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Abstract

Self-timed systems avoid the problems associated with the global
clocks of synchronous systems. This thesis introduces a new type of
structure called a self-timed ring that can pass data multiple times through
the same function blocks without requiring any external control signals or
clocking. The latency and throughput of self-timed rings are analyzed by a
method that also determines the performance of asynchronous pipelines as
a special case. By meeting certain constraints suggested by this analysis, a
self-timed ring can completely hide its control logic delays and achieve
operation with zero overhead. If, in addition, the ring is composed of a
proposed domino stage configuration without latches, then the ring
achieves, in much less area, the same minimal-latency operation as an

unrolled combinational array implementing the same function.

A prime example of a problem for which a self-timed ring
implementation achieves high performance is the iterative computation of
the arithmetic function of division. This thesis compares two self-timed
divider chips: a preliminary design and an improved one that adheres to
the constraints determined by this research. Measurements showed these
design techniques increased performance by a factor of 2.2 due to
architecture alone. The self-timed ring of the new divider occupies 7mm?2
in a 1.2u CMOS process and computes quotient bits in 2.9nS, requiring a
total latency of 45nS to 160nS for a full 54-bit result, depending on the

data operands.
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Chapter 1

Introduction

Traditional logic design separates data computation from storage.
Computation takes place in combinational logic or “function blocks” and
storage occurs in registers or latches. Clocks are distributed globally
within a system to synchronize all the registers or latches. A clock tells
each latch when its data inputs are to be considered valid. This approach to
building synchronous systems is becoming increasingly more difficult at
higher clock frequencies because of greater problems with clock skew and

transmission line effects.

Other design approaches, collectively known as self-timed systems
[SEIT80], avoid some of the problems of synchronously clocked systems.

Instead of using an externally supplied global clock, self-timed systems



Chapter 1. Introduction

either generate “private” local clocks with an on-chip clock generator
[CHAPIB4, SANT89], use carefully-crafted matched delays [CHAPP91], or
use local handshaking control to communicate the presence of valid data
[MENGS8]. Local handshaking between blocks is also called asynchronous
control [MULL63, MILL65] because events in blocks do not have a specific
timing relationship except when they handshake [STAU87]. Unfortunately,
the handshaking in previous asynchronous circuit implementations, such as
in [JACO90], has degraded performance because the handshaking added
overhead delays of up to 100% relative to the function block delays.

This thesis analyzes configurations and control structures for
asynchronous circuits and introduces a new class of circuits called
“self-timed rings,” which can avoid performance degradations from
handshaking and control logic when the control meets certain conditions.
Self-timed rings that are designed using the ideas in this thesis can
completely hide handshaking delays and thus operate with zero overhead.
Because of their repetitive structure, self-timed rings are particularly

suitable for computing iterative functions.

Since the computation of the arithmetic operation of division is
iterative, division is an example of an application that can achieve high
performance by using a self-timed ring structure. I therefore chose
division as a particular application problem for which to demonstrate

integrated circuit implementations of self-timed rings.
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Function Function i
Data — | Block gt ateh Block | gl atch F;?:Ct:fn Latch Data
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Clock

Figure 1.1: Traditional synchronous design partitions logic
into stages placed between latches that are
clocked with a global signal.

Section 1.1 of this chapter describes the potential advantages of zero-
overhead self-timed systems over synchronous systems. The simplest
model for data flow in self-timed systems is a linear pipeline, and
Section 1.2 presents the self-timed ring structure as a generalization of
self-timed pipelines. The top level of the specific self-timed ring structure
for implementing division is introduced in Section 1.3. The remaining
chapters are outlined in Section 1.4. They present the framework used to
analyze self-timed rings, suggest specific methods for increasing
performance, and provide a detailed comparison of the performance

advantages achieved in the division application.

1.1 Synchronous versus Self-Timed Systems

Synchronous designs separate blocks of combinational logic by
inserting explicit latches between them as illustrated in Figure 1.1. These
latches and the distribution of a global clock to them show at least five

issues for which self-timed systems may have an advantage either in the

3
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Figure 1.2: Delays in synchronous clock distribution can cause an
apparent skew in the arrival time of the clock at
individual latches.

performance achieved or in the total system cost. These issues are:
1) clock distribution and the margin added to tolerate clock skew, 2)
propagation delay through the latches, 3) mismatched stage delays,
4) maximization of data-dependent delays, and 5) the assumption of
environmental worst case timing of components. These issues are discussed

in the five subsections below.
1.1.1 Clock Distribution and Skew

As the transistor technology for basic logic blocks improves, higher
clock rates are required to take advantage of the higher logic speeds.
Modern approaches to logic design [HENN90] may have less than ten gate
delays in each clock cycle, and since integrated circuit fabrication
technology can now provide basic gates that operate in a fraction of a
nanosecond, clocks in the hundreds of MHz may be required to fully utilize
the potential of the logic. However, the distribution of such high speed
clocks uniformly throughout the levels of a system, circuit-board, and chip
requires increased cost and special care because of transmission line effects
and large capacitive loading. These effects and wire or driver delays

create an apparent skew in the clocks observed by different latches, as

4
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Figure 1.3: Asynchronous design methods can replace clocks with
control signals supplied by handshaking blocks, but
previous methods have always kept latches in place.

illustrated by the model in Figure 1.2. Clock skew can be somewhat

mitigated by efforts to equalize clock loading and path lengths as suggested
in [BAKO90], but the remaining skew must be accommodated by
lengthening the clock period to provide an additional margin. Self-timed
circuits can avoid the clock distribution costs and clock skew margins
altogether by using local handshaking to control latches as shown in
Figure 1.3. The handshaking allows data validity to be communicated

locally rather than globally.
1.1.2 Propagation Delay through Latches

Registers and latches are a source of latency overhead because their
setup time and propagation delay add additional delays. The minimum
cycle time (clock period) of a synchronous circuit is the sum of the latch
delays and the maximum combinational logic delay. An innovation
presented in this thesis is a means to remove latch delays completely by
forming self-timed pipelines and rings from stage configurations with no
explicit latches. Previous self-timed circuit methods using the pattern of
Figure 1.3 have concentrated on designing handshaking logic to generate

internal latch control signals rather than simply removing the latches.

5
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1.1.3 Mismatched Stage Delays

Another issue that may limit the performance of synchronous
systems is the mismatching of the functional sections between the latches.
Because the amount of time in a clock period is fixed, it must be set equal
to the longest propagation delay of all of the different functional sections in
the system. The difference between that maximum time and the actual time
used by any functional section is wasted time and can be viewed as a
contribution to the overhead of synchronous systems. A self-timed pipeline
does not waste this time because it allows data to flow forward in response
to data-driven local control, rather than waiting at each latch for
resynchronization to the next clock edge. Although the throughput of a
pipeline is still limited by its slowest stage, the latency is improved because

each stage is allowed to progress as soon as data arrives at its inputs.
1.1.4 Maximization of Data-Dependent Delays

The fourth possible cause of a loss of performance in synchronous
logic is the need for all timings and critical paths to be based on the
worst-case data values. In contrast, self-timed systems communicating with
“done signals” based on the actual data values do not need to wait for the
worst-case data possibilities. If there is a large variance in delays,
synchronous systems may have a performance loss due to the difference
between the average and maximum values of delay. The goal in self-timed
system design is to minimize the probabilistic expected value of the delay

rather than to minimize the maximum delay. @ Known probability
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distributions may enable a self-timed system designer to rearrange logic
and to size transistors to minimize the expected value of the total delay.
This method does not help in a synchronous system because such a system

is only concerned with the maximum delays.
1.1.5 Worst-case Environmental Conditions

The fifth possible loss of performance in synchronous circuits is the
de-rating used to ensure performance over a range of temperature and
voltage levels. Synchronous system designers always use conservative de-
rated “worst-case” specifications because the system must work at the
expected environmental extremes. But when the actual conditions are not
at the extremes, the difference between the actual performance specified by
the designer and the possible performance for the actual conditions is
wasted performance. Self-timed components always run at their maximum
speed for the existing conditions and deliver their outputs as soon as they
are actually finished. By providing completion indication, they allow an
enclosing system to make use of the output sooner than it can if it is always
forced to wait for the worst case. Moreover, self-timed components are
robust in the sense that they can continue to function correctly, and indicate
their completion, even beyond the ranges of environmental conditions that

are foreseen and specified at design time.
1.2 Self-Timed Rings

The general model of logic shown both in Figures 1.1 and 1.3 is a

pipeline. If the desired application is a problem that is iterative in nature,
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Figure 1.4: A pipeline with its outputs looped back around to

the input forms a ring.
then one can turn a pipeline into a ring by looping data from its output
back around to its input as shown in Figure 1.4. If the stages in the ring
are all self-timed, then the ring will iterate wholly under self-timed
control, once it is initialized with input data. Integrated circuit designs can
benefit greatly from self-timed rings because the speed of the iterations is

independent of any off-chip signals and pad delays.

Handshaking and control logic can potentially limit the performance
of self-timed rings, but these problems can be avoided in rings satisfying
certain constraints to be discussed in Chapter 4. If these constraints are
met, the critical paths determining a ring’s performance will go only
through data elements. Furthermore, if a self-timed ring meeting these
“zero-overhead” constraints is implemented with a stage configuration
containing no latches, then the entire computation has the same latency as a
combinational array performing the same operations in the computation.
Since a combinational array defines the minimal latency by which a
particular algorithm can solve a problem, a self-timed ring achieving this
same latency is called a “minimal-latency” implementation. A minimal-

latency ring effectively “rolls up” a repetitively structured combinational

8
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array onto itself. In an ordinary combinational array, only a small
portion of the array is actually used at any instant as a data wavefront
passes through it. A minimal-latency self-timed ring takes advantage of
this fact and provides a structure that allows a traveling wavefront to reuse
the logic elements without changing the total delay. By reusing the logic
elements, the overall structure occupies only a fraction of the area of the

full combinational array implementing the same function.
1.3 Example function: Division

An effective demonstration of self-timed rings requires an
appropriate problem choice. Since self-timed rings repeatedly evaluate a
series of function blocks, they are particularly well-suited to problems that
require iterative computations. For a ring to be completely independent of
external handshaking as data progresses around the stages, the computed
function cannot require additional data values at each iteration step. The
best example of self-timed rings is therefore when they are used to
compute iterative functions that are fully specified by their initial input

operands.

Elementary arithmetic functions like division, square-root, or
trigonometric functions are examples of problems that can be efficiently
evaluated with self-timed rings because they require an iterative procedure
and only initial operands to determine their results. I chose division as the
prime example application in my research because it is a problem amenable
to a self-timed ring implementation and one for which computer system

designers specifically desire to improve performance. This thesis uses
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Figure 1.5: Block diagram for the division example using a ring of
domino stages that iterates using self-timing.

division both as an example for the general self-timed ring structure and as

the object for some specific optimizations.

The division algorithm chosen determines quotient digits
sequentially. The basic structure of a self-timed ring for choosing and
accumulating quotient digits is shown in Figure 1.5, where each stage
determines one quotient digit. After the ring is initialized with the divisor
and dividend, a “data token” flows around the ring. The data token is

updated at each stage with new values for the partial remainder and the
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next quotient digit. The individual quotient digits from each stage are
captured and stored in shift registers. The bits composing the final

quotient are read out in parallel from these quotient shift registers.
1.4 Chapter Organization

This chapter discussed five issues for which self-timed systems can
have an advantage over synchronous systems. Even though many previous
self-timed design approaches suffered performance degradation from
handshaking control overhead, my work has developed self-timed ring

structures that can achieve zero-overhead operation.

Chapter 2 provides background information for the construction of
self-timed rings by defining the general terms and issues involved in
asynchronous pipelines. It defines the different strategies regarding delay
assumptions and characterizes the variations in pipeline styles according to
these definitions. The chapter names configurations for self-timed pipeline
stages and separates them into families. The members of a family have
different numbers of latches in each stage. The best latency in self-timed
pipelines and rings is achieved by a suggested configuration that has no

explicit latches.

Chapter 3 introduces a graph methodology that can be used for the
analysis of both self-timed pipelines and rings. The method analyzes the
dependencies that determine latency and throughput. This chapter applies
the method to the pipeline configurations defined in Chapter 2 and presents

tables summarizing and comparing their characteristics.

11
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Chapter 4 extends the performance analysis of self-timed rings and
introduces the idea of a zero-overhead ring. A zero-overhead ring
constructed with no latches achieves the same total latency as a
combinational array, but with much less area. This chapter defines the
constraints for attaining zero-overhead operation and discusses their

implications for designing minimal-latency rings.

Chapter 5 presents a variety of techniques that are helpful in
improving performance and meeting the necessary constraints for
zero-overhead operation in real implementations. These techniques are

general ones and are applicable to any self-timed ring.

Chapter 6 describes the specific division algorithm chosen as an
example application of a self-timed ring. It shows how the techniques of
the previous two chapters can be applied to improve the performance of a
division implementation. It also presents enhancements that are specific to
division, such as an overlapped execution architecture. The chapter
compares the measured performance of two fabricated versions of divider
implementations in order to quantify the effectiveness of the methods

described in this thesis.

Chapter 7 summarizes the analysis results for self-timed rings and
reviews the principles for constructing minimal-latency self-timed rings. It
suggests other likely application areas of self-timed rings and issues worthy

of further research.

12



Chapter 2

Background: Self-Timed
Pipeline Stage Configurations

This chapter defines the circuit styles and components used in the
construction of self-timed pipelines and rings and the arrangements in
which they may be configured. Pipelines pass a sequence of data tokens
through a succession of stages as shown in Figure 2.1. Unlike a
synchronous pipeline, which controls all its stages with a single global
clock, a self-timed pipeline uses completion detectors along the datapath to
generate separate local signals controlling the flow of tokens through its
stages. Pipelines are useful where a sequence of data must pass through
the same series of functional operations, as, for example, in
microprocessors [HENNO9O] or digital signal processing [MENGSS,

JACO90]. A ring is a generalization of a pipeline that circulates tokens
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4P Stage [P Stage [ G—=_p> Stage [€—P>

Data =

Figure 2.1: Overall structure of a pipeline is a linear sequence

of stages.
from its output back to the input, thereby allowing the ring to iterate
[GREES87] without needing its environment to externally supply more

inputs or control signals.

In both synchronous and asynchronous pipelines each stage
comprises a function block with some number of latches. The performance
depends on the relative timings and ordering of the components. Previous
works, such as [RAO86], analyzed the effects of timing and ordering for
the synchronous case with registers. Good re-timing algorithms have been
developed for increasing performance in synchronous systems by changing
the number and location of registers [LEIS86]. This chapter characterizes
the performance of a range of possible configurations for asynchronous
pipelines with varying styles of function blocks and latches, varying
numbers of latches per stage, and varying orders of connections to the
completion detectors. Unlike the work in [MENG89], which synthesizes
particular control arrangements under the assumption that function block
evaluation dominates all other delays, the work reported in this thesis
analyzes various configurations in terms of the delay parameters of each

component,
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The sections in this chapter consider the various options for
hardware stages that can be composed into self-timed pipelines and rings.
First, Section 2.1 describes the terminology used to describe classes of
required delay calculations and assumptions that provide circuits with
different degrees of insensitivity to wire and component delays. This
section identifies the classes I chose for my research as those having more
restricted circuit structures, which permit them to operate with fewer delay
assumptions. These classes require a datapath signaling convention,
described in Section 2.2, providing completion information along with the
data. Since this convention requires special function blocks and latches,
Section 2.3 gives a transistor-level description of the possible styles.
These blocks can be arranged in several configurations to form self-timed
pipelines, and Section 2.4 gives names to the configurations. Though this
section introduces the configurations and their tradeoffs qualitatively, a
quantitative performance comparison is saved for Chapter 3, which refers
to the configurations by name. While linear dataflows define the basic
pipeline stage configurations, more complex dataflows also can use these
stage configurations with the addition of split and merge stages, which are
discussed in Section 2.5. Finally, Section 2.6 summarizes the pipeline
configurations of this chapter, in preparation for the analysis of their

performance in Chapter 3.
2.1 Classes of Circuits and Delay Assumptions

Some digital logic design approaches require careful tuning of delay

elements for the circuits to function correctly; whereas, other approaches

15
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can design circuits that operate correctly for any delays in gates or wires.
Indeed, there is a progression of design approaches that successively lessen
the dependence of correct logical operation on delay calculations or
assumptions by placing additional restrictions on the styles of gates and

their allowed connectivity.

Early asynchronous circuit designs were the least constrained in the
allowable gate styles and connectivities but required the most careful
analysis of path delays in order to achieve a desired switching sequence
[UNGEG69]. This approach was difficult, and terms like “controlled race”
acquired a bad reputation. Although some self-timed styles still involve
crafting matched delays [CHAP91], most modern asynchronous designs
generally minimize hazards by requiring only a small number of local
delay comparisons [SUTH®9].

Synchronous design techniques achieved more reliability by
restricting the allowable circuit connections between combinational logic
and storage elements, and distinguishing between data signals and a clock
signal. While a designer must still use information about delays in order to
calculate the arrival time of data relative to the clock at every latch or
register, the key feature of synchronous designs is that they do not require
specific relative timings among the data signals. The restrictions of the
synchronous design approach allow a designer to assure correct logical
operation if the delays through all paths in the combinational logic between

registers are individually less than a chosen fixed clock period.

16
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More restrictive design approaches can be used to further reduce the
number of delay calculations required to assure correct operation. The
class of circuits that operates correctly for all gate delays but still might
require delay calculations concerning interconnecting wires that branch is
called “speed-independent.” The issue of wire delay is only significant for
wires that branch because a delay on a non-branching wire can always be

considered equivalent to a gate with
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utput delay followed by
an instantaneous wire. Local exceptions to an otherwise speed-independent
circuit can be made when a particular wire is assumed to have equal branch

delays, in which case that wire is called an “isochronic-fork” [MARTS86].

The most restrictive design approach [UDDI86, EBER88], which
does not even require the assumption of isochronic forks, constructs
circuits that work correctly for any arbitrary delays of gates or on wires.
This class of circuits is called “delay-insensitive” because delays have no
effect on logical operation.! Delay-insensitive circuits are the most
conservative style because they require no delay assumptions or

calculations by the designer.

