
INFORMATION TO USERS

The most advanced technology has been used to photo
graph and reproduce this manuscript from the microfilm
master. UMI film s the text directly from the original or
copy submitted. Thus, some thesis and dissertation copies
are in typewriter face, while others may be from any type
of computer printer.

The quality of th is reproduction is dependent upon the
quality of the copy submitted. Broken or indistinct print,
colored or poor quality illustrations and photographs,
print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a
complete manuscript and there are m issing pages, these
will be noted. Also, if unauthorized copyright material
had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are re
produced by sectioning the original, beginning at the
upper left-hand corner and continuing from left to right in
equal sections with small overlaps. Each original is also
photographed in one exposure and is included in reduced
form at the back of the book. These are also available as
one exposure on a standard 35mm slide or as a 17" x 23"
black and w hite photographic print for an additional
charge.

Photographs included in the original manuscript have
been reproduced xerographically in th is copy. Higher
quality 6" x 9" black and w hite photographic prints are
available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly
to order.

University M icrofilm s International
A Bell & Howell In form ation C om pany

300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
313/761-4700 800/521-0600

L

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O rder N um ber 8925957

C om p arin g s tru ctu ra lly different v iew s on a V L S I design

Spreitzer, Michael Joseph, Ph.D.

Stanford University, 1989

C o p y r ig h t © 1 9 8 9 b y S p r e itz e r , M ich a e l J o se p h . A ll r ig h ts re se rv ed .

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

COMPARING STRUCTURALLY DIFFERENT VIEWS OF

A VLSI DESIGN

A DISSERTATION

SUBMI TTE D TO THE DEPARTMENT OF CO MP UT E R SCIENCE

A N D THE COMMITTEE ON GR A DU AT E STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF TH E REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
Michael Joseph Spreitzer

June 1989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright 1989 by Michael Joseph Spreitzer

All Rights Reserved

J
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I certify tha t I have read this thesis and tha t in my opin

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

A j

Mark Horowit?
(Principal Adviser)

I certify tha t 1 have read this thesis and tha t in mv opin

ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

3 ?
/ V,

orest Baskett

1 certify tha t I have read this thesis and that in my opin

ion it is fully adequate, in scope and in quality, as a

dissertation for/khe^degree of Doctor of philosophy.

/

John Hennessv

Approved for the University Committee on G raduate

Studies:

m

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

A bstract

One of the major problems of VLSI design is coping with the quantity and complexity

of the design data. T he leading solutions use ‘divide-and-conquer’ techniques. Two

different ways of dividing are popular: division by a structural hierarchy, and divi

sion into various levels of abstraction (a view is a description at a particular level of

abstraction). VLSI designs are so large and complex that both divisions are needed,

which raises a question: should all the views of a design use the same hierarchy?

This question is currently controversial. This dissertation, while not presuming to

settle tha t question, argues in favor of allowing the views to have different hierar

chies, and addresses a problem th a t is complicated by differences in hierarchy. T ha t

is the comparison problem, which has two parts: (1) verify consistency between al

ternate views, and (2) determine the correspondence between the design entities of

those views. Previously existing techniques either work on flat views (that is, ones

not divided into a hierarchical structure), or can only compare views th a t have essen

tially identical hierarchies. Of course any hierarchical description can be flattened,

but flattening is disadvantageous for a number of reasons. The most im portan t rea

son is th a t flattening can exponentially increase the size of the description. Many

comparison techniques require an amount of tim e th a t grows exponentially with the

size of the circuit descriptions. F lat comparison techniques are thus impractical for

VLSI designs.

This dissertation introduces a new comparison method, Informed Comparison ,

which neither requires the views to have essentially identical hierarchies nor flattens

the views. Informed Comparison requires the designers to maintain a key, which is

a description of the intended relation between the hierarchies of the views. Informed

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Comparison first reconciles copies of the views by applying hierarchy transformations,

under the guidance of the key, until the copies have essentially identical hierarchies.

Informed Comparison then finishes with a base comparison, which can use any ex

isting (or new) hierarchical technique th a t assumes essentially identical hierarchies.

Informed Comparison thus has many of the good features, including good asymptotic

performance, of other hierarchical methods.

Several characteristics of Informed Comparison depend on the repertoire of trans

formations available to the reconciliation step and on the base comparison technique.

This dissertation illustrates those dependencies with two examples of Informed Com

parison.

i
j

i

k
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A ck now ledgm en ts

I have been aided and abe tted by a four advisors. Forest Baskett got me started,

with a look at logic extraction and an introduction to Xerox PARC. He helped me

through the difficult task of choosing a thesis project. Manolis Katevenis and John

Hennessy helped me along the way. Mark Horowitz deserves much credit for helping

me to bring my project to a conclusion.

