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Although the trend toward finer geometries and larger chips has produced faster
systems, it has also created larger voltage drops and higher current densities in chip
power supply networks. Excessive voltage drops in the power supply lines cause
incorrect circuit operation, and high current densities lead to circuit failure via
electromigration. Analyzing this power supply noise by hand for large circuits is
difficult and error prone; automatic checking tools are needed to make the analysis
easier.
This thesis describes Ariel, a CAD tool that helps VLSI designers analyze power
supply noise. The system consists of three main components, a resistance extractor, a
current estimator, and a linear solver, that are used together to determine the voltage
drops and current density along the supply lines. The resistance extractor includes two
parts: a fast extractor that calculates resistances quickly using simple heuristics, and a
slower, more accurate finite element extractor. Despite its simplicity, the fast extractor
obtained nearly the same results as the finite element one and is two orders of
magnitude faster. The system also contains two current estimators, one for CMOS
designs and one for ECL. The CMOS current estimator is based on the switch level
simulator Rsim, and produces a time-varying current distribution that includes the
effects of charge sharing, image currents, and slope on the gate’s inputs. The ECL
estimator does a static analysis of the design, calculating each gate’s tail current and
tracing through the network to find where it enters the power supplies. Extensions to
the estimator allow it to handle more complex circuits, such as shared current lines and
diode decoders. Finally, the linear solver applies this current pattern to the resistance
network, and efficiently calculates voltages and current densities by taking advantage of
topological characteristics peculiar to power supply networks. It removes trees, simple
loops, and series sections for separate analysis. These techniques substantially reduce
the time required for solution.
This report also includes the results of running the system on several large designs, and
points out flaws that Ariel uncovered in their power networks.

Phrw: Power Distribution, Noise, Electromigration, Computer
I; resistance extraction, switch level simulation.
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Chapter 1

Introduction

When at last this little instrument appeared, consisting, as it does, of parts

every one of which is familiar to us, and capable of being put together by

an amateur, the disappointment arising from its humble appearance was only

partially relieved on finding that it was really able to talk.

James Clerk Maxwell

The Telephone (1878)

Although Maxwell was describing one of the technological marvels of his time, the

telephone, rather than one of our time, the integrated circuit, his observation would not be

out of place today. From a systems perspective, the operation of an individual transistor or

resistor is quite simple, yet, considered in the aggregate, the operation of the entire circuit

is quite remarkable. As the number of devices in a design increases, however, the relative

simplicity of the individual devices is belied by the complexity of their collective behavior.

Insuring that a million transistors are correctly arranged and interconnected is a nontrivial

task. Designers have developed an array of tools to handle this increasing complexity,

including simulators to check that the circuit implements the logic function desired, design

rule checkers to verify that components are arranged in permissible topologies, and circuit

extractors to see that the devices on chip are interconnected as the designer intended.

Even a design that has been fully analyzed at all these levels, however, may not work

correctly when fabricated. It must also  satisfy electrical constraints, for which fewer
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analysis tools exist. A set of these constraints surround the design’s power distribution

system. To distribute power to all the devices on chip, each design includes a network of

wires; if this network is not designed properly, the system will not operate as desired. Ex-

cessive voltage drops along this network will slow down the circuit, and, if high enough,

even cause it to switch incorrectly. High current density in these power connections can

also cause circuit failure via electromigration. Metal interconnect in VLSI circuits is

designed to withstand an average current density of about lmA//lm* and a peak current

density of approximately lOmA//Lm* [ 191. At current densities above these values, the

electron wind will rearrange the metal ions, causing the metal to thin in some places and

accumulate in others. Eventually, the chip will fail due to either an open or short circuit.

As systems are scaled, these voltage and current problems are exacerbated.

The analysis tool described in this thesis, Ariel’, is designed to fill this gap. Given

a design in either a CMOS or a silicon ECL technology, Ariel will extract a a set of

resistors to represent the power network, analyze the circuit to calculate when and where

currents enter this resistance network, and solve the resulting system of equations. This

information allows to the designer to see if the power network has sufficient capacity for

the circuits it must supply.

1.1 System Overview

Power supply analysis is conducted in several stages, as shown in Figure 1. The first

two steps, layout and extraction, are performed using the Magic layout editor[44]. These

produce a mask level description of the design and its corresponding netlist, including

parasitic capacitances. The remaining steps (inside the dotted box) are performed by

Ariel, and are the scope of this thesis. These steps fall into three categories, corresponding

to the three parts of Ohm’s law: resistance extraction, current estimation, and voltage

calculation.

In the next chapter, I describe techniques for efficiently extracting resistances, paying

special attention to problems inherent in power supply networks. Included in the system

‘The name has two meanings. Ariel is the spirit who carries out commands for the magician Frospero
in The Tempest.  It is also an acronym of “Analyzer for Resistance and current (I) ELements”.
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are two extractors: a fast, simple one that assumes uniform current flow, and a slower,

more accurate one based on finite elements.

_ .~ ~. .-- - ~~~
Layout !

Device and Capacitance
ExtractIon

, (Mygic) /

Resistance :
Extraction
(Chapter 2) ,

.--
MOS Simulation ~ ~ r- -- e-P-y

Analysis / j ECL Static Analysis

I (Chapter 3) I ; / (Chapter 4)I

,
Solver

( C h a p t e r  5)

c
Visual Display /

(Chapter 6) I

Figure 1: System Overview

Chapter Three investigates current estimation for CMOS circuits. Currents in CMOS

are dynamic and pattern dependent; an accurate current estimator must take both these

factors into account. After discussing algorithms adopted by other researchers, I describe

my approach, which is based on timing simulation.

Chapter Four describes current estimation for ECL designs. Here, the magnitude

of current in the design is relatively constant; only its distribution varies. I describe

techniques for calculating the current magnitude, tracing currents through the circuit, and
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arranging these in a conservative distribution.

Chapter Five examines techniques for solving the resulting large system of equations.

I investigate some configurations peculiar to power networks, and develop techniques

for partitioning the network into smaller, more easily solved sections based on these

configurations. Methods for efficiently solving the remaining portions of a network are

also investigated.

In Chapter Six, I analyze several fairly large designs using the system. This analysis

uncovered several mistakes made by the chips’ designers, which are visible on plots of

the voltage and current density distributions. Possible improvements in the voltage and

current distributions for the designs are also discussed.

1.2 Test Circuits

Throughout the thesis, several chips are used as test cases for the system. Analyzing

large designs helps insure that the algorithms developed are practical for use on real

systems. There are six chips in the test set: three CMOS designs from Stanford and

Digital Equipment Corporation, and three ECL designs from MIPS Computer Systems.

Table 1 summarizes their sizes, speeds, and technologies. The features of these systems

are:

1. MIPS-X[24] is a 32-bit RISC microprocessor designed at the Computer Systems

Lab of Stanford University by Mark Horowitz and a team of students. It is designed

in a 2/lrn, two-level-metal, n-well CMOS technology, and runs at a clock speed of

~OMHZ.~

2. PTitan is also a 32-bit RISC Microprocessor, designed at the Digital Equipment

Corporation Western Research Laboratory by Norman Jouppi[28]. It is designed

in a 1.5pm, two-level-metal process, and runs at a speed of 25Mhz.

3. SPIM is a 64 by 64 iterating array multiplier designed by Mark Santoro of Stanford

University[Sl].  It is designed in a 1.6Alrn two-level-metal, CMOS technology, and

2The on-chip instruction cache was not included in any of the analyses; the device count listed in the
table also excludes the cache.
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runs at 85MHz.

4. The R6000, R6010, and R6020 form an ECL chipset  designed by David Roberts,

Tim Layman, and George Taylor at MIPS Computer Systems[48]. All are designed

in Bipolar Integrated Technology’s 2pm, triple diffused ECL, three-level-metal

process, and run at 66.7MHz. The R6000 is a 32-bit microprocessor with on-chip

TLB, the R6010 a 64-bit floating point controller, and the R6020 a system bus

controller chip.

Circuit 1 Devices 1 Speed 1 Technology

Table 1: Summary of Test Circuits



Chapter 2

Resistance Extraction

For out of olde feldes, as men seyth

Cometh al this newe corn fro yer to yet-e,

And out of olde bokes, in good feyth,

Cometh al this newe science that men let-e.

Geoffrey Chaucer

The Parliament of Fowls

Calculating the voltage and current distributions for a power network requires a con-

ductance matrix G relating the voltage and current distributions through Ohm’s law,

C;r’ = z The resistance extractor’s job is to produce this matrix from a mask level

description of the design.

As will be seen in the descriptions of previous work contained in subsequent sections,

resistance extraction is a fairly mature field. What “newe science” will yet another

implementation yield? The first and most pragmatic reason for writing my own extractor

was that one was not available at the outset of the project. Had such an extractor been

available, however, it probably would not have satisfactorily processed power buses;

most extractors are designed to operate on signal lines, which are topologically quite

different. Power buses are much larger and have greater variations in width; extractors

geared for regions of modest size and fairly uniform features have problems in this new

environment. A second goal was to determine what modifications are necessary to allow

existing extraction algorithms to operate in this new domain. Finally, writing an extractor
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presented an opportunity to see how Magic’s tiled, and comer-stitched database could be

advantageously used to implement these algorithms.

The next six sections review what resistance extraction entails, discuss the algorithms

commonly used, and describe the two implementations used in Ariel. The first section

gives a brief review of the underlying field theory. Following this is a description of the

one-dimensional approximation to Laplace’s equation that underlies the fastest algorithms,

and a description of the implementation of this algorithm. Next are descriptions of

two slower but more accurate approaches, finite differences and finite elements, and a

description of Ariel’s finite element implementation. Finally, there is a comparison of the

two extractors, which shows that the simple polygon method is nearly as accurate and

two orders of magnitude faster than using finite elements.

2.1 Underlying Field Theory

From Ohm’s law, the current flowing into a surface S can be calculated as the surface

integral of the normal component of the electric field:

J=& (1)

I= J.n’&j=
J- I-

aE. rids (2)
.9 s

Combining Gauss’s law for charge free regions, ‘7 . a,!? = 0, with the definition for
the scalar potential, I? = -VI’, gives a partial differential equation for the potential:

v.am- =o
For regions of constant conductivity, this reduces to Laplace’s Equation.

(3)

VW=0 (4)

To calculate the resistance of a region, the extractor must find a solution to Laplace’s

equation that satisfies the region’s boundary conditions. Resistive regions in integrated
circuits are generally modelled  as planar regions of constant conductivity bounded by
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conducting and insulating edges (Figure 2a). Since the region is flat, the extractor will

assume that the potential is a function of two dimensions only; unless explicitly noted

otherwise, this approximation will be used throughout the chapter. The edges represent

the two possible types of boundary conditions. On a conducting boundary, the potential is

constant along the entire edge; such an edge satisfies an essential or Dirichlet boundary

condition. These edges represent sources or sinks of current in the region. On an

insulating boundary, the current normal to the edge is zero; these edges satisfy a normal or

Neumann boundary condition. In this model, they represent the edge between conducting

and nonconducting materials.

- Conducting Edge: V=Vc

~ Insulating Edge: I n = 0 _i ,

Ii- (4 w
Figure 2: Resistive Region Model

To calculate the resistance for a region, a test voltage V, is applied to one of the

conducting edges, and all the other edges are grounded. The extractor finds an approxi-

mate solution to Laplace’s equation subject to these boundary conditions, then finds the

current entering each of the grounded terminals using Equation 2. The resistance between

each grounded terminal t and the excited one is V,/I,. For regions with more than two

conducting edges, the extractor repeats this operation with V, applied to different edges

until the resistance between each pair of terminals has been calculated.

The following three sections contain different approaches to the solution of this gen-

eral problem.



2.2 One Dimensional Current Flow

The fastest resistance extraction algorithms rely on the observation that the current flow

in interconnect is usually one-dimensional. The field lines in Figure 3 demonstrate this

property; near disturbances such as corners, junctions, and contacts, the current density

distribution is complex, but in the long regions that form most of the pattern, it is unifcrm.

In these straight sections, the Y and Z partial derivatives are 0, and Laplace’s equation

is reduced to a l-dimensional case. For the region depicted in Figure 4, the y and z

components of ,!? are 0, as are those of the current density:

Figure 3: Current Distribution Near Disturbances

If we integrate this equation from vi to 0 and from 0 to xi, we can derive a relation

between the current density and the voltage:

[odl: = -J,=‘J,dx (6)

vl =
I

=1 1- J,dx
0 fl (7)

The resistance can then be calculated by dividing the voltage by the current in the

region. Because the electric field only has an x component, the surface integral of
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Figure 4: Uniform Current Region

Equation 2 is equal to this x component times the cross-sectional area, yizi. Since

current is conserved, J, is a constant:

(8)

If a sheet resistance R,h = l/( 021) is defined, then Equation 8 becomes the familiar

expression R = R,,,L/W, where Rst, has units of R/U. Programs based on this approxima-

tion break a region into constituent rectangles, each of which contains connecting nodes

formed by transistors, contacts and adjoining rectangles. The extractor then determines
the dominant direction of current flow, sorts the nodes in this direction, and adds resistors

between adjacent nodes in the list. Each resistor has a value R = RSt,(y2 - yl )/W, where

(92 - yl ) is the distance between the points in the direction of current flow and IC- is

the width of the rectangle.

This algorithm is extremely fast because it has reduced the system of linear equations

produced by most methods to a single equation. Since matrix decomposition is not

required, its running time is linear in the number of regions. It also tends to produce

more manageable networks; connections are generally only made between nodes in a

given rectangle instead of between each pair of nodes in the entire system. Its accuracy

depends strongly on the topology of the net being extracted; if the net is dominated by

long, straight sections, as many integrated circuit wires are, the values it produces should
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be fairly accurate. If the net is highly irregular, or has an aspect ratio near unity (such

as the well resistance in CMOS), the approximation will be fairly poor.

Most extractors designed for use on large designs are implementations of this algo-

rithm. The simplest [37, 47, 53, 55, 611 simply calculate the resistance for each rectangle

and assume that the overall result will be fairly accurate because these resistances are

dominant. More sophisticated methods [3, 251 have empirically developed correction

factors to compensate for comers, contacts, and other sources of field disturbance. The

most sophisticated program using this method is McCormick’s EXCL[35], which only

assumes one-dimensional flow in regions where it is certain to be valid. The values for

the remaining sections of a net are either looked up in a library or solved using finite

differences.

Both extractors described later in this chapter use the one-dimensional approxima-

tion. The fast extractor described in the next section uses it exclusively, while the finite

element extractor (Section 2.6) uses it selectively for sections where it is an accurate

approximation.

2.3 Polygonal Decomposition Implementation

This section describes how the fast extractor, which is based on the one-dimensional

approximation of the last section, is implemented. The resistance extractor is a component

of the layout editor Magic. The next subsection provides a brief overview of Magic’s

underlying database, including discussion of the opportunities that the database affords

and some of the challenges that it presents to resistance extraction. Following this is a

description of the modifications the extractor makes to the layout representation and a

description of the algorithm’s core.

2.3.1 An Overview of Magic’s Database

Magic is a layout editor for integrated circuits developed at the University of Cali-

fornia at Berkeley by John Ousterhout, Gordon Hamachi, Bob Mayo, Walter Scott, and

George Taylor. It introduced many new features, including continuous background design
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rule checking, hierarchical circuit extraction, and plowing. A more detailed description

of these and other features can be found in the 1984 Design Automation Conference

Proceedings[44].  This section will concentrate on another Magic innovation: its novel

database design.

The basic Magic data structure is the tile. The entire design area (Figure 5), extending

to infinity, is covered by a mosaic of these tiles. Each point in the plane is covered

by exactly one tile. Tiles may represent part of the design, as do the shaded ones in

the example, or they may represent space. There are many possible configurations of

rectangles that could be used to cover a region; Magic represents areas composed of a

single material as a set of horizontal strips. In the example, the shaded region is broken

into four tiles, t2, t4, t7, and ~9. This representation prevents fragmentation of the region

into many small rectangles and provides a canonical form for the design.

Figure 5: A Plane of Magic Tiles

Corner stir&es  are used to represent the interrelation between tiles. A stitch is a

pointer to another tile in the plane. Each tile has four stitches; one pointing to the

rightmost tile along its top edge, one to the top tile along the right edge, one to the
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bottom tile along the left edge, and one to the leftmost tile along the bottom edge.

Each tile’s corner stitches and the neighbors to which they point are shown as arrows

in the example. These four stitches make local searching very fast. For example, all

the neighbors of a given tile can be found by following stitches; in the figure, the top

neighbors of tile t7 can be found by first following its right top pointer, then by following

the bottom left pointers of the neighbors until the right edge of a neighbor is less than the

left edge of the original tile. Similar algorithms exist for locating a point on the plane,

searching for tiles in a given area, and visiting each tile in a region[45].

The remaining problem is developing a correspondence between the tile types of the

database and the physical mask layers of a fabrication process. This problem is technology

dependent; the designer must set up this correspondence for each fabrication technology

used. One approach would be to use a separate tile type for each possible combination of

overlapping layers, but this mapping would require an exponential number of types and

would fragment the database into many small pieces. Another possible solution would be

to use a separate tile plane for each mask layer. This solution requires fewer types (only

one per mask layer), but is still memory inefficient because there are many more space

tiles. This arrangement also lessens the advantages of comer stitching. Many layout

operations involve more than one layer; calculating the interactions between such tiles is

more difficult when they do not lie in the same plane.

Most technology mappings adopt an approach somewhere between the two described

above. All layers that commonly interact with one another are placed in the same plane,

while layers that do not are placed in separate ones. For example, the standard MOSIS

SCMOS technology uses five planes: well, active, metall,  metal2,  and oxide. As can be.

guessed from their names, the well, metall, and metal2 planes contain types representing

the wells and the two layers of metal used in the design. The oxide plane contains the

locations of cuts in the chip’s passivation layer. The active plane contains the diffusion

and polysilicon masks, plus combinations of these layers, such as transistors. These layers

are put in the same plane because they closely interact. Interactions between layers on

different planes is much rarer; for example, few operations need to know the relative

spacings of polysilicon and metal.

The remaining problem is representing mask layers that interact with types on more
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than one of the above planes, such as contacts. This is done using special abstract tiles that

have separate copies on both planes. For example, in Figure 6, the polysilicon, contact

cut, and metal1 masks are combined to form the single abstract type pc. Duplicate copies

of the pc tiles are kept on both the active and metal 1 planes. These abstract types facilitate

analysis of the layout because mask interactions need not be calculated explicitly; they

are implied by the composite type.

Physical Layers

Figure 6: Abstract Types

Abstract Layers

A cell is thus represented as a set of planes, each composed of tiles of varying types.

Each cell can also contain subcells; interactions between these subcells present special

problems. Magic allows nearly arbitrary overlap between cells; the only limitations are

that cells must be individually design-rule correct and that overlap must not create or

destroy devices. Any tools developed for the system must operate correctly regardless

of the cell topology. Magic’s regular circuit extractor [52] is both hierarchical and in-

cremental. To handle overlap, it extracts each cell individually, then flattens areas of

cell interaction, extracts them and adjusts the connectivity and capacitance information

accordingly. Because each cell is extracted independently of its context, only a cell and

all its ancestors must be re-extracted when it is modified.

Extracting parasitic resistances in the same manner would be extremely difficult.

Because of nearly arbitrary overlap, any point in a polygon may be used as a terminal.
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In the example of Figure 7a, the extraction of net1 in cellA produces a single resistor

connecting the two transistors. When a second cell, cellB, is added over cellA, its metal

line is shorted to the middle of netl. The initial version of net1 has no node at this point;

the network for cellA would have to be split to create the required connection point.

Allowing arbitrary overlap thus precludes context free extraction of cells.

