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This thesis presents a versatile new multiplier architecture, which can
provide better performance than conventional linear array multipliers at a
fraction of the silicon area. The high performance is obtained by using a new
binary tree structure, the 4-2 tree. The 4-2 tree is symmetric and far more
regular than other multiplier trees while offering comparable performance,
making it better suited for VLSI implementations. To reduce area, a partial,
pipelined 4-2 tree is used with a 4-2 carry-save accumulator placed at its
outputs to iteratively sum the partial products as they are generated.
Maximum performance is obtained by accurately matching the iterative clock
to the pipeline rate of the 4-2 tree, using a stopp:able on-chip clock generator.

To prove the new architecture a test chip, called SPIM, was fabricated in a
1.6 pm CMOS process. SPIM contains 41,000 transistors with an array size
of 2.9 X 5.3 mm. Running at an internal clock frequency of 85 MHz, SPIM
performs the 64 bit mantissa portion of a double extended precision floating-
point multiply in under 120 ns. To make the new architecture commercially
interesting, several high-performance rounding algorithms compatible with
IEEE standard 754 for binary floating-point arithmetic have also been
developed.
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Chapter 1

Introduction

/ ‘

i

The growing market for fast floating-point co-processors, digital signal

processing chips, and graphics processors has created a demand for high-

speed, area-efficient multipliers. Current architectures range from small,

low-performance shift and add multipliers, to large, high-performance array

and tree multipliers. Conventional linear array multipliers achieve high

performance in a regular structure, but require large amounts of silicon. Tree

structures achieve even higher performance than linear arrays but the tree

interconnection is more complex and less regular, making them even larger

than linear arrays. Ideally, one would want the speed benefits of a tree

structure, the regularity of an array multiplier, and the small size of a shift

and add multiplier.

1



Chapter 1. Introduction

This thesis presents a new tree multiplier architecture which is smaller and

faster than linear array multipliers, and more regular than traditional

multiplier trees. At the heart of the architecture is a new tree structure, the

4-2 tree. The regular structure of the 4-2 tree is the result of using a 4-2

adder as the basic building block. A row of 4-2 adders can be used to reduce

four inputs to two outputs. In contrast, the carry-save adders used in

Wallace trees reduce three inputs to two outputs. The 240-1 reduction of the

4-2 adders produces a binary tree structure which is much more regular than

the, 3-to-2 structure found in Wallace trees. As such, 4-2 trees are better

suited for VLSI implementations than traditional multiplier trees.

To reduce the size of the multiplier a partial tree is used together with a 4-2

carry-save accumulator placed at its outputs to iteratively accumulate the

partial products. This allows a full multiplier to be built in a fraction of the

area required by a full array. Higher performance is achieved by increasing

the hardware utilization of the partial 4-2 tree through pipelining. To ensure

optimal performance of the pipelined 4-2 tree, the clock frequency must be

tightly controlled to match the delay of the 4-2 adder pipe stages. To

accomplish this, an on-chip clock generator is proposed which can accurately

match, and track, the delay of the 4-2 multiplier logic. To demonstrate the

feasibility of 4-2 pipelined iterative multipliers a test chip, called SPIM, was

implemented in a 1.6 pm CMOS technology.

Finally, there is more to multiplication than just summing partial products.

To facilitate the construction of fast floating-point multipliers, several new

rounding algorithms, compatible with IEEE standard 754 for binary floating-

point arithmetic, have been developed. While these rounding algorithms are

2



Chapter 1. Introduction

useful for many multiplier architectures, the iterative 4-2 multiplier’s use of a

partial tree means it requires significantly less additional rounding hardware

than full trees, with no performance penalty.

1.1 Organization
The next chapter provides background information on the basics of binary

multiplication. The advantages and disadvantages of various hardware

multiplier architectures including linear arrays, trees, and iterative

techniques are discussed.

Chapter 3 introduces a new multiplier architecture consisting of a pipelined

4-2 tree and 4-2 carry-save accumulator. The 4-2 adder, which is the basic

building block used to construct 4-2 trees, is presented. Next, it will be

shown how rows of 4-2 adders can be used to form the regular binary

structure of the 4-2 tree. The advantages of 4-2 trees over traditional

multiplier trees are then discussed. To reduce area, a partial 4-2 tree is

pipelined and used in conjunction with a 4-2 carry-save accumulator. The

performance and size of iterative 4-2 multipliers is then compared to

conventional linear array multipliers, demonstrating the advantages of the

new architecture.

Chapter 4 presents a test chip, the Stanford Pipelined Iterative Multiplier

(SPIM), which was fabricated to demonstrate the feasibility of the new

architecture. SPIM implements the mantissa portion of a double extended

precision (80 bit) floating-point multiply. By using a partial, pipelined 4-2

3



Chapter 1. Introduction

!

tree and accumulator, SPIM provides over twice the performance of a

comparable conventional full array at l/4 of the silicon area. Future

improvements based upon information learned from measurements and

observations on the SPIM chip are then presented.

Chapter 5 discusses the issues involved in clocking high-speed multipliers.

To ensure optimal performance, the 4-2 tree must be clocked at a rate equal

to the combinational delay of the 4-2 stages. To achieve such tight control on

the fast iterative multiplier clock, an on-chip clock generator is proposed that

can accurately match, and track, the delay of the 4-2 multiplier logic.

Techniques for the distribution and use of high-speed multiplier clocks will

then be presented. Finally, performance limits based upon current and

future technologies will be discussed.

Chapter 6 presents several high-performance rounding algorithms that

adhere to IEEE standard 754 for binary floating-point multiplication. It will

then be shown that partial tree iterative multipliers require less additional

rounding hardware than full trees, with no performance penalty.

Finally, Chapter 7 presents a summary of the contributions of this thesis, and

describes directions for future investigations.

4



Chapter 2

Background

Webster’s dictionary defines multiplication as “a mathematical operation that

at its simplest is an abbreviated process of adding an integer to itself a

specified number of times”. A number (multiplicand) is added to itself a

number of times as specified by another number (multiplier) to form a result

(product). In elementary school, students learn to multiply by placing the

multiplicand on top of the multiplier. The multiplicand is then multiplied by

each digit of the multiplier beginning with the rightmost, Least Significant

Digit (LSD). Intermediate results (partial-products) are placed one atop

the other, offset by one digit to align digits of the same weight. The final

product is determined by summation of all the partial-products. Although

most people think of multiplication only in base 10, this technique applies

equally to any base, including binary. Figure 2.1 shows the data flow for the

basic multiplication technique just described. Each black dot represents a

single digit.

5



Chapter 2. Background

l l l l l l l l Multiplicand
X l l l l l l l l Multiplier

l . ..~...
0 l 0 0 0 0 0 l 1

l o o o o o o o
l o o o o o o o

I

Partial
l o o o o o o o Products

l e.e.0..
l o o e o e o o

l o o o o o o o

l  o o o o o o o o o o o o m e * Result

Figure 2.1 Basic Multiplication Data Flow

2.1 Binary Multiplication
In the binary number system the digits, called bits, are limited to the set

[0, 11. The result of multiplying any binary number by a single binary bit is

either 0, or the original number. This makes forming the intermediate

partial-products simple and efficient. Summing these partial-products is the

time consuming task for binary multipliers. One logical approach is to form

the partial-products one at a time and sum them as they are generated.

Often implemented by software on processors that do not have a hardware

multiplier, this technique works fine, but is slow because at least one

machine cycle is required to sum each additional partial-product. For

applications where this approach does not provide enough performance,

multipliers can be implemented directly in hardware.

6



Chapter 2. Background

2.2 Hardware Multipliers
Direct hardware implementations of shift and add multipliers can increase

performance over software synthesis, but are still quite slow. The reason is

that as each additional partial-product is summed a carry must be

propagated from the least significant bit (lsb) to the most significant bit

(msb). This carry propagation is time consuming, and must be repeated for

each partial product to be summed.

One method to increase multiplier performance is by using encoding

techniques to reduce the the number of partial products to be summed. Just

such a technique was first proposed by Booth [BOO 511. The original Booth’s

algorithm ships over contiguous strings of l’s by using the property that: 2” +

2(n-1) + 2(n-2) + . . . + 2hm) = 2(n+l) - 2(n-m). Although  Booth’s algorithm

produces at most N/2 encoded partial products from an N bit operand, the

number of partial products produced varies. This has caused designers to use

modified versions of Booth’s algorithm for hardware multipliers. Modified 2

bit Booth encoding halves the number of partial products to be summed.

Since the resulting encoded partial-products can then be summed using any

suitable method, modified 2 bit Booth encoding is used on most modern

floating-point chips [LU 881, [MCA 861. A few designers have even turned to

modified 3 bit Booth encoding, which reduces the number of partial products

to be summed by a factor of three IBEN 891. The problem with 3 bit encoding

is that the carry-propagate addition required to form the 3X multiples often

overshadows the potential gains of 3 bit Booth encoding.

7



Chapter 2. Background

To achieve even higher performance, advanced hardware multiplier

architectures search for faster and more efficient methods for summing the

partial-products. Most increase performance by eliminating the time

consuming carry propagate additions. To accomplish this, they sum the

partial-products in a redundant number representation. The advantage of a

redundant representation is that two numbers, or partial-products, can be

added together without propagating a carry across the entire width of the

number. Many redundant number representations are possible. One

commonly used representation is known as carry-save form. In this

redundant representation two bits, known as the carry and sum, are used to

represent each bit position. When two numbers in carry-save form are added

together any carries that result are never propagated more than one bit

position. This makes adding two numbers in carry-save form much faster

than adding two normal binary numbers where a carry may propagate. One

common method that has been developed for summing rows of partial

products using a carry-save representation is the array multiplier.

2.2.1 Array Multipliers

Conventional linear array multipliers consist of rows of carry-save adders

(CSAj.1  A port’ion of an array multiplier with the associated routing can be

seen in Figure 2.2. In a linear array multiplier, as the data propagates down

through the array, each row of CSA’s adds one additional partial-product to

the partial sum. Since the intermediate partial sum is kept in a redundant,

lC!any save adders are also often referred to as full adders or 3-2 counters. Each CSA takes
in three inputs of the same weight and produces two outputs, a sum of weight 1 and a carry
of weight 2.

8



Chapter 2. Background

carry-save form there is no carry propagation. This means that the delay of

an array multiplier is only dependent upon the depth of the array, and is

independent of the partial-product width. Linear array multipliers are also

regular, consisting of replicated rows of CSA’s. Their high performance and

regular structure have perpetuated the use of array multipliers for VLSI

math co-processors and special purpose DSP chips, for example WAR 821.

II II II .L-.L-

7t7t 7777 7777
A B C  A  B CA BC A BC

trytry
A B C  A B CA B C  A B C

CSACSA CSACSA CSACSA CSACSA
Carry Sum Carry Sum Carry Sum Carry Sum

I 1 I I I I I

Carry Sum 1 Carry Sum I Carry Sum I Carry Sum

CSA CSA CSA CSA
Carry Sum Carry Sum Carry Sum Carry Sum

1 I I

Figure 2.2 Two Rows of an Array Multiplier*

The biggest problem with full linear array multipliers is that they are very

large. As operand sizes increase, linear arrays grow in size at a rate equal to

2The large black dots represent the bits of the partial products to be summed. The partial
products can be formed by any of several methods including: a logical AND of the multiplier
and multiplicand bits, or by Booth encoding.
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Chapter 2. Background

the square of the operand size. This is because the number of rows in the

array is equal to the length of the multiplier, with the width of each row

equal to the width of multiplicand. The large size of full arrays typically

prohibits their use, except for small operand sizes, or on special purpose math

chips where a major portion of the silicon area can be assigned to the

multiplier array.

Another problem with array multipliers is that the hardware is underutilized.

As the sum is propagated down through the array, each row of CSA’s

computes a result only once, when the active computation front passes that

row. Thus, the hardware is doing useful work only a very small percentage of

the time. This low hardware utilization in conventional linear array

multipliers makes performance gains possible through increased efficiency.

For example, by overlapping calculations pipelining can achieve a large gain

in throughput [NOL 861. Figure 2.3 shows a full array pipelined after each

row of CSA’s. Once the partial sum has passed the first row of CSA’s,

represented by the shaded row of GSA’s in cycle 1, a subsequent multiply can

be started on the next cycle. In cycle 2, the first partial sum has passed to the

second row of CM’s, and the second multiply, represented by the cross

hatched row of CSA’s, has begun. Although pipelining a full array can

greatly increase throughput, both the size and latency are increased due to

the additional latches .s While high throughput is desirable, for general

purpose computers size and latency tend to be more important; thus, fully

pipelined linear array multipliers are seldom found.

3Adding latches after each row of C&i’s, as in Figure 2.3, typically increases both the size
and latency from 30 to 50 96. Due to the large latch overhead, more than one row of CM’s is
usually placed between latches.

10
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CSA CSA CSA CSA CSA CSA CSA CSA

I I I I

Cycle 1

Figure 2.3 Data Flow Through a Pipelined Array Multiplier4

41n Figure 2.3 the black bars represent latches.  In Figures 2.3 - 2.6 the detailed routing has
not been shown. Providing the exact detailed routing, as was done in Figure 2.2, would
significantly complicate the figures and would tend to obscure their purpose, which is to show
the data flow in terms of pipe stages and CSA delays.
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Chapter 2. Background

2.2.2 Iterative Techniques

To reduce area, some designers use partial arrays and iterate using a clock.

At the limit, a minimal iterative structure would have one row of CSA’s and a

latch (see Figure 2.4).5 Clearly, this structure requires the least amount of

hardware, and has the highest utilization since each CSA is used every cycle.

An important observation is that iterative structures are fast if the latch

delays are small, and the clock is matched to the combinational delay of the

CSA’s. If both of these conditions are met, iterative structures approach the

same throughput and latency as full arrays. The only difference in latency is

due to the latch and clock overhead. Although they require very fast clocks, a

few companies use iterative structures in their new high-performance floating

point processors [ELK 871.

CSA CSA CSA CSA

Figure 2.4 Minimal Iterative Structure

51n fact, one rarely finds a multiplier array that consists of only a single row of CSA’s. Like
the pipelined linear array, the latch overhead with only a single row of CM’s between latches
is extremely high.