1 Strictly speaking, the class of circuits that are delay-insensitive down to the
transistor level is minuscule [MART89], and therefore the term is usually only applied
down to the level of some “primitive.” I consider single stacks of transistors to be
isochronic primitives, and hence never consider delays between the n-channel and
p-channel transistors in the same stack. Considering arbitrary delays within single stacks
(for example, on the wire connecting the gates of the two transistors in a CMOS inverter)
would nearly preclude the ability to do digital analysis.
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Since wires on any integrated circuit deliver nearly instantaneous
transmissions, speed-independent circuits are almost equivalent to delay-
insensitive circuits for most real integrated circuits. In larger domains,
like printed-circuit boards or backplanes, the delays of wires may be

substantial and these two classes need to be distinguished.

As is the philosophy in RISC processor design [HENN90], self-timed
designs seek to design control circuits that are always correct but that are
fast for common conditions. In general, the circuits discussed in this thesis
assure correct operation by using circuits in the speed-independent and
delay-insensitive classes. The philosophy for using these classes is that by
constructing a circuit that is logically correct for any delay values, the
resultant design is more robust and the designer need not acquire all the
information and specifications affecting the actual delays. However, to the
extent that delay information is available, the designer can use it to
optimize performance by choosing between design alternatives, sizing
transistors, and making local exceptions to a purely speed-independent
design approach. Design recommendations and constraints can therefore
be expressed in terms of nominal delay values even though the circuits

continue to produce correct results for other actual delay values.

2.2 Data and Reset Signalling Conventions

Building a speed-independent circuit dictates certain restrictions in

the method used to transmit data. This section describes the dual-rail

18
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signalling convention that speed-independent circuits use to send sequences

of data tokens on a set of wires.

A synchronous circuit uses a clock signal to distinguish when the
values on a set of wires should separately be considered valid tokens, but
that approach requires assuming bounds on the skew between the data and

the clock. Likewise, even asynchronous circuits that use a bundled data-
valid wire alongside a data bus also require a delay assumption between the
actual data wires and the signal indicating their validity. For a circuit to be
truly speed-independent, the validity and separation of data tokens must be
encoded within the data itself rather than bundled alongside it. An
“embedded-completion” encoding transmits information about when each
data token has completed on the same wires used for transmitting the data

value itself.

The encoding of sequencing information within data can be
accomplished with either transition or level encodings. Transition
encoding, known as “two-phase” signalling [SUTH89], can transmit one bit
of a data token on a pair of wires by flipping the logical level of one of the
wires based on the value of the bit, where the presence of a transition on
either wire denotes a new data token. Level encoding is ordinarily known
as “four-phase” signalling on a “dual-rail” [SEIT80] or “dual-monotonic”
pair. It can use the protocol in Table 2.1 to transmit each bit of a data
token on two wires. The wires are initially both low, and either wire
going high denotes a new data token bit, whose value is determined by the
choice of which wire went high. A four-phase encoding must then return

both wires to the initial reset condition in which both wires are low before

19



Chapter 2. Background: Self-Timed Pipeline Stage Configurations 20

Wire AT | Wire AF Signal A
0 0 Reset = Not Ready
0 1 Evaluated FALSE
1 0 Evaluated TRUE
1 1 Not used = Never occurs

Table 2.1: A dual-rail monotonic pair uses a simple encoding to
convey both the value and completion-indication for a
binary bit A on two wires, AT and AF.

transmitting a new data token. A two-phase encoding, on the other hand,
can transmit another token without an intervening reset condition. Hybrid
schemes that are two-phase and yet still use level encodings are also
possible with the addition of the concept of function blocks maintaining an
even state and an odd state [DEAN91]. In general, four-phase signalling
can be implemented with function blocks that are simpler and faster than

the function blocks required for two-phase signalling.

The pipeline styles in this chapter all use the normal four-phase level
encoding shown in Table 2.1 for single bits. Usually, a separate dual-
monotonic pair carries each bit of a wider bus, even though higher order
group-encodings are possible with more complex function blocks
[WILL87]. Another possible extension of monotonic set encodings for
transmitting a value with n states, that is useful for small », is a simple

1-of-n unary encoding on n wires.

Four-phase signalling has a natural symmetry between data and reset
values. Events generally come in pairs because every data valid transition
must correspond to some reset transition, which returns wires and circuit

elements to their original states. Self-timed circuit elements that check for
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one transition should just as well verify the other transition in order to
ensure correct operation. The easiest way to enforce this requirement is to
consider every data token as composed of a separate data element and a
“reset spacer,” and to explicitly check for the progression of both parts.
The reset spacers keep data tokens separate, and prevent bits in one token

from racing ahead or lagging behind to corrupt an adjoining token.

Embedded completion signalling has the advantage that it allows the
individual bits of a bus to begin evaluation individually as soon as their
inputs have arrived without having to wait for all of the other bits in the
bus. A specific advantage of dual-rail embedded completion signalling is
that logic blocks can obtain either polarity of an input signal by using the
appropriate wire of the pair; hence, logical signal inversions are free. A
disadvantage of embedded completion signalling is the greater number of
wires necessary, but in a structured custom layout the increase in the
number of wires does not necessarily double the total cell areas because
wires can be routed over transistors. Embedded completion signalling may
also require more logic, but this depends on the specific logic function
being implemented. Even if there is an area penalty, it does not necessarily
imply a speed penalty because the individual wires are generated and

driven in parallel.
2.3 Function Block and Latch Styles

Speed-independent circuits require function blocks that indicate the
completion of evaluation in their output wires. The last section showed

that dual-monotonic pairs transmit both value and completion information
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on the same wires. If therefore a function block generates its outputs as
dual-monotonic pairs, then it is sufficient for use in a speed-independent
circuit. This section shows several different ways of building appropriate

function blocks and latches.
2.3.1 Function Block Styles

Figure 2.2 contrasts four styles of function blocks, all taking dual-
monotonic input pairs and generating dual-monotonic pairs as outputs. The
example circuit shown for all the styles implements a simple AND/NAND

% &«

gate. I call these four styles “static logic,” “direct logic,” “semi-controlled

precharge logic,” and “full-controlled precharge logic.”

The static logic and direct logic styles do not require a precharge
control input. Both evaluate their outputs when their inputs get valid data,
and reset their outputs when their inputs are reset. Static logic can change
an output wire as soon as any input wire changes, but it does not enforce
that all the signal transitions accompanying the input change actually
arrive. Since arbitrary delays inserted on some of its input wires could
cause the gate to malfunction by merging a stale delayed input transition
with some new input, static logic cannot be delay-insensitive. However, if
the input wires also branch to a separate completion detector that verifies
the completion of their transitions, then a circuit using static logic can still

attain speed-independence.

The direct logic style verifies all signal transitions have arrived on
its input pairs before changing its outputs. It waits for all its inputs to reset

before resetting its outputs, and it checks for one high input wire in all
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Figure 2.2: Four possible AND/NAND Function block styles to
generate dual-monotonic outputs: Static Logic,
Direct Logic, Semi-controlled Precharge Logic, and
Full-Controlled Precharge Logic.
input pairs before evaluating an output pair. Configurations using direct
logic function blocks can be delay-insensitive because even arbitrary delays
on the input wires of a gate do not introduce any stale data values.
Unfortunately, this verification makes the gates slower because of the taller
transistor stacks in direct logic. Since in most real integrated circuits
speed-independence is safe enough, static logic blocks can substitute for
direct logic blocks in cases where its inputs are also checked by forks to

completion detectors used in the control logic.
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Both semi-controlled and full-controlled precharge logic styles take a
precharge control input. The precharge input allows every block receiving
it to avoid replicating the same transistor stack in its pull-up tree. The
logic that generates the precharge signal effectively amortizes the cost of
determining the status of the inputs for a group of blocks. The precharge

input to a block is also the logical inverse of an enable signal because each

N

block must have its precharge removed before the outputs can transition to
an evaluated state. The only difference between the semi-controlled and
full-controlled precharge styles is the presence of the bottom transistor in
the full-controlled style, which prevents fighting if precharge is ever active

concurrently with valid data inputs.

Fighting can occur, for example, in the later gates of a precharged
stage internally composed of several serial semi-precharged gates whose
precharge controls are tied together. Because the later gates in the chain
do not have their data inputs reset until earlier gates finish resetting,
semi-controlled precharge logic ripples reset data serially through the gates
instead of allowing the gates to reset in parallel as they do in full-controlled
precharge logic. Ratioing of the transistor stacks in semi-controlled
precharge logic can achieve parallel resetting of internal domino chains,
but at the expense of large precharge transistors if the n-channel stack is
short. The advantages of semi-controlled precharge logic are that it has
fewer transistors, faster evaluation transitions due to shorter pull-down
stacks, and lower loading of the precharge control input. However, if

semi-controlled precharge logic is not ratioed to have a well-defined output
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when both valid data and an active precharge are present, then the circuit

must have control logic assuring that this condition never occurs.

Both semi-controlled and full-controlled precharge logic are at best
speed-independent and not delay-insensitive. Full-controlled precharge
logic or ratioed semi-controlled precharge logic are not delay-insensitive
because the precharge input is overriding, and therefore does not allow

verification of the arrival of reset edges on input wires. Non-ratioed semi-
controlled precharge logic is not delay-insensitive because arbitrary delays
on the precharge input or data inputs can cause incorrect operation when a

transistor stack fights and outputs an intermediate voltage level.

Both controlled precharged function block styles have a significant
advantage not possessed by direct or static logic: after the input data
returns to the reset condition, but before the control asserts a precharge
signal, the block will “hold” valid outputs and this feature can implicitly
provide the function of a latch without additional transistors. In contrast,
the next subsection describes latches that may be added explicitly in order
to use direct or static logic in a pipeline at all, or to increase the number of

latches in a stage.
2.3.2 Explicit Latch Styles

Latches in a pipeline are the elements in a datapath that control the
flow of tokens in response to control signals. Latches keep tokens from
incorrectly merging together, allowing a pipeline to contain multiple

tokens. A designer can construct an explicit latch for each bit of a pipeline
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Figure 2.3: CMOS implementations of a C-element (or C-latch)
and a standard flow latch.

either as a traditional flow-latch or by using a Muller C-element [SEIT80]
to make a “C-latch” [GREESS] as illustrated in Figure 2.3. The flow-latch
passes the value of its data signal, A, to its output, Y, when its enable
signal, E, is high, and keeps the output unchanged when the enable is low.
A C-element is a gate whose output is the state of the inputs when they
were last the same. A C-element is like a flow-latch, but its control is
more symmetric. If one input is viewed as data and the other as a control
signal, a C-element passes a high data signal to its output when the control
is high, passes a low data signal when the control is low, and otherwise
leaves the output unchanged. The C-latch can therefore be used in a delay-
insensitive circuit because it verifies that it has received new values on both
data and control before changing its output. Conversely, the ordinary flow-
latch is not delay-insensitive because there is no way to detect whether the

latch has indeed changed to the “holding” condition when the enable is low.
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Another disadvantage of using a flow-latch is that a self-timed circuit will
need to use additional C-elements to generate the appropriate control signal
for the flow-latch, whereas the simpler symmetric control of the C-latch
allows it to be controlled directly from available signals, as will be shown
in the next section. Hence, the C-latch style is the preferred latch style in

my research.

2.4 Self-Timed Pipeline Stage Configurations

The function blocks and latches discussed in the previous section can
be grouped together in stages to form self-timed pipelines. This section
examines the possible configurations of components in each stage. I define
a stage as a function block followed by zero or more explicit latches. Each
stage has its own separate inputs for precharge or latch control.2 Between
the stages, a datapath conveys information on a unidirectional bus from

each stage to the next, and control wires may traverse in both directions.

Pipelines process a sequence of tokens, composed of alternating data
and reset elements. At any instant, the stages not occupied by data or reset
elements can be said to contain a hole or “bubble.” Like holes in a
semiconductor, the bubbles flow backward as the data and reset spacers
flow forward. The consumption of output tokens pushes new bubbles into

the pipeline from the output end. Throughout the pipeline, data and reset

2 A concatenation of function blocks with a common reset signal and no latches is
a domino chain. For the purposes of this thesis, such a chain is referred to as if it were just
one large function block because its characteristics as a block are independent of its internal
partitioning.
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elements can only move forward into a stage that has a bubble. Hence, in
an asynchronous pipeline each token element moves independently when it
can exchange position with a bubble. This is in contrast to a synchronous

pipeline where all tokens move at the same time in lock-step.

As in the case of synchronous pipelines, asynchronous pipelines may
tradeoff between latency and throughput. Since latches provide additional
sites for tokens or bubbles, the presence of additional latches can increase
the throughput. But latches increase the latency delays incurred by tokens
as they flow through a pipeline. While Chapter 3 presents more precise
definitions of these quantities and an analysis of these effects, this section

describes them informally as it defines the configurations that contain

additional latches.

Though pipelines could be composed of stages with different
configurations, this thesis considers and analyzes pipelines composed of a
series of stages having the same configuration. The name of each
configuration type is a two-letter abbreviation designating the style of the
function block and control logic, followed by a number indicating the
number of additional explicit latches in each stage. The set of
configurations all having the same two-letter abbreviation is called a
family, and each specific configuration type is called a member of its

family.

The next three subsections catalog all of the configurations mentioned
in this thesis. The presentation starts with the precharged function block

families because the other families can be obtained as transformations from
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them. The first subsection describes the two families, PC and PS, that use
precharged function blocks. Subsection 2.4.2 presents the two families,
CF and FC, that use combinational (direct or static) function blocks.
Subsection 2.4.3 presents the PL family, which alters the latch style to
pairs of latches forming an edge-triggered register. The PL family is
discussed mainly for the purpose of comparison because it uses the control

structure suggested in [MENGS89].
2.4.1 Configurations using Precharged Function Blocks

The first configuration family to be considered is the
speed-independent family PC, in which each stage has a precharged
function block controlled by a C-element. A single stage of the PC0
configuration, which has no explicit latches, is shown at the top of
Figure 2.4. Below it appears a pipeline segment constructed from three of
the stages. An instance “index” subscripts the components in each stage of
the pipeline. The function block is either a full-controlled or a semi-
controlled precharged block. The C-element in each stage merges the “go”
or “request” signal from the preceding stage with the “done” or
“acknowledge” signal from the following stage. The completion detector,
labelled D, has an inverting bubble on its output, which means that it goes
low when the bus has valid evaluated data and goes high when the bus is
reset. A full completion detector uses a tree of C-elements to combine the
outputs of a NOR gate on each dual-monotonic pair in the bus, but

Section 5.4 will suggest simpler completion detectors.
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Figure 2.4: Schematic for stage configuration PCO and a short
pipeline composed of that configuration.

The control in this configuration ensures that it functions correctly
as a pipeline for processing a stream of tokens, composed of data elements
separated by reset “spacers,” and for keeping the tokens separated. The
operation of the pipeline can best be understood by tracing the control wire
connections through the segment example in Figure 2.4. In stage 2, the
precharged function block is enabled for evaluation when its inputs have
new valid data from stage 1 and when stage 3 is finished resetting. If
stage 3 were not reset before stage 2 evaluated, the data token coming

through stage 2 could corrupt the data token still remaining in stage 3.
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Likewise, the precharged function block in stage 2 is reset when its inputs
from stage 1 are reset and when stage 3 is finished evaluating. The
symmetric pattern of the control sequencing serves to verify the
completion of every rising and falling transition before the control
removes the stimulus causing the transition. This configuration is
therefore speed-independent for arbitrary component delays. In particular,
the PC pipeline configuration family operates correctly even if the
function blocks in different pipeline stages perform different functions or

have different delays.

Even though the PC configurations are speed-independent, they are
not fully delay-insensitive because the precharge input is overriding and
each gate does not itself verify that its inputs have reset before resetting its
outputs. Arbitrary delays inserted after the branch of an input wire to a
preceding completion detector could produce incorrect operation.
However, since such arbitrary wire delays do not usually occur in practice,
speed-independence is sufficient and it is usually not important that the PC

configuration is not completely delay-insensitive.

The sequencing of the precharge control logic has the feature of
using each precharged function block both as a computational element and
as a latch. This is possible because the dual-rail signalling convention
allows the precharged function block to hold its outputs while waiting for a
precharge signal or new active inputs. Even if its inputs reset, an evaluated
stage, not yet precharged again, can hold valid data outputs to allow the
next stage to have stable inputs during its evaluation. And even if some

data inputs go active, a stage that has been reset can hold its outputs reset
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Figure 2.5: Schematic for stage configuration PC1.

until a sufficient number of inputs go active for the stage to make a correct
evaluation. Thus, one can use a precharged function block as a latch
“for free,” with no additional transistors, merely by structuring the
control as described in the previous paragraph to precharge each block
only after its successor consumes the outputs. The PCO configuration, in

particular, functions correctly as a pipeline without any explicit latches.

Adding latches to each stage can increase pipeline throughput by
reducing the cycle time. Configuration PC1 inserts one latch between the
precharged function blocks as shown in the stage schematic in Figure 2.5.
Each stage also has a second completion detector to detect the status at the
output of the C-latch and supply an input to the control C-element.
Configuration PC2 contains a second latch and completion detector
between the precharged function blocks as illustrated in Figure 2.6.
Adding the explicit latches in configurations PC1 and PC2 and connecting
them with the same control structure can also be viewed as adding dummy

functional units that hold data instead of processing it. If the latches are
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Function

small in area compared to the real function blocks, then this can be

advantageous because it increases the utilization of the function blocks.

A problem with the PC configuration family is that the C-element in
the control is in the critical path of forward flowing data tokens. Since the
C-element transitions to remove the precharge signal only after it has
received valid data inputs, the delay of the C-element adds to the delay of
the function block evaluation. But if it can be assumed that stages reset
faster than they evaluate, then another stage style is possible that removes
the delay of the C-element in the control of the PC family. The modified
family is called PS and it is formed by removing the C-elements in the
control and connecting each precharge input directly to the completion
detector following each block’s successor. Figure 2.7 shows the simplest

stage in this family, PS0, which has no explicit latches.
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Figure 2.7: Schematic for stage configuration PS0 and a short
pipeline composed of that configuration.