R R/2 RI2
to t----w4 t1 to m* t1

n0

cellA

Figure 7: Cell Overlap

It might be possible to devise a modified hierarchical system that allows network

modification and back annotation to handle cases where cell overlap changes a network’s

topology, but doing so would eliminate much of the advantage yielded by hierarchical

extraction and would make the extractor much more complex. Instead, the resistance

extractor copies and flattens all the electrically connected rectangles into a dummy cell.

Despite the overhead of this approach, the extractor is still fast enough to run on an entire

design, as will be seen in Section 2.7.

2.3.2 Database Preprocessing

Once a hierarchical net has been flattened into a single dummy cell, the extractor modifies

Magic’s standard layer representation into one more conducive to resistance extraction.

This is done in two steps: dissolution of contacts and coalescence of regions.
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Contact Removal

Magic’s contact types present problems for the extractor. Resistance extraction operates

primarily on regions composed of a single mask layer. Abstract contact types tend to

fracture this single layer into multiple pieces, as shown in Figure 8a. This artificial

fragmentation makes extraction more difficult because it hides a region’s true topology.

To avoid this, the extractor notes the position of each contact and then replaces it with

its constituent mask layers (Figure 8b). This reduces the number of tiles and makes the

inherent structure of the region more explicit.

I I
I POlY /
I I

6%

Region Coalescence

(B)

Figure 8: Dissolving Contacts

Another source of artificial region fragmentation is Magic’s use of of maximum horizon-

tal strips (Figure 9a). This representation splits long horizontal regions between several

rectangles. Since the one dimensional approximation is most accurate when the con-

ducting edges of the region are perpendicular to the current flow, these areas need to be

reshaped.

A modified version of Horowitz’s fracturing algorithm [25] is used to fix them. At

each concave comer, the extractor checks to see if the width of the region measured from
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the comer is greater than its height. If it is (Figure 9b), then each tile in the region is

split vertically at the comer. Once the tiles have been split, the extractor checks to see

if they can be combined with their vertical neighbors (Figure SC). Comers whose region

height is greater than their width are likewise split and merged horizontally. Performing

this operation at all concave comers produces the region of merged rectangles shown in

Figure 9d.

(c)

Figure 9: Modifying Horizontal Strips

CD)

Configurations where two concave comers interact, like those in Example 10, must

be handled carefully. This configuration is not uncommon in power networks; a designer

will sometimes nick a comer out of the power bus to avoid a spacing design rule violation.

Once the region has been fractured at both comers, there are two pairs of rectangles that

share a common edge; the extractor must decide which pair to merge. In the example,

removing the horizontal edge (marked bad) leaves two tiles with current flow parallel to

their common border, while removing the vertical edge (marked good) leaves two tiles

with current flow perpendicular to their common edge. The general rule is that the longer

of the two edges is removed; in the example, this is the vertical edge.
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original choices bad

Figure 10: Interacting Concave Comers

2.3.3 Resistance Calculation

Once the database has been preprocessed, a resistance network is formed tile by tile.

The user specifies a set of initial tile(s) that form the root of the power distribution tree,

generally the power pads, which are put into a pending tile list. Tiles are processed one

by one until none remain in the list. Each tile is processed in eight steps:

1. Check to see if this tile forms the gate or emitter of a transistor. If it does, add a

node at the center of the tile, and set the corresponding device terminal equal to it.

2. Walk along the tile’s edges looking for electrically connected materials. For each

connecting tile found, add a node at the center of the junction between tile edges.

If the other tile has not already been processed, add it to the pending list.

3. If this tile type can form the source/drain or base terminal of a device, search the

tile edges for transistor tiles. For each one found, add a node at the center of the

common edge and set the correct terminal equal to it.

4. If this tile type forms the collector of a bipolar device, search under the tile on the

emitter’s home plane for transistors. For each one found, add a node in the center

of the emitter tile and set the collector terminal equal to it.

5. Check to see if the tile originally contained any contacts. If so, add a node for

each one. If the other tiles that formed the contact have not been processed, add

them to the pending list.
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6. Calculate the minimum and maximum X and Y coordinates of all the nodes found in

the previous steps. If max( X) - min( X) > max( Y) - min( Y ), assume that current

flows horizontally. If not, assume current flows vertically.

7. Sort the nodes from minimum to maximum in the direction of current flow. Merge

nodes with the same coordinate.

8. Add a resistor between each adjacent pair of rectangles.

R,,,Z,Y/width( tile) if current flow is vertical
R =

R,,,lX/height( tile) if current flow is horizontal

A simple example is shown in Figure 11. The extractor creates node .Va when it

finds the adjoining tile during the perimeter walk of Step 2. Nodes rVi and -Vz are

created during Step 3 because the tile forms the source terminal of two transistors. Node
iVs is created during Step 5 for the contact contained within the rectangle. Since the

greatest horizontal separation (between nodes fVi and LVz) is greater than the maximum
vertical separation (between nodes NO and ‘q’s), the extractor assumes that current flows

horizontally. The nodes are sorted by x coordinate; since Nodes LVa and ;L; have the

same value, they are merged. Two resistors, Rl and R2, are created between the node

pairs, -Vi - JV~ and IV, - Vz, and are added to the overall network description. The

extractor marks this tile as processed and goes on to the next one in the pending list.

When all the tiles associated with a node have been processed, the resistors and

transistors connecting to the node are examined. Resistors with both terminals connected

to the node are eliminated. The extractor tries to combine any resistors in parallel

connecting to the node. If there are no transistors and only one resistor connected to the

node, the node and its connecting resistor are eliminated. Nodes with two connecting

resistors and no transistors are also removed, and their resistors are combined.

The extractor continues in this manner until all the tiles are visited and all the nodes

have been processed. The resulting network of nodes, resistors, and transistors is then

saved in a file for processing by the linear solver.
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Rl=Rsh  (x0-d  j /h R2=Rsh (x2-x0) /h

Figure 11: Extraction Example

2.4 Finite Differences

The one dimensional approximation is extremely efficient, since is is basically a scan

through the list of tiles. For irregular shapes, however, it can produce a poor estimate

of the resistance. Two other approaches, finite differences and finite elements, are often

used when greater accuracy is needed. This section describes finite differences, which are

simple to implement and adequate for some problems, while the next section describes

the more powerful (and complicated) finite element method.

If the Taylor Series for the voltage is expanded around the point (x. y), it can be used

to estimate the values at (x + Ax. y) and (x - Ax, y).

I
V(x - Ax, y) = C.(s, y) - a$- + Ar

2 a2L’--~Slg.g+...  (IO)&.2

If these two equations are added, all the odd powers of Ax cancel out. By rearranging

this sum and neglecting all even terms higher than second order, we get an equation for

the second partial derivative with respect to x:
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aav
jjyF”

V(s + Sr,y) + V(x - 4x,y) - 2V(z,y)
4X2

(11)

An analogous equation for d21-/dy2 can be derived in the same way. When these

two equations are added, the result is an approximation for Laplace’s equation in two

dimensions:

m+azv- - M
8x2 ay2

b’(d + 4x,y) + V(.r - 4s,y) - 2V(x,y) +
4X2

I+. y + 4y) + V(.? y - 4y) - 2V(x, y)4Y2
I.= 0 (12)

Rearranging Equation 12 gives an approximation for V( x. y) in terms of its four

neighbors, V(x - 4x, y),V(x + 4x. y), V(x, y - 4y), and V(x, y + 4~).

W,Y) =
4y2(V(r + ax,:, + l-(x - 4x, y))+4sZ(lky + 4y) + I’(r. y - 4y))

24x2 + 24y2 24x2 + 24~2
(13)

If the region is covered with a rectilinear mesh, as shown in Figure 12, then the

voltage distribution can be calculated by solving the system of linear equations relating

the mesh node potentials to one another. In this derivation, the distances between mesh
points in a given direction (4x and 4y are constants), but an equivalent expression for

a nonuniform node distribution may be derived in the same manner, the only difference

is that Equation 10 must be scaled by the ratio of the mesh spacings so that the first

derivative terms will still cancel one another[22].

While Equation 13 is clearly true for points in the interior of the mesh, it must be

modified for points along the boundary. For points on a conducting edge, the potential

is fixed at V,,  the edge’s potential. For points along an insulating edge, the boundary

condition requires than the normal current be 0. This can be achieved by mirroring the

voltage about the edge:

I/‘(w)  = ~~Y~v(I+~,Y)+~~(v(I,Y+~~)+~‘(  4y)lI-Y-
2Ax2+2& leftedge (14)
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Figure 12: Finite Difference Mesh

(15)

v(.f y) = 4yZ(C~(~t4r.y)tV(r-4~.y))t24r~~'(~,Yt4y)
2AGt2-3y2 bottomedge (16)

i.+. y) = 4sZ(~~(~+4r,Y~tv(r-4r.y))+24r~L~'(z,y-4y)  topedge
2Ax2+2 y2 (17)

For convex comers, the voltage is mirrored in both directions.

These equations give the potential for discrete points in the region; the next step is to

convert this system of equations into a corresponding resistance network. Surprisingly, a

resistance network can be produced without explicitly calculating all the voltages interior

to the region. The next two sections describe an efficient method for performing the

conversion: the finite difference grid is represented as a mesh of resistors, which can be

transformed directly into the desired resistor network.

2.4.1 Physical Analogs of Finite Differences

Just as the discrete finite difference equation was formulated to approximate to the con-

tinuous Laplace Equation, a discrete resistor network can be formulated to approximate

the continuous resistive region. Consider the resistor network of Figure 13. Applying
Kirchoff’s Current Law at node V(x,y) gives:
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Figure 13: Lumped Analog of Finite Difference Equations

l’(s,y) =
Gxb’(s + 4s.~) + G.yC’(.r  - 4.r.y)  + GyV(.r,y  + 4y) + Gl.C’(.r.y  - -ly)

2Gx + 2Gk
(18)

This equation is very similar to Equation 13; if G, E Ay2 and G, z 3x2, then the

two are identical. The solution is not unique, however; any values of G, and G, that have

the same ratio G,/G, = Ax2/ay2 will produce the same voltage distribution. With this

in mind, we can pick conductance values that also produce the correct current distribution.

Equations 19 and 20 give the discrete approximations for the current density.

J, = aE, M o V(.r + 4.L:y) - V(.x, y)
4 x

J, = aE, x u b-(x. y + 4y) - I-(.r. y)
4Y

(19)

(20)

If ax and ay are small, then J, and J, will be essentially constant across the rectangle

and the integral of Equation 2 will just be the current density times the cross-sectional

area. For a region of thickness t:

I, M t(4y)J,  = ~(V(x + n.r,  y) - V(.r, y))

G, = tu$f

(21)

(22)

23



G, = tu$i
The values of G, and G, have the correct ratio, 4s2/4y2. These analogs provide

an intuitive feeling understanding of finite difference analysis. A region is broken into a

set of small rectangles, each of which is replaced by a simplified resistor network. This

network can then be solved and replaced by an equivalent network that does not contain

the interior portion of the mesh.

2.4.2 Solving the Equations

Once the equations have been formulated and modified to account for the various bound-

ary conditions, the resulting system must be solved. Any algorithm for solving sparse,

positive definite matrices may be used here, including Successive Overrelaxation (Section

5.5.2) and Cholesky Decomposition (Section 5.5.1), but significant performance advan-

tages can be obtained by using the node elimination approach of Harbour and Drake[22].

As noted in the previous section, a finite difference formulation produces a mesh of

lumped resistors, as does the entire extractor; instead of applying a test voltage to each

boundary in succession, node elimination simply transforms the finite difference network

into the desired network. To do this, tire conductance matrix is first partitioned into two

sections: one containing the set of nodes E that are to be retained and the other the set

of nodes i that are to be removed

Since there is no current inj:cted  into ie

can be rewritten and solved for V,:
internal nodes, I, = 0, and the equations

Gi,Ve + G,,\,: = Cl

24
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Rearranging Equation 27 and substituting it into 26 gives an equation for V, alone:

r/: = -G,‘G,,V, (28)

(Gee - GezG,‘Gie)K = Ie (29)

The term in parenthesis in Equation 29 is an equivalent conductance matrix Gk that

relates the boundary nodes and voltages without calculating the internal values; it is the

same matrix that would be produced by applying a test voltage to each edge in turn and

measuring the currents flowing to all the other edges. The conductance matrix for the

entire system could be constructed using this equation, but inverting G,, would be very

expensive because it is nearly as large as G. Instead, Equation 29 can be applied to

individual nodes as they are created.

;Nl

62

63

N3!

(A)

N2

G2G4/GT\
Nl

N4 N2
GlG3/GT

N3

( w
Figure 14: Node Elimination

Consider a node AV~ that connects to n other nodes, shown in Figure 14a for n = 4.

This node can be eliminated by applying Equation 29. The inverse matrix Gi;’ is the

inverse of the sum of all the conductors connecting to the node, and G.-i and G, are just
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the row and column vectors containing the values of Gi . . G,. Multiplying these terms

gives the value for a new resistor Gij in terms of the old ones.

Go,  GoIG,,(ww) = G,,(old) + -
GT

(30)

1:

GT =xGk
k=l

(31)

Once all the resistor analog elements connecting to an internal point have been cal-

culated, this formula can be applied to eliminate the node. Internal nodes can thus be

eliminated as they are created; if the order in which nodes are processed is chosen care-

fully, this algorithm will be considerably faster and will use less memory than would

creating the entire matrix and then solving it. Section 2.4 describes an implementation

of this algorithm.

2.5 Finite Elements

The finite difference approximation is adequate for regions without much variation in

width and current density. When the current density does change considerably, main-

taining acceptable accuracy is difficult due to the rectilinear grid; using small enough

elements to provide sufficient accuracy in complicated areas requires use of too many

elements in simpler sections. Since power supply networks often contain large variations

in width and current density, solving them using finite differences would be very expen-

sive. A more general approach, the finite element method, can be used to circumvent

this problem.

A two dimensional voltage distribution forms a 3-dimensional surface. The finite

element method approximates this curved surface as a set of triangular patches called

elements; the voltage in each element is a linear interpolation of the voltages at the ver-

tices. Since the interpolation is linear, the gradient of the potential is constant throughout

the patch, and the divergence of the gradient is zero. A constant gradient makes the

current density constant, and zero divergence makes Laplace’s equation valid inside each

element.
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Original surface Finite Element Approximation

Figure 15: Approximation of a Potential Surface

Since the potential in each element is fixed by the potentials at its vertices, the key

is finding a set of equations that relate an element’s vertex potentials to one another and

to those of neighboring elements. This is done by requiring the current flow between

elements to be continuous; the current flowing out across each edge of one element must

equal that flowing in across the same edge of its neighbor. For the center element in

Example 16, this gives three equations:

Figure 16: Matching Current Flow Across Boundaries
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J, . n, = 0

J, ’ nb = J3 . rtb

JI . n, = J2 . n,

By repeating this for all the patches adjoining a given vertex, the finite element

approximation produces an equation defining the vertex’s potential in terms the values at

adjoining vertices. When all the elements covering the region are processed, the result is

a system relating the node potentials to one another; with the correct potentials applied

at the conducting boundaries, the system will give an approximate solution to Laplace’s

equation for the region. The accuracy will depend on how closely each patch lies to

the actual surface. As patches get smaller, the surface regions they represent become

more planar, and the solution accuracy improves. The same conclusion can be reached

by considering the current densities; as patches get smaller, the current density of the

surface region that they represent becomes more and more constant and approaches that

of the patch. This suggests that the ideal mesh would have many small elements in places

where the current density changes rapidly, and fewer, larger ones where the density is

more uniform. Section 2.6 explores this problem in detail.

The finite element method can also be considered a generalization of the finite differ-

ence method. The finite difference approximation requires that the first derivatives of the

potential be continuous in both the X and Y directions. Using finite elements, the first

derivative (in this case the gradient) must again be continuous, but the mesh does not

have to be rectilinear and the derivative need not be independently continuous in both

the X and Y directions.

Like the finite difference method, relations between the vertex node potentials are

often expressed in terms of a physically analogous resistor network to allow use of the

node elimination technique described in the last section. Appendix A contains a detailed

derivation of the analog for a triangular finite element; only the result is included here.

The relation between the three vertices is represented as three conductors, with values

given below. A is the element’s area. A network for the entire system can be constructed

by calculating the conductances  for each patch and adding together the two elements that
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adjoin each edge.

k k

i

Figure 17: Triangular Finite Element

G3 = -&,x, + x,xk - xf - xjxk  +  y,y, +  y,yk

YZ - YIY,)

y: - Ydk)

Yf - Y,Yk)

(32)

2.5.1  Rectangular Elements

Another commonly used element shape is the rectangle. The discrete conductors for a

rectangular element (Figure 18) can be derived by considering it as two triangles. Solving

the two elements ijk and ij’k and summing the two diagonal resistors gives values for

the five conductors.

G, = (4~1 - ~oHl(2h -10))

Gk = b(Yl - Yo))/(% - -ro))

Gi = (4x1 - ~o))/(~(Y,  - YO))

Grn = (4x1 - XO))/WYI -YOU

G,= 0

(33)
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Figure 18: Rectangular Finite Element

As expected, these equations are similar to those of the finite difference analog in

Section 2.4.1; the total conductance is the same, but in the finite element case, it is split

between the two node-pairs along each edge instead of being assigned to a single one.

For a uniform grid, each finite element node-pair not on a boundary will receive half an

element of conductance, making the finite element and finite difference physical analogs

identical. Finite difference analysis is thus a special case of finite element analysis with

rectilinear elements.

2.5.2 Boundary Conditions

Satisfying the boundary conditions for finite element systems is simple. Insulating bound-

aries conceptually can be treated as any other region, except that the conductance g is 0.

Because of this, the discrete conductors all have 0 value and can be ignored. Perfectly

conducting boundaries are regions for which CT = 00, so the discrete conductors have in-

finite value; all nodes adjoining such an element are shorted together and are represented

by a single node in the system matrix.
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2.6 Finite Element Implementation

I
I

To check the accuracy of the simple one-dimensional extractor, Ariel also includes a finite

element extractor. Since finite element analysis is slow, this second extractor will only

perform it on subregions too complicated to extract by other means. Techniques described

in the next two sections subdivide a region and identify the parts where detailed analysis

is either unnecessary or redundant. These methods are based on similar components

of the extractor EXCL[35]. Following this is a description of the finite element mesh

generation and solution techniques used.

2.6.1 Region Subdivision

Finite difference and finite element analysis both produce resistors between each pair of

nodes in a net, or (.V - N)/2 elements in all. For a power bus, the number of nodes

is quite large because the region itself is large and has many connecting transistors.

Producing a network for the entire region at once is not feasible; it would take too long

to compute and would be too large to use. The region needs to be subdivided into smaller

sections which can be extracted independently of one another.

The best way to do this is using the idea of breakfines developed by Horowitz [25]

and extended by McCormick [35]. Breaklines are subdivisions added in long, straight

parts of the region in such a way that the current distribution is not significantly dis-

turbed. An example is shown in Figure 19. At the region’s comer, the lines of constant

potential are unevenly spaced, but they become quite uniform a relatively short distance

away. If the region is split parallel to these field lines, and the newly created regions

are modelled  as perfectly conducting boundaries, then the region’s field is virtually un-

changed. McCormick calculated that splitting the region one square away from a source

of disturbance only adds an error of about 0.1% in the calculated resistance.

Although adding a breakline increases the total number of nodes by 2, it makes two

smaller problems out of the original large one. When breaklines are added next to all

long, straight sections, the large region is divided into many small ones.