12



Chapter 2. Background

In an attempt to increase performance of the minimal iterative structure

additional rows of CSA’s could be added to make a bigger array. For example,

the addition of one row of CM’s to the minimal structure would yield a

partial array with two rows of CM’s (see Figure 2.5). This structure provides

two advantages over the single row of CSA cells: 1) it reduces the required

clock frequency, and 2) it requires only half as many latch delays. It is

important to note that although the number of CSA’s has been doubled, the

latency was reduced only by halving the number of latch delays. The number

of CSA delays remains the same. Thus, assuming the latch delays are small

relative to the CSA delays, increasing the depth of the partial array by adding

additional rows of CSA’s in a linear structure yields only a slight increase in

performance.

‘I
CSA CSA CSA CSA

I I I I

Figure 2.5 Partial Linear Array
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Chapter 2. Background

To achieve additional increases in performance one obvious step is to make

the CM’s faster. Another powerful technique for increasing performance is

to reduce the number of series additions required to sum the partial-products

by using tree structures.

2.23 Tree Structures

Trees are an extremely fast structure for summing partial-products. In a

linear array, each row sums one additional partial product. As such, linear

arrays require order N stages to reduce N partial-products. In contrast, by

doing the additions in parallel, tree structures require only order log N stages

to reduce N partial products (see Figure 2.6).

t

Binary Tree
Depth 01 IogN

Figure 2.6 Linear Array versus Tree Structure
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Chapter 2. Background

Although trees are faster than linear arrays they still require one row of

CSA’s for each partial-product to be summed, making them large. Additional

wiring required to gather bits of the same weight makes trees even larger

than linear arrays. The additional wiring required of full trees over linear

arrays has caused designers to look at permutations of the basic tree

structure to ease the routing [ZUR 861. Unbalanced or modified trees make a

compromise between conventional full arrays and full tree structures. They

reduce the routing required of full trees, while slightly increasing the

serialization of the partial-product summations.

Another problem with most common multiplier trees is that they lack the

symmetry and regularity of the binary tree shown in Figure 2.6. Wallace

[WAL 641, Dadda [DAD 651, and most other multiplier trees use a CSA as the

basic building block. The CSA takes 3 inputs of the same weight and .

produces 2 outputs, a sum of weight 1 and a carry of weight 2. Given this 3-2

nature it is impossible to build a completely regular tree structure. In Figure

2.7, the wire which must run around CSA number 3 demonstrates the

inherent irregularities of 3-2 trees.

Regularity is an important issue in VLSI designs. Regular structures can be

constructed from building blocks that are laid out only once, and then tiled

together. This reuse tends to increase performance, reduce the risk of

mistakes, and reduce layout time. The irregular nature of most multiplier

trees makes them notoriously difficult to design and lay out. Module

generators can be used to automate the routing process, but the resulting

structures still require significant area [GAM 861.
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Figure 2.7 A 6 Input Wallace Tree Slice

To produce a more regular tree structure, multipliers based upon redundant

representations other than carry-save form have been presented [HAR 871.

In an attempt to reduce both the size and complexity of the wiring, one

architecture uses a radix 4 redundant form to produce a binary like tree, then

encodes the signals using multiple-valued logic to reduce wire

interconnections [RAW 881. To reduce wiring, the DEC MultiTitan multiplier

uses higher order counters which reduce the partial products more rapidly

than the 3-2 reduction factor found in Wallace trees [JOU 881. The higher

order counters perform a 2-to-1 compression to achieve a binary tree

structure. To reduce area, the MultiTitan multiplier uses a half tree which is

“double pumped” on alternate phases of the system clock.
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No matter which type of tree structure is used, full trees are big. One method

to reduce tree size is to use a partial tree and iteratively accumulate the

partial products. This technique was first used on the IBM 360 Model 91

floating point unit which uses a partial 3-2 tree, and then iteratively

accumulates the partial products using a carry-save accumulator [AND 671.

One problem with the Model 91 architecture is that the 3-2 tree structure is

not regular. In addition, the fast iterative clocks require tight control over

pipe stage delays. The irregular tree structure, combined with the fact that

the multiplier was implemented at the board level, made signal routing and

balancing the separate pipe stages difficult. Still, the Model 91 multiplier

demonstrated the advantages of partial iterative trees. The next chapter will

demonstrate how the advantages of partial iterative trees can be applied to a

regular tree structure, which is integrated on a single VLSI chip, to provide

the performance advantages of trees in a smaller, more regular structure.

2.3 Summary
Virtually all high-performance multipliers use a redundant number

representation to eliminate intermediate carry propagate additions when

summing partial products. Array multipliers are fast and regular, and, as

such, are well suited for VLSI implementations. Trees have even higher

performance, but the lack of a regular structure makes them difficult to

design and lay out. Regular tree structures can improve layout density,

increase performance, and reduce layout time. Ideally, one would want the

performance benefits of trees in a small, regular structure. An architecture

which provides these benefits will be discussed in the next chapter.
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Architecture

The last chapter showed that tree structures are an extremely fast method for

summing partial products. Though fast, most commonly used multiplier

trees are very large, and irregular. This chapter introduces a new tree

structure, the 4-2 tree, which is similar to a binary tree in nature, and, is

therefore, both symmetric and regular. It will then be shown that pipelining

a partial 4-2 tree and iteratively accumulating the resulting partial products

can provide the performance advantages of trees in a significantly smaller

size. The result is a flexible multiplier architecture in which the partial tree

size can be adjusted to meet area and performance constraints.
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3.1 A New Tree Structure
The 2-to-1 nature of binary trees makes them symmetric and regular. The

fact is, any basic building block which reduces partial products by a factor of

two will yield a regular and symmetric tree. The most basic 2-to-1 reduction,

reducing two binary numbers to one, requires a carry propagate adder.

Although a regular structure would result, the long carry propagation time

makes this structure too slow to be useful in a high-performance multiplier

core. A redundant number representation can be used to overcome the carry

propagation problem; however, numbers in carry-save form require two bits

to represent each single bit position. As a result, reducing two carry-save

numbers to one carry-save number requires an adder which takes in four

inputs and sums them to produce two outputs. This redundant binary adder

can be efficiently constructed from a basic building block known as the 4-2

adder. Using 4-2 adders a new tree structure, the 4-2 tree, can be

constructed. The redundant number representation makes the 4-2 tree fast,

and, because it is a binary tree, it is also symmetric and regular.

3.1.1 The 4-2 Adder

Figure 3.1 is a block diagram of the 4-2 adder. The corresponding 4-2 adder

truth table is shown in Table 3.1.
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In1 In2 In3 In4

C o u t  e
4-2

Adder J Cln

I I
t t

Carry Sum

Figure 3.1 4-2 Adder Block Diagram

N Cin I C_ __ _
0 0
1 0
2 0
3 0
4 0
0 1
1 1
2 1
3 1
4 1

Joutt C a r r y
0 0
0 0
l 4

1 0
1 1
0 0
0 1
l l

1 1
1 I 1

Sum
0
1
0
1
0
1
0
1
0
1

Table 3.1 4-2 Adder Truth Table

Notes: N = the number of inputs from [Inl, ln2, ln3, In41 equal to 1
t The Cout output must not be a function of the Cin input.
* Either Cout or Carry will be a 1, with the other a 0.
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The 4-2 adder has occasionally been implemented, either intentionally or

coincidentally, using two CSA’s in series (see Figure 3.2). This configuration

is not optimal, but is quite efficient. 6 Although implementing a 4-2 adder

directly from its truth table can produce a faster structure, few attempts have

been made at direct 4-2 adder implementations, with one exception [SHE 781.

In1 In2 In3 In4

Cout

7 ,
CSA

c s
4 J

7
CSA

, c S

Cin

Carry Sum

Figure 3.2 4-2 Adder CSA Implementation

Although the 4-2 adder actually has five inputs and three outputs, the name

is derived from the fact that a row of 4-2 adders reduces 4 numbers to 2 (see

Figure 3.3). The name also serves to distinguish the 4-2 adder from a 5-3

counter. Both the 4-2 adder and 5-3 counter take in 5 inputs of the same

61mplementing  the 4-2 adder with two CSA’s is also useful as a metric for comparisons to
other architectures. In this dissertation comparisons with other architectures are often made
based on CSA delays. This provides a fair comparison since it is both technology and circuit
independent.
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weight; however, a 5-3 counter produces 3 outputs of different weights, while

the 4-2 adder produces a sum of weight 1 and two carries of weight 2. Also,

the Cout output of a 4-2 adder must not be a function of the Cin input, or a

ripple carry could occur when using a row of 4-2 adders to construct a

redundant binary adder.

In1 in2 In3 In4 In1 In2 In3 In4 In1 In2 In3 In4 In1 In2 In3 In4

4-2 4-2 4-2 4-2
-cold Cln * Cout Cln * Cout Cln * Cout Cln W-

Carry S u m Carry S u m Carry Sum Carry Sum

4 I

Figure 3.3 A Row of 4-2 Adders

3.1.2 The 4-2 Tree

The 4-2 adder is the basic building block used to construct 4-2 trees. An

example of an 8 by 8 bit 4-2 tree is shown in Figure 3.4. Three 8 bit deep

rows of 4-2 adders are used to form the 4-2 tree. In the 4-2 tree, for every

four inputs taken in at one level, two outputs are produced at the next lower

level. Since each level of the the 4-2 tree reduces two redundant numbers to

one redundant number the 4-2 tree can also be viewed as a redundant binary

tree. Its binary nature makes the 4-2 tree regular, and as such better suited

for VLSI implementations than 3-2 trees.
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u-u8 8 8 8

8 bit deep
row of 4-2

Adders

u-i-i8 8 8 8

8 bit deep
row of 4-2

Adders

Figure 3.4 An 8 Input 4-2 Tree (Front View)

To simplify the diagrams, typically only a single slice of the complete

multiplier tree is shown. The slice is taken at one bit position where all of the

inputs to the adders are of the same weight. An example is the Wallace tree

slice that was shown in Figure 2.7. To form the complete multiplier at least

one tree slice is required for each operand bit, with the intermediate carries

communicating between adjacent slices. A single 4-2 adder wide slice of the

4-2 tree is shown in Figure 3.5.
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4-2 4-2
Adder Adder

4-2
Adder

Figure 3.5 An 8 Input 4-2 Tree Slice (Front View)

This slice represents a single bit cross section of the full 4-2 multiplier tree,

consisting of a tree of 4-2 adders whose inputs are all of the same weight.

Since the 4-2 adder output carry has weight 2, as opposed to the inputs and

the sum output which have weight 1, it must obviously be routed to the

adjacent bit slice. This is also the case for 3-2 trees, as shown in Figure 2.7.

In Figure 3.5 the intermediate carries (Cin and Cout) which connect between

adjacent 4-2 adders in a row (as in Figure 3.3) are not shown. The Carry

output of each 4-2 adder, which is routed to the 4-2 adder in the adjacent

slice, is drawn in bold to represent the carries routing into and out of the

page.
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Figure 3.6 Multiple 4-2 Tree Slices Form a 4-2 Multiplier

Figure 3.6 is a three dimensional view of the 8 input 4-2 tree that was shown

in Figure 3.4. Each of the triangular slices represents a single 8 input 4-2

tree slice from Figure 3.5. In producing a layout of the 4-2 multiplier, each

4-2 tree slice typically forms a single bit slice of the array. Obviously, to

construct the physical layout the tree slices must be flattened. One way to

accomplish this is to place the 4-2 adders from each tree slice one atop the

other, forming a bit slice which is one 4-2 adder wide. A layout view of a full

8 by 8 bit 4-2 multiplier array can be seen in Figure 3.7. A horizontal slice

across the array contains a single row of 4-2 adders, as shown in Figure 3.3.
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Tree
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4-2
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Slice

Figure 3.7 An 8 Bit 4-2 Multiplier Bit Slice Layout

Like all trees the 4-2 tree is fast. A 4-2 tree sums N partial products in

logz(N/2)  4-2 stages, whereas a Wallace tree requires logl.a(N/2)  3-2 stages.

Though the 4-2 tree might appear faster than the Wallace tree, the basic 4-2

cell is more complex than a single CSA, so the speeds are comparable. The

regularity of 4-2 trees over 3-2 trees does, however, tend to contribute to

increased performance. One reason is that regular structures have

predictable wire lengths. This means that buffers can be more easily, and

accurately, tuned to match the wire loads.

Another advantage of 4-2 trees over 3-2 trees is that they can be more easily

pipelined. This is partially due to the more regular structure. Pipelining a

4-2 tree is a simple matter of adding a latch after each 4-2 adder. Pipelining

provides maximum throughput with only a small increase in latency, which is

caused by the additional latches. In the next section it will be shown how
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pipelining can also be important in reducing the size of the multiplier while

still achieving high performance.

3.2 Reducing Multiplier Area

Wallace trees and linear arrays both require approximately one CSA for each

partial product to be reduced. Similarly, 4-2 trees require one 4-2 adder for

every two partial products. Thus, like the other structures, 4-2 trees are

large. One solution to the size problem is to use a partial 4-2 tree. As an

example, a 64 bit operand could be multiplied in four pieces using a 16 X 64

bit partial 4-2 tree. The four partial results are then summed to form the

complete result. One performance limiting factor of this method is the

latency through the 4-2 tree. The first 16 X 64 bit partial multiply must flow

through the entire 4-2 tree before the next partial multiply can be started

down the array.

The solution to the latency problem lies with better hardware utilization.

Just as the pipelined linear array greatly increases throughput by increasing

utilization, pipelining a 4-2 tree after each level of 4-2 adders greatly

increases its throughput (see Figure 3.8). Although the latency for the first

partial multiply through the tree would be slightly longer due to the added

latches, subsequent partial results arrive on each 4-2 cycle thereafter. The

result is that much less time is required to generate all of the partial results.

As an example, the pipelined 16 X 64 tree shown in Figure 3.8 would require

6 cycles to generate all four 16 X 64 bit partial results, where each cycle

consists of a 4-2 adder and a latch. In contrast, a 16 X 64 tree which is not
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pipelined would require 12 4-2 adder delays. Assuming the latch delays are

small relative to the 4-2 adder delays, the pipelined structure would be about

twice as fast.

4-2
Adder

I I

4-2
Adder

4-2
Adder

4-2
Adder

4-2 4-2
Adder Adder

I I I I

4-2
Adder

Figure 3.8 A Pipelined 4-2 Tree

The problem with generating the partial results at such a fast rate is that the

accumulator needs to operate at the same frequency as the pipelined 4-2

adder stages, so it can sum the partial products as they are generated. A

carry propagate adder is clearly too slow, but a 4-2 carry-save accumulator

can operate at this rate.
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The 4-2 carry-save accumulator is constructed from a row of latched 4-2

adders. Two of the 4-2 adder inputs are used to sum the previously latched

outputs, while the other two inputs are used for the new partial sum. Since

each partial sum generated by the partial 4-2 tree is more significant than the

previous partial sum, the latched accumulator outputs must be shifted to

align with the new partial sum. For example, an 8 input partial 4-2 tree

requires an 8 bit shift in the accumulator to align bits of the same weight.

