsequent
simulations to the parts of the circuit affected by the modifications. The objective is
then to minimize the number of evaluations needed to bring the modified circuit intc a
state consistent with the input vectors. Figure 2.1 illustrates two ways to confine the
simulation of a modified circuit in order to reduce this number.

First, by tracing out all nodes whose behavior depends on a particular modification,
either directly or through other components, the circuit can be topologically partitioned
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Figure 2.1: Confining simulation to a portion of a modified circuit

into regions whose behavior depends on the modification. Since nodes outside these
regions are, by definition, independent of the modification, their behavior will not be
altered and need not be simulated. By simply using the history of these outer nodes as
input vectors for the dependent regions, a conventional simulation algorithm can confine
its work to the dependent regions. As long as these regions are smaller than the overall
circuit, the number of evaluations will also be smaller. Simulators that exploit this
property are said to be incremental in space.

Second, at any particular time during simulation, the dependent regions can them-
selves be decomposed into regions with nodes whose behavior is actually altered by the
modifications. Unlike a dependent region, however, the size of an altered region changes
during simulation: it grows when nodes diverge from their previous behavior and it
shrinks when they converge. By confining the simulation to the nodes that deviate from
previous behavior, the number of evaluations can be further reduced. Simulators that
exploit this property are said to be incremental in time.

This chapter describes Irsim, an incremental-in-time, logic-level, timing simulator for
MQOS circuits. The next section provides some background and discusses other approaches
to reduce simulation time. Following this is an overview of Rsim, the simulator on which
Irsim is based, including some of the improvements that have been incorporated into the
original algorithm. Next is a description of Irsim’s novel incremental algorithm, its
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history management mechanism, and its implementation. The last section evaluates the

incremental simulator’s performance.

2.1 Background And Related Work

The predictions made by a simulator are based on models that describe the behavior of
the individual components. Simulators can be classified according to the type of models

they use. The three most common are:

¢ Analytical models based on the physics of the actual devices. The models typically
consist of differential equations relating the current through the devices to their
terminal voltages. To determine the new nodal voltages, numerical methods are
used to solve a set of coupled nonlinear differential equations.

e Functional models based solely on the intended operation of the components. The
models typically consist of boolean equations that relate a component’s outputs to
its inputs. The new values are found by simply evaluating these equations.

o Hybrid models that attempt to approximate the accuracy of analytical models while
retaining the simplicity and efficiency of functional models.

Analytical models are used by circuit analysis programs such as SPICE[33]. This
type of simulator is characterized by a high of degree accuracy. Obtaining this accuracy,
however, requires the evaluation of every device model and solving a large set of equa-
tions at every time step. The computational requirements make it unrealistic to use such
simulators on a large VLSI circuit.

Functional models are used to improve on the performance of circuit simulators by
abstracting a circuit’s logical function from its electrical behavior: components become
logical blocks and voltages become logical levels. This type of model is found in gate-
level simulators such as the Yorktown Simulation Engine[36), and in functional simulators
such as TEGAS[46]. The use of logical values and blocks enables these simulators to
exploit circuit latency: since the outputs of a block depend only on its inputs, a model need
only be evaluated when its inputs change. This ability to selectively trace components can
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greatly reduce simulation time. Although not all functional simulators are selective trace
(for example SSIM[52] is a compiled-code simulator), most simulators exploit this cause
and effect relationship through some sort of event scheduling mechanism. Simulators
that use functional models can simulate large circuits in reasonable amounts of time, but
for several reasons are unable to realistically model MOS circuits. First, MOS transistors
are essentially bidirectional devices: signals may flow in either direction even if the
designer intends a particular direction. This might lead to sneak paths or charge sharing
effects, both of which need to be modeled. Also, functional models do not model charge
storage at nodes; this precludes their use in circuits that rely on dynamic storage such as
dynamic memories and precharged logic. Finally, functional models ignore the values of
capacitances and transistor conductances, yet the state of MOS circuits depends strongly
on these values.

Hybrid models attempt to bridge the gap between analytical and functional models by
having as components the physical devices, but using simplified models that enable the
simulator to incorporate many of the advantages exhibited by functional simulators. This
type of model is typified by switch-level simulators such as MOSSIM 11[6), COSMOS[37]
and Rsim[49]. The basic idea behind the switch-level model is to simulate transistors
using a simplified resistive-switch model. This model abstracts many of the nonessential
details of the transistor while retaining most of its functionality. By adjusting the com-
plexity of the resistive-switch model, a trade-off can be made by sacrificing accuracy for
simulation speed.

Almost all previous work attempts to reduce simulation time by optimizing or accel-
erating the basic simulation function. However, there has been some prior work on incre-
mental simulation. Hwang, Choi and Blank have implemented two incremental simulators
based on the behavioral simulator THOR[2]: an incremental-in-space simulator{23, 24]
and an incremental-in-time simulator{7]. Their incremental simulators operate on a flat
netlist consisting of nodes and behavioral, functional, or gate models (the models are
compiled C procedures). Users must manually enter the net change tokens describing the
modifications to the flat netlist, supporting operations such as insertion and deletion of
components, and connection and disconnection of nodes. For the incremental-in-space
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algorithm, they report simulation speedups ranging from 2 to 30. This incremental algo-
rithm exhibits little overhead: its worst-case performance, which occurs when most of
the circuit is resimulated, is comparable to that of the non-incremental algorithm. For the
incremental-in-time algorithm, they report simulation speedups ranging from 1 to 200.
This algorithm exhibits much higher overhead than the first; some test cases show an
increase in simulation time of three times or more. They attribute this increase to the
overhead due to maintaining the history, and to the evaluation of zero-delay elements,
which sometimes require more evaluations than in the conventional algorithm.

In his thesis, Choil8] compares the two simulators described above, and introduces
a third, hybrid algorithm that combines those two. The hybrid algorithm starts out as an
incremental-in-time algorithm, resimulating only nodes that deviate from their previous
behavior. However, once a node deviates from its previous behavior, it becomes part
of an altered region that never shrinks. The algorithm thus resembles the incremental-
in-space algorithm, the only difference is that the regions to be resimulated can grow
during simulation. For the hybrid algorithm, Choi reports simulation time speedups that
typically range between those of the other two: somewhat faster than the incremental-in-
space algorithm, and slower than the incremental-in-time algorithm. In the worst case,
however, the hybrid algorithm is never as slow as the incremental-in-time algorithm.

The incremental simulators described above require that the simulator be recompiled
following the modifications. Unfortunately, this also requires that the history be saved
on disk and then read in prior to any resimulation. The time required to compile the
simulator, write, and read the history may negate any performance gains possible with
the incremental simulator. Also, while behavioral models can simulate large circuits in
reasonable amounts of time, as discussed earlier, they are often inadequate for modeling
MOS circuits. Finally, the simulator does not compute transition times automatically;
instead, the user must supply the delays, which is prone to error or wishful thinking on
the part of the user.

In his thesis, Jones[28] proposed an incremental switch-level simulator embedded
within a schematic capture system. The entire system is based on attribute gram-
mar techniques[30] developed in the context of language-based programming environ-
ments[27]. Nodes are distributed throughout the hierarchy of the design, and the circuit
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representation is updated as a byproduct of manipulating the design. All the circuit
properties are represented by attributes of the design tree and are incrementally updated.
Jones extended this principle to switch-level simulation by defining attributes for a node’s
logical state and strength. The simulator is based on the MOSSIM I1T6] model, and uses
a simple unit-delay timing mechanism. Because it operates on the design hierarchy, the
system does not require a netlist compilation (or flattening) step. However, Jones focused
only on updating the topology of the design and the state of the circuit for a fixed input
stimulus; not for a series of inputs. He expects the amount of redundancy present in his
representation to seriously degrade performance if the algorithm is extended to resimulate
a series of inputs.

More recently, Jones[25] has implemented an incremental system involving a simu-
lator that operates on a flattened netlist. The simulator is embedded within a schematic
capture system that includes an incremental netlist compiler{26]. The netlist compiler
works by propagating every change a user makes on the schematic to the flat represen-
tation. The simulator is also based on the MOSSIM II model, but allows designers to
specify a delay for each node in the circuit. The simulator uses an incremental-in-time
algorithm very similar to the one presented in this thesis, however, it can only handle
identical rise/fall times and propagational delays, a special case of the more general al-
gorithm presented in this thesis. Jones reports simulation time speedups that range from
0.33 to 864.

The approach we adopted is based on switch-level simulation. We did not consider
an incremental-in-space algorithm since deriving such a model for a switch-level simu-
lator was deemed impractical due to the bidirectionality of transistors, which, unlike a -
functional model, make it impossible to determine signal flow from the topology of the
circuit alone; instead, all possible signal paths stemming from a modification must be
included in the dependent regions. This would result in the resimulation of unnecessarily
large portions of the circuit.

We use Rsim as the basis for our incremental-in-time simulator. Rsim is a logic-
level timing simulator known for yielding reasonably accurate results without the long
computation runs of circuit analyzers. There are several reasons for choosing Rsim. Since
it is the most widely used simulator in the Stanford design environment, it provides us
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with a large pool of real circuits and input vectors with which to test our simulator.
Also, Rsim correctly models some the more subtle MOS timing effects such as charge
sharing and input slope dependency. This timing accuracy may be a disadvantage with
regard to incremental simulation, since even slight changes to the circuit may cause
many signals to experience a time shift, hence requiring resimulation of large portions
of the circuit although neither their logic levels nor their relative timing has changed.
Nevertheless, since designers sometimes modify a circuit only to improve its performance,
the simulation should reflect those changes. Moreover, small timing differences may
sometimes cause a circuit to malfunction. In those cases, the more accurate results
should more than compensate for the loss in performance.

Before presenting our incremental-in-time algorithm, the next section reviews Rsim’s

simulation algorithm.

2.2 Overview of Rsim

Rsim is a logic-level timing simulator based on a switch-level model that was developed
by Terman with the goal of being able to simulate an entire VLSI circuit with accept-
able accuracy. A detailed description of Rsim’s underlying principles can be found in
his thesis[49]. The version described here includes several improvements to his orig-
inal algorithm: Horowitz[22] has modified it to account for the effects of input slope
and resistor-capacitor trees, and Chu[11] has included improved charge-sharing and DC-
analysis models.

Rsim represents a circuit as a set of nodes interconnected by transistors. Nodes
are treated as wires with capacitance only to ground; the voltage across the capacitor
represents the logical state of the node. To change this state, the capacitor must be charged
or discharged. Since the charge across the capacitor cannot change instantaneously, a
change in state involves a delay. The main task of the simulator is to detect transitions
between logic states and their associated delays. The logic state of a node is determined
by first estimating its voltage! and then quantizing it into one of three logic levels by
comparing it to a pair of voltage thresholds appropriate to the technology, Vi, and Viigx:

YAll voltages are normalized in the range [0,1], hence Vig =1 and Vjyna = 0.
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0 logic low voltages in the range [0, Vi,.].
1 logic high voltages in the range [Viign, 1.
X undetermined unknown voltages or in the range [Vihighs Viow).

These logic levels correspond to the types of voltages one might expect from digital
logic circuits; they not only provide an adequate level of abstraction but also simplify
the computations by confining MOS transistors to operate in one of two states: fully
conducting (ON) or not conducting (OFF). Accordingly, Rsim models a transistor as a
bidirectional switch in series with a resistor; turning the transistor on “closes” the switch
and connects the drain and source nodes via a resistor. The logic level at the transistor’s
gate controls the state of the switch (Figure 2.2). The value of the resistance, R, if> 18
determined separately for each transistor, and is a function of the transistor type and its

dimensions.

gate gate
Q

_T_ Ry |
source o—  L—o drai source O—W =—o drain
(a) transistor (b) model

Figure 2.2: Rsim model for an n-channel transistor

The type of connection between the source and drain of a transistor as a function
of its gate level caa be easily tabulated for a variety of transistor types (Table 2.1). To
account for transistor nonlinearity, the effective resistance, R.jy, of a transistor is actually
modeled by two resistance values: Rj;,n and Ryy; the value used depends on whether
the transistor is driving a particular node high or low. The uncertainty regarding the
state of the switch due to an X level at its gate is modeled as an interval between its
fully conducting and non-conducting states. All the network calculations use interval
arithmetic; the bounds of the resulting intervals are used to convert voltages into logic
levels. This mechanism is sufficient to deal effectively with X levels.

The electrical isolation provided by OFF transistors and the unidirectional coupling
of the gate are used to partition the network into channel-connected stages, which are
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Gate Level State | Resistance Gate Level State Resistance
0 OFF o0 0 ON Rc If
1 ON Re;s 1 OFF o0
X ON/OFF | [R.ss,00] X ON/OFF | [R.ss, 0]
(a) n-channel - (b) p-channel

Table 2.1: Transistor source-drain resistance as a function of gate level.

subcircuits that include all nodes connected together by conducting (and possibly con-
ducting) transistors. A stage can be viewed as a functional model whose inputs are the
nodes connected to the gates of its transistors, and whose outputs are the nodes contained
within the stage. A stage is the basic unit of analysis, and is analogous to a functional
model in that its outputs are isolated from its inputs, and a single stage determines the
state of an output. Unlike a functional model, however, the composition of a stage is de-
termined dynamically as transistors change state during simulation. Figure 2.3 illustrates

this decomposition process.
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Figure 2.3: Decomposition of a static CMOS register into stages

Whenever a stage’s inputs change state, causing nodes or transistors to be added or
removed from it, the stage is evaluated by recomputing the state of all its output nodes.
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Stages whose inputs are quiescent are not evaluated — the simulation algorithm is event-
driven. Whenever a node is to change state, a new event is created and inserted into
an event queue, which holds a list of events, sorted by time, indicating the amount of
processing remaining to be done. Events specify a node, a new logic level, a transition
time constant, and the time at which the node’s state should change to the new level.
Events are classified as evaluation events, which are generated when the evaluation of
a stage causes an output node to change state, and input events, which are generated by

the user providing input stimuli for the circuit.

2.2.1 Event Processing

Simulation begins by the user providing input stimuli for the circuit. For each of these
stimuli, the simulator enters an input-event into the event queue; when the queue is
empty, the network has “settled” and the simulator waits for further input. The simulator
sequentially processes events from the event queue, advancing the current simulated time
to the earliest time at which an event is scheduled, and stopping when either the queue is
empty or a specified simulation time has elapsed. The basic event processing algorithm

is:
1. Remove all events scheduled at the current time from the event queue.
2. For each event, change the state of the specified node to its new state.

3. Update the state of all transistors with gates connected to the nodes changing state.
At the source and drain of each such transistor, trace the stage(s) formed and mark

them for evaluation.

4. Evaluate each of the stages marked above, computing for each output node: its
final value, its charge sharing value, and its delay should the node change value.

5. If the new value differs from the node’s present state, or from the one it will
assume due to a previously scheduled event, then schedule an event indicating that
the node is to change state at the current time plus the delay computed.



CHAPTER 2. INCREMENTAL SIMULATION 15

Stages whose inputs are quiescent are not evaluated — the simulation algorithm is event-
driven. Whenever a node is to change state, a new event is created and inserted into
an event queue, which holds a list of events, sorted by time, indicating the amount of
processing remaining to be done. Events specify a node, a new logic level, a transition
time constant, and the time at which the node’s state should change to the new level.
Events are classified as evaluation events, which are generated when the evaluation of
a stage causes an output node to change state, and input events, which are generated by
the user providing input stimuli for the circuit.

2.2.1 Event Processing

Simulation begins by the user providing input stimuli for the circuit. For each of these
stimuli, the simulator enters an input-event into the event queue; when the queue is
empty, the network has “settled” and the simulator waits for further input. The simulator
sequentially processes events from the event queue, advancing the current simulated time
to the earliest time at which an event is scheduled, and stopping when either the queue is
empty or a specified simulation time has elapsed. The basic event processing algorithm

is:
1. Remove all events scheduled at the current time from the event queue.
2. For each event, change the state of the specified node to its new state.

3. Update the state of all transistors with gates connected to the nodes changing state.
At the source and drain of each such transistor, trace the stage(s) formed and mark

them for evaluation.

4. Evaluate each of the stages marked above, computing for each output node: its
final value, its charge sharing value, and its delay should the node change value.

5. If the new value differs from the node’s present state, or from the one it will
assume due to a previously scheduled event, then schedule an event indicating that
the node is to change state at the current time plus the delay computed.



CHAPTER 2. INCREMENTAL SIMULATION 16

Since events are scheduled into the future, processing always proceeds monotonically
forward in time, an important characteristic of this algorithm. The above discussion
glossed over the many details involved in evaluating a stage. A more detailed description
of these computations can be found in Appendix A.

2.2.2 Event Management

Scheduling an event entails creating a new event and inserting it, according to its sched-
uled time, into the event queue. To facilitate this operation, the queue is organized as
a time whcel[S], a circular array that bucketizes events according to time. In addition,
simulation time is quantized by rounding all times to the nearest -l%ns. Except for input
stimuli, no signal can change instantaneously; if the quantization results in a delay of zero,
Rsim uses a delay of one quanta instead. This not only produces more realistic results,
but also allows detection of oscillating signals without any additional mechanisms.

If a stage’s inputs change while its outputs have pending events, reevaluating the stage
may lead to different output values. There are several ways to deal with this situation.
In Rsim, the estimated transition delays are accurate enough to distinguish between two
cases. If the new values are to take effect after the pending events, they are simply
added to the queue. Conversely, if the new values are to take effect before the pending
events, the simulator will abort the pending events — remove them from the queue — and,
if needed, schedule the new values. The use of inertial delays with preemption is based
on the principle that the most recently calculated event best reflects the current state of
the circuit.

The NOR gate of Figure 2.4 shows two situations in which events are aborted. To
simplify the discussion, all transistors are assumed to have the same resistance R. In
Figure 2.4b, when input A falls, node Out begins to rise with time constant 2RC. Before
it reaches its final value, however, input B rises, causing Out to fall, this time with time
constant RC. In Rsim, when A falls, an event is scheduled for Out to transition to
high. Before this event takes effect, B rises, the stage is reevaluated, and the simulator
determines that Qut should become low before the previously scheduled transition is to
take effect. The low—high transition is then aborted; since the new and current values
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(a) CMQOS NOR gate. (b) Different Rise/Fall Times. (c) Different Fall Times.

Figure 2.4: Effects of aborted events on a CMOS NOR gate

of Out are the same, no event is scheduled and the output remains low, without ever
changing.

In Figure 2.4c, when input A rises, node Qut begins to fall with time constant RC.
Before it reaches its final value, however, input B rises, causing Out to fall with time
constant 32,9. The situation in Rsim is similar to the one of Figure 2.4b above. When B
rises, the simulator determines that Out should transition to low sooner than predicted
before. Accordingly, the first event is aborted and a new event, which reflects the output’s

faster fall time, is scheduled in its place.

2.2.3 Summary

The Rsim simulation algorithm can be summarized as follows:

o Voltages are quantized into three logic levels: 0, 1, and X. These levels allow Rsim
to model transistors as switches in series with a resistor. Two resistance values are

used to predict node voltages and transition times.

e The circuit is partitioned into stages consisting of channel-connected subcircuits.
The isolation between stages allows each stage to be analyzed separately.

e State transitions propagate through the network as a series of events. Each event
leads to the analysis of the stages that may be affected by the transition. Events
are sequentially processed, advancing monotonically forward in time.
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2.3 Incremental Switch-Level Timing Simulation

The previous section reviewed the operation of the switch-level timing simulator Rsim,
hereafter referred to as the conventional simulator. This section describes Irsim: an
incremental-in-time simulator based on Rsim’s circuit models.

In an incremental simulator, in addition to providing input stimuli for the circuit, users
can modify the circuit being simulated and incrementally update the simulation results
of the portions of the circuit whose behavior is altered by the modifications. To use an
incremental simulator, the circuit must have been simulated at least once. During this
simulation, the simulator will produce a history of circuit activity, which is a record of
every transition that took place. Subsequent incremental simulations use this history to
resimulate only the portions of the circuit whose behavior deviates from their history.
The basic concept is straightforward: given a history of past circuit behavior and a set
of modifications to the circuit, simulate only those portions of the circuit whose behavior
is altered by the modifications.

In an incremental-in-space simulator, all nodes that could possibly be affected by a
modification are resimulated over the eﬁtire history. In contrast, an incremental-in-time
simulator, such as Irsim, only resimulates those nodes whose behavior differs from that
recorded in their history, and only for as long as their behavior remains different. This
incremental simulation process is illustrated in the next section.

2.3.1 An Incremental Simulation Example

The operation of the incremental simulator is best illustrated through an example. Con-
sider the nand gate of Figure 2.5. Shown in Figure 2.5b are the waveforms produced
during a previous simulation (solid lines) and the ones produced by the current simulation
(dashed lines) as a result of having modified some other part of the circuit.

Prior to time t1 all the signals are the same in both simulations so the gate need
not be simulated. At time t1, input B deviates from its history by transitioning to high.
This deviation causes the gate to be evaluated and, as a result, output Out also deviates
from its history by transitioning to low at time t2. When B transitions to low at time
t3, it converges with the value recorded in its history for that time. The gate is again
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Figure 2.5: Incremental simulation of a simple gate

reevaluated, which results in Qut transitioning to high at time t4, a time at which it
converges with its history. At this time, all the signals have once again converged to
their previous states and the gate need no longer be simulated: when B rises at time t5,
Out will transition to low, but that transition does not have to be resimulated, since it
is already recorded in the history and will not be affected now that the entire state of
the circuit is the same as in the previous simulation. The key observation is that the
nand gate only needs to be resimulated from t1 to t3, the time period during which its
inputs differ from the history, not before and not after. Similarly, other gates with inputs
connected to Out will be resimulated from t2 to t4.

Figure 2.5c shows a similar situation in which input B also deviates from its history
from t1 to t2. In this case, however, node Out remains low, never deviating from its
history. Although the nand gate is reevaluated twice, as before, no other part of the
circuit needs to be reevaluated.

This example is considerably simplified in order to give an idea of the operation of
the algorithm without becoming mired in detail. The following sections extend these
ideas to the Rsim model and describe the algorithm in more detail.

2.3.2 Algorithm Description

The incremental algorithm consists of two steps: Network Maodification and Resimulation.
During the first step, the modifications are applied to the network, and all nodes directly
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affected by a modification are identified. During the second step, the simulator updates
the histories of nodes whose behavior is altered by the modifications.

Network Modification

The first step in an incremental simulation is to process the circuit modifications applied
by the designer. Irsim incorporates facilities to add, delete, move, connect, and disconnect
transistors or wires; as well as facilities to change the electrical parameters of the circuit,
such as transistor sizes, node capacitances, and voltage thresholds. A complete list of the
design modifications accepted by Irsim can be found in Appendix B.

During this step, the simulator updates the underlying netlist and produces a list of
modified nodes. If the changes made at a particular node havé the potential to change its
timing or logical behavior, the node is marked changed and added to the list of modified
nodes. Since these changed nodes have been subjected to changes that may alter their
behavior, they and their corresponding stages will be resimulated over the entire history.

Not all nodes involved in a modification are marked changed. Many of the modifica-
tions are simply used to maintain the simulated network consistent with its corresponding
layout, such as moving a transistor to another location, or changing the name of a node.
Sometimes even structural changes will only modify the capacitance of a node; before
marking these nodes as changed the simulator will check if the capacitance change is
large enough to appreciably alter the timing of the node. Consider, for example, the
circuit of Figure 2.6 in which a new connection is added to an existing node N1.

Although connecting the gate of a transistor to N1 has effectively changed the struc-
ture of N1, its logic behavior will not be altered; only its timing, and then only if the
capacitance of the node is appreciably changed. This simple static capacitance check is
much more efficient than repeatedly evaluating node N1 simply to determine that it does
not deviate from its history. However, since the gate of the transistor is now connected to
a different node, the simulator cannot predict what effect this change will have on nodes
N2 and N3, so these two nodes will be marked as changed.
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Figure 2.6: Changing the structure of a node may not alter its behavior

Resimulation

In a conventional event-driven simulator, simulation begins by providing input stimuli for
the circuit; the effects of the stimuli are then propagated throughout the circuit by means
of events. Although incremental simulation is initiated by modifying the circuit, a similar
event-driven approach is used to propagate the effect of the modifications throughout the
circuit. This enables the incremental algorithm to use the same circuit models and stage
evaluation mechanism used by Rsim: an event queue is used to limit the number of stages
that need to be examined at any time step, and processing always proceeds monotonically
forward in time. Accordingly, the history is updated to reflect the new state of any node
whose behavior is altered at time ¢ before updating the history for any time after ¢.
This allows the simulation to move consistently forward in time, without ever having to
backtrack and revert the state of the network to any time prior to the current simulation
time. Once the simulator reaches time ¢, the history of all nodes is up-to-date for all
times prior to ¢, but continues to reflect the results of the previous simulation for times
following ¢. When the simulator reaches the end of the history, it will have updated the
entire history. At this point, the user may continue the simulation by providing additional
input stimuli, or modify the circuit again.

Although the conventional and the incremental simulators are both event-driven, they
are fundamentally different in how they handle events. In the conventional simulator an
event requires the evaluation of all stages with inputs connected to the node changing
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state, whereas in the incremental simulator an event requires the evaluation of only
those stages whose state has deviated from its previous behavior. At the core of the
incremental algorithm lies its ability to recognize which parts of the circuit need to be
reevaluated. This is accomplished by extending Rsim’s stage decomposition and selective
trace mechanisms to account for the incremental state of a stage. During incremental
simulation, a stage can be in one of two states: active or inactive. A stage becomes
active if, at any specific time, either its composition or the state of any of its inputs
differs from that of the previous simulation (Figure 2.7a). An active stage becomes
inactive when its composition and the state of all its inputs and outputs converge to those
of the previous simulation. Since the entire state of inactive stages is the same as in the
previous simulation, their future behavior will also be the same; thus, only active stages

need to be resimulated.
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Figure 2.7: Two ways in which a stage becomes active

Although stages contain only conducting transistors, the incremental algorithm must
also consider boundary transistors (off transistors at the boundary of a stage). For ex-
ample, the boundary transistor, T1, shown in Figure 2.7a is not part of the stage and its
state is the same as in the previous simulation, nonetheless, the simulator must track any
changes at its gate node since the next transition could be the one that turns the transistor
on, thus becoming part of the stage.