Implementing this algorithm in a comer stitched database is straightforward. Once

the region coalescence of Section 2.3.2 has been performed, the extractor makes a second
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Figure 19: Adding Breaklines to Regions

Figure 20: Implementing Region Subdivision

pass through the database looking for rectangles with an aspect ratio greater than 2 or

less than l/2, like the one shaded in the example of Figure 20a. Each of these rectangles

is copied into a dummy cell. The four edges of the original rectangle are checked

for adjoining material; each adjoining rectangle found is bloated by its width, and any

material in the copied rectangle is erased, leaving the truncated rectangle shown shaded

in Figure 20b. An analogous operation is performed for any contacts that overlap the

rectangle; they are bloated by the height of the original rectangle, then erased in the copy.

In the example, this leaves two shaded regions (Figure 2Oc). which represent areas where

the current flow and potential are uniform. The rectangle is split into parts along the left

and right edges of the shaded regions. The new rectangles corresponding to the shaded

parts of the original are marked as having uniform current flow.
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Figure 21: Possible Rotations of a Region

2.6.2 Subregion Library

The extra region fracturing performed in the previous section produced two classes of

rectangles: those with uniform current flow and those with nonuniform flow. For the

former, resistance calculation is trivial; from Section 2.2, R = R,hL/W. The latter require

further calculation. The resistance for each nonuniform rectangle cannot be calculated

by itself; it must be considered along with its neighbors. Each group of adjoining non-

uniform tiles form a cluster, which is bounded by space tiles, modelled as insulating

edges, and by transistors, contacts, and uniform-flow rectangles, which are modelled as

perfectly conducting edges.

Due to the repetitive nature of VLSI designs, many of these clusters are either identical

or mirrored/flipped copies of one another. Each such group need only be extracted once.

This is done using a dynamic library. Before a cluster is extracted, the relative positions

of its constituent rectangles and conducting edges are used as the key to a hash table.

The entry corresponding to each key is the resistance network extracted for the cluster. If

an entry is found for a given cluster configuration, then a copy of the entry is appended

to the resistor network. If no entry is found, then a new one is added for the cluster after

it is extracted
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Figure 22: Region Scale Invariance

Since cells are often rotated or flipped, it is important that the clusters match regardless

of rotation. Figure 21 shows the 8 possible rotations of an asymmetric cluster. There

are a number of ways to make entries match regardless of rotation. One approach would

be to make an additional key for each unique rotation of the cluster. The advantage of

this is that table accesses are fast; no additional processing must be done to a cluster

before it is compared against the library keys. The primary disadvantage is that it uses

additional memory; since the key for an entry is often as large as the entry itself, and

most large clusters are asymmetric, such a library would be prohibitively large. Instead,

a single canonical key is used The extractor first calculates the centroid of each region,

then rotates the region so that the center of gravity is as low and as far to the left as

possible. In the example, rotation F would be chosen. This scheme usually only requires

one key, making it memory efficient. It has two disadvantages: the library access time is

greater due to the cost of calculating the centroid, and the rotation may not be unique if

the centroid lies on the line x = y. In practice, the increased access time is unimportant

because extraction time is dominated by the finite element calculation itself. To ameliorate

the second problem, the extractor calculates the centroid of the conducting edges if the

correct rotation is ambiguous. (Since the edges are actually lines, they are first assigned

a small finite width.) Sometimes, this will also fail to give a unique rotation. In this

case, the region will actually get extracted more than once. The loss of efficiency due

to unnecessary duplication of extraction is negligible, however, in practice, the large

clusters whose processing dominates the extraction time have too many rectangles and

edges to be ambiguous.

One other possible enhancement is scale invariance. Although they are of different
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sizes, the two regions of Figure 22 have the same resistance. In his library implementa-

tion, McCormick normalizes all rectangles to 1/256th  of the first rectangle’s height. Such

an implementation would not work for a power bus extractor due to the great variation

in width. Ii is not uncommon for minimum width wires to connect to an extremely

wide main power bus. Any rounding in the width of these minimum width wires due to

quantization could introduce substantial error in the overall resistance.

Another scaling implementation might be possible, but its utility in the power network

domain is questionable. The large, multirectangle regions that dominate the extraction

time are not scaled versions of other regions, and any time spent providing scale inde-

pendence is wasted for them. Since the potential return for scaling is problematical, the

extractor does not use it.

2.6.3 Mesh Generation

The extractor must produce a network for any cluster that does not match an entry in the

library. McCormick and Horowitz both use finite difference analysis when they need to

accurately extract a region; unfortunately, this approach proves inadequate for power bus

extraction. Power buses have a wide variations in width; a rectilinear grid that provides

adequate accuracy near small features will run too slowly in the large, coarse sections of

the design.

To accommodate large feature size variation, some sort of nonuniform finite element

mesh generation is needed. One possible approach is the adaptive mesh generation

algorithm devised by Machek and Selberherr[34].  This method has two drawbacks for

resistance extraction. First, it requires that the internal node voltages be calculated; the

fastest solution algorithm for resistive meshes, node elimination (Section 2.4.2), does not

calculate these intermediate values. Use of adaptive mesh generation would require the

one of the slower solution techniques be used. The other problem is that the mesh would

have to be regenerated for each edge; since the potential distribution varies depending

on the boundary to which the voltage is applied, the mesh will also vary.

Because of these drawbacks, a modified version of Kemp’s heuristic mesh generation
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Figure 23: Sources of Potential Disturbance

[31] is instead used. The basic idea of this algorithm is to produce a mesh with many el-

ements in places where the current density is changing rapidly and fewer in places where

it is changing slowly. To do this, the region is first represented as a set of rectangular

elements’ containing regions of homogeneous resistivity. Each of these elements adjoin-

ing a point of voltage disturbance needs to be subdivided. The disturbances are caused

by concave comers in the regions. In the example of Figure 23, the disturbances are the

bend in the region (labelled 1) and the comers around the contact (labelled 2-5). Kemp

also uses the entire edge between two regions of differing resistivity (labelled A-F), but

this seems unnecessary; as can be seen from the potential lines, the current does not

change rapidly except at the comers.

Each element adjoining a disturbance is recursively split in two until the elements

nearest the comer are below some minimum size. The basic idea in splitting is to
subdivide the element in such a way that the resulting children are well ratioed,  and to

‘The initial elements are rectangles because Magic’s database only supports orthogonal shapes. Al-
though Kemp’s algorithm can handle arbitrary shapes, the current discussion is limited to the Manhattan
case.

‘The aspect ratio of an element is the length of the short side divided by the length of the long one;
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Figure 24: Subdivision of Elements

minimize the number of nodes required by making the split points of adjacent elements

align. The following rules (illustrated in Figure 24) are applied:

l Ill-rat&d rectangles are split in two along their long side.

a. If there is an edge between two elements along one side, and

subdividing there does not give children more ill-ratioed than the parent,

split the element at the edge. If there is more than one such edge, use

the one that gives the best ratioed children.

b. If there is no such edge, split the element in the middle.

l Well-rat&d rectangles can be split in either direction.

c. Split at the adjacent edge that gives the best ratioed children,

d. If no such edges exist, split along a line perpendicular to the

expected direction of current flow.

e. For a comer element with no adjacent edges, split in both

directions.

Once the adjacent element is subdivided, the same procedure is applied to all of its

children that are next to the disturbance. This continues until all of the adjacent elements

are smaller than some predefined size. Figure 25 shows how this algorithm operates on

a concave comer. The edges are numbered in the order in which they were added, with

the letter (a-e) in parentheses showing which rule was applied

the closer this ratio is to 1, the more ‘well-ratioed’ the element is.
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Figure 25: A Mesh Generation Example

This algorithm works reasonably well. Elements end up being fairly square; such

regions generally have less current density variation than does a long, thin one. Requiring

mesh lines to match up reduces the total number of elements. Splitting in two makes the

element density spread out in about a 45 degree line from the disturbance, just as the

change in current density does. The mesh generator thus puts many elements where they

are necessary and fewer where they are not.

Once the elements have reached the desired size, they are replaced by a finite element

mesh. Element vertices and edges form the nodes and edges of the mesh, respectively.

The mesh is composed of two element types: rectangles and triangles (Figure 26). The

triangles always occur in groups of three that form a rectangle. The extractor decides

which element to use depending on the number of neighbors the element has. Elements

with four neighbors use the rectangle, while those with five use the three triangle set.

Some of the elements may have more than five neighbors; this is fixed by splitting them

along one of the edges to form two elements. Figure 25 shows the mesh elements added

during triangularization.

Implementing the above algorithm in Magic is straightforward. All of the tiles com-

posing a cluster, along with the conducting edges (which are assigned some finite width
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Rectangular Triangular

Figure 26: Finite Elements Used in Generation

so that they can be represented as a tile) are copied into a dummy cell. Solution accuracy

can be controlled using an optional scale factor by which all rectangles are magnified as

they are copied. A large scale factor results in smaller final elements near a disturbance.

The cluster is then searched for concave comers. At each such comer, the horizontal tile

is split along the y-axis at the comer to produce the three initial rectangles of Figure 25,

each of which is then processed by the above algorithm. The algorithm is done when

the comer’s adjacent elements are ail 1 by 1 squares. The extractor then makes a second

pass through the entire cluster, looking for elements with more than five neighbors. Each

such element is subdivided again, and the adjacent elements are rechecked to insure that

the additional edge does not leave them with too many neighbors. The final triangular-

ization is not explicitly performed because Magic can only represent rectangles. Instead,

the extractor adds the elements for all three triangles at once whenever a five-neighbor

rectangle is encountered.

2.6.4 System Solution

Once the mesh has been generated, it must be solved for the node to node resistances.

The extractor uses Harbour and Drake’s node elimination algorithm (Section 2.4.2) to

remove the unwanted interior nodes. In implementing this algorithm, the extractor has to

decide the order in which the internal nodes will be processed. If the mesh is rectilinear,

as Harbour and Drake’s is, then one good ordering is to process the nodes row by row.

The extractor walks down the long side of a rectangle, adding rows of new nodes. As the

mesh is extended for each element in a row, any nodes sandwiched between this element

and previously processed ones have all their connections in place and may be eliminated.
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Figure 27: Order of Node Elimination

By processing the elements in short rows, the number of outstanding nodes (nodes that

have some but not ail of their connecting resistors in place) is kept low. The numbers

in Figure 27a show the order in which elements are processed, while the letters indicate

the order in which nodes are eliminated. For rectangles that are wider than they are tall,

elements are processed by column instead of by row.

Implementation of this algorithm is trickier when is grid is not rectilinear. There are

two interrelated problems: choosing an order of element processing that will minimize

outstanding nodes and determining when all the resistors connecting to a node have been

processed For regions that are taller than they are wide, the extractor uses Magic’s tile

enumeration algorithm. This algorithm visits tiles in the top to bottom, left to right order

of their lower left comers. The example of Figure 27b shows this ordering. At each tile,

the extractor generates the correct mesh elements, then marks the tile as processed. It

then checks the nodes along the sides of the tile to see if all their adjoining tiles have

also been processed.3 If they have, then the node is eliminated For rectangles that are

31t  is not really necessary to check all four edges; another method would be to automatically process
all node-s along the top and left sides, except those at the bottom left and top right corners. Due to the
tile enumeration order, these nodes will only have processed neighbors. Assuming the space tiles are also
visited, then all the nodes will eventually be processed. The problem with this approach is that all the
nodes along the right edge will get processed last because the bottom right space tile is the last to be
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wider than they are tall, the tiles are instead visited left to right, top to bottom.

This enumeration works fairly well for regions that have an aspect ratio that is not

near one, but is not as useful for more complex areas that are more or less square. A

better algorithm might try and follow the twists and turns of individual rectangles within

the cluster. For complicated structures, however, doing this while still ensuring that all

elements are visited is tricky. For simplicity, the straightforward enumeration is used

even for more complicated structures.

2.7 Results

To compare the speed and accuracy of the two algorithms, I extracted the ground buses

from two midsized  circuits: the register file from the MIPS-X microprocessor[24], and

a self-timed divider[60]. Table 2 gives the circuit sizes and running times on a Titan,

a 15-MIP RISC machine. The finite element grid size chosen gave solutions accurate

to about 2%[35]. Even with the library of stored shapes, subdivision of regions, and

heterogenous grid, the finite element extractor is over two orders of magnitude slower

than the simple polygon extractor.

Size Running Time (seconds)
Polygonal Finite

Circuit Transistors Rectangles Decomposition Element
Register 10159 12918 68 13245
File
Self-Timed 5777 7173 39 10393
Divider

Table 2: Extraction Times for Example Circuits

The summary of library effectiveness in Table 3 suggests why the finite element

method is so much slower. The first two columns show the number of shapes that missed

and matched in the library. The third column gives the time required to solve the shapes

visited. These extra outstanding nodes add overhead to the node elimination. It is therefore faster, though
less elegant, to check all the edges.
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which were not present, while the final column gives the time that would have been

required to solve all the matching shapes had the library not been used. Although over

90% of the shapes matched for both test cases, the time saved by using the library was

relatively small: less than 30% for both cases. This suggests that the finite element solver

is spending most of its time on a few large, complicated shapes that occur only once in

each design. In retrospect, this is not particularly surprising. A power bus is generally

fairly wide near its root; this extra width limits the number of places where long, straight

sections free of current disturbances can be found. Each bus will thus have at least one

large region with multiple connection points that will need to be solved. Conversely, the

shapes that match will be the simple bends and junctions near the leaves of the network,

and the time saved by each match will be small.

Miss Match
Miss  Match Solve Saved

Circuit Count Count Time Time

Table 3. Previous Solution Library Efficacy

Despite the disparity in running times, the two extractors produce nearly identical

results. Figure 28 shows the accuracy of the methods on the two test circuits. For each

circuit, I applied the same input current distribution to both networks and compared the

resulting voltages for nodes in the metal sections of the bus. The correlation between the

methods is fairly good in both cases.

To see how the simple polygon extractor performed on larger designs, I extracted

power networks for the three large CMOS designs described in Section 1.2. The results

are given in Table 4. In all cases, the extraction time was dominated by flattening the

power network layout; the remaining preprocessing steps and the actual extraction were

less than half the total. This implies that substantial speed improvements will be difficult

unless the design methodology restricts cell overlaps sufficiently to permit hierarchical
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Figure 28: Accuracy of Resistance Extraction

0.125

extraction. Despite the cost of flattening the bus, however, the extractions still generally

took ten minutes or less. Since the polygonal extractor gives nearly the same result in

a fraction of the time required by the finite element method, I chose it as my primary

extractor for large designs.

Circuit
‘lime (seconds) Memory

Flattening 1 Fracturing 1 Extraction 11 Total Usage (Mb)

Table 4: Example Circuit Extraction Times

The rightmost column in the table gives the memory usage for the various designs.

The memory usage is fairly large, primarily due to flattening the Rower bus. Extraction
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without flattening is not an easy problem, however. Section 2.3 described why hierarchical

extraction is difficult when arbitrary overlaps are permitted: overlapping sections of layout

may connect to one another at any location. Flattening one section of the layout at a time,

which Magic’s capacitance extractor does for regions of cell overlap, would also be tricky

to implement for resistance extraction. A tile’s resistance cannot be easily calculated if

it has been bisected by the section boundary, and determining which tiles are part of the

power bus is also difficult. There is no obvious approach that I can see for reducing the

extractor’s memory usage; this is one of the areas in which I plan future work.
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Chapter 3

Current Estimation for CMOS

So wonderfully are these two states of Electricity, the plus and minus, com-

bined and balanced in this miraculous bottle! situated and related to each

other in a manner that I can by no means comprehend! If it were possible

that a bottle should in one part contain a quantity of air strongly comprest,

and in the other part a perfect vacuum, we know the equilibrium would be

instantly restored within. But here we have a bottle containing at the same

time a plenum of electrical fire, and a vacuum of the same fire; and yet the

equilibrium cannot be restored but by a communication without!

Benjamin Franklin

Experiments on Electricity (I 774)

The last chapter described a resistance extractor that transforms a mask-level descrip-

tion of the power supply network into a lumped resistor network. This resistor network

can be combined with the current profile generated using the techniques of the next two

chapters to calculate the power supply’s voltage-current distribution. This chapter exam-

ines techniques for deriving the power supply current distribution for CMOS circuits; the

following chapter does the same for ECL designs.

This chapter is divided into four main sections. The first examines the underlying

sources of current and their relative importance in different logic families. Following this

is a description of two approaches that others have tried and discussion of their strengths
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and weaknesses. Next is a description of the switch level simulation approach that I

have adopted, together with analysis of some of the more subtle problems that had to be

solved. The final section discusses the estimator’s performance on some real designs.

3.1 Introduction

The currents that circuits draw from their power supply buses can be divided into two

categories: capacitive and short-circuit. The CMOS inverter in Figure 29 dissipates both

currents. When the inverter input In falls, Transistor Ml turns on and begins to charge

the capacitor at Node Out. This charging requires the capacitive current component I,,.

time

Figure 29: Simple Current Example

As Ml is turning on, the n-channel transistor M2 is turning off. While In is in

the range L>.v < 1,; < I& - L>p,  both transistors are conducting, and the short-circuit

current I,, flows directly from one power bus to the other through the two devices.

The relative importance of the two components varies with the technology. CMOS

circuits are usually capacitive current dominated; the short-circuit current is only signifi-

cant for overdriven gates, where the input rises much slower than the output. For normal

gates, where the input rise time is equal or less than the output time, Veendrick [59]
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has calculated that the capacitive current accounts for at least 80% of the total. In ECL,

the situation is usually reversed; the short-circuit component dominates. Unlike CMOS,

ECL circuits dissipate static current; the extra current required to change circuit state is

relatively insignificant, except as a source of inductive noise. Most other technologies

that dissipate static power are likewise short-circuit dominated; in NMOS, for example,

the main source of power dissipation is the pulldown current of gates with low outputs.

The actual capacitive currents arising from a node transition are more complex than

Figure 29 might suggest. A more complete circuit is shown in Figure 30a. The capaci-

tance at Node N has several components, some of whose bottom plates are connected to

Vdd and some to ground. These capacitors are divided into two groups, Cvdd and Cgnd.

Vdd

I
Gnd

Vdd

/‘--f

Gnd

Vdd

Gnd

C

Figure 30: Effects of Capacitance on Currents

Figure 30b shows the currents generated by a transition from 1 to 0. The charging

current for the Vdd capacitors (11) comes from the power supply, through a well contact

to the Vdd capacitor and back to the power supply via the discharging transistor. The

discharging currents for ground capacitors (12) flow from the top plate to the bottom plate

through the discharging transistor and a substrate contact. The corresponding currents

for a 0 to 1 transition are shown in Figure 3Oc.

The image currents that charge and discharge the capacitors’ bottom plates have two

interesting effects. First, every node transition produces transient currents in both the

Vdd and ground distribution networks. Second, the current to discharge a capacitor does
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not go through the power supply; it makes a loop that is internal to the chip. A power

analysis system that either ignores the bottom plate connections or assumes they all are

connected to the same terminal will miss these two important effects.

The previous example outlines how to calculate the current drawn by a single gate;

extending the estimation for an entire design is much more complicated. The fundamental

problem is pattern dependence; state changes in the design are a function of its inputs.

The entire circuit does not change state at the same time, nor do all nodes change state

at the same rate. To extract an accurate current profile for the circuit, some pattern and

timing information must be included.

3.2 Previous Work

Besides the simple (and slow) expedient of running Spice on the circuit[21], other re-

searchers have investigated a couple of approaches to current estimation. The first,

described in the next section, uses a pattern independent approach adopted from timing

verification. The second, based on probabilistic simulation, modifies techniques originally

pioneered for test-pattern generation. These two methods and the timing simulation ap-

proach that I use were developed at approximately the same time, providing an interesting

contrast on how competing teams can reach different solutions to the same problem.