Figure 3.9 shows a 4 bit 4-2 carry-save accumulator.

shift

Figure 3.9 The 4-2 Carry-Save Accumlator

Fast area efficient multipliers can be constructed from partial, pipelined 4-2

trees and 4-2 carry-save accumulators. A minimal partial 4-2 tree consists of

a single row of 4-2 adders. Figure 3.10 compares a minimal partial 4-2 tree

and 4-2 accumulator slice, to a partial linear array slice.’ Both structures

reduce 4 partial products per cycle. Notice, however, that the 4-2 tree

structure has only two CSA’s per pipe stage, whereas the partial piped array

has four. Consequently, the 4-2 structure is clocked at almost twice the

‘The 4-2 adders are implemented with series CSA’s for comparison.
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frequency of the partial piped array. The result is a much faster multiply.

For example, to reduce 32 partial products the partial linear array would

require 8 cycles, for a total of 32 CSA delays. In contrast, the partial 4-2 tree

would require 9 4-2 cycles, one cycle to pass through the 4-2 tree and 8 cycles

to accumulate the 32 partial products, for a total of 18 CSA delays. Thus, the

4-2 adder and accumulator is almost twice as fast as the partial piped array,

while using roughly the same amount of hardware.

4-2
Carry-Save

Accumulator

CSA

I I

Y-3CSA

75CSA

Figure 3.10 4-2 Tree and Accumulator vs. Partial Linear Array

31



Chapter 3. Architecture

Larger partial, pipelined 4-2 trees can be used to further increase

performance. Figure 3.11 shows a bit slice of an 8 input partial, pipelined 4-2

tree with a 4-2 accumulator. This configuration reduces 8 partial products

per cycle. For comparison, this structure would reduce 32 partial products in

only six 4-2 adder delays (12 CSA delays). Notice that the tree is still piped

after each 4-2 adder. In contrast, if the tree were piped after every two 4-2

adders it would double the cycle time and only decrease the number of cycles

by one. The overall effect would be a much slower multiply. The important

point is that tighter pipelining increases hardware utilization, which in turn

increases performance.

4-24-2 4-24-2
AdderAdder AdderAdder

4-24-2
AdderAdder

Figure 3.11 An 8 Input Partiai 4-2 Tree and 4-2 Accumulator
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3.3 Multiplier Performance
There are two important metrics of multiplier performance, latency and

throughput. Latency is usually more important in most general purpose

multiplier applications, though throughput is important for applications such

as digital signal processing. In a conventional array multiplier the latency is

linearly proportional to the number of partial products to be reduced. In

other words, a linear array requires N CSA delays to reduce N partial

products. In contrast, the latency of the partial, pipelined 4-2 tree multiplier

is equal to the depth of the partial 4-2 tree plus the number of cycles needed

to accumulate the complete product. As previously stated, the depth of a K

bit 4-2 tree is loga(W2) cycles. Given a K bit partial tree, K partial products

would be summed by the accumulator each cycle. Thus a total of N/K cycles

would be required to accumulate the full N partial products. To summarize,

given a K bit partial 4-2 tree, the number of 4-2 cycles latency required for a

4-2 multiplier to reduce N partial products would be:

Latenw4.2 cycles) = logs(KI2) + (N/K) (3.1)

Like the linear array, a partial 4-2 tree which reduces K partial products per

cycle requires K CM’s per bit-slice (K/2 4-2 adders). The cycle time of the 4-2

structure is, of course, much less, resulting in much higher performance for

the 4-2 multiplier. Notice that although a partial tree is used in place of a

full tree, the logarithmic nature of the tree structure still makes the partial

4-2 tree multiplier much faster than a conventional linear array of the same

size. The size and speed advantages of different sized partial, pipelined 4-2
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trees with 4-2 accumulators over conventional linear arrays can be seen in

Figure 3.12.

It4 Array n Full Array

4 input Plped tree

8 Input Piped tree

n Conventional
partial array
structures

‘I Piped partial
tree structures I

vm-7 Full Tree

I

l/4

I

l/2

I

314

I w
i Size

(CSA celW32)

Figure 3.12 Architecture Comparison Plot8

8ThF plot assumes 32 rrtial products are to be reduced. Latency is in terms of CSA delays,
and mcludes  latches w lch have been assumed equivalent to l/3 of a CSA delay. Size is in
terms of the number of CSA’s,  and has been normalized such that 32 rows of CSA’s (a full
array) has a size of 1 unit. Size does not include latch or wiring area.
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Figure 3.12 is a price/performance plot where the price is size and the

performance is speed (latency = l/speed). In the upper left corner the 4-2 tree

and conventional linear array structures are virtually the same and can be

viewed as a partial array 2 rows deep, or as a 4-2 accumulator. It can be seen

that adding hardware to form larger partial linear arrays provides very little

performance improvement. A full linear array is only 15% faster than a

partial linear array using 2 rows of CSA’s. In contrast, its logarithmic nature

means that adding hardware to the partial, pipelined 4-2 tree dramatically

improves performance. For example, a 4 input partial, pipelined 4-2 tree and

accumulator is almost twice as fast as the 2 input tree. An 8 input tree is

almost three times faster than a 2 input tree and only l/4 the size of the full

array.

The other important measure of performance, throughput, is equal to the

fraction of the partial products reduced each cycle. The throughput for a K

bit partial 4-2 tree, given N bit operands, would be N/K cycles per product.9

Although doubling the number of inputs to the partial tree doubles the

throughput, it also doubles the number of 4-2 adders. Thus, as the partial

tree size increases the throughput and area both increase at a linear rate,

while the latency decreases at a logarithmic rate. Figure 3.13 shows the

relationship of latency and throughput to partial tree size for an operand size

of 64 bits.

gIf modified 2X Booth encoding were used, N would be one half the operand size since Booth
encoding provides a factor of 2 compression.
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Figure 3.13 Latency and Throughput vs. Partial Tree Size

While a full, pipelined 4-2 tree achieves a maximum throughput of one

multiply per 4-2 cycle, it is very large. Thus, a full 4-2 tree should only be

used when maximum throughput is required. When latency and area are the

deciding factors, smaller trees should be used. The latency for an N/4 sized

partial tree is only 2 cycles slower than that of a full tree of size N, while only

l/4 the size. The throughput is, of course, reduced by a factor of four. As an

example, a 16 input partial 4-2 tree would reduce 64 partial products in 7

cycles, compared to 5 cycles for a full 64 bit tree. Thus, the four fold increase

in area incurred by the full tree would provide only a 29 8 decrease in

latency. In addition, as the tree size increases the maximum wire length

increases. The longer wires tend to increase the cycle time, decreasing the
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potential gains of bigger trees. Selecting a partial tree size near the knee of

the latency curve provide8 a good latency-area tradeoff for most multiplier

applications.

3.4 Summary
A new multiplier architecture based upon pipelined 4-2 trees and 4-2 carry-

save accumulators has been developed. Constructed from 4-2 adders, the 4-2

tree is as efficient and far more regular than a Wallace tree and is, therefore,

better suited for VLSI implementations. To reduce area a partial, pipelined

4-2 tree is used. The regular structure of the 4-2 tree means it can be more

easily pipelined than other trees, increasing hardware utilization and

throughput. Then, by matching the speed of the piped 4-2 adder stages in the

tree, the 4-2 accumulator iteratively sums the partial products as they are

generated, achieving optimum performance. The combination of the partial,

pipelined 4-2 tree and 4-2 carry-save accumulator produces a multiplier

which is faster and smaller than linear array multipliers, and more regular

than traditional multiplier trees. In addition, the flexibility of this new

architecture allows the partial 4-2 tree size to be adjusted to meet

performance and area constraints. As such, a partial 4-2 tree can provide the

performance advantages of trees in instances where area limitations would

otherwise prohibit the use of a full multiplier tree.
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Implementation

The preceding chapter described a new multiplier architecture based upon a

partial, pipelined 4-2 tree and a 4-2 carry-save accumulator. To demonstrate

the feasibility of this new architecture a test chip, the Stanford Fipelined

Iterative Multiplier (SPIM),  was designed. By using a partial, pipelined 4-2

tree and 4-2 accumulator, SPIM implements a 64 bit mantissa multiplier

which is significantly faster and smaller than a linear array multiplier. This

chapter discusses the implementation of the SPIM chip, and presents test

results and performance measurements on the chip.
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4.1 The Stanford Pipelined Iterative Multiplier (SPIM)
The large size and performance requirements of floating-point co-processors

make a floating-point multiplier core an excellent vehicle to demonstrate the

size and performance advantages of iterative 4-2 multipliers. Since size and

performance become more of an issue as operand sizes increase, a large

operand size provides an even better example. The widest floating-point

format defined by IEEE standard 754, double extended, requires a mantissa

of at least 64 bits. Thus, to fully demonstrate the area and performance

advantages of iterative 4-2 multipliers, the SPIM chip implements the

mantissa portion (64-bits)  of a double extended precision floating-point

multiply. Although full IEEE rounding was not implemented in this

incarnation, the SPIM chip does implement a full 64 X 64 bit fractional

multip1y.l O

4.1.1 SPIM Implementation

The flexibility of iterative 4-2 multipliers provides for a wide range of possible

partial tree sizes, depending upon area and performance constraints. Based

on the architecture comparison plot from Chapter 3, summing 16 bits of the

64-bit mantissa per cycle was chosen as a good area/speed tradeoff. Modified

2 bit Booth encoding was used, producing 8 encoded partial products which

must be summed each cycle. This requires an 8 X 64 bit pipelined 4-2 tree

and 4-2 accumulator.

lOSevera algorithms for implementing IEEE rounding are presented in Chapter 6. Area and
performance impacts for conforming to the rounding standard are also discussed.
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Figure 4.1 SPIM Block Didgram

Figure 4.1 is a block diagram of the SPIM multiplier core. The Booth

encoders and Booth select MUX’s are shaded to distinguish them from the 4-2

tree and accumulator. The Booth encoders, which encode 16 bits per cycle,

are to the left of the data path. The Booth encoded bits drive across the array

and control the Booth select MUX’s in the A and B block. A separate pipe

stage was used for both Booth encoders and the Booth select MUX’S to ensure

that they did not limit the clock rate.
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The A and B block Booth select MUX outputs form the inputs to the 4-2 tree.

The 8 input pipelined 4-2 tree consists of two levels of 4-2 adders, found in the

A, B, and C blocks. Each pipe stage in the 4-2 tree contains one 4-2 adder

followed by a master/slave latch. The 4-2 adders were implemented using two

CSA cells. The D block is a 4-2 carry-save accumulator. A 16-bit hard wired

right shift is used to align the partial sum from the previous cycle to the

current partial sum to be accumulated.

Figure 4.2 is a die microphotograph of SPIM. The clock generator, which

creates the high-speed iterative clock, and control circuitry are found in the

lower left corner of the die. The Booth encoders reside in the upper left.

Moving to the array, the A block inputs have been pre-shifted, allowing the A

block to be placed directly on top of the B block. In addition to the 4-2 adders,

the A and B blocks contain the Booth select MUX’s, making them larger than

the C block which contains only the bottom row of 4-2 adders in the tree. The

D block 4-2 accumulator, including the additional wiring required for the

hard wired right shift, sits just under the C block. The D block outputs are

fed into a 64 bit carry propagate adder, which converts the redundant result

to a non-redundant binary form. The regularity of the 4-2 tree can easily be

seen in the die photograph. This regularity allowed the array to be efficiently

routed, and laid out as a bit slice in only 6 weeks.
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Figure 4.2 SPIM Die Microphotograph
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The critical path in the SPIM multiplier core is through the D block 4-2

accumulator. In addition to the 4-2 adder and master/slave latch, the D block

contains additional routing required for the 16 bit right shift, and an

additional control MUX at its input which is needed to reset the carry-save

accumulator. The MUX selects either a “0” to reset the accumulator, or the

previous shified output when accumulating. The critical path through the D

block includes 2 CSA’s,  a master/slave latch, a control MUX, and the drive

across 16 bits (128 pm> of routing.

4.1.2 SPIM Clocking

The architecture of SPIM yields a very fast multiply; however, the speed at

which the structure operates demands careful attention to clocking issues.

Pipelining the structure after each 4-2 adder block yields clock rates on the

order of 100 MHz. To produce a clock of the desired frequency SPIM uses a

controllable on chip clock generator. The clock is generated by a stoppable

ring oscillator (refer to Chapter 5; Clocking). The clock is started when a

multiply is initiated, and stopped when the array portion of the multiply has

been completed.

The clock generator used on SPIM is shown in Figure 4.3. It has a digitally

selectable feedback path which provides a programmable delay element for

test purposes. This allows the clock frequency to be tuned to the critical path

delay. The speed bits are used to control the length of the feedback path to
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within two inverter delays.11 In addition, a test mode was added to the SPIM

chip providing the ability to use an external test clock in place of the fast

internally generated clock. Since SPIM is fully static, this test clock can be

run at frequencies down to DC for test purposes.

,f speed1.h speed2.h speed3. h speed4. h

start. h

testcl k

testm0de.h

fclk

Figure 4.3 The SPIM Clock Generator

Referring to the SPIM die microphotograph, the clock generator is located in

the lower left hand corner of the die. The main iterative clock signal runs up

the side of the array, driving a set of matched buffers which are carefully

llOn the 1.6 pm CMOS implementation of SPIM the clock period could be adjusted to within
1.1 ns.
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tuned to minimize skew across the array. Wider than minimum metal lines

are used on the master clock line to reduce the resistance of the clock line

relative to the resistance of the driver. The clock and control lines, driven

from the matched buffers, are then run across the entire width of the array in

metal.

When a multiply signal has been received, a small delay occurs while starting

up the clocks. This delay comes from two sources. The first is the logic which

decodes the run signal and starts up the ring oscillator. The second source of

delay arises from the long control and clock lines running across the array.