Even if the state of all the inputs and outputs of a stage is the same as in the previous
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simulation, the stage can still become active by these boundary transistors altering its
composition. This situation is shown in Figure 2.7b, where transistor T4 is turned off as
a result of its gate deviating from its history. By becoming a boundary transistor, T4 has
altered the composition of the stage, a stage in which all inputs and outputs remain the
same as in the previous simulation.

Generalizing the above observations, a stage will be active for as long as any of the

following activation conditions are met:
o The stage contains a changed node.
¢ An input has deviated from its history.
e The gate of a boundary transistor has deviated from its history.
e An output has deviated from its history.

Since the outputs of inactive stages never deviate from their history (they are not
resimulated), the last condition above is different from the first three in that it can only
occur once the stage is already active. This condition can not cause a stage to become
active, it must, however, be checked before returning a stage to the inactive state. The
reason for this condition is that a stage’s outputs store charge; this charge might affect the
behavior of the stage even after all its inputs have converged with their previous state.

This situation is illustrated in Figure 2.8.
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Figure 2.8: The behavior of a stage can be affected by its outputs
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At time tl1, input B deviates from its history; this causes N2 to deviate from its
history by transitioning to low. Then, at time t2, B transitions again and converges with
its history. At this time, all the inputs to the circuit have converged to the values of the
previous simulation, and only output N2 differs from its history. When input A rises
at time t3, nodes N1 and N2 will share their charge and deviate from their history. If
the stage is prematurely deactivated at time t2, the simulator will fail to simulate this
transition. This situation is avoided by requiring that a stage’s outputs converge to their
previous state before becoming inactive.

Resimulation begins at the changed nodes. As outlined in the previous section, stages
that contain a changed node start out as active and remain so throughout the simulation.
Each active stage is then simulated using the state transition history of its inputs to
determine the new logical state of its outputs. Output nodes whose present state is
different from the newly calculated one will have an event scheduled at the current time
plus the delay computed for the transition. When these transitions become effective, the
new states are compared against those recorded in the history. As long as the outputs of
a stage do not deviate from their history, no new stages are activated. If an output does
deviate from its history then every stage whose input is connected to that node becomes
active. When a node converges with its history, the activation conditions of the stage
containing the node are checked; if the conditions are not met, the stage becomes inactive
and is no longer simulated.

Resimulation proceeds in this manner, sequentially processing events from the event
queue, advancing the current simulated time to the earliest time at which an event is
scheduled, and stopping when the end of the history is reached. A simplified view of the

basic event processing algorithm is:
1. Remove all events scheduled at the current time from the event queue.

2. For each event, change the state of the specified node to its new value:

(a) Compare the node’s new value against the one recorded in its history.

(b) If the node deviates from its history then
Activate all stages connected to the node.
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(c) If the stage containing the node converges to its previous state then
Deactivate the stage.

(d) If the event does not specify a transition then
skip steps 3, 4, and 5.

3. Update the state of all transistors with gates connected to the nodes changing state.
At the source and drain of each such transistor, trace the stage(s) formed and
if the stages are active mark them for evaluation.

4. Evaluate each of the stages marked above, computing for each output node: its
final value, its charge sharing value, and its delay should the node change value.

5. If the new value differs from the node’s present state, or from the one it will
assume due to a previously scheduled event, then schedule an event indicating that
the node is to change state at the current time plus the delay computed.

We can compare the incremental event processing algorithm to that of Rsim (Page
15). Steps 1, 2, 4, and 5 above are identical to the corresponding steps taken by Rsim.
Step 2a performs the history comparison, and steps 2b and 2c deal with stage activation
and deactivatioﬁ, respectively. Step 2d is needed since not all events during incremental
simulation imply a transition, this is explained below in Section 2.3.3. Step 3 is very
similar to Rsim’s, it differs in that the event is only propagated to active stages.

As the simulation progresses and nodes deviate from their history or converge with
it, inactive stages may become active and vice versa. Also, as transistors turn on and
off, the composition of active stages and boundary transistors changes during simulation.
The main task of the simulator is to track all these changes — detect nodes converging
or deviating from their history, activate and deactivate stages — while maintaining the
history of all the nodes. The next section describes how an incremental simulator can

track all these changes using new event types.

2.3.3 Events During Incremental Simulation

In the conventional algorithm, events are created in two ways: by the user providing input
stimuli (input events) or by a transition at an output node due to the evaluation of its stage
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(evaluation events). During incremental simulation there are two additional distinct types
of events: stimulus events and check-point events. These events are different from the
previous two in that they are not caused by circuit activity or user intervention; instead,
they are extracted from the history and scheduled by the simulator to stimulate stages

and detect transitions, respectively.

Stimulus Events

Once a stage becomes active, it must be evaluated for every transition occurring at its
inputs or boundary transistors. In the conventional algorithm, events are always scheduled
when a node changes state; these events signal the evaluation of stages whose inputs are
connected to the node changing state. In incremental simulation, however, events are
only scheduled on the outputs of active stages, and, in general, not all inputs to an active
stage are themselves outputs of an active stage. Therefore, to signal a transition at these
inactive inputs, a different type of event is used: a stimulus event. As long as a stage is
active, all its inactive inputs (such as node clk in Figure 2.9) will have the next transition

in their history scheduled as a stimulus event.
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Figure 2.9: Stimulus events at inactive inputs are used to stimulate active stages

When a stimulus event takes effect, the value of the node it specifies is updated, all
active stages for which the node is an input are evaluated, and the next transition in the
node’s history is scheduled as a stimulus event. Since there may be more than one active
stage connected to the same input node (stages 1 and 2 in Figure 2.9, for example),
stimulus events are not descheduled when a particular stage becomes inactive. Instead,
the simulator waits until the event takes effect, and then checks if the node still needs to
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be stimulated: if all stages with inputs connected to the stimulated node are inactive, the
event is ignored, no stage is evaluated, and no more events are scheduled for the node.
Although the simulator could keep track of the number of active stages connected to the
stimulated node, and deschedule stimulus events when that number becomes zero, there
are two reasons for not doing this. First, it is no more expensive to remove the event
from the queue at the time it takes effect than to deschedule it. Second, another stage
may become active and require the same stimulus event to be scheduled, in which case
the event would have been descheduled only to be re-scheduled again; leaving the event

in the queue avoids this extra work.

Check-Point Events

An important property of the incremental algorithm is that processing always proceeds
monotonically forward in time. This monotonicity requires that a node deviating from
its history be detected immediately as it occurs so stages that depend on the node can
be activated and reevaluated for all further transitions. There are two ways in which a
node can deviate from its history: by transitioning when the history shows a stable value
(Figure 2.10a), or by remaining stable when the history shows a transition (Figure 2.10b).
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Figure 2.10: Two ways in which a node can deviate from its history

Detection of the first case is straightforward: since the transition must have been
caused by the evaluation of an active stage, an event was scheduled to indicate the
transition; the simulator can simply compare this event with the node’s history. Detection
of the second case is more difficult because there are no events scheduled for the node
at that time. There are several ways to handle this situation.

The incremental-in-time behavioral simulator, THOR[7], repeatedly evaluates active
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components and then compares the events that result from the evaluation with the corre-
sponding transitions recorded in the history; detecting missing transitions is then trivial.
This scheme is easy to implement in a simulator such as THOR[7], in which delays are
fixed and events are never aborted. In Rsim, however, transition delays depend on the
structure of the stage, the electrical parameters of its comprising elements, as well as on
the input transitions. This makes it difficult to find a transition in the history that cor-
responds to the current evaluation. Furthermore, a transition could be aborted before it
takes effect, thus invalidating any comparison made at the time the event was scheduled.

Our approach is to use a different type of event, a check-point event. This event
indicates that an output was scheduled to change at a particular time during the previous
simulation. When the check-point event is removed from the queue, the simulator can
detect the missing transition by simply checking that no other event is scheduled for the
node at the same time.

As long as a node is contained within an active stage, it will have the next transition in
its history scheduled as a check-point event. When a check-point event is removed from
the queue, the next transition in the node’s history is scheduled as a check-point event.
When a stage becomes inactive, the check-point events at its outputs are descheduled.
Of course, check-point events are also used to detect when a node converges with its
history, thus deactivating stages as soon as they converge to their previous state.

The main advantage of using check-point events is that they allow the use of an event-
driven algorithm in which time increases monotonically. Their primary disadvantage is
the overhead due to the scheduling of additional events; in the worst case, a node can
have two events being continuously scheduled throughout the simulation: a check-point
event and an evaluation event. Check-point events also complicate event processing since
a node may have more than one event scheduled at the same time, a situation that never

arises in the conventional algorithm.

2.3.4 Incremental States

Since the composition of stages varies during simulation, it is difficult to maintain their
incremental state explicitly. Instead, as the network is decomposed into stages, their
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incremental state is computed as a side effect of checking the activation conditions of
their output nodes and boundary transistors. The simulator does maintain an incremental
state for both nodes and transistors, each of which serves a different purpose.

A transistor’s incremental state is active when transitions at its gate should not be
ignored, that is, the transistor is either part of an active stage or a boundary transistor
to one; otherwise the transistor’s state is inactive. Whenever a stage is activated or
deactivated, the incremental state of its transistors is updated. The incremental state of a
transistor is used to quickly identify whether the transistor is part of an active stage, thus
avoiding having to recompute the incremental state of all stages for which a particular
node is an input. The incremental state of a transistor is examined in two situations: (1)
to determine the stages to which a stimulus event should be applied (and resimulated),
and (2) to determine whether stimulus events should be scheduled on the output nodes of
a stage that becomes inactive; this occurs when the output node in question is an input
to at least one active stage.

The incremental state of a node is examined to compute the incremental state of a
stage, and also, as described later in Section 2.3.8, to decide which stages should be
re-evaluated. A node can be in one of four incremental states:

e Inactive: The node is neither part of an active stage nor do any active stages
depend on it. It is not being resimulated, and no events are scheduled for it.

e Stimulated: The node is inactive, but it is an input to one or more active stages.
Although it is not being resimulated, the next transition in its history, if any, will

be scheduled as a stimulus event.

e Active: The node is part of an active stage, but has not deviated from its history.
It is being resimulated, and the next transition in its history will be scheduled as a
check-point event.

e Deviated: The node is active and it has deviated from its history. It is being
resimulated and the next transition in its history will be scheduled as a check-point

event.
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2.3.5 Stage Activation

When a stage becomes active, its state must be initialized to that of the previous simulation
at the time of activation. This entails extracting the state of its inputs and outputs from
the history, updating the state of its transistors to reflect the current input values, and
scheduling stimulus events on all its inactive inputs as well as check-point events on all
its outputs. In addition, pending events must also be scheduled on its outputs; their need

is explained below.

Pending Events

Transitions that were scheduled to occur in the future but were caused by an event prior
to the time of activation must also be scheduled on the output nodes. Although these
pending events are the result of an input transition while the stage was inactive, they are
also part of the current state of the stage. Ignoring them can lead to incorrect results.

TR

Out

0 1R 0 12
(a) CMOS dynamic NOR gate (b) Ignoring pending event (c) Evaluate at time of activation

Figure 2.11: Ignoring pending-events may result in incorrect results

Consider what happens when node A in the example circuit of Figure 2.11 deviates
from its history by remaining low at time t1 (dashed line in Figure 2.11b). At this
time in the previous simulation, node Out had a pending transition to take effect at
time t2, a transition that was caused by input B rising at time t0. Since in the current
simulation none of the inputs has a transition at time t1, the stage will not be evaluated.
If the pending transition is not rescheduled when the stage becomes active (at time t1),
resimulation will incorrectly leave output Qut with a stable high value. Note that the
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correct output values could be obtained by always evaluating a stage at the time of
activation, regardless of whether there are any input transitions; this, however, would not
only make stage activation more expensive, but also lead to timing errors since in the
absence of an input transition, any delay computed will be meaningless. In the example
above, simply evaluating the stage at time t1 (Figure 2.11c) would result in a high—low
transition for node Qut to take effect at time t3 (dashed line), which is later than the

actual transition.

Aborted Events

Aborted events are important because a previously aborted event may become an effective
transition during incremental simulation. Omitting them can also lead to incorrect results.
Consider what happens to the example circuit of Figure 2.12 when the transition of node
A is delayed as shown in Figure 2.12c (dashed line).

A !
b- A \
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A Out
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o B Out \ \/_
- correct :
Out ¢ s
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| ! incorrect
no2o : N
2 t4
(a) CMOS nand gate (b) Previous Simulation (c) Current Simulation

Figure 2.12: Incorrect resimulation due to aborted events

By remaining high at time t2, node A deviates from its history and causes the stage
to be active from time t2 until time t4, when A converges to its previous simulation
value. In the previous simulation, at time t2; node Out had a pending event; this event
was aborted by the transition of A, which no longer occurs at time t2. With no input
transitions at time t2, the stage will not be evaluated, thus leaving node Out with an
incorrect high value, as in the previous example. ‘In this case, however, even evaluating
the stage at the time of activation produces an incorrect result: simulating the circuit
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starting at time t2 will first predict a high—low transition on node Out, which will then
be aborted when A falls at time t4. The resulting waveform would incorrectly show node
Out with a constant high value. If we consider the event previously aborted at time t2,
the situation is quite different, resulting in two transitions on node Out.

The key observation is that pending aborted events are also part of the current state
of the stage. When a stage becomes active, all pending events at the time of activation,
whether aborted or not, must be rescheduled on its outputs. Recreating possibly aborted
events at the time of activation would require the ability to move back in time and
repeatedly evaluate the stage. This would not only make stage activation quite expensive,
but also violate the principle that time increases monotonically.

We have found that aborted events represent only 1 — 15% of all transitions; we
therefore decided to record aborted events as part of a node’s history. When the stage
is activated, the simulator will scan the history of each output node looking for pending
transitions; each such transition is then rescheduled as an evaluation event, just as if it
had been scheduled by a previous stage evaluation. Any transition in the history that
satisfies the following condition must be rescheduled:

schedule time < activation time < { effective time for an effective transition

aborted time  for an aborted transition

Several transitions in the history can satisfy the above condition. This means that the
simulator must scan the history to find all such transitions. To illustrate this, Figure 2.13
shows the 7 possible ways in which aborted (gray) and effective (black) transitions can
occur during simulation.

In Figure 2.13, time increases from left to right. Each arrow points to the time at
which the transition is to take effect, bullets represent the time at which the transitions are
scheduled, and the dashed arrows indicate the time at which a transition is aborted. Note
that Figures 2.13h~i represent situations that cannot occur, since the aborted transition
would have been aborted when the effective transition was scheduled, as in Figure 2.13c.
Depending on when a node becomes active, one or more of these transitions may be
pending and will have to be rescheduled. For example, Figure 2.14 shows the four
possible situations that may arise from Figure 2.13e.
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® (h) cannot be | (i) cannot be

Figure 2.13: Possible timing of aborted and effective transitions during simulation
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Figure 2.14: Several transitions may have to be rescheduled simultaneously
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When an aborted transition is rescheduled, it is also removed from the history; if these
transitions end up being aborted again, they will simply be re-recorded in the history.
The implementation details are described later when discussing the history management

mechanism in Section 2.3.7.

2.3.6 Stage Deactivation

In addition to the activation conditions outlined before, a stage must remain active until
no pending events remain on any of its outputs. The reason for this is that some of those
transitions may be aborted, and for that to happen the stage must remain active. Once
all these conditions are met, the stage can be deactivated.

Deactivation of a stage is relatively simple; check-point events at its outputs are
removed from the queue, and the incremental state of the nodes is updated. Often, an
output node whose stage is deactivated drives a still-active stage. In this case the output
node becomes stimulated and its next transition will be scheduled as a stimulus event.
On the other hand, if the output node does not drive any active stages, then it becomes

inactive (as described in Section 2.3.4).’

2.3.7 History Management

The history of each node is kept as a linked list of transitions, which can be either effective
or aborted. Each transition in the history carries enough information to be able to recreate
the transition during resimulation. A history transition specifies: its target logic level,
the time at which it was to take effect, its delay, its time constant, and whether it was an
input stimuli. In addition, aborted transitions also specify the time at which they were
aborted.

Effective transitions are recorded in the history at the time that the transitions take
effect. Aborted transitions are recorded in the history at the time at which they are aborted.
Since a transition can be aborted by a node remaining stable, an effective transition can
be followed by an arbitrary number of aborted transitions. This simple history recording
mechanism imposes a chronological ordering on the history; an effective transition is
always followed by the next effective transition, or by a series of transitions that were
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aborted after it took effect. Likewise, aborted transitions are always followed by a
transition that was either aborted or took effect after they were aborted. When a stage
becomes active and the history is scanned for pending events, the simulator need look
no further than the first effective transition recorded after the time of activation.

In addition to its history list, every node contains a current pointer that points to
the history transition representing the current state of the node. Instead of maintaining
the current pointer updated for all nodes in the circuit, the incremental algorithm only
updates it for nodes whose state is needed during resimulation: for active and stimulated
nodes it is kept updated as long as they remain in that state; for inactive nodes it is
updated on demand. When the state of an inactive node needs to be updated, its pointer
is advanced to the latest effective transition prior to the current simulation time; the logic
level specified by the wansition yields the current state of the node. As the simulation
progresses and the history is updated, the current pointer of an active node will always
peint to the node’s latest effective transition, never to an aborted transition. Since time
advances monotonically forward, the pointer only needs to move in one direction, which
is why a singly-linked list is an appropriate data structure.

When a node’s behavior differs from that of the previous simulation, the simulator
must modify its history. History modifications are performed by two basic operations:
addition of a new transition and removal of a previous transition.

Adding a Transition

A new transition is inserted in the history when either a transition is aborted or a transition
that did not occur in the previous simulation becomes an effective transition.

Transitions are always inserted in the history list before the next effective transition
following the current pointer. Typically, they simply need to be inserted immediately
following the current pointer. However, since there may be an arbitrary number of aborted
transitions between any two effective transitions, inserting a transition may sometimes
require a short scan of the history to skip past any aborted transitions.
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current
.- - —effective|— | aborted | — [aborted | — [effective | — - - -

1

insert here

We have found that consecutive aborted transitions represent at most 15% of the
aborted transitions, or about 0.1-2% of all transitions. Since this number is relatively
small, a more sophisticated algorithm than the simple linear search we use is not war-
ranted.

Since an aborted transition does not affect the state of the node (it only affects
its history), the current pointer is never modified when inserting an aborted transition.
Inserting an effective transition, on the other hand, will leave the current pointer pointing
to the newly inserted transition that represents the current state of the node.

Removing a Transition

Whenever a transition that became effective during the previous simulation no longer
occurs, that transition along with any aborted transitions that follow it are removed from
the history list. Since missing transitions are detected as soon as they occur, they are
always the next effective transition following the current pointer. The current state of the
node remains the same when removing the next transition so the current pointer is not
modified by this operation.

tached S tc‘urr tached > tcurr

current l !
-+« — |effective | — | aborted | — [effective | — [aborted | — [aborted | — [effective | - - -
T T T
remove these remove and remember

Aborted transitions removed from the history during this operation must be remem-
bered by the simulator since the node may, at some later time, converge with the value
of the deleted transition. If that happens, all remembered transitions that were scheduled
after the time at which the node converges with its history are re-inserted in the history;
remembered transitions that were scheduled before the time at which the node converged
are freed and forgotten. This same process is used when a node becomes active: all



CHAPTER 2. INCREMENTAL SIMULATION 37

aborted transitions between the current pointer and the next effective transition that were
scheduled after the time of activation are remembered. Remembered transitions whose
scheduled time has expired are freed when either the node converges with its history or
another transition is removed from the history.

2.3.8 Incremental Simulation Loop

Initially, all stages containing changed nodes are activated and stimulated using the tran-
sition history of their inputs. The simulator then enters its main loop and begins to
sequentially process events. This processing may result in more stages becoming active
or active stages becoming inactive. Resimulation ends when the simulator reaches the
end of the history or there are no more events to process. At this point the user may again
modify the circuit and resimulate it, or continue the simulation by providing additional
input stimuli.

The particular actions taken by the simulator as it processes each event depend on the
type of event and on the incremental state of the node it specifies. Processing evaluation
and check-point events for active nodes can result in one of the eight situations shown
in Figure 2.15.

As each evaluation and check-point event is processed, the state of the node they
specify is updated and compared against its history. As a result of this comparison, the
history is updated and the node is placed in one of eight consideration lists. Each list
corresponds to one of the situations shown in Figure 2.15, as explained below. After all
evaluation and check-point events have been thus processed, each consideration list is
examined to determine which stages need to be evaluated, as follows:

(a) By remaining stable, the node deviates from its history; the node becomes active
and deviated. All inactive stages with inputs connected to the node will be acti-
vated, but they will be marked for evaluation only if some other input undergoes
a transition at the current time, a transition that can not be explicitly propagated
through an event since the stages were inactive prior to the current time.

(b) By remaining stable, the node converges with its history; if the node controls any
active transistors then it becomes stimulated, otherwise it becomes inactive. No
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Figure 2.15: Possible cases due to an event occurring on an active node

stages are marked for evaluation.

By remaining stable, the node continues to deviate from its history. No stages are

marked for evaluation.

A transition causes the node to deviate from its history; the node becomes active
and deviating. All stages with inputs or boundary transistors controlled by the node
are marked for evaluation.

A transition causes the node to converge with its history; if the node controls any
active transistors then it becomes stimulated, otherwise it becomes inactive. All
stages with inputs or boundary transistors controlled by the node are marked for
evaluation; these stages must be evaluated even if, as a result of this transition,
their entire state has converged to that of the previous simulation, i.e., they just

became inactive.

The node transitions and continues to deviate from its history. All stages with
inputs or boundary transistors controlled by the node are marked for evaluation.

The node undergoes the same transition as recorded in its history. The node either
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converges with or remains the same as its history; it becomes inactive or stimulated.
Stages with inputs connected to the node that are still active at this point are marked
for evaluation. This situation differs from (e) in that stages that became inactive

as a result of this transition do not have to be evaluated.

(h) The node undergoes a similar transition as recorded in its history, only the timing
is different. The node has either converged with or remains the same as its history.
The situation is similar to (g) above, but in addition to active stages, inactive stages
whose timing may be altered by the different time-constant will be activated and
marked for evaluation. The timing of a stage may be altered by the time-constant
if the transition turns a transistor on; this excludes boundary transistors.

At the same time that the consideration lists are examined and stages are marked
for evaluation, the activation conditions of stages containing nodes converging with their
history are examined; stages that do not meet these conditions are deactivated. After all
events have been processed, the simulator proceeds to evaluate each stage marked for
evaluation. As each stage is evaluated, -its evaluation marks are cleared; this insures that
each stage is evaluated only once during the current time step. The evaluation procedure,
which is identical to the one performed by Rsim, will schedule an evaluation event for
any output that is to change state. After all stages have been evaluated, the simulator
scans the event queue and repeats the above process for the next set of events scheduled
at the earliest time following the current time. |

After processing evaluation and check-point events, but before evaluating any stages,
other types of events are processed. The processing for all events is described below.

Stimulus Events

Stimulus events are never compared with the history of the node they specify, since by
definition they are identical. To process a stimulus event, the state of all transistors
controlled by the stimulated node that are part of an active stage (or at its boundary) is
updated. If no such transistor is found then the event is ignored; otherwise the stages at the
source and drain of each active transistor are marked for evaluation and the next transition
at the stimulated node is scheduled as a stimulus event. By processing stimulus events
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after evaluation and check-point events, the number of evaluations can be minimized,
since some previously active stages may become inactive when the latter are processed,

hence making their evaluation unnecessary.

Evaluation Events

When processing an evaluation event, the simulator will first check if the node it specifies
has a check-point event scheduled at the current time. If this is the case then the event
is processed alongside the check-point event, as explained in the next section; otherwise
the node is assigned the new state, which is then compared with the history, and the node
is inserted into the appropriate consideration list.

If the node was deviating from its history prior to the event then its new state is
compared with its corresponding state during the previous simulation; if they are the same
then the node converges with its history (Figure 2.15¢), otherwise the node continues to
deviate from its history (Figure 2.15f).

If the node is not currently deviating from its history then the absence of a check-
point event at the current time implies that the node has just deviated from the history
(Figure 2.15d).

The current transition is always added to the history. Since previous transitions that
no longer occur are removed from a node’s history, the simulator keeps a copy of the
previous simulation value for as long as a node remains active. This value is updated
whenever a check-point event is processed.

Check-Point Events

Processing a check-point event for a particular node must deal with the case when that
node also has an evaluation event scheduled at the same time. In this case, after changing
the state of the node to the new value, three possibilities arise:

1. The logic level and the timing specified by the two events are the same; the node
has either converged with or remains the same as its history (Figure 2.15g). The
history remains unchanged.
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2. The logic level specified by the two events are the same, but the timing is different;
the node has either converged with or remains the same as its history (Figure 2.15h).
The old transition is removed from the history and the new one is inserted (since
both transitions are the same, this case can be optimized by updating the timing
information of the old transition).

3. The logic level specified by the two events are different; the node deviates from
its history (Figure 2.15f). The old transition is removed from the history and the

new one is inserted.

If the node specified by the check-point event does not have an evaluation event
scheduled at the same time then the logic state specified by the event is compared with
the node’s current state: if the two logic states are the same, the node has just converged
with its history (Figure 2.15b); otherwise the node deviates from its history (Figure 2.15a).
In both these cases, the old transition is removed from the history.

Input Events

When a history transition to be scheduled as a check-point event corresponds to an input
stimuli, instead of scheduling a check-point event, the simulator schedules an input event.
There are two types of input events: driven and undriven. A driven input corresponds
to the user specifying a particular value to be applied at a node, whereas an undriven
input event corresponds to the user releasing the drive on a previously driven node. This
type of situation is quite common with circuits containing bidirectional input/output pads:
sometimes the node acts as an input and is driven by an input stimuli; at other times the
node acts as an output, its value determined by the circuit.

Input events, both driven and undriven, must be treated specially since they can affect
a stage in two ways (Figure 2.16).

An driven input event always causes the node to converge with its history, aborting
any pending events the node may have. Stages whose inputs are controlled by a driven
input event (Figure 2.16a) can be treated exactly the same as if it were a stimulus event,
i.e., only active stages need to be evaluated. On the other hand, stages containing a node
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(a) input controls gate (b) input controls source/drain

Figure 2.16: Two ways in which stages are affected by an input

driven by an input event (Figure 2.16b) will be split into two or more stages, perhaps
causing some or all of them to become inactive.