3.2.1 Timing Analysis

A timing analyzer such as 7’V [27] or Crysraf[46] might be used to derive a current

distribution. Tyagi’s estimator HERCULES [58] uses this approach. Its primary advantage

is pattern independence; instead of propagating individual real or boolean signals, it

applies all possible values to the circuit at once.

A simple example is shown in Figure 31. Nodes In0 and In1 are assumed to be

stable when the clock 41 rises. Depending on the values of these signals, either a 1 or a

0 will be propagated to the inputs of the inverters. The timing analyzer considers both

cases. Possible waveforms at the circuit’s nodes are shown on the right. (Two other

possible waveforms, constant 0 and constant 1, are not shown.) The waveforms for the
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two inverters are simple; the input signal is simply inverted and delayed at the output.

For node N2, the potential waveforms are more complicated. There are three possible

cases for each transition, depending on whether nodes NO and Nl change value. The

transition starting time, ending time, and slope all vary depending on what values In1

and In2 initially held; the timing analyzer simply reports that a transition did not start

before time t2 and was definitely over by time t5.

to t1t2 t3t4t5

Figure 31: Timing Analysis Example

The next step is to convert this timing information into a current profile for the

circuit. For Nodes NO and Nl, this is fairly simple; the starting and ending times for the

transitions are known and the average current is simply (Vdd)( C)/( tr - ti). If desired, a

more accurate current pulse shaping algorithm, such as Ousterhout’s tabular method[46],

may be applied These current pulses are applied to the power buses at the source

connection of transistors M 1 -M4.
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Calculating a pulse for node Nt is more complicated. Both the current pulse’s mag-

nitude and its timing depend on the inputs. For the falling edge, the location of the

pulse (either through M7 or MS, or through both) is also input dependent. The most

conservative approach is to assume that the maximum current, which occurs when both

M7 and M8 are on, flows for the entire interval from t2 to t5.

In theory, this approach seems attractive because it is pattern independent, giving

the designer a worst-case approximation. In practice, it does not work particularly well.

When I modified Jouppi’s timing analyzer, TV, to estimate currents, the voltage drops

calculated were greater than the supply voltage of the chip. This was due to a number

of causes. the most important of which was overestimation of decoder currents. In the

2-bit decoder of Figure 32, there are eight possible transitions for the four output signals;

each may go from high to low or low to high. TV assumes they all occur and produces

eight current pulses. In practice, at most two of the transitions will occur in a given

cycle; one line will rise and one will fall. For the example, TV will overestimate the

current by a factor of 4. Circuits with a 32.-bit datapaths often have 5-bit decoders; for

these, the current estimator will be off by a factor of 32. A decoder’s load capacitance is

usually fairly large, making the error from just this one source substantial. In the layout,

these decoders are placed next to one another and share common power and ground lines,

which are generally sized to support only the two decoders active in a cycle. Putting

an order of magnitude more than the actual current through these wires produces some

horrendous voltage spikes in the supplies.

There are some other sources of error in this approach. As shown in the example,

any gate with a fan-in greater than one will have some uncertainty about the timing,

location, and magnitude of its current pulses. To be conservative, the timing analyzer

must assume that the maximum current occurs for the entire interval. In a synchronous

CMOS design, power usage is spread out across the clock cycle; extending the intervals

during which a gate draws current leads to greater overlap between current pulses and

an overly conservative current estimate.

Remedying these problems in a pattern independent manner is difficult. For decoders,

the designer could label the outputs as having mutually exclusive transitions; the analyzer

would then select which transition produces the highest voltage drop. The success of
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Figure 32: Decoder Current Estimation

this depends on the analyzer’s ability to pick the worst case; in a system with many such

possible circuits, picking the correct combination for all of them is somewhat problem-

atical. Removing the uncertainty of high fan-in gates is more difficult; specifying the

current pulse more precisely reintroduces pattern dependence into the system. A work-

able current estimator based on timing analysis may be possible, but devising a system

that is not overly conservative while preserving pattern independence and ease of use is

a difficult, and unsolved, problem.

3.2.2 Probabilistic Analysis

A timing analyzer overestimates the amount of activity in a system because it assumes all

possible transitions actually do occur. The probabilistic estimator CRE.S~40, 411 avoids

this overestimation by attaching an event probability to each transition in the system.
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A simple example of this method is shown in Figure 33. Each node in the circuit is

represented by four probabilistic waveforms:

l PL - The probability that the node has a low value.

l Pf, - The probability that the node has a high value.

l PHL - The probability that the node value is changing from high to low.

l PLH - The probability that the node value is changing from low to high.
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Figure 33: Probabilistic Analysis Example

For each node, the sum of these waveforms is one. Given the probability wave-

forms for a circuit’s inputs, CREST derives the waveforms for the internal nodes. For

simple gates, this process is straightforward. An inverter simply swaps the sense of the

waveforms:
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l PH, = PL,

l PL, = PH,

l PHL, = PLH,

l PLH, = PHL,

For the nor gate, the output probability waveforms are slightly more complicated

because the value of one input may mask a transition on the other. A high to low

transition is only propagated if the other input is already low or if it is also changing

from high to low. A low to high event is only propagated if the other input is low or it

is also changing from low to high. The high and low probabilities cover the other cases.

The probabilites for a nor gate are:

l PH, = PL,,, x pL,,

a PL*= pH,o + PH,, - p& X PH,, f PLH,o x PHL,, + pHLto x PLH,,

. pHLo = PLH,,, x PL,, + PLH,, x pLlo + PLH,o x PLH,,

l PLH, = PHL,,, x PL,, + PHL,, x pLlo + pHL,o x PHL,,

Given the probability waveforms for the nodes, the next step is to calculate the

expected current waveform that a node transition draws from the power buses I. CREST

models current waveforms as triangular pulses with a maximum value i,,, and duration

T, as shown in Figure 34.

CREST estimates the maximum expected current as the supply voltage times the

expected peak conductance. This conductance is the sum of the conductances  of a given

set of ‘on’ transistors between the supply and the output node times the probability that

this configuration occurs. For the inverters, the current is easy to calculate; it is the

maximum possible current times the probability that a transition occurs:

‘This discussion of CREST is considerably simplified in order to give the algorithm’s flavor without
becoming mired in detail. Among the points omitted from this discussion are the different effects of ground
capacitance and power capacitance described in Section 3.1 and a mathematically rigorous derivation of
the expected current pulse.

53



Figure 34: CREST Current Waveform

imal-p = C’dd x gp x Ph,, (34)

i mai-N = It’dd x gn x P,h, (35)

gn and gp are the conductances  of saturated n-channel and p-channel devices. For the

nor gate, the currents are different for the pullup and pulldown trees.

i ,,,arp = I’dd x g,/2 x (PHL,,, X PL,~ + PHL,, x pL,o + pHL,o x pHL,, ) (36)

imaz.v = b-dd X (sn X PLH,o x pL,I + gn x PLH,, x PI;,, + 29, x PLH,,, x PLH,,) (37)

In the pullup tree, the conductance is fixed at g,/2 by the two devices in series, so the

current is simply this value times the probability that the output rises. In the pulldown

tree, the conductance depends on whether one or both devices are on. If only one is

on, the conductance is g,l; if both are on, the conductance is 29,. CREST derives the

expected current by summing over all the cases.

The event duration, T, is chosen so that the area of current pulse equals the expected

charge delivered to the capacitor. Since the expected charge is the total charge on the

node times the probability the node changes state, and the current pulse is triangular, r

must be:
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r,=2x
Vdd x c x PHL,

i 77lllIfJ
(38)

T _ 2 x b’dd x c x PLH,
n- i lnl3.r~

(39)

For an inverter, T is 2C/g, and 2C/g,, which are the same time constants that would

occur in a non-probabilistic simulation, as is the value of rP for a nor gate, 4C/g,. A

nor gate’s T, is more interesting. If only one of the devices is on, its value should be

2C/g,, while if both are on, the value should be C/g,. The actual value chosen will be

somewhere in this range, depending on the relative probabilities of the two events:

2c
r,=-X

PLH,o x PL,, + PLH,, x PL,, + PLH,,, x PLH,,
(40)

Qn PLH,o x PL,, + PLH,, x pL,o + 2 x PLH,,, x PLH,,

This simple example ignores some of the trickier problems involved in a probabilistic

approach. Propagating the probability waveforms through the circuit can be done in linear

time only if a gate’s inputs are independent random variables; when there is reconver-

gent fanout or feedback, the output probabilities can only be calculated by exhaustively

enumerating the inputs. To avoid this operation, CREST includes some heuristics to

propagate probabilities in dependent sections of the design. CREST can also handle

designs that contain circuits more complicated than static gates, such as pass transistor

networks.

Probability waveform analysis has both advantages and disadvantages. It avoids the

overestimation problems of timing analysis, and for phenomena that are substantially

dependent on the expected current, such as electromigration, it provides a useful current

estimate. For circuit failures dependent on the peak current, however, this approach fails.

For the decoder of Figure 32, CREST will equally divide the current peak caused by

a single decoder output changing value among all the decoders, assuming that all the

outputs are equally likely to be high. Any problems associated with this large peak

current will not be detected.
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3.3 Switch  Level Simulation

The approach I adopted is based on switch level simulation. A switch level simulator

represents a circuit as a set of nodes interconnected by transistors and resistors, with

capacitance only to ground. For MOS circuits, the transistors act as voltage-controlled

resistors; a conducting transistor connects its source and drain via a nonlinear resistor.

MOS simulators typically model transistors as bidirectional switches; “closing” the switch

connects the two nodes via a resistor. Some examples of this type of simulator are

Bryant’s MOSSIM 1/[6] and COSMOS[7]  and Terman’s Rsim[57].

Deriving current pulses from such a simulator, described in detail below, is fairly

simple; whenever a node in the circuit changes value, a pulse is added to the circuit current

profile to represent the current required to charge or discharge the node capacitance. This

approach has several advantages. It avoids the overestimation inherent in timing analysis;

in a given cycle, only one of the mutually exclusive paths shown in Figure 32 will be

exercised in a given cycle. It also gives a better estimate of the peak current than a

probabilistic simulator because a pulse’s magnitude is not reduced by its probability of

occurrence.

A switch level current estimator also has a significant disadvantage: pattern depen-

dence. The current profile generated depends strongly on the input vectors applied to the

circuit. Figuring out which pattern gives the worst voltage drop would require trying all

possible input combinations, which is infeasible for all but trivial circuits. Despite this

drawback, a pattern dependent current estimate is useful; it gives the designers some idea

of a circuit’s behavior under real operating conditions, and allows them to experiment

with patterns that they feel may cause noise or electromigration problems.

I use Rsim as the basis for my current estimator. It has several advantages: since it

is the most commonly used switch level simulator in the Stanford design environment,

designers are familiar with it. Before doing power analysis, the user will already have a

design simulating correctly under Rsim. The individual quirks inherent in any simulator

will already have been surmounted, and little additional effon will be required to generate

a current profile from the design. Rsim also correctly models some of the more subtle

MOS timing effects: Horowitz[25] has modified it to include the effects of input slope
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and RC trees, and Chu[ 121 has included improved charge sharing models.

3.3.1 Implementation

This section outlines the steps that Rsim performs when a node changes value, together

with the modifications made to support current estimation. Following this is the operation

of the algorithm on an example circuit, and a discussion of some of the estimator’s

limitations and some solutions for them.

The basic current estimation algorithm is:

1. When a node changes value, check all the devices with attached gates. At the

source and drain of each such device, trace out channel-connected cfusters,  which

are sets of nodes connected together by conducting transistors.

2. In each cluster, walk through the graph of conducting transistors, calculating four

things:

(a) The equivalent resistance between each node and the two power supplies.

(b) The delay should the node change value. This delay is estimated using the

Penfield-Rubenstein-Horowitz algorithm[50].

(c) The total charge in the cluster. When a transistor turns on, its source and

drain nodes redistribute their charge so that they are at the same potential.

This charge sharing can change the values of the nodes.

(d) The locations of conducting transistors that connect the cluster nodes to the

supplies. These points will later be used to place the current pulses.

3. Check to see if charge sharing between nodes in the cluster will change any of their

values. If it will, schedule an event, which is a record that the node will change

value at some point in the future.

4. Calculate the final value for each node using the equivalent resistances to power

and ground. These two values form a resistive divider; if the value between them

is below a low threshold, the final value will be low, if it is above a high threshold,

it will be high, and if it is between the two, it will be undetermined (X).
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5. If the node’s final value differs from its present one, or from the one it will assume

after the charge sharing event is processed, schedule another event. The timing of

this event depends on the delay calculated in Step 2b.

6. When the simulation reaches the event time, the node is updated and a pulse is

added to the circuit’s current profile. This entire procedure is then repeated with

the devices whose gates connect to the event node.

For the example circuit of Figure 35, one cluster, consisting of nodes Out and n2, is

created when Input A rises. Before the input changed, n2 was at ground potential and

Out at Vdd. After iLId switched on, n2 will rise slightly, but not enough to change state

because it is pulled down by devices Ms and Mb. This slight rise is ignored by Rsim.

The equivalent resistances to ground that Rsim calculates for the two nodes are:

Requ:uo,, = R4 + Rs&/(& + &) (41)

Reguiu,l  = R5Rgl(R5 + R6) (42)

~__-___~
B

,
o u tI- C

Figure 35: An Example And-Or-Invert Gate

With the p-channel pullup network off, the resistance to Vdd is infinite and the final

values for both nodes will be low. Since n2 is already low, no event is scheduled for it.
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Because Out is currently high, Rsim adds an event, scheduling it to fall T! time units in

the future.

(43)

Assuming there is no other activity in the system that will cause  the events to be

aborted, at time tcurre12t + of, the value of Out will be changed, and the event will be

converted into a current pulse. As noted in Section 3.1, different pulses arise depending

on the supply to which the bottom plate of the capacitor is connected. For the falling

transition of node Out, the currents are shown in Figure 36: the fraction of the capacitance

whose bottom plate is connected to Vdd is charged from the power supply, and the

capacitance to ground is discharged locally. The current pulse injected into the lower

supply via the pulldown  network has a duration T (derived in the next section), an area

( Cudd + Cgnd)bLUt,  and network entry points Pl and P2, which are the sources of MS

and A46. Estimating the currents flowing into the bottom plates is much more difficult;

the lower terminals for the two capacitors, nodes P3 and P4, are distributed regions,

not single points. These currents flow through substrate and well plugs and across the

surface of the chip to the areas adjoining the wires of node Out. To calculate this image

current exactly, the well/substrate resistance from each plug to the capacitor structure

would have to be extracted, and the resulting system solved to see how much current

goes to each plug. Because this would be prohibitively slow, the current estimator uses

a simpler method; it divides the current evenly between all plugs in the vicinity of the

node. Section 3.3.3 gives a more detailed description of this approximation, together with

an investigation of its accuracy. For the event in the example, the currents generated are

shown in Figure 37.

This example glossed over many of the details and limitations of the current estimator.

The next sections describe some important aspects in more detail: the first describes how

a current pulse is fashioned from an event, the second investigates the effects of image

current,  and the third discusses some limitations of this approach.
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Figure 36: Charging Paths for And-Or-Invert Gate

Figure 37: Current for And-Or-Invert Gate
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3.3.2 Current Waveform Generation

The current pulses generated by timing verification and probabilistic simulation are of

necessity somewhat approximate because the shapes of the underlying voltage waveforms

are not well known. Rsim can do a better job shaping the current waveforms because it

has more information, particularly about the slopes of inputs. The shape of the current

waveform generated by a node transition is affected both by the slope of the node’s

voltage waveform and by the slope of the input signal. The current pulse that Rsim

produces for an event should reflect this dependency.

Horowitz[25] has modified Rsim to include the effects of input slope. He models the

transition of a gate’s output in two parts. Initially, the gate current is a linear function of

the input voltage; this produces a quadratic output voltage waveform:

I;Out(t) = 1 -
t2

2(w&‘(gJW
(4.4)

In Equation 44, gm is the input transconductance and RL is the output resistance. r,,

is the time required for the input to rise from 0 to 1, while T/ = RLCL is the intrinsic

delay of the gate.

Once the output voltage reaches the voltage drop across the output resistance, IFout =

ioutR,, the current becomes independent of the input voltage, and is dependent only on

the output resistance and capacitance. This model produces a decaying exponential for

the second part of the waveform.

l’out( t ) = ( 1 -
t2

2(r,n&QL)
)$..-w/

The transition between these two regions occurs at T,:

(45)

T,=Tf( 1+J
2Tm

TfgrnR~
- 1) (46)

Since the output current is just Irsut = C,,,db’,,,/dt, one possible approximation
for the output current would be to take the derivatives of Equations 44 and 45. The

disadvantage of this method is that the waveform is somewhat complex to manipulate;

the rising edge is a ramp and the falling is an exponential. To avoid this, the current
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estimator approximates the current waveform as a triangular pulse of equivalent duration

and equal area (Figure 38). The rising portion of the pulse occurs while the current is a

function of the input voltage, which occurs from t = 0 to t = t,. After t,, the current

is a decaying exponential. The integral of an exponential is SOS .-k-“‘fdt = AT,; for a

triangular pulse of the same height to have the same integral, its duration must be 2r,.

With the pulse’s base width fixed at (t, +27-f), the height must be set to make the integral

equal to the charge which changed state:

‘Peak =  2Cloadhd/(ts  +  2T,)

The only remaining consideration is situating the pulse correctly in time. Assuming

the event occurs when the output has reached the halfway point, the pulse is is placed

so that its integral equals Cl&\&d/2  at the event time. This gives equal area to the two

stippled regions in Figure 38.

It event

Figure 38: Current Pulse Generated for an Event

The estimated and actual cut-tents for an inverter under some representative conditions

are shown in Figure 39 and detailed in Table 5. The current estimator’s performance is

fairly good for the first three cases, where the output delay is equal to or greater than

the input delay; the root-mean-square error is between 15 and 20 percent. The poor

performance in the final example, where the input is much slower than the output, is

primarily due to the short-circuit current, which is not included in the pulse generation.

Fortunately, of the four cases, the last is of the least interest; such gates are rare because

they are severely oversized for their loads. Figure 40 shows the relative importance of
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various input/output slope pairs for a typical MIPS-X simulation run. The graph on the

left shows the number of events occuring  for each slope ratio; the graph on the right

weights these events by the capacitance of the node changing state. Unsurprisingly, the

most common occurance is for the input and output slopes to be approximately equal.

These events, along with the transitions of large, heavily-loaded drivers which appear in

the rightmost column, dominate the power dissipation.

tin = 0

$n ’ Lt

Figure 39: Pulses for Various Input and Output Slopes
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Spice Rsim
Input Output Peak Time of Peak Time of rms

Waveform Risetime Delay Current Peak Current Peak error
A (L = 0) 0 2.3ns 1.2mA Ons 1.5mA 0 0.16mA

B (L -=K tout) 0.4ns 1.5ns l.lmA 1.6ns 1.3mA 0.8ns 0.18mA
c (t*n == fout) 1 .Ons 1 .Ons 0.9mA 2.2ns l.OmA 1.8ns 0.15mA
D (tin z+ tout) 2.0ns 0.5ns 0.5mA 2.6ns 0.5mA 2.7ns O . l l m A

Table 5: Comparison of Current Pulses for Various Input and Output Slopes

i Tin/Tout 0

Figure 40: Typical Input/Output Slope Distribution
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3.3.3 Image Currents

For the current profile to be accurate, the image currents, which enter the power network

through well and substrate contacts, must be included. In general, this current distribution

is quite complex; for each element of capacitance, the image current will split between

various well and substrate plugs depending on the locations of the plugs and the topology

of the wells. Information about this distribution is lost by the circuit extractor, which

reduces the capacitor’s distributed bottom plate to a single node.

Despite the apparent difficulty, it is important to at least estimate these currents.