The 2 pF loads require a buffer chain to drive them. The simulated delay of

the buffer chain and associated logic is 6 ns, almost half a clock cycle. Since

the inputs are latched before the multiply is started, SPIM does the first

Booth encode before the array clocks become active (cycle 0). Thus, the

startup time is not wasted. After the clocks have been started, SPlM requires

seven clock cycles (cycles l-7) to complete the array portion of a multiply.

The detailed cycle timing is shown in Table 4.1. In the time before the clocks

are started (cycle 01, the first 16 bits of the multiplier are Booth encoded.

During cycle 1, the encoded multiplier bits from cycle 0 control the Booth

MUX’s, selecting the appropriate multiplicand bits which are latched at the

input of the 4-2 tree. The next four cycles are needed to enter all 32 Booth-

coded partial products into the 8 input 4-2 tree. Two additional cycles are

required to pass through the C and D blocks. If a subsequent multiply were

to follow, it would have been started on cycle 4, giving a pipelined rate of 4

cycles per multiply. When the array portion of the multiply is complete the

carry save result is latched, and the run signal is turned off. Since the final
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partial sum from the D block is latched into the carry propagate adder only

every fourth cycle, several cycles are available to stop the clock without

corrupting the result.

0 1 2 3 4 5 6 7

Booth Encode

A and B block
Booth MUX’s

A Block
CSA’S

B Block
CSA’S

startup
O-15 16-31 32-47 46-63

o-15 1631 32-47 46-63

o-7 1623 32-39 46-55

6-15 24-31 4Q47 56-63

C Block

D Block

o-15 1631 32-47 46-63

clear
O-15 1631 32-47 46-63

NOTES: Numbers indicate which partial products are being reduced. 0 is the
least significant bit.

Table 4.1 SPIM Plpe Timing

4.1.3 SPIM Test Results

To accurately measure the internal clock frequency the clock was made

available at an output pin, allowing an oscilloscope to be attached. SPIM was

then placed in continuous (loop) mode where the clock is kept running and
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multiplies are piped through at a rate of one multiply every 4 cycles. Since

the clock is running continuously its frequency can be accurately determined.

Three components determine the actual performance of SPIM: 1) the start-up

time, when the clocks are started and the first Booth encode takes place (cycle

0); 2) the array time, which includes the time through the Booth select MUX’S,

the 8 input 4-2 tree, and the accumulation cycles (cycles l-7); and 3) the carry

propagate addition time, when the final carry propagate addition converts the

carry-save form of the result from the accumulator to a simple binary

representation. Due to limitations in our test equipment, only the array time

could be accurately measured. Since the array time requires 7 cycles, and the

array clock frequency was 85 MHz, the array time is simply 7*(1/85 MHz) =

82 ns. The startup and carry propagate addition times, based upon

simulations, were 6 and 30 ns respectively. In flowthrough mode, the total

latency is simply the sum of the startup time (6 ns), the array time (82 ns),

and the carry propagate addition time (30 ns), for a total of 118 ns. Thus,

SPIM has a total latency under 120 ns. The throughput of one multiply every

4 cycles, or 40(1/85 MHz) = 47 ns, gives SPIM a maximum pipelined rate in

excess of 20-million multiplies per second.

The performance range of the parts tested was from 85.4 to 88.6 MHz, at a

room temperature of 24.5 ‘C and a supply voltage of 4.9 V. One of the parts

was tested over a temperature range of 5 - 100 ‘C. At 5 ‘C it ran at 93.3

MHz, with speeds of 88.6 and 74.5 MHz at 25 and 100 ‘C, respectively. The

average power consumed at 85 MHz was 72 mA, while only 10 mA was

required in standby mode.
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4.2 Future Improvements
With the implementation of any integrated circuit new things are learned,

and SPIM was no exception. Referring back to the die microphotograph of

SPIM, the A and B blocks are three times as large as the C block. This was

due to the Booth select MUX’S used in the A and B blocks. Each Booth MUX,

with its corresponding latch, is larger than a single CSA. Also, due to the

routing required for the 16-bit shift, the D block is twice as large as the C

block. The array area can be split into four main components: routing, CSA

cells, MUXS, and latches (see Figure 4.4).

Routlng CSA cells

Figure 4.4 SPIM Area Pie Chart

The routing required 20 % of the area. This was about as expected, as it

includes all of the bit alignments, as well as the accumulator’s 16 bit right

* shift. The large static latches accounted for an additional 27 %. SPIM uses

full static master/slave latches, allowing the clocks to be run at frequencies
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down to DC for testing purposes. These latches are quite large. Additionally,

they are slow, requiring 25 % of the cycle time. Since the SPIM architecture

has been proven, smaller, faster, dynamic latches should be used on future

versions.

4-2
Adder

G‘CI-
8

- Booth : Booth -Booth q  Booth q

5
= Sel Z Sel I: Sel q
- mux - mux - mux - mux -

e 4-2
5 Adder

mo

4-2
Adder

4-2
Adder

Figure 4.5Figure 4.5 Booth Encoding vs. Additional 4-2 Tree LevelBooth Encoding vs. Additional 4-2 Tree Level

Interestingly, the CM’s occupy only 27 % of the core area. In contrast, the

Booth select MUX’s account for an area approximately equal to that of the

CSA’s. This was larger than expected. Although the Booth select MUX’s have

few devices, the select lines which must run across the array dominate the

Booth MUX area. These select lines tend to make the Booth MUX’S

approximately the same size as the CSA’s. While Booth encoding reduces the

number of partial products by a factor of two, the same result could be

achieved by adding one additional level of 4-2 adders to the tree. Since much

of the routing already exists for the Booth MUX’s, adding another level to the
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tree requires replacing every two Booth select MUX’s with a 4-2 adder and 4

AND gates (see Figure 4.5). In the case of SPIM, the Booth encoding

hardware can be replaced by an additional tree level without changing the

area of the multiplier core.

The biggest reason for not Booth encoding is that Booth encoding significantly

increases the complexity of the multiplier array. To begin with, Booth

encoding requires additional hardware which must be designed and laid out,

including the encoders and Booth select MUX%. Another problem with Booth

encoding is that it generates negative partial products. An increase in

complexity results in the need to handle these negative partial products

correctly. One example is the sign extension of negative partial products.

Another is the new sticky algorithm, developed in Chapter 6, which only

works on positive partial products. In the case of a floating-point multiplier,

replacing the Booth encoders with an additional level of 4-2 adders would

remove the negative partial products, significantly reducing the multiplier

complexity.

In the case of CMOS 4-2 multipliers, replacing the Booth hardware with an

additional tree level provides a significant reduction in complexity with no

increase in area. On this basis, future CMOS 4-2 multipliers should not use

Booth encoding. Using a larger tree in place of a smaller Booth encoded tree

is a viable alternative on other multiplier trees as well.12 A similar

observation about the size and complexity of Booth encoding was noted in

[JOU 881.

12An exception may be in the case of ECL, where fewer devices may favor the Booth muxes
over the C&l’s due to power considerations.
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Research on pipelined 4-2 trees and accumulators has continued. A test

circuit consisting of a new clock generator and an improved 4-2 adder has

been fabricated in a 0.8 pm CMOS technology. At room temperature the test

chip ran at 400 MHz, demonstrating the potential performance of iterative

4-2 multipliers.

4.3. Summary
SPIM was fabricated in a 1.6 pm CMOS process through the DARPA MOSIS

fabrication service. It ran at an internal clock frequency of 85 MHz at room

temperature. The latency for a 64 X 64 bit fractional multiply is under 120

ns. In piped mode SPIM can initiate a multiply every 4 cycles (47 ns), for a

throughput in excess of 20-million  multiplies per second. SPIM required an

average of 72 mA at 85 MHz, and only 10 mA in standby mode. SPIM

contains 41,000 transistors with a core size of 3.8 X 6.5 mm, and an array size

of 2.9 x 5.3 mm.

Aside from proving that a small, fast, regular multiplier can be constructed

from this new architecture, one of the more interesting discoveries learned

from the SPIM implementation was that Booth encoding should not be used

in future CMOS 4-2 multipliers. In the case of CMOS, Booth encoding

significantly increases complexity with no performance or area benefits.

While Booth encoding has its place where linear arrays are concerned, these

findings indicate that designers should reconsider the use of Booth encoding

for all future multiplier trees.
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Clocking

In previous chapters the architecture and design of multipliers using

pipelined 4-2 trees and accumulators was discussed. To achieve optimal

performance these multipliers must be clocked at a rate equal to the

combinational delay of the 4-2 stages. The correspondingly high clock

frequencies mandate careful attention to clocking. This chapter begins by

addressing the issues involved in generating high-speed clocks. An on-chip

clock generator is proposed which can accurately match, and track, the delay

of the 4-2 multiplier logic. Clock distribution, and use in the 4-2 multiplier

stages, will then be discussed. Finally, performance limits will be evaluated

for present and future technologies.
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5.1 Clock Generation
The high speed clocks used in the pipelined 4-2 tree and accumulator must be

matched to the delay of the 4-2 adders for optimal performance. Most system

clocks are typically much slower than required. A special high-speed system

clock could be used; however, system clocks cannot be adequately tuned to the

4-2 adder delay to achieve maximum performance. Another problem is that

the 4-2 logic delay changes with variations in temperature, supply voltage,

and processing. Clocks generated externally to the chip must maintain a

built-in margin of safety to take the worst case scenario of these variations

into account. This safety margin causes a loss in multiplier performance.

Worse yet, failure to keep an adequate margin can cause incorrect results.

These deficiencies with externally generated clocks can be overcome by

generating the multiplier clock on-chip.

5.1.1 A Generic On-Chip Clock Generator

A free running oscillator placed on the chip could be used to generate the

multiplier clock. While it would generate an adequate clock, it does pose

potential synchronization problems between the external system clock and

the internal multiplier clock. Synchronization between any two separate free

running clocks is always a problem. One method to overcome

synchronization problems between two separate clocks is by using a stoppable

clock [CHA 863. A stoppable clock is simply a clock which can be started and

stopped by an external signal. A simple generic stoppable on-chip clock

generation scheme is shown in Figure 5.1. It is implemented using a ring
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oscillator, and a NAND gate which is placed in the feedback path allowing the

clock to be stopped and started.

Figure 5.1 Generic On-Chip Stoppable Clock Generator

The generic stoppable on-chip clock generator eliminates synchronization

problems. In doing so it also provides a simple system interface. Once the

operands have been loaded, a multiply is initiated. This turns on the run

signal, starting the clock. When the array portion of the multiply is

completed the run signal is turned off, stopping the clock. The fast running

internal multiply clock is not seen by the outside world. To the outside world

the multiplier appears as a simple flow-through part. Like a simple logic

gate, the inputs are applied and sometime later the result is available at the

output pins. As a side benefit, the stoppable clock saves power over a free

running clock. Upon completing a multiply the clock is stopped, which

powers down the entire array.
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5.1.2 Matched Clock Generation

The key to using the generic clock generator from Figure 5.1 lies in matching

the clock delay element to the 4-2 adder block delays. Maximum performance

can only be achieved if the clock generator’s delay element is matched as

closely as possible to the delay of the 4-2 adder stages.

Figure 5.2 Programmable Delay Clock Generator
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One technique for matching the clock frequency to the combinational delay of

the 4-2 stage is by using a variable length inverter chain as the delay element

(see Figure 5.2). This technique was used to generate the clocks on SPIM

(refer to Chapter 4). The MUX is used to select the length of the feedback

path. The result is a digitally selectable clock. Maximum performance is

achieved by tuning the clock frequency to match the critical path delay of the

4-2 pipe stage. This is also useful for test purposes. On prototype chips the

clock frequency can be increased until critical patterns fail. This yields both

the critical path and the maximum operating frequency.

As stated, one reason for using an on-chip clock generator is that it can track

the combinational logic delay over process, voltage, and temperature

variations. The variable length inverter chain can be adjusted to compensate

for processing effects. To first order, temperature and supply voltage

variations are also taken into account by the clock generators existence on the

same die as the multiplier. Although existence on the same die is the most

important criterion, other factors such as device size and circuit configuration

can also effect tracking accuracy. The variable length inverter chain

obviously uses different circuitry than the basic 4-2 stage. Second order

effects caused by the different circuit configuration and device sizes can cause

the tracking to be less than optimal. An example of imperfect tracking over

temperature variation can be seen in Figure 5.3.
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Delay

>

Performance
loss due to
Improper
temperature
tracking.
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Figure 5.3 Temperature Effects on Tracking

In the ideal case, circuit performance would remain constant with changing

temperature, and both logic and ring oscillator delays would remain constant.

Unfortunately, it is well known that the delay through MOS circuits

increases as temperature increases. What makes matters even more difficult,

when designing tracking clock generators, is that the rate of change over

temperature is slightly different depending upon the circuit. In fact, SPICE

simulations on the actual SPIM clock generator and 4-2 accumulator

demonstrated just the effects shown in Figure 5.3. That is, as temperature

increases, the clock generator cycle time increases at a faster rate than the
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4-2 logic delay. Since the clock delay must be slower than the logic at all

temperatures, the clock frequency is set by the logic delay at the lower

temperature setting. The result is a performance loss at higher temperatures

due to the lower temperature constraints .ls In contrast, if the clock delay

were set at a high temperature, the chip would fail at lower temperatures,

where the logic delay would be greater than the clock delay. Variations in

supply voltage and processing can also cause similar effects. In combination,

these variations can yield unpredictable results. One solution to ensure

correct operation is to check the clock and logic delays over the entire range of

possible variations. Another is to simply allow additional margin to

compensate for possible variations. An even better method is to build a clock

generator that can accurately track the performance changes in the 4-2

adders.

6.1.3 Tf’racking Clock Generators

It is impossible to track all of the possible variations which could affect the

delay through a 4-2 adder with any circuit configuration other than another

identical 4-2 adder. Thus, an obvious method to track the delay through a 4-2

adder block is to use a 4-2 adder as the delay element. Using one half of a 4-2

adder block as the delay element will produce a clock period equal to the

delay through a 4-2 adder block. If the 4-2 adders are implemented using two

CM’s, the clock generator shown in Figure 5.4 will generate a clock period

matched to the 4-2 delay, which is capable of tracking delay variations in the

CSA’s.

13With SPIM, this amounted to a 12 % performance loss over a range of 100 deg C.
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Figure 5.4 A CSA Tracking Clock Generator14

One obvious problem with the clock generator in Figure 5.4 is that it is

difficult to use with direct 4-2 adder implementations where a convenient

place to split the 4-2 adder may not exist. It also overlooks the fact that the

critical path will contain more than a single 4-2 adder and its half latches. In

practice, the 4-2 accumulator is the slowest pipe stage in the multiplier.