The transformation from PC to PS stages is justified by showing,
with the aid of the assumption about resetting, that the same operations
occur in PS as occur for both the rising and falling transitions of the
C-element in PC. The rising transition of the C-element is not important
when dual-rail signalling is used for the datapath because this convention
on the data inputs prevents each stage from evaluating until its inputs
become valid. Under the assumption that each stage’s predecessor resets no
slower than the stage’s successor evaluates, the falling transition of the
C-element is always triggered by the falling of the signal from the
successor’s completion detector. Since the C-element is redundant on both

transitions, the C-element can be removed and replaced with a wire from
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Figure 2.8: Schematic for stage configuration PS1.

the input that is assumed to fall last. As thus constructed, PS stages act
equivalently to PC stages when it can be assumed that function blocks reset

no slower than they evaluate.

The PS family, in which a forward flowing data token is not delayed
by a C-element in the control logic, is both faster and smaller than the PC
family. Pipelines composed of the PS0 stage configuration are particularly
simple since they directly concatenate precharged function blocks and have
no C-elements at all. Additional latches can increase the throughput by
allowing more token sites. Figure 2.8 shows configuration PS1, which
adds one latch between the precharged function blocks, along with an
additional completion detector. Likewise, configurations PS2 and PS3
contain, respectively, two and three latches between the precharged

function blocks, with a completion detector after each latch.

Though the PS and PC families are generally similar, there is one
other instructive difference between them. Since the C-element in the
control of stages in the PC family does not enable evaluation until after

valid data arrives, a PC stage using full-controlled precharged logic can
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accept ordinary single-rail data as well as embedded-completion dual-rail
data. This feature was used in [MENGRS88] to halve the number of wires
going through the latches, but the size of the function blocks remained
unchanged because they still generated dual-rail signals internally in order
to form the completion signals needed for the control logic. In contrast,
this modification for using single-rail data inputs cannot be applied to the
PS family because their stages require dual-rail signalling in order to allow

the function blocks to be enabled for evaluation before valid data arrives.
2.4.2 Configurations using Combinational Function Blocks

Section 2.3 described both precharged and combinational function
block styles that all generate outputs on dual-monotonic pairs. The
precharged function block styles were used in the stage configurations of
the previous subsection; this subsection defines the stage configurations
using the combinational (static and direct) function block styles. The
configurations can be derived by considering two transformations of the
PS family that replace its precharged function block with a combinational
function block and a C-latch. The transformation in which the C-latch
precedes the function block is called the CF family, and the transformation
in which the function block precedes the C-latch is called the FC family.
The two transformations have similar properties of delay insensitivity, but

differ significantly in performance.
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Figure 2.9: Schematic for stage configuration CF0 and a short
pipeline composed using that configuration.

The simplest member of the CF family is shown in Figure 2.9 (to be
consistent with the other stage schematics, the figure is drawn with the
function block to the left of the latch). Since, in order for a sequence of
stages to act as a pipeline at all, each stage must have at least one latch, the
configuration with just the one required latch is called CF0 because it has
no added latches. The operation of this configuration can be explained
from the control wire connections of the pipeline segment example in
Figure 2.9. Latch 1 resets when the data element of a token it held has
passed down the pipe to function block 3 and no longer needs to be stored.
The data element is no longer needed at latch 1 because its presence at the
outputs of function block 3 verifies that it has been stored in latch 2.
Observe that waiting only for the data element to pass through function

block 2 would not verify that the token got stored into latch 2. Thus, the
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CF0 configuration requires that each latch reset only after the token it
holds has passed through the second function block following the latch.
Because the combinational function blocks and C-elements are symmetric
for rising and falling transitions, the control connections also handle the
reset element portion of each token correctly: each latch is enabled to

accept new valid data only after the second succeeding function block has

reset.

As in the case of pipelines using precharged function blocks,
additional latches can increase the throughput. Configuration CF1 imposes
one additional latch between the function blocks, for a total of two latches.
Configurations CF2 and CF3 contain respectively three and four latches

between the function blocks, with a completion detector before each latch.

The FC family is the transformation of the PS family that replaces
each precharged function block by a combinational function block followed
by a C-latch. An equivalent method of obtaining the same F C
constructions is to transform the CF family by moving the latches and
their control connections to the other side of the function blocks. Either
transformation constructs configurations where each combinational
function block is preceded by a completion detector and followed by a
latch. As in the re-timing transformations of synchronous circuits
[LEIS86], the transformations can change the performance without

changing the total number of latches.

Figure 2.10 shows both a single FC0 stage and a short pipeline

composed using that stage configuration. Configurations FC1, FC2, and
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Figure 2.10: Schematic for stage configuration FCO and a short
pipeline composed using that configuration.

FC3 contain respectively two, three, and four latches between the function
blocks, with a completion detector after each latch. Their logical operation
is similar to that of the CF configurations, but their performance is
improved. The improvement occurs because each latch can reset after
verification that the data element it holds has passed through only one
function block following the latch, instead of two function blocks.
Chapter 3 will show this improvement quantitatively in terms of the

individual block delays.

The CF and FC pipeline configurations require different
combinational logic block styles for different classes of delay assumptions.
Since a direct function block, as defined in Section 2.3, checks within each
gate to make sure all its input transitions arrive before changing any of its

outputs, both the CF and FC families are delay-insensitive when a direct
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function block is used as the combinational block style. In contrast, the
properties of the CF family are different from those of the FC family
when a static function block is used as the combinational block style. A
static function block may change an output prior to the arrival of all its
input transitions. If some input wire changes particularly slowly and
completion detectors do not verify its transition, then it may not finish
changing before the removal of the stimulus. This could cause non-digital
voltage values or leave a “stale” data value, which would erroneously
merge with the next data token. Since the FC family has completion
detectors that verify the transitions on the inputs to the function blocks, FC
configurations using static function blocks are still speed-independent.
However, the CF configurations, which have no completion detector
between a function block and the preceding latch, do not verify the
transitions on a static function block’s inputs, and are hence not speed-
independent if using static function blocks. In order to avoid this
complication when discussing performance, I specify both configuration

families with direct function blocks.
2.4.3 Configurations using Edge-Triggered Registers

The PC configuration family can also be transformed into a
structure more similar to a synchronous circuit by replacing the latch in
each stage with a register. Since registers do not actively reset their
outputs, an asynchronous pipeline using completion detectors must rely on
the function block for resetting. Since only the full-controlled precharged

logic block style can reset its outputs with data still applied to its inputs, it
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Figure 2.11: Schematic for stage configuration PL1.

is the only function block style that can be used in asynchronous pipelines

with registers.

Replacing the C-latch in configuration PC1 with a register
controlled by a C-element yields the PL1 configuration illustrated in
Figure 2.11.  This configuration has the control structure suggested in
[MENGS89] for a “full-handshake.” Because the register is positive edge-
triggered, its outputs do not explicitly change when its control signal goes
low, and so there is no benefit from a completion detector on the register’s
output. Instead, timing assumptions need to be made concerning the
register’s delay. For example, when the register’s control input rises, the
delay before the register passes new valid data to its outputs must be less
than the delay through the C-element enabling the evaluation of the
following function block. If the register is too slow, then the function

block might begin evaluating on the register’s old data value. Thus, the PL
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family is not speed-independent like the PC family. However, since
synchronous circuit designers have characterized register delays well, and
the required assumption may be justifiable, the PL family is an alternative
that offers good throughput with only one completion detector per stage.
Unfortunately, like the PC family, the presence of the C-element in the
critical path that enables function block evaluation increases the latency of

the PL family relative to that of the PS family.

2.5 Extensions to more Complex Datapaths

The previous section cataloged the control variations for linear
dataflows. For datapaths that branch, simple extensions to each
configuration can generate the appropriate control circuits. The merging
of datapaths coming together at a single stage requires sending the
acknowledge from that stage to all its predecessors. Splitting the datapath
output from a stage requires the addition of a C-element to collect the
acknowledge signals from all successors of the stage. Figure 2.12 shows
an example of such arrangements for the PS0 configuration. Performance

of dataflows that split or merge must be analyzed on a case-by-case basis.
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can provide the appropriate control for merging and
splitting datapaths. This figure shows extensions to the
PS0 configuration.
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2.6 Summary

Self-timed pipelines and rings can be constructed from a range of
possible stage configurations. Dual-rail signalling on monotonic wire pairs
allows embedding completion information within the data itself and avoids
having to rely on matched delays. The configurations vary in the style of
function blocks used and the actual delay assumptions they require.
Pipelines using full-controlled or semi-controlled precharged logic can
provide speed-independent operation with the appropriate control
structures. Ordinary static logic generating dual-rail outputs also can be
speed-independent with one of the suggested configurations. Complete
delay-insensitivity, which allows even arbitrary delays on different

branches of a wire, can be attained with direct style function blocks.

This chapter cataloged families of configurations for the stages of
self-timed pipelines. Latches added to the base configuration of each
family form the members that allow the improvement of pipeline
throughput at the expense of increased latency. The next chapter evaluates

the performance tradeoffs of these pipeline configurations in detail.
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Analysis Methodology and
Results

The previous chapter defined several different stage configurations
with some qualitative statements about their latency and throughput
tradeoffs. This chapter presents a framework to compare the performance
of the stage configurations quantitatively when used in either asynchronous
pipelines or rings. First, Section 3.1 defines the latency and throughput of
an asynchronous pipeline more formally, and introduces the key
parameters necessary to evaluate performance. These parameters can be
expressed in terms of the delay variables of individual components.
Section 3.2 defines these variables and then presents the Dependency
Graph analysis method used to determine the latency and local cycle time

of a stage configuration in terms of those delay variables. The method is
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applied in Section 3.3 to evaluate the performance of different pipeline
stage configurations. This section gives two tables summarizing the results
of applying the analysis method to all of the configurations introduced in
Chapter 2. The first table gives the coefficients of the component delay
variables in the equations expressing the latency and cycle times. The
second table shows what these coefficients mean for extremes in the
possible relative values of the component delays. The latency and
throughput characteristics of the different pipeline stage configurations are
summarized in Section 3.4 for self-timed pipeline design. The next
chapter delves further into the implications of the same performance

measures for self-timed rings.

3.1 Definition of Local Performance Parameters

Determining the performance of an asynchronous pipeline can be
more complex than determining the performance of a synchronous
pipeline. In an asynchronous pipeline, control signals govern token flow
with local handshaking. Each four-phase token is composed of a data
element and a reset spacer. At any instant, the stages not occupied by data
elements or reset spacers can be described as containing a “hole” or
“bubble.” Control logic only allows an element to flow forward when the
stage it will occupy is empty. When an element does flow forward, it
leaves behind an empty slot. Thus, bubbles flow backward as they displace
forward-flowing data elements and reset spacers. The performance can be
limited by the supply of tokens, the supply of bubbles, or the local control
handshaking. In a pipeline, the input supplies data tokens and the output
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supplies bubbles as a result of acknowledgement handshakes with the
environment. Because the performance can be limited by several different
effects, an asynchronous pipeline requires more variables to describe its
performance than a synchronous pipeline does. This section defines the

variables that characterize the local properties of pipeline stages.

In a synchronous pipeline, the delay from one stage to the next stage
is simply equal to the clock period; in an asynchronous pipeline, the delay
is an independent quantity called the per-stage latency. The forward
latency, Ly, specifies the delay from new valid data outputs at one stage to
new valid data outputs at the following stage. The reverse latency, L;,
specifies the delay from the acknowledgement of a stage’s output to the
acknowledgement of its predecessor’s output. The reverse latency is
usually greater than the forward latency in circuits using embedded-
completion signalling because such circuits use some control signal
transitions only for passing bubbles and have fewer required transitions in
the critical path of forward flowing data. (The opposite is often true for
circuits using delay-matching [SUTHS89] instead of embedded-completion
signalling because delay-matching can avoid some transitions in the bubble
acknowledgement path, thereby lowering the reverse latency.) The forward
latency, Ly, can be measured or analyzed independently by observing a
data token flowing forward through an initially empty pipeline. Likewise,
the reverse latency, Ly, can be measured or analyzed independently by
observing the delays bubbles experience when flowing through a pipeline
initially packed with data. Because any packing will consist of alternating

data and reset elements, I define L, to be the average delay of a bubble
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displacing a data element and displacing a reset spacer. Defining just the
average is sufficient because bubbles must always displace equal numbers

of data elements and reset spacers.

The minimum local cycle time, P, for an asynchronous pipeline is
analogous to the minimum clock Period for a synchronous pipeline. Just as

in the synchronous case, the slowest stage limits the minimum value for P.

The Throughput, 7, is the reciprocal of P, and is the rate at which the

input and output must deliver and consume tokens, respectively, to keep a

pipeline flowing at its maximum capacity.

Since the different stage configurations in the preceding chapter have
different numbers of latches, we need one more local variable to account
for the different “capacity” of the stages for storing tokens. Let the
variable S be the spread in stages between tokens packed statically in a
pipeline. Since S is concerned with a static situation, it is dependent only
on the connectivity of components and is independent of their delays.
Because each token contains both a data element and a reset spacer, and

. . 2
each of these occupies the storage of one latch, S is always equal to Hel

where H is the number of extra latches in each stage, i.e., the number that

follows the two-letter code designating each configuration.

3.2 Dependency Graph Construction from Component Delay

Variables

In order to determine the latencies and cycle time of a pipeline built
out of a particular configuration of components in each stage, it is

necessary to analyze the dependencies of the required sequences of
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transitions. These dependencies can be drawn in a marked directed graph
[COMMT71, MURAT77] in which the nodes of the graph correspond to
specific rising or falling transitions of circuit components, and the edges
depict the dependencies of each transition on the outputs of other
components. A value attached to each node in the graph specifies the delay
of the corresponding transition. I call these graphs “Dependency Graphs”
because of the similarly named graphs used in analyzing the cycle time of
synchronous systems [RAO86]. This section illustrates two types of
Dependency Graphs. The first type is a “Flat” Dependency Graph, which
is more intuitive and therefore used for qualitative descriptions of the
salient aspects. Flat Dependency Graphs are functionally equivalent to the
Signal Transition Graphs of [CHU86]. The second type of Dependency
Graph is new and I call it the “Folded” Dependency Graph. This type is
specifically for pipelines or rings with similar stages and provides a more
compact representation suitable for easier quantitative analysis and more

precise definitions.

The nodes in either type of Dependency Graph represent the delays
of particular transitions. The delay of each transition is specified by a
lower-case ¢, which denotes propagation time, subscripted with a capital

letter abbreviating the block type as follows:

F Function blocks
D completion Detectors
C C-elements, latches, or registers

If an up-arrow (T) or down-arrow ({) follows the block type, then

the term refers specifically to the delay of the rising or falling transition.
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When written with no arrow, the delay term refers to both transition
directions. A delay term of a component specifies the propagation time
from the last input to change until the output of the component changes.
Each delay variable also includes the delay of driving a chain of buffers on

a component’s output if it is significantly loaded.
3.2.1 Flat Dependency Graphs

One constructs Dependency Graphs by inspecting the schematic for
both the rising and falling transitions of each component and drawing each
dependency. For a component like a C-element, which has symmetric
dependencies for rising and falling transitions, the corresponding portion
of the Dependency Graph is likewise symmetric. The node for each
transition is annotated with an index indicating the particular pipeline stage
that contains the component. As an example, a segment of the Flat
Dependency Graph for the PCO pipeline configuration, which was defined
in the previous chapter in Figure 2.4, is shown in Figure 3.1. Only a
segment large enough to show the repeating pattern of the graph is drawn.
The Dependency Graph is a simplification of the more general timed
Petri-net description of asynchronous components [RAMC74]. Since the
pipelines under consideration are deterministic, the Petri-net is
decision-free and can therefore be fully represented by a Dependency
Graph.
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Figure 3.1: A portion of the Flat Dependency Graph for
the PCO configuration pipeline.

Dependency Graphs can be used to determine both the per-stage
latencies and the local cycle time. Simple acyclic paths in the flat graphs
determine the latencies. The forward latency is the sum of delays along the
longest path from some transition to the same transition in the stage with
the next higher index. The reverse latency is one-half the longest sum of
delays from some transition to the same transition in the stage with index
two less. It is necessary to define the reverse latency in terms of two stages
to account for bubbles displacing both data elements and reset spacers.
More precise definitions of the latencies will be stated in the next

subsection.

The local cycle time is determined by cyclic paths in the Dependency
Graph. These cycles occur because a pipeline processes successive data
tokens and the components in each stage go through a series of transitions.
The transitions eventually return a stage to the same “state,” where the state

is defined by the output values of each component. Because the graph is
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“timed” by the delays at each node, cycles do not indicate undesirable
feedback situations as they would in synchronous logic.3 Rather, the sum
of the node delay values around a cycle is a lower bound on the period
required for the components to go through a sequence of transitions that

return the stage to the same state.

Each transition in a Dependency Graph can fire only when all of its
predecessors have executed their specified transitions, and cannot fire again
until all of its predecessors have fired again. Since every cycle through the
corresponding node in the dependency graph is a lower bound on the time
before that transition can fire again, the actual minimum cycle time for a
transition is given by the cycle with the longest sum of delay values. The
correct speed-independent construction of each stage guarantees that all of
the components in a stage will cycle at the same rate since every transition
is part of some cycle in the Dependency Graph that verifies the transition’s
completion. Thus, the longest simple cycle in the complete Dependency
Graph gives the minimum cycle time of the pipeline as a whole. These
results were proved in [RAMARSO] for decision-free Petri-nets, and more
recently in [BURNO91] specifically for analyzing self-timed circuits with a
Flat Dependency Graph. In the present thesis, the method is applied
specifically to pipelines and rings, where the cycle time is the time required

for a stage to process each token.

3 Only if the delay sum around a cycle were zero would there be a problematic
“dependency loop” akin to the problem of a loop with no registers in the case of
synchronous logic.
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Figure 3.2: The Dependency Graph for the PCO
configuration pipeline can be folded
together to make a Folded Dependency
Graph.