Figure 41 shows the results of ignoring these currents for two examples: the register file

from MIPS-X [24] and a self-timed divider [60]. These scatter plots compare the actual

node voltages (as calculated by the second algorithm below) against the values obtained

if image currents are ignored. Ignoring the image currents gave errors of up to 35% in

the examples tested.

2i
d MIPS-X Register File Self-Timed Divider

i .

O I L ’
I kc

0 0.06 o 0
Image Currents Included (Volts) Image Currents Included (Volts)

-0.2

Figure 41: Effects of Ignoring Image Current

The current estimator uses a simple bounding box algorithm to decide how the nodes’

image currents divide. For each node in the circuit, the estimator forms a bounding

box around all the rectangles that compose the node, grows this box by a small, fixed
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distance, and searches this area for substrate contacts of the correct type. Whenever the

node changes value, the estimator evenly divides the substrate current between all the

plugs in the box. If no plugs are found initially, the estimator doubles the box size and

repeats the search.

Node-B

Figure 42: Bounding Box Current Estimation

This algorithm is easy to implement in Magic’s hierarchical, comer-stitched database.

The current estimator creates a special plane, into which it copies all the plugs encountered

during resistance extraction. When the regular extractor, which hierarchically calculates

connectivity and capacitance, processes a cell, it forms a bounding box for each node.

During the conversion of this hierarchical extracted description into a flat netlist  suitable

for simulation, the bounding boxes are also combined to form a single box for each node.

Using Magic’s standard area searching routines, the estimator can find each node’s plugs

by searching the plug plane using this box.2

*This special plane is actually redundant; the temporary cell created to hold the flattened bus already
has copies of all the plugs. However, the time to search a given area in a comer-stitched database is
basically proportional to the numbers of items that it contains; this regular plane that contains plugs also
contains transistors, polysiticon, and diffusion. Using a separate plane speeds up searching by dtastically
reducing the number of tiles that the current estimator has to traverse.
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For some nodes, like Node A in Figure 42, this approximation is a fairly reasonable

one. The estimator spreads the current between plugs near the node, in this case Nl-N4

and Pl-P2, which mimics what actually happens. The approximation is less accurate for

nodes containing ‘doglegs’, such as node B. Although the bounding box encloses node

N4, no current from B will enter the bus there because the node does not extend over

N4’s well.

To test the validity of the bounding box algorithm, a more accurate estimate of

the image currents is needed. One method would be to calculate for each point in the

substrate how current injected there would divide between the various plugs. The fraction

of a node’s current that will flow to a given plug could then be set by integrating the

capacitance of each element of the node times the fraction that flows to the plug from

the points under that element. By repeating this for all plugs and all nodes in the circuit,

the estimator can get an accurate value for the entire current.

Calculating how an injected current would split from each point in the substrate could

be done using finite element techniques, but this would be extremely slow and memory-

intensive, and would preclude comparison on any but the simplest of examples. Instead,

the extractor assigns each point in a nwell or pwell region to the plug nearest it, as shown

in Figure 43. The estimator then re-extracts each node in the circuit and subdivides the

image current based on the capacitance to each plug’s subregion.

Even with the simplification on substrate subdivision, this method is still too memory-

intensive to run on an entire design- Instead, I ran it on some smaller circuits: MIPS-

X’s register file (10159 transistors), and the self-timed divider (5777 transistors). A

comparison of the bounding box and t-e-extraction algorithms is shown in Figure 44. In

both cases, the agreement between the two methods is quite good; it is better in the

register file because it contains fewer ‘dogleg’ wires.

3.3.4 Coupling Capacitance

Coupling capacitance is tricky to handle correctly because it is difficult to keep track of

where the capacitor’s bottom plate is connected. In Figure 45, a falling transition on

Node out1  will give two different current distributions depending on the value of Node
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Figure 43: Re-Extraction Current Estimation

MIPS-X Register Fiie

 2

Self-Timed Divider

01

0
Re-Extraction Method (Volts) Re-Extraction Method (Volts)

Figure 44: Accuracy of Image Current Estimation
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out2. If out2 is low, then the capacitor is discharged in a local loop; if out2 is high,

then the capacitor is charged through the power supply.

q7
! - - -  ~~~
Y-

Figure 45: Effects of Coupling Capacitance

The relative importance of coupling capacitance varies with the design being analyzed.

For the three test designs, Figure 46 shows the division of the bottom plate capacitance

for all the chip’s signal capacitance. CGND and CVdd are the portions of the capacitance

whose bottom plate is connected to one of the power supplies, Cpad is the (estimated)

off-chip capacitance that the chip outputs must drive, C.Louple is the coupling capacitance
between on-chip signals, and Agate is the gate to channel capacitance.

I have listed Cyate separately because its behavior is fairly complex. It is a substrate

capacitance when the device is off, a coupling capacitance to the source terminal when

the device is saturated, and a coupling capacitance to both the source and drain when

the transistor is in the linear region. The channel capacitance only couples the gate to a

diffusion terminal when the gate-source or gate-drain voltage is greater than the threshhold

voltage, which generally occurs when the source is being pulled low. This requirement

virtually eliminates the Miller effect; the majority of the capacitance is to the transistor

source, which is not changing value. Since the channel capacitance is generally either

to a signal line that is being pulled to a supply voltage or to the substrate, the system

treats it as ground capacitance for n-channel devices and Vdd capacitance for p-channel
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devices. This misplaces the current pulse slightly; it will be injected through a substrate

contact instead of a device source even when the device is conducting, but the resulting

change in voltage distribution is typically a local perturbation.

Cpad Cpad

MIPS-x SPIM

Cgnd
Ccouple

Cgate

uTitan

Figure 46: Distribution of Capacitance Bottom Plate

The non-channel coupling component varied from 3% to lo%, depending on the de-

sign. Estimating currents for these capacitors inside Rsim is possible, but very expensive.

Rsim keeps track of the transistor pulling down a node only when an event is pending for

the node; when the node reaches its final value, the simulator throws away the event, and

with it the information about the driving transistor. To estimate the bottom plate current,

Rsim would have to remember which transistors are driving each node in the circuit.

Even were the driving transistors for all the nodes known, calculating current pulses

for all the coupling capacitors in the circuit would be extremely expensive. Table 6 shows

the total number of coupling capacitors in the test circuits (the number in parentheses

shows the fraction of the total capacitance that is of this type). Each transistor has a

coupling capacitance between its gate and drain, and all transistors with source nodes not

connected to a power supply have coupling capacitance between their gates and sources.

When the large number of parasitic capacitors arising from interactions between wires are

added to this total, the system of coupling capacitors is larger than the original circuit.

Manipulating this bloated system would be extremely cumbersome, and the resulting

current profile would be huge; in addition to the single top-plate ~ulse,~  Rsim would

9here is actually more than one pulse per event because each node transition may give rise to multiple
image pulses. However, these image pulses are added inside Magic, and no additional computation from
the simulator is required.
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have to add an additional pulse for each coupling capacitor. Since the total coupling

capacitance is not that large, the estimator instead makes two simple approximations.

First, the gate-drain parastic capacitance is doubled to account for the Miller effect, as is

the gate-source capacitance for devices not collected to a supply. Coupling capacitances

for the wire parasitics  are not doubled because transitions for their two terminals are much

less likely to be correlated. Second, the estimator assumes that the capacitor bottom

terminal is always at the opposite potential from the top terminal, so that a charging

current is generated. This produces larger voltage drops than would a discharging current

because charging currents go through the power supply.

Gate-Source
wire
Parasitics
Total

76538 (2%) 72585 (3%) 260311 (4.5%)

139007 124753 502134
1 I 1 I 1

1 Nodes I 17430 I 16614 1 61468 1

Table 6: Comparison of Nodes and Coupling Capacitors in Test Circuits

3.3.5 Charge Sharing

In a CMOS circuit, not all node transitions are caused by the connection of nodes to the

power supplies; sometimes the charge necessary to change a node’s value comes from

another node, as shown in Figure 47. Although the top plate current comes from another

node, the substrate current still comes though the supply network. These charge sharing
events present different problems for the current estimator than do regular driven events.

To estimate how important estimating charge sharing currents is to power estimation,

I modified Rsim to record the type of each event when it is scheduled. In Chu’s modified

version of Rsim[ 121, there are three types of events: normal driven events, pure charge
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Figure 47: Currents in a Pure Charge Sharing Event

sharing events, and charge sharing with a driven path. The first two types have been

discussed previously; the third (Figure 48) is a hybrid of the first two. In this case, the

network is composed of two components: a driving free and a charging tree. When the

two trees are connected, nodes in the driving tree will experience a momentary glitch as

their charge is shared with charging tree nodes.

Driving
Tree

Charging
Tree

Figure 48: A Driven Charge Sharing Event

The relative importance of the three event types is summarized in Figure 49 for

the three test cases. Each section represents the magnitude of the charge transferred

during events of the given type. There is a large variation in the importance of charge

sharing events; in the multiplier SPIM, the total is smalI because the design uses static

logic throughout. The total in MIPS-X is considerably larger, primarily due to a single
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circuit.4  Although charge sharing does not generally cause a significant amount of the

total current, in certain special cases it can be reasonably large.

MIPS-X

Figure 49: Relative Importance of Charge Sharing Events

Estimating charge sharing currents inside Rsim is easy to do because Chu already

calculates the delay for these events. For pure charge sharing events, the node voltage

waveform is approximated by a single exponential derived from the circuit topology and

the initial charge distribution. A node with time constant T, and amplitude I’&, has a

corresponding triangular5 current pulse of duration 2 * T, and height VPeal; * CL.

Driven path charge sharing is more complicated; because the node voltage begins

and ends at the same value, it cannot be modeled by a single exponential. Instead, node

voltages are represented as the difference of two exponentials. The fast component is set

by the time required to share the charge between the driving and charging trees, while

the slow component is set by the time required to return the driving node to its original

value. The current estimator adds two pulses of equal area for these glitches, governed

by the fast and slow time constants in the voltage pulse. The voltage magnitude is a

function of these two constants, and derived by table lookup; the peak of the current

pulse is just this voltage times the node capacitance.

4The address tags contain an exclusive-or circuit that produces a driven path charge sharing glitch;
since this circuit is repeated 800 times, the total glitch current can be fairly larger 111.

5Since Chu’s charge sharing model does not include the effects of input slope, the pulse is always a
right triangle.
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3.3.6 Glitches

Glitches, changes in a signal that do not extend from one supply to the other, are difficult

to estimate in a Boolean timing simulator. The nor gate of Figure 50 shows one such

example. When Input A falls, Node out begins to rise. Before it reaches its final value,

however, Input B rises, causing out to fall again. Inside Rsim, an event is scheduled for

out after A falls; before the event time reaches the simulation time, B rises and the event

is deleted from the queue. The simulated waveform for node out never changes value,

and no current pulse is generated for the event.

A

outA- actual
simulated

Figure 50: Effects of a Node Glitch

To estimate the importance of this effect, I modified Rsim to keep track of the number

of events deleted from the queue and to estimate the amount of charge that these deleted

events contain. The charge estimate was produced by integrating each current waveform

from its beginning up to the time that the event was deleted. The results are shown

in Table 7. Although the number of events deleted can be fairly high, the amount of

current that they represent is quite small, indicating that most are removed soon after

scheduling. Since they represent such a small fraction of the total current, the system

can safely ignore them.
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Percentage of Percentage of
Design Events Deleted Charge Deleted

Table 7: Importance of Glitch Currents

3.4 Performance

Current profiles for the three examples were obtained by applying test scripts supplied

by the designers to the circuits. Each script initialized a circuit’s state, enabled current

profiling, then exercised the design using some representative patterns. Table 8 compares

the elapsed time in seconds for these runs with those of an Rsim binary that does not

contain logging. 6 The degree to which logging slowed down execution varied consider-

ably with the test patterns. The most elaborate script, used on the uTitan design, spent a

much larger fraction of its time setting up the state of the machine prior to logging than

did the other two. Since the logging module adds little overhead when it is not enabled,

the relative cost of logging is lower.

MIPS-X 1 uTitan 1 SPIM

Table 8: Rsim Running Times for Test Circuits

Table 9 shows where Rsim spends the extra running time of logging. For all three

designs, the extra time is dominated by simply writing the current profile to disk. The

row marked “Other” represents degradation in performance due to memory effects; the

logging version of Rsim has a larger working set.

‘?he tests were run on a Decstation 5000/200,  which contains a 25Mhz R3000 CPU, 64Kb instruction
and data caches, and 128Mb of memory. Both binaries were compiled with optimization level “-04”.
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Circuit M I P S - X  uTitan  S P I M
Tracing of Currents 4.5% 2.0% 3.0%
Pulse ShaDe CahdatiOn 13.5% 10% 16.5%

1

Writing Log File
Other

71.5% 5 7 %  5 1 . 0 %
10.5% 31% 29.5%

Table 9: Time Spent in Various Operations During Logging

Although logging slows down Rsim markedly, the degradation should not preclude

producing a current profile for any circuit which Rsim can handle. Since the standard

methodology is to run Rsim without logging until the circuit is functionally correct, then

to rerun the same script with logging enabled, adding current estimation does not lengthen

the crucial modify-simulate-debug cycle.7

The raw events produced by Rsim need considerable massaging before they are fed

to the linear solver. This is done inside Magic during resistance extraction. Each current

pulse is matched up with the correct transistor and plug nodes in the resistor network

and scaled by the fraction of capacitance to each supply. Once the pulses are matched up

and subdivided, their current is summed for all the transistors and plugs, and written to a

file for each user-specified time interval. The fraction of time required to perform these

operations is shown in Table 10. The variation in time between designs is dominated

primarily by the length of the pulse log. The one exception is the ground bus for /iTitan;

since the design does not have front side substrate contacts, the system does not have to

create separate image pulses for each event.

Despite the complications presented by pattern dependence and image currents, a

switch-level based estimator does a reasonable job producing current profiles for the

system. Rsim is not unacceptably slower during current logging, and the log produced

can be converted into a profile which correctly matches the resistance network in a modest

amount of processing time.

‘This  is not quite true because an Rsim binary containing logging runs about 5% slower even with
logging disabled due to slightly larger data structures. If this 5% is important, however, two binaries can
be used, one with the logging module and one without it
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Circuit

Total
Time
Resistance
Extraction
Image Plug
Search
Reading
Events
Sorting
Events

M I P S - X  M I P S - X  S P I M  S P I M  uTitan uTitan
gnd vdd gnd vdd gnd vdd

1761s 1788s 1315s 1787s 741s 3712s

53.1% 32.8% 36.1% 31.7% 55.1% 22.7%

1 .O% 0.4% 1.1% 1.3% 0.0% 0.3%

7.3% 6.4% 14.5% 10.6% 38.7% 7.4%

1.9% 1.6% 2.7% 2.7% 1.7% 2.7%
1 I 1 I I I

Adding 1 22.3% 1 37.3% 1 36.4% 1 40.8% 1 1.4% 1 54.3%
Pulses
Writing
Pulses

14.4% 20.5% 9.4% 12.0% 2.2% 13.6%

Table 10: Current Pulse Processing Times
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Chapter 4

Current Estimation for ECL

All streams run to the sea,

but the sea is not full;

to the place where the streams flow,

there they flow again.

Ecclesiastes I : 7

In the estimation of current for CMOS circuits described in the last chapter, the

curtent distribution’s time dependency was of paramount importance. Information about

state changes in the circuit, distribution of nodal capacitance, and substrate topology had

to be considered to produce a reasonable current pattern. Fortunately, the process is

considerably less convoluted for ECL designs. In ECL, the magnitude of the current is

relatively fixed; all the logic does is steer current through different branches of the circuit.

As will be seen, this mode of operation simplifies current estimation considerably.

This chapter is divided into five sections. The first discusses the effects of supply
noise on ECL circuits and contrasts them to the corresponding effects for CMOS. Next

is a description of a simple current tracing algorithm suitable for estimating currents in

most gates, followed by extensions necessary to handle mote specialized configurations.

Following this is a section describing techniques for handling the pattern dependence

of ECL circuits, and a discussion of the current estimator’s performance on some large

designs.
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4.1 Introduction

Noise affects ECL circuits differently than it does MOS designs. Figure 51 shows the

effects of voltage drops along both supplies. Drops along the top rail, Vcc, shift a gate’s

transfer curve down, thereby reducing the circuit’s high noise margin. Drops along the

bottom rail, Vee, between a bias generator a current source reduce the gate’s signal swing,

reducing the gate’s low noise margin. The signal swing in ECL gates is set just large

enough to accommodate these and other sources of noise; the designer would like to

insure that the actual noise present is less that the margin allotted.

R Vee

Figure 5 1: Effects of Noise on ECL Circuits

Figure 52 shows the current for a single gate. There are two components: the tail

current Istatlc and the capacitive current I+. In contrast to CMOS circuits, the capacitive

component does not dominate in ECL designs. Equations 48 and 49 give the relation
between the static and dynamic currents for an emitter follower during transitions. The

static current controls the follower’s fall time, while the dynamic current controls the rise

time. In general, the designer will want the rise and fall times for the gate to be more or

less equal, so the peak magnitude of the dynamic current will be roughly equal to that of
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the staticcurrent. The follower output is not always changing state, however. Equation

50. gives the total dynamic output current. The first term in the equation describes the

magnitude of the current when the output rises’, while the second two terms give the

number of transitions that actually occur.

Idyn =
CL KUJt Tlg =$!!I

t
static (49)

rtse t r,.Ye

Idyn = (-----
tja11 I

statrs  N
Cycles changing state t,,,,

t rise Total cycles J(r) (50)
Cycle

Although the second term in Equation 50, which is data dependent, may be unity for

some perverse selection of inputs, the final term will be considerably less than one; an

individual gate delay is substantially less than the cycle time of the system. This final

term, combined with the fact that the dynamic and static currents from a gate changing

state are roughly equal, explains why the dynamic current is less important than the static

current for the system as a whole.

Although the magnitude of the current is relatively fixed, the current pattern for each

gate still varies. In Figure 53, the current will enter the Vcc bus at either point Pi or

P2, depending on the voltage at node In. In the example, these points are not very far

apart, but in some circuits, such as a wired-or configuration or a decoder with shared

current line outputs, they may be. For ECL circuits, producing a current pattern includes

several tasks: calculating of the magnitude of the current, tracing the possible locations

in the circuit where the current may enter the power network, and choosing between

these locations.

4.2 Basic Current Tracing

The estimator’s first tasks are finding all the current sources in the design, marking the

locations where each current source connects to Vee, then tracing up through the network

‘The formulation for a falling transition is similar, except that the total current through Vcc is reduced
by the dynamic current, and its magnitude is always equal or less than the static current.
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Figure 52: Currents for an ECL Gate

to find where these currents may enter Vcc. This section describes the basic current

tracing algorithm; the next extends it to handle more complicated structures.

For simplicity, the current estimator makes two assumptions: it assumes that the diode

drop VIE is fixed for all transistors, and that the base current each transistor draws is zero.

Since designers typically run all transistors at near the same current density to preserve

the circuit’s noise margins, and the base current for unsaturated transistors is a small

fraction of the total, these approximations should not appreciably affect the estimator’s

accuracy.

Prior to tracing the currents, the estimator makes an initial pass over the network

to assign the direction of current flow for resistors. The tracing algorithm assumes that

current always flows through resistors in the same direction; from terminal 0 to terminal

1 in Figure 54. The estimator assigns a direction for each resistor using a set of rules

similar to those Jouppi uses to assign signal flow direction in MOS circuits[26]:

1. The high voltage supply Vcc is always terminal 0.

2. The low voltage supply Vee is always terminal 1.

3. For all the resistors not connected to a supply, the estimator checks the other devices

connected to each of the resistor’s nodes. If one end has only emitter connections
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Figure 53: Locations of Currents for a Single Gate

and the other only collector connections, then the emitter end is terminal 0 and the

collector terminal 1.