Additional loading caused by the wiring needed for the right shift, and

hardware required to zero the accumulator, decreases the accumulator’s

performance compared to a basic 4-2 adder. The full delay of the 4-2

accumulator can be taken into account by using the entire accumulator,

including the wiring loads and additional logic, as a delay element (see Figure

5.5).

l?lYhe clock generator shown in Figure 5.4 was fabricated in a 0.8 pm CMOS technology. It
generated a 400 MHz clock which was used to clock a dual CSA 4-2 adder. The clock
generator worked well, and was definitely a step in the right direction.
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Figure 5.5 A 4-2 Tracking Clock Generator

Using the 4-2 accumulator for the delay element produces a matched delay

which will track the actual 4-2 accumulator, but the corresponding period is

twice as long as desired. An XOR gate can be used to produce a pulse each

cycle. Setting the pulse width to a 50 % duty cycle in effect doubles the clock

frequency, producing the desired result. A duty cycle near 50 % is desirable

because narrow pulses can shrink, or even be lost, when passing through long

buffer chains.15

Non-symmetrical edges caused by the difference in P and N-channel devices

also cause a “data dependency” in combinational logic. That is, once the

15SPICE simulations of CMOS buffer chains have shown that the minimum pulse width that
can be successfully passed through a buffer chain without significant narrowing is on the
order of three inverter delays. Mismatches between P and N-channel devices may require an
even wider pulse due to the difference in the rising and falling edges.
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critical path has been determined, the delay through that path will be

different depending upon the input. 16 This data dependency can cause a

failure in the clock generator. The P and N devices could be matched to

adjust rise and fall times and balance the delay but, with changing

technologies, and even from one fabrication to the next, the device

mismatching will tend to vary. Another solution to the data dependency

problem can be seen in Figure 5.6.

run
I

4-2 4-2
I

Figure 5.6 A Dual 4-2 Tracking Clock Generator

l%PICE simulations of CM’s have shown that this difference can be as large as 20 96 or
more.
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The dual 4-2 tracking clock generator uses two 4-2 blocks as delay elements.

An input is placed into the critical path of one of the 4-2 blocks with the

complemented input placed into the other. Data dependencies will cause the

outputs to arrive at different times. The circuit at the bottom of the two 4-2

blocks is a non-overlapping latch.17 This structure t&states until both of the

4-2 outputs are different before passing a signal. The effect is that the delay

is always as long as the slower path. This eliminates data dependent race

conditions from the clock generator. ’

5.1.4 Implementing Tracking Clock Generators

To implement a dual 4-2 tracking clock generator the critical path through

the 4-2 accumulator must first be found. This can be accomplished by SPICE

simulation. The critical path must then be examined for any logic hazards.

Spikes could potentially propagate to the clock line with disastrous results.

Typically, the critical path is dependent upon only one input changing. This

makes logic hazards less likely, and simpler to detect and correct.

Another potential problem is that of a slow moving node. The problem occurs

when a slow node, which is part of the clock generator, does not fully rise or

fall faster than the oscillation period. This is actually another case where the

delay is data dependent. In the pipelined tree the same data value may be

applied to a node over several cycles. As a result, several cycles may be

available for the node to reach its final supply rail voltage. In contrast, all of

1 ‘The non-overlapping latch structure is one possible implementation of what is also known
as a Muller C element in asynchronous designs.
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the oscillating nodes in the clock generator must undergo a transition from

one logic level to the other on each clock cycle. If the oscillating node does not

completely reach its supply rail in a given cycle, on the next cycle the node

will not have to move as far to reach the opposite supply rail. A smaller

voltage swing takes less time. This decreases the delay, resulting in a clock

which oscillates too fast. SPICE simulations should be used to detect any

potentially slow nodes.

Using a 4-2 accumulator as the delay element provides excellent tracking;

however, the required delay is slightly longer than that produced by the

accumulator alone. One reason is that the 4-2 element used as the delay

element has its latch elements tied fully on. This does not allow for the edge

rates of the actual clock lines .ls The result is that the delay through the

latches in the clock generator is less than the latch delay in 4-2 accumulator

at the base of the 4-2 tree.

Skew is another factor not taken into account by the dual 4-2 matched clock

generator. Fortunately, the skew across the 4-2 tree is not a major problem.

The reason is that each 4-2 adder slice only communicates with the adjacent

slice. Clock skew only matters between latched 4-2 adders which

communicate with each other. In the partial, pipelined 4-2 multiplier and

accumulator, the widest number of bits across which 4-2 adders talk to each

other are K bits of the accumulator for a partial tree size of K bits. To

determine the skew across these K bits of the accumulator there are two

possible sources. The first is at the beginning of the array due to a mismatch

l*Long clock lines are lossy transmission lines. Resistance in the wires causes the edges to
become less sharp as the distance from the source increases.
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in the clock buffers. As each row of 4-2 adders in the layout is exactly the

same, the load on the clock lines across each row in the array is identical. By

using matched buffers to drive the identically loaded clock lines across the

array, the skew between vertical rows will be small (refer to section 5.4). The

other possible source of skew is due to a mismatch in the clock wave-front

propagation time across the K bits. Since the loads across the array are

balanced this skew should also be negligible. Assuming the loads and buffers

are balanced, the sum of the clock skews across K bits of the accumulator

should only be on the order of a few tenths of a gate delay.

When implementing the clock generator, it turns out that if the clock buffers

are sticiently sized and matched so that the clock edges are sharp and the

skew is small, the added delay of the series NAND gate, inverter, and non-

overlapping latch used in the clock generator will typically be sufficient to

compensate for the added latch delay and skew. If the clock generator is still

slightly too fast, there are two simple ways to slow it down. The first is to

provide some additional load capacitance which can be added to the feedback

path. Care should be taken to ensure that the feedback node does not become

slower than the clock frequency. An alternative is to increase the length of

the feedback path by adding a variable length delay element in series with

the 4-2 adder delay (refer to Figure 5.2). One last useful addition to the clock

generator is a test clock input, as was provided on the SPIM chip (see chapter

4: Implementation). This allows  the rest of the chip to be tested in the event

of a complete clock failure. A dual 4-2 matched clock generator with a slow

down capacitor and test clock input is shown in Figure 5.7.
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Figure 5.7 implementing A Dual 4-2 Tracking Clock Generator

5.2 Distribution and Use of High Speed Clocks
The previous section presented a method for generating a clock which can

attain optimal performance by matching the combinational delay of the

multiplier logic. Once the high-speed multiplier clock has been generated, it

must be distributed throughout the chip for use by the latches in the

multiplier.
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6.2.1 Clock Waveforms

One obvious method for clocking 4-2 adders is to use the two-phase non-

overlapping clock methodology made popular by Carver Mead and Lynn

Conway [MEA 801. The problem with two-phase non-overlapping clocks at

high frequencies is that they have four separate timing events which must be

controlled; phase 1 rising, phase 1 falling, phase 2 rising, and phase 2 falling

[NOI 831. Maintaining tight control over these separate events at high

frequencies becomes difficult. Each pair of timing events requires a separate

and distinct pulse. Thus, two-phase non-overlapping clocks require two

separate and distinct pulses per clock period. A single clock has only two

timing events; clock rising and clock falling. As such, a single clock requires

only one distinct pulse per clock period. This means that, given the same

pulse width restrictions and skew problems, a single clock can safely operate

at higher frequencies than a two-phase non-overlapping clock. Wiring

overhead and skew problems are also reduced by globally distributing a

single clock, as opposed to two distinct clocks. The performance and

distribution advantages make a single clock better suited for global high

frequency clocking than two-phase non-overlapping clocks.

5.2.2 Clock Distribution

In generating the clocks it was noted that edge rates affect performance.

Slow clock edges slow down the latches. Another important consideration

when distributing clocks is skew. Both the clock rise times and skew can be

minimized by proper clock distribution.
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One method of distributing the clocks on a 4-2 multiplier is to use a set of

matched buffers, each of which drives a clock line across a single row of 4-2

adders (see Figure 5.8). Each row of 4-2 adders across the multiplier layout is

exactly the same. As such, the load on the clock lines across each row in the

array is identical. Using a row of matched buffers to drive the identically

loaded clock lines across the array minimizes the clock skew. Distributing

the loading across several buffers also serves to shorten clock lines and

reduce the maximum RC delay, both of which help keep the clock edges

sharp.19

Clock

Figure 5.8 Recommended Clock Distribution Across an Array

lgOn SPIM each row of 4-2 adders was driven off a separate clock line as shown in Figure
5.8. This reduced the load per clock line to approximately 2 pF versus 32 pF for the entire
array.
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6.2.3 Latching 4-2 Adder Stages

Once the single 4-2 multiplier clock has been generated and distributed to the

array, it must be used to clock the latch structures in the 4-2 adder stages.

Single-phase clocking is typically not used in general VLSI systems because it

requires satisfying two-sided timing constraints. In other words, there must

be both a maximum, and a minimum restriction on the clock pulse width. In

contrast, two-phase clocking schemes require that only single sided

constraints be satisfied, restricting only the minimum pulse width. The two-

sided constraints create enough added complexity that the additional

hardware required to yield single-sided constraints, as in strict two-phase, is

often a worthwhile trade-off for large complex general systems where slower

clocks are used. As explained in the previous section, the problem with two-

phase clocks is that global distribution and control of high frequency multiple

phase clocks is difficult. This makes the use of a single global clock

preferable; however, to be successful the two-sided constraints must either be

eliminated, or dealt with using balanced pipe stages.

Several pseudo single-phase clocking schemes, potentially suitable for general

systems, have been developed which remove the two sided timing constraints

by using two different types of latches [GON 83]lJ!ICG  87]ryUA 891. The two

types of latches, typically N and P, are clocked by the high and low phase of

the same clock respectively. Normally these latches are more complex than a

simple dynamic half latch. Also, degraded logic levels are typically found in

these latch structures. The added complexity and degraded levels tend to

make these latches bigger, slower, and less safe than simple dynamic half

latches.
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Another pseudo single-phase method of removing the two-sided constraints is

to use two half latches of the same type, and clock them using the true and

complemented clock signals (elk and c1k.L). To reduce skew, the

complemented clock should be generated either locally, at each latch, or one

inverter delay back, at each row of latches. There are two primary locations

for the half latches in a 4-2 adder stage. They can either be split, placing one

after each CSA (Figure 5.9a), or placed together, forming a master/slave pair,

after the 4-2 adder (Figure 5.9bj.20
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Figure 5.9 Latched 4-2 Stages

Cin

201f the latches are placed together, as in Figure 5.9b, this technique is often referred to as
single-phase clocking using master/slave latches.
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When using the true and complemented clock signals there is one timing

constraint which must be finessed for proper operation. Two-phase non-

overlapping clocks have two separate non-overlap periods, when both clocks

are inactive, which ensure that a memory feed-through condition does not

occur. In the single phase scheme, the complemented clock signal is formed

by the inversion of the clock. The result is a small overlapping interval when

both the clock and its inversion are active. Care must be taken to prevent a

memory feed-through from occurring between adjacent half latches during

this overlapping interval.

Several techniques exist to prevent memory feed-through. If the split latch

configuration is used, (Figure 5.9a) a delay element can be placed in parallel

with the top CSA. Separating the half latches with sufEcient  combinational

logic to resolve the overlap eliminates potential memory feed-through

problems. If the two half latches are adjacent, in a master/slave type

configuration, memory feed-through can be avoided by simply making sure

that the master half latch does not become active until the slave half latch is

completely off. In Figure 5.9b this means placing the non-overlap interval

between the adjacent half latches, with the overlap interval occurring during

the combinational logic phase of the cycle where it cannot cause problems.

An alternate solution is to design special latches that can deal with the

overlapping interval. The non-overlapping latch structure from the bottom of

Figure 5.6 is one such structure. This latch examines both the true and

complemented clock signals and resolves the overlap condition before

allowing the data to pass.
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An alternative to using two half latches is to use a single half latch clocked off

a single multiplier clock (see Figure 5.10). This is a true single-phase clocked

structure, using only a single clock line. No additional clocks or inverted

clock signals are used. In true single-phase clocking, the high period of the

clock acts as a “pulse” which activates the latches.21 This pulse has a two

sided timing constraint. It must be wide enough to allow the data to flow

through the latch. This is the minimum pulse width. The maximum pulse

width must be less than the time through the half latch plus the shortest

time through any logic block between two half latches. The clock period will

be the time through a half latch plus the longest path through a logic block.

In1 In2 In3 In4

Cout 1 4-2 Adder + Cin

elk 4 2X l/2 Latch 1

Carry Sum

Figure 5.10 Single Half Latched 4-2 Adder

21To distinguish true single-phase clocking from the pseudo single-phase clocking schemes, it
will be referred to as “pulsed single-phase clocking”.
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Problems occur with pulsed single-phase clocking schemes when very short

paths exist through the logic block. At the limiting case, if no logic were

between two level-sensitive half latches, the maximum and minimum pulse

widths would be the same. Under these conditions the structure would not

work. Either the latches would not have time to work, or a condition known

as memory feed-through would occur. Ideally, the logic should be balanced so

that all of the paths have equal delays between latches. Balanced paths

provide the widest margin between the maximum and minimum pulse

widths. This is important since very narrow pulses may suffer pulse

narrowing when passing through a buffer chain. An advantage of a 4-2

pipelined multiplier over more general structures is that most of the pipe

stages are, in fact, very similar. They are also all on the same chip. This

makes balancing the pipe stages and maintaining this balance over

temperature, voltage, and process variations more practical.

Various tradeoffs and design considerations exist when choosing either of the

two half latch or single half latch approaches. The pulsed single-phase

clocking is slightly more risky, but it reduces the latch overhead by a factor of

two. Measurements on existing CMOS structures show that the savings in

4-2 area range from 5 to 20 % over using two half latches, with the

performance increases in the 10 to 15 % range. Assuming small, fast latches

are used, the small gains in area obtained by using a single half latch could

be offset by any additional hardware required to balance the pipe stages.

Wires take up lots of space in CMOS chips. Using n-channel only pass

devices, as opposed to full transmission gates, reduces the number of clock

lines running across the array by a factor of two. Although a small loss in

73



Chapter 5. Clocking

noise margin occurs, using n-channel only pass devices reduced the 4-2 area

by 7 to 14 96 on the measured structures with no loss in performance.