3.2.2 Folded Dependency Graphs

For a specific pipeline stage configuration, the structure of the
Dependency Graph repeats after each stage, and this property can be used
to make the representation more compact. When the stages are identical
and thus the delay values also repeat, the Dependency Graph can be folded
together. Figure 3.2 shows an example of a Folded Dependency Graph for
the PCO pipeline configuration. As before, the nodes in the Folded
Dependency Graph represent the transition delays, but it is not necessary to
subscript them with a particular stage index since the node represents that
same transition in all stages. Instead, each dependency edge in the Folded
Dependency Graph is annotated with an integer label giving the offset in
stage indices to which the dependency refers. Dependencies between

components in the same stage thus have an offset label of zero.
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The Folded Dependency Graph can be used to more precisely define
the stage latencies and the local cycle time. These quantities can be written
in terms of equations where #; are the node transition delays and w; are the

stage index offset labels:

maximum over all St
non-repeating cyclic paths ie path
L= witho<  Yw T G-1)
ie path ie path
maximum over all Mt
non-repeating cyclic paths i€ path
r= with 0 > Yw; — Ywj 3.2)
ie path i€ path
maximum over all 7
non-repeating cyclic paths i atil
P = with 0 = Y w; P (3.3)
iepath

In all of equations (3.1)-(3.3), the set of paths considered in the Folded
Dependency Graph corresponds to the set of paths enumerated to define the
same quantities in the corresponding Flat Dependency Graph. Even though
the latency paths were acyclic in the Flat Dependency Graph, they become
cyclic in equations (3.1)-(3.2) when the graph is folded. The maximum of
delays is taken specifically over those paths that do not repeat (a repeating
path is one that passes through the same node more than once with the same
accumulated stage index offset sum) because this path set directly
corresponds to the examination of just the simple paths in the Flat

Dependency Graph. Repeating paths do not need to be considered since

54



Chapter 3. Analysis Methodology and Results

they correspond in equations (3.1)-(3.2) to paths containing cycles in the
Flat Dependency Graph, and in equation (3.3) to non-simple cyclic paths in
the Flat Dependency Graph.

It should be emphasized that if the stages in a pipeline or ring are
not identical, then the complete Flat Dependency Graph needs to be drawn
because the delay terms from the different stages need to be distinguished.
The longest cycles in the Flat Dependency Graph will be the ones through
the slowest stages, and they will hence correctly determine the limiting

cycle time for the entire pipeline.

For a pipeline or ring that has identical stages, the Folded
Dependency Graph gives the same information as a Flat Dependency Graph
but in a more compact form that also makes symmetry more apparent
graphically. Either graph can be used for the analysis of a pipeline with
identical stages. I wrote a computer program that examined paths in
Folded Dependency Graphs to find the latencies and local cycle times
according to equations (3.1)-(3.3).

3.3 Results of Analysis of the Configurations

Using the program implementing the analysis method, I determined
equations for the latencies and cycle times of all the configurations in the
previous chapter. This section gives details only for the application of the
method to the PCO configuration; [WILL90] lists equations for the other
configurations. In order to simplify the equations, this section defines a set
of “standard assumptions” and uses them to construct two tables that

summarize the equations for all the configurations. The first table gives
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the coefficients of the equations as simplified by the standard assumptions,
and the second table shows examples of the possible ranges of actual latency

and throughput expressed by the equations.

Equations (3.1)-(3.3) are easily applied to the particular example for
configuration PCQ drawn in Figure 3.2. Equation (3.1) gives an equation

for the forward latency,
Ly = max [tFr+tDpytict , tFy+tDr+Cy] (3.4)
and equation (3.2) gives the reverse latency,

1
Ly = 5 [tPrHDyHCIHEHDMHCT] - (3.5)

There are several possibilities for the cycles enumerated by equation (3.3)
used to determine the local cycle time. Any cycle with zero offset sum must
be the concatenation of the sequence F1.D;.Cy.F.D¢.Cr, which has
offset sum -2, with two more trips through adjoining loops that have offset
sum +1. Since the longest cycles need to be found, the self-cycles on the
Frand F nodes can be ignored because they are always shorter than the
Ft.Dy.Crand Fy.Dsr.Cycycles. Therefore the following cycles are the

possibilities for the longest zero offset sum cycles:
Fr.Dy.Cy.Fy.Dr.Cr.Fp2.D.Cr.F1.Dy . Cq
F¢.Dy.Cy.F.D1.Cy.Fy.Dp.Cr.F1.Dy . Cp

F2.Dy.Cy.Fy.D1.C . F.Dp.C . F.Dp.Cp
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and the equation for the cycle time is
P =tpr+ip+iC HiFHID+HCr + 2 max [tp+tD+HCr, tR+tDr+Cy]  (3.6)

Since the equations for the latencies and cycle times contain many
terms, they are easier to compare when simplified by some reasonable

assumptions. The following relationships are defined as the standard

assumptions:
tp = tpr =tpy (Completion detector delays are equal and symmetric)  (3.7)
Ic = tCcr =tCy (C-element delays are equal and symmetric) (3.8)
tFy <= tF1 (Function resetting is no worse than evaluation) (3.9)
Ic <= tfy (C-element delays are no worse than function resetting) (3.10)

Equations simplified by the standard assumptions give latency and

cycle time in terms of four variables: tfq, tFy, tc, and tp. For example,

the standard assumptions reduce the PC0 equations (3.4)-(3.6) to:

Lf = tpr+tp+ic (3.11)
1

Ly =tp+1tc + 5(tp¢+ 1Fy) (3.12)

P =3tpr + tp+ 4tp + 41tC (3.13)

3.3.1 Table of Characteristic Coefficients

To compare the different configurations, Table 3.1 summarizes the
equations for the cycle time and per-stage latencies by showing the

coefficients of the four variables: tf1, tFy, tC, and tp.  For example, the
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Config [ Class | Cycle Time [Forward Latency |  Reverse Latency
Coefficients, P Coefficients, Lf Coefficients, Ly
IFT |UFL [ IC | tD | tFr | ICr |IDL Y tFr | tFL | tC | tD
PCO | SI | 3 |1([41]141]1 1 1 1051051 1 | 1
PCl [ ST|]2 |0 ([4]4]1]2 1 105105 2 [ 2
PC2 { ST J1 |1 ([41]41]1 3 1 §0.5[105] 3 | 3
PC3 | ST |1 |1 141141114 1 105105 4 | 4
PSO 3 [1]10f{2]1/[07]01}J05]05]0/{|]1
PS1 2 1012211 1 | 0 J05]05( 112
PS2 1 |1 ]2 121112 ]01}405]05(2]3
PS3 1 [ 1 {2 ]2]1 3 10]J05[05]3]4
CFO | DI |3 | 1[4 ]2]1 1 1 00571051111
CFl | DI |2 [0 ]4[2}1]2]01]05]05|2]|2
CF2 [ DI |1 {1 ]4([2}1([3]01]05]05]3]|3
CE3 | DI |1 |1 [4]211]4]01]105]|05| 4]4
FCO [ DI |2 |04 ]2]1 1 OO 1O | 1|1
FCl1 [ DI | 1 |1 |4 |21 |2 ]]0J0]0]|2]|2
FC2 | DI | 1 1 14121 1]13]0}J0]0]3]{|3
FC3 | DI |1 [1{4]2]1]4]0J0]J0|4]¢4
PL1 1 1 {41211 121110011210
PL2 1 |1 {4 1]2]11]3 1 010 Y}|3[O0
PL3 1 1 {4 ([2]1]4[1]0]01]41]0]
Table 3.1: Coefficients of equations for pipeline stage cycle

time and latency. The class column specifies those
families that are speed-independent and delay-

insensitive.

top line of the table labeled PCO shows the coefficients in equations
(3.11)-(3.13).

Comparing the terms in Table 3.1 for the different stage

configurations provides many interesting results. One observation is that
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the forward latency of the PC configuration family is clearly worse than
the forward latency of the other families because of its completion detector
in the critical path determining the forward latency. This dependency
causes the function block in a PC stage not to get enabled until after valid
input data has already arrived. In the other families, which require data
signals with embedded completion, the control enables the function block
earlier, in anticipation of the data. The PC family does, however, have
one advantage over the PS family: the PC family is speed-independent and
works correctly for any composition of individual stage reset or evaluation
delays, but the PS family requires assuming that neighboring stages reset
no slower than each stage itself evaluates. On the other hand, since
pipelines composed of a sequence of similar stages can reasonably make
this assumption, the complete speed-independence of the PC family is
usually not an important requirement and PS is preferable to PC because

of its lower latency.

Another observation from Table 3.1 is the tradeoff between latency
and cycle time, which is exhibited by all the families and is dependent on
the number of latches. Adding explicit latches to the “0” member in each
family decreases the cycle time to an extent. However, different families’
cycle times “saturate” with differing numbers of latches. The PC, PS, and
CF families saturate with two extra latches; the FC family saturates with
only one extra latch. This means that there is no improvement in choosing
FC2 instead of FC1, but there may be an improvement in using PC2,
PS2, or CF2 instead of PC1, PS1, or CF1, respectively. Actually,

whether there is any difference between these latter sets is dependent on the
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relative sizes of tFq and tF; . If the reset time is about equal to the
evaluation time of the function blocks, then adding a second latch does not
help, but if tF) << tF¢r then adding a second latch helps significantly.
This kind of dependence is a specific property of asynchronous pipelines

that has no analogy in synchronous pipelines.

Yet another observation is that the FC configurations have the same
forward latency as the equivalent members of the CF family, but the cycle
times are better for the FC family members. The FCO0 cycle time has, in
fact, the same coefficients as the CF1 cycle time even though FCO0 has one
less latch per stage. Likewise, FC1 and FC2 have cycle times
corresponding to those found for CF2 and CF3. The reverse latency of
the FC family is also better because bubbles can flow through the control
logic without going through the function blocks. Therefore, the FC family
members are always better than the corresponding members in the CF

family.

Finally, the comparison between the FC family and the PS family is
not as clear cut as the previous observations for a couple reasons. First,
Table 3.1 does not express the increased function block delay (because of
taller transistor stacks) of the combinational function blocks in the FC
family over the precharged function blocks of PS. And although the PS
family has better forward latency, the FC family has better reverse
latency. So, while the PS family will generally be the correct choice for
the absolute lowest forward latency, the FC family may be preferred for
simple function blocks because of its delay-insensitivity or better

throughput.

60



Chapter 3. Analysis Methodology and Results

3.3.2 Table of Extreme Cases

In order to illustrate the range of values that the latencies and cycle
times can have, Table 3.2 shows the results of applying the simplifications
listed at the tops of its columns to the coefficients previously summarized
in Table 3.1. The numbers for both latency and throughput are normalized
by tf1, the function block evaluation time. Since all the numbers represent
delays, the smaller numbers are always better. The first three columns of
Table 3.2 are based on the assumption that tf; = t¢c = tp = 0, which is
nearly true in the extreme case of large function blocks composed
internally of several precharged domino gates. Since the stages evaluate in
series but reset in parallel, the reset time will be much less than the
evaluate time, and can justifiably be approximated as zero. The table is not
filled in in these columns for the combinational logic cases since these
assumptions could never apply in those cases because they will reset serially
even if composed internally of several gates. The middle three columns in
Table 3.2 are for the case of t¢c =tp =0 while tF=tFr. This case is
an appropriate assumption for large function blocks that both evaluate and
reset serially, making the reset time comparable to the evaluate time. The
last three columns are for the case of t¢c =tp =tFy =tF1, an
appropriate assumption for very small function blocks, in which both the
function blocks and the latches are merely a gate delay. Real applications
would, of course, have latency and cycle times somewhere between the

extremes listed in this table.
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Big Composite Big Serial Il Small “
F Block F Block F Block
Pipeline tpy=0 | tFL=tF1
Config tc =tp =0 tC =tp =tF1

Ly |S(LprLy)) P || L |SLeLy)] P || Ly [S(LptLy)| P

| PCO 1 3.00 3 1 4.00 4 3 1 12.00 | 12
[ pct [ 1] 150 [ 217200 2] 4] 900 |10
PC2 1 1.00 1 1 1.33 2 5 8.00 | 10
PC3 1 0.75 1 1 1.00 2 1 6 7.50 | 10
PSO 1 3.00 30 1 4.00 4 1 6.00 6
PS1 1 1.50 2 1|1 2.00 2 2 6.00 6
PS2 1 1.00 1 1 1.33 2 0 3 6.00 6
PS3 1 0.75 1 1 1.00 2 | 4 6.00 6
CF0 1 4.00 4 2 | 10.00 | 10
CF1 1 2.00 2 1 3 8.00 8
CF2 1 1.33 2 | 4 7.33 8
CF3 1 1.00 21l 5 7.00 8
FCO 1 2.00 2 | 2 8.00 8
FCl1 1 1.00 2 3 7.00 8
FC2 " 1 0.66 2 1 4 6.66 8
FC3 1 1.00 2 S 6.50 8
PL1 1 1.00 1 1.00 2 | 4 6.00 8
PL2 1 0.67 1 0.67 2 5 5.33 8
PL3 1 0.50 1 1 0.50 20 6 5.00 8

Table 3.2: Performance parameters under extreme case conditions.
(Normalized to tFp, the function block evaluate delay)

Each section of Table 3.2 gives the forward latency, Ly, the cycle
time, P, and the quantity S(Lf+L,), which is a quickly determined lower
bound on the cycle time for all of the configurations presented. The
quantity S(Lf+Ly) will also be used in the next chapter to distinguish when

the cycle time handshaking can limit performance.
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3.4 Summary and Conclusions

Using Dependency Graphs, a method has been developed to
determine the latencies and local cycle times of deterministic self-timed
pipelines. Applying this method to examples has led to useful tables for
comparison of self-timed pipeline configurations. These comparisons
could be used by synthesis tools to allow choosing from a wider range of

possible circuits based on specific delay considerations.

For ordinary pipelines, throughput is usually the dominant
consideration. Table 3.1 shows that the best choice for a high-throughput
pipeline may vary depending on the actual ratios of ¢ and tf to tf1.
Likely good choices for pipeline configurations are PS2, PL1, and FCI.
Configuration FC1 uses a direct or static function block style rather than a
precharged function block and can save the cost of one completion detector
per stage while achieving similar throughput, but it is important that the

remaining completion detectors follow the latches and not the function
blocks.

The next chapter extends the analysis of latency and throughput
characteristics to self-timed rings. It shows that by meeting certain
constraints, it is possible to construct rings whose performance is limited
solely by the forward latency of the stages. For rings, configuration PS0,
which this chapter showed to have the lowest forward latency, is therefore

particularly attractive.

63



Chapter 4

Performance Analysis of
Self-Timed Rings

Self-timed pipelines process a series of data tokens. If an application
uses a pipeline to solve an iterative problem requiring a series of internal
computation operations, then, after an initializing input step, the pipeline
can proceed to take its inputs from its own output. A looped pipeline
forms a ring, whose stages can implement partial steps of the computation
operation or can repeat the entire operation multiple times around the ring.
If a given problem is fully specified by its initial input operands, then the
ring’s performance is not limited by a need for additional external data
inputs during its iterations. And since the ring is composed of self-timed
pipeline stages, which communicate locally with their neighbors, its

performance is also independent of external clock and control signals. The
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performance of a self-timed ring is therefore determined solely by the
circuit configuration of its stages. The goal of this chapter is to express the
overall total performance of a ring in terms of the local stage parameters
found from the analysis of stage configurations presented in the previous

chapter.

Although, in general, rings may contain fork or join stages, which
introduce or consume additional tokens as the tokens flow around the ring,
this thesis examines only simple rings. Complex rings, which have
different functions in each stage or forking or joining dataflows, and thus
have different stage delays, need individual case-by-case analysis.
Evaluating the actual performance of a particular complex ring requires
specific information about the individual relative delays of the function
blocks and control elements. To analyze specific cases, one can use the
Dependency Graph analysis presented in the previous chapter by drawing
the graph for the whole ring rather than for just a pipeline segment. The
graph analysis finds the critical path through the ring as a whole, which can

then be adjusted to achieve the best operation.

This chapter applies the results of the performance analysis
methodology presented in the previous chapter specifically to self-timed
rings composed of a simple loop of identical stages. Section 4.1 describes
the terminology for rings, qualitatively describes data and bubble flow, and
defines the variables characterizing each stage. Section 4.2 determines the
overall performance of self-timed rings in terms of the variables
describing the stages. The performance is expressed on graphs showing

regions defined by the number of stages and tokens. Section 4.3 provides
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more explanations of the boundaries and edges of the performance regions,
including the observation that a self-timed pipeline is simply the special
case of an unrolled self-timed ring. The performance equations are
examined further in Section 4.4, which presents graphs of latency and
throughput slices versus the number of stages and tokens. A key boundary
line in the graphs has a coefficient that can be interpreted as a “wavelength”
for flowing tokens. This wavelength and related occupancy measures are
characterized in Section 4.5 for ranges of self-timed ring stage
configurations. Section 4.6 mentions, as an extension, how the
performance measures are changed for self-timing using two-phase
signalling. Section 4.7 summarizes this chapter by discussing the design

implications suggested by this analysis of self-timed rings.
4.1 Ring Terminology

The previous chapter defined a variety of stage configurations.
Since all of these configurations contain one function block in each stage, a
self-timed pipeline requires G stages for a given problem that requires G
function block evaluations. If the structure of the problem is cyclic, with a
period of N or some factor of N, then the pipeline can be made into a ring
containing N stages. Data tokens circulating around the ring complete the
given problem in % iterations. A design must include appropriate
multiplexing to introduce data tokens into the ring and to remove each
token after it loops % times. More than one problem may be computed
concurrently if the logic that controls the multiplexors allows the
introduction of multiple tokens into the ring. Let the number of tokens

kept in the ring be denoted by K. The input multiplexors and output
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connections can be ignored in discussing the fundamental properties and

performance of the ring.