Figure 54: Direction of Current Flow in Resistors

Not all devices can be assigned a direction with these simple rules. An example of this

is the temperature compensation circuit shown in Figure 55. The current estimator cannot

assign a direction to resistor R2 because both its terminals are connected to transistor

emitters. When a resistor cannot be assigned current flow direction, the estimator removes

it from the circuit and optionally issues a warning to the designer.
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Figure 55: Temperature Compensation Circuit

Once all resistors have been assigned a direction, the estimator calculates the voltage

and current ranges that each node and element can assume. Starting at the design’s

reference voltages, the estimator uses four basic rules:

1. Propagate voltages from base to emitter of a transistor and from terminal 0 to

terminal 1 of a resistor. The estimator sets the voltage at a node to the maximum

of the voltages at each base node minus a diode drop and the voltages at the top

nodes of each resistor minus the resistor voltage drop.

2. Propagate currents from emitter to collector of a transistor and from terminal 1 to
terminal 0 of a resistor. For each device, keep track of whether the current flowing

though it is rwnswitched or switched; a nonswitched current always flows though

the device, while a switched current may flow through the device depending on

the state of the circuit.

3. Resistors connected to Vee foxm current sources. When the voltage at terminal 0

is set, calculate the current in the resistor and propagate it up the tree.

4. Resistors connected to Vcc form loads. When the current in the resistor is known,

set the voltage at terminal 1 and propagate it to all connected bases.
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Figure 56: Tracing of Currents

Example 56 shows these rules in operation. Initially, the voltages ranges are known

for nodes Vcs, Vin, and Vbb. Starting at these nodes, the estimator sets the voltages at

the emitters of transistors Qi, Q2, and Qs. For node e0, the maximum voltage is set one

diode drop below the maximum voltage at Vin, and the minimum voltage is set one diode

drop below the voltage at Vbb. For node el, the voltage is similarly fixed by node Vcs.
Once the voltage at el is known, the estimator recognizes that R2 is a current source, and

sets its value to 1 mA. This current is then propagated up the tree, to transistors Qi, Q2,

and Q3, and resistor Ri. Once the current in Ri is set, the estimator recognizes that it is

a load, and sets the voltage range at c0. Since the current through Ri is switched, the

voltage at c0 is set to Vcc,Vcc+I t R 1. With this gate finished, the estimator can continue

the process for other gates with inputs connected to node d).

In the example, the estimator does not really need to calculate the voltages at any

node except el in order to trace the cut-tents properly; setting voltage ranges for the rest

of the circuit seems extraneous. A simpler scheme might be to identify one signal as the
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current source reference and assume that all transistors with bases connecting to it form

current sources. The current estimator uses the more general method for two reasons.

First, in some design methodologies, emitter followers have a resistor instead of a current

source connecting them to Vee. Without knowing the voltage range at the base of the

emitter follower transistor, the current estimator cannot accurately calculate the emitter

follower current. Calculating voltage ranges for all the nodes in the system also allows

the current estimator to double as a ‘syntax’ checker for ECL circuits; it can identify

inputs connected at the wrong level, transistors pushed into saturation, and similar simple

errors, saving the designer time in debugging the circuit.

4.3 Advanced Structures

Unfortunately, not all circuits can be solved using the basic algorithm. The range of

circuits that designers use include some configurations more complicated than the basic

ECL current tree. These include resistors used to split currents, current trees that cannot

be correctly traced without some knowledge of the underlying logic, and diode structures.

This section describes extensions that allow analysis of these more complex circuits.

4.3.1 Switched and Split Currents

The algorithm description glossed over how the estimator determines whether a current

is switched or nonswitched. This is actually a fairly complicated problem; while being

steered through a gate, currents may split and reconverge in several places. One example

of this is shown in Figure 57. Current is switched between resistors R2 and R3 by the

differential pair of Qi and 42. The current reconverges at RI, however, regardless of the

circuit state. In order to correctly set the node voltages, the estimator has to determine

that the current from R4 is switched through R2 and Rs but not through Ri.

This is done in two steps. The estimator first does a breadth first search of the circuit,

starting at Vcc. Each device is assigned a number corresponding to the level at which

it was first encountered. In the example, Ri is a level 0 device, R2 and R, are level 1

devices, Qi and Q2 are level 2 devices, Q-J is a level 3 device and I& is at level 4. Once
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Figure 57: Switched and Unswitched Currents

each device has been assigned a level, the estimator traces out the currents as described

in the previous step. In tracing up the tree, the current is considered unswitched until

a differential pair is encountered. For the devices in the differential pair and above, the

current is labelled switched. Once all the currents have been traced through the tree, the

estimator counts the number of devices at level 0 through which each switched current

passes. If there is only one level 0 device, the current for this device is changed from

switched to unswitched, and any node voltages that are set by the element are updated.

This is repeated at each successive level until one is found where the current passes

through more than one device.

Implicit in the previous discussion of switched currents is the assumption that the

entire current is steered to one branch of the tree or the other; some configurations

violate this assumption. An example is shown in Figure 58. All the memory cells are

connected to a single current source, with the resistors at the bottoms of cells used to

subdivide the current between them.
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Figure 58: Resistor Divided Currents

Calculating precisely how the currents split is difficult. Since each node is represented

by a voltage range rather than a single value, the diode-resistor current divider model

employed by Bisim[29]  cannot be used. Instead, the estimator assumes that the current

divides evenly between all the resistors. When the current is propagated further up the

tree, it is tagged with the amount of current that is actually passing through the particular

branch. Thus, as the estimator traces each current up the tree, it attaches to each device

encountered a pointer to the resistor forming the current source, a flag describing whether

the current is switched or unswitched,  and a label giving the fraction of the current that

passes through this branch of the tree.

4.3.2 Logic Dependent Circuits

Not all circuits can be correctly traced knowing only the voltage ranges at each node;

for some, the estimator must also understand properties of the underlying logic function.

The Q-bit barrel shifter of Figure 59 is one example. Although any of the four currents

IA-ID can be steered to any of the four loads, Ri- &, each load will receive at most one

current at any given time because only one of select lines SO-S3 will be active. If the

estimator does not understand this logic dependency, it will set the swings at the outputs

to four times their actual values.
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Figure 59: Barrel Shifter

Another state dependent circuit is the current source shared between many decoder

outputs shown in Figure 60. Without knowing that only one of the decoder outputs will

be high, the estimator will divide the current evenly between all the resistors. Although

the voltage ranges for the outputs will be correct, the current will be smeared over all

the outputs; any voltage drop problems associated with the large peak currents will not

be caught.

In the general case, determining that a set of nodes have this mutual exclusivity

property, where only one is high at any given time, is too expensive to calculate. Instead,

the estimator provides two simpler mechanisms for incorporating logic dependencies.

It recognizes decoder circuits (described in the next section) and marks their outputs as
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Figure 60: Decoder Output Shared Current Line

being mutually exclusive. For more complicated circuits, the designer may also label any

group of nodes as being mutually exclusive. Given this information, the current estimator

correctly apportions the 4 barrel shifter currents among the four loads and assigns all the

current in the emitter follower circuit to a single device.

4.3.3 Diode Decoders

Another commonly used circuit that the above algorithm cannot handle correctly is the

diode decoder[30].  A 2-bit version is shown in Figure 61. One of the four outputs will

be high because current is not pulled through either of its diodes. The previous algorithm

cannot correctly calculate the voltage at the base-collector (anode) terminal of a diode

because it depends on the diode current, and it cannot calculate the diode current because

it depends on all the diode voltages.

The estimator handles diode decoders as a special case. It searches for transistors

where the base voltage depends on the current through the device. Each node in the

circuit contains a list of the sources that can supply current to it. If a current source

appears in the lists of both the base and collector2, then the estimator checks to see what

2This algorithm may seem a bit baroque, since in the example, the base and collector are the same node!
In some cases, however, the designer will split the pullup resistor into two parts: one section between Vcc
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Figure 6 1: Diode Decoder Circuit

else is connected to the base node. If the base node is connected to an emitter, then

the diode is being used as a level shifter and will be correctly handled by the original

algorithm. If it is connected to a resistor, then its voltage will depend on the diode’s

current.

Once the current-dependent diodes have been located, they are processed in the fol-

lowing manner:

1. Group the diodes into output elements, which are sets of diodes that have a common

base node. These are marked Q-es in Figure 61.

2. For each output element, find the conductance between the element’s base and Vcc,

and the base and one section between the base and collector. This configuration reduces the amount that
the base must swing and speeds up the circuit.
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3. Group the output elements into decoders, which are elements whose diodes have

common emitter nodes.

4. Sum all currents that enter the decoder via the common emitter nodes. These are

currents 1~ and IB in the example.

5. Check to see what type of structure is used to pull up the common emitter nodes.

This is typically either a resistor or a transistor.

6. Calculate the low voltage at the output nodes. The equivalent circuits for this

operation are shown in Figure 62. Which circuit is used depends on the type of

pullup  on the common emitter node. The diodes are assumed to be ideal for this

calculation.

P
Transistor Pullup

Figure 62: Equivalent Circuits for Diode Outputs

4.3.4 Other Circuits

There are other circuits that the estimator cannot handle properly; chief among these

are bandgap generators and lOK/lOOK interface circuits. Currently, the designer must

manually set the voltages at nodes in these circuits if they are to be included in the circuit

checking and current estimation. A better approach might be to do a simple operating
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point calculation for these circuits, similar to what Spice does. In general, each circuit

is not particularly large, and the number of different configurations is also fairly small.

By solving each different bias generator once, and using this solution for each instance

of the circuit, the estimator could probably solve the remaining circuits in a reasonable

amount of time and save the designer some trouble.

4.4 Pattern Selection

Once,tracing  is complete, the estimator has produced a list of currents together with a

set of locations where they can enter the power network. The next step is to choose the

node or nodes3 from each set where the current will be injected. This section explores

possible current distributions, and shows that the current pattern dependance  in ECL is

fairly minimal.

An ideal pattern would produce the greatest drop at each node in the circuit. Un-

fortunately, no single pattern or small group of patterns is going to give the worst drop

for most circuits. Since processing a large number of patterns would be very expensive,

the estimator instead tries to choose the node that will give the highest voltage drop for

each individual current. The voltage produced by applying current at a single node can

be calculated by examining the inverse of the network’s conductance matrix.

(51)

When a single current I, is applied, all the nodes which have a nonzero term in column

j of the inverse conductance matrix will have a nonzero  output voltage. The highest

voltage will be produced at the node where the current is injected, which corresponds to

the entry on the diagonal, GJ~'. Given some set of nodes where a current can enter the

3For circuits like decoders, where all unselected outputs draw current, it will have to choose more than
one node.
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power network, the location that will give the highest individual voltage drop is the node

with the largest diagonal term in the inverse matrix.

Unfortunately, calculating the diagonal of the inverse matrix is fairly expensive. The

solution techniques described in the next chapter decompose the matrix into upper and

lower triangular parts, but never calculate the inverse directly. Producing the inverse

from the decomposed matrix requires forward and back substitution for each node in the

circuit. This is much slower than doing the decomposition itself. A faster method for

choosing the current pattern is needed.

The diagonal of the inverse matrix has physical meaning; each entry G,’ is the

equivalent resistance between Node j and ground. For networks that form trees, the

equivalent resistance can be calculated in linear time by walking down the tree starting

at ground; the equivalent resistance for each node is just the resistance of the node above

it in the tree plus the value of the intervening resistor. Since distribution networks are

generally tree-like, this suggests a method for estimating each node’s path resistance:

convert the initial resistance graph into a tree by removing resistors that form loops, then

calculate the equivalent resistances for the tree. Figure 63 shows how this works for a

simple bridge circuit. The circuit is converted to a tree by removing resistors R4 and

&, then the equivalent resistances are calculated in a single pass over the tree. Since

forming the spanning tree itself can be done in R log(n) time[ 11, this estimate can be

calculated quickly even for large designs.

The accuracy of the estimate, however, is rather poor. Figure 64 shows the actual path

resistance versus its spanning tree estimate for the Vcc bus in the R6020 bus controller

chip. The spanning tree estimate is considerably more conservative than the actual value

for many of the nodes. To calculate the current pattern, however, the estimator does

not care about the absolute value of each node’s resistance; it is only interested in the

resistance of each node with respect to its neighbors. As long as the spanning tree node

resistances give roughly the same ordering for the circuit’s nodes, the approximation is

valid.

To see how well the approximate resistances preserve the node ordering, I compared

the current distributions resulting from the exact path resistance and from the tree estimate

for the three ECL chips described in Section 1.2. The results are summarized in Table
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Figure 63: Tree Path Resistance Example

1 14. The two current distributions are nearly identical; in the worst of the circuits, less

than 3% of the current pattern changed.

Figure 65 shows the effect of the current pattern change for the R6020. Using the path

resistance approximation made essentially no difference in the final voltage distribution

in any of the chips tested Since the calculation of tree path resistances is two orders of

magnitude faster, the pattern selector uses it to assign current locations.

4.5 Performance

Current profiles for the three designs were obtained by running the ECL current estimator

on netlists extracted from the chip layouts. The results are summarized in Table 12.

Analysis of fairly reasonably sized designs is thus possible in a modest amount of time.

Given that the current estimator can produce pa:tems for fairly large designs, the other

4The tests were run on a MipsCo RC3260, which contains a 25Mhz R3000 CPU, 64Kb instruction and
data caches, and 128Mb of memory. The program was compiled with optimization level “-04” and run
under RISC/OS  4.50.
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Figure 64: Spanning Tree Estimate of Path Resistance

consideration is the quality of the highest marginal cost current pattern. Underlying this

question is a more fundamental one: how much effect does the state of the circuit really

have on the current pattern? In most ECL gates, the location where current enters the

power bus will not vary greatly; like the example in Figure 53, the various Vcc connec-

tions are close together. Only in a few classes of circuits, such as wired-or configurations

and decoders with a shared current output, are the points likely to be very far apart. To

test how much variation there is in the voltage distribution, I applied two different current

distributions to each circuit in the R6000 chipset.  The first distribution was calculated

using the highest marginal cost criterion described in this section. The second was pro-

duced by using a lowest marginal cost function, which produces the smallest possible

drop for each individual current. Figure 66 contains scatter plots comparing the two. In

general, the correlation is fairly good, indicating that the design is not particularly pattern

dependent. Variations from perfect correlation seem to fall into two categories: nodes

either form a line that diverges upward from perfect correlation (as seen in the center

of the R6000 plot) or they come in pairs, one above and one below the center diagonal.
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Chip
Total nodes

R6000 R6010 R6020
CPU FPC SBC

71947 72052 59495

pattern varied
Exact method 6.1 hours 5.8 hours 6.1 hours
Running time
Tree method
Running time

1.8 minutes 1.8 minutes 1.5 minutes

Table 11: Comparison of Current Pattern Selection Methods

Circuit R6000 R 6 0 1 0  R 6 0 2 0
Running Time 552s 354s 803s
Memory Usage 15.5Mb  19.9Mb  17.2Mb

Table 12: Running Times for ECL Current Estimation

The first pattern corresponds to a circuit where all the possible locations for a current

fall in the same branch of the network; by choosing the node farthest from the pad,

the highest marginal cost algorithm shifts up the voltage for all the intervening points

in the branch. The second pattern occurs when the current’s locations fall in different

branches of the network; switching between locations causes one branch’s node voltages

to increase while those of the other branch decrease.

The highest marginal cost function seems to be modestly better than just picking

current locations at random, but not spectacularly so. In the three examples, 65% of

the nodes had equal or higher voltages for the highest marginal cost pattern than for the

lowest marginal cost. Despite the relative insensitivity of ECL current patterns to the

state of the circuit, I decided to continue using the highest marginal cost current pattern.

Since the network solution techniques described in the next chapter require formation of

96



Exact Pattern (mV)
R6020 MMU

Figure 65: Effects of Path Resistance Estimate on Voltages

a spanning tree for the network anyway, the overhead involved in implementing the cost

function is minimal. Further, more specialized circuits that make greater use of wired-or

circuits, such as Ling Adders[33], may have a greater pattern dependence than do the

R60XO chips, which are composed primarily of ordinary gates.

Given the relative insensitivity of the ECL current distribution to the circuit state, and

the ease with which a single, static current pattern can be calculated, the static current

estimation algorithm described in this chapter is sufficient for current estimation in ECL

designs.
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-50

R6020 SBC
Figure 66: Current Pattern Dependence of ECL circuits
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Chapter 5

Network Solution

Our life is frittered away by detail. An honest man has hardly need to count

more than his ten fingers, or in extreme cases he may add his ten toes, and

lump the rest. Simplicity, simplicity, simplicity!

Henry David Thoreau

Walden (1854)

The last three chapters described how to derive a resistance network from the design’s

layout and a current profile from its circuit; the remaining step is solving for the network’s

node voltages and branch currents. When run on an entire design, the number of node

equations can be fairly large; networks of order 20,000 are not uncommon[54].  Since

the current distribution can vary with time, these systems may have to be solved more

than once. Fortunately, power supply networks have some special properties that allow

for faster calculation of voltages.

The first section of this chapter outlines previous approaches that have been taken to

solve these networks. Following this is an examination of some of the special properties

of resistor networks and how they can be exploited, an outline of applicable sparse matrix

techniques, and a discussion of the system’s performance on the test designs.
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5.1 Previous Work

Branin[4] solves power supply networks using tree-link analysis. He envisions power

supply networks as being basically trees, with an occasional loop created when the de-

signer adds cross links. Figure 67 shows what happens when a single link resistor Rltnk

is added to a tree, forming a loop. The link resistor takes some amount of current from

one branch of the tree and redistributes it to the other. Current is only affected in the

loop formed by the link and the two sides of the tree connecting

the top node iv,, where the two branches merge, is unchanged.

to it; the currents above

fN1 N3\

B
7v

b1mA

6.5Vk

C
Figure 67: A Single Link Resistor in a Tree

Isolated link resistors in a tree-like structure thus add local perturbations to the un-

derlying tree voltage-current distribution. This suggests a method for solving this class

of network:

1. Form a spanning tree for the network.

2. Solve the tree network, ignoring all non-tree resistors.

3. Calculate the perturbations in the current distribution caused by the link (non-tree)

resistors.
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4. Solve the network again using the revised current distribution.

Branin’s algorithm is efficient for systems where the number of loops is quite small.

The most expensive step in the algorithm is usually calculating the loop currents. As the

number of loops go up, the complexity of the system of loop equations also goes up.

While it is reasonable to assume that the number of loops is small in circuits fabricated

with a single layer of metal, it is not true for newer devices that have meshes embedded in

their power distribution networks. However, this algorithm can still be used to advantage

in some limited cases, as discussed in Section 5.3.

Tyagi[%] uses a method similar to Branin’s, except that the range of topologies that

it can handle is more limited. He also assumes that the network is basically a tree, except

for some comb sections at the tree’s leaves. Combs are sections of power bus that have

parallel wires tied together at both ends. Each comb section is treated as a supemode; all

the current that enters the network through the comb section is injected at node where the

comb is attached to the tree. The tree and comb are then solved separately; the tree using

the linear two-pass algorithm discussed in the next section and the comb by solving the

node-current equations. For a comb, Tyagi shows that the node equations can be solved

in linear time.

Tree Section Comb Section

Original Network Partitioned  Network

Figure 68: Tyagi’s Algorithm for Treelike  Systems

Most of the power networks in custom designs could not be solved using this algorithm

because they do not have a tree-comb topology. Even if more general networks than
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combs are allowed for the non-tree sections, Tyagi’s approach will be fairly slow; a

single loop near the root of a power bus will cause nearly all of the bus to be put in a

single supemode. Solution time for this supemode will be essentially the same as the

time required for directly solving the original network. Since any distribution topology

that has more than one pad connection will have all nodes (including the root node)

as part of a loop, Tyagi’s method is not particularly useful for contemporary multilayer

power networks.