Another big win is in using dynamic latches over static latches. Since all of

the 4-2 adders in the array are clocked on every cycle, dynamic latches are

kept refreshed so that static latches are not required. In the CMOS latch

structures that were studied, dynamic latches yielded 10 to 20 % area savings

over static latches.

5.2.4 Conclusions

At very high frequencies a single global clock should be used over multiple

phase clocks. The additional pulses which must be generated and maintained

limit multiple phase clocks at high frequencies. The single-phase clock

should be symmetric, 50 8 duty cycle, to reduce pulse narrowing through

buffer chains. The global clock should be distributed across the array to limit

RC effects so clock edges remain sharp, reducing latch slow down caused by

clock edges.

Any of the three latch structures presented, split, master/slave, or pulsed,

appear to be acceptable choices for latching 4-2 adders. All three should be

considered based upon technology and latch design. While the single latch is

half the size and twice the performance of comparable double latches, two

side timing constraints make it slightly more risky than the other methods.

Larger slower latches favor the single half latch, while faster smaller latches

tip the scales toward the safer dual latch configurations.
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5.3 Performance Limits

With any integrated circuit, one of the most often ask questions is, ‘how fast

will it go?” In the case of 4-2 multiplier trees and accumulators, performance

is determined by the cycle time and the size of the partial tree. The partial

tree size will be set based upon area constraints. Once the partial tree size is

chosen, the performance is then limited by the cycle time. Using the 4-2

accumulator as the delay element in the clock generator sets the clock

frequency. Thus, for any new technology, once the partial tree size has been

chosen, determining the 4-2 accumulator delay will yield the multiplier

performance. This is the case as long as the clock frequency is actually

limited by the 4-2 delays and not by other factors. The following section will

demonstrate that the 4-2 accumulator delay does, in fact, limit the clock

frequency. It will then be shown that, as technologies shrink, this will

continue to be the case for some time.

5.3.1 Factors Limiting Performance

To determine if the 4-2 delay does indeed limit performance, other

potentially limiting factors must be considered. In the 4-2 multiplier core the

accumulator block has been identified as the slowest logic block. The

additional wiring and zero logic make it slower than any of the 4-2 stages in

the tree. Although care must be taken when designing the control and

pipelined rounding logic, all of the peripheral multiplier logic is relatively

simple and can be designed to run faster than the accumulator. As

technologies shrink all combinational logic will speed up at approximately the

same rate, so the accumulator should continue to be the slowest logic block.
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On the other hand, wire performance does not increase at the same rate as

the combinational logic. For this reason, a key place to look for performance

limits as technologies shrink is at the long wires in a system.‘

The two sources of long wires in the multiplier are the clock lines and the

data inputs, both of which must drive across the entire multiplier array.22

The multiplier input data lines are the same length, and have approximately

the same loading, as the clock lines. There are, however, two basic

differences between the data and clock lines. In the case of the data lines, the

buffering required to drive these wires must occur during the same cycle as

the logic transition. This is not the case with the clock lines, where the buffer

time is not part of the cycle time. On the other hand, the clock lines must

undergo two rail to rail voltage transitions in each clock cycle, while the data

lines undergo, at most, one transition. In slower technologies, say 2 pm

CMOS, the buffer time will cause the data lines to limit the maximum clock

frequency before the clock lines. This is not an issue, however, as the 4-2

accumulator is the limiting factor in slower technologies. With shrinking

technologies, buffers will become faster relative t.9 wires. As a result, clock

lines will most likely limit system performance before data lines.

5.3.2 Clock Line Limits

When determining the limits on how fast a clock line can be driven in a given

technology, several constraints should be considered. These include:

22Control  lines which must run across the array (i.e. the signal which zeros the accumulator)
are basically the same as data lines for the sake of this discussion.
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transmission line effects, RC delay, metal migration, and pulse narrowing

through buffer chains.

Under ideal circumstances, the wave-front velocity (v) of a signal through

SiO2 would be equal to the speed of light (c) divided by the square root of the
relative permittivity of silicon dioxide (sSi02 >.

VZ~&= 3EJ.-$s = 15cmIns (5.1)

Thus, even if metal lines on today’s integrated circuits were ideal

transmission lines, a signal could not travel across a 1 cm chip in less than

0.067 ns. The fact is that metal lines used in integrated circuits are not ideal

transmission lines. They have sufficient resistance to act as lossy

transmission lines, This resistance, coupled with the wire capacitance,

ultimately limits wire performance.

On a real chip things other than just wire resistance and capacitance limit

clock frequency. To obtain the actual frequency limits, all of the resistances

and capacitances in the system must be taken into account. Real clock lines

have loads which they must drive. In addition, the source drivers are not

ideal, and have resistance. As an example, each clock line on SPIM had a

total distributed capacitance of 2 pF. The 7 mm long by 4 pm wide clock lines

running across the array had a total resistance of about 100 Q. A moderately

large CMOS clock driver would have an on resistance on the order of 200 Sz.

Lumping half of the wire resistance with that of the driver, the RC time
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constant would be about 500 ps. Assuming a near rail to rail sinusoidal clock

waveform, this would limit the maximum clock frequency to about 500 MHz.

To improve performance, the clock buffer size and wire width could both be

increased, but practical considerations would most likely limit the maximum

clock frequency for a 64 bit wide array in a 2 p CMOS process to around 1

GHz.

Another point of concern with high-speed clocks is that of pulse narrowing

through long buffer chains. High frequency pulses passed through buffer

chains can be narrowed or even disappear. SPICE simulations have shown

that the shortest clock period which can be passed through a buffer chain

without pulse narrowing is on the order of 3 inverter delays. This limits the

clock frequency to about 300 MHz in a 2 pm process. Since buffer chain

performance increases at the same rate as the combinational logic it should

not become a factor as technologies shrink.

Metal migration is a problem associated with high; current densities. While

this would appear to be a major problem for high-speed clocks, recent studies

have shown that metal migration is much less of a problem for AC current, as

found on clock lines, than it is for DC current found on power lines [LIE 891.

Based on these studies, metal migration should not be a significant problem

for high-speed clocking.

SPICE simulations on various 4-2 accumulators in a 2 pm CMOS process

have shown that it is difficult to exceed frequencies on the order of 100 MHz.

Compared to limits of 1 GHz, and 300 MHz imposed by RC delays and buffer

78



Chapter 5. Clocking

narrowing limits respectively, the 4-2 accumulator block clearly limits the

maximum operating clock frequency for 2 pm CMOS technologies.

5.3.3 Effects of Scaling on Performance

Given the same metal layer, as technology shrinks the sheet resistance of the

metal clock lines should remain relatively constant, since the length and

width will both shrink linearly. In practice, many fabrication facilities are

changing from aluminum to tungsten wires in an attempt to reduce metal

migration in their sub-micron technologies. Tungsten wires have roughly

twice the sheet resistance of aluminum wires. Thus, switching to tungsten

wires, when shrinking the technology, tends to double the sheet resistance of

the clock lines. Wires also tend to become thinner in more advanced

technologies, further increasing the clock line resistance.

Capacitance is a function of area and dielectric thickness. If the oxide

thickness remained constant, the capacitan-e would decrease as the square of

the linear shrink. In practice, the oxide thickness has decreased with

shrinking technologies. This acts to increase capacitance. As technologies

shrink, coupling and fringing capacitances make up a larger portion of the

wire capacitance, and even tend to dominate in more advanced technologies.

Over past technology shrinks these effects have caused the capacitance to

decrease at a near linear rate, rather than as the square of the linear shrink.

Given higher sheet resistances and decreased oxide thickness, a 1 cm long

wire in a more aggressive technology will be slower than a 1 cm long wire in

an older technology. Counteracting this effect is the fact that a fixed bit
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width multiplier will have shorter clock lines in the new technology. The

combined resistance and capacitance effects on the clock lines, including

fringing and coupling, mean that upon shrinking technology wires running

across a fixed bit width multiplier array will undergo an improvement in

performance which is somewhat less than linear. In contrast, recent

technology shrinks have yielded performance increases slightly better than

linear for combinational logic. The bottom line is that when shrinking a fixed

width multiplier, the combinational logic performance will increase at a

faster rate than the wire performance. If this trend continues the wires will

eventually limit performance. This limit is not likely to arise for a while,

however. A test circuit fabricated in a 0.8 p CMOS process ran at 400 MHz.

This was still well below the maximum clock frequency for a 64 bit multiplier

in that technology. Based on current trends, as future CMOS technologies

drop well below the 0.5 p range it should be possible to construct double

precision iterative 4-2 multipliers with clock frequencies approaching 1 GHz.

5.4 Summary

An on-chip clock generator can provide better performance than off chip

clocks by more closely matching the combinational delay through the 4-2

stages. A stoppable clock generator was presented which provides a simple

system interface that is free from synchronization failure. By using the

existing accumulator block as the delay element, the clock generator can

track changes in accumulator performance over variations in temperature,

supply voltage, and processing. A dual accumulator design can even account

for data dependent delays through the 4-2 accumulator. By accurately
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matching and tracking the critical path delay in the multiplier, the final dual

4-2 accumulator clock generator design can provide near optimal performance

with a high degree of safety.

In looking at global high-speed clock distribution it was determined that

single-phase clocks are preferable to multi-phase clocks. Single-phase clocks

require control over only one timing pulse, compared to two or more in the

case of multi-phase clocks. Single-phase clocks also reduce skew and wiring

overhead compared to multi-phase clocks. To utilize the high-speed single-

phase clocks, several possible latch configurations were proposed. Since

many latches are used in 4-2 pipelined multipliers, the latch overhead can be

high in terms of area and performance. For this reason, each of the several

different latch configurations proposed should be evaluated for future

designs. Although there was no clear winner among the CMOS latch

structures studied, either of the dual half latch configurations seem to be a

good choice if small, fast, dynamic latches are used. As for latch

implementation, dynamic n-pass latchc s appear to be a good choice for

iterative 4-2 multiplier designs in CMOS.

Currently clock performance is limited by the combinational delay of the 4-2

accumulator. As technologies shrink wires become slower relative to devices.

Eventually, driving the clock lines may become the limiting factor. Given the

current constraints and assumptions this should not be the case until CMOS

technologies drop well below the 0.5 p range, with multipliers operating at

frequencies approaching 1 GHz.
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IEEE Rounding

Many applications exist in which integer, or non IEEE floating-point,

multiplication is suf%ient.  However, to be widely accepted, current and

future floating-point coprocessors must adhere to IEEE standard 754 for

binary floating-point arithmetic [IEE 851. The standard can be implemented

in software, hardware, or a combination of the two [COO 801. The

performance requirements of modern digital systems demand direct

hardware floating-point multipliers. To match the performance of the

hardware multipliers, the rounding modes must also be implemented in

hardware.

Three algorithms will be presented for implementing round to nearest/up. It

will then be shown how the round to nearest/up result can be adjusted to

produce the correct IEEE rounded result. In addition, three methods will be
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presented for computing the sticky bit. All of the rounding algorithms and

sticky methods presented are technology independent and can be used with

several types of multiplier architectures. Finally, the additional hardware

required to implement IEEE rounding on iterative 4-2 multipliers will be

studied. It will be shown that iterative 4-2 multipliers require less additional

rounding hardware than full trees, with no performance penalty.

6.1 IEEE Floating-Point Formats
IEEE floating-point numbers are composed of three fields: the sign (s), a

biased exponent (e), and a fraction (0. IEEE floating-point numbers are of

the form:

(-1)‘2E(bo.blb2...bn)

where: s = the sign bit (0, or 1)

E = The exponent

f = The n bit fraction = blb...bn

bo = 1 (bo is an implied 1)

There are four formats defined in the standard. These are single, single

extended, double, and double extended. The bit ordering for all of the formats

is the same, only the length of the exponent and fraction fields varies. Figure

6.1 is an example of the double precision floating-point format. The double
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precision format contains one sign bit (s), an 11 bit biased exponent (e), and a

52 bit fraction (f). The mantissa portion of an IEEE double precision floating-

point number consists of the 52 bit fractional part plus an implied leading 1

for a total of 53 bits. All of the rounding algorithms described in this chapter

apply to all formats.

Field S 8 f

Field Width 1 11 52

Bit Order msb Isb msb Isb

Figure 6.1 IEEE Double Precision Floating-Point Format

6.2 Round to Nearest
The IEEE standard 754 default rounding mode is round to nearest. The

standard states that “in this mode the representable value nearest to the

infinitely precise result shall be delivered; if the two nearest representable

values are equally near, the one with its least significant bit zero shall be

delivered.” Round to nearest as defined in IEEE standard 754 is actually

round to nearest/even. This means always round to nearest, and in the case

of a tie round to even.
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A conventional rounding system, round to nearest/up, adds l/2 to the least

significant bit (LSB) of the desired result, and then truncates by removing the

bits to the right of the LSB. Bound to nearest/up produces exactly the same

result as round to nearest/even in all cases except when a tie occurs. If the
even result were the smaller value, round to nearest/up would incorrectly

round up. Dealing with the tie case before rounding makes round to

nearest/even more complex and slower than round to nearest/up. For this

reason, the rounding algorithms developed in this chapter will produce a

round to nearest/up result. At the end of the chapter the so-called “sticky”

bit, which identifies the tie case, will be introduced. It will then be shown

how the correct round to nearest/even result (IEEE round to nearest) can be

obtained from the round to nearest/up result by simply forcing the LSB to a 0

in the case of a tie.

6.3 A Simple Round to Nearest/up Algorithm
Most high performance VLSI multipliers use some sort of array or tree

structure to sum the partial products in the mantissa portion of a floating-

point multiply NAL 641. Figure 6.2 shows a flow diagram for the mantissa

handling section of a floating-point multiply unit. This simple round to

nearest/up scheme will be referred to as Algorithm 6.1.
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Array, tree, or iterative structure

2n bit product in’carry save form

lWl*1 Carry bits
+m0 0 .~ololel lel4@1 Sum bits

n bits

-yyjz-

Normal
 tRight shift 1 bit

and Increment ram.I@l~l 1.~0~01
exponent L /

n bit round to
nearest/up result

Figure 6.2 Algorithm 6.1 Data Flow
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The top section (Multiply) accepts two normalized mantissas and uses some

type of reduction structure which produces the product in carry save form

(two 2n bit numbers). These two numbers are then added in the CPAdd

section to produce a complete 2n bit product. There are two possible rounding

operations which then occur, depending on the most significant bit (MSB) of

this product. If the resulting product is in the range 2 I product < 4

(overflow), the constant 2(-“+I) is added to the product and the result is

truncated to n-2 bits to the right of the decimal point. A normalization shift

(Ndrmal)  of 1 to the right is then necessary to restore the rounded product to

the range 1 I rounded product < 2, with an appropriate adjustment of the

exponent. If the original 2n bit product was in the range 1 I product c 2 (no

overflow), then the constant 2(-n) is added. In most cases this rounded

product will be less than 2, and the rounding operation is finished. However,

it is possible that the addition of 2(-n) could cause the rounded product to be

equal to 2, in which case a normalization shift of 1 and an exponent

adjustment is necessary (as in the left branch).