Each stage of a self-timed ring can use one of the configurations
suggested in the previous chapter for pipeline stages. The stage
configuration chosen for the ring will have particular parameters
characterizing its local performance, and these parameters can be
determined from the Dependency Graph analysis of the previous chapter.
The forward latency, Ly, is the delay through each stage of data tokens
flowing forward around a ring. The reverse latency, Ly, is the delay
through each stage of bubbles flowing backward. The local cycle time P is
the minimum interval between tokens passing through the same stage.
Since the stage configurations may contain a varying number of latches, the
parameter S characterizes the number of stages required to contain a pair

of data and reset tokens held statically back to back.

As tokens and bubbles flow around a ring they displace each other,
but the total number of tokens and bubbles remains fixed after the ring is
initialized. Since every data token consists of a pair of one data element
and one reset spacer, the pipeline space occupied by a data token can

contain two bubbles. A ring with N stages and K tokens therefore contains

2 @I— - K)bubbles.

When self-timed stages form a ring, the ensemble may be viewed as
a whole to define a total latency and total cycle time. The total latency, A,
is the delay between the introduction of a new data token into the ring and

the removal of the corresponding processed token after the number of
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loops necessary for the token to have passed through G function evaluation
stages in all. The total cycle time, ®, is the delay between the input or
output of successive tokens while K tokens circulate in the ring. Since all
the other tokens in a ring are replaced with new data during the time it
takes for one token to loop to completion, the relation A = K® holds in the
steady state. This relation for rings is a generalization of the similar
relation for pipelines, which gives the total latency of a pipeline containing
K tokens as K times the delay between successive tokens. Observe,
however, that the relation A = K® depends on neither the number of stages
in the ring nor the number of times tokens must loop. The overall
throughput, T, of the ring is of course given by T = 1/®. Therefore, the
latency and throughput are related by the simple equation

- K
A= (4.1)

In a ring, latency and throughput do not fundamentally trade off with each
other, but both latency and throughput do trade off with the ring area.

Analyzing the performance of a ring means determining the total
latency, A, and total cycle time, @, for the computation of a problem with
G function evaluations as functions of the local parameters Lf, Ly, P, and

S, which describe the particular stage configuration chosen.
4.2 Ring Performance Graphs

The performance of a self-timed ring can be limited by different
causes. The number of stages and number of tokens in a ring determine

which of these causes predominates. The possible limiting considerations
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Figure 4.1 Performance in rings not limited by handshaking control
logic.

define regions of values for N and K in which different relations
expressing ring performance apply. Therefore, the fundamental diagrams
showing performance are graphs having N and K as the axes that define the
applicable regions for particular equations giving total latency and

throughput. Figure 4.1 shows a graph for stages whose cycle time satisfies
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P < S(Lf + Ly), which means the control logic is fast enough that it does

not limit the ring’s performance.

Three lines enclosing the entire valid region of ring operation bound
the possible values for N and K in a self-timed ring. The top line for
which N=G is the “Unrolled Ring” line because it represents the
degenerate case of a ring completely unrolled into a pipeline for
accomplishing the needed G function evaluations. The left edge of the
valid region in Figure 4.1 is the K=1 “Single-Token” line. The
minimum value for X is, of course, one because a ring with no data tokens
is not useful. The right edge of the region is the diagonal “Single-
Bubble” line where N = S(K + 12_) Values of K > % - ;— are not
possible because a ring must have at least one bubble for data to circulate at
all. There are two regions of operation within the triangle formed by the
three boundary lines. One region, marked “Data-Limited,” is where the
token flow rate is limited by the forward latency; the other, marked
“Bubble-Limited,” is where the token flow rate is limited by the reverse
latency. These names apply because limitation by forward latency occurs
when stages wait for new data, and limitation by reverse latency occurs

when stages must wait for new bubbles.

Within the Data-Limited region, so few data tokens are in the ring
that there are plenty of bubbles, and therefore the performance is
determined entirely by the forward latency of the tokens. The total latency
within this region is

L=GLy, (4.2)
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and from equation (4.1) the throughput in this region is thus

K
T = G—L]; ) (4.3)

Within the Bubble-Limited region, so many data tokens are in the
ring that the low supply of bubbles limits the rate at which data can flow.
Since the backward flow rate of bubbles is specified by the reverse latency

of the stages, the total throughput is
1 (N \
T=GL (S - KJ, (4.4)

which is just the number of bubbles in the ring times the rate at which they
flow. From (4.1) and (4.4), the total latency in the Bubble-Limited

region is
2 = GL,
=N . (4.5)

3,}-1

The boundary between these regions is the “Max Flow” line, on
which the flow rates of tokens and bubbles are matched for maximum
performance. The intersection of (4.2) and (4.5) determines this line has
equation

Ly
N =KS (1+ L_) (4.6)

f
Figure 4.1 showed the regions of performance when the local cycle time is
sufficiently fast for it never to be the limiting factor. If, however,
P > S(Lf+ Ly), then the cycle time can limit the total performance.

Figure 4.2 shows this condition, which introduces a new region of

operation between the Data-Limited and Bubble-Limited regions.
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Figure 4.2 Performance in rings possibly limited by handshaking
control logic.

This region is “Control-Limited” because the local cycle time constrains

the performance within it. Within this region the throughput is

N
T = GP 4.7)
and, by using (4.1), the total latency within this region is
5 = GEK (4.8)

N
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The Control-Limited region’s boundary with the Data-Limited
region is where (4.2) and (4.8) intersect, which is the line with equation

N = K[%. (4.9)

This line can be called the “Zero-Overhead” line because only rings in

the region to the left of it operate without any overhead caused by control

logic. The boundary between the Control-Limited region and the

Bubble-Limited region is at the intersection of (4.5) and (4.8), which is

the line given by the equation

K
L

“r
P

N = (4.10)

|-

Note that Figure 4.1 is really just a special case of Figure 4.2 for
P = S(Lf+ Ly) where the Control-Limited region collapses into the
Max Flow line. This degeneracy occurs when the local cycle time ceases
to play a constraining role because it is reduced enough to be less than the

constraints from the forward and reverse latency.
4.3 Performance Region Edges

The edges of the performance graphs deserve special attention
because they specify both desirable and undesirable limiting cases. The
points where the diagonal lines in Figure 4.2 cross the vertical K=1
Single-Token line are particularly significant. The lowest point at

[K =1,N= %S} is the point giving the absolute minimum number of stages,

—%S , In a ring. A ring with fewer stages cannot be self-timed with

73



Chapter 4. Performance Analysis of Self-Timed Rings

embedded-completion signaling, since it would not provide sufficient space

for a single data element, reset spacer, and bubble to circulate.

The desired region of operation for the lowest latency is the
Data-Limited region, where A = GLf. The best throughput, or the
smallest area for a given throughput, occurs on the boundary between the
Data-Limited region and the Control-Limited region, which the
Zero-Overhead line specifies. The best design goal is therefore the
lowest point on this line able to achieve the desired throughput. If there is
not a specific constraint on the throughput, then the unique desired
operating point is where the Zero-Overhead line intersects the Single-
Token line at [K =1,N= % ] because it achieves zero overhead with the
fewest stages. Rings with a single token are therefore the preferred case
when latency or area are the most important considerations. If there is a
specific need for higher throughput, then other points on the
Zero-Overhead line can satisfy it with the additional area cost of more
stages and tokens. Multiple token rings may also be called for if there is a
specific need for buffering or delaying more data tokens in the first-in-

first-out (FIFO) queue formed by a self-timed ring.

The top edge of Figure 4.2 is the “Unrolled Ring” line, on which
there are G stages to accomplish the G function evaluations, and iteration is
not necessary. This line, therefore, simply describes a self-timed pipeline
as the special case of an unrolled ring. A pipeline’s total latency and
throughput will be characterized by the same three data-, control-, and
bubble-limited regions of operation. A pipeline that is limited by its input

rate operates in the Data-Limited region. A pipeline that is limited by its
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output rate operates in the Bubble-Limited region since bubbles are
introduced at the output. A pipeline limited by local cycle time constraints
along its length operates in the Control-Limited region. Since N=G, the
maximum throughput of a self-timed pipeline is }—,,
achieves this rate when the number of tokens it contains in the steady state

and the pipeline

is within the range given by
L L
NI< k< N[l - =1, 4.11)

The lower right Single-Bubble diagonal edge of Figure 4.2 is the
least desirable condition for a self-timed ring. Along this edge, the total
throughput is 7 = Z_GI—L’; and the total latency is A = 2GL,K. The factor
of 2 occurs because the single bubble must make two cycles around the
ring for all of the tokens to advance once: one cycle for the data portion,

and one cycle for the reset spacer portion of each token.

4.4 Latency and Throughput Slices through the Performance
Graphs

Figures 4.1 and 4.2 illustrate the values of N and K that dictate the
different regions of performance. Slices through these diagrams can more
clearly illustrate the resultant latency and throughput characteristics for
specific values of N or K. The endpoints of the slices correspond to the
edges discussed in the previous section. Figure 4.3 shows the total latency,
A, plotted versus K for a fixed value of N. Figure 4.4 shows A piotted
versus N for a fixed value of K. The corresponding graphs for

throughput are shown in Figures 4.5 and 4.6. All the graphs have three
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line segments corresponding to the three regions in Figure 4.2. The dashed
line segment shows the Data-Limited region, in which the latency and
throughput are given by equations (4.2) and (4.3). The solid line shows
the Bubble-Limited region, in which the latency and throughput are
given by equations (4.5) and (4.4). Where there is a dotted line from the
Control-Limited region, it clips the attained values of latency and
throughput to the values given by equations (4.8) and (4.7), which are
worse. The specific instances of Figures 4.3 and 4.5 with N=G are useful
in describing the performance of a self-timed pipeline versus the number

of tokens.

Figure 4.3 shows that the Data-Limited region attains the best
latency, but that a ring will not operate in this region if there are more
than N % tokens packed into it. For a given number of tokens, Figure 4.4
shows that a ring’s latency can be improved by increasing the number of
stages up to Kl% , but that greater values for N do not decrease the latency

any further.

The throughput graph in Figure 4.5 illustrates how increasing the
number of tokens increases the throughput while the ring is still within the
Data-Limited region, but adding too many tokens causes the ring to enter
the Bubble-Limited region. When there are so many tokens that there is
room for just a single bubble in the ring, the throughput degrades to a
level even lower than the throughput for just a single token because the
bubble must circulate twice in order for all the data elements and all the

reset spacers to advance once. Figure 4.6 shows that throughput increases
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. P :
as one increases N up to Kl; , but stays constant for higher values of N;

more stages cost more in area without improving performance if no more

tokens are added to make use of the added stages.

For both latency and throughput considerations, Figures 4.3-4.6
show that the desired point of operation is at the intersection of the dashed
and dotted lines. This intersection corresponds to the entire Zero-

Overhead line in Figure 4.2. Since A = GLf everywhere on this line,

any point on or above this line will be a zero-overhead self-timed ring.
4.5 Dynamic Wavelength, Occupancy, and Static Spread

Because the operation of a ring or pipeline is cyclic, the model of a
travelling wave is a good analogy. Every data token is like a cycle of the
wave. The data and reset spacer portions of each token correspond to the
two extremes of a wave’s period, its “crest” and “trough.” The wavelength
is the average distance between like points of two data tokens and is hence

equal to % . The previous section observed that a zero-overhead pipeline
: N_P .. .

or ring has K2 Z} . The minimum desirable wavelength, denoted by W,

is therefore l% , and is simply the coefficient of the Zero-Overhead line

in Figure 4.2. The wavelength can also be viewed as the “dynamic spread”
between tokens as they are flowing, and should not be confused with the
value S, which is the static spread of tokens when they are fully packed
together. The dynamic spread specifies the average number of stages
occupied by a data element and its accompanying reset spacer, along with

bubble space sufficient to allow it to flow unimpeded by the other tokens.
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The reciprocal of the wavelength is the dynamic occupancy or “utilization”
of the stages in the ring or pipeline. The utilization tells how effectively
the stages are being used in parallel. For example, if W =2, then only
every other stage in the pipeline can be simultaneously evaluating.
Likewise, the reciprocal of S is the maximum static occupancy or “packing
density,” but is determined by the connectivity of the components and not
their delays. This quantity is important if the application requires the
pipeline or ring to provide a buffer queue for a specified number of tokens

during brief periods of input/output rate mismatch.

Both the dynamic and static spreads for the various pipeline
configurations are shown in Table 4.1. The numbers are in units of
stages/token (the smaller numbers being of course better); however, the
stages are not necessarily of constant area since the stages with more latches
will be larger. The numbers provide a fair indication of the relative areas
of the different configurations if the function block areas dominate the

latch areas.

The value of the wavelength, W, in Table 4.1 is a quick reference to
the number of stages necessary to achieve zero-overhead in a single token
ring. Table 4.1 evaluates W under the same three conditions used in
Table 3.2 (Big Composite Function Block, Big Serial Function Block, and
Small Function Block) representing the extremes of practical cases. Actual
implementations of the configurations will have values somewhere between
the extremes in the table. The necessary number of stages is the larger of

W and 735 . For example, any function implemented with the PS0
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Big Big Serial Small
Composite F Block F Block
F Block
Pipeline tF1=0 tF=tF1 Static
Config tc =tp =0 IC =tp =tF1 Spread
W=P/Lr| W=P/Lr| W =P/Lf S
PC0 3.00 4.00 4.00 2.00
PC1 2.00 2.00 2.50 1.00
PC2 1.00 2.00 2.00 0.67
PC3 1.00 2.00 1.67 0.50
PSO 3.00 4.00 6.00 2.00
PS1 2.00 2.00 3.00 1.00
PS2 1.00 2.00 2.00 0.67
PS3 1.00 2.00 1.50 0.50
CFO 4.00 5.00 2.00
CF1 2.00 2.67 1.00
CF2 2.00 2.00 0.67
CF3 2.00 1.60 0.50
FCO 2.00 4.00 2.00
FCl1 2.00 2.67 1.00
FC2 2.00 2.00 0.67
FC3 2.00 1.60 0.50
PL1 1.00 2.00 2.00 1.00
PL2 1.00 2.00 1.60 0.67
PL.3 1.00 2.00 1.33 0.50
Table 4.1: Wavelength and Static spreads in units of stages/token.

configuration will require three to six stages to achieve Zero-Overhead

operation, depending on the style and size of the function blocks.

4.6 Extension to Two-Phase Signalling

This thesis considers primarily level-encoded four-phase signalling,

which requires the separation of data elements with reset spacers.
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However, many of the results and principles also apply to two-phase
transition-encoded systems [SUTH89] with appropriate modifications to the
function blocks, such as those we suggested in [DEAN90]. In particular,
the last columns of Tables 3.2 and 4.1 with the assumption ¢F =tf¢ are
appropriate for two-phase configurations. Since the values they enumerate
for the wavelength, cycle time and static spread include both the data and
reset elements of a token, these values can just be halved when used to refer
to a two-phase case in which both the rising and falling transitions convey a

separate useful data token.

The analysis in this chapter is fundamentally unchanged when
describing two-phase pipelines and rings. The same equations describing
performance apply, but the value of K is doubled, and the values of S and P
are halved, relative to their values in the four-phase case. This means that
a two-phase pipeline or ring has the same latency but twice the throughput
of the corresponding four-phase case with the same number of stages.
Likewise, since the wavelength is halved, it is possible to achieve Zero-
Overhead operation with only half the number of stages as are required in
the four-phase case. However, these statements about two-phase
performance are overly optimistic because they are true only if the local
parameters of each stage remain constant. In reality, the values of the per-
stage latencies and local cycle time become worse because a two-phase
function block for a given function is usually more complex than the

corresponding four-phase function block.
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4.7 Summary of Implications for Design of Self-Timed Rings

The analysis of ring performance shows that a self-timed ring can
achieve a total latency equal to just the sum of the forward latencies of the
stages through which data must pass. This minimal latency is A = GLy,
which is possible when the values of N and K are in the Data-Limited
region. This observation yields three important rules for the design of
minimal latency self-timed iterative rings. First, since the total latency of a
ring is proportional to the latency, Ly, of the individual stages composing
the ring, it is important a designer choose a stage configuration
minimizing L. The direct concatenation of precharged function blocks,
configuration PS0, has the lowest Ly because it has no latches, and its
latency therefore comes solely from the delay of the raw functional blocks
themselves. Furthermore, the configuration is compact because of the
absence of control logic.  Configuration PS0 is therefore the best
configuration for low latency rings. Rings that have Zero-Overhead and
that are built using configuration PS0 are “Minimal-Latency” because

the entire total latency is just the sum of the raw function block delays.

The second rule is to minimize the value of the local cycle time, P,
which results in the Zero-Overhead line of Figure 4.2 approaching the
Max-Flow line of Figure 4.1. This rule allows a Zero-Overhead ring
to be achieved in the least area. The value of P can be reduced by methods

presented in the next chapter for the composition and connection of

completion detectors.
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The third, and most important, rule for self-timed ring design is to
use at least Kl% stages in the ring to achieve Zero-Overhead and avoid
degradations due to control or bubble limitations. The next chapter will

further discuss the optimal size for function blocks and the value of g .
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Methods for
Increasing Performance

For a self-timed iterative ring to achieve zero-overhead
performance, it must operate in the Data-Limited region where the
critical path goes solely through data elements. When it operates in this
region, control logic is not in the critical path determining the ring cycle
time, and data flows around the ring at the same speed at which it would
flow through the same functional data blocks if they were “unwrapped”
into an array. Wrapping the blocks up into a ring thus can achieve the

performance of the array without requiring the area of the full array.

Chapter 2 defined a range of stage configurations that can be used in
self-timed pipelines and rings. For the PS0O configuration in particular,

which has no explicit latches, a Zero-Overhead ring is also
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Minimal-Latency because the total latency is the same as that of an
unwrapped array and that array is purely combinational, i.e., no (latch or
control) delays add overhead that would increase the total latency beyond

the sum of the pure combinational function block delays.

If the input and output control of a ring keep K tokens flowing, then,
as the analysis of the previous chapter determined, at least K LL;C stages are
required in the ring to achieve Zero-Overhead operation where
A =GLy¢. 1 therefore call the inequality

N>K Lﬂf (5.1)

the “Zero-Overhead constraint.” This chapter suggests approaches and

ideas for hardware design that can help to achieve this constraint, improve

performance, and minimize the total area.