To process a driven input event, each active stage containing the driven node must
be considered separately and marked for evaluation. If all stages containing the driven
node are inactive, the node itself becomes inactive. However, as long as a driven node
is contained within at least one active stage, the node must remain active even though it
has converged with its history and its state will not be changed by the evaluation process.
This is necessary for two reasons; first, any transition on the driven node affects the
behavior of the active stages and so they must be reevaluated. Second, the next event
could be an undriven input event that causes the inactive stages to be merged with the
active ones, thus becoming all active.

A driven node cannot change state until the drive is released or another stimuli is
applied to the node; this means that a driven input history entry can only be followed by
another driven input entry or by an undriven input entry. As part of the stage activation
process, the simulator must identify all driven nodes and schedule their next transition
either as a driven or an undriven input event, whichever follows their current pointer.

To process an undriven input event, the incremental state of the stage containing the
previously driven node is examined; if the stage is still active, it will be marked for

evaluation, otherwise the node also becomes inactive.
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Leftover Events

These are events that remain in the event queue at the time the incremental simulation
begins. This situation happens frequently in self-timed circuits that generate internal
clocking signals. These events require special attention since they may still be valid at
the end of the resimulation, i.e., the nodes they specify are inactive at the time they were
scheduled, in which case they should remain in the event queue. Conversely, if the node
the specify is being resimulated they should be descheduled.

Dealing with this condition is fairly simple; before resimulation starts, every evalu-
ation event remaining in the queue is rescheduled as a leftover event, leaving the event
time unchanged. When a leftover event is processed, the simulator checks the incremental
state of the node it specifies. If the node is inactive at the time, the event is immediately
rescheduled as an evaluation event; otherwise the event is discarded and, since the node
is currently being simulated, any subsequent transitions will be scheduled for it as it is
evaluated. When resimulation ends, any evaluation event still in the queue will remain
in effect; if another resimulation is started, these events will themselves become leftover

events.

2.3.9 Reducing Incremental Simulation Time

This section describes various techniques to improve the performance of the incremental

algorithm; this can be achieved in three ways:

¢ Reducing the number of nodes in a stage.
e Reducing the number of active stages.

o Reducing the cost of stage evaluation.

The number of nodes in a stage can be reduced by eliminating all nodes that do
not connect to any transistor gate and hence their values are not needed by other stages
(nodes X and Y in Figure 2.17).

This scheme was first suggested by Terman for Rsim and it applies to both conven-
tional and incremental simulation. The key idea is to merge transistor stacks of the same
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Figure 2.17: Removing internal nodes from a stage

type into a single compound transistor whose gate value is the logical conjunction of the
values of the gates of the original transistor stack, and whose resistance is the sum of
resistances of the original transistors.

The advantage of this scheme is speed: the reduction in the number of nodes makes
stage evaluation faster, results in fewer events, and reduces the size of the circuit’s history.
The main disadvantage is the loss in accuracy due to the compound transistor’s inability
to account for the capacitance internal to the stack (C, and C, in Figure 2.17). This
capacitance not only affects the timing of the surrounding circuit, but may also cause
transitions by sharing its charge with the outer nodes, transitions that the simulator would
fail to simulate. To avoid this charge sharing problem, the stacking option built into Irsim
performs a static capacitance check before merging a stack; if the ratio of external to
internal capacitance has the potential of changing the state of the outer nodes, the stack is
not merged. For the example circuit of Figure 2.17 the following condition would have

to be satisfied in order to merge the three transistors:

Cout > 1~ Vmin
Ca + Cb Vmin ’

where V. is the minimum voltage fluctuation that can change the state of the node, and

is equal to min(1 — Viign, View ).

Accounting for the effect of the internal capacitors on the timing of a driven transition
can be accomplished by precomputing their contribution to the delay and adjusting the
outer node’s capacitance accordingly. For the example of Figure 2.17, this would result
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in the following adjustment for Coy::

Ra+Rp+Rc

c wretRe_C, 4 7Sz Ca  when the compound transistor conducts
4 = ,
“ 0 otherwise.

In general, a different adjustment capacitor is needed for the source and drain terminals
of the compound transistor. Unfortunately, there is no simple way to accurately model
charge sharing transitions involving compound transistors; the timing errors that these
transitions might produce should be considered before deciding to use the stack merging
option.

Another way to improve the performance of the incremental algorithm is to reduce the
number of active stages. To accomplish this, we have incorporated into Irsim a resolution
parameter that eliminates stage activations caused by small timing differences. When the
value of a transition is the same as recorded in the history and the difference in time is
smaller than the resolution, the simulator will not activate the stages that depend on the
transitioning node. This allows users to introduce limited timing errors that do not affect
the functionality of the design.

Incorporating the timing resolution into the incremental algorithm is accomplished by
introducing two new types of events: delayed check-point events and no-change events.
Delayed check-point events are created when the new transition occurs slightly later than
in the history (Figure 2.18a); the basic idea is to delay the history comparison and hence
the corresponding stage activation until an expected evaluation event, which has already
been scheduled within the resolution time, takes effect. No-change events are created
when the new transition occurs slightly earlier that in the history (Figure 2.18b); they are
used to ensure that no more transitions occur between the current transition and a similar
transition recorded in the history.

At time t1, the check-point event of Figure 2.18a is processed before the evaluation
event scheduled at time t2. Normally, this constitutes a deviation from the history that
results in a transition being removed from the history. In this case, however, the node
has an evaluation event that converges with its history within the resolution time, hence
instead of changing the state of the node to deviating at time t1, this decision is postponed
until time t2 by delaying the check-point event to ensure that the evaluation event takes
effect. Six things may happen after t1:
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Figure 2.18: Small timing differences result in delayed check-point and no-change events

1. The evaluation event does indeed take effect at time t2; the node has therefore not
deviated from its history and the stages that depend on it were never activated.

2. The evaluation event is aborted and another transition to high is scheduled sometime
between t1 and t2. This situation is similar to the first case above, only better since
the transition now occurs closer in time to the one recorded in the history. When the
new evaluation event is processed, the delayed check-point event is descheduled,
and, as before, the node has not deviated from its history and no stages were

activated.

3. The evaluation event is aborted and then a transition to high is scheduled after t2
but before t1 plus the resolution. When the delayed check-point event is processed
at time t2, the situation is identical to the original case of Figure 2.18a, and so the
check-point event is again delayed until the time of the new transition.

4. The evaluation event is aborted and the node remains low. When the delayed
check-point event is processed at time t2, the node is found to have deviated from
the history. Accordingly, the transition is removed from the history and the stages
that depend on the node must be activated. Since the node does not transition at t2,
the activated stages are only reevaluated at this point if some other input undergoes

a transition at t2.
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5. The evaluation event is aborted and a transition to some other level, X for instance,
is scheduled sometime between tl and t2. When the new evaluation event is
processed, the node deviates from its history; the delayed check-point event is
descheduled and the stages that depend on the node are activated and reevaluated.

6. The evaluation event is aborted and then a transition is scheduled to take effect
after t1 plus the resolution. This also represents a deviation from the history and

it is processed as in 5 above.

In Figure 2.18b, the evaluation event is processed at time t1, before the check-point
event scheduled at time t2. Normally, this also constitutes a history deviation that results
in the insertion of a new transition in the history. However, since the history converges
with the new value within the resolution time, the decision to change the state of the node
to deviating is postponed until time t2 by turning the check-point event into a no-change
event. If the node does not transition again until the no-change event is processed at
time t2, then the node has not deviated from its history, and the stages that depend on
the node were never activated. If, however, the node does transition again before time
t2, the simulator will have failed to activate the stages that depend on the node for the
duration of the change, as shown in Figure 2.19.

resolution
history -—— No-change Event
(a)
b
© 1 U
@ |
o R

Figure 2.19: Several situations in which a node transitions before a no-change event

In Figure 2.19a, the node temporarily deviates from its history between t1 and the
current time, tc, and then deviates again at time t2. The stages that depend on the node
will have remained inactive from t1 to tc, neglecting to evaluate them for the duration
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of the short-lived deviation. To rectify this mistake requires that the simulator revert the
state of the circuit to that of time t1, activate the stages and continue simulating. This
rollback in time, however, is beyond the capabilities of the algorithm in which time can
only advance monotonically forward. The solution we adopted, albeit a crude one, is to
issue an error message indicating the aforementioned condition; the designer can then
rerun the simulation using a smaller resolution time. For an appropriate resolution value,
this situation should be very infrequent; even if it does occur, the simulation may not
be altogether wrong since the inertial delay model, given a small enough resolution, will
most likely filter out the spike and eliminate its effect on the rest of the circuit, even if
the stages had been evaluated.

The above discussion applies to all cases shown in Figure 2.19, the only difference is
how the situation is handled after time tc. In Figure 2.19a, at time tc, the no-change event
is turned back into a check-point event; when this event is processed, the node deviates
from its history and the stages controlled by the node are activated. In Figure 2.19b the
no-change event is also turned into a check-point event, but since the node deviates from
the history at time tc, the stages it controls are activated and evaluated immediately. In
Figure 2.19c the node rises again within the resolution, the simulation is back to the
original case, and so the no-change event remains in effect. Finally, in Figure 2.19d the
no-change event is turned into a check—pointv event, which when processed at time t2 will
be rescheduled at time t4 as a delayed check-point event.

By using delayed check-point and no-change events, the incremental algorithm can
minimize the number of stages that are activated, reduce the number of evaluations, and
speedup resimulation. This mechanism, however, has some limitations. After several
resimulations, the small timing errors introduced during each resimulation can accumulate
to the point where the history becomes so severely corrupted that subsequent resimulations
result in incorrect results with no indication as to what has gone wrong. Furthermore,
the additional events required to implement the time resolution feature result in more
overhead; this overhead may invalidate the speedup gained by not resimulating additional
stages. These limitations suggest that the time resolution feature be used sparingly.

Finally, if a designer is only interested in the logical behavior of a circuit, not in its
timing, it is possible to use a simplified stage evaluation model that reduces simulation
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time even further. This can be accomplished by using any of a number of simpler
evaluation algorithms, such as Bryant’s MOSSIM II algorithm([6] or Terman’s switch
model{49]2. The incremental algorithm is general enough that those models can be
used without any changes to the algorithm, and in fact, this is true for any event-driven
simulation algorithm, regardless of the models it uses. For example, using MOSSIM’s
model with assignable user delays would turn our algorithm into the one described by

Jones in [25].

2.4 Performance

The incremental algorithm described in the previous sections has been implemented and
incorporated into Rsim. The resulting simulator, Irsim, supports both conventional and
incremental simulation; the results obtained using either method are identical?.

As expected, the time that Irsim requires to complete a resimulation depends more
on the number of re-evaluations than either the size of the circuit or the number of input
vectors applied. When the number of re-evaluations is low, incremental simulation can
be substantially faster than conventional simulation. Conversely, when the number of
re-evaluations is high, incremental simulation may take as long, or even longer, than a
conventional simulation. The two obvious questions are: how much faster? and how
much slower? The answer to the first question is rather simple: if the modifications do
not result in any changed nodes, incremental simulation will appear to be infinitely faster
than conventional simulation. A more interesting question is how much faster (or slower)
does it resimulate a typical modification. This question is addressed in Chapter 4, where
we analyze the behavior of the incremental system during the final phases of a real design
situation. The next section is devoted to answering the second question, which requires
an analysis of the incremental algorithm’s worst case performance.

2Actually, this model is already available in Irsim. Unfortunately, we have been unable to correctly
simulate any of our benchmarks using this model, in either batch or incremental model.
30f course, small timing differences are possible when using a time resolution greater than O,
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2.4.1 Worst Case Performance

To analyze the performance of the incremental algorithm, we modify an existing design
and then resimulate the modified circuit using both the conventional and the incremental
algorithms. The modifications we apply to the circuits do not represent real design
errors, but rather attempts to artificially trigger the incremental algorithm’s worst case
performance, which occurs when the whole circuit is resimulated over the entire history.
We then compare the time required by each of the two algorithms, identifying the various
operations that contribute to the run-time of the simulation. The insight gained from this
comparison is used to generalize our findings and show a definite upper bound on the
degree to which incremental simulation can slow down execution, which, as we discuss
later, depends not only on the algorithm itself, but on the complexity of the circuit as
well.

Throughout our analysis, we use two real chips as test cases. Analyzing large designs
helps insure that the algorithm is practical for use on real systems. The two circuits are:

o SPIM is a 64-bit by 64-bit iterating array multiplier designed by Mark Santoro
of Stanford University[41]. To attain a high performance, the multiplier array
generates its own internal clock whose frequency has been carefully tuned to match
the internal delays. The circuit is designed in a 1.6um CMOS technology, runs at
85MHz, and contains 41,804 transistors and 16,581 nodes.

e DIVIDER is a 54-bit, self-timed divider designed by Ted Williams of Stanford
University[55]. The circuit is a direct implementation of an SRT division algorithm
that uses a self-timed control chain to iteratively generate the result bits. It is
designed in a 1.2um CMOS technology, runs at 340MHz, and contains 15,353
transistors and 7,997 nodes.

To determine the overhead incurred by the incremental algorithm, we simulated the
circuits using input vectors provided by the designers and then modified the circuits in
such a way as to alter the timing of most of the nodes throughout the simulation. By
altering the basic timing of the circuits so that all transitions occur at a slightly different
time, we ensure that all work previously done by the initial simulation must be undone
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(removing old transitions from the history) and then redone again (creating the new
transitions). This form of resimulation results in worst case behavior not only because
the whole circuit is resimulated over the entire history, but also because every old or
new transition causes a node to either deviate or converge with its history, continuously
changing its incremental state from active to inactive and vice versa.

In the case of SPIM, we added additional capacitance to the feedback line of the
oscillator that generates the multiplier’s internal clock. This change reduces the clock’s
frequency by about 6%, causing all multiplications to be resimulated. The circuit was
simulated for 2us, the time required to load and multiply 2 sets of numbers. The events
generated during both the conventional and the incremental simulation are illustrated in

Figure 2.20; these results are summarized in Table 2.24,
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Figure 2.20: Number of event as a function of time for SPIM circuit

The number of events generated during incremental simulation is almost double those
generated during conventional simulation. As expected, for every evaluation event, which
corresponds to a new transition, there is also a check-point event, which corresponds to
an old transition in the history occurring at a slightly earlier time. Also, the number of
evaluations is almost the same in both simulations, achieving our goal of resimulating

4Al tests were run on a Decstation 5000, which contains a 2SMHz R3000 CPU, 64Kb instruction and
data caches, and 24Mb of main memory. Irsim was compiled with the “-O” optimization level.
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Simulation _ Npmbgr of Events . Numbe.r of | Run Time

Evaluation | Stimuli | Check-point | Total | Evaluations | (seconds)

Conventional | 113,771 - - 113771] 292,428 76.3

Incremental 99,762 | 5,368 99,769 | 204,889 260,741 85.0
Ratio (I/C) 1.8 0.89 1.11

Table 2.2: Number of events and runrfing times for SPIM

the whole circnit over the entire history — the worst case behavior. The number of
evaluations during incremental simulation is about 11% smaller because the operands are
loaded using an external clock that was not modified, resulting in the operand loading
not being resimulated, as indicated in Figure 2.20. Despite this small difference, the
execution time for both simulations is approximately the same, with the incremental
algorithm taking only 11% more time. We would not expect this overhead to increase
by much had the remaining transitions been resimulated.

For the DIVIDER circuit, we added additional capacitance to the divider control
chain; since this circuit is basically a ring oscillator, the net effect of this modification
is to increase the delay of all transitions by about 5%. The circuit was simulated for
700ns, the time required to load and execute two divisions. The events generated during
both the conventional and the incremental simulation are illustrated in Figure 2.21; these

results are summarized in Table 2.3.

Simulation Number of Events Number of | Run Time

Evaluation | Stimuli | Check-point | Total [ Evaluations | (seconds)

Conventional 63,766 — - 63,766 137,363 19.9

Incremental 60,074 1,880 60,076 | 122,030 133,242 26.2
Ratio (I/C) 1.9 0.97 1.31

Table 2.3: Number of events and running times for DIVIDER

Again, we find that the number of events generated during incremental simulation
are about double the number for conventional simulation. Worst-case behavior is insured
by the number of evaluations being nearly the same in both simulations. In this circuit,
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Figure 2.21: Number of events as a function of time for DIVIDER circuit

however, the relative increase in execution time during incremental simulation is almost
three times greater than the corresponding time for SPIM, incurring an overhead of 31%.
To understand why the overhead in this circuit is higher, we must examine the operation
of the simulator for each circuit in more detail.

Tables 2.4 and 2.5 show the operations where the simulator spends time during the
conventional and incremental simulations of SPIM and DIVIDER, respectively. The
various rows and columns in Tables 2.4 and 2.5 represent the following:

e time: Actual amount of time spent in a particular operation.

o %time: Relative time of the corresponding simulation consumed by each operation,

expressed as a percentage of the total time.
e Ratio: Ratio of incremental to conventional simulation time.

o Overhead: Percentage of the incremental overhead contributed by a particular

operation.

e Stage Evaluation: Time spent performing charge-sharing analysis, and calculating
final values and delays. It represents the same operations for both conventional
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and incremental simulation.

¢ Stage Decomposition: Time spent decomposing the circuit into stages; during
incremental simulation, it also includes the time spent updating the state of inactive
nodes and checking the activation conditions.

e Event Scheduler: Time spent scheduling, descheduling, and aborting events, re-

gardless of the type of event.

¢ Event Processing: Time spent scanning the event queue for the next event, remov-
ing the events from the queue, marking stages that need to be evaluated, and, during
incremental simulation, comparing the history and building the consideration lists.

e Stage Activation: Time spent scanning the history for pending events, and deter-
mining for which nodes to schedule stimulus, check-point, or input events. It only

occurs during incremental simulation.

o Stage Deactivation: Time spent resolving which output nodes become inactive or
stimulated, and accordingly deschedule a check-point event or schedule a stimulus
event (the actual scheduling time is not included). It only occurs during incremental

simulation.

e History Maintenance: For conventional simulation it is the time spent recording
the history; for incremental simulation it is the time spent updating the history.

We can make several important observations from the above tables. First, the amount
of time required to maintain the history of either circuit is very small, consuming only
close to 1% of the time, well within reasonable bounds. This result is in contrast to
those cited by Hwang[7] and Jones[25], who report that history maintenance is the lim-
iting factor for incremental-in-time simulation. Although this difference is partly due to
Irsim’s more computationally expensive model, which makes the relative overhead for
maintaining the history very small, we suspect there are other factors involved; perhaps
a sub-optimal implementation. Neither author presents any statistics to substantiate their

claim.
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. Conventional Incremental Ratio | Overhead
| Operation _ time (ms) | %time | time (ms) | %time | (I/C) %

Stage Evaluation 67557.83 | 88.55| 59591.43 | 70.09 | 0.88 -91.2
Stage Decomposition | 3268.50 428 | 9779.11| 11.50 2.99 74.5
Event Scheduler 3197.31 4.19 ( 6006.90 7.06 | 1.88 32.2
Event Processing 1778.90 233 | 455796 5.36 | 2.56 31.8
Stage Activation - - 3643.45 4.29 - 41.7
Stage Deactivation - - 780.17 0.92 - 8.9
History Maintenance 488.21 0.65 666.29 0.78 | 1.36 2.0
Total 76290.75 | 100.00 | 85025.31 | 100.00 | 1.11 100.0

Table 2.4; Dissection of execution times for SPIM circuit

Operation ' Convcntiona.l - Incremental. Ratio | Overhead
| time (ms) | %time | time (ms) %time | (I/C) %

Stage Evaluation | 16424.16 | 82.23 | 16072.57 | 61.46 | 0.98 5.7
Stage Decomposition | 1009.44 505 2941.10 11.25( 2.91 313
Event Scheduler 130944 | 6.56 | 2415.33 924 1.84 17.9
Event Processing 981.85 492 2407.90 921 ] 245 23.1
Stage Activation - - 1532.11 5.86 - 24.8
Stage Deactivation - - 479.50 1.83 - 7.8
History Maintenance 248.26 1.24 301.70 1.15] 1.22 0.9

Total 19973.15 | 100.00 | 26150.21 | 100.00 | 1.31 100.0

Table 2.5: Dissection of execution times for DIVIDER circuit

Second, both incremental simulations show a doubling in the amount of time spent in
the event scheduler. This is not surprising since its time requirements are proportional to
the number of events, which also doubles in the worst case. Similarly, event processing
time increases by approximately 2.5 times during incremental simulation; this is because
in addition to having to process twice as many events, it is a slightly more complex
process than the one performed by the conventional algorithm. Both of these operations
are relatively inexpensive: for SPIM, they account for 64% of the overhead, which
corresponds to an increase in execution time of only 7%; for DIVIDER they account for
50% of the overhead, or 15.5% of the increase in execution time.
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Third, the amount of time required by stage evaluation is dominant at all times,
consuming between 82 — 89% of the time during conventional simulation. This result
confirms our assumption that an incremental approach can substantially decrease simu-
lation time by reducing the number of evaluations; our algorithm achieves that goal by
attempting to replace this very expensive computation by other relatively inexpensive
operations — maintaining the history, scheduling additional events, and keeping track of
the incremental state of the circuit. The dominance of stage evaluation is such that not
resimulating only 11% of the transitions in the SPIM circuit accounts for a 91% reduc-
tion of the overhead! Had these transitions been resimulated, the overhead, due to stage
evaluation alone, would increase to 21%. While this number is closer to the overhead
incurred by the DIVIDER, it still does not account for the discrepancy in the overhead
of the two circuits.

We expected the incremental overhead to grow linearly with the number of re-
evaluations, thus measuring the worst-case performance of any circuit would be suf-
ficient to characterize it; our experiments, however, seem to indicate otherwise. At first
we believed the difference in overhead was due to some non-linear behavior in the incre-
mental algorithm, so we decided to trace the simulation of the test circuits. This analysis
revealed that the complexity of the two circuits is significantly different: the average
dynamic stage size for SPIM is 2.99 transistors, more than 60% of its stages contain
more than 25 transistors, including some rather large stages of up to 920 transistors.
DIVIDER, on the other hand, has an average dynamic stage size of 1.71 transistors, its
largest stage containing only 37 transistors. After analyzing the two circuits it becomes
obvious that the difference in overhead is due to the time required to evaluate the stages,
a process that depends more than linearly on the size of the stage, roughly O(n!3),
Since SPIM is a more complex circuit, it spends relatively more time in stage evaluation
than DIVIDER (about 7% more). In a more complex circuit, a few evaluations account
for a much larger percentage of the time, reducing the impact that other operations may
have on the execution time. Thus, even in the worst case, two circuits can experience
different overheads due to incremental simulation; the more complex circuit having a
lower overhead and vice versa. This difference in circuit complexity also explains why
the relative overhead of the operations that depend on the complexity of the circuit —
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stage decomj)osition, activation, and deactivation — is higher for SPIM; these operations
require an amount of time proportional to both the number of events and the size of a
stage.

Another important observation is that stage decomposition becomes a major contrib-
utor to the run-time of the incremental simulations, almost three times higher than in
conventional simulation. This is not only because stage decomposition checks the ac-
tivation conditions, which makes this operation somewhat slower than in conventional
simulation, but also because in order to determine whether a stage has deviated or con-
verged to its previous state, it must be performed for every event. Since the number of
events doubles, we can expect this operation to take at least twice as long as in conven-
tional simulation. Moreover, to determine what constitutes a stage, this process must look
beyond the stage, checking boundary transistors as well as conducting transistors. The
effect of this operation on the incremental overhead suggests that it may be worthwhile
to maintain the stages throughout the simulation, and rather than re-building and cbm-
puting their incremental state, simply update their composition and state incrementally.
Unfortunately, the existence of current loops within a stage (parallel transistors, such as
transmission gates, are quite common) make this a rather difficult optimization.

Since the degree to which incremental simulation may increase execution time de-
pends on the complexity of the circuit, in order to evaluate the worst case performance of
the incremental algorithm, we decided to simulate the worst-case behavior of the worst
possible circuit. Luckily, the worst possible circuit is also the simplest, a circuit com-
prised of stages containing only one transistor, such as a CMOS inverter. To test this

"WOrst case scenario, we constructed a circuit consisting of a chain of 50 CMOS inverters;

each inverter output is connected to the input of the next inverter in the chain, and we
simulated it by applying a train of 2000 pulses at the input of the first inverter. We run
two different sets of tests; in the first one, the capacitance at the output of each inverter
was modified so as to delay the transitions of all subsequent inverters, resimulating the
circuit after each such modification. In the second test, the circuit was incrementally
built, starting with 49 inverters, simulating, adding the 50* inverter, and resimulating;
then starting with 48 inverters, simulating, adding the last two inverters, and resimulating;
continuing this way until only the first one remained and 49 inverters were added. In both
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these tests the same fraction of the circuit is resimulated for the same transitions each
time, however, when the inverters are incrementally added, their outputs have no history
so they generate no check-point events. The results obtained are plotted in Figure 2.22.
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Figure 2.22: Simulation time as a function of the fraction of the circuit resimulated

The horizontal line in Figure 2.22 represents the time required to simulate the entire
circuit once using the conventional algorithm; all other times are normalized to this time.
Since each resimulated fraction of the circuit consists of identical subcircuits (inverters),
execution time increases linearly for both tests. This was to be expected; what we did
not expect was the slopes to be so strikingly different.

In the first test, incremental simulation consistently shows an overhead of 38%. Since
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this represents the worst-case performance of the worst circuit configuration, it is an upper
bound on the execution time degradation that any circuit might experience. Interestingly,
incremental simulation will be faster until at least 74.5% of the circuit is resimulated for
all time.

In the second test, the slope is nearly 1, resulting in extremely low incremental over-
head; more than 97% of the circuit needs to be resimulated before incremental simulation
shows any degradation. In the absence of check-point events, the added complexity of
the incremental algorithm amounts to little overhead, reverting to the conventional al-
gorithm. This indicates that our algorithm is particularly well suited for incremental
refinement design techniques, in which the design is incrementally constructed by adding
new components at each step. Although this means that designers must determine and
apply all the input vectors before the circuit is complete, which may be difficult to do,
the achievable savings in time make this an attractive option. Furthermore, it suggests a
possible optimization to our algorithm: adaptive incremental simulation, whereby a node
that continuously deviates from its history can be considered a changed node and res-
imulated for the remainder of the simulation, without scheduling its previous transitions
as check-point events. This idea is similar to Choi’s hybrid approach[8], except that the
criteria for considering a node as changed is determined dynamically from its previous

incremental behavior.