The low order n-2 bits from the CPAdd section of Figure 6.2 are not used in

any of the following steps. The only effect that these bits have on the final

result is due to the carry they generate into the most significant n+2 bits.

Thus, the carry propagate adder need never actually compute the sum of the

least significant n-2 bits. The 2n bit carry propagate adder can be replaced by

an n+2 bit carry propagate adder, with an input carry, and some auxiliary

hardware which computes the carry from the least significant n-2 bits. The

smaller adder is clearly an advantage where a hardware implementation is

concerned.
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Algorithm 6.1 requires two carry propagate additions in series. In section 6.4

Algorithm 6.2 concentrates on computing these additions in parallel, which

significantly increases performance. Finally, in section 6.5 Algorithm 6.3

moves the carry from the lower order bits out of the critical path.

6.4 Parallel  Addition  Schemes
If an n+2 bit carry propagate adder is used in the CPAdd section of Figure

6.2, then the carry from the lower bits (Gin) will be added at the 2(-“) bit

position. Assuming that no overflow occurred, an additional 2(-“) will be

added to the result in the Round section. The 2(-“) bit position will thus be

called the round bit position, or R bit. The 1 that always gets added to the R

bit position for rounding will be identified as Rin. If no overflow occurs,

adding Cin and Rin to the R bit position will produce the correct round to

nearest/up result.

Now consider the overflow case. The MSB, known as the overflow bit 0, is a

1. By assuming that no overflow would occur, 2(-“) was added for rounding.

If an overflow did occur, then 2(-*+l) should have been added for rounding.

The difference of 2(-“) must be added to correct the rounding. This can be

done by defining a new bit that is added to the 2(-“) bit position in the case of

an overflow. This bit will be called the overflow rounding bit (Rv). The

correct rounding can thus be obtained by simply adding the carry from the

lower order bits (Gin), the rounding bit (Rin), and in the case of an overflow

(Rv), to the R b’t1 position. These bits are shown in Figure 6.3.
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Figure 6.3 Bits to be Summed for Correct Round to Nearest/up

Fast and effective implementations for summing the bits in Figure 6.3 must

overcome two problems. First, the value of Rv is not known until the sum of

all of the other bits have been computed. Second, an adder with 5 input slots

at the LSB is required.

The first problem can be overcome by computing two carry propagate

additions in parallel. The first, assuming Rv=O, and the second, assuming

Rv=l. When the overflow condition is known, the correct sum can then be

selected using a multiplexor. These two additions are related, as the first is

simply one larger than the second. This provides many possibilities for the

designer. An efficient technique is to simply merge the two carry propagate

adders into one. A conditional sum adder (CSAdd),  or carry select adder as it

is often known, computes two possible outputs [SKL, 601. The first assumes

the input carry is a 0, and the second assumes the input carry is a 1. When

the input carry is known the correct output is picked. This compound adder

requires much less hardware than two separate adders, since only the carry

chain need be duplicated. In the more general sense, a conditional sum type
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adder produces two results in the form A+B and A+B+l. A signal, not

necessarily the carry, is then used to select the desired output.

Now for the second problem. Rcarry and Rsum use the carry and sum slots.

Rv uses the input carry slot to the CSAdder.  This leaves no empty slots for

Rin and Cin to be added to the R bit position. Two algorithms will be

proposed to fix this problem. Both involve adding Cin and Rin to the R bit

position, without propagating the carry, before computing the carry

propagate result.

The data flow of Algorithm 6.2A is shown in Figure  6.4. A row of half adders

is used to partly sum the carry and sum bits. This leaves a hole in the

CSAdder at Rcarry.  The Cin from the lower order bits can be placed into this

hole. Rin must still be added to the R bit position. An additional row of half

adders could be used as on Cin, but there are more economical techniques.

Array multipliers typically have empty slots. A 1 can often be injected into

the array, or corresponding structure, 1~ Lhe appropriate place so that the

effect is to add Rin to the R bit. An iterative multiplier could also have Rin

injected into the accumulator. Once Rin and Cin have been added to the R bit

position and the CSAdd  has completed, the corrected result can be picked

based upon the overflow bit from the A+B result. The V bit from the A+B

result is used, because the overflow bit must be checked before Rv has been

added in. The A+B+l result has already added Rv to the sum, potentially

corrupting the V bit. If the V bit from the A+B result is a 0, the A+B result is

chosen. If the V bit is a 1 the A+B+l result is picked. In this case, since an

overflow has occurred, the result must be normalized and the exponent

adjusted.

91



Chapter 6. IEEE Rounding

Array, tree, or Iterative structure

row of n+2 half adders

n+2 bit CPlAdder
V from

Se1  - l A+B
4 result

Figure 6.4 Algorithm 6.2A Data Flow

In some cases a slot may not exist, or it may be difikult to inject Rin into the

multiplier array or accumulator. Figure 6.5 shows the data flow for

Algorithm 6.2B. This algorithm is similar to Algorithm 6.2A, except that Rin

is not injected into the array. Instead, the two least significant half adders
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are replaced with CM’s, providing two additional slots at the L and R bit

positions.23 Rin, which is always a 1, can be combined with Cin and placed

into these empty slots. If Cin equals 0, then a 1 from Rin should be added to

the R bit. If Cin equals 1, then 2 should be added to the R bit position; one

from Rin and one from Cin. Adding 2 to the R bit position is equivalent to

adding 1 to the R+l (L) bit position. The output of the half adder/GSA  row

may then be fed to the CSAdder  as in Algorithm 6.2A.

row of n half adders

Figure 6.5 Algorithm 6.28 Data Flow

23For simplicity, an entire row of CSA’s could be used, with the unused inputs set to 0.
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In the case of a conventional array, the carry from the lower order bits (Gin)

may be determined soon after the carry-save bits, so waiting for Cin before

doing the halfor full additions may not be a problem. Other multipliers may

require additional time to determine the carry from the lower order bits. As

an example, iterating multipliers may require one or more additional cycles

to determine Cin [SAN 89Al. The next section develops a rounding algorithm

which eliminates Cin from the critical path.

6.5 Removing  Cin from the Critical Path
Referring back to Figure 6.3, five bits must be added at the R bit position.

They are Rv, Rin, Cin, Rcarry, and Rsum. Since Rin is always a 1, the sum of

these five bits can range from 1 to 5. The resulting carry from the R bit to the

L bit will be equal to 0, 1, or 2. Since the CSAdder can only propagate a carry

of 0 or 1 in parallel, the situation may appear hopeless, but this is not the

case.

Knowing that Rin is always a 1 narrowed the range of possible sums from O-5

to l-5. It is possible to further narrow the range of possible sums, and thus

narrow the range of possible carries, by summing some of the bits before the

others are known. Rv is not known until the carry propagate addition is

completed and the V bit is examined. It was also stated that the goal of this

section was to start the carry propagate additions before Cin is known.

Rcarry and Rsum are both known before Rv and Cin. In fact, they are known

at the same time, or before, all of the other carry/save bits, and the carry

propagate additions cannot be started until these bits are known. By looking
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at Rin, Rcarry, and Rsum, the possible sum, and possible resulting carries

from the R bit to the L bit, of the 5 bits at the R bit position can be further

narrowed as shown in Table 6.1. For example: if Rcarry = 1, and Rsum = 0

then, the sum of Rsum, Rcarry, Rin, Rv, and Cin must be in the range 2-4.

The possible carry from the R to the L bit will then be in the set (1,2}.

c3 c5 R to L carry

1 1s {%I 1

2 2-4 {Ia
3 3-5 11921

where:
C3 = Rsum + Rcany + Rin
x5 = Rsum + Rcarry + Rin + Rv + Cin
R to L carry = Possible carry from R to L

Table 6.1 Carry Propagation from R to L

From Table 6.1 it can be seen that summing Rin, Rsum, and Rcarry limits the

possible carries into the L bit to one of two sets: (0,l) or {1,2). Within each set

the carry differs by exactly 1; therefore, the set of possible rounded results

from the L bit up can differ by at most 1. This is important because the

CSAdder computes results in the form A+B and A+B+l.  In addition, since

the R bit is not part of the final correctly rounded result, it need not be

included in the carry propagate addition. Knowing the correct carry set

yields one of two possible cases:
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Case 1: The carry set is {OJ).

In this case either a 0 or a 1 must be added to the L bit

position. Since the CSAdder directly computes results in the

form A+B and A+B+l, both possible correct results are

computed. If the actual carry is a 0 the A+B result is selected,

with the A+B+l  result selected if the carry is a 1.

Case 2: The carry set is {1,2).

In this case either a 1 or a 2 must be added to the L bit

position. Since a CSAdder cannot compute A+B+2, a row of

half adders should be used, providing a slot to add 1 to the L

bit position. This leaves either a 0 or a 1 to be added to the L

bit position. This is precisely case 1 and should be handled as

such.

Referring to Table 6.1, the carry set (0,l) (Case 1) is chosen only if C3 = 1.

Since Rin is always 1, a logical OR on Rcarry and Rsum can be used to

differentiate between Case 1 and Case 2. Placing the output of this OR gate

into the empty slot created by a row of half adders will correctly add a 1 to the

L bit for Case 2 and a 0 for Case 1 (see Figure 6.6).
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V n-l bits

Carry 0 0 0 . . .

Sum * 0 l

L R

I Half add on n+l carry save bits I I

l ee em 4
0.0 l 0 . l *o

n+l bit CSAdd

t

Result select
logic based
upon Rln,
Rcarty,  Rsum,
Rv, Gin.

Figure 6.6 Algorithm 6.3 Data Flow

Once both possible results have been computed, the correct one must be

picked. Cin should now be known; Rv, however, is not. The V bit from the

A+B output is not automatically the correct value to use for Rv, as it was in

Algorithm 6.2. The reason is that the other bits may have already

determined that the A+B+l result should be chosen, regardless of the value of

the V bit. To determine the correct V bit to use for Rv, a preliminary A+B or

A+B+l  value should be chosen based upon the X5 column of Table 6.2,

assuming that Rv=O. The V bit of the selected output will be the correct V bit

to assign to Rv. The value of C5 should then be recalculated using the actual

Rv, and the correct A+B or A+B+l result selected. The normalization and

exponent adjustment is the same as in Algorithm 6.2.
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x3

I

I

1

2

2,3

2,3

2.3

5
I

2

3

2

3

4

5

RtoLcarry

0

I

I

output

A+B

A+B+l

A+B+I

A+B

A+B

A+B+I

A+B+I

Case I

Case 2

where:
x3 = Rsum + Rcarry + Rin
C5 = Rsum + Rcarry + Rin + Rv + Cin
R to L carry = Possible carry from R to L
Output = The CSAdder  output to be selected

Table 6.2 CSAdder Output Selection

6.6 IEEE Rounding Modes

6.6.1 Round Toward W, IQ), and Zero

In addition to round to nearest, the default rounding mode, IEEE standard

754 defines three other optional rounding modes. These “directed” rounding

modes are round toward +w, round toward -00 and round toward zero. Once

round to nearest has been implemented, the other rounding modes are

relatively simple. To begin with, consider round toward zero. This is simply
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a truncation. All of the previous algorithms will work, except the Rin and Rv

bits will now be 0.

Now let’s look at round toward +m. The standard states that “when rounding

toward += the result shall be the format’s value (possible +M) closest to and

no less than the infinitely precise result”. Basically, what this says is that in

the case of a positive result, if all the bits to the right of the LSB of the

desired result are 0, then the result is correct. If any of these bits are a 1, (i.e.

R=l or sticky=l),  then a 1 should be added to the LSB of the result. If the

result is negative it should be truncated. When rounding toward -= the exact

opposite holds. The direct rounding algorithms can be summarized as

follows:

Round toward Zero
Truncate

Round toward +-
if sign = positive

if any bits to the right of the result LSB = 1
Add 1 to result

else
Truncate at LSB

if sign = negative
truncate at LSB

Round toward --
if sign = negative

if any bits to the right of the result LSB = 1
Add 1 to result

else
Truncate at LSB

if sign = positive
truncate at LSB
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6.6.2 Obtaining The IEEE Round  to Nearest Result

It was stated earlier that round to nearest/up produces exactly the same

result as round to nearest/even, except when a tie occurs. A tie can only occur

when the result is exactly half way between two numbers of representable

precision. For example:

37.25xMc Raw number to be rounded

Add 0.05 to  round to  nearest /up+0.05

37.30 SUm

37.3 Truncated - Final rounded Result

If the X’s are all zeros, then 37.25000 is exactly half way between 37.2 and

37.3. In this case round to nearest/up produces a different result than round

to nearest/even. There are only two cases to be considered. Either all of the

X’s are 0, or they are not. The bit which distinguishes between these cases is

referred to as the sticky bit. This bit is a 0 ifall of the X’s are 0, and 1 if any

of the x’s are non-zero.

To produce the correct round to nearest/even result from the unrounded

result, a 1 is potentially added to the round bit. The bit (E) to be added to the

round bit (R) for correct IEEE round to nearest is based upon the L, R, and

sticky (S) bits as shown in Table 6.3.
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Before Rounding

L R S

X 0 0

X 0 I

0 I 0

I I 0

X 1 1

Add to R bit

E U

d I

d I

0 I

I I

1 I

L After Rounding

LE LlJ

X X

X X

0 I

0 0

Tz z

where:
E = Bit added to R bit for correct round to nearest/even.
U = Bit added to R bit for correct round to nearest/up.

LE = The L bit after round to nearest/even.
LU = The L bit after round to nearest/up.
d = Don’t care. E can not effect L,.