I wish to thank the Fannie and John Hertz Foundation for the generous support

they give to their fellows. The Computer Science Laboratory of the Xerox Palo Alto

Research Center also deserves credit for providing both financial support and a highly

stimulating and productive environment.

My writing was much improved, thanks to the reviews of several people. Mark

Horowitz and Jay Showalter told me of the importance of helping my readers to keep

their bearings. Rich Horvath tried to show me how to eliminate dead wood. Stefan

Demetrescu, Dan Swinehart, Rick Barth, Bertrand Serlet, and my wife Chris were

also helpful.

I am indebted to many people, especially Chris, for patience, understanding, and

encouragement during this long project.

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C ontents

A bstract iv

A cknow ledgm ents vi

1 In troduction 1

2 Background 6

2.1 T he Problem...... ... 6

2.1.1 Ways to D i v i d e ... 6

2.1.2 Methodological C ho ices ... 11

2.1.3 The Comparison P r o b l e m .. 17

2.2 Existing Techniques for Consistency C h e c k i n g 20

2.2.1 F la t, Same-Abstraction C o m p a r iso n .. 20

2.2.2 Hierarchical C o m p a r i s o n ... 28

2.2.3 Abstraction C r o s s in g .. 32

2.2.4 Summary of Consistency Techniques ... 35

2.3 Existing Techniques for the Correspondence of E n t i t i e s 36

3 Introduction to Inform ed C om parison 38

3.1 T he S c h e m a ... 38

3.2 Examples ... 41

3.3 Choices ... 44

3.4 The Nature of the Correspondence ... 48

3.5 W hy Informed Comparisons Are B e t t e r .. 49

vii

I
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 A Sim ple S ystem 51

4.1 T he DATools M e th o d o lo g y .. 51

4.1.1 The Core D ata S t r u c t u r e .. 52

4.1.2 The M e th o d o lo g y .. 52

£ 4.1.3 The Relationship Between the Hierarchies of the Views 54

4.2 How PWCoreLichen Checks C o n s i s t e n c y .. 55

4.2.1 PW CoreLichen’s R e c o n c i l ia t io n .. 56

4.2.2 PW CoreLichen’s Base C o m p a r i s o n .. 59

4.2.3 A Note on Performance ... 59

| 4.3 T he Entity Correspondence Determined by P W C o re L ich e n 62

4.3.1 PW CoreLichen’s Base C o r r e s p o n d e n c e ... 64

I 4.3.2 The Complexity Due to F l a t t e n i n g .. 64

I 4.3.3 The Remaining C o m p l e x i t y .. 66

| 4.3.4 A Simpler Presentation of a C o rre sp o n d e n c e 67

) 4.3.5 Summary of PW CoreLichen’s C o r re sp o n d e n c e 71
ii
| 4.4 PWCoreLichen S u m m a ry ... 71

j 5 T he Lichen and M IP S -X S tu d y 73

f 5.1 O verv iew ... 74

j 5.2 Introduction to M I P S - X ... 75

] 5.3 L i c h e n .. 76

| 5.3.1 Lichen’s Notion of a V i e w ... 77

5.3.2 Flat-Insignificant Hierarchy T ra n sfo rm a tio n s 80

j 5.3.3 Flat-Significant Behaviorally Insignificant Transformations . . 87

J 5.3.4 Transformations of Lichen’s Representation 87

; 5.3.5 Non-Structural T ra n s fo rm a t io n s ... 88

] 5.4 T he MIPS-X pc Key and Reconciliation ... 90

5.4.1 Reconciled Differences .. 90

; 5.4.2 Reconciliation Performance .. 95

I 5.5 T he MIPS-X Base Comparison ... 99

I 5.5.1 Plan A .. 99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 Problem atic Differences .. 104

5.5.3 Comparison Modulo Boring C o m p o n e n ts .. 104

5.5.4 Base Comparison P e rfo rm an ce ... 114

5.6 The MIPS-X C o rresp o n d en ces .. 117

5.6.1 T he Reconciliation Correspondences ... 118

5.6.2 T he Base C o r r e s p o n d e n c e .. 119

5.6.3 T he Main C o r re s p o n d e n c e .. 121

5.6.4 Correspondence S u m m a r y .. 123

5.7 Lichen and MIPS-X S u m m a r y ... 124

6 Concluding R em arks 126

6.1 S u m m a r y .. 126

; 6.2 Problems and Limitations .. 128

6.2.1 Remaining Comparison Difficulties .. 128

; 6.2.2 Comparison versus S yn thes is ... 130

; 6.3 Future W o r k ... 131

A T he M IP S-X pc R elation 134

] A .l The R e p e r t o i r e .. 134

j A.2 The K e y .. 137

3

Bj B ibliography 140

I
3

I

ix

—
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f T ables

2.1 Connections in the Bit Shift Cell T y p