2.4.2 Using Other Models

We suggested earlier that our algorithm is not limited to Rsim’s electrical models, and
that it can be used with any event-driven simulator, regardless of the models it uses. We
were curious as to how other models may affect the algorithm’s worst-case performance.
Since incorporating different models into Irsim is clearly beyond the scope of this thesis,
we decided instead to extrapolate this information from the current implementation.
This extrapolation can be done by noting that except for “Stage Evaluation”, all other
parts of the program that contribute to the execution time of the simulator are independent
of the models used. Since the same set of inputs applied to the same circuit should yield
the same results (events), regardless of the models used, we can assume that all other
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execution times listed in Tables 2.4 and 2.5 would remain approximately the same’. We
can therefore factor out the effect of the model by subtracting the Stage-Evaluation time
from the total execution time, replacing it with an expression that is proportional to the
conventional algorithm’s Stage-Evaluation time multiplied by the complexity of some

other model relative to Rsim:
timein. = Tirsim — Tevalygim + K - Teval,oim

timecony = ITrsim + (K — 1) - Teval, yim

where time;,. represents the model-independent worst-case incremental time, timeony
represents the model-independent conventional simulation time, Tirsim is the total ex-
ecution time during incremental simulation, and Teval,s;,, and Teval;,sin are the times
required by stage evaluation during incremental and conventional simulation, respec-
tively. The constant of proportionality, I{, represents the relative complexity of some
other model relative to Rsim: For a more complex model model, X > 1; for a less

complex model K < 1.
The relative overhead due to the incremental algorithm can the be expressed as simply

timne;
overhead = ———— — 1.
tMEconv

Worst case behavior is ensured by using the conventional algorithm’s evaluation time
in both expressions, thereby assuming that the entire circuit is simulated for all time in
both simulations. The results when K varies from 0 to 8 are plotted in Figure 2.23

As shown in the Figure 2.23, when K = 1, the overhead is that of Irsim. As the com-
plexity of the model increases, the overhead tends to become more and more negligible.
However, as the complexity of the model decreases, the overhead shows a sharp increase.
Although an evaluation that takes zero time is unrealistic, it nonetheless represents the
absolute worst possible degradation the incremental algorithm might experience; this up-
per bound is given by the “Inverters” curve, incurring a maximum overhead of 220%.
This result is consistent with the worst-case performance reported by Choi[7], some of

SThis is not strictly true; a more simplified model — a boolean functional model for example — might
not simulate nodes internal to some blocks, thus yielding less events.
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Figure 2.23: Relative worst-case overhead for the incremental algorithm using other
models

whose tests result in an incremental execution time of three times that of the conventional
algorithm.

Since other models may be faster (or slower) than Rsim by more than a constant
factor, the preceding analysis is simply an approximation. Nonetheless, it is useful to
estimate how other models may impact the performance of the algorithm. For example,
we would not expect the worst-case overhead to increase by much more than 200%,
regardless of the models used.

2.4.3 Non-Zero Time Resolution

To test the performance of the time resolution feature, we modified SPIM and DIVIDER
as before, and then resimulated each circuit using resolutions of 0.1ns and 0.2ns. The
results for this test are shown in Figure 2.6.

We can see from Table 2.6 that the higher resolution of 0.2ns results in a dramatic
speedup for either circuit. This should not be at all surprising since it is this particular
case that the time resolution addresses. As is obvious from the table, our capacitance
change does not alter the timing of the circuit by more than 0.2ns; only the modified
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SPIM DIVIDER

Resolution O.lns | 02ns | O.lns |} 0.2ns
Evaluation 99,603 63| 59,712 28
Number Stimuli. 4,643 38 1,870 28
of Check-Point . 99,608 63 | 53,667 28
Events Delayed Check-Point 5 47 7,011 28
No-Change 1 0 3 0
Total 203,860 | 211 ] 122,236 112
Number of Evaluations 257,421 38 | 125,039 28

Time (seconds) 82.8 0.2 254 0.1
Speedup 0.93 19901 0.73 382.5

Table 2.6: Number of events and running times for different resolutions

node is ever simulated. Since the only node to be resimulated in either circuit had its
transitions delayed with respect to the history, there was never any need to schedule a
no-change event.

At a resolution of 0.1ns, both circuits took about as long to run as the worst case
analyzed before. In the case of SPIM, this resolution saved an additional 1% of the
evaluations and ran almost 2% faster than with O resolution. For the DIVIDER circuit, it
managed to save an additional 6% of the evaluations and ran about 4% faster than with
0 resolution. Even though the number of evaluations saved is greater than for SPIM,
it does not represent much of an improvement. The differences are so small that the
performance of the 0.1ns resolution is essentially that of the worst-case. It does indicate,
however, that delayed events cause negligible performance degradation (no worse than

the worst-case).

2.4.4 Memory Requirements

Finally, we address the memory requirements for maintaining the history. Table 2.7

shows the amount of memory devoted to the history of the various test circuits.
Efficient history maintenance mechanisms are necessary to keep the added cost of

incremental simulation down, particularly during the initial simulation when the history
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Test Number of Transitions | History Size | Time® | Rate of Consumption®
Effectivel Aborted B (Kbytes) | (seconds) | (Mbytes / MIPS - hour)

[ SPIM__| 113,771 10615] 14576 763 3.7
DIVIDER | 63,768 1,079 759.9 199 7.5
Inverters | 101,819 0 11932 15.1 154

Table 2.7: Memory usage for various tests circuits

aUsing the conventional simulation timing measurements
b Assuming an average of 18 MIPS for our machine.

is just being recorded. We did not attempt any sort of history compression scheme
other than packing as much information as possible in the least amount of memory per
history entry; this results in every entry using 3 words (12 bytes in our 32-bit machine).
As Table 2.7 shows, our history maintenance mechanism uses an acceptable amount of
memory by current standards. Note that the amount of memory consumed by “Inverters”
represents an upper bound on the rate of memory consumption, corresponding to more
than 24 million transitions an hour.

The locality exhibited by the simple linked-list implementation of the history works
remarkably well in a paged virtual memory environment: as time increases monotonically,
transitions that occur at the same time are allocated contiguous to one another, usually in
the same physical page. Since only the pages containing the current history transitions
are needed at any point in time, pages containing older transitions are not referenced
any more and they become good candidates to be paged out. This results in negligible
performance degradation due to second order memory effects, such as TLB or cache
misses.

Currently, the only way to reduce the size of the history is by using the transistor
stacking option described in Section 2.3.9, since the history of nodes internal to a stack
is not maintained. If memory usage becomes a problem, the test can always be broken
into several smaller tests. In all our experiments, some of which are quite large, memory

requirements were not a problem.
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2.5 Summary

VLSI designers iterate many times between capturing and simulating a design, typically
making only minor alterations to the circuit. Resimulating the entire circuit can result
in much of the time being wasted simulating sections of the circuit that are unaffected
by the changes. An incremental simulator can eliminate this time by tracking the de-
signer’s changes and using the previous simulation results to confine the resimulation
to the sections of the circuit affected by the changes. An incremental simulator is thus
characterized by a runtime proportional to the size of the changes, not the size of the
design.

There are essentially two algorithms that can confine resimulation to the sections of
the circuit affected by a set of changes: incremental-in-space, and incremental-in-time.
An incremental-in-space algorithm determines once (before simulation begins) which
subcircuits may be affected by the changes, and then resimulates those subcircuits using
a conventional simulation algorithm. This type of simulator is simple to implement
and exhibits little overhead. However, because it pessimistically resimulates all possibly
affected subcircuits, it does not fully exploit the previous results.

An incremental-in-time algorithm makes better use of the previous simulation history
by only resimulating a subcircuit if its behavior is altered by the changes. The simulator
begins simulating only the modified subcircuits, and then dynamically grows or shrinks
the size of the subcircuits that need to be resimulated. This requires that the simulator
continuously check which parts of the circuit need to become active or inactive. A
subcircuit becomes active when any of its inputs deviates from its history; it becomes
inactive when all its inputs and internal state reconverge with their history.

This chapter described the implementation of /rsim, an incremental-in-time simulator
that uses a switched-resistor MOSFET model to accurately simulate circuits at the tran-
sistor level. The basic unit of simulation in /rsim is the stage: a subcircuit that includes
all nodes electrically connected via conducting transistors. In a manner analogous to a
conventional event-driven simulator, Irsim uses an event queue to limit the number of
stages that need to be examined at each time step. However, a conventional event-driven
simulator uses events exclusively to exploit circuit latency, whereas, Irsim uses events
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to propagate the effect of the designer’s changes through the circuit while advancing
monotonically forward in time. This monotonicity complicates the algorithm by requir-
ing that a deviation from the history (or convergence with it) be detected as soon as it
occurs. Another source of complexity is Irsim’s inertial delay model, which requires that
all conditions that affect the incremental state of a stage, such as pending transitions and
aborted events, be taken into account. Irsim’s incremental algorithm accomplishes its
task by augmenting Rsim’s event-driven mechanism to provide for history recording and
comparison, selective event propagation to active stages, and by using different event
types to signal the various conditions that arise during incremental simulation.

Irsim uses essentially three types of events: evaluation events, which are caused by
a node changing state, and are similar to the events found in conventional simulators;
stimulus events, which stimulate active stages whose inputs are inactive; and check-
point events, which synchronize the resimulation with the history in order to detect
missing transitions. These events are sufficient to track all changes in stage activation
and deactivation that are needed by an incremental-in-time simulator.

Although the incremental-in-time algorithm makes optimal use of the history, the
additional events and the continuous checking for active stages results in additional over-
head. In the worst case, which occurs when the entire circuit is resimulated over the full
history, incremental simulation can be slower than conventional simulation. To deter-
mine how this overhead may impact the performance of Irsim, we tested this worst-case
scenario using several real, large designs. We found that the overhead due to incremental
simulation may cause Irsim to take at most 38% longer than simulating the entire circuit
using a conventional simulator; incremental simulation is faster until a design change
causes a substantial part of the circuit (at least 75%) to be resimulated for all time.

Finally, we estimated how other evaluation models might affect the performance of
the incremental aigorithm. As the complexity of the model increases, the incremental
overhead becomes more negligible. However, as the complexity of the model decreases
and the time taken by the incremental algorithm becomes comparable to the model eval-
uation time, the overhead increases sharply. In Irsim, where the evaluation time is much
higher than the incremental overhead, this tradeoff allows for substantial speedups, as
discussed in Chapter 4. For a faster evaluation model, however, the cost of incremental
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simulation might negate any possible speedups. In such cases, the incremental overhead
can be reduced by increasing the unit of incremental simulation so that larger subcircuits
are evaluated. For example, rather than a single stage, the simulator can maintain the
incremental state of a set of interconnected stages; if any stage within the set deviates
from its history, the entire set would be activated. Since the history of nodes internal
to the set would no longer be needed, using larger units of incremental simulation pro-
vide a simple scheme to compress the history: maintain only the history of ncdes at the
boundary of the sets.

To be effective in reducing the time around the design cycle, an incremental simulator
must be well integrated into a design system that allows incremental design modifications,
and communicates these changes to the simulator. Techniques to incrementally update
the circuit’s network following a series of design modifications are examined in the next

chapter.



Chapter 3
Incremental Circuit Extraction

The last chapter described a simulator that reduces the time required to validate a design
by incrementally resimulating the parts of the circuit affected by design changes. To
indicate these changes, the simulator requires a series of network modification commands
which specify detailed changes to the netlist. Since circuits are rarely designed at the
netlist level, these commands must be obtained by mapping changes to the description of
the design being edited by the user into the corresponding netlist changes. This mapping,
if done by hand, is a tedious and error prone task, and is naturally suited for automated
design tools. Thus, the successful use of incremental simulation hinges on the problem of
automatically identifying the modified portions of a design and conveying these changes
to the incremental simulator. This chapter examines techniques to incrementally extract
the modifications from a circuit’s mask-level description.

The chapter is divided into five main sections. The first section briefly reviews
what circuit extraction entails, and explores several alternatives to update a network
incrementally. Following this is a brief overview of the Magic[35] layout editor, a
review of previous work on circuit comparison, and a discussion of other approaches
to incrementally update a circuit’s description. Next is a description of our approach to
incrementally extract the circuit modifications, its implementation within Magic, along
with a description of the incremental circuit extraction and comparison algorithms. The
final section discusses the performance of the incremental extractor.

67
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3.1 Introduction

VLSI designs are normally created using interactive capture tools, such as layout or
schematic editors, which support hierarchical composition and allow users to edit a pic-
torial representation of the design. The discrepancy between the topographical descrip-
tion used by these capture tools and the circuit representation used by verification tools
prompts the need for circuit extractors and netlist compilers. These tools determine the
electrical circuit implemented by the topographical representation being edited by the
user, and are needed to provide a flat circuit representation required for efficient simu-
lation. Thus, in order to simulate the design, the circuit implemented by a hierarchical
layout or schematic must be extracted and compiled into a flat representation: a network
in which every node points to the elements connected to it, and every element points to
the nodes to which it is connected. This is necessary to efficiently evaluate elements and
schedule events.

Inevitably, circuit extractors assume the role of translators between capture and sim-
ulation tools, and become a bottleneck in the design loop. Although the implementation
details vary considerably — they may be flat[17] or hierarchical[43] — they all suffer
from the same drawback: Each time the design is modified, they regenerate the entire
(flat) network. One way to overcome this limitation is to use an extractor capable of iden-
tifying the circuit changes made to the layout (or schematic) and modifying the existing
(flat) network accordingly. Updating the network incrementally eliminates the flatten-
ing step, and can also be used to quickly generate the network modification commands
required by an incremental simulator.

Identifying network changes from the modifications made to a hierarchical layout or
schematic, however, is not as obvious as it may seem. Small changes, such as deleting
a component or a piece of material, may result in many changes to the underlying (flat)
network. Conversely, large changes, such as moving an entire subcircuit from one location
to another, may result in no electrical changes at all. The basic problem is the disparity
between the two representations; before a network change can be identified as such, the
circuit must be extracted, which is precisely what we are trying to avoid.

In addition to this problem, we determined that for the extractor to be useful, it would
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have to meet the following requirements:

e Updating the network incrementally should yield the same circuit as regenerating
the entire network. Special care must be taken to ensure that hierarchical names,

interconnect parasitics, and device characteristics are preserved.

o It must be fast; preferably, the time it takes to detect and generate the network
modifications should be proportional to the size of the modifications.

¢ Its operation should be transparent to the user; it should not impose additional
restrictions on the operation of the editor or the layout style.

o It should generate the set of modifications that preserves as much of the unmodified
network as possible. This reduces the number of modifications and the amount of
work required by the incremental simulator to update the simulation results.

Since the problem is similar regardless of the topographical representation used, we
chose to work at the layout level and adopted the Magic[35] layout editor as the front
end to our incremental capture system.” Many designers already use Magic and Rsim
to create and simulate their designs, thus Magic provides a reasonable entry point to
our incremental system. Modifying an existing tool rather than creating an entirely new
editor saved us considerable development time. A secondary goal was to determine what
changes are necessary to allow existing capture tools to operate in this new, incremental
mode.

Depending on when the circuit changes are detected, there are essentially two ways
to update the network. First, the changes could be detected after the user has finished
modifying the layout. This can be done by simply extracting the entire circuit and
comparing the resulting network to the one prior to the modification. The main advantage
of this approach is that it can be used with existing capture tools. As the size of the
design .incrcases, however, the overhead associated with flattening and comparing two
large, partially labeled networks can quickly become prohibitive. Besides being slow, this
approach makes it difficult to find the set of changes that preserves most of the network.

Second, the circuit changes can be detected as they are being made by the user
modifying the layout. Because it maintains both descriptions consistent at all times, this
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approach does not have to maintain the unmodified version of the network nor does it
require an expensive network comparison. The problem with this approach is detecting
the changes quickly enough to still allow interactive use of the editor. This might be
possible if only a small part of the layout needs to be analyzed. For example, one
could devise a scheme in which the changes are identified at the hierarchical level being
modified and then instantiated as many times as needed in their proper flat context. To
make this scheme feasible, the hierarchy of the design would have to adhere to strict
circuit boundaries, like a schematic. The hierarchy of a layout, however, does not obey
any particular circuit boundaries and depends more on topological details like cell overlap.

Since any piece of material in a Magic layout is a potential connection to other parts
of the hierarchy, a large part of the design might have to be examined to discover a
change. Consider the example of Figure 3.1, in which a piece of material is deleted from
cellC. Simply extracting cellC results in no electrical changes since the two nodes in
the cell, n1 and n2, remain unconnected. When cellB is taken into account, however,
the extractor discovers that the modification disconnects node nl from nodes n3 and n2.
Finally, when cellA is considered, the extractor finds all four nodes to be connected to
one another so no change is necessary.

cellA

cellB

—

deleted

Figure 3.1: Circuit changes due to cell overlap.
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In the preceding example, all three cells involved in the modification had to be
examined, their nodes had to be traced and their interconnections computed; effectively
extracting and flattening the three cells. To allow context free identification of the changes
would require restrictions to cell overlap or explicit declaration of hierarchical connec-
tions, but doing so would make the editor harder to use, which violates one of our
requirements. )

An additional problem with trying to update the network while the layout is being
modified is that changes can become undone or cancel out one another. It is not uncom-
mon, for example, to modify a sizable part of the layout to accommodate a few additional
wires or simply to resize a single transistor. In such cases, considering each change in-
dividually could result in sweeping changes to the network, yet considering them as a
whole would uncover the much smaller, actual change. Detecting this condition after the
network has been modified would force the simulator to perform the cumbersome task
of maintaining and comparing the two networks.

The approach we adopted is a combination of the two described above. It is based
on the observation that although detecting the changes while the layout is being modified
can be expedient, there is no advantage in maintaining the network consistent with its
layout at all times since the user will only resimulate it after having made all the changes.
Therefore, instead of attempting to identify the changes as the layout is being modified,
we simply keep track of the modified areas. When the user finishes editing the layout,
only the modified areas are extracted in their proper (flat) context for both the modified
and the original layout. The resulting subnetworks are then compared and the differences
are reported as netlist changes.

While this approach still requires a network comparison, it can be done efficiently, for
two reasons. First, the networks being compared are only as large as the modifications
themselves, which are typically much smaller than the entire design. Second, since the
layout outside a modified region is known to be unchanged, the nodes at the boundary of
the region can be immediately recognized as equivalent in both networks. These boundary
nodes provide the comparator with a good starting point, and enable it to quickly identify
the changes within the region.
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3.2 Overview of Magic

Magic is a layout editor for integrated circuits developed at the University of Califor-
nia at Berkeley. Magic introduced corner stitching, a novel data-structuring technique
that accounts for much of its efficiency and many of its features, such as continuous
design-rule checking, hierarchical circuit extraction, and routing. A more detailed de-
scription of Magic’s features can be found in the 1984 Design Automation Conference
Proceedings[35].

In Magic, a layout is represented as a hierarchical collection of cells. A cell, which can
contain mask information as well as other sub-cells, is represented as a set of overlapping
planes, each composed of rectangular tiles of varying types. Each plane (Figure 3.2) is
completely covered by a mosaic of these tiles, which, depending on their type, represent
either an area covered by some material or empty space. Because tiles do not overlap,
each point in the plane is contained within a single tile. While there is no unique tile
arrangement to describe a given layout, Magic provides a canonical form for the design
by splitting the areas covered by the same material into maximal horizontal strips (see
Figure 3.2). This arrangement also prevents a plane from becoming fragmented into
many small rectangles, thereby reducing memory and run-time overhead.

10

Figure 3.2: A corner-stitched plane of Magic tiles.

Tiles are assembled into planes by means of corner stitches, which are pointers to
other tiles in the plane (the arrows in Figure 3.2). Each tile has four stitches that point
to the tile’s immediate neighbors: two at its lower-left corner and two at its upper-right
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corner. Stitches allow local searching operations to run very fast; operations such as
finding all tiles that touch a given tile — which is useful for design rule checking, circuit
extraction, or determining connectivity — can be done by simply following stitches. For
example, to find all tiles touching the top of tile B in Figure 3.2, first follow B’s top-
" right pointer (to tile 3) and then follow bottom-left pointers (to tile A and then to tile 2)
until reaching a tile whose left side is further left than B’s. Similar algorithms exist for
operations such as locating the tile containing a given point, finding all tiles in a given
area, or traversing a connected region of tiles[34].

There are several ways in which corner-stitched planes might be used to represent
the mask layers of the fabrication technology. One approach is to place all mask layers
in one plane, using a different tile type for each possible layer overlap. The exponential
number of tile types required, however, would fragment the plane into many small tiles.
Another approach is to place each mask layer in a separate plane, using only as many
tile types as mask layers. However, since many layout operations require information
about layer interactions, this type of arrangement would result in much time being spent
searching across planes.

Magic’s approach lies between the two described above. Instead of working with
the actual mask layers, Magic uses abstract layers that can represent not just a material,
but composite structures, such as transistors and contacts. This is accomplished by using
a technology dependent representation in which layers that commonly interact with one
another are placed in the same plane. For example, a typical MOS technology with two
metal layers requires only four planes: active, well, metall, and metal2. The active
plane contains the diffusion and polysilicon layers, plus their combinations, which form
transistors (see Figure 3.3). Since interactions among the wells and the metal layers are
rare, each is placed in a separate plane.

To represent connections between layers that lay in different planes, such as contacts,
Magic uses a special composite layer that is replicated in both planes. For example, the
contact formed by the diffusion, contact cut, and metall of Figure 3.3 are combined into
a composite type mdc; a tile with type mdc is then placed in both planes: metall and
active. An important observation is that abstract layers allow many circuit features to
be represented explicitly; there is never a need to discover transistors by finding where
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(a) Physical Layers. (b) Magic’s Abstract Layers.

Figure 3.3: Abstract layers in Magic.

polysilicon overlaps diffusion. Similarly, contacts need not be inferred; they are implied
by the composite tiles. .

In addition to the layer planes, cells contain a plane that holds information about
its subcells. Magic does not support explicit cell connection ports; instead, cell inter-
connections are created by either abutting or overlapping cells. Magic allows nearly
arbitrary overlap between cells; the only restrictions are that cells must be independently
design-rule correct, and their overlap cannot create or destroy transistors. Because of this
near-arbitrary overlap, any tile can become a point of connection to another cell. These
connections pose a special problem since they are not explicit, and must be computed.

Magic’s circuit extractor[43] is hierarchical and incremental. The extractor works by
first extracting the circuit represented by the technology layers of a cell, independent of
the context in which the cell is used. Next, the extractor identifies and flattens areas
of interaction among subcells; these areas are then extracted and their capacitance and
connectivity is adjusted accordingly. Because a cell can be extracted independent of its
context, Magic can incrementally update extracted cells: when a cell is modified, only
that cell along with all its ancestors need be extracted. Each cell is extracted into a
separate file, and, prior to simulation, a separate program is used to compile the extracted
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cells into a flat network representation. Each cell contains a timestamp indicating the
time when the cell was last modified. When a cell is extracted, its timestamp is copied
into the extracted cell’s file. To determine which cells must be re-extracted, the cell’s
timestamp is compared with that of the extracted cell; if they differ, that cell along with
all its ancestors need to be extracted.

Magic contains an incremental design-rule checker{48] which runs continuously in
the background and uses designer latency to perform its work. The incremental checker
works by recording the areas that have been modified by the user and only re-checks
those areas. This is accomplished by adding an additional plane to each cell; this plane
contains tiles describing the areas of the circuit that need to be verified. The checker
continuously searches for these tiles; when it finds one, it verifies the area indicated by
the tile, and then erases the tile. To handle cell overlap, the modified areas are recorded
in the cell being edited as well as in each of the cell’s ancestors, all the way up to the
root of the design. The checker then proceeds in a manner similar to the extractor: First,
it verifies the mask layers of a cell within the modified area. Next, it identifies areas of
subcell interaction within the modified area, flattens the interactions, and verifies them.

3.3 Related Work

To update a network incrementally, the connectivity differences between the unmodified
and modified versions of a circuit must be determined. Since these differences can
modify the structure of the circuit, they can be identified by comparing the topology of
the two circuits. The comparison has to detect isomorphism in order to establish which
elements exhibit the same connectivity in both circuits and, if there are any differences,
the transformations needed to convert one circuit into the other. Alternately, this can be
regarded as comparing two circuits that are isomorphic but, due to some design changes,
exhibit certain differences.

A convenient way to represent the topology of a circuit is a graph. A circuit’s graph
(Figure 3.4) contains a vertex for every electrical node or device in the circuit; its edges
link devices with the nodes to which they are connected.

A graph representation completely captures the topology of the circuits, and reduces
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Figure 3.4: A CMOS XOR circuit and its corresponding graph representation.

the problem of comparing their topology to the well known problem of detecting isomor-

phism between two graphs.

3.3.1 The Graph Isomorphism Problem

Isomorphism of graphs is a well known concept: two graphs G, and G, are said to be
isomorphic if there exists a one-to-one mapping o of the vertices of G onto the vertices
of G3 such that two vertices in G are adjacent if and only if the corresponding vertices
in G, are adjacent. Determining whether two graphs are isomorphic, however, is far
from trivial. The basic problem is illustrated in Figure 3.5. Although the two graphs of
Figure 3.5 appear to be different, they are merely different renderings of the same graph
(that of the XOR circuit of Figure 3.4). This can be verified by redrawing the two graphs
so they resemble one another. However, there is no unique or canonical way to draw
a graph. To match the two graphs, therefore, one of them must be repeatedly redrawn
by trying all possible topological permutations; a process that grows exponentially (or
worse) with the size of the graph.

Because of its practical and theoretical importance, the graph isomorphism problem
has been extensively studied in the past!. Although several attempts have been made to

1A comprehensive survey of papers on graph isomorphism algorithms, including a brief description of
each paper, can be found in [38].
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Figure 3.5: Two renderings of the graph of the XOR circuit of Figure 3.4.

find a mathematical function that can identify isomorphic graphs{18, 50], no such function
that can be computed in polynomial time has been found. The problem is believed to
be in the set of NP problems, but whether it belongs to P or is NP-complete remains
unresolved[12]. Polynomial time algorithms for detecting isomorphism of planar graphs
do exist[20, 19, 54]. Unfortunately, these algorithms rely on properties of planar graphs
that circuit graphs, which are not planar, do not possess.