The easiest way to meet the Zero-Overhead constraint is to
adjust the number of stages and tokens, and Section 5.1 mentions some
issues involved in these choices. Since these choices alone may not achieve
good tradeoffs within a reasonable area, Section 5.2 calculates how to
minimize the area by adjusting the number of gates in each function block,
called the grain size. Another way to ease satisfying the constraint is to
change the stages to reduce their local cycle time. Section 5.3 presents a
modification to the standard placement of completion detectors that can
reduce the local cycle time by overlapping the completion detector delay
with part of the function block delay. Section 5.4 points out how the
completion detectors can be simplified by making reasonable delay
assumptions. The cycle time also can be reduced by the introduction of

asymmetric control logic, as suggested in Section 5.5. Another possible
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method of improving performance, discussed in Section 5.6, is to minimize
the expected value of the forward latency by using known probabilistic

information to reorder logic or adjust transistor sizing.
S.1 Number of Stages and Tokens

The parameters most easily varied in a self-timed ring are the
number of tokens and stages. Many applications derive no benefit from
having multiple tokens and, for these cases, a single token ring will satisfy
the Zero-Overhead constraint with the least area. Applications that
benefit from multiple tokens are those specifically requiring higher
throughput. Because T = " increasing the number of tokens by some
factor increases the throughput by the same factor if (5.1) continues to be
satisfied. Although the same throughput increase could also be achieved by
multiplexing tokens among multiple rings operating in parallel, that
approach would have additional datapath routing and signal loading without
achieving any reduction in area. Introducing multiple tokens in a ring has
the benefit of raising the throughput in a single structure without

increasing loading on external bus connections.

It is possible to satisfy (5.1) for any desired value of throughput up
1 . .. . .
to p by using sufficiently high values for N and K. The maximum
: 1 .
throughput is always P because no ring can accept tokens faster than the
local constraints of its stages. It does not make sense to increase N to a
value greater than G, the number of stage executions necessary to

accomplish the desired function. When N = G, the ring is fully unrolled
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into a pipeline, as discussed in Section 4.4. At this extreme, the maximum

L
useful value for K is G‘f‘,f .

While increasing the number of stages is a primary means of
satisfying the Zero-Overhead constraint, it does cost additional silicon
area for each stage. Hence, it is relevant to consider other ways that also

can help to satisfy the constraint and can do so with a lesser value for N.
5.2 Grain Size

One degree of freedom in designing a self-timed pipeline or ring is
choosing the size of the function performed in each stage. This choice is
often called adjusting the “grain size.” The number of stage evaluations, G,
required for a given problem always changes inversely to the grain size.
Since the total area is proportional to the number of stages times the
complexity of each stage, adjusting the grain size can also change the total
area. In order to keep the total area fixed, the number of stages in the
pipeline or ring must be changed inversely to a change in the grain size.
That is, if the grain size is increased by some factor, then N and G must be
decreased by that same factor; if the grain size is decreased by some factor,
then N and G must be increased by that factor. The most important effects
of changing the grain size while keeping the total area constant can be
understood in terms of changes in the performance figures from the
previous chapter. If each stage’s delay is dominated by the function block
delay, then to first-order, Lf, Ly, and P all scale linearly with the grain

size, as NV and G scale inversely. The parameter S remains constant, and K
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Figure 5.1: Decreasing the grain size effectively changes
Figure 4.5 by extending the Data-Limited
line and moving the Control-Limited and
Bubble-Limited lines.

is still independent. For example, Figure 5.1 illustrates how Figure 4.5
changes when the grain size is halved. Values along the horizontal axis
double, and so do the upper values on the vertical axis. But the lower
endpoints on the vertical axis, @1L_ and ﬁ; , Temain approximately the
same.  Although the figure shows that the modified ring with half the
grain size can contain up to twice as many tokens as the original ring, the
effect of halving the grain size is indicated by the new value of the

throughput for the original value of K. The effect is strongly dependent on
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the region in which the original operating point lay. If the ring were
originally in the Data-Limited region, then the change in grain size has
no first-order effect on the throughput or latency. In contrast, if the ring
were originally in the Control-Limited or Bubble-Limited regions,
then decreasing the grain size both increases the throughput and decreases
the total latency. Because the decrease in grain size increases the extent of
the Data-Limited region, the Zero-Overhead constraint is made

easier to satisfy.

Second-order effects occur if the grain size is decreased enough so
that the values of Lf, Ly, and P are no longer dominated by the function
block delays. These second-order effects occur only for the stage
configurations that contain latches and are more significant for the stage
configurations that contain more latches. Whereas the first-order effects of
the previous paragraph can simultaneously improve both the latency and
throughput, it is the second-order effects for small grain sizes in which
latency and throughput trade off against each other. The result is the same
as for synchronous pipelines, in which decreasing the grain size increases
the throughput but also increases the total latency. But because this is a
second-order effect for self-timed rings, it is relevant only within the
Data-Limited region in which a change in the grain size has no

first-order effect.

Within the Data-Limited region, where the Zero-Overhead
constraint is satisfied, it is also reasonable to consider changes in the
number of tokens or stages while keeping the grain size constant.

Increasing the number of tokens increases the throughput, as long as the
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ring stays within the Data-Limited region. Likewise, decreasing the
number of stages decreases the total ring area without changing

performance, as long as the ring stays within the Data-Limited region.

When the grain size and the number of stages are both allowed to
change without constraining the total area to be constant, the effects
discussed in the above paragraphs combine. The minimum total area that
allows satisfying the Zero-Overhead constraint occurs at some
intermediate tradeoff point. For a ring of identical stages, a procedure
can be followed to find the best grain size, which satisfies (5.1) in the least
area. First, the expressions for P and Lf can be written in terms of ¢gy,
tFy, tC, and tp for a particular stage configuration with the aid of
Table 3.1. These expressions can then be substituted into (5.1). Next, the
values for tFr and tf can be further decomposed in terms of a measure of
the grain size such as gg, the number of gates in the function. An
expression for the total area can then be written in terms of g F» by
substituting in the expressions for N and K that are required in order to
satisfy constraint (5.1). This expression for area can finally be minimized
with respect to g to find the best value for the number of gates in each

stage and the number of stages required.

The procedure to optimize grain size can be demonstrated for the
example of the PSQ stage configuration. This configuration is important
because it can achieve the lowest possible total latency. Substituting in the
expressions from Table 3.1 reformulates (5.1) as

(5.2)

tp + 2t
N2>2K 3+ﬂ’—“—D~ .
IFt
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If the function blocks use full-controlled precharged logic, then the
function block will be able to reset in a single gate delay, independent of
the number of gates in the function, and the substitution tF¢ = (g IR 18
reasonable. Substituting this expression into (5.2) yields

21
N3>K 3+~l[1+—9—). (5.3)
8 IF

We can approximate the total area consumed by the ring as

where apy is the size of the completion detector relative to the size of gates

in the function block. This equation can be minimized with respect to gr

and combined with (5.3) to find the optimal values for both the grain size

and the wavelength when using configuration PS0:

ap 2tp
gF='\/*3— (1 + E) (5.5)

2t
3 (1 + ;1—:%]
= 3 + aD (5'6)

olk=

The optimal grain size for minimal area in a PS0 configuration thus
depends on the ratios of the speed and size of the completion detector
(including its buffers for driving loads) to the precharged function block
gates. Real implementations will, of course, require integral values for N
and K that satisfy (5.3). If the completion detector’s delay is small

compared to that of a precharged gate in the function block, then the
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optimal grain size is likely just a single gate level per stage, with four to
five stages in a single-token ring. However, since the term for the delay of
the completion detector includes the delay through any buffers required to
drive the precharge control signals, it is more likely for this stage
configuration that the completion detector’s delay is large compared to that
of a precharged gate in the function block. In this case, equations (5.5) and
(5.6) indicate the best performance is attained with more stages and a
larger grain size. For example, when the completion detector and buffer
delay is twice that of a gate in the function block, then the optimal grain
size is probably near two gate levels per stage, with six stages in a single-
token ring. In general though, these guidelines suggest that self-timed
rings should have smaller stages than ordinary pipelines because a ring can

save area by iterating more times around a loop of small stages.
5.3 Completion Detector Placement

Since the completion detector delay, ¢p, directly affects the local
cycle time, another means to reduce the cost of satisfying the Zero-
Overhead constraint is to adjust the completion detector placement.
Completion detectors tap off of the datapath at various points in a pipeline
or ring. The two key issues affecting the choice of points at which to
attach completion detectors are the datapath width and the overlapping of

completion detector delay with part of the function block delay.

If the datapath width varies, one means of reducing ¢p is to compute
the completion status at a narrower cross-section of the datapath. A

narrower datapath tap point allows the completion detector to be simpler
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because it can observe fewer bits. This principle is especially significant if
function blocks are internally composed of smaller domino sections in
chains with a common reset, since there is a choice in how to group these
domino sections together into stages. For example, I chose to separate the
stages in the division chip in [WILL87] at a point where the relevant
datapath width was the number of quotient digits (3) rather than the

number of remainder digits (55).

Another way in which a designer can optimize the completion
detector placement is by overlapping the operation of the completion
detector with part of the function block delay. This reduces both the
reverse latency, Ly, and the cycle time, P. If the function blocks are
internally composed of a domino chain of smaller sections, one can achieve
the desired overlap by moving the point at which a completion detector
taps the datapath to an earlier internal point within the function block, as
suggested in Figure 5.2. The completion detector is thereby “shadowed”
and gets a head-start because it overlaps with the rest of the function block
after the point where it taps the datapath. The effect can be evaluated by
separating the function block delays into the parts before and after the
completion detector tap: ¢f,T and tF,7T for the evaluation, and tf,| and
tFgd for the reset. The change in completion detector placement causes the
removal of some of the ¢f, terms from the equations for L, and P. One
can determine the exact changes by reexamining the Dependency Graphs
with the function delays split into the two portions. For all of the stage
configurations considered in the Chapter 2, the reverse latency is reduced

by tF,, the delay of the portion of the function block bypassed by moving
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Figure 5.2: When a precharged Function block is internally

composed of two or more domino segments with a

common reset, the completion detector can be moved to

tap off an internal node rather than the final output. This

schematic illustrates the change in a PS0 configuration.
the completion detector. More precisely, since L, is defined to be the
average of the reverse latency through a stage containing valid data and one
containing a reset spacer, the new L, will be lessened by avg(tr,l, tF,T).
The effect on P of moving the completion detector in each stage varies for
the different configurations. P will be reduced by tf,] + tF,T for the
PCO, PSO, and CF0 configurations, P will be reduced by #f,7 for the
PC1, PS1, and CF1 configurations, and P hardly changes at all for the
PC2, PS2, and CF2 configurations. (An exact analysis shows the
reduction for these latter configurations to be
min[z‘FBJ,, tFgT, |z‘cJ, - tch], which is zero for symmetric
C-elements). The overlapping of the completion detector delay with part
of the function block does not apply to the FC family of configurations
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because it has its completion detectors after the C-elements and not after

the function blocks.

Moving the completion detector tap to an earlier interior point
within the internal domino chain of each function block does not invalidate
the self-timing of the rings or pipelines.  An analysis of the new
dependency graphs resulting from the relocation determined that no
additional delay assumptions are required for each of the configurations of
Chapter 2 to maintain its same speed-independent or delay-insensitive
classification. I compared all paths from the point of the completion
detector tap through each successor of the function block with the paths
through the completion detector and around to the transition of the
function block in the opposite direction. The comparison shows that the
latter paths already include dependencies that verify the completion of the
portion of the function block after the completion detector tap. Moving the
completion detector to tap the outputs of an internal section of a domino
chain within each stage therefore requires no additional assumptions or
restrictions. However, the completion detector tap cannot be moved all the
way to the inputs because there must be at least one precharged gate storing
each input before the completion detector. The reason for this requirement
is that the completion detector indicates when the inputs may be removed,
and this signalling should occur only when all of the inputs have been

consumed by the first section in the domino chain.

The two issues regarding completion detector placement may be at
odds if a desired internal datapath point from which to tap a completion

detector is not narrow. This difficulty may sometimes be fixed by
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redefining the stage boundaries. For example, if the output of the first
internal domino section in a function block is wide and the second is
narrow, then moving the wide domino section to the output of the
preceding stage will allow the new arrangement to have the narrow section
as its first section. A simple completion detector can then placed after the
narrow section, and it will correctly overlap with the delays of the rest of

the function block.
5.4 Completion Detector Composition

The cycle time can be lessened not only by moving the completion
detector as discussed in the previous section, but also by reducing the
completion detector’s internal delay. This section discusses how the

completion detector delay can be reduced by changing its composition.

An ordinary NOR gate can serve as a completion detector for each
unary-encoded set of monotonically transitioning wires within a datapath.
For the standard case of a bit encoded on two wires, the bit done signal can
be generated by just a 2-input NOR gate. Since a speed-independent
completion detector for an entire datapath width needs to detect both when
a function block or latch has finished evaluating all of the bits in a datapath
and when it has finished resetting them, a full completion detector is
formed by combining the bit done signals with a tree of standard
C-elements as shown in Figure 5.3. For monotonic inputs, a tree of C-
elements with n inputs is equivalent to an n-input C-element. The tree of
C-elements is required in order to verify that the total done signal always

waits for the slowest of the bit done signals for both rising and falling
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Figure 5.3: A standard Completion Detector uses a tree of
C-elements to compute the bus done signal from the
individual bit done signals.

transitions. Although the delay of the completion detector tree grows only

logarithmically with the width of the datapath, the delay can still be

appreciable compared to other delays. This delay can be lessened by

making certain reasonable timing assumptions, which are discussed below.

One possible assumption is that the delays of the bits in a bus are
bounded by the delays of the bits on the ends. This assumption is
applicable if the bits are all driven in parallel by similar circuits that do not
have a serial dependency. This assumption would therefore be quite
reasonable for a carry-save adder, but invalid for a carry-propagate adder.
Though the delay of each bit could be dependent on its polarity, many
circuits that generate dual-monotonic pairs (such as for a sum bit in a
carry-save adder) exhibit little bitwise data dependence because they are

symmetric. When the assumption is justified, it is therefore reasonable to
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form a bus completion detector that examines only the two ends of a
datapath, namely, the signals from the bit slices farthest apart physically on
a chip. Such a completion detector reduces the tree of C-elements across
all the bits to just a simple two-input C-element combining the two end
bit-done signals. The delay of the completion detector itself usually makes
the assumption quite safe because the sum of the delays through the NOR
gates, the single two-input C-element, and any buffers that follow it in the
control logic are usually much greater than the difference in delay between
the end bits and the unexamined bits, even if some are of the opposite

polarity.

Going one step further, the tree of C-elements can be eliminated
entirely by just using one of the bit-done signals directly as the total bus
done signal. This requires the stricter assumption that none of the other
bits nor the wire delay across the width of the bus are slower than the
observed bit by more than the delay through the NOR gate generating the
bit done signal and any buffer chain following it in the control logic. In
practice, even this assumption is very reasonable for bit-parallel datapaths
because it takes so long for the control logic to drive any signal in response
to the completion detector. Indeed, incorrect operation could occur only if
the control logic could change some signal that removed the driving signals
for one of the unexamined bits before it had finished transitioning to its

correct value.

If the cross-section of the datapath tapped by the completion detector
is not entirely composed of dual-monotonic pairs generated in parallel in a

similar manner, then the above assumptions should be applied only to the
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groups within which the pairs are similar. For example, if the datapath
contains three separate fields that are computed differently or get their data
from different sources, then the assumptions allowing just one bit pair to
be examined should be applied to each field separately and the group done
signals from the three fields then combined with a three-input C-element to

form the total done signal.
5.5 Asymmetric Control Connections

Another reasonable way to reduce the local cycle time constraint is
to allow control logic to be asymmetric with respect to evaluation and
reset. The symmetric control in the stage configurations suggested in
Chapter 2 had the advantage of automatically enforcing the completion of
both transition directions, but this section discusses cases in which it can be

appropriate to use other configurations.

When precharged function blocks use the full-controlled precharge
logic style (defined in Figure 2.2), the precharge signal takes precedence
over the data inputs. This means that when control logic applies the
precharge signal to a block, the block resets, even if its data inputs become
active. The control logic therefore needs not wait for the block’s outputs
to reset before allowing the preceding block to evaluate; rather, it is
sufficient to allow the preceding block to evaluate as soon as the precharge
signal is applied to a block. When the PC stage configuration family is
modified to enact this change, it forms a new family of configurations,
called the PG family. The control logic in Figure 5.4 shows a PG0 stage

configuration, which applies the modification to the control logic of the
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Figure 5.4: The PGO stage configuration style is an allowable
modification of the PCO style when the F function block
uses full-controlled precharge logic.

PCO configuration. The four explicitly drawn transistors form an

asymmetric or Generalized C-element [MART86] that generates the

precharge signal for each block. The function block in each stage is
enabled for evaluation when its active-low precharge signal is high. The
modification does not affect the forward latency but removes the function
block resetting delay terms from both the reverse latency and cycle time.

The lessening of the reverse latency can significantly improve the

performance of a ring operating in the Bubble-Limited region. Like

the PC family on which it is based, the PG family of configurations is still

speed-independent.

The same modification idea can be applied to the PS family. Since

the PS family already requires the assumption that each stage’s predecessor
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Figure 5.5: The PAO configuration modifies the PS0 configuration
to enable the preceding block’s evaluation as soon as the
reset signal is applied to a function block.

resets no slower than the successor evaluates, it is reasonable to assume that
each stage’s successor will also reset no slower than the stage itself can
evaluate. For a self-timed ring of identical stages, these assumptions about
a stage’s neighbors are, in fact, the same assumption. Thus, having the
control logic explicitly check for the completion of resetting in each stage’s
successor is unnecessary since it does not make the configuration any more
insensitive to delays. The modification of the control logic to remove this
reset checking in the PS family forms the PA configuration family.
Figure 5.5 shows the PAO configuration, which requires adding a
Generalized C-element to the control logic of each stage. This gate enables
each function block for evaluation as soon as the precharge signal is applied
to the successor instead of waiting for the completion detector to detect the
reset outputs from the successor’s function block. Since the Generalized

C-element is not in the forward path, the forward latency remains
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Class 6ycle Time Forward Latency Reverse Latency
Coefficients, P Coefficients, Lf Coefficients, Ly
IFT|IFL | IC | ID | tFr |ICr |IDL )P | tFL | IC | D
SI 13101141311 1 1 JO05{1 0 | 1 ]0.5
SI 1210141331 (2 1]05]0115]1
SI |1 1014 ([3]1 3 1 JO05{ 0 |25] 2
310121} 1[O0([O0(J05]0]1/[05
2101211411 1 [ 0O JO05]1 0 [15]1
1 102 [ 1}1([2]01}05]01]25|2

Table 5.1: Coefficients of equations for the precharged
stage configurations modified to use asymmetric
control that avoids delays from waiting for
function block resetting.

unchanged, but the delay of that gate does add new terms to the reverse
latency and cycle time. However, the predominant effect of the
modification is the removal of the delay terms that came from the resetting

of the function block and the detection of this event’s completion.