Chowdhury[  lo] takes a different approach to analyzing the system. Rather than

calculating the actual node voltages and branch currents, he instead calculates an upper

bound on the current that can flow through each branch assuming that some subset of

the network branches fail via electromigration. Figure 69 shows an example of how his

algorithm works. For each node, the estimator enumerates all possible paths to ground.

Picking such a path divides the nodes in the design into two classes: those whose current

may flow to the node and through the path to ground, and those whose current will not.

In the example, starting at node n2 and using the path ei - eo, current from nodes nl,

n2, and n3 fall into the first class and nodes no and n4 fall into the second one. Once

the nodes have been classified, the maximum current for the first element in the path

can be determined; it is the sum of the currents from all the nodes in the first set. In

the example, the maximum current in element ei for the given starting node and path is

Ll + L2 + L3. By repeating this operation for all nodes and paths in the system, the

maximum current in each branch can be calculated.’

Unfortunately, the upper bound that this algorithm gives for each element is much too

conservative to be useful. Figure 70 represents the power distribution for the datapath

section of the design. There is one horizontal power line for each bit in the datapath,

with vertical connections to pads at either end. Using Chowdhury’s algorithm, the upper

bound on the current in each element of each row is very nearly the entire current for

the datapath. The solid line represents one node-path pair; current may flow from nearly

all the nodes in the circuit to the node-path pair via the dotted lines. Each bit’s power

connection would have to be wide enough to support the current for all the bits. No

’ Chowdhury  does not actually evaluate every path; by using branch and bound techniques, he can show
that some paths will not give a larger current for the element than a path already enumerated, and can
therefore be ignored.
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Figure 69: Chowdhury’s Max Current Estimation Algorithm

aggressive design can afford to be this conservative.

Figure 70: Overestimation in Chowdhury’s Algorithm

Since none of these algorithms were entirely satisfactory, I decided to take a closer

look at the designs to see what special properties they exhibited and how these properties

might be exploited. The techniques that the analyzer currently uses take some of the

more useful components of Brat-tin’s algorithm for trees and simple links, and combine

them with a new algorithm for handling sections of resistors in series with interspersed

current sources.
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5.2 Trees of Resistors

A typical power supply network in a VLSI design (Figure 71) consists of two sections:

a “backbone” that provides global distribution of power from the pads to the various

modules on chip, and a “feeder” network that connects individual cells and transistors

to the backbone. The most common style for these feeder networks is a tree, with the

root being the connection to the backbone and the leaves being each transistor connected

to the supply. Solving these tree networks is simple: starting at the leaves (Figure 72)

currents are summed up toward the root. Once the current is known in each branch, the

node voltages can be found by back-substitution; each node’s voltage is that of its parent

node plus the voltage drop across the connecting resistor.

t Pad

I

Pad I!
0 = Transistor

Figure 71: A Typical Power Network

In the linear solver, these trees are replaced on the network backbone by a current

source representing all the current injected into the tree. After the backbone network is

solved and the voltage at the root node of each tree is known, the leaf voltages can be

found by the method described above.

5.3 Simple Loops and Kirchoff’s Voltage Law

This section explores Branin’s algorithm in more depth. The key to his method is quickly

calculating the current disturbance caused by the link resistors. This adjustment can be
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Sum Voltages Down

Figure 72: Solving for the Tree Voltages

found by applying Kirchoff’s voltage law to the loop formed by the link resistor and the

spanning tree. Enough current must flow through the link so that the sum of the voltage

drops across all the resistors in the loop is zero. Suppose that the voltages at each node

are initially calculated without the link resistors present using the tree algorithm described

in the previous section and shown in Figure 67. Each unit of current flowing through

the link resistor reduces the voltage drop between the nodes Ni and -Yo by I~lnkR1,

and increases the voltage drop between nodes iv, and iY0 by Iirnk( & + Rg). Given the

voltage distribution calculated for the tree part of the network, the link resistor current

must be:

I kink -2b’-----z-x
lank = SR,,,, 4A-0

-0.5mil

-L, is the sum of resistors forming the loop, and l';lrlk is the initial voltage drop

between the link resistor’s connecting nodes. In Example 67, I,,,&. = -0.5rn.4. Once

Iltnk is known, the tree portion of the network can be solved with the modified current

distribution (Figure 67c), giving the correct node voltages. For isolated loops, this solve-

perturb-solve method is considerably faster than doing a more general sparse solution of

the network.

The problem becomes more complicated when there is more than one loop, as shown

in Figure 73. Because the two loops share a resistor, we cannot apply the previous
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Figure 73: Multiple Link Resistors in a Tree

formula to the loops individually; the change in voltage drop across R2 that each causes

will affect the other. Kirchoff’s voltage law must be satisfied in both loops simultaneously.

Summing up the drops across each resistor in both loops gives two linear equations:

~R/oopt  Rmutual, 2
R ~Rioop; ] [  :‘::::] =  [  ;:,:jrnUfUdl,2 -)

R ,nutual, 2 is the sum of the resistance that the two loops have in common times an

incidence value of -1 or 1; the incidence value tells the direction through the common

resistor which the extra link current is defined to flow. (The direction chosen is arbitrary,

so long as it is consistent throughout the calculation.) Loop resistors in the tree branch

connected to the head of the link resistor will have an incidence of 1, while those in

the tail branch will have an incidence of -1. In Example 73a, there is a single common

resistor, R2, whose incidence is 1 for loop 1 and -1 for loop 2, giving R,,t,,l,,2 = -R2.

The 2x2 matrix for the example is:

RI + R2 + & + R/mu -R2
-R2 RZ + R3 + RS + &ink2
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This 2x2 system iS trivially invertible, giving I[,,&2 = -Il,nkl = 0.4172.4. With the

link currents known, the tree can be solved again, giving the voltage distribution shown

in Figure 73b.

This method can be extended for an arbitrary number of link resistors. The resulting

system will have one equation per link resistor:
N

c Rmutual,,, * htnkl = hnk,

J=l

Once this system is solved, currents in the tree portion of the network can be modified

and the corresponding node voltages calculated.

Unfortunately, this algorithm does not work well for most power networks. A net-

work’s backbone section generally contains many link resistors, each of which share part

of their loop with another link. This gives a large number of nonzero Rmutua, terms,

making the resulting system, while lower order, considerably less sparse than the original.

Table 13 shows the sizes and number of nonzero  terms for the power networks of the

three CMOS designs described in Section 1.2. The first two columns show the order

and sparsity for the conductance matrix after the simplification techniques have been

performed, while the latter two show the corresponding values for the mutual resistance

matrix. Using the sparse techniques discussed in Section 5.5, the higher order, sparser

systems can be solved more quickly than the more dense, lower order ones.

Unlike the original matrices, however, the mutual resistance matrix is usually dis-

connected. Each subgraph of the matrix corresponds to a set of link resistors with a

nonzero mutual resistance to at least one other member of the set, but no nonzero mutual

resistance values to anything else. The order of a subgraph is equal to the number of link

resistors it contains. Figures 67 and 73 show subgraphs of order 1 and 2, respectively.

Table 14 shows the distribution of subgraph orders for the designs mentioned above. All

the networks contain a random scattering of low order subgraphs and one or two high

order ones that contain the network “backbone”.

Several of the networks have a large number of subgraphs containing one or two

members. These sections usually arise from strapping a region with high sheet resistance,

such as diffusion, with a much less resistive one, such as metal. They are often part of a
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Simplified Original Mutual Resistance
Matrix Matrix

Power Matrix Nonzero M a t r i x  Nonzero
Network Order Terms Order Terms
MIPS-X gnd 4095 18019 2893 12940 1
MIPS-X vdd 2881 11651 2469 35241
SPIM gnd 2139 8737 1165 31085
SPIM vdd 601 2443 324 26616
PTitan gnd 3066 12366 1669 13021
/lTitan vdd 2123 3244 1157 32925

Table 13: Original and Mutual Resistance Matrices

1

Power Subgraph Order
Network 1 2 3-10 11-100 101-1000 1000
MIPS-X gnd 15 3 5 4 0 1
MIPS-X vdd 75 444 3 0 0 1
SPIM gnd 0 0 1 3 0 1
SPIM vdd 0 0 1 1 1 0
PTitan gnd 11 53 64 2 2 0
PTitan vdd 39 9 36 3 1 0

Table 14: Subgraph Sizes for Various Networks

feeder network that could have otherwise been removed by the tree algorithm described

above. Since these subgraphs are trivial to solve and removing them often allows an

entire subtree to be separated from the main graph, Ariel processes them specially. It

searches the resistor network for one and two element graphs that are part of trees which

can be removed from the network. When it finds one, Ariel replaces the subnetwork with

a current source as described in Section 5.2. Once the backbone network has been solved,

the voltages in the loop are determined by calculating the initial tree voltages, inverting

and solving the 1x1 or 2x2 loop-link matrices, and recalculating the tree voltages using

the modified current distribution.

Moderate sized subgraphs, containing less than 100 elements, can also be solved
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relatively cheaply. Unfortunately, they are rarely parts of a feeder tree and therefore

cannot be separated from the main graph. Because of this, Ariel limits this type of

processing to 1 and 2 element subgraphs.

5.4 Series Connections of Resistors.

Once the trees and simple loops are removed from a network, the remaining backbone

consists primarily of long strings of resistors, one per bit pitch, with occasional cross links,

as shown in Figure 74. These long sections of series resistors, with a current source at

each intervening node, can be replaced by a single resistor with a current source at each

end. An intuitive derivation of the equivalent circuit is given in the following section.

For the skeptical, a more formal derivation is given in Section 5.4.2.

?I Pad Pad 5

Figure 74: Power Network with Trees and Simple Loops Removed

54.1 Equivalent Circuit for Series Resistors

Consider the series chain in Figure 75a. There will be some voltage, Vs. between the

two series ends, Nt and N,. Conceptually, a voltage source with value Vs can be added

between nodes Nt and N, without disturbing the network. Superposition can be applied

to this network to produce the equivalent circuit shown in figure 75b. The equivalent

resistance R.s is just the sum of all the resistors in series. Superposition can be used to
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Figure 75: Series Equivalent Circuit

determine how the current from each current source divides between the two ends. All

current sources except the one in question are replaced by open circuits, while the voltage

source between nodes N1 and N, is replaced by a short circuit. The resulting system is a

simple current divider, and the additional current at Nr and N, is just the sum of all the

divided currents:

Rs = CR, (52)
t=I

(53)

(54)

An arbitrarily long series of resistors can thus be replaced by a single resistor and

two current sources.

Once the network has been solved with the equivalent series circuit and the voltages
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at the end nodes are known, the solver must determine the voltages at the series nodes.

Superposition can be used to calculate the intermediate values for this system:

R-11; = l,;el + +s + I,,R,-l
A

\ _ ,

Voltage Current

Divider Source

Drop Drop

Starting at one end, the voltage at each successive node is equal to the value at the

previous node plus the drop in the intervening resistor. This drop has two parts. The

first, labeled Voltage Divider Drop, is caused by LIT, the voltage imposed by the rest

of the network across this series section. To calculate it, 1; is split across the resistors

in proportion to their values. The second component, labeled Current Source Drop, is

caused by current injected at nodes within the series. Between each pair of nodes, this

drop is equal to the connecting resistor’s value times the current that would flow through

this resistor if Y.s was replaced by a short circuit.

Figures 76 and 77 show an example of series replacement and intermediate node

voltage calculation. The three resistors in the circuit on the left are replaced by a single

one, and the current at Nz and Ns is redistributed to the end nodes, iVt and .Yd. This

equivalent circuit is connected to the rest of the network and solved.

Original Series Equivalent Circuit

Figure 76: Series Circuit Example

In the example, suppose that the drop b> between nodes ,Yt and 1\;‘4 is -4mV. The

next step is setting the voltages at NZ and Ns. Figure 77 shows the different voltage
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components for each node. The voltage divider drops are calculated by partitioning 1’~

between the three resistors. The current source drop is found by calculating the current

that would flow through each resistor with Nt and X4 grounded. Beginning at the left,

the current between nodes Nt and Nz is IE2 = le, - It = - ln2A. Similarly, the current

between N2 and Ns is IE, = lez - It = 0. The current source drop in each section is the

resistance times these currents. The total drop for each node is calculated by adding the

two components.

Voltage Divider Drop

Figure 77: Voltages for Series Circuit Example

5.4.2 Norton  Equivalent  Circuits  for the Series  Systems

The previous derivation and example were intended to be intuitive; this section gives

a more formal derivation of the series equivalent circuit. Figure 78a shows a series

of n resistors interspersed with current sources. RL and IL form the Norton equivalent

circuit representing the rest of the network as seen from the left end of the series. Figure

78b shows the series equivalent circuit for this configuration, as derived in the previous
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section. The following section shows that the two circuits are equivalent when viewed

from the right side terminals; by symmetry, the same can be shown from the left side.

Rn

Figure 78: Series and Equivalent Circuit

All the resistors in Figure 78a are in series, so the equivalent resistance is just their

sum, labeled R-r in Equation 55. When the right terminals are shorted, n+Z current

dividers are formed; by superposition, the short-circuit current is just the sum of these

dividers, as indicated in Equation 56.

RT=RRL+~R, (55)
1=1

(56)

By inspection, the equivalent resistance of Circuit 78b is identical to that of 78a. The

short circuit current (Equation 57) is the sum of the series equivalent current I+, and the

fraction of IL and I,, supplied by the resistive divider. Combining terms under the same

summation gives Equation 58. Substituting Equation 55 into Equation 58, and combining

terms (Equation 59) allows the Ciil Rj and C,?=i R, summations to be combined. The

combined terms cancel, giving Equation 60, identical to Equation 56. The two circuits

thus have identical Norton Equivalent circuits.
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I->cB =

ISCB = c

n (c;;; R,)(&R,) + RL(C;G: RJ + x;=,RJ)~

RT(C;=I 4)
1 + 31

RT
L

i=l

IscB =c c;l:R, + RL RL

I=1 RT
It + j+L

(57)

(58)

(59)

(601

5.5 Network Solution Techniques

Once all the above simplifications have been performed on a network, the remainder

is basically a mesh representing the backbone of the power distribution system. The

voltage distribution of this network must be calculated. The following two sections

examine methods for solving this network.

5.51 Direct  Methods

The power network can be be written as an n-l by n-l system of equations Gv = i, where

G is the conductance matrix, v are the voltages at the n-l nodes (referenced to ground),

and i are the currents injected at these nodes. Since G is positive definite,2  there exists a

Cholesky decomposition G = LL’, where L is lower triangular. Once this decomposition

is known, the node voltages v can be calculated by forward solving the lower triangular

system Ly = i, then back substituting into L’v = y to derive v.

The key to this algorithm is being able to calculate the LL’ factorization quickly.

This is done using an envelope implementation of the bordering method as described by

2A positive definite matrix is one for which x’Ax > 0 for all x with at least one nonzero element. For
the conductance matrix G, the term V’GV has a physical interpretation; since Gv is the current injected
at each node, v’Gv = v’i. The inner product v’i is the power dissipated by the network, which is always
greater than zero for nonzero excitation. Conductance matrices are thus positive definite due to the law  of
conservation of energy.
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GeorgeI 161. The matrix G can be written as a matrix M of order n-l, a column vector u

representing the nth row, and a diagonal term s. Equation 63 gives the factorization of

G assuming that M’s factorization, LML$,  is known.

G=
M u
u’ J

M = L.&,

G= Lu 0
w '  JriG

Gl w
0 JS-WIW

w = L,‘u

(61)

(62)

(63)

(64)

The factorization can thus be computed starting at the upper left comer by setting

b = fi, then solving the lower triangular system Law = u to calculate the second

row. Adding this row to Lo gives the decomposition Lt L’, of the leading submatrix

M,. Each subsequent row can be solved in the same manner, using the factorization L,

calculated in the previous step.

The only remaining problem is deciding the node ordering for the matrix. Ariel uses

the Reverse Cuthill-McKee method[ 181. Given a starting node, its neighboring nodes are

added to the matrix in increasing order of degree. Neighbors of the nodes just added are

in turn sorted and included; this process continues until all nodes have been processed.

This ordering is then reversed because the opposite ordering has been proven to always

have an equal or smaller envelope than the forward one.

In processing CMOS power supply networks, the system of equations is usually solved

more than once. Once the conductance matrix G is factored, the cost of calculating each

time step is relatively small; it is just the time required to solve the two triangular systems.

Direct techniques thus look attractive for technologies where the power supply current is

dynamic.
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5.52 Iterative  Methods

Of the iterative solution methods, Successive Overrelaxation (SOR) seems to have the

most promise. For resistor networks, SOR is simply successive application of Kirchoff’s

Current Law:

t;, = ( 1 - &)I;I-, + 2 +Z~4=1~~“Q
I 1 rd

Each new guess at a node’s voltage is derived by looking at the voltages of the

neighboring nodes, then setting the value so that KCL is obeyed for this node. The

overrelaxation factor d is required for fast convergence; without it, voltages approach

their final values very slowly.

The main disadvantage to overrelaxation is its sensitivity to the “diameter” of the

network, i.e. the number of edges separating the two nodes which are furthest apart.

Since each node directly affects only the voltages of its immediate neighbors, the number

of iterations it takes for changes in one node to propagate throughout the network is pro-

portional to the diameter. Fortunately, the simplification techniques previously described

either remove many of the “tall”, stringy sections of the network or replace them with

a single resistor, so the simplified network’s height is considerably less than that of the

original system.

5.6 Results

The effectiveness of the above simplification procedures on several designs is shown

in Figure 79. The total reduction in network size varied strongly with the network’s

topology; it ranged from a factor of 5 for one of the microprocessors to a factor of 50 for

the multiplier. The tree and series simplifications were effective on all three designs, but

the success of removing simple loops from the network varied widely. The pad drivers

for MIPS-X have one configuration that yields many such loops; removing them reduced

the total network size by 19%. However, in the multiplier, no simple loops were found.

Whether this simplification is worth implementing is dependent on design style.

Solution times using direct factorization are shown in Table 15. The program was

run on a Titan, an ECL RISC machine developed at the Digital Equipment Corporation
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Series Nodes Eliminated
Remaining Nodes

Figure 7”9: Results of Network Reduction

Western Research Laboratory that is about 15 times faster than a VAX-11/780. “Setup”

includes the time required to calculate the LL’ factorization, and “Solve” is the time

required to solve the two triangular systems Ly = i and L’x = y and to do the back

annotation for the trees and series. (For comparison, solving the first network, ‘MIPS-X

gnd’, using spice2g6[39]  on the same machine took about 14 hours.) The speedups here

for the smaller networks are less impressive because the solution time for a single voltage

vector is dominated by simply reading in the network. However, the speedup for each

additional solution (the ratio of the ‘Solve’ columns) is considerably higher; it ranges

between 4.5 and 254. This lower marginal cost for each additional solution permits a

larger number of current distributions to be applied to the network.