Table 6.3 Round to Nearest/even versus Round to Nearest/up

In contrast, round to nearest/up assumes that the bit to be added to the R bit

for correct rounding (U) is always a 1. The only case where the round to

nearest/up bit (U) will produce a different result from the round to

nearest/even bit (E) is shown in row 3 of Table 6.3, where E=O, and U=l. In

this case round to nearest/up changed the L bit from a 0 (L=O)  to a 1 (LE=~),

while round to nearest/even left the L bit unchanged (Lu=O).  The important

thing to notice is that when round to nearest/up changed the L bit to a 1, the

1 was not propagated. As such, only the L bit was effected. This means that

the correct round to nearest/even result can be obtained from the round to

nearest/up result by restoring the L bit to a 0.
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By assuming that the round bit will be a 1, the round to nearest/up

algorithms have an advantage over the round to nearest/even methods in that

the carry propagate addition can take place before the sticky bit has been

computed. This means that the round to nearest/up result can be obtained

using any of the methods presented in this paper. The correct IEEE round to

nearest result can then be obtained by observing only the L, R, and sticky

bits, and forcing the L bit to 0 if required. Care should be taken, however, as

operations such as right shifting in the event of an overflow, and adding Rv

and Rin, can change the position and/or value of the S, L, and R bits.

6.7 Computing  the Sticky bit

6.7.1 A Simple Method to Compute the Sticky Bit

The first method for determining the sticky bit is conceptually the simplest,

as it stems from the very definition of the sticky bit. Recall that the sticky bit

was defined to be equal to 0 if the value of all of the bits to the right of the

round bit is 0. To determine the sticky bit, begin with a carry propagate

addition on all of the bits. The sticky bit (S) will be the OR of all of the bits to

the right of the R bit. This method is quite simple in concept, and is often

used in practice. One drawback is that a full carry propagate addition,

followed by a logical OR, must be done on all of the lower order carry save

bits.
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6.7.2 Computing Sticky From the Input Operands

The sticky bit may also be computed directly from the inputs to be multiplied,

bypassing the multiply array completely. The number of trailing zeros in the

binary number X*Y is exactly equal to the number of trailing zeros in X plus

the number of trailing zeros in Y.24 The trailing zeros in X and Y can be

counted and summed while the multiply is taking place. If the sum is greater

than the sum of bits to the right of the round bit, then the sticky bit is a 0.

The advantage of using this method is that the sticky bit can be computed in

parallel with the actual multiplication, removing the sticky bit from the

critical path.

6.7.3 Computing Sticky From the Carry-Save Bits

The third method depends upon all of the partial products being positive (i.e.,

no Booth encoding has been used). Given this assumption, a simple logical

OR on the carry-save form of the bits to the right of the round bit wili

yield the correct sticky bit.

This simple ORing of the carry save bits works for the following reason. If

the 2n bit carry save result is scanned from right to left, the first non-zero

carry/sum pair will contain a single 1. That is, either the carry or the sum

will be a 1 but not both. This single one could not generate a carry during a

2%Yhe number of trailing zeros in the product is exactly equal to the sum of the trailing zeros
in the operands, for any representation in which the base is prime. This is true because
prime numbers cannot be factored. Non-prime bases can be factored; therefore, the number
of trailing zeros in the product can be greater than the sum of the trailing zeros in the
operands. As an example, in base 10 if the least signifkant  non-zero bits in the operands
were 2 and 5, respectively, an additional zero would be created, and the number of trailing
zeros in the product is larger than the sum of the trailing zeros in the operands.
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carry propagate addition, and since all of the bits to its right are zero, there is

no carry to propagate. This will cause the single 1 to remain in its current

position. If this position is to the right of the R bit, the sticky bit will be a 1.

To see why this is true, refer to Figure 6.7. This figure shows a section of the

partial products for the multiplication of A l B. Each row represents a single

partial product which will be generated and later summed to form the carry

save form of the final product. AOBO represents the partial product

represented by the logical AND of bit A0 with bit BO, and so on.

ASBO A4BO A380 A2BO Al BO AOBO

A4Bl A3Bl A2Bl AlBV’ AOBl/’
A3B2 A2B2 Al 82 A082

A2B3 AlB3 AOB3

Al B4 AOB4

AOB5

Figure 6.7 Summation of Partial Products

Assume A2B2 in column 4 is a 1, and column 4 is the first column in which a

1 appears. Since A2 is a 1, Bl and BO must both be 0, or there would be a 1

in an earlier column formed by A2Bl in column 3, row 1, or A2BO in column

2, row 0. All products above A2B2 in column 4 contain either a Bl or a BO

and thus must be 0. Looking across row 2, B2 is a 1. This means Al and A0
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must both be zero, or a 1 would exist in columns 3 or 2. All products below

A2B2 in column 4 contain either Al or AO, and thus must also be 0.

Therefore, A2B2 is the only non-zero partial product in this column. This can

easily be generalized to any element in any column, proving that the first

column in which a 1 exist will contain a single 1.

.6.8 Rounding  Hardware  for Iterative  Structures

All floating-point multipliers must compute the sticky bit, and the carry from

the lower order bits, for correct IEEE rounding. Conventional linear array

multipliers reduce partial products at a relatively slow rate, which is

proportional to the operand size. By adding a few extra rows of CSA’s,  it is

possible for linear arrays to perform a ripple carry propagate addition

without significantly degrading performance. Tree structures reduce partial

products at a much faster rate, proportional to the log of the operand size.

Summing the lower order bits at the FI. .z1;? rate as the upper order bits

requires the width of the tree to be doubled. That is, for an N bit operand a

2N bit wide tree is required.

An iterative 4-2 multiplier has an advantage over the full tree multiplier in

that only a partial tree is used. This smaller tree means that the additional

width required to sum the lower order bits is less than the full tree case.

That is, if two N bit operands were multiplied using a K bit partial tree, an

N+K bit wide array would be required as opposed to the 2N bit wide array for

a full tree. As an example, assume a 64 X 64 bit mantissa is to be multiplied

(N=64) using an 8 input 4-2 tree (K=8), with a 4-2 carry save accumulator.
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An additional 8 bit slices are required to sum the lower order bits for

rounding. This increases the partial tree width from 64 to 72 bits. In the

case of a full tree, the additional area required for IEEE rounding doubles the

size of the structure. When partial tree structures are used the percentage of

additional hardware required for IEEE rounding decreases as the size of the

tree decreases. In fact, each time the size of the partial tree is halved the

percentage of additional hardware required for IEEE rounding is also

reduced by a factor of two. The increase in CSA’s required for IEEE

rounding, versus truncation for 64 bit operands using increasingly larger

partial trees, can be seen in Figure 6.8.

Number of
CSA’s

n Tnmcated CSA’s q  IEEE Round CSA’s

4000

3500

3000

2500

2000

1500

1000

500

0
2 4 8 16 32 64

Partial Tree Size

Figure 6.8 Area Penalty for IEEE Rounding

A pipelined full tree produces all of the carry save bits simultaneously. If a K

bit partial tree is used, once the partial tree is full it will require N/K cycles to
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produce all of the carry save bits. Once the accumulator contains valid data,

K bits will “fall off the end, on each cycle. The first K bits must be examined

to see if they generate a carry to the higher order bits. On each additional

cycle, the next higher order K bits must be examined to see if they generate a

carry, or propagate the carry from the lower order bits which preceded. The

iterative structure has the advantage over a full tree in that only K bits need

to be examined each cycle, where the entire N bits must be examined at one

time for the full tree. This saves hardware inversely proportional to the

partial tree size. The carry circuit must be pipelined, since only K out of the

N bits are generated each cycle. (see Figure 6.9) The latch, which

accumulates the carry, must be reset on the first carry accumulation cycle, to

prevent an erroneous carry from being propagated. Deeper pipelining may

also be required, as the piped carry stage must operate faster than the basic

single 4-2 stage.

Ck Sk CD 0 e co so

I Cout K bit carry ckt Cin 1

Carry

Figure 6.9 Piped Carry Circuit
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In addition to the carry from the lower order bits, the sticky bit must also be

computed. The sticky bit circuitry must be pipelined the same as the carry

propagation circuity.  Method 6.3 for determining the sticky bit directly from

the carry save bits is fast and efficient. If positive partial products are used,

a simple logical OR on the carry save bits will produce the correct result. An

example pipelined sticky circuit based upon method 6.3 is shown in Figure

6.10.

Ck SkCk Sk d P co so

t
Sticky

Figure 6.10 Pipelined Sticky Circuit

6.9 Summary
Several technology independent rounding algorithms suitable for hardware

implementations have been presented. Algorithm 6.1, shown in Figure 6.2, is

a straightforward round to nearest/up algorithm. It demonstrates the basic

principles of rounding, and is suitable for software simulation or moderate
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performance hardware implementation. Algorithms 6.2 and 6.3 are better

suited for high performance VLSI multipliers. While Algorithm 6.1 requires

two series carry propagate additions, algorithms 6.2 and 6.3 use a parallel

carry propagate addition scheme. Algorithm 6.2A (Figure 6.4) would be a

likely choice for most conventional array or full tree multipliers. Algorithm

6.2B (Figure 6.5) would be preferable if a blank slot does not exist in the

array for summing in the rounding bit (Rin). Though slightly more complex

than the other methods, Algorithm 6.3 (Figure 6.6) is best suited for iterative

multipliers, or any multiplier where the carry from the lower order bits is in

the critical path. By using the sticky bit, any of the round to nearest/up

results can be corrected to comply with IEEE standard 754 rounding.

Finally, three methods for determining the sticky bit were presented. The

first method originates directly from the definition of the sticky bit. The

second method allows the sticky bit to be determined from the input operands

in parallel with the actual multiplicaticn. The third method represents a new

fast and efficient technique for determining the sticky bit from the carry save

bits.

For iterative SPIM type multipliers, rounding Algorithm 6.3, combined with

Method 6.3 for determining the sticky bit, provides a fast and area efficient

technique for IEEE rounding. A block diagram for an N bit multiplier using a

K bit wide partial tree is shown in Figure 6.11. The shaded area represents

the additional hardware required for IEEE rounding. The partial tree is N

bits wide for the operands, plus two bits for the V and R bits, plus an

additional K bits required for IEEE rounding. The Piped Carry and Sticky

logic shown in figures 6.9 and 6.10 can be used to determine the Cin and
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Sticky bits. The Cin, S, V, and R bits are used to select the correct CSAdder

output based upon Table 6.2.

Two N bit Operands

Clk
I
I

K X (N+2+K) partial tree i I
I I

I N+l bit CPlAdder

Additional
hardware
required
for correct
IEEE
roundlng

Figure 6.11 SPIM Type Iterative Multiplier with IEEE Rounding

A major drawback with full tree multipliers is the doubling of tree width to

perform IEEE rounding. The iterative 4-2 multiplier has the big advantage

of performing this rounding while using much less hardware. Not only is a

smaller percentage of additional hardware required, but the iterative

structure can accomplish the rounding with no performance penalty. Thus,

in addition to their already smaller size, iterative 4-2 multipliers perform

IEEE rounding as fast as full tree multipliers, and in a much smaller area.
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Summary

7.1 Summary
This thesis has presented a new multiplier architecture which is both faster

and smaller than linear array multipliers. The high performance is obtained

by using a new tree structure, the 4-2 tree. The 4-2 tree is symmetric and far

more regular than other multiplier trees while offering comparable

performance, making it better suited for VLSI implementations. To reduce

area, a partial, pipelined 4-2 tree is used with a 4-2 carry-save accumulator

placed at its outputs to sum the partial products as they are generated. By

using a partial tree and iteratively accumulating the partial products, the

performance advantages of trees is obtained in a much smaller size.

111



Chapter 7. Summary

To obtain maximum performance the 4-2 tree must be clocked at a rate equal

to the combinational delay of the 4-2 stages. To achieve such tight control on

the fast iterative multiplier clock, a stoppable on-chip clock generator was

presented which can accurately match, and track, the delay of the 4-2

multiplier logic. Using a stoppable on-chip clock generator provides several

advantages over using an external system clock. These include: 1) better

matching of the 4-2 combinational delay, yielding higher performance; 2) the

ability to track 4-2 performance over variations in temperature, supply

voltage, and processing; 3) the elimination of clock synchronization problems.

Performance limits based upon current and future technologies were also

discussed. For current technologies, the clock frequency is limited by the 4-2

carry-save accumulator delay. Although performance will eventually be

limited by the clock lines, this should not be the case until technologies well

below 0.5 v have been achieved with clock frequencies approaching 1 GHz.

The new multiplier architecture developed in this dissertation is useful for

implementing both integer and floating-point multipliers. To demonstrate its

usefulness for floating-point, several high-performance rounding algorithms

which adhere to the IEEE standard for floating-point arithmetic were

presented. In addition, a new method for computing the sticky bit directly

from the carry-save form of the result was discussed. It was then shown that

iterative 4-2 multipliers require less additional rounding hardware than full

trees, with no performance penalty.

A test chip, the Stanford Pipelined Iterative Multiplier (SPIM),  was

fabricated to demonstrate the feasibility of iterative 4-2 multipliers. SPIM

implements the 64 bit mantissa portion of a double extended precision
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floating-point multiply. SPIM was fabricated in a 1.6 pm CMOS process and

ran at an internal clock frequency of 85 MHz. The latency for a 64 X 64 bit

fractional multiply is under 120 ns. SPIM contains 41,000 transistors with

an array size of 2.9 X 5.3 mm. By using a partial, pipelined 4-2 tree and

accumulator, SPIM provides over twice the performance of a comparable

conventional full array at l/4 of the silicon area. The SPIM chip proved that

the new architecture works, and is smaller and faster than current multiplier

architectures.

7.2 Future Work
An obvious continuation of this work would be to implement an IEEE

compatible floating-point multiplier in a more aggressive CMOS technology.

A clock generator clocking a 4-2 adder at 400 MHz was implemented in a 0.8

pm CMOS technology, demonstrating the potential performance of iterative

4-2 multipliers. Investigations into other technologies such as ECL and GaAs

might also prove interesting. Size and power constraints currently prohibit

full linear array or tree implementations in either of these technologies. Such

implementations would also further the study of high-speed clocking.

The ability to construct very small high performance multipliers provides

many other interesting possibilities. A double precision IEEE multiplier

could be placed on the same chip with an existing RISC or CISC processor.

Multiplication intensive applications, such as DSP or graphics, could benefit

significantly from several high performance multipliers on the same chip. A

single very high throughput multiplier, or several multipliers working in
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parallel on the same chip, could open up new possibilities such as single chip

video signal processors. Further investigation into communications between

iterative 4-2 multipliers and other hardware, or between several 4-2

multipliers, should also continue as it may produce better system interfaces.
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