To analyze the complexity of the problem, consider two graphs, each with n vertices
and p edges. If a different label is assigned to each vertex in the two graphs such that two
vertices are assigned the same label only if they are equivalent, then isomorphism can
be checked by simply comparing the edges of the two graphs; if they are identical, the
graphs are isomorphic. Assuming the graphs can be labeled in linear time, the number
of operations needed is then O(n + p). Now, if one of the graphs has been labeled in
some arbitrary manner then an isomorphism can be detected by trying all n! possible
ways of labeling the second graph. This “brute force” approach will certainly find an
isomorphism, if it exists, but it will require O((n + p) - n!) operations; a prohibitively
large number except for very small graphs.

There is no known algorithm that can solve the general problem efficiently (in polyno-
mial time). There are, fortunately, several heuristic algorithms that, in practice, perform
well on a large class of graphs. Although the details may vary considerably, most of
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these algorithms adopt the same basic strategy which attempts to improve upon the “brute
force” approach described above by reducing the number of permutations that need to be
checked. The basic idea is to partition the graph’s vertices into groups of vertices with
the same topological features, thereby ruling out permutations that are clearly not iso-
morphic. If the number of vertices in these groups becomes sufficiently small (typically
one), the number of comparisons decreases drastically and isomorphism can be tested
quickly.

The information needed to partition a graph cannot be given by the vertices themselves
but by their relation to other vertices. A common method is to use vertex invariants to
label the vertices of the two graphs in such a way that corresponding vertices are assigned
identical labels. A graph invariant is a property that is preserved by isomorphism, that is,
a property that does not depend on how the graph is labeled. Examples of graph invariants
are: the number of vertices, the number of edges, the degree of a vertex, the length of
the smallest cycle enclosing a vertex, etc. Existing algorithms typically proceed in two
steps: first, they generate an initial partition based on vertex invariants; next, they refine
each partition into smaller groups by considering the neighborhood of each vertex. This
process is then iterated, each time attempting to characterize a vertex by its relationship
with ever increasing numbers of vertices more distantly connected, until isomorphism is
detected or the partitions cannot be further refined. Figure 3.6 illustrates how a simple
graph can be partitioned into singleton sets using vertex degree as the only invariant.

The graph of Figure 3.6 is initially parﬁtioned by labeling each vertex with its degree
(the number of incident edges). This partition is then repeatedly refined by relabeling
vertices whose labels are not unique. In this example, a vertex is relabeled by the quick
and simple method of adding the labels of its adjacent vertices. It is possible to use
a more sophisticated relabeling method that propagates information about unique labels
throughout the graph (as suggested in [13]). Although such methods make each iteration
more expensive, they might partition the graph in less iterations.

If the partitioning results in singleton partitions, as in the previous example, then
detecting isomorphism becomes an easy exercise. If, on the other hand, the refinement
terminates with large partitions then all their permutations must be considered, an expen-
sive process that is typically implemented as a backtracking algorithm{42]. The efficiency



CHAPTER 3. INCREMENTAL CIRCUIT EXTRACTION 79

:é@ ) :é@ ) :é@

Figure 3.6: Partitioning a graph into singleton sets using vertex degree as the invariant.

of these algorithms, therefore, depends on using invariants powerful enough to expose
the distinguishing features, allowing the graphs to be partitioned into sufficiently small
groups. However, regardless of the invariants or the partitioning method, a graph can
not be completely partitioned if it contains auzomorphisms, i.e., isomorphisms of a graph
with itself. For example, it is not difficult to verify that there is not one but sixteen
possible isomorphisms between the two graphs of Figure 3.5, as indicated by the table

below:
Ala a a a a aaahhhhhHhhHhn
Bfcccc ffffcccec ffff
B(f ff fccocecff ffcecoece
Clh h hh h h hhaaaaaaaa
TI|b d bde gegbdbdegeg
T2{e e g g b bddeeggbyDvdd
T3|d b d b ge gedbdbgege
T4|g g e e dd bb g geeddbbd

Thus, a graph may not be completely partitioned because either it contains some auto-
morphisms or the partitioning method is not powerful enough to distinguish the different
features. It is important to note that if a partition is known to be automorphic, then it
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is possible to choose an arbitrary vertex from each of the two graphs and match them
with one another (by assigning them a unique label, for instance). Determining whether
a partition is in effect automorphic, however, is equivalent to detecting isomorphism, that
is, a graph invariant that can be computed in polynomial time and is also capable of
partitioning the graph into its automorphic partitions would provide a polynomial time
solution to the graph isomorphism problem (see [38] for a proof). Unfortunately, no such
invariant is known[14]. Nevertheless, this property can be useful if a partition is known

(by some other means) to be automorphic.

3.3.2 Graph Isomorphism Applied to Circuit Comparison

The application of graph isomorphism algorithms to circuit comparison is simplified by
using the additional information available in the circuit: vertices can be recognized as
nodes or devices, device vertices can be further characterized by their type, and edges
can be distinguished by the device terminals they link (gate, drain, etc.). By maximizing
the number of distinguishing features, a finer initial partitioning can be expected. For ex-
ample, when this information is added to the graphs of Figure 3.5, a unique isomorphism

is easily found as shown in Figure 3.7.
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Traditionally, circuit comparators have been used as verification tools to ensure that
the implementation of a circuit (typically the layout) is consistent with some other speci-
fication (schematic, stick diagram, netlist, etc). In this vein, the problem has been Widely
studied and numerous algorithms have been developed. While not all of these algorithms
are explicitly based on graph isomorphism techniques, they can all be related to the
graph partitioning algorithm described in the previous section; the differences, though
many, depend more on implementation details such as the graph representation used, the
relabeling method, the level at which the circuit is compared (logic, circuit, gate, etc),
the type of reports produced, and the way that ambiguities and differences are handled.
Typically, they proceed by identifying an item with a unique label (sometimes called
signature or color) in one circuit, locating its counterpart in the other circuit, binding the
two items, and relabeling the elements connected to the bound items.

One of the first to report using such a comparator is the APPRAISE system[1]. In this
system, the initial partitioning is done by assigning a set of properties to each element
based on the element’s invariants (fanin, fanout, element type, etc.). Next, the partitions
are enhanced by alternately binding devices and nodes in the two circuits. This process
is iterated until no more elements can be bound. To decide which items to bind, the
algorithm first generates a signature for each element by computing a weighted sum of
the element’s properties. Elements with similar signatures in the two circuits are then
compared,; if the signatures differ by less than some threshold (which is based on one of
the signatures) then the two elements are bound to one another. Binding some elements
within each iteration, rather than attempting to partition the entire circuit at once, allows
the program to use the information gained from the elements bound during the previous
iteration, thus bypassing ambiguous information until enough data has been built up to
resolve the ambiguity. The major problem with binding elements by comparing signature
differences against a threshold is its susceptibility to binding prematurely, which can
result in apparent differences that might otherwise be resolved by further partitioning the
circuit.

Another partitioning technique is employed by WOMBATT45). Rather than combining
an element’s properties into a scalar and using a threshold function to decide when two
items should be bound, this algorithm maintains all the properties separate and only binds
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two elements when their signatures are unique and identical. To minimize the number
of comparisons, WOMBAT maintains a list of elements bound on any given iteration and
restricts the comparison to elements directly connected to the ones on the list. Since not
all circuits can be completely partitioned into singleton sets, however, this algorithm fails
when the circuits contain automorphisms or ambiguous information.

A major problem with the signature partitioning technique is the algorithm’s tendency
to diverge in the presence of differences. Since the signatures are formed using neighbor
information, even small differences can result in many elements having different sig-
natures. These differences are then propagated throughout the circuit, preventing other
isomorphic subcircuits from being matched. To avoid this problem, various heuristics
that attempt to contain the propagation of differences have been proposed.

GEMINI[15] also uses a signature partitioning technique similar to the ones described
above. The partitioning is done by assigning a label to each node based on circuit
invariants. The partitioning is then refined by combining the label of each element with
the labels of its neighbors, that is, a label is a function of both the element’s current
label and the labels of its neighbors. A hashing function is used to limit the size of the
labels to a scalar. Instead of waiting until the circuits are completely partitioned, this
algorithm also binds elements with identical, unique labels after each iteration. To avoid
small differences from being propagated throughout the circuit, the partitions of the two
circuits are compared after each iteration and the elements in partitions that do not have a
corresponding partition in the other circuit are marked as suspect and their labels are not
modified by subsequent iterations. After all the elements have been bound or marked as
suspect, the program attempts to bind suspect elements using their neighbor information.
If the partitioning does not result in singleton partitions, GEMINI arbitrarily binds two
elements in corresponding partitions and attempts to continue partitioning the circuit. If
this arbitrary match is later found to be incorrect, the program does not attempt to fix the
error and fails.

A similar approach to contain differences from propagating through the circuit is
adopted by WLC[31] and CCOMP[47]. These algorithms maintain the partitioﬁs explicitly
and examine their contents at each iteration; if corresponding partitions of the two circuits
are not composed of the same number of elements then those partitions are not partitioned
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any further. Preventing the graph from being partitioned may allow other isomorphic
subcircuits to be matched, however, it makes isolation of differences more difficult.
Neither algorithm attempts to resolve ambiguities; partitions that contain more than one
element of each graph are simply reported as mismatches.

If we put to one side the implementation details, we find that most other algorithms
are fundamentally the same as the ones described above. With few exceptions, they can
be characterized by the relabeling method and the heuristics they use, in addition to the
local circuit invariants, to distinguish elements whose partitions cannot be refined into
singleton sets. For example, the LIVES system[53] uses distance distribution and distance
from terminal nodes for the initial partition. To resolve ambiguities, LLC[32] uses path
information between ambiguous components. Wong[56] uses hierarchy and connections
to known nodes to enhance the partitions; ambiguous partitions are resolved by arbitrarily
matching all elements within partitions with the same number of components. NECOM[3]
examines the vicinity of each matched node attempting to discover more unique features
or differences. Tygar and Ellickson[51] use a randomized hashing technique to partition
the circuits; the connections of matched components are then examined attempting to
recursively match other elements connected to those components.

Many of these circuit comparators only indicate whether the two circuits are iso-
morphic, while others simply report which elements could not be matched, either by
printing or annotating one of the circuits with the list of unbound components. This may
be adequate when the comparison is intended to ensure consistency between two circuit
descriptions that are expected to be the same, which perhaps exhibit minimal differences.
However, using these algorithms to extract the differences between the modified and
unmodified versions of a circuit is less natural. The main difference is that our problem
does not necessarily have to prove an isomorphism; instead the goal is to find an isomor-
phism function, i.e., the transformations needed to convert one circuit into the other, a
goal for which a list of unbound elements is of little use since it does not convey how the
circuits differ. The fundamental problem with graph partitioning methods is that label re-
finement is the primary method used to identify matching circuit elements, but the labels
themselves can only indicate equivalence; they offer no information regarding the nature
of the differences. Furthermore, since in our case the circuit is known to be modified,
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differences are very likely to occur; they cannot, therefore, be treated as exceptions by
simply containing their effect on the rest of the circuit.

3.3.3 Incremental Circuit Update

Other researches have investigated a few approaches to update a circuit incrementally.
Magic’s circuit extractor[43], which is described in more detail in the next section, can
incrementally extract hierarchical cells by examining their modification dates.

Beatty and Bryant[4] use an incremental method to reduce the amount of time required
by the COSMOS simulator[37] to compile a circuit description into executable Boolean
procedures. First, they extract a two-level hierarchy from a flat netlist by partitioning
the network into channel-connected subnetworks. Next, they use a graph partitioning
method similar to that used by GEMINI[15] to uniquely label the vertices of the graphs
of each subnetwork. These labels are then sorted, yielding a quasi-canonical form for the
subnetwork. A hash-code for the quasi-canonical form is computed and a hash table is
examined; if the subnetwork in question is not in the table, it is compiled and the results
are entered into the table. If the subnetwork does appear in the table, it need not be
compiled again; it is simply replaced by the compiled procedure recorded in the table.

In [44], the authors present an incremental logic synthesis system. The input to the
system is a logic description that is automatically converted into a gate representation
from which a layout is synthesized. The layout is then optimized by hand. When the
logic description is modified, however, the entire design is resynthesized, and the op-
timizations prior to the modification are lost. To avoid having to repeatedly optimize
the entire design, the system attempts to preserve the parts of the layout that are un-
affected by the changes and only resynthezises the modified parts. To accomplish this,
the system compares the gate description of the modified and the unmodified designs
in order to identify and preserve the gates whose connectivity remains unchanged. The
comparison uses a partitioning algorithm to label each of the gates using such properties
as the number of primary inputs, the number of inputs common to a pair of gates, the
number of primary outputs, the gate fanout, etc. The labels are then refined using the
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information of matched gates. After all gates have been labeled, gates with unique, iden-
tical labels are matched and preserved; unmatched gates in the unmodified description
are deleted, unmatched gates in the modified description are added, and any inconsis-
tent connections are adjusted. The authors mention nothing regarding automorphisms or
ambiguous partitions; presumably they are considered unmatched. The program has two
major drawbacks: first, it operates on the entire design; second, by restricting a match to
gates that have identical labels, the comparison will fail to identify minor changes; for
example, a gate whose output is connected to a different gate (which does not change
the functionality of the gate) will not be matched by this process.

In [26] Jones presents a hierarchical schematic capture system that includes an in-
cremental netlist compiler. The system works by mapping every modification to the
schematic at any level of the hierarchy into manipulations of the netlist (component
insertion or deletion, node connection or disconnection, etc). Because the schematic
adheres to strict circuit boundaries, implementing this system is straightforward; any
change to the schematic can be immediately recognized and need only be instantiated in
its proper flat context as many times as the modified cell is used. As mentioned earlier,
the problem with detecting the changes as the user modifies the design is that changes
can be undone or cancel out one another. This system does not attempt to detect such
changes, presumably because they are less common than when editing a layout.

To our knowledge, nobody has attempted to incrementally update a flat network by
extracting only the modified areas of its corresponding hierarchical layout.

3.4 Incremental Extraction of Circuit Changes

This section describes the implementation of an incremental extractor designed to produce
the network modification commands that will update the network following a layout
modification. The extractor is integrated into the Magic layout editor and, unlike Magic’s
native extractor which operates hierarchically, it operates incrementally by confining its
analysis to the modified portions of the layout. The result is a tool that can update the
network in time proportional to the size of the changes, not the total size of the layout.

The key to fast extraction of circuit modifications is to examine only the modified
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portions of the layout. To achieve this, the extractor keeps track of layout changes by
recording the areas of the layout which are modified during an editing session. When
the user finishes editing the layout, he calls on the extractor to update the network. The
extractor then produces the network changes by examining the layout enclosed by the
modified areas. This is done in three steps: First, the layout is topologically decomposed
into its modified and unmodified regions by coalescing the previously recorded modified
areas that interact with one another (either directly or hierarchically), thus yielding a set
of disjoint modified regions, each of which is then analyzed independently. Next, the
unmodified and the modified version of the subcircuit contained within each modified .
region is extracted from its corresponding layout. Finally, each pair of extracted subcir-
cuits are compared, the differences are identified, and the required network modifications
are produced. Although each modified region is analyzed independently, the extractor is
able to maintain the correct relationship of every extracted subcircuit with the rest of the
design by examining the boundary of the modified regions. When all the regions have
been thus processed, the layout is cleared of all modified areas. At this point, the user
may verify the design or continue editing the layout.

The next section describes how Magic’s database is modified to keep track of layout
changes. The following sections describe the extraction and comparison steps, including
some of the more subtle problems that had to be solved.

3.4.1 Tracking Layout Changes

Tracking layout changes is accomplished by maintaining an additional changed plane
with each Magic cell. This plane, which is invisible to the user, contains a series of
modified tiles that indicate which areas of the cell have been modified during the editing
session. Whenever the user changes a cell, a modified tile covering the area of the change
is created and recorded in the cell’s éhangcd plane.

Implementing the modified-area recording mechanism is relatively easy since Magic
uses a similar technique to perform incremental design-rule checking[48]. The only
difference is that while DRC tiles are recorded in all of the modified cell’s ancestors,
modified tiles are only recorded in the changed cell itself. Keeping the changes local
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to the modified cell minimizes the number of modified tiles needed during the editing
session. It also better reflects the actual changes since modified tiles can easily be erased
when changes are undone, an operation that would be extremely difficult if the modified
tiles due to a single change were dispersed throughout the hierarchy.

With the exception of an additional command (to invoke the incremental extractor),
the incremental extractor does not modify the user’s view of the editor, nor does it impose
any additional restrictions on the layout style. Furthermore, since recording the modified
areas requires very little additional work, the overhead incurred by this mechanism is
negligible. The operation of the incremental extractor is thus transparent to the user.

3.4.2 Coalescence of Modified Regions

Before extracting the modified portions of the layout, the extractor must determine the
actual shape of the modifications. Once their shape is known, the layout can be decom-
posed into modified regions, that is, the layout can be regarded as a two-level hierarchy
consisting of a series of modified cells contained within a single unmodified cell. The
connections at the boundary of each modified region, which represent the interface be-
tween the unmodified cell and the circuit within the region, can then be used to analyze
each region independently.

Since Magic allows almost arbitrary overlap, any cell may contain subcells that over-
lap other subcells or mask information; the modified areas of a cell can thus interact with
the modified areas of other abutting or overlapping cells, thereby altering the shape of
the modified areas. In addition, since a cell may appear any number of times in any other
cells, the modified areas of a cell may interact in different ways with other modified areas,
depending on the cell’s context. Magic’s near arbitrary overlap thus precludes context
free identification of a modified region’s shape. Instead, the extractor first flattens the
hierarchical structure of the modified tiles into a dummy plane to produce a new corner-
stitched plane that combines the modified information from all the cells in the design, as
shown in Figure 3.8.

Once the modified areas have been flattened into a single plane, the shape of the mod-
ified regions is determined by coalescing all interacting tiles into a single region. Corner
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modified regions

modified area

Figure 3.8: Modified areas are flattened and coalesced into disjoint modified regions.

stitching provides a simple mechanism to do this by following the stitches of adjacent
modified tiles; this is similar to a node-finding algorithm except that it must consider tiles
that touch only at the comers as being connected. When the region coalescing step is
finished, all interacting modified-tiles will be grouped together into a single region, thus
yielding a set of disjoint modified regioris (Figure 3.8). These modified regions become
the basic unit of analysis; subsequent steps process each of these regions one at a time.

3.4.3 Extracting the Modified Regions

For each modified region, the extractor produces the two circuits contained within the
region: a new circuit, which is extracted from the modified layout being edited by the
user, and an old circuit, which is extracted from the original, unmodified layout. To
achieve this, the system maintains two design trees during incremental extraction: one
that corresponds to the layout being edited by the user, and one that corresponds to
the original, unmodified layout. The original design tree is built by reading, for each
modified cell, the file holding the last version of the cell’s layout. Maintaining two design
trees allows quickly switching between the two by simply changing the pointer to the
root cell of the design. Although this requires maintaining two copies of each cell, the
memory overhead is minimized by allowing both design trees to share the mask planes

of unmodified cells.
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In addition to the old and new circuits, the extractor also produces the network at
the boundary of the modified region. To determine what constitutes this network, the
extractor computes a boundary region in the following way: First, the modified region
is expanded by one lambda to produce an expanded region (Figure 3.9b). Next, the
original modified region is erased from the expanded region to produce a one-lambda

wide boundary region (Figure 3.9c).

(a) modified region (b) expanded region (c) boundary region

Figure 3.9: Determining the boundary of the modified region.

Once the boundary region has been determined, the layout encompassed by it is
extracted to produce a set of boundary nodes. These nodes represent wires that connect
the circuit within the modified region to the rest of the design; they can thus be regarded
as pins or primary inputs to the circuit within the modified region. Since the boundary
region lies completely outside the modifications, both old and new circuits share the same
set of pins. These pins can, therefore, be used to establish a correspondence between
the two circuits. To establish this correspondence, the extractor associates each pin with
its corresponding nodes in each of the extracted circuits. Nodes that are associated with
more than one pin represent connections between pins, and they are recorded by linking
the interconnected pins to produce a pin-connectivity graph. Each pin p is processed
once for each circuit in the following four steps:

1. Select an arbitrary tile which is part of pin p and locate its counterpart in the layout
of the extracted circuit.

2. Find the node n that corresponds to the tile found above. When pins are processed,
the circuit has already been extracted by marking each tile with the node to which
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it belongs. Thus, finding the node that corresponds to a tile involves simply reading
the node from the tile.

3. Check if n has already been marked as connected to another pin pos.,r. If so, add
an edge from pin p to pin psse, in the current context (old or new); otherwise mark
n as connected to pin p and mark pin p as connected to itself.

4. Bind p to node n in the appropriate (old or new) context.

After both circuits have been extracted and the pins have been processed by the above
process, each pin will be bound to the node to which it is connected in the new and old
circuits, each node connected to a pin will be marked with the corresponding pin, and
the graph representing connections between pins in the new and old circuits will have
been generated. Figure 3.10 illustrates a simple example in which a cmos nand gate
is converted from a pseudo-nmos into a complementary implementation, including the
layouts and diagrams corresponding to the design before and after the modifications (Fig-
ure 3.10a), the extracted parts of the layout (Figure 3.10b), and the resulting information
(Figure 3.10c). ’

As shown in Figure 3.10, each extracted circuit corresponds to the layout enclosed
by the modified region plus its boundary (i.e. the expanded region). By extracting the
expanded rather than the modified region, the extractor does not have to detect abutting
edges between the inside and outside of a modified region; this simplifies the node
correlation and the computation of perimeter capacitance. Because the layout within
the boundary region is identical in both circuits (old and new), the perimeter (and area)
capacitance of boundary nodes is overestimated by exactly the same amount in both
circuits. When the capacitance of the nodes is compared, the overestimated amount
cancels out, thereby yielding the actual difference due to changes within the region.

Extracting the circuits contained within the modified regions hierarchically, in the
same manner as Magic’s extractor, would be extremely difficult. Because the modified
region can be an arbitrary polygon, the layout of a cell and its interactions with other
cells or subcells would have to be clipped to remain within this polygon. Also, since only
parts of a cell may need to be extracted, and the parts may vary depending on the cell’s
context, extracting part of the cell hierarchically may be of little use since the extracted
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Figure 3.10: Incrementally extracting a simple layout change.

circuit cannot be reused. It is possible to devise a hierarchical system capable of storing
the modified pieces of a cell and cross-registering the corresponding extracted circuits,
but doing so would eliminate many of the benefits of a hierarchical database and would
make the extractor much more complex. Instead, the incremental extractor flattens the
hierarchical layout contained within the modified region and copies the clipped geometry
into a dummy cell. Note that the boundary region does not have to be flattened; the
extractor simply copies and clips the boundary portion of the layout from one of the
flattened layouts into another dummy cell.

Transistors that intersect the modified region present a problem for the extractor.
Since only part of the transistor is contained within the modified region, the extractor
is unable to determine the transistor’s size, location, or some of its terminals. A related
problem is that changing a transistor’s size results in only the enlarged (or shrunk) portion
of the transistor being contained within the modified region (like T1 in Figure 3.11a),
which obscures the true nature of the change. A similar problem occurs when a transistor
intersects the modified region more than once (like T2 in Figure 3.11a); in this case each
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Figure 3.11: Transistors that intersect the modified region.

portion of the transistor might be incorrectly considered as a separate device.

For example, simply extracting the layout within the modified region of Figure 3.11b
would incorrectly indicate that T1 is a newly added transistor, and that a connection
between T2’ and T2 has been broken. To avoid all these problems, the extractor prevents
partial transistors from being formed altogether. This is enforced during the flattening
step by tracing and copying the entire structure of a transistor that intersects the modified
region, as shown in Figure 3.11c. When tracing the outer part of an intersecting transistor,
the amount of layout copied is confined to one lambda around the transistor; this limits the
amount of extra layout and provides all the information needed to extract the transistor.
Any additional nodes created by tracing intersecting transistors are prevented from being
compared since they are outside the modified region and hence unmodified.

Once the hierarchy has been flattened into a single cell, the circuit network is extracted
into a graph representation suitable for comparing its topology, which is described in the
next section. The actual circuit extraction is done in a manner similar to Magic’s basic
circuit extractor; interested readers can refer to [43] for a detailed description of this

process.

3.4.4 Comparing the Circuits

The previous sections described how the extractor keeps tracks of layout changes and
how it uses that information to extract the circuits which cormrespond to the modified
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portions of the layout. The remaining step is finding the transformations that convert the
old circuit into the new one.

There are many combinations of transformations that will convert the old circuit into
the new one, and several ways to find these transformations. The easiest approach is
to assume that everything enclosed by the modified region has been altered, and simply
replace the extracted subcircuit in its entirety. This approach requires no comparison
and can quickly generate the transformations by simply removing the contents of the
old circuit and, in its place, adding the contents of the new circuit. However, if only
part of the circuit is different, which is not uncommon, this approach would result in
needless changes to the network and hence unnecessary work to verify the changes. A
more sophisticated approach is to generate the optimal set of transformations by finding
the set of subcircuits that comprise the largest number of isomorphisms between the two
extracted circuits. To find such a set of subcircuits, however, all possible isomorphisms
between the two circuits would have to be examined; since this requires a solution to the
very difficult (NP-complete) subgraph isomorphism problem, a practical implementation
seems unlikely.

The approach we adopted represents a compromise between the two extremes outlined
above. Rather than attempting to find all possible isomorphisms, the circuits are compared
in order to find a single, trivial isomorphism. This is accomplished by comparing the
extracted circuits, starting at the modified region’s boundary and moving progressively
towards its center, attempting, at each step, to match elements whose connectivity is
the same in both circuits. If at any point during the comparison, an element cannot be
matched (because it has no counterpart in the other circuit), an isomorphism is forced
by adding or removing the unmatched element, the transformation is recorded, and the
comparison continues. Thus, at the end of the comparison, both circuits will always be
the same; if any elements were added or deleted, the transformations will have been
recorded. If the circuits were in fact the same, no transformations will be recorded and
none are produced.

The comparison is done in two steps: Boundary Comparison and Circuit Comparison.
During the first step, the differences at the boundary of the two circuits are identified.
Although these differences are the result of changes within the modified region, they
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require special attention because they affect not only the extracted circuit but also the
network outside the modified region. During the second step, the differences that arise
from topological changes within the modified region are identified.