The new coefficients of the delay equations for both the PG and PA
families are summarized in Table 5.1, which includes the extension of the
modification to the family members that have explicit latches. The table
assumes that the delays of the asymmetric Generalized C-elements are close
to ordinary C-element delays and therefore counts their delays in the t¢
columns. The most significant change from Table 3.1 is the removal of all

of the delay terms from the resetting of function blocks.

Each member of the PG family has better performance than the
corresponding member of the PC family, and hence the PG member

should always replace the PC member in an implementation that uses
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full-controlled precharge blocks. The PA1 and PA2 configurations have
better reverse latency and cycle time than PS1 and PS2 and therefore
would likely be preferred in any implementation where it can be assumed
that stages reset faster than their neighbors evaluate. However, the cycle
time of PA0 may be worse than that of PS0, and therefore PA0 will only
ensure a performance improvement for a ring in the Bubble-Limited
region. Because it is operating in the Bubble-Limited region, the use of
PA0 in the self-timed ring in [WILL87] was a key feature enabling it to

achieve some parallelism with only three stages.

5.6 Moving Logic and Sizing Transistors Based on Data
Probabilities

In addition to changes in the completion detectors or control logic,
self-timed ring performance can also be increased by speeding up the
forward evaluation of the function block itself. One method for improving
the function block speed is the adjustment of logic or transistor sizes
according to expected data probabilities. Because dual-monotonic
encodings contain embedded completion information, subsequent
computations may begin as soon as each data token arrives. Since
processing times for different tokens may differ and the tokens may have a
non-uniform distribution, the real desired goal is to minimize the total
expected value of delay. In cases where data values come distributed with
equal probability, the “expected value” is, of course, minimized when the
average delay is minimized. However, in cases where a designer knows

that data values will have a particular distribution, this information can be
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Figure 5.6: The expected value of total delay will be improved by
positioning inversions according to known probabilities
about choosing alternative branches.

used to minimize the total expected value of delay, making it less than the

simple average of all data value delays.

The most important case in which known statistics may improve
performance is when branching paths are chosen with different
probabilities. Paths known to have higher-than-average use can be made
faster by shortening the number of logic blocks they contain or by
widening their transistors to make the blocks evaluate faster. An example
of the first method for paths that merge is shown in Figure 5.6, where a
net improvement in the expected value of delay results when a designer
inverts both arms of a multiplexor. The expected value of delay improves
because the change removes an inverter from the arm known to be more
frequently chosen, even though it adds an inverter to the other arm. The
second method applies to paths that fork. When some output of a block
must be loaded with transistors branching into two different paths,
narrowing the transistors in the infrequently chosen path will slow

transitions along that path, but might result in an overall improvement in
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expected delay because the output node that was also part of the frequently

chosen path will be faster due to less loading.

Particular arithmetic problems may have numerical characteristics
that produce a non-uniform probabilistic distribution of values on internal
signals even when the inputs to the overall problem are uniform. Taking
advantage of these statistics will speed the overall result because the longest
total delay can be made less than the sum of all the internal longest delays.
Unlike in synchronously clocked circuit designs, it is not an objective in
self-timed design to equalize all path lengths within a block because it is

possible to take advantage of data-dependent variances in delay.
5.7 Summary

Several methods can be used to increase the performance of
self-timed rings. These methods can make the Zero-Overhead
constraint easier to meet, or can reduce the area of a circuit already
meeting the constraint. They also can provide additional delay-variance
margin to ensure that differences between the nominal delay or
environmental parameters and their actual values do not violate the

constraint and decrease performance.

Many self-timed rings could apply all of the ideas suggested in this
chapter. Adjusting the function block grain size is a fundamental method
resulting from the analysis of the previous chapters. The ideas in
Sections 5.3, 5.4, and 5.5 are important individual improvements with
wide applicability. Any function blocks composed of an internal domino

chain should have the completion detector immediately after the first block
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in the chain. Completion detectors can tap off just a single bit, if it is
possible to determine the single slowest bit at design time. The PG and PA
configurations allow precharged stage configurations to improve
performance by avoiding delays from the resetting of function blocks.
Known data probabilities should be used to move logic or adjust transistor

sizing to minimize the total expected delay.

To use these methods successfully requires careful thought and
sometimes verification of specific assumptions. A designer can apply the
ideas to achieve the desired constraints and to attain the best performance
in self-timed pipelines or rings. The next chapter gives examples of how

real implementations used each of the improvements.



Chapter 6

Division Chip Implementations

Floating-point division is an application that can benefit from the
self-timed ring structures analyzed in the previous chapters. Division is
generally a hard problem, and the algorithms that are exact take time linear
with respect to the number of quotient bits. These algorithms require the
iterative solution of repeating steps. The steps can be mapped onto the
stages of a self-timed ring, which allows computation to iterate without
limitations from external control or clock signals. I designed two chips to
demonstrate self-timed ring implementations of division. The first chip
[WILL87] was designed early in my research, before overhead and
performance issues were well understood. The second chip [WILL91a]

was designed with the benefit of the analysis methods presented in this
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thesis, and it demonstrates a Zero-Overhead Minimal-Latency self-

timed ring.

This chapter discusses the features of both chip designs and
compares their performance. Section 6.1 gives background on a division
algorithm that uses redundant arithmetic and shows a block diagram of a
self-timed ring structure to implement that algorithm. I modified the
dataflow of the algorithm by overlapping the execution of neighboring
stages to improve performance in the second chip design. Section 6.2
explains how the self-timed approach allows this overlapping to choose
dynamically the shortest critical paths and analyzes the performance benefit
gained. The performance analysis is extended in Section 6.3 by comparing
different radix choices, with and without the overlapped execution feature.
Section 6.4 then presents test results and measurements from fabricated
chips implementing the two designs. These results are studied in
Section 6.5 in terms of the ring performance regions in Chapter 4 and the
performance enhancement methods in Chapter 5. Another performance
enhancement, described in Section 6.6, is the quotient done-detection in the
second chip design that can terminate iterations early for repeating
fractions. Finally, Section 6.7 summarizes the comparisons between the
two designs and shows the benefits of applying the methodology of

Minimal-Latency self-timed ring design reported in this thesis.
6.1 Redundant SRT Algorithm

To meet the IEEE floating-point standard for double-precision

operands, a divider must take operands and generate a quotient, each with a
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mantissa precision of 53 bits. A division algorithm finds a quotient either
by a straightforward successive determination of quotient digits, or by
other schemes, such as a Newton-Raphson recurrence, that use large
multipliers to successively refine approximations to the final quotient.
Hybrid schemes are also possible [MATU90]. Since Section 5.1 suggested
that a small grain size is best for self-timed rings, the straightforward

division methods are best suited for implementation in a self-timed ring.

The straightforward methods for division determine quotient bits
sequentially, starting with the most significant digits and progressing to the
least significant. The algorithm is thus broken into steps, where each step
chooses a quotient digit and computes the next partial remainder based on
the previous partial remainder and quotient digit. Between each step, the
partial remainder is shifted left to scale it by r, the base or radix of the

algorithm. Each step thus implements
Ri+1 =rRi - Dgi (6.1)

where Rjis the partial remainder output from stage i, r is the radix, gj is

the quotient digit determined from stage i, and D is the divisor. The

sequence is initialized by setting R so that rRq is equal to the dividend.

In ordinary division, like the method learned in “grade-school,” the
quotient digits g are in the set {0, ..., r-1}, and the full quotient has only a
single valid representation since each digit position in the quotient has only
a unique correct value. Determining the correct digit at each position
requires comparison of the exact partial remainder, and this means the

entire partial remainder must be computed before each quotient digit can
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Figure 6.1: The division diagram for Radix 2 SRT division shows
that, for every possible remainder value, a quotient
digit can be chosen that is valid for a range around that
remainder value.

be determined. In hardware, this computation requires a complete carry-

propagate subtract, which is a slow operation for the long operand lengths

used in floating-point arithmetic.

An alternate division algorithm, called SRT (Sweeny, Robertson,
Tochner) division [ROBE58], avoids the complete carry propagation in
each step by making the set of valid quotient digits redundant by including
both positive and negative integers. The valid quotient digit set is
{-p,....0, ..., p}, where p is an integer chosen in the range %S p <r-1.
With redundant quotient digit sets, the final quotient result can be
represented in several different ways, which means that there is a choice of
quotient digits for each position. This choice is illustrated graphically by

the overlapping of the quotient lines in the division diagram of Figure 6.1.
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A circuit can convert the redundant quotient representation to an ordinary
binary irredundant representation by subtracting the positionally weighted
negative digits from the positionally weighted positive digits. This
subtraction requires a carry propagation, but it is a single operation, which
needs to be performed only once for the whole division operation rather
than once per quotient digit step. Furthermore, in an integrated floating-
point chip, this full-width carry-propagate operation could be performed
by shipping the redundant quotient results to a separate part of the chip that

implements fast carry-look-ahead addition.

Since in SRT division the quotient set contains digits of both signs,
the quotient selection logic for a given position need only use an
approximation of the divisor and partial remainder. This is because small
errors may be corrected at a later stage with quotient digits of less
significance and opposite sign. Because the algorithm requires only an
approximation of the partial remainder at each stage for the selection of a
quotient digit, only a small number of the most significant bits of the
partial remainder need to be examined. Choosing the number of bits to
examine involves some tradeoffs, which are fully discussed in [WILLS86].
The redundant representation of the examined bits needs to be resolved
with a short carry-propagate adder before the remainder approximation is
used by the quotient selection logic. Though this adder would normally
need to be 4 bits wide for radix 2 division, 3 bits are sufficient when the
quotient selection logic also gets information from the previous quotient

digit selection [WILL91b]. All of the other bits in the remainder need only
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Figure 6.2: Ordinary dataflow of a radix 2 SRT division step with

the required bit widths for IEEE double-precision operands.
be computed with a carry-save adder. Together, the hardware dataflow of
a step of the SRT division algorithm is shown in Figure 6.2.

Because the steps of SRT division need a repetitive structure, a self-
timed ring can implement the steps directly by mapping a small number of
steps onto the stages of a ring. As was hinted in Figure 1.5, one can
achieve a Minimal-Latency division by directly concatenating PS0 style
configuration stages into a self-timed ring using precharged logic blocks

with no explicit latches.
6.2 Dynamic-path-ordering Overlapped Execution

It is possible for the computation within each stage of the division
algorithm to be partially overlapped with the computation in the preceding
stage by modifying the dataflow of each step as shown in Figure 6.3. The
overlapped execution speeds up the overall computation by allowing
additional parallelism. The carry-propagate adders are replicated for each
possible quotient digit so they can begin operation before the actual

quotient digit arrives and chooses the correct branch. Two of the three
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Figure 6.3: Dataflow of a stage with overlapped execution.

carry-propagate adders are preceded by short carry-save adders: one to
combine the remainder with the divisor, and the other to combine the
remainder with the negation of the divisor. Actually, these two carry-save
adders share the circuit generating the sum terms because the dual-
monotonic data convention already provides both the true and complement

of each bit. The carry terms cannot be shared.

Overlapped execution allows the partial 3-bit carry-save and carry-
propagate adders for the remainder formation in each stage to operate in
parallel with the previous stage’s quotient digit selection and the stage’s
own divisor multiplexor and full 55-bit carry-save adder. The dataflow for
a pair of stages with symmetric overlapped execution is shown in
Figure 6.4. The overlapping of execution allows the average delay

through a stage to be the average instead of the sum of the propagation
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Figure 6.4: The dataflow through a pair of stages in the
symmetric overlapped execution scheme has two
possible critical paths, highlighted by the dashed
and dotted lines.
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Figure 6.5: Model for the overlapped execution dataflow in
each stage. The variables P, Q, R, and S are the
delays of the abstracted blocks.

delays through the remainder and quotient digit selection paths. The
overlapping of these paths can be abstracted to the arrangement of
overlapping blocks shown in Figure 6.5. When these blocks are self-

timed and therefore operate as soon as their required operands arrive, the
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average delay per stage4 in a chain of identical stages of the overlapped

arrangement can be simplified to:

15 { P+Q+R+S + max[0, abs(R-Q)-(P+S)] }

The last term is usually negative and drops out, giving a performance
increase due to the factor of % in front. In the overlapping of the stages
for SRT division, the delay of block P in the quotient selection path is the
largest of the delays because it contains the carry-propagate adders. The
overlapping reduces by one-half the effect of the delay in block P on the
total delay. As will be shown in Section 6.3, when the added multiplexor
delays are taken into account, the overlapping of the stages in a radix 2
design increases performance by 40% over a standard sequential

arrangement of the same blocks in the same technology.

The structure of this overlapping scheme results in a data wavefront

that leapfrogs down the succession of stages. If the critical path goes

4 An exact analysis using induction on the delays of Figure 6.5 shows that the
time the nth R block finishes in a chain of identical stages is
Rp = 5(P+Q+R+S) +

maxI:S+%(R-S-P-Q), (% 1)(Q—P-R—S), S(QP-R-S), R-P-Q+%(Q+P—R+S):|

1 if n odd

when the chain's inputs start at Ry = Qg =0 and where e = { 0 if n even

Symmetrically, the nth Q block finishes at time
Qn = 5(P+Q+R+S) +

max[P+I21—(Q-P-R-S), (% 1)(R-S-P—Q), S(R-S-P-Q), Q-R—S+%(R+S+P-Q)].
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Figure 6.6: Asymmetric dataflow through a pair of stages in
previous overlapped execution schemes enforced a
specific grouping of the stages into pairs.

through the quotient selection path in one stage, it will likely go through
the partial remainder path in the next stage, and vice-versa. However,
data-dependent variances in delays make it sometimes possible for the
overall minimal critical path to go through the same path in two adjacent
stages. Delay variances arise because of the varying number of bits
propagated in the carry chains, the occurrence of some zero quotient digits,
and the cases in which a negative quotient digit can be selected in advance
when a single stage can determine two quotient digits. The sélf—timing of
the datapath always ensures data flows through the minimal critical path.
Previous overlapped execution schemes, such as the one from [TAYLS85]
shown in Figure 6.6, have pre-grouped stages into pairs. Whereas the
present approach makes all the stages symmetric, the scheme in Figure 6.6
does not replicate the first carry-propagate adder. This lack of symmetry
makes the critical path go through the same blocks every time. Such a

grouping adds delay because it enforces extra waiting in some cases and
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does not achieve the additional minimization possible with self-timed
overlapped execution, which allows a “dynamic” adjustment of the

execution order.

The leapfrog progression down the series of stage pairs in the
symmetric overlapped execution scheme also makes specific use of the self-
timed nature of each stage because the function blocks can begin operation
as soon as the input they need arrives, without waiting for the other input.
If clocked latches were placed at the edges of the blocks shown in
Figure 6.4, then the clock period would have to be slow enough so each

pair of stages could always wait for both inputs to arrive.
6.3 Choice of Radix

Redundant SRT algorithms can be formulated for radix 2, radix 4,
or even radix 8 [ATKI68, FADR89]. Compositions of SRT steps can be
grouped together and collectively denoted by even higher radices
[TAYL8S5]. In synchronously clocked circuits, higher radix arithmetic can
achieve more computation in a fixed clock cycle, allowing performance to
be improved without the use of faster clocks.  Self-timed circuits,
however, are not constrained by fixed clock cycles, and the lower radices
can be computed more quickly. Self-timing therefore provides a useful
means of comparing the performance of different radix approaches without
clocking constraints, or the delays from latches or input/output
considerations. To make fair relative comparisons, I use the delay of a

gate with unity fan-in and unity fan-out as a basic speed unit. Real gates
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Radix & Style Average Critical Path Unity fan | Latency for | Silicon
(OverExec per Pair of Stages in/out Gate | 54 bits with Area
means with in Unity fan-in, Unity fan-out Delays per | 250pS unit | in1.2u
Overlapped gate delays Quot Bit | gate delays | Process
Execution)

— e —
Radix 2 2 ( CPA3+QSL3+DMUX3+CSA55 ) 16.8 225 nS 7 mm@
2(57+38+28+45)=33.6
Radix 2, CSA3+CPA3+RMUX3+QSL3+ 11.8 160 nS 10 mm?2
DMUX3+CSA55
OverExec
39+49+35+3.8+28+4.7=23.6
Radix 4 2 ( CPA7+QSL5+DMUX5+CSA56) 17.5 235 nS 12 mm?2
2{(11+16+3.5+45)=70.0
Radix 4, CSA7+CPA7+RMUX5+QSL5+ 11.2 150 nS 18 mm?2
DMUX5+CSA56
OverExec
3.9+10+5.0+16+35+6.2=44.6

Table 6.1: Tradeoffs in speed and area for different implementation
algorithms mapped onto self-timed rings.

have delays many times this basic unit because of stacked transistors
(fan-in) and loading (fan-out). The driving of control lines and buffers
associated with the various functional units is included in their delays.
During the chip designs, I estimated parameters for SRT radix 2 and
radix 4 choices, with and without overlapped execution. The estimates
were based on simulations, and then updated and calibrated with
measurements from the fabricated chips. Table 6.1 summarizes the
comparisons of the implementation choices. All of the parameters are for
an implementation with a Minimal-Latency self-timed ring. The radix 2
designs require five stages in the ring to meet the Zero-Overhead
constraint, while the radix 4 designs require only four stages since their
%f ratio is larger. The radix 4 function blocks are larger because the

carry-propagate adders must be 7 bits long instead of 3 bits, and the
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quotient digit selection logic must include the delay for a 39 product-term
PLA [TAYLS81]. None of the figures include the final 54-bit carry-look-
ahead adder required for rounding and converting the redundant
representations back to a standard binary format. The right two columns
contain numbers specific to the CMOS fabrication technology available at

the time of fabrication of the second chip.