Solution times for both the original and simplified networks using the iterative method

are shown in Table 16. In this case, “Read” is the time required to parse the input file,

“Setup” is the time to identify the tree, loop, and series configurations, and “Solve”

is the time required to solve the core network and back-annotate the tree and series

voltages. The speedup obtained is roughly proportional to the amount by which the

original network could be reduced. The unsimplified networks for the second two designs

require significantly longer to solve than the first because their network diameter is higher.
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Time in Seconds
Power Unsimplified

Read Setup Solve
Simplified I

I

Network R e a d  S e t u p  S o l v e  Speedup
MIPS-X gnd 26.8 293.6 9.64 26.8 56.8 2.0 3.8
MIPS-X ;dd 34.4 949.5 38 1.6 34.5 30.2 1.5 20.6
PTitan gnd 28.4 130.1 5.2 27.7 8.7 1.0 4.4
/LTitan vdd 29.4 126.5 5.375 29.8 6.3 1.1 4.3
SPIM gnd 36.6 161.1 6 . 4  3 6 . 5 6.67 1.3 4.6
SPIM vdd 37.4 93.7 5.0 37.3 3.9 1.1 3.2

Table 15: Direct Method Solution Times

Of the two methods, direct solution looks more useful. It was faster for all but one

of the test cases listed, and for cases where the network is to be solved more than once

using different current distributions, each additional solution is relatively cheap.

5.7

Power
Network
MIPS-X gnd
MIPS-X vdd
PTitan gnd
/lTitan vdd
SPIM gnd
SPIM vdd

Time in Seconds
Unsimplified I Simplified I1

R e a d  S e t u p  S o l v e  R e a d  Setup S o l v e  Speedup
26.8 3.2 235.1 27.5 2.9 42.8 3.6
34.4
27.7
29.3
36.6
37.3

36.5 19.7 28.8 5.2
28.3 3.8 220.8 6.6
29.3 2.7 60.7 12.2
38.4 3.8 22.5 16.8
38.0 3.6 6.3 48.5

Table 16: Iterative Method Solution Times

Conclusions

Three algorithms for efficient partitioning of resistor networks into small sections that

can be solved quickly have been presented. The first algorithm analyzes trees by noting

that current always flows toward the tree’s root, the second processes simple loops using
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Kirchoff’s Voltage Law, and the third solves series configurations using superposition.

The system remaining after such partitioning was readily solved using standard sparse

positive definite matrix techniques. Two such techniques were explored: direct solution

using the bordering method and iterative solution using successive overrelaxation. Solv-

ing using the partitioning algorithms provided an overall speedup between 3 and 50 for

the designs tested.
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Chapter 6

Results

Glendower: I can call spirits from the vasty deep.

Horspur: Why, so can I, or so can any man,

But will they come for you when you call for them?

William Shakespeare

I Henry IV

The previous four chapters described how the system produces resistance, current,

and voltage profiles for the network. Now that the system is assembled, the next step is

to see what it can discover about some real designs. This chapter contains plots showing

the voltages and currents calculated by the system for the designs tested, and discusses

some of their salient features.

The voltage distribution of the metal ground bus from the MIPS-X microprocessor

datapath is shown in Figure 80. The values shown are the maximum over ten clock

cycles. Dots that are completely black represent nodes where the voltage drop is half a

volt or more. The datapath is connected to the padframe at the upper left and lower right

comers. There are several notable features in this plot. The black column of nodes in

the left side are part of the register file. In the MIPS-X architecture, Register 0 always

returns a value of 0; half of each register file cell in this column is hardwired to ground.

This connection is made in a peculiar way; the source of the access transistor is grounded

via a polysilicon wire. Most of the drop seen in the drawing is due to the polysilicon,

but it appears in the plot because of the small strip of metal required to connect between
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polysilicon and diffusion.

The dark section in the upper left comer of the design is the floating point coprocessor

interface. As evidenced by the sharp gradient, power for this interface is not connected to

the rest of the datapath; instead of connecting to the clean power below it, the designer

inexplicably extended down lines from the clock driver circuitry that sits just above ‘.

The coprocessor interface bounces with the large transient voltages that occur when the

clocks switch.

There is also a horizontal dark patch in the upper right comer. At the right of the

datapath are the match tags for the instruction cache; sitting at the top of these tags are

some fairly large buffers that drive the block select signals into the instruction cache,

which sits above the datapath. These buffers are all powered via a minimum width metal

line, which bounces substantially when they change state.

Despite these shortcomings, however, the power distribution for MIPS-X is roughly

consistent with the designer’s expectations. The designers were assuming a OSV drop

on the supply lines; aside from the dummy register file column where the drop is not a

problem, this estimate seems reasonable.

For /{Titan, however, the voltage distribution plot highlights a substantial flaw in the

power bus wiring. Figure 81 shows the ground voltage drops for the metal section of the

microprocessor. At the top of the plot is the datapath, with the instruction cache sitting

below it. The internal power wiring of the instruction cache was not modeled, so this

section of the plot is blank. To the right of the instruction cache are a set of large drivers

for the cache’s column select and sense amplifier circuitry. The power wiring for these

drivers is 66llrn  wide in the driver cells themselves, but is connected to the main power

bus by a 4pm wide, 4mm long wire. The drop calculated along this wire is nearly two

volts. Since the amount of current drawn by the drivers will be noticably reduced by the

large ground bounce, the actual drop is somewhat lower.

Root-mean-square current densities for PTitan’s ground bus are shown in Figure 82.

Predictably, the same icache wire that gave high voltage drops also carries a large current

density. (The actual density calculated for the wire is over 5 mA//lm2;  the scale has been

compressed to show detail in some of the lower current density areas.) There are some

‘Sadly, I designed this section of the chip.
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other areas where the current density is rather high. In the datapath, ground is wired

horizontally, with each two bits sharing a power line. There are few vertical connections

between these horizontal buses, and they seem susceptible to electromigration. Depending

on the data, the current drawn by each bit in the path will be different, as will the current

that each horizontal power line must carry. This sometimes gives substantial voltage

gradients between adjacent lines. At the occasional connections between these buses,

large currents flow to try and equalize the potential.

Figure 83 shows the ground voltage drops for the SPIM multiplier. Here the scale

runs from 0 to 1 volts; since the design is fully static, it does not have any functionality

problems from the high drops, but it is losing some speed. Power runs horizontally in the

design, with no vertical cross links, and adjacent power lines often have quite different

drops. One possible solution would be to make the array a little wider and add vertical

cross ties to spread the current move evenly among all the buses.

Figure 84 shows the root-mean-square current densities for SPIM. This plot is basi-

cally an inverse of the last one, with low current density grey in the center of the array

and high density black at the edges. The scale here runs to 5 mA/pm2,  indicating a

fairly aggressive design. It is probably worth considering widening these lines or adding

vertical cross links.

Figure 85 shows the voltage distribution for the ground bus of the R6000 micro-

processor, including package and bond wire drops. The on-chip voltage drops range

from 20mV to 130mV. The design uses a standard-cell methodology, with power running

horizontally in rows. The highest drops occur in the center section of standard cells,

which are the farthest from the pads. The two open squares in the bottom left comer

contain the register file cells; “ground” for the cells is a special reference voltage several

hundred millivolts below real ground. This extra space is necessary to allow the file’s

sense amplifier to operate properly. Since this virtual ground is not part of the actual

ground network, the arrays appear blank.

Total solution times for the test circuits are given in Table 17. The CMOS designs

were run on a 22 MHz Titan, an ECL RISC machine, while the ECL designs were run

on a MipsCo RC3260, which runs at 25 Mhz.
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Unsurprisingly, solution times for the CMOS designs are dominated by generating

current patterns and solving the system. The SPIM times are the shortest, primarily

because the SPIM simulation uses the smallest number of current patterns (about 200)

compared to over 800 for MIPS-X and 600 for /lTitan2 The solution times for Vdd and

Ground are roughly consistent for each design except ILTitan. This primarily arises from

two factors: substrate contacts and icache power routing. Since this design contains no

frontside substrate contacts, the resistance network for Ground is simpler, and the current

profile contains no additional image current pulses. In the instruction cache, Vdd is

gridded and Ground is not, giving Vdd a more complex network. These factors lead to

the wide disparity in solution times.

For the ECL designs, the situation is reversed; resistance extraction dominates. Since

the technology for these chips includes three layers of metal and and some 45-degree

angles, there are substantially more rectangles to process. Producing currents and solving

the system is fast because only one current distribution is involved, and the chips’ power

buses do not contain many meshes.

Time (seconds)
Resistance Current System

Circuit Extraction Estimation Solution Total
MIPS-X Ground 933 1113 4829 6875
MIPS-X Vdd 586 1488 2996 5070
SPIM Ground 431 940 650 202 1
SPIM Vdd 567 1320 833 2720
FTitan Ground 408 1232 2612 4252
/iTitan  Vdd 843 3768 22130 2674 1

I

R6000 vcc 9168 537 106 9811
R6010 vcc 9392 360 106 9858
R6020 Vcc 3788 802 88 4679

Table 17: Total Analysis Times

2These solution times differ from those in the last chapter for two reasons. First, the networks used
here are somewhat larger; the extractor was not allowed to merge diffusion and metal resistors, so that
metal-only drops could be calculated. Second, extra consistency, voltage and current density checks were
performed on the networks after each solution step.
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Figure 83: SPIM Ground Bus Voltage Plot
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Chapter 7

Conclusions

I prithee,

Remember I have done thee worthy service,

Told thee no lies, made thee no mistakings, serv’d

Without grudge or grumblings.

William Shakespeare

The Tempest

An integrated circuit whose design is correct logically still may not function as in-

tended if the system violates some of the underlying electrical constraints. Analyzing an

entire chip can be difficult, however, due to its size. Design of a CAD tool to automate

power and ground checks requires careful attention to the tradeoffs between speed and

accuracy for each component.

For resistance extraction, a simple extractor that uses the standard square-counting

approximation is best suited for power supply analysis. This method is surprisingly

accurate, giving nearly the same results as finite element analysis in a fraction of the

time. Even when compared to a fairly elaborate finite element extractor that used a

library of previous solutions, the simple method is still two orders of magnitude faster.

In CMOS current estimation, the speed-accuracy tradeoffs surround time and pattern

dependence. The design’s maximum current consumption cannot be calculated without

trying most or all of the input patterns; such current estimation is much too expensive to

perform on large circuits. Instead, my estimator is based on the switch level simulator
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Rsim. Estimating currents with Rsim allows the designer to see how her circuit performs

under real operating conditions and to test particular patterns that seem to be causing

problems. Each event inside Rsim produces a triangular current pulse whose rising and

falling edges depend on the slope of the gate’s inputs and the intrinsic delay of the gate’s

output. These triangular pulses provide a reasonable approximation to the actual current

waveform and can br: produced and manipulated quickly. Pulses are also produced for

the image currents that flow into the substrate. Experiments indicated that ignoring these

image currents entirely led to an unacceptably inaccurate current distribution, but that

they could be estimated fairly easily using a simple algorithm based on each node’s

bounding box.

For ECL, there is also potentially a tradeoff to be made in selecting a current pattern

or patterns; although the current magnitude is fairly constant, its distribution across the

design varies with the input state. After describing a static estimator that finds and traces

currents through the system, I showed that the current pattern is relatively insensitive to

the circuit state; perturbations in the voltage and current distributions are minor, localized

effects. A single current pattern is sufficient for ECL designs, making the resistance-

current network fast to solve.

Given a tractable resistance network and current pattern, the linear solver must effi-

ciently solve the system. I investigated three techniques for partitioning the network into

smaller, more easily solved sections. First, subnetworks that form trees can be pruned

from the graph and replaced by current sources with values equal to all the current in-

jected in the tree. Second, simple configurations of loops can be solved using Kirchoff’s

Voltage Law. Finally, sections of the network that form long series chains can be replaced

by a single resistor with current sources at either end. Once all these simple subnetworks

have been removed, the remaining core system can be solved using standard sparse matrix

techniques, and the subnetwork voltages can then be back-annotated.

The key to this system is making the individual components operate correctly in ran-

dem. The resistance extractor had to produce a network that contained the essence of the

power distribution system, yet was still amenable to solution. The two current estimators

needed to produce current profiles that accurately modelled the system’s activity, but

were not too complicated to produce or to use. The linear solver had to be tailored to
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capitalize on the special topologies of power networks and efficiently handle the most

common configurations. With each part tailored to mesh with the others, Ariel provides

insight for entire designs efficiently and accurately.

Although Ariel is a usable system now, there are both changes and extensions to the

existing system that would enhance its utility. The biggest obstacle to analyzing chips

of arbitrary size is the memory usage of the resistance extractor; because it flattens the

power bus before extracting it, it is quite profligate in memory use. Extraction without

flattening is not an easy problem, however. Hierarchical extraction is quite difficult unless

cell overlap is extremely restricted; such restrictions are a nuisance to designers and

inconsistent with Magic’s philosophy. Incrementally flattening a section, then exh-acting

it is also not trivial; the extractor must determine which rectangles in a region correspond

to the power bus (or else extract everything), it must produce the correct resistance even

for rectangles that are intersected by the region boundary, and it must correctly assemble

the parts.

There are several areas in current estimation that deserve additional attention. To

date, no entirely satisfactory method of estimating currents for CMOS circuits has been

found. The probabilistic methods of Bunch produce expected instead of peak voltages and

currents for the system, while my simulation based approach is pattern dependent. A ideal

approach would produce currents that near worst case and avoid gross overestimation for

circuits with limited activity.

The next major extension will be providing current estimation for BiCMOS. The

fastest BiCMOS circuits may use ECL configurations for critical paths and MOS circuits

for less critical ones in order to save power. Operating ECL circuits in a noisy MOS

environment will accentuate the need for power supply noise analysis. The biggest

challenge in current estimation for these designs is correct analysis of hybrid circuits,

where neither a distributed RC tree model nor a current steering model is entirely accurate.

Finally, I would like to develop a useful set of postprocessing tools. The voltage and

current profiles that Ariel produces are basically raw data; what the designer would really

like to know is how the system’s power noise is going to affect his particular design. Does

a given circuit have sufficient noise margin to tolerate the supply noise? How can the

placement of cells be modified to equalize the current patterns? Can the circuit timing be
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modified to redistribute power consumption more evenly across the clock cycle? These

types of questions combine the raw data calculated by Ariel with additional concerns

about the circuit, about the layout, and even about the underlying logic. This analysis is

critical for fullest utilization of power supply analysis.
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Appendix A

Triangular Finite Element Derivation

Finite element analysis is based on the calculus of variations. If the integral I( (v) of a

functional F (Equation 65) has a stationary point where aF/dzl = 0 for some value of v,

then it can be shown that Equation 66 must be valid[ 131.

(65)

d dF d dF dF o----=
z@j + &(a$) au (66)

When Formula 66 is applied to

the result is Laplace’s equation.

(67)

3u
*(p + &2?k)=o (68)

Finding the solution to Laplace’s equation for a given region is thus equivalent to

finding a function u( s. y) which yields a stationary point when the functional of Equation

67 is applied, integrated with respect to x and y, then differentiated with respect to 1’.

Finding the potential in this manner does not appear any easier than solving for v directly.

However, the region R can be broken up into a set of smaller elements, E, and the total

integral approximated as the sum of the integrals of the parts.
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(69)

If the Function 1’ used for each small element is simple enough so that Equation 67

is independent of x and y, then calculating the previous integral is simple; it is just the

area of the element times the function F( ~1). Stationary points of this integral can be

calculated by setting ilF( v)/c%, = 0, where tve is the voltage function for the element.

A solution for the entire system requires that these partial derivatives for each element

be satisfied simultaneously. The entire integral is thus replaced by a set of simultaneous

equations.

To illustrate how this method works, this section derives the element equations for

a triangular element, then describes how the equations for each individual element can

be combined. Triangles are the most commonly used finite element because any two-

dimensional polygon may broken down into them. A typical triangular element is shown

in Figure 17. It has vertices { i.j, k} at the points (s,. y,),(s,. y, ), and (sk, yI;); the

potentials at these points are b;, 11, and I,;, respectively. The potential for any point

in the element will be defined as some linear combination of vertex potentials (Equation

70).’ The interpolating functions d will be linear functions of x and y.

w-.Y) =  de.Y)K  +  d,(s,y)c;  +  dq.(.r.y)l~;

$1 = a,+ b,r+ c,y

4, = a,+ b,s+ c,~
ok = ok+ bkx+ cky

(70)

The first step is to calculate the coefficients for these functions Q. The equation for

the voltage forms a plane,

V(s, y) = A + Bx + cy (71)

which has to have values L:,L;,and 1; at the three vertices. The constants =I, B, and C

can be determined by solving for these three values simultaneously.

‘Allowing the voltage to vary linearly is equivalent to requiring he current density in the element to
be constant, since .I = -aW’.
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I
1 l’J YJ

1 .l’k yk
(721

.4 = ((zJyk - sk!/J)l':+ (.l'k% -~ayk)~+  (zIgI - xJgl)Vk)/-4rea

B = ((YJ - Yk)b:+ (yk - !dv,+ (yt - yl)h)/‘4rea

C= ((Sk - xJ)x+ (x, - sk)L;+ (XJ - xc,)b;)/Area
(73)

heu = .rJyk + xlyJ+ .rk% - xJyt- xtyk - $/,xk

-Area, the determinant of the 3x3 matrix, is equal to twice the area of the element.

This can be seen by shifting and rotating the element. If the element is moved so that

point i is at the origin, the equation for Area can be rewritten with the transformed

coordinates.

x: = 0, y: = 0

x; =x3-x,, y; = YJ - Yl

X; = Sk - x,, 9; = yk - YL

-Area = xl y; - ylx;

(74)

The element can then be rotated by an angle 8 so that the edge ij is coincident with

the x-axis.

[

cos 0 -sin 0

sin 0 cos 0 1
The element’s area is half the length of edge ij times the height, which is 9;. after

transformation by Equation 75. This area is half the value for .-lren given in Equation

74.

(76)
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The coefficients C are linear functions of the vertex voltages, and may be broken into

their constituent components by inspection.

U, = (xJyk - xkyJ)/.4reu. u, = (xkyl - .rtyk)/A4reu, uk = (xLyJ - xJyl)/d4reu

b ,  =  (yJ - yr;)/‘Jrea. bJ = (yl;  - y,)/.-ireu. bk = (y, - y, )/.Arcu

c, = (I’k - .r,)/.-ireu, c, = (x, - xk)/.-lreu. ck = (xJ - x,)/,4rfa

(771
The next step is calculating the integral l(v). When Formula 67 is applied to the

element’s voltage relation (Equation 70), the resulting integrand is independent of x and

y, and the integral is just the area of the element.

I(v) = JJ
b,\; + b,l; + bkI’i 2*;((- 1 +c

c,\; + c,1,;  + c-kc;
.4reu =Ii-eu

)2 )dxdy (78)

I( 1’) = $-#I; +  b,l; +  h-1;-)’ +  (c,i; +  cJ1; + ‘$i)*) 179)

This expression for I( ~1)  can be differentiated to give three equations for the node

potentials in terms of one another.

dI ar- 1
&4 O=J =

dI 00.G = (80)

1

bf+< b,b, + c,cJ b,h + c,ck c; 0u4=1 b,b, +c,cJ q+< b,bk + c]ck II 1 II1,; = 0 (81)

b,bk + c,cI; bJ bk + CjCk bf. + cf. tz 0

When the values of a. b. c from Equation 77 are substituted in this array, it can be

rewritten in terms of three new constants, G,, G2, and G3.

I

-(Gl +G2) Gl G2

G -G +G3) G3

G2 G3 -G +G) _

G1 = -&(xJ"k + xt.2.k -xi - X,~J + y,yk +;yiyk - !/:: - YdJ)
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uG* = -(x,x, + J’]XI; - x; -
4-4 .r,sk + j/i$/, + $/,yk - y; - ytyk)

G3 = ~r,.l‘, + x,.l‘k  - .l’f - x,xk + y,y, + y,yk - !/f - Y,$/k) (84)

These constants have the units of conductance; the finite element defined by nodes

{i. j, k} can be replaced by three discrete resistors with values l/G,, l/Gz, l/G3. The

matrix for the entire system is thus equivalent to the discrete resistor network defined by

the finite elements.
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