Boundary Comparison

To determine the changes enclosed by a modified reg{on, the extracted circuits are com-
pared independent of the context in which they appear: the circuits are treated as isolated
cells that share a common set of pins, but whose contents may be different. However,
the extracted circuits are not isolated from the rest of the layout and, therefore, some of
the changes made within the modified region — such as shorting two boundary nodes
— can alter the circuit outside the region. These changes can be detected by examining
the connectivity at the boundary of the modified region, and their effects can be isolated
by adjusting the connectivity of the circuits both inside and outside the region. Isolating
connectivity changes at the boundary of the region allows the circuits to be compared
independent of their context, thus making incremental extraction possible.

Connectivity changes at the boundary of the region also modify the extracted circuits’
interface to the rest of the layout. This interface, which consists of nodes that interact
across the boundary, is essentially the pins extracted from boundary region, and these
pins are the same for both circuits. However, the pins are merely connection points
to the outside of the modified region. The actual inputs to the circuits, and hence their
interface, are the nodes that connect to those pins and, since the pins can be interconnected
differently in each circuit, they need not be the same for both circuits. To allow context
free comparison of the circuits, a uniform interface (i.e. the set of boundary nodes
common to the two circuits) must be found.

The purpose of the boundary comparison is thus twofold: to provide both circuits
with a uniform interface, and to isolate the changes that alter the circuit outside the
modified region. Since boundary nodes exist both inside and outside the modified region,
a change within the modified region does not create or destroy these nodes; it can only
establish or break a connection between them. These changes can, therefore, be detected
by examining the connectivity of the boundary nodes, and is easily implemented by
comparing the previously obtained pin-connectivity graphs.
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Since the pin-connectivity graphs are generated by processing the pins in the same
order for both circuits, the edges representing connections between pins (see Figure 3.12)
always point to the first pin to be processed of any interconnected set of pins (i.e. the
arrows in Figure 3.12 all point to the left). This ordering guarantees that if the pins are
compared by examining them in the same order as previously processed, then a pin will
either point to itself or to a previously examined pin. This property allows the boundary
comparison algorithm (shown in Figure 3.13) to detect all broken or new connections by
examining the connections of each pin only once. A broken connection is detected when
two pins are connected only in the old circuit, i.e., only the pin in the new circuit points
to itself. Conversely, a new connection is detected when two pins are connected only in

the new circuit.

PlI P2
v w
P8
P7 P6 P7 P6
(a) Old boundary (b) New boundary (c) Pin connectivity graph

Figure 3.12: Comparing connectivity changes at the boundary of the circuit.

The algorithm of Figure 3.13 assigns a to every pin a label that is initially equal to the
pin’s position in the graph. Connectivity differences can then be found by comparing the
labels of the pins to which a pin is connected in either circuit; if the labels are different
(line 5 in Figure 3.13) then, after processing the difference, the two pins are assigned the
same, lowest label (line 12 of Figure 3.13). For the purpose of the comparison, this has
the effect of merging the two pins and prevents detecting the same difference more than
once. For example, in Figure 3.12, the connections P1-P4 and P4—P8 are different, but
since P1 and P8 are connected in both circuits, one of the differences is redundant and
need not be processed again. The procedure “Merge” of Figure 3.13 takes the (old or new
circuit) nodes that correspond to the two pins whose connectivity differ and combines
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1 for j=1to N do

2 label( pin; ) —j

3 Potd + Ppin to which pin; is connected in the old circuit
4, Pnew +— Pin to which pin; is connected in the new circuit
S. if label( poia ) # label( ppew ) then

6 if label( pnew ) # label( pin; ) then

7 Issue( connect pin; < ppew )

8 Merge( old-node( pin; ), old-node( prew ) )

9. if label( poia ) # label( pin; ) then

10. Record( break pin; < poa )

11. Merge( new_node( pin; ), new.node( pod ) )

12. labd( Dold ) A label( Prew ) — mln( label( Pold )s label( DPnew ) )

Figure 3.13: Algorithm to process boundary connectivity changes.

them into a single node. When a new connection is detected (line 6 in Figure 3.13) the
command to connect the corresponding nodes in the flat network is issued immediately,
and the two nodes are merged in the old circuit (in which they are unconnected). When
a broken connection is detected (line 9 in Figure 3.13), the two nodes are merged in the
new circuit (as though they were still connected), however, the command to break the
connection is not issued at this point but simply recorded for later processing.

After comparing the pin-connectivity graph using the algorithm of Figure 3.13, both
circuits will have the same interface: the same number of inputs, each connected to the
same unique pin. Since newly connected as well as disconnected nodes appear connected
in the two circuits, they are both in the state in which they would be had no boundary
nodes been disconnected. In fact, since the connect commands have been issued at this
point, when applied to the flat network, it will also be in this same state. For example,
when the above algorithm is used to compare the boundary of Figure 3.12, it will discover
the following differences: {break P1 « P4}, {break P2 « P7}, {connect P3 « P7},
and modify the circuits as shown in Figure 3.14.

There are two reasons for postponing broken connections. First, in order to generate
the same interface for both circuits, it is much simpler to merge the disconnected nodes
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Figure 3.14: Result of comparing the boundary of Figure 3.12.

in the new circuit than it would be to split a node in the old circuit. To split a node, the
exact point at which the connection was broken would have to be identified, which can be
done by keeping track of every connecting wire within a node, but doing so would make
the extractor much more complex (and slow). Second, processing a broken connection
entails tracing each broken node (even outside the modified region) in order to determine
how the transistors are redistributed along each broken branch of the original node. If a
node is broken at multiple places (in different modified regions, for example), each break
would cause the node to be re-traced. This redundant work is avoided by recording the
broken connections while comparing the boundary and then processing all the recorded
breaks in one fell swoop. Since connecting two nodes more than once is idempotent,
new connections do not suffer from these problems and can thus be issued right away.

Transistors that intersect the boundary region of the two circuits can be correlated
in much the same way as pins are used to correlate the boundary nodes of the two
circuits. This can be done by binding the two transistors (one from each circuit) that
cross the boundary at the same place. Matching boundary transistors thus maximizes
the distinguishing features of the two circuits and simplifies the circuit comparison step.
However, situations in which a boundary transistor appears in more than one region, like
those of Figure 3.15, must be handled carefully.

The situation of Figure 3.15, in which a transistor itself is merged or split, presents a
problem to geometrically matching boundary transistors. Because each modified region
is processed independently and each region presents multiple choices to which a tran-
sistor can be matched (Figure 3.15b), the same transistor may be matched inconsistently
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Figure 3.15: Boundary transistors that appear in several modified regions.

throughout the various regions in which it appears. This would lead to incorrect or im-
possible transformations; for example, if while processing region #1, T1 is arbitrarily
bound to Ta then Tb, having no counterpart in that region, will be deleted. Then, when
region #2 is processed, T2 might be bound to Th, which no longer exists, and proceed
to add T1, which already exists. To avoid this type of error, a unique binding that is
consistent among all the regions in which a boundary transistor appears must be obtained.

There are many ways to produce a unique, consistent binding among such ambigu-
ous boundary-transistors. For example, the binding that retains the largest number of
boundary transistors could be obtained by considering all their possible bindings before
comparing the circuits. Doing this, however, would eliminate much of the advantage
yielded by comparing each region independently and, since split or merged transistors
are very infrequent, it is hardly worthwhile. Instead, the comparator tries to bind bound-
ary transistors geometrically, but avoids inconsistent bindings by maintaining a table of
previously encountered boundary transistors. Thus, when attempting to bind a boundary
transistor, the table is examined; if the transistor is not in the table then the transistor
is bound to its newly found counterpart and the binding is entered in the table. If the
transistor is already in the table then the previously recorded binding is used. In addition
to their bindings, the table is also used to record any transformations already applied to
a boundary transistor — such as changing its size, for example — and prevents them
from being reported more than once. This simple mechanism provides a quick method
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for handling the most frequent case and, if the boundary information is ambiguous, it
produces a consistent binding regardless of the order in which the regions are processed.

It is important to note that if the modified region contains no internal nodes (only
boundary nodes and perhaps transistors), all the circuit changes will be detected by the
boundary comparison, without having to compare the circuits any further. Since the
complexity of the boundary comparison is O(p), p being the number of pins in the
boundary, changes that alter only the connectivity of the design — such as re-routing
part of the layout — can be identified very quickly.

3.4.5 Circuit Comparison

Once the boundary has been compared and adjusted to provide a uniform interface, the
extracted circuits can be compared and the differences that arise from topological changes
within the modified region can be identified. The circuit comparison algorithm (shown
in Figure 3.16) is based on a graph isomorphismn approach similar to those described in
Section 3.3.2. It uses a graph partitioning heuristic to determine whether the two circuits
are isomorphic; if they are not, it isolates the differences and produces the transformations

needed to make them isomorphic.

(N,T) « PartitionCircuits( Gorg, Grew )
NP"CU — {} TP"CU — {}
repeat until N = {} and T = {}
if N # Ny, then
Tpreu «T
T « RefinePartitions( T )
if T 5 Tprey then
Npreu —~N
N «« RefinePartitions( N )
if T = T},., and N = N,,., then
T « HeuristicMatch( T, N )

POYXNAUL A WL

[y

Figure 3.16: Circuit comparison algorithm.

The objective of the algorithm is to uniquely label each of the circuit elements (nodes
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and transistors) by repeatedly subdividing the circuits into partitions of elements having
the same connectivity until each partition contains no more than one element from the
same circuit. To achieve this goal, each partition is assigned a unique label used to
further refine the partitions. Since elements that have the same connectivity are found
in the same partition, all elements within a particular partition are assigned the same
label. If the circuits are the same, they can typically be divided into singleton partitions

containing one element from each circuit; these elements represent exact matches (i.e.

the same element in the two circuits) and can be bound to one another. Elements that
cannot be thus matched represent circuit differences, which can be isolated by adding
or removing the unmatched elements so as to force an isomorphism. These adjustments
represent the desired transformations that convert one circuit into the other.

The circuit comparison algorithm can be broken into three steps: initial partition-
ing, refinement, and transformation generation. During the initial partitioning (line 1 in
Figure 3.16) the boundary information is used to decompose the circuits into matched
and unmatched elements. Nodes are partitioned by assigning the same unique label to
each pair of boundary nodes that correspond to the same pin; all remaining nodes are
placed in IV, the set of unmatched node partitions. Likewise, transistors are partitioned
by first assigning the same unique label to each pair of boundary transistors that were
geometrically bound. Next, any remaining transistors are divided by forming a separate
partition for each device type — one for n-devices, one for p-devices, etc — and placing
these partitions in T, the set of unmatched transistor partitions.

Besides the boundary information, other graph invariants, such as the number of
vertices or their degree, could be used to partition the circuit graphs into a finer initial
partition. When the circuits are different, however, these invariants would cause the
circuits to diverge much too early in the process. These differences would then propagate
through the graph, thereby preventing the algorithm from discovering partially isomorphic
subcircuits. This is avoided by using the connections to the boundary as the major means
by which equivalent elements are detected.

After the initial partitioning, the algorithm enters its main loop and begins the refine-
ment phase. In each pass, the refinement process is applied alternately to the transistor
(line 6 in Figure 3.16) and the node partitions (line 9 in Figure 3.16) until both partitions
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are empty. In the first iteration, the labels of boundary nodes are used to repartition
T into smaller sets of equivalent transistors. The new transistor partitions are assigned
unique labels which are then used to repartition /V into smaller sets of equivalent nodes.
The process is then iterated, this time using the new node labels in addition to the labels
of boundary nodes. Thus, each iteration propagates the original boundary information,
which naturally advances on all sides simultaneously; towards the topological center of
the circuits. As the refinement progresses and elements become unique, they are re-
moved from their corresponding unmatched set and either matched, added, or deleted
so as to keep the two circuits the same. The process thus resembles a zipper moving
spirally from the boundary towards the center of the circuits, closing, at each step, any
differences between the two circuits.

If the circuits contain one or more automorphisms, there will be partitions that cannot
be subdivided beyond the set of equivalent elements. When the algorithm detects that
the partitions remain constant from one pass to the next (line 10 in Figure 3.16), it
uses a different heuristic to refine the transistor partitions. Since automorphic transistors
can be permuted without altering the graph, the “HeuristicMatch” function selects the
smallest transistor-partition and arbitrarily matches two of its transistors based on other
information such as device size and layout location. The heuristic breaks only the smallest
set of ambigucus transistors so as to use the least non-topological information to continue
partitioning the graphs. Because the partitioning uses only the boundary information, it
is unlikely for the heuristic to match non-equivalent transistors; even if it were to do so,
however, this is not a fatal condition since an isomorphism will be enforced, producing,
at worst, some unnecessary transformations. Note, however, that if “HeuristicMatch” is
called with an empty node partition (V = {}), then all nodes have already been matched
and a transistor automorphism is assured?. In this case, rather than matching only two
transistors, the function uses the size, connectivity, and location information to match all
transistors in T in one fell swoop.

The refinement process is shown in Figure 3.17, and consists of three basic steps:
re-partitioning, matching, and adjustment. In the first step, the elements of a partition are

2This situation is not uncommon; to adhere 1o spacing constraints, designers sometimes implement very
wide devices by laying out several smaller transistors connected as a single transistor, hence creating a
series of indistinguishable, automorphic transistors.



CHAPTER 3. INCREMENTAL CIRCUIT EXTRACTION 102

subdivided into partitions having the same connectivity. This is efficiently accomplished
by computing a connectivity signature for each element in the partition, and then grouping
the elements according to their signature. The signature of an element is a function of
the labels of the elements to which it is connected and the type of terminal (gate, source,

or drain) associated with the connection:

Se = F( G(labely, conntype,), G(labely,conntype,)), -+ )

Before assigning an element to a partition, its connectivity must be compared with
that of the partition. This is because the signatures are essentially hashing codes, hence,
elements with different connectivity may sometimes (although unlikely) be assigned the
same signature. Since a transistor’s source and drain are symmetrical, neither the signature
nor the connectivity comparison distinguish between these two terminals.

After the partition has been subdivided into new partitions, the matching step examines
the size of each new partition. Partitions containing one element from each of the
two circuits (line 11 in Figure 3.17) represent an exact match; the two elements are
bound to one another and assigned the’ same unique label. Partitions that contain only
elements from the new circuit (line 7 in Figure 3.17) represent possibly newly added
elements. Conversely, partitions that contain only elements from the old circuit (line 9 _
in Figure 3.17) represent possibly deleted elements. Both these elements are placed in
their respective differing element set, which are examined at the end of the matching
step. Any other partition containing elements from both circuits remain in the set of
unmatched elements (V or T') and will be considered in the next iteration.

During the adjustment step of the refinement process, the two sets of differing ele-
ments are considered. Since these elements cannot be directly matched to any counterparts
in the other circuit, the algorithm could simply delete all elements in di ff,;q and add all
elements in d:ff,.... However, the connectivity of some of these elements may differ
only because they were slightly modified. Consider, for example, a node that contains
several identically connected transistors yet its connectivity was modified by disconnect-
ing a single transistor. If such a node were to be considered unmatchable, then that node
along with all its connected transistors would have to be deleted and added as required.
Furthermore, the small difference would then propagate through the transistors, resulting
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function RefinePartitions( S )

Snezt — {}
for j =1to|S| do
V « new partitions of S; having the same connectivity
diffold = {} diffncw A {}
foreach new partition p in V do
if |[p.old| = 0 then
diffrew — diffnew U {p.new}
else if |p.new| =0 then
diffora — diffoaU {p.old}
else if |p.new| =1 and |p.old| = 1 then
match p.new + p.old
assign same unique label to p.new and p.old
else
assign same unique label to all elements of p
Snezt — Snext U {P}
foreach element a in di ff.., do

d — element in di ff,4 for which 6(a, d) is minimum

if 6(a, d) < 8max then
diffoa — diffora — {d}
match a « d
assign same unique label to a and d
else
assign unique label to a
added + added U {a}
foreach remaining element d in diff,q do
assign unique label to d
deleted «— deleted U {d}
return( Sp.z: )

Figure 3.17: Function to refine the partitions.
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in a large portion of the circuit being unmatched. The algorithm, therefore, avoids this
type of situation by trying to match the elements of the two differing sets (d:ffoq4 and
diffnew) before deciding that an element cannot be matched. It does this by finding
the pair of elements for which §(a, d) is a minimum; this function is a measure of
the difference between possibly added element @ and possibly deleted element d, and is
implemented as the ratio of differing connections (adjacent elements with unequal labels)
to the total number of connections to a and d (the larger of the two). If @ and d are
only slightly different (line 19 in Figure 3.17) then they are matched to one another and
assigned the same label so as to eliminate the difference. The constant é,,,,, which rep-
resents the maximum tolerable difference, is the maximum é(a, d) for which elements
a and d will be considered matchable (in the current implementation 6., = %). This
final matching increases the execution time of the comparison, but allows the binding of
elements with similar but not identical connectivity. If this type of binding were disal-
lowed, any small difference could propagate through the circuit and prevent identification
.of other unmodified subcircuits.

At each iteration in the refinement process, any element may become uniquely labeled
but, since the partitions are refined using only the labels of adjacent elements, those
most likely to be labeled uniquely are the ones connected to elements already labeled
uniquely, which are typically closer to the boimdary. Because of this, the adjustment step
only considers the differing elements that result from a single partition, not all differing
elements. This not only limits the number of elements that must be matched at a particular
step, but is a necessary condition for the convergence of the algorithm, since the labels
assigned to added, deleted, or matched elements during previous iterations have already
been used to further partition the circuits. The argument in favor of this approach is that
if a differing element could not be matched with any other differing elements from its
own partition (which are typically at the same topological distance from the boundary),
then it is unlikely to be matched with a differing element from a partition whose elements
are at a different topological distance from the boundary. This can be best understood
by considering the initial transistor partitions: if, for example, a p-transistor could not be
matched with any other p-transistor (in its own partition) then it would make no sense
to try to match it with a transistor from the n-transistor partition. Although a more
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sophisticated matching algorithm that considers all possible matchings, such as those
described in [29], could have been used, the advantages yielded by such methods might
be negated by the additional overhead. Furthermore, since the circuits are expected to
be different, it is not clear that a more sophisticated algorithm would produce a better
match. The current implementation is simple, fast, and has been adequate for all our test
cases.

When the refinement process finishes, it will have produced three sets of nodes and
transistors: matched, added, and deleted. The final step of the comparison, transforma-
tion generation, examines these sets and generates the corresponding network modifica-
tion commands. The sets are examined in the following order: added-nodes, deleted-
transistors, matched-transistors, added-transistors, deleted-nodes, and matched-nodes.
This order guarantees that an added node has already been created before connecting any
transistors to it, and that a node is deleted once there are no more transistors connected to
it. For added or deleted elements, no additional processing is needed; the corresponding
command is simply issued. Matched elements, on the other hand, need to be compared
with their counterparts to determine if any of their features have changed, as described
below.

For matched nodes, their parasitic capacitance and hierarchical name are compared;
if either is different, the appropriate command is issued. For matched transistors, their
size, layout location, and terminal connections are compared; if either is different, the
appropriate command is issued. Note that some of these comparisons do not represent
electrical changes, such as the name of a node or the swapping of a transistor’s source-
drain terminals; they are nonetheless needed to maintain the flat network consistent with
its layout.

A simple example of the circuit comparison process is illustrated in Figure 3.18. In
the illustration, the greek letters represent the unique labels assigned by the comparison
algorithm; the tables on the left side show the elements being compared along with their
signatures, which are formed by concatenating the labels of their neighboring elements,
and use the following syntax: “labely,q. .. ./labelyource drain -+ "

In the initial partition, every pin is assigned a unique label, and the remaining nodes
(x, y,.m, n, and p) are assigned label ¢ and placed in the same node partition. Transistors
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1° Transistor Refinement:

matched added
Tl T4 | 81 | 85 T1eS] &= S3 «0
W/ao | dlae | x/oh | dloe T46>S5 <X
82 <A
T2 | T3 | T5 | S2 | $3 | 84 | S6 | S7 gﬁgie_u
X0 | 8180 | o/ed | x/00 | 8100 | 8/BY | 0o | d/ed

T={T58S6 S7} «<p

1° Node Refinement:

matched added
X I y ' m I n I P xem <1 p«w
xp/mh | /App | kpp/mA | /ABp | /6pp yon <0
______________________________________________________________________________________________ N={)
2°% Transistor Refinement: ned wdded
matc (4
TS | S6 | 87 T5686 <& $7 ¢V
T/ev |1:/£u |1/£m .

Transformation Generation:
added-nodes — create new node p
added—-transistors — add transistor §3 (g=D s=y d=p)
add transistor §7 (g=x s=A d=p)

matched—transistors:
T1 | S1 T2 | S2 T5 | S6
Yot | xlot X/TV | /T T/ev | 1/e0
T4 | S5 T3 | S4
P L D —= 1 Y7 — move source( T3 ) fromx to
Tloe | T/oe o/Bv | 8/Bw P

Figure 3.18: A circuit comparison example.
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are divided according to type, and placed in the corresponding partition.

In the first iteration, four pairs of transistors have identical unique signatures (T1-S1,
T2-§2, T3-54, and T4-S5) and can thus be matched directly. Of the remaining transistors,
T35, S6, and S7 have the same signature, which results in a new partition. This leaves
S3 as the sole differing transistor, so it is placed in the set of added transistors. The
new labels assigned to the transistors are then used to refine the node partition N. This
partitioning, however, does not yield any exact matches (identical pairs of signatures) so
the algorithm tries to match diff.ia ={x y} with di ffne, ={m n p}. Since §(x, m) = i,
nodes x and m are very similar and can be matched. Likewise, y and n are matched
since 6(y, n) = 1. Note, however, that since 6(y, p) = 1, the algorithm could just as
well have matched these two nodes. It is not difficult to verify that had it done so, the
next transistor refinement would have matched T5 with S7 instead of S6, yielding an
equivalent set of transformations. After matching node x with m, and node y with n,
a single unmatched node (p) remains in the partition so it is placed in the set of added
nodes. At this point the node partition (V) becomes empty.

In the second iteration, transistors T5 and S6 have identical signatures and can be
directly matched. This results in S7 to be added to the set of added transistors, and leaves
the transistor partition (T) empty. During the transformation generation step, commands
are generated to create new nodes for every node in the added-node set (node p), and
new transistors for every transistor in the added-transistor set (S3 and S7). Finally, the
signatures of every pair of matched transistors are compared; since transistors T3 and
S4 differ, a command must be issued to move one of its terminals so as to leave both

transistors with identical signatures.

3.5 Broken Connections

The final step of the incremental extraction is to process the broken connections at the
boundary of the modified regions. As mentioned in Section 3.4.4, these modifications
are simply recorded when comparing the circuits, their actual processing and the issuing
of the corresponding network modification commands is postponed until all the modified

regions have been compared.
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Each broken connection record specifies the layout location of each of the two nodes
to be split and the difference in capacitance between the original node and the two split
nodes (taken as a single node). This capacitance is needed because a node may appear to
have been broken in some modified region, yet still be connected in some other section
of the layout. If this is the case then the node is not split, but its capacitance may still

need to be adjusted.

Processing a broken connection entails tracing the two nodes in their entirety, ex-
tracting, for each node, the transistors connected to it, its parasitic capacitance, and its
name. Since a node may be broken into more than two nodes, some of its new branches
may have been recorded several times. To avoid tracing these branches more than once,
the broken connections are processes in two steps. In the first step, all nodes recorded
as broken are traced, marking every tile that belongs to a node with the corresponding
node. Before tracing a node, these marks are examined to determine ‘whether the node
has already been traced. In the second step, the resulting nodes are examined, the differ-
ences are determined, and the corresponding network modification commands are issued.
Since the layout is hierarchical, a node consists of one or more hierarchical nodes inter-
connected by tiles that abut or overlap connecting tiles of other cells. To trace a node, all
its hierarchical nodes need to be found. This is done by finding an initial tile that corre-
sponds to the broken node’s recorded location; the hierarchical node that corresponds to
the tile is extracted and placed into a pending hierarchical node list. Hierarchical nodes
are then processed one by one until none remain in the list. Each hierarchical node is

processed in five steps:

1. Check to see if this hierarchical node has already been extracted. If it has then use
the extracted information in the following steps; otherwise trace the node at this
level of the hierarchy to obtain its parasitic capacitance, the transistors to which it is
connected, and its hierarchical name. While tracing the node, every tile connected
to the node is marked with the corresponding node.

2. Add this hierarchical node to the list of nodes composing the overall node, add
the capacitance of this hierarchical node to the overall node’s capacitance, and
increment the transistor count of the node by the number of transistors in this
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hierarchical node.

3. If this hierarchical name is a “better” name than the previously obtained name for
the node then set the name of the overall node to this hierarchical name. The
following rules determine what constitutes a better name?:

Choose: a user-defined name over a machine-generated one.
Otherwise the name with the shortest hierarchical path.
Otherwise the shorter name.

Otherwise the smaller lexicographical name.

4. Search other cells that abut or overlap the current cell looking for tiles electrically
connected to any of the tiles in this hierarchical node.

5. For each tile found above, determine the tile’s hierarchical node (as in 1 above).
If the hierarchical node is not yet part of this node then add that node to the list
of pending hierarchical nodes. In addition, adjust the overall node’s capacitance
by subtracting the capacitance overestimated by the hierarchically overlapping or

abutting tiles.

After tracing every broken node, all nodes that were broken from a single original node
are grouped together. Each such group is then examined to determine the modifications,
as follows: if the node consists of a single node then the node was not broken and only
its capacitance (and perhaps its name) may have to be changed. Otherwise, find from
the NV broken nodes, the node with the largest number of connections N,q,. For Np.z,
issue only the commands to set the node’s new name and capacitance, if needed. For
the remaining N — 1 nodes, issue first the command that creates a new node N;; then,
for each transistor terminal connected to the new node issue a command to reconnect the

transistor’s terminal from node N,... to node N;.

3In a hierarchical layout, a node will have as many different names as the cells in which it appears. In
order to limit the amount of memory needed to store all such names, when Magic flattens the network, it
produces a single, unique name for every node. The rules described above will generate the same name

as Magic’s circuit flattener.



CHAPTER 3. INCREMENTAL CIRCUIT EXTRACTION 110

3.6 Name Resolution

To apply the transformations, the network modification commands must address existing
nodes and transistors in the network. This requires finding for every element in the
network a unique name that is understood by the tool that will process the commands.
For transistors this poses no particular problem since their layout location is unique and
easily established. For nodes, however, obtaining their names can be quite involved as
it requires tracing all hierarchical nodes that make up the node, a process similar to the
one used to process broken connections. If this process were to be applied for every
command that addresses an existing node, the extractor would spend much of the time
tracing nodes throughout the layout. This is particularly critical for very long nodes that
traverse much of the layout, such as clocks or power supplies.

This limitation can be easily overcome by addressing a node using any of the tran-
sistors to which the node is connected. A node can thus be addressed using the location
of any transistor to which the node is connected, and the type of transistor terminal as-
sociated with the connection. This still requires tracing the hierarchical nodes, but the
process can be stopped as soon as a transistor is found, and typically requires tracing
only one cell. Furthermore, since the extracted circuits already contain some transistors,
these transistors can themselves be used to address the nodes to which a transformation
is to be applied, without having to trace any part of the layout.

Since the modified regions are processed one at a time, some of the transistor locations
or terminal connections may have already been modified by the transformations due to
previously processed regions. This creates a problem for addressing nodes, since the
transistor properties used to address a node (as found in the old layout) may have been
invalidated by some previous transformation. Note that this same problem exists even if
the actual node names were to be used, since they can also be altered. To establish which
properties are no longer valid, the extractor would have to determine how previously
generated n:ansformations affect the elements of other regions, which, unfortunately,
requires knowledge about the entire network. This problem is solved by recognizing
that the flat network is already being maintained by the verification tool that applies the
transformations. Thus, before issuing the transformations, the extractor issues a series of
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commands to associate a simple label (a number) with every node that will be addressed
by some transformation. These labels provide a handle to existing nodes (in the old
network), regardless of how the node is later modified by the transformations. After all
regions have been processed, but before processing the broken connections, the extractor
issues the network modification commands using the previously generated labels instead
of the node names. A detailed description of the network modification commands is

given in Appendix B.

3.7 Performance

A meaningful analysis of the complexity of the incremental extractor is difficult, for two
reasons. First, each step of the process depends on very different types of information, so
there is no single metric upon which to base the analysis. For example, layout flattening
and circuit extraction depend primarily on the number of tiles found in the modified
region, pin extraction and comparison depend on the shape and size of the boundary
region, and circuit comparison depends on the size and topology of the extracted circuits
as well as their differences. Second, although worst case time bounds for some of
these operations can be derived, they are not particularly meaningful since worst-case
behavior never occurs in practice. For example, a worst-case time bound of O(n? + 12)
for comparing two circuits with n nodes and ¢ transistors is not difficult to derive, but
it never occurs in real circuits; typically, unique labels propagate quickly through the
circuits, allowing the comparison to be performed in linear time.

To analyze the performance of the incremental extractor, we carried out several ex-
periments on the layout of the cache controller from the MIPS-X microprocessor{21]. We
chose this particular layout because of its nearly-constant high density — a sizable part
of the layout consists of various types of very compact memory cells such as associative
memory, valid bits, etc. Since the number of both tiles and transistors per unit of area is
almost constant throughout the layout, the performance of the incremental extractor can
be characterized by the area of the modified regions.

To analyze the impact that layout and circuit sizes have on the speed of the extractor,
we forced the extractor to incrementally extract differently sized portions of the layout by
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marking several areas of the root cell as modified but without actually altering the layout.
Since the layout was unchanged, none of the tests produced any modifications. Table 3.1
lists the sizes of the extracted circuits and the running times of the various operations.
The rightmost column shows the time required to extract and flatten the entire circuit
using Magic’s hierarchical extractor. The bottom row gives the ratio between the time
for incremental extraction and the time for hierarchical extraction plus flattening®. The
times shown in Table 3.1 are plotted in Figure 3.19.

As shown in Table 3.1, the correlation between layout area and circuit size is rea-
sonably good; it breaks down only for the largest areas (> 60%). This is because these
larger areas contain parts of the less dehsely populated control circuitry that is located on
the periphery of the layout. The data shows that until the changes comprise 40% of the
layout area, incremental extraction has a clear and consistent advantage over hierarchical
extraction plus flattening. For larger layouts, we expect the advantage to increase since
the changes remain relatively small while the unmodified section grows larger. Note
that even for the largest area, which contains 93% of the circuit, incremental extraction
took only twice as long as the conventional extractor. This is hardly surprising since the
incremental extractor has to flatten and extract the circuit twice and, in addition, compare
the two rather large circuits.

An important observation is that the runtime of each of the major steps of the in-
cremental extractor depend linearly on the size of the modified area (see Figure 3.19).
Figure 3.20 shows the fraction of time required to perform each operation of the incre-
mental extraction, as a function of the size of the modified area. For small areas, the time
is dominated by reading the modified cells and building the old version of the design
tree. This operation takes the same small amount of time (about 40ms) in every test
since all of them built the same design tree in which only the root cell had to be read in.
For changes smaller than 0.5% of the total area (those with less than 50 transistors), the
circuit comparison requires very little time because the extracted circuits consist almost
exclusively of boundary elements. This is no longer true for the test that extracts 0.5%
of the area so the circuit comparison time shows a marked increase, taking roughly half

4To make a fair comparison, Magic’s flattening time does net include the time to write the flat netlist,
only the time to read and flatten the extracted circuit hierarchy.
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Incremental Extractor Magic

% of Area Modified |0.02] 0.1] 0.5] 5.0] 15.0] 30.0] 45.0] 60.0] 75.0] 100.0

Transistors 1] 2| 19] 586] 2230 4711 7420[ 9628] 12008|13014

Nodes 4] 6| 30| 342| 1098| 2178| 3388 4236] 5145| 5425

% of Circuit 0.02[0.04]0.26] 5.0] 18.0] 37.4| 58.6] 752 93.0]100.0
Boundary Nodes 4] 6] 27] 132] 200] 362[ 520] 539] 387] -
[ [Tree Build | 39| 43] 43] 47] 43| 39] 43 36] 43 -
Region Coalesce| 4| 2| 2| 2 3 2 1 4 4! -

Flatten 4] 20] 113]2821]10468(22624(36013[46546] 58730]21100

Time (g ract 11| 11| 71]1805| 6839|15186(24084[32928| 43259]40600
(m$) | pin, Compare 4| 4| 7] 73] 247] 308] e676] 731 711| -
Circuit Compare| 8| 4| 230|1250] 3351] 5898| 9370[11573| 19764] -

| Total 70| 84]466]599820951|44147|70187|91818|122511|61700

Speedup 881[735[132] 10] 3] 14] 088] 0.67] 05 10]

‘Table 3.1: Incremental extraction times for various modified areas
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Figure 3.15: Incremental extraction running times as a function of area size.
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Figure 3.20: Relative Incremental extraction running times.

of the total time. However, as the size of the modified area increases beyond 0.5%, the
time required by the circuit comparison decreases and remains fairly constant at about
12%-15%. For large areas, the extraction time is dominated by flattening the modified
regions; all the remaining steps take about half of the time. This suggests that substantial
speed improvements are possible by extracting the modified regions hierarchically. Do-
ing this is not an easy problem, however. As described in Section 3.4.3, when arbitrary
cell overlaps are allowed, the modifications within a cell interact with the modifications
of other overlapping cells. The circuit that corresponds to the modified region and its
boundary cannot be easily determined by examining only the modified areas within a
cell.

Except for circuit comparison and processing of broken connections, which depend
on the circuits’ topology, all other operations performed by the incremental extractor
depend primarily on the size of the modified region and the density of the layout within
it. Given the near-constant high density of the layout from which Figure 3.19 is obtained,
we can expect the time requirements of these operations to depend linearly on the size
of the modifications.

To compare the speed of the incremental extractor with Magic’s incremental, hierar-
chical extractor, we performed a second set of tests in which the layout was subjected to
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various random changes. Since Magic is a hierarchical editor, design changes were intro-
duced at different levels of the hierarchy; thus, Magic’s extractor only had to re-extract
the modified cells and their ancestors. Also, because some of the modified cells were
instantiated multiple times, a single change sometimes resulted in multiple modifications
to the flat network. A change was generated by selecting an arbitrary cell and randomly
applying one of the following changes:

1. Delete a single transistor and short the nodes connected to its source-drain terminals.
2. Add a new transistor between three existing nodes.

3. Add a new transistor, delete another transistor, and short two nodes.

4. Break a connection between two nodes and reconnect them to some other nodes.

5. Add two transistors, delete another two transistors, and reconnect their source,
drain, and gate terminals to some other nodes.

6. Merge two transistors and short their gate nodes, remove another transistor and
reconnect the nodes connected to its source-drain to another pair of nodes.

7. Split a node and add a CMOS inverter between the two broken wires.

8. Delete a CMOS inverter and short the nodes that were connected to its input and
output.

After applying each of the above changes, the network was updated using the two
extractors: the incremental extractor to generate the corresponding modifications to the
flat netlist, and Magic’s hierarchical extractor to extract the modified celis (and their
ancestors) and flatten the hierarchy into a flat netlist. Table 3.2 gives the circuit sizes
and running times for the two extractorsS . In the table, “Hierarchical Speedup” is the
ratio between the time to extract the modified cells plus the time to flatten the hierarchy,
and the time to extract all the cells plus the time to flatten the hierarchy; “Incremental
Speedup” is the ratio between the time to incrementally extract the modifications and the

5The circuit comparison times seem relatively higher here because they include the time to determine
the actual node names.



CHAPTER 3. INCREMENTAL CIRCUIT EXTRACTION 116

Test 1 2 3 4 5 6 7 8

Cells Extracted 7 4 6 8 4 5 5 5

M [Transistors Extracted 5 50 45 20 64 8 50 50
A Extract 32100{17800(21000}21800{19400{25400{17800( 17800
G | Time | Flatten 18900)19400(19200{19400{ 19500} 19400 19400| 19400
I | (ms) [Output Netlist 5610 4830] 5820 6850| 6110| 4230| 6800| 6800
C Total 56610)42030|46020{48050{45010|50030|44000]44000
Hierarchical Speedup | 1.21| 1.63| 1.49} 1.42| 1.52| 1.37] 1.55] 1.55

% of Area Examined | 0.24| 0.01} 0.02{ 0.01| 0.01| 0.03] 0.02{ 0.02

I |Number of Transistors | 512 1 16 0 3 48 6 6
N |Number of Nodes 5632 11 96| 448 71 336 11 11
C [Number of Changes 1536 3 40 32 8 96 4 6
R Tree Build 50| 180( 109 86 98 43 46 47
E Region Coalesce 75 2 4 11 4 8 4 3
M Flatten 2477 71 103; 255 19| 309 12 11
E | Time |Extract 690 3 12 23 10 76 12 12
N Pin Compare 1117 4 40 81 4 77 4 8
T | (ms) [Circuit Compare| 7931 133| 806( 1038| 801| 287 12 35
A Broken Nodes 0 0 0] 1895 0 0 31 0
L Output Changes 43 1 4 15 1 12 4 1
Total 12383 330} 1078| 3404| 937| 812| 125| 117
Incremental Speedup | 4.6 |127.4| 42.7 | 14.1 | 48.0 | 61.6 | 352.0|376.1

Table 3.2: Comparison of incremental and hierarchical extraction plus flattening.

time to extract only the modified cells plus the time to flatten the hierarchy (the “Total”
row in the Magic section).

Magic’s hierarchical extractor is effective in reducing the number of extracted cells to
only a few (out of a total of 64), each containing a relatively small number of transistors.
However, since it always needs to extract the root cell, the extractor spends most of the
time computing interactions between cells and subcells, even though most of them were
not touched by the modifications. Furthermore, the time to flatten the hierarchy almost
negates the speedup gained by hierarchical extraction; the time to generate the flat netlist
by extracting only the modified cells is only marginally better than extracting all the cells
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in the design. The incremental extractor, on the other hand, is about 60% slower than
Magic’s extractor when analyzing the same area; nevertheless, because it only examines
a very small portion of the layout, it can reduce the time to update the flat network an
average of 128 times. With the exception of test 1, all other extractions took less than
four seconds, providing almost immediate feedback. Even test 1, which modifies the
basic memory cell used many times throughout the circuit, is still 4.6 times faster than
hierarchical extraction.

Although the changes applied in the experiment are not real modifications in the
sense that they correct no errors, nevertheless, they are representative of the types of
small changes and adjustments that are likely to occur during the design. Note that since
incremental extraction only examines an area proportional to the size of the change, a
similar change will take the same amount of time regardless of the design size. For
example, the time to update the network following a change to add an inverter (as in test
7) will be roughly 0.12 seconds on any design. The only operation that may, in the worst
case, depend on the size of the overall design is processing broken connections, since it
may have to traverse the entire layout. Even in such a situation, however, incremental
extraction may be no worse than hierarchical extraction plus flattening. Chapter 4, which
presents a more realistic test of the capabilities of the incremental extractor, analyzes one
such situation.

To determine the impact that circuit differences may have on the speed of the circuit
comparison, we incrementally extracted the same non-trivial portion of the layout with
and without modifications. The modified layout was subjected to the same changes as
in the previous test but, in addition, the entire area of the modified cell was marked as
modified. For the unmodified version, the area of the corresponding cells were marked
as modified but no changes were applied. Marking the entire area of a cell sometimes
resulted in a modified region much larger than the cell itself; this occurs when different
instances of a cell overlap or abut one another, as in the memory arrays. Table 3.3 shows
the circuit sizes and the time taken by the circuit comparison of the unmodified (same)
and modified (different) layouts. In the table, “Pins” is the number of boundary nodes,
and “Changes Found” is the number of network modification commands generated when

comparing the differing circuits.
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OId Circuit | New Circuit Changes Time (ms) Variance
Test Feti j Noic_s_ Fets | Nodes | Pins | Found || Same | Different | (slowdown)
1 [2560] 2160]2048] 16481136 4224 3523 3531 0.23%
2 .51 601 52 61 39 3 512 512 0.00%
3 72 160 72 152 128 48 1481 1329 -10.26%
4 640 3871 640 387 131 256 372 375 0.81%
5 208 137 | 207 1371 57 2 2699 2859 5.93%
6 97 162 49 114 | 101 157 901 610 -32.30%
7 8 7 10 8 4 11 3 3 0.00%
8 10 10 8 9 5 7 4 4 0.00%

Table 3.3: Circuit comparison running times for the same and different circuits.

The degree to which circuit differences slow down the execution of the circuit com-
parison is minimal. Moreover, when the circuits differ significantly, the comparison can
be even faster than when the circuits are identical. In fact, the tests for which the runtime
variance was greatest were those which ran faster when the circuits were different. The
reason for this is that in those two cases (tests 3 and 6), the new circuit was smaller
than the old circuit so the comparison converged faster, i.e., less iterations were needed
to partition the circuits. The first experiment showed that the time for comparing two
identical circuits depends linearly on the size of the circuit; the last experiment confirmed
that this is also true for circuits that differ. Thus, the incremental extractor is capable of
updating the network in time proportional to the size of the modifications.
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Results

The previous chapters described how to incrementally update the information produced
by circuit extraction and logic, timing simulation. By working in tandem, these two
incremental tools provide a design system whose time requirements throughout the design
cycle are proportional to the size of the modifications. This chapter evaluates the extent
to which this incremental system can reduce the time around the design cycle in a real
design situation.

To realistically test the capabilities of the incremental system, we recreated the last
stages of the design of the MIPS-X procesSor[9]. MIPS-X is a 32-bit RISC micropro-
cessor designed at Stanford University by Mark Horowitz and a team of students. It is
designed in a 2um, two-level-metal, n-well CMOS technology; it runs at a clock speed
of 20MHz, and contains 18,641 nodes and 47,204 transistors!.

To recreate the final stages in the design of MIPS-X, we used the error log in which
the designers recorded the design flaws and corrections that took place near the end of
the design. The system was tested by first reintroducing all the errors listed in the log
and then applying each of the corrections, one at a time. For each correction, the circuit
was re-extracted and re-simulated using both the incremental and the conventional tools.
The MIPS-X error log contained the following entries:

branch-squash : The branch squash state machine starts out in RUN mode. After reset

! Although MIPS-X contains an internal instruction cache, the on-chip cache memory was not included
in our experiments. The transistor count listed above also excludes the cache memory.
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there are 2 undetermined instructions in the pipeline. Since there is no control over
what these instructions are, they can result in unknown side effects.

solution : Change the reset state of the 2-bit state machine to start out in squash
mode. This inhibits the 2 instructions in question from altering any state.

register-read : There is a race between the bit-line precharge and the latch that stores
the bit-line value.
solution : Reduce the size of the register file precharge transistors so the latch

always wins the race.

cache-reset : The reset line for the address tags in the cache controller is connected to
the master reset. To test the cache controller, the values stored in the tags must not
be reset when the chip is in cache rest mode.
solution : Qualify the reset line to the cache controller with the CacheTest signal,
i.e., make CacheReset = MasterReset e Cachelest.

psw-bit : The system/user bit in the Processor-Status-Word was accidentally shorted to
ground during global routing. This results in all instructions executing in the system

address space.
solution : Break the connection to ground.

cache-miss : The CacheTest signal, which allows sequentially reading or writing all
locations of the cache, disables CacheWrite while in cache test mode. This must
be corrected to allow writing into the cache during testing.
solution : Change signal’s logic from CacheWrite = CacheMiss o Cachelest to
CacheWrite = CacheMiss.

address-clock : The multiplexor that selects what gets placed on the address bus (in-
struction or data addresses) is implemented with pass-transistors. The timing of the
select signal is stable on one of the non-overlapping clocks; this causes the address
bus to change during the wrong clock cycle.
solution : Qualify the select signal with the appropriate clock so that the mul-
tiplexor stores the address value for an entire clock cycle, i.e., change the select
signal from AddressSelect = pc/data to AddressSelect = pc/data e clock.
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address-mux : The address multiplexor (which was changed above to become a dynamic
latch) is not restored; this causes the address bus to lose its value during long cycles.
solution : Make the latch static by adding feedback transistors to every bit of the

address bus.

write-glitch : A glitch was found in the memory write signal. This was caused by a
slow signal into a 2-input nand that generates memory writes.
solution : Speed up the signal by appropriately resizing the inverter that drives
the signal.

Extraction times for each correction using the incremental and hierarchical (Magic)
extractors are shown in Table 4.1. As shown in the table, even small changes that require
extraction of only a few cells still take a considerable amount of time using Magic’s
hierarchical extractor. Magic’s incremental-hierarchical extractor does reduce extraction
time but only by roughly a factor of 3 — extracting all the cells in the design took
633.5s, flattening took 94.6s, and generating the output required 40.0s; this yields a
total of 768.1s. In contrast, the incremental extractor only examined the fraction of the
layout corresponding to the actual changes, and reduced extraction time an average of
almost 2 orders of magnitude, from 243.6 to 4.2 seconds. Almost all corrections required
less than 5 seconds to incrementally update the network. The only exception is the
“psw-bit” correction, which required almost as much time as hierarchical extraction plus
flattening. Since the “psw-bit” correction had to break a connection involving one of the
power supplies (the Ground node), most of the time (over 98%) was spent processing
the broken connection. This is not surprising since the power supplies weave around
most of the layout, touching nearly every cell in the design; thus, processing the broken
connection required flattening almost the entire layout but in a much less efficient manner
than Magic’s extractor. In spite of that, incrementally updating the network was still 18%
faster than extraction plus flattening.

The times required to re-simulate the circuit following each correction are shown
in Table 4.2. The simulation was carried out by applying the test scripts supplied by
the designers; the scripts initialized the circuit’s state and then exercised the processor
by running 537 cycles of the Ackerman benchmark. As expected, the time required to
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branch |register| cache cache |address|address| write
Operation | squash| read | reset [psw-bit| miss | clock | mux | glitch

M| Cells Extracted 6 4 2 4 2 4 8 3
A| Extract 112,50 114.80} 109.50| 115.60( 110.80{ 104.60| 109.20| 103.40
G| Flatten 93.70| 94.30| 94.10| 94.20| 93.90| 94.00| 94.40| 93.70
I | Output 40.00f 40.50| 42.30( 39.90| 39.80| 40.10; 39.70| 39.70
C| Total 246.20 | 249.60 | 245.90| 249.70| 244.50 | 238.70 | 243.30 236.80

1[ Transistors 8 | 4 | 6 6 10 12 | 84 6

N| Changes 12 5 11 6 35 22 263 7
C| Tree Build 041 036| 065 035 068 034 039 039
R| Reg. Coalesce 0.01f 000 000; 0.00| 001] 001 004| 001
E( Flatten 008, 0.01| 007 002{ 0.17{ 007 1.77] 0.50
M| Extract 003} 0.01} 001} 001| 0.02f 002 025{ 0.1
E| Pin Compare 002} 001} 001{ 001 0.03] 002| 042 0.01
N| Ckt. Compare 1.74] 2.06| 057| 0.01 1.83] 0.62| 19.04f 2.16
T| Broken Nodes 0.00f 000| 0.00]20844| 058| 0.00{ 000] 0.00
A| Output 002} 0.01| 001 207 0.12] 001 0021 001
L | Total 231 246] 1.32]21091 344 1.09| 2193 3.09
Speedup 106.58 | 101.46| 186.29| 1.18| 71.08|218.99| 11.09| 76.63

Table 4.1: Extraction times (in seconds) for each correctioni of MIPS-X
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Batch Simulator Incremental Simulator
Evalua- | Time Events Evalua-| Time
FIX |Events| tions [(seconds)|evaluate|chk-pnt|stimuli| Total | tions [(seconds)| Speedup

psw
K)?t 6941741804347 1089.8| 304780259583 | 83737(648219| 614019 509.2 2.1
register
read [69417411804350(1084.6] 23846 24806| 21392 70044| 40788| 25.7 42.2
address
clock |693094[1811997|1078.6] 13782| 14833| 9176| 37791| 34147| 16.5 65.4
address
mux 69411111813578(1086.5 84791 7475 4794| 20748] 18221 99| 109.7
branch
squash |647157|1744758| 1065.6 470 600] 889 1959 1090 1.3} 819.7
cache '

reset  {694051(1804249(1083.2 144 2991 1297 1740 231 1.1 984.7

cache
miss (6941081804388 1080.1 284 323 587 555 994 0.6/ 1800.2
write
glitch [693937|1813465)1088.4 325 4991 226] 1050 475 04| 2721.0

Table 4.2: Simulation times for each correction of MIPS-X
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incrementally resimulate the circuit depends more on the locality of the changes than
either the size of the circuit or the length of the test; thus, the corrections that had little
effect on the overall circuit run extremely fast under the incremental simulator.

Some of the corrections dealt exclusively with exceptional or testing conditions. For
example, “cache-reset” and “cache-miss” were related to a test feature that was not used
during the test. Nonetheless, the circuit had to be resimulated to ensure that these changes
did not introduce other errors. Simulating these corrections incrementally resulted in
dramatic improvements in runtime (3 orders of magnitude).

Other errors were localized to a particular portion of MIPS-X. For example, “register-
read” is constrained to the register file, and “address-clock” and “address-mux” are con-
fined to the address generation module. These corrections modified one or more of the
system-wide clocks, thereby affecting portions of the circuit that are exercised on every
cycle. Nevertheless, incremental simulation still reduced simulation time substantially.

The “branch-squash” correction affects a considerable portion of the processor since
it must undo the work performed by the two unknown instructions. However, it is limited
to a few cycles following the reset sequence; this locality in time also results in significant
speedup. Similarly, the “write-glitch” correction is very close to a primary output so the
changed nodes affect a small number of stages; these stages were only active during
memory-write cycles, which occurred infrequently during the test. This correction thus
exhibits locality in both space and time, resulting in a very large speedup.

The “psw-bit” correction affects a significant part of the processor throughout the
simulation: the program counter, address generator, instruction cache, and instruction
decoder. This requires a large portion of the circuit to change state. Furthermore, since
the correction affects all instructions, it does not exhibit locality in time. Even in this
situation, incremental simulation was twice as fast as conventional simulation. The key
observation is that when the effects of a modification are localized in either space or time
(or both), incremental simulation can update the circuit very fast, often in a fraction of
the time required by a conventional simulator.

Table 4.3 compares the design cycle turnaround time for the MIPS-X corrections.
The table shows that for relatively small changes, incremental techniques show a clear
and consistent advantage over batch techniques. For this particular set of corrections, the
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BATCH INCREMENTAL
| Correction Extraction | Simulation | Total |Extraction | Simulation | Total

psw-bit 249.70 1089.8 | 1339.50 21091 509.2 | 720.11
address-mux 243.30 1086.5 | 1329.80 21.93 99| 31.83
register-read 249.60 1084.6 | 1334.20 2.46 25.7 | 28.16
address-clock 238.70 1078.6 | 1317.30 1.09 16.5| 17.59
cache-miss 244.50 1080.1 | 1324.60 3.44 0.6 4.04
branch-squash 246.20 1065.6 | 1311.80 2.31 1.3 3.61
write-glitch 236.80 1088.4 | 1325.20 3.09 0.4 3.49
cache-reset 245.90 1083.2 | 1329.10 1.32 1.1 2.42
Total (seconds) 10611.50 811.25

(3 hours) (13 min)

Table 4.3: Design cycle tusizaround time for MIPS-X corrections.

incremental tools reduced the entire design cycle time from 3 hours to just a few minutes.
Moreover, while the conventional tools required about 22 minutes to extract and simulate
each correction, the incremental tools extracted and simulated every correction (except
one) in well under one minute, providing almost instantaneous feedback to the designer.

An important consideration is that the work on MIPS-X was done on machines that
were 15 times slower than the machine used to collect the data, so the large differences
in time would have been that much more significant (on those machines, each correction
would take an average of 5 hours 30 minutes using the batch tools versus 3 minutes using

the incremental tools).
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Conclusions

VLSI design is an iterative process whereby the same design is repeatedly modified
and verified. Yet, regardless of how small the modifications or how large the design,
most existing design tools operate on the entire design. For large designs, the time to
verify an entire chip becomes a bottleneck in the design cycle, which leads to lower
designer productivity and higher design costs. Unfortunately, attempts to reduce this
time often result in a trade of accuracy for speed. This thesis presents another alternative:
incremental techniques. Incremental tools can reduce verification time, but rather than
sacrificing accuracy, they do so by tracking'the designer’s changes and making effective
use of the information gathered during previous cycles.

This dissertation describes incremental algorithms to perform two of the most time
consuming tasks in the design cycle: circuit extraction and logic timing simulation. Both
algorithms take advantage of the fact that most design changes are relatively small and
often affect only a fraction of the design. The ability to track design changes and analyze
only the modified sections of the design provide our incremental algorithms with their
fast response.

The incremental simulator maintains a history of past circuit activity in order to
resimulate only the parts of the circuit that, as a result of the design changes, deviate from
the history. Augmenting a conventional event-driven mechanism to include check-point
and stimulus events allows the incremental simulator to use the same evaluation models
employed by Rsim; it is thus able to reduce simulation time without sacrificing accuracy.

126



CHAPTER 5. CONCLUSIONS 127

The ability to track and resimulate only those stages whose behavior deviates from the
history gives the incremental simulator its fast response. Keeping track of which stages
deviate from their history, however, results in additional overhead. Our experiments
indicate that in the worst case, which occurs when the entire circuit is resimulated, our
incremental simulator can take up to 38% longer than Rsim; as long as less than 75%
of the circuit is resimulated, the incremental simulator is faster than Rsim. Since few
changes affect such a large portion of the circuit, incremental simulation should be the
method of choice for most changes.

The incremental extractor minimizes extraction time by keeping track of the layout
areas that are modified by the designer during an editing session. It extracts the circuits
that correspond to the layout before and after the modifications, compares the two cir-
cuits, and reports the differences as network modifications. To compare the circuits, the
extractor makes use of the information available at the boundary of the modified layout.
This enables the comparison to quickly determine the necessary network transformations
by using a fast graph partitioning algorithm in order to find a near-isomorphism. Our
experiments show that the comparison algorithm is fairly insensitive to circuit differences
and also that the time required to incrementally extract the differences depends linearly
on the size of the modified area; the result is a tool that can update the network in a
time proportional to the size of thc changes. However, extracting two versions of the
circuit results in additional overhead which makes the extractor faster than hierarchical
extraction plus flattening only as long as less than 40% of the layout is modified. Since
such a sizable part of the layout is rarely modified, the extractor should be faster for most
changes. _

Implementing the incremental simulator, Irsim, required major changes to Rsim. The
data structures that describe the circuit were modified to enable network changes, and the
event manager was modified to perform history recording. In testing out the incremental
simulator we found a number of errors in the switch-level models used by Rsim, includin g
a problem in which the outputs depended on the order of evaluation. Since during
incremental simulation one needs to be able to regenerate each output, these problems
caused the incremental simulation to take longer than necessary (it also made it extremely
difficult to verify the results). We therefore decided to incorporate into /rsim the improved
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simulation models developed by Horowitz and Chu[11, 10, 22]. These changes greatly
enhanced the accuracy and usefulness of Irsim, which is currently in use at several
hundred academic and industrial sites.

Once the incremental system was assembled, we tested it on several corrections to
errors that actually occurred in the design of a large VLSI project. The incremental
systern was able to reduce the entire verification process from 3 hours to a few minutes.
For most of these corrections, the incremental system took only a few seconds, providing
near-instantaneous feedback on the quality of the design, and decreasing turnaround time
by an average of two orders of magnitude.

Although the system is operative now, there are many changes and extensions that
would enhance its utility. The biggest impediment to incrementally simulate a large design
is the amount of memory needed to maintain the history. Although this limitation can be
overcome by splitting a large test into several smaller tests, this solution is both clumsy
and error prone. Another solution, selectively storing part of the history (as suggested
by Choi[8]) is not an easy problem, however. Because there is no way to determine
a-priori which parts of the history will be needed during a subsequent resimulation, there
is no realistic information on which to base the decision regarding what parts of the
history to maintain. Furthermore, maintaining the complete history provides Irsim with
the ability to move backwards in time as well as to incorporate a graphic analyzer that
allows interactive display of any node in the circuit. This analyzer is extremely helpful,
and greatly improves a designer’s ability to understand the behavior of the circuit. Storing
only part of the history would limit the usefulness of both of these features.

Another enhancement to the incremental algorithm that merits further research would
be the ability to maintain a stage’s composition and incremental state throughout the
simulation, and rather than rebuilding the stage for each event, simply update it incre-
mentally. However, this is not a trivial optimization due to the presence of current loops
within a stage.

There are several areas in incremental extraction that also deserve more attention. The
two biggest problems in incremental extraction are the inability to hierarchically extract
the modified parts of the layout, and the unbounded time needed to process broken
connections. Both of these problems are hard to overcome. Extraction without flattening
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is quite difficult unless cell overlap is severely restricted or hierarchical connections are
explicitly declared; such restrictions make the editor harder to use and are thus annoying
to designers. There is also no obvious approach to determine the composition (devices,
parasitics, and name) of broken nodes without traversing the nodes in their entirety.

Additional work to the interface of the two tools would also make them easier to use.
The current prototype implementation of the incremental extractor is somewhat clumsy;
the user must incrementally extract the changes before saving the modified cells, and
must always save them after having extracted the changes. If this order is not preserved,
the boundaries of the modified regions may not be the same and will surely lead to
catastrophic results. It would also be desirable to provide for a smoother data transfer
between the two tools; currently this is done through intermediate files that create the
potential for human error.

Incremental techniques can be applied to many other processes that are iterated sev-
eral times, each time making minor changes. One such process is fault simulation, which
can be regarded as a process that repeatedly inserts minor changes to the circuit and sim-
ulates their effect. Appendix C describes a prototype implementation of a fault simulator
based on this concept. Although incremental techniques can be effective in reducing the
runtime of these processes, there is some additional overhead involved in using these
techniques. The cost of analyzing the entire design must be carefully weighted against
this overhead in order to amortize this cost and maximize the benefit. In our system,
this additional overhead is handsomely paid off by reducing the cost of extracting and
simulating the entire design, making it possible to speedup the process by two to three
orders of magnitude. In the future, as designs become larger and more complex, every
step of the design cycle will have to be analyzed in order to speed the process. The work
presented in this dissertation provides an understanding of the types of tradeoffs that will

have to be considered in that analysis.



Appendix A

Stage Analysis

Section 2.2 describes how Rsim partitions a circuit into stages. This section describes
the computations involved in the evaluation of a stage: logic level calculation, delay

estimation, and charge-sharing analysis.

A.1 Final Value Computation

To compute the final (or steady-state) value of a node, the simulator must solve for the
voltage in the resistor network formed by the stage containing the node. This voltage
can be determined by using Kirchoff’s current-voltage laws. If, however, the stage
contains transistors with unknown (X) gate levels, the existence of a single solution is
not guaranteed; since these transistors can be either on or off, they induce different circuit
configurations, each one resulting in a different voltage for the same node. To uncover
all possible solutions using Kirchoff’s law's would require an exhaustive evaluation of
the stage by trying out all possible combinations of transistor states. This is not only
inefficient but unnecessary since the logical state can be determined from the voltage
range comprising all possible solutions by simply checking that this range lies within a
single logical state. Several algorithms have been developed to approximate this voltage
range. One of them is Terman’s algorithm, which characterizes the voltage range of a
node by its Thevenin equivalent. This scheme, however, suffers from various problems,
including an evaluation order dependency that makes it impossible to obtain the same

130



APPENDIX A. STAGE ANALYSIS 131

results during incremental simulation.

The current version of Rsim uses a resistor-divider model developed by Chu[11].
This model characterizes the effect of the network on a particular node by its equivalent
resistance to the two power supplies: Ry, its resistance to 1, and Ryou,, its resistance to
0. These two resistances are, in general, intervals (R_, R..) since the equivalent transistor
resistances from which they are derived might themselves be intervals. The two resulting
intervals form a resistor divider; the voltage between them represents the output node’s
voltage range. The final logic state is obtained by comparing the bounds of this voltage
to the thresholds:

0 if Riown+/(Riownt + Rup-) < Viow
Final value = 1 if Rdown_/(Rdown- + Rup+) > Vhigh
X otherwise

For example, in the circuit for a static CMOS register of Figure 2.3, one stage
containing nodes N1 and N2 includes two transistors with an X gate level: T6 and T7.
The simulator must determine the state of nodes N1 and N2, which are undetermined at
this point. The corresponding resistor divider model and the equivalent resistances that
Rsim calculates are:

Ryl= [Rs+ R, o) Ryp2= [Rs,o0]
Riwnl = [ZEHEL R Rapun2 = [N R, + By

[R6 oo] Ryl Ryp2
[R7 oo] Raownl R gown2

Figure A.1: Final value solution for static CMOS register circuit

To allow incoming values to be stored at node N2, this circuit is designed such that
the input transistors (T1, T2 and T3) have a stronger drive than the feedback transistors
(T6 and T7). To guarantee proper operation of the example shown above, in which a 0
is being stored, the following conditions are derived from the resistor-divider model:
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R,
m < Vlow for node N1

Ryt R
‘i SView  for node N2

A.2 Delay Estimation

If a node’s final value differs from its present state, the simulator must determine how
long it will take for the node to reach the new level. The approach adopted by Rsim
is to estimate the node’s waveform by modeling the output of a stage by an equivalent,
single-capacitor, single-resistor circuit; the waveform of the equivalent circuit is a single
exponential and its time constant can be used to determine the delay. The basic idea
is straightforward; since Rsim uses resistors to model conducting transistors, a stage
represents a resistor-capacitor (RC) tree: a network of floating resistors and grounded
capacitors driven by a voltage source. An RC tree is a linear system, and as such, its
behavior, as a function of time, is a sum of exponentials. Since the output waveform of
a digital circuit is often dominated by the slowest of these exponentials, i.e. the lowest
frequency pole of its transfer function, a single exponential is a good approximation for
the waveform.

To determine the equivalent circuit, Rsim uses the single-time-constant model devel-
oped by Rubenstein-Penfield-Horowitz[39]. Their model is derived by matching geomet-
ric waveform characteristics — the boundary conditions and the area under the voltage
waveform — between the RC tree and the equivalent circuit. The area under an exponen-
tial waveform is simply its time constant; the corresponding area for a node in an RC tree
can be easily determined from the topology of the circuit, as follows. Assume that one
of the nodes in the tree is grounded, and that all the capacitors are initially charged high;
the voltage, V., at any node e is equal to the voltage drop across the resistors between
e and ground. This voltage can be found by replacing each capacitor by its equivalent
current source, i, = —Cp%%, and then using superposition to add the contribution of

di °
each current source on node e:

dVi

Ve= ;Rkeik = — zk:chCkW

where n is the number of nodes in the stage, i, represents the current due to the capacitor
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Ci at node k, and Ry, is the resistance to ground shared by nodes e and k. The area
under V, is then given by

Tp, = /0 Vidt = ;Rk,C’k

The time constant, 7p,, is equal to the centroid of the circuit’s impulse response; a
quantity used by Elmore[16] to define the delay through a linear amplifier, hence known

as Elmore’s delay.

Computing 7p, can be done by a depth-first traversal of the tree, rooted at the output
node e, and accumulating the resistance-capacitance products on the path to the driving
node. To exemplify this, assume that in the circuit of Figure A.2, node Clk has just
transitioned from O to 1, causing node N2 to transition from 1 to 0. To estimate its delay,
Rsim calculates the following time constant for node N2:

TDx, = R2C1 + (R2 + R3)C,

Rg
R
Out __ N1 . N2
()]
R, ICI ICz

Figure A.2: Time constant computation for a static CMOS register circuit

The delay is also affected by the rate of change of the input signal. Horowitz[22]
has modified Rsim to account for the effects of input slope on the output. He applies
an input ramp with rise-time T},, and models the transition of a stage’s output in two
parts. Initially, the output current is a linear function of the input voltage; this produces
a quadratic output voltage waveform, V = f(¢2). Once the output voltage reaches the
voltage drop across the output resistance, the current becomes independent of the input
voltage and depends only on the intrinsic time-constant, 7p, of the output; this produces
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an exponential output voltage waveform, V = f(e!). Depending on which of these two
waveforms dominates the output transition, the delay can be approximated by:

N \/zTin(l —V,)CL/gm  if dominated by input transition
=\ oy, if dominated by output delay,

where g, is the input transistor’s transconductance, C, is the output capacitance, and V,
is the switching voltage of the stage. Horowitz proposes approximating the delay by the
root-mean-square of these two values, and using the slope of the input transition at the

switching point: T}, = Tl'_u‘l,: The delay can then be written as

ta= \/(TD In V,)z -+ Z%CL.

For the example of Figure A.2, Rsim computes the following delay for node N2:

).

R
fo = In2)2 +2%% ¢ 2
i \/(TDm n2)+ gmm( 2+Cle-+-Rs

After computing this delay, the simulator will then schedule an event ¢, v URits from
the current time, indicating that node N2 is to change state to 0 with time constant 7p N2®
If no other activity occurs in the circuit, at time ¢ ., rrent + tan,, the value of node N2 will
be changed to 0. The whole process will then be repeated to compute the state of node

Out, this time using 7;, = 7p,, to compute its delay.

A.3 Charge Sharing Computation

When a transistor turns on, its source and drain nodes redistribute their charge so that they
are at the same potential. If the two nodes are initially charged to different voltages, this
charge sharing can change their state. In general, charge sharing refers to the redistribution
of charge when two or more stages charged to different voltages are connected together.
Chu[11, 10] has incorporated into Rsim two types of charge sharing models: pure charge
sharing and driven charge sharing.
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A.3.1 Pure Charge Sharing

Pure charge sharing occurs when two undriven stages are connected together. In this
case, all connected nodes will share their charge and reach the same final voltage, which
depends on the ratio of total charge to total capacitance. This type of charge sharing
is frequently used intentionally in VLSI circuits such as precharged logic. An example
of such a circuit is shown in Figure A.3, where the output of precharged signal N1 is
connected to an inverter through a pass transistor. When input Load goes high, the value
of node N1 will be transferred to node N2 exclusively by charge sharing.

C;>G d

N2
(a) precharged circuit (b) model (c) charge sharing waveforms

Figure A.3: Precharged circuit that uses pure charge sharing

The minimum and maximum voltages due to charge sharing can be found by collecting
all the charge in the stage. These two voltages can then be compared with the thresholds
to determine the new logic state. Since X capacitors contribute an indeterminate amount
of charge, Terman suggests a scheme in which they only contribute towards raising the
maximum voltage or lowering the minimum voltage; the idea is to make a conservative
estimate whereby X capacitors can only bring the final voltage closer to X, as follows:

: Chigh+Cz
—rgn T
0 if Clow+Chigh+Cz < Viow

Ve = —tth ST,
f 1 if ClowtCz+Crigh = high

X otherwise

The delay due to a pure charge-sharing transition cannot be estimated using the single-
time-constant approximation of Section A.2. That model expresses the voltage waveform
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in terms of capacitor currents towards a voltage source; in pure charge sharing, however,
all the nodes are floating and there is no voltage source {Ry. = co). Chu’s approach is
to express all voltages with respect to an arbitrary reference node and then use charge
conservation to decouple the relationship. In a manner similar to that of the single-time-
constant approximation, he models the stage by an equivalent, single-capacitor, single-
resistor circuit that characterizes the delay by a single time constant. The time constant is
determined by calculating the area between the voltage waveform and a time-independent
line representing the final voltage, and then choosing an exponential function with the
same area and boundary conditions. This results in the following time-constant:

- Cr7a; — 3% Crrag
‘T Cr(V.-Vy)

where
Tar =3 RpCu(Vi — V)
k

and C'r is the total capacitance in the stage, C and V; are the capacitance and voltage
at node k, and Rj, is the resistance to the reference node r shared by nodes k and e.

Despite the apparent complexity of the above expressions, they can all be easily
computed from the topology of the circuit by traversing the stage twice: the first time to
compute 74;, the second time to compute 3°} Ci74r. For example, consider the circuit
of Figure A.3 in which N2 undergoes a charge sharing transition from 0 to 1. Using N1
as the reference node (» = N1), Rsim calculates:

since C; > Cy, — 6%37 > Vhigh — Vi =1
TaM = 0-Ci(1 —Vf)+0'Cz(—Vf) = 0
TANy = 0-Ci(1- Vj) + RzCz(—Vf) = —R,Cy |
w = Sliagrecnd - g

The result is the same if node N2 were chosen as the reference, which can be verified
in a similar manner as above. The details of this model can be found in Chu’s thesis[11].
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A.3.2 Driven Charge Sharing

Driven charge sharing is similar to pure charge sharing except that one or more of the
nodes is driven by a voltage source. In this case (Figure A.4), the stage is composed of
two components: a driving tree and a charging tree. When the two trees are connected
together, nodes in the charging tree will be driven to their final value by the voltage
source; nodes in the driving tree, however, will experience a momentary spike as they
share their charge with nodes in the charging tree. Depending on the amplitude of the
spike, nodes in the driving tree may undergo a temporary change of state.

vd/.\ vc
/. l v
d___ N __
vc

l l N\

- Driving Charging
Tree Tree

Driving Charging
Tree Tree

Figure A.4: A driven charge sharing circuit

This type of charge sharing occurs in many circuits. For example, node N1 in the
static register circuit of Figures 2.3 and A.l is subjected to a spike whenever the Clk
input turns transistor T3 on. Analyzing this type of charge sharing is more complicated;
since the node starts and ends at the same voltage, it can not be modeled by a single
time constant. Instead, two exponentials are needed to represent the spike. The first one
is set by the time required for the redistribution of charge between the two trees, while
the second one is set by the time required to return the node to its initial, driven value.

To analyze a spike, Chu maps a driving tree node into a reduced, two-capacitor, two-
resistor circuit, which is the simplest circuit that exhibits a two-time-constant behavior.
The mapping is done by matching three geometric waveform characteristics of the driving
tree node with those of the reduced circuit: the area under the voltage waveform, the
sum of the poles of the transfer function, and Elmore’s delay. These are derived in a
manner similar to the pure charge sharing equations, and are given by the following:

Tae = TP RCVi  1p = 204 o) R G,

TAe



APPENDIX A. STAGE ANALYSIS 138

The reduced circuit is solved explicitly and the results are stored in a table that is
indexed through a normalizing function of these three quantities. The table contains two
values for every entry: a spike amplitude and a charge sharing delay. When a spike is
detected during simulation, Rsim looks up these values in the table. If the amplitude of
the spike is too small to change the state of the node, the spike is ignored; otherwise
two events are scheduled. The first one, a charge sharing event, changes the state of
the node to that of the spike; its delay is determined from the table. The second one,
a driving event, returns the node to its initial state; its timing is computed using the
single-time-constant approximation.



Appendix B

Network Modification Commands

The incremental extractor generates a network modification file that contains the various
network modification commands that specify how a circuit is to be modified; this file is
interpreted by Irsim which applies the transformations to the network. The file consists
of a series of lines, each of which begins with a keyword; the keyword beginning a line
determines how the remainder of the line is interpreted. Commands are classified into
four groups: Auxiliary, Topological, Parametric, and Correspondence.

Auxiliary commands do not specify any changes, instead they define node numbers
that serve as indirect node references; other commands use these node numbers to refer
to a node that may be aitered. Topological commands are used to modify the topology
of the underlying network by adding, removing, or reconnecting transistors and nodes.
Parametric commands are used to modify the electrical parameters of the network. Cor-
respondence commands are used to maintain the simulated network consistent with its
corresponding layout.

In all commands, capacitance values are specified in femtoFarads, and linear dimen-
sions, such as transistor sizes, are specified in centimicrons / lambda.

1. Auxiliary Commands:

o == (node-number) (node-name)
Defines (node-number) as a reference for the node whose hierarchical name

is (node-name).
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o = (node-number) (node-ref)
Defines (node-number) as a reference for the node referred to by (node-ref).
A (node-ref) has the following format:
@=(terminal)(x),(y)
where (terminal) is one of the three letters g, s or d, and (x) and (y) are the
location of a transistor in the layout. For example, “@=s20,55" means the
node connected to the source of the transistor located at coordinates 20,55.

2. Topological Commands:

e new (cap) (node-name)
Creates a new node with hierarchical name (node-name), whose capacitance

to ground is (cap).

¢ Eliminate (node-number)
Removes the node whose hierarchical name is (node-name).

e eliminate (node-number)
Same as the command above, but instead of a hierarchical name, the node is
specified by a node number (defined earlier through an auxiliary command).

o connect (node-number) (node-number)
Connects the two specified nodes forming a single compound node. The best
hierarchical name of the two nodes is chosen as the name for the compound
node.

e break (node-number) (number) (cap) (node-name)
Break off a new node from the node referred to by (node-number). The new
node is assigned node number (number), hierarchical name (node-name), and

(cap) capacitance to ground.

e add (1ype) (x) (v) (length) (width) (gate) (source) (drain)
Add a new transistor of type (type). Currently, (rype) may be one of n, p
or d, for n-type, p-type, and depletion, respectively. (x) and (y) specify the
location of the transistor, (length) and (width) specify its size; and (gate),
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(source,) and (drain) are node numbers specifying the nodes to which the
gate, source, and drain of the transistor are to be connected.

o delete (x) (y)
Deletes the transistor at location (x),(y).

e move (x) (y) (gate) (source) (drain)
Moves the terminals of the transistor at location (x), (y) from their cur-
rent nodes to the nodes specified by the node numbers (gaze), (source), and
(drain). The node specifiers can be a single dot, “.”, indicating that the

corresponding transistor terminal is not to be moved.

e Move (x) (y) (node-number) (terminal)
Moves a single terminal of the transistor at location (x), (y) from its current
node to the node specified by (node-number). The transistor terminal to be
moved is specified by (terminal) which can be one of gate, source, or drain.

3. Parametric Commands:

o Cap (node-number) (cap)
Cap (node-number) =(cap)
In the first form, the capacitance of the node specified by (node-number) is
changed by (cap) units. To reduce the capacitance of a node, a negative value
may be used. In the second form, the command specifies the capacitance to
be assigned to the node.

e size (x) (y) (length) (width)
Changes the size of the transistor located at position (x), (y) to the size
specified by (length) and (width).

o threshold (rnode-name) (viow) (vhigh)
Changes the voltage thresholds of the node with name (node-name) to the
normalized voltage values specified.

e delay (node-name) (tplh) (tphl)

Changes the user-assignable delay of the specified node. (tplh) and (tphl)
refer to the low—high and high—low transition times respectively.
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4. Correspondence Commands:

o xchange (x) (y)
Exchanges the source and drain nodes of the transistor at location (x), (y),

i.e., source becomes the drain and vice versa.
e position (x) (y) (new-x) (new-y)
Changes the location of the transistor from coordinates (x),(y) to coordinates
(new-x),(new-y).
e rename (node-number) (node-name)
Assigns the name (node-name) to the node specified by (node-number).

e hier-rename (node-number) (node-name)
hier-rename (node-number) (node-name) (curr-name)
In its first form, the name of the node specified by (node-number) is changed
to (node-name) only if (node-name) is a better hierarchical name than its
current name. In its second form, the node’s name is changed only if its

current name is (curr-name).



Appendix C
Fault Simulation

One possible use of the incremental simulator is as a fast fault simulator. The basic idea
is to simulate the “good circuit” once, and then repeatedly introduce a fault and incre-
mentally simulate the faulty circuit. Each fault can be introduced as a circuit modification
and then the circuit resimulated until the effect of that change is observed on an output.
Since the incremental simulator only simulates the effect of the change, the per-fault time
should be very fast. This scheme can easily accommodate any fault that can be modeled
as circuit modifications. Furthermore, since Irsim is a timing simulator, it can identify
timing faults as well as functional faults.

To test the effectiveness of an incremental fault simulator, we implemented a simple
“stuck-at” fault simulator using Irsim as a base. To start a fault simulation, the user first
simulates the circuit once; the history recorded during this initial simulation corresponds
to the behavior of the good circuit. Next, the user must specify the circuit’s primary
outputs and the timing of the sampling for each of the primary outputs; signals can be
sampled using either a fixed time interval or the rising/falling edge of some other signal
in the circuit. For example, the following entry indicates that the primary outputs Ay,
Ay, Az, and A4 are to be sampled on the falling edge of signal phil:

trigger phil 0
Ag Ay Az Ay

*xkk
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Implementing the fault simulator required some minor changes to the basic incremen-
tal algorithm. First, a trigger event type was introduced to indicate the sampling times.
When this event is processed, the simulator checks all primary outputs that are sampled
by the event; if any of them is currently deviating from the good machine’s history then
the fault is reported as detected at the current simulation time. Second, the algorithm was
modified so it terminates as soon as the first fault at a primary output is detected; this
requires cleaning up of any other events that may be queued at that time. Finally, instead
of updating the simulation history of the good machine (as the conventional incremental
simulator does), the fault simulator retains the initial history and only maintains the cur-
rent history entry of the faulty circuit. If this were not done, the good machine’s history
would have to be rebuilt by either reading it from disk or by applying the anti-fault (the
modifications that eliminate the fault) and resimulating once more. This would be rather
inefficient since the history can be quite large and must be rebuilt for every fault.

To model stuck-at faults, the simulator simply connects an always-conducting tran-
sistor with very low resistance between the node to be tested and the appropriate power
supply. This requires minimum changes to the network and can be done very fast. Fault
seeding is very simple-minded; it simply tests all nodes that are not inputs to the circuit.

The output produced by the fault simulator includes the following information:

e For each detected fault: the output at which the fault was detected, the type of
fault (stuck at 1 or stuck at 0), the node at which the fault was injected, and the
simulation time at which the fault was detected.

o For each undetected fault: the type of fault (stuck at 1 or stuck at 0), and the node
at which the fault was injected.

o The total number of faults seeded.

e The number of detected faults.

e The number of undetected faults.

e The fault coverage as the percentage of faults that are detected.

e The number of probably detected faults.
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The last item corresponds to outputs whose history deviate from the good circuit at
the time of sampling, but they do so by deviating to or from an X logic state. Since X
represents an undetermined or unknown logic value, these faults may not be observable
so they are listed separately. Note that when this type of fault is detected the simulation
does not terminate, but continues until either a deterministically observable fault is found
or the end of the history is reached.

To characterize the performance of the stuck-at fault simulaior, several circuits were
tested using the test scripts provided by the designers. Table C.1 compares the time
required to fault-simulate the circuits using the incremental fault simulator and using a

serial fault simulator version of the same simulator.

Number of | Faults Fault Time (hours:min)
| Circuit | Transistors | Tested | Coverage | Serial | Incremental | Speedup
Spim 41,804 | 33,062 522% | 639:24 24:21 348
Divider 15,335 | 15,950 49.2% | 157:50 15:6 10.45
Mipsx 47,202 | 3,262 42.7% | 1903:51 117:35 16.2

Table C.1: Comparison of Incremental vs. Serial Fault Simulation.
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