Table 6.1 shows that radix 2 is slightly better than radix 4 when
neither have overlapped execution. This is because the additional
complexity of the radix 4 quotient selection does not quite justify the use of
radix 4 when clocking does not need to be considered. However, if the
design were clocked, the difficulty of supplying a clock at twice the
frequency might make radix 4 preferable. Overlapped execution in either
radix 2 or radix 4 gives a significant performance increase, about 40% for
radix 2 and 55% for radix 4. The key advantage of the self-timed
overlapped execution style is that the average critical path per stage has
only a factor of —;— times the delay from the carry-propagate adders and
quotient selection logic. Since, for higher radices, these components
occupy bigger proportions of the total delay, the effect of overlapped
execution is more significant for radix 4. To summarize, with overlapped
execution, radix 4 will be faster than radix 2, but the area cost is much
higher because of the replication of the carry-propagate adders. Not only
are five adders required instead of only three, but they are also larger.
Still higher radices, such as radix 8, would accentuate these tradeoff effects
overlapped execution would have an even greater percentage performance

increase, but at a formidable cost in area.
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6.4 Test Results and Measurements

The tradeoffs discussed in the previous section led to the choice of
implementing radix 2 division. The first chip design used only three stages
and did not have overlapped execution. The second design used five stages
with overlapped execution. Both designs were laid out using MAGIC in
full-custom CMOS technology, were verified using the Stanford IRSIM
simulator [SALZ89], and were fabricated through MOSIS. The first
design was fabricated in 2.0y technology in two versions: a short version
shown in Figure 6.7 implementing only the top 7-bit portion containing all
the critical paths, and a tall version implementing the full array with an
active area of 10.7 mm2. The second design was fabricated in 1.2u
technology and is pictured in Figure 6.8. It has a core iterating ring in the
central 6.8mm2 surrounded by test registers for a total active area of
9.7mm?2. The ring's five stages are columns that are mirrored

appropriately to weave the datapath and achieve equal path lengths.

Both the first and the second designs were functionally correct on
first silicon. Since the designs are self-timed, their performance varies
with power supply voltage and temperature. Unlike the testing of
synchronous designs, where voltage and temperature testing requires
repeated readjustments of a clock to determine the exact point of failure,
self-timed designs are easy to test for varying voltage and temperature.
For each voltage and temperature point desired, the speed of the output is

simply measured since the chips always produce outputs as fast as possible
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Figure 6.7: Micrograph of the first self-timed Divider
in 2.0u technology.

for the actual operating conditions. Figure 6.9 shows measured speeds for
the second chip design over large ranges of voltage and temperature.

At the nominal conditions of 5V and 35°C ambient temperature, the first
design had a measured performance of 13nS per quotient digit and the
second design had a measured performance of 2.9nS per quotient digit.
Because of a factor of two difference in the speed of the fabrication
technologies, the performance improvement due to design and architecture
improvements was really a factor of 2.2. The sources of this improvement

are examined further in the next section.
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Micrograph of the Zero-Overhead Self-Timed Divider in

Figure 6.8

1.2u technology
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Figure 6.9: Measured performance per quotient digit in 1.2u
technology at various voltages and temperatures.
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6.5 Ring Performance Comparisons

Both of the chip designs used some of the performance enhancement
ideas discussed in Chapter 5. The first design used the ideas from
Sections 5.3 and 5.5. It rearranged the grouping of the domino chains
within each stage by moving the divisor multiplexor from the input of a
function block to the output of the preceding stage. This enabled using the
“shadowing” suggestion of Section 5.3 to place the completion detectors at
a narrow point in the datapath, in front of the divisor multiplexors. The
control logic used asymmetric Generalized C-elements to reduce the
reverse latency by forming the PAO stage configuration suggested in
Section 5.5, which removes the delay terms of the function block reset
transitions. This reduction in reverse latency was essential to the first
design since it operated in the Bubble-Limited region where the reverse

latency was the limiting factor of the total performance.

The second chip design used the methods from Sections 5.1, 5.2, 5.4,
and 5.6 to enhance its performance. The number of stages was increased to
five, based on Section 5.1. Following the suggestions of Section 5.2, the
grain size was decreased by the introduction of the two C-elements shown
in Figure 6.10 that partition each stage in sections. By separately
generating the control signals for the carry-propagate adders and the
remainder multiplexor, the finer grain size effectively increases the total
number of stages and the ring operates in the Data-Limited region. The
completion detectors use the reasonable assumptions suggested in

Section 5.4 to simplify the completion detector for the full remainder by
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Figure 6.10: The structure within each stage has control

logic that independently resets internal sections of

the stage. Dotted lines are control signals; shaded

lines are dual-rail monotonic datapaths.
examining just a single bit in the datapath. Finally, as suggested in
Section 5.6, the transistor sizes on the arms of the replicated short

carry-save adders were adjusted to take advantage of a non-uniform known

distribution of quotient digits [WILL91b].

Both of the self-timed divider designs use only a single token because
low total latency, not high throughput, was the important goal. The most
fundamental difference between the two self-timed divider chips is the
points at which they operate in terms of the regions of analysis in
Section 4.2. Since the first design operates in the Bubble-Limited

region, it has performance limited to A = 2GL;. Because that design uses

completion detector shadowing, the forward latency is composed of two
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parts, Ly =tF,T + tF,T. The second part, containing the divisor
multiple multiplexors, does not contribute to the reverse latency since its
execution overlaps with the completion detector and control logic. The

t +1
PAO configuration therefore has L, = FATZ DY + tA, where t4 is the

delay of the Generalized C-element used in the control of each stage. The
total measured latency is thus A = G(tF, T + tp| + 2t4) , where G is the

number of quotient bits accumulated. The zp| + 2t4 terms are overhead
tp,T+ipl +2t4
is the

tF,T + tFpT

overhead factor by which the actual latency per stage exceeds the minimal

over the combinational latency. The fraction

combinational latency. The measured values of the delays for the 2.0n
chips are tp,T = 8.4nS, tF,T = 1.4nS, and tp| + 214 = 4.6nS, so the

1
control overhead degrades performance by a factor of 9—% = 1.33.

The second design uses PSO stages and operates in the Data
Limited region. Figure 6.11 is an oscilloscope trace illustrating how the
control logic removes the precharge signal for each block, which enables
the block’s evaluation, 2nS before the data inputs arrive at the block. This
measurement shows that the Z%v wavelength is equal to 4.2 and that
therefore five stages are sufficient to meet the Zero-Overhead
constraint of equation (5.1). The design is thus able to achieve a total
performance of A = GLf , which is the same rate at which data would
flow through a combinational array of the stages if the ring were unrolled.
Further, since the PS0 configuration has Lf=1tFT, each stage’s forward
latency is equal to just the combinational function block delay, and the total

latency is A = GtgT. So, whereas the first chip had a substantial overhead



Chapter 6: Division Chip Implementations

L 12nSidiv, 2V/div]
Removal of Reset

Arrival of Data

Figure 6.11: Self-timed Control logic removes each stage's
Reset signal 2nS before data arrives, verifying that the
control introduces zero overhead.

from the control logic, this second design achieves Zero-Overhead
operation, for which the total latency is equal to the sum of only the

combinational function block delays.

Additional enhancements in the second design reduce the value of
tr7 itself. The most important enhancement is the overlapped execution of
the blocks within each stage. The dataflow for this structure was analyzed
in Section 6.2. The extensions discussed in Section 2.6 allow the PS0
control configuration to be modified to account for the repetitive splitting
and rejoining of the datapaths, as was shown in Figure 6.10. The
overlapping of execution reduces the forward latency by 40%, and the self-
timing allows this entire benefit to be reflected in the total performance.
The second design is also improved by better VLSI layout techniques. In

particular, careful sharing of transistor drain contacts reduces the
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Figure 6.12: The sum logic in a bit slice of a precharged carry-
save adder was improved by a layout minimizing the
capacitance on the internal nodes of the pull-down
network.
capacitance on the internal nodes of transistor stacks. This effect is
particularly significant for the precharged blocks with complex pull-down
networks, such as the basic carry-save adder sell shown in Figure 6.12.
The changes to the layout and other small logic enhancements discussed in
[WILL91b] provide an additional 20% improvement in the per-stage
forward latency of the second chip design over the first design for worst-
case data. The second design can also provide its result significantly faster
for some data inputs because of the quotient digit shift register structure

discussed in the next section.
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Figure 6.13: Complete block diagram of a division implementation
showing the self-timed ring and quotient digit shift
registers with early done detection.

6.6 Quotient Shift Registers and Done Detection

In both designs, the critical paths determining the performance are
entirely within the self-timed rings. Signals generated in the ring also
control shift registers that collect the quotient digits output from the ring’s
stages. There is one shift register for each stage, as shown in Figure 6.13
for the second design. The maximum number of loops around the ring is
the number required to fill the shift registers with the desired number of
quotient digits. For an IEEE double-precision result, the first (three-stage)
design requires 18 iterations to generate 54 quotient bits, and the second

(five-stage) design requires 11 iterations to generate 55 quotient bits.
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Figure 6.14: A cell of the asynchronous shift registers for
capturing quotient digits on a triple-monotonic
wire set. Each quotient digit arrives when one of
the three input wires is set high, and is followed
by a “spacer,” where all three are again reset low.
The C-elements are static, as defined at right.

The second design has the additional feature of detecting when it is
possible to terminate the iterations early. If the remainder comparison on
the right side of Figure 6.13 determines that the partial remainder has
remained unchanged during the last iteration, the remainder is repeating.
If the remainder repeats, then subsequent quotient digits also will repeat;
hence, there is no need to compute them again, and the division-done signal
can be generated early. Even when iterations terminate early, the full
quotient is immediately available from the shift registers because of their
asynchronous design.  Each shift register cell shown in Figure 6.14
consists of two PS0 style stages. Since this configuration has a static
spread, S, equal to two, each cell needs the two stages in order to store

both a single quotient digit and its corresponding reset spacer. After the
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Figure 6.15: Quotient digits and reset spacers propagate through
the cells of the asynchronous quotient digit shift
register.
ring sends each valid quotient digit into a shift register, a reset spacer
normally follows. Both the quotient digit tokens and intervening spacers
ripple from the least-significant cell towards the most-significant cell in the
shift register. The asynchronous handshaking allows the quotient digits to
ripple to their final positions as they arrive, as illustrated in Figure 6.15,
rather than waiting for a fixed number of clocks as they would in the case

of a synchronous shift register.

Normally, the data and reset elements continue to pack alternately
into the C-elements in the shift register cells. However, an innovation in
the design of the shift registers interlocks the sending of the reset spacer
elements with the remainder comparison on the right side of Figure 6.13.
In the interval between when the ring sends a quotient digit into a shift
register and when the ring sends the corresponding reset spacer, the cells

of lesser significance (through which the most recent quotient digit token
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has traversed) are normally all filled with copies of the most recent digit’s
value. If the remainder comparison determines that the quotient will be
repeating, then the reset spacer is never sent, and all the quotient digits are
immediately available with their correct values from their respective cells.
Only if the remainder comparison determines more iterations will be
needed are the spacers sent into the shift registers to wipe out the repeated
digits and prepare each shift registers to accept its next digit. The
interlocking does not add any delay to the overall computation because a
one-cell buffer allows it to operate in parallel with the evaluation of other
quotient digits. Even if the quotient is repeating, the correct final
remainder is immediately available because it is the same as the remainder

that triggers the early termination of the iterations.

The early done detection substantially reduces the overall division
latency for some data inputs. Early done detection allows computing full
results for best-case data in only 45nS, requiring only 2 ring iterations, as
compared with 160nS for worst-case data, requiring 11 ring iterations.
Figure 6.16 shows the range of performance when only the data inputs are

changed.

The effect of detecting repeating quotients and finishing early is
dependent upon the distribution of input operands. Data from some
algorithmic applications may be likely to have more round numbers, while
data from an external input, like a sensor, may be uniformly distributed
only within a limited precision. The early done detection, for example,
will speedup 12% of the cases in a uniform distribution of 8-bit input

operands, for a total performance improvement of 9%.
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Figure 6.16: The top traces show that the total latency in the
1.2y design varies from 45nS to 160nS depending on the
data. Below is the self-timed precharge signal for one of
the internal stages.

The final quotient can be rounded correctly even when the iterations
terminate early. In both the early done and the normal case requiring all
of the iterations, the remainder at the stage where the iterations stopped can
be sent through a carry-look-ahead adder (CLA) to determine its sign. If

the remainder is negative, the quotient must be decremented at the least
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significant bit position to which the remainder corresponds. This operation
and the conversion of the redundant quotient into a standard binary form
can be performed by a carry-select-adder with multiple carry chains
operating in parallel. The different rounding possibilities and the
remainder sign select the correct CLA output. Thus, after the iterations
terminate, only a single CLA delay is required to resolve both the final

remainder and rounded quotient.
6.7 Summary of Comparisons

The two self-timed divider designs provide a fair demonstration of
the principles in this thesis because the designs solve the same problem with
the same general structure. The most important difference in the designs is
that they operate in different performance regions of the self-timed ring
analysis in Chapter 4. The first design has a control overhead factor of
1.33 because it does not meet the Zero-Overhead constraint. The
second design meets this constraint and therefore operates in the Data-
Limited region instead of in the Bubble-Limited region. The second
design also improved performance by a factor of 1.40 because of the
overlapped execution feature, and an additional factor of 1.20 from other
enhancements. Thus, there is a total improvement by a factor of
(1.33)(1.40)(1.20) = 2.2 due solely to architecture improvements between
the first and the second chip designs. An additional factor of two
improvement due to the change from 2.0u to 1.2 technology explains the
measured performance improvement from 13nS to 2.9nS per quotient bit

between the two designs.
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Conclusions

7.1 Summary

In contrast to synchronous systems, self-timed components avoid the
need of distributing global clocks and avoid the delay overheads associated
with clock-skew. Variances and data dependencies in delays can be used
advantageously because each component or section can begin operation as
soon as its required operands actually arrive rather than always waiting for
worst-case timing. The performance will also be the best possible for the
actual environmental conditions, without the need to de-rate specifications
to allow additional margins for the ranges of power supply voltage, die
temperature, and fabrication spread. Because they can operate under a

wide range of environmental conditions, self-timed components also are
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robust in the sense of not failing when conditions exceed arbitrary

specifications set at design time.

Maximum benefit is attained when a self-timed component is
combined with other self-timed components in an asynchronous system by
using the done outputs of each component as the go inputs to succeeding
components. One can also embed self-timed components within
synchronous systems by using the done signal to stretch clock cycles as in
[WOLRS84], or to indicate on which clock cycle the system may take the

outputs from the self-timed component.

This thesis has presented a family of basic configurations for the
stages of self-timed pipelines or rings. An analysis methodology was
shown that can determine local variables characterizing each stage and then
use these to find the total overall performance of a pipeline or ring. For
rings in particular, this analysis led to a new categorization of three
possible regions of operation called Data-Limited, Control-Limited,
and Bubble-Limited. These regions are defined in terms of the number
of stages and tokens in the ring. The distinctions give direct guidelines for
global design choices that satisfy the Zero-Overhead constraint for the
best ring performance. This constraint is satisfied when a ring has at least
as many stages as the number of tokens it contains times the wavelength of

tokens for its particular stage configuration.

The PS0 and PAQ stage configurations have a forward latency equal
to the function block evaluation delay alone because they contain no explicit

latches. A ring meeting the Zero-Overhead constraint that is
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composed of these types of stages will have performance precisely equal to
an “unrolled” combinational array of the same functional blocks while
occupying only a fraction of its silicon area. This performance is possible
because the control logic never enters into the critical path of the data.
Rather, the self-timed control logic removes the precharge signal at each
stage, enabling its evaluation, before data arrives at its input on each ring
iteration. The ring thereby achieves operation with Minimal-Latency as

defined by the latency of the pure combinational function delay.

The design of high-performance chips for floating-point division was
a motivation for examining self-timed structures. The comparison of two
chip designs demonstrated the performance possible with self-timing and
the benefits of applying the ideas and analysis presented in this thesis. The
second chip design attained Zero-Overhead operation and, together with
overlapped execution, gained a factor of 2.2 in performance solely from

architectural improvements over the first design.
7.2 Future Work

The performance analysis in this thesis was based on fixed block
delays. An interesting extension would be to consider stochastic delays
with specified probabilistic distributions. Such an analysis has been
performed in [GREES88] for a very abstract model, closest to PS0 in this
thesis, but could be extended to the other pipeline configurations suggested
in Chapter 2. Such stochastic models would more accurately reflect
situations where delays are more variable or unknown. The results of a

stochastic delay model will always be worse than those of a fixed delay
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model because the former can only introduce additional waiting and
pipeline stalling in a self-timed circuit. However, except for data-
dependencies, most real circuits are probably quite sufficiently modeled by
fixed delays because similar blocks on the same chip have very similar

characteristics.

The circuits discussed as examples in this thesis use ordinary CMOS
technology, but self-timed circuit elements can also be built in other
technologies, such as GaAs [WILL88] or bipolar [WILL90a]. Moreover,
because self-timed circuits are not limited by the speed of external clocks,
these technologies that are faster than CMOS can gain an even greater
performance advantage from self-timing. Though small circuits have
already been fabricated and tested, many opportunities exist for

implementing larger self-timed circuits in faster technologies.

Self-timed rings could be used for many applications that require
iterative computation. Within the area of elementary arithmetic functions,
not only division, but also square-root, and CORDIC algorithms for
computing transcendental functions, could attain high-performance with a
self-timed ring implementation. Other applications for self-timed rings are
likely to be found in digital signal processing, computer graphics, or

microprocessor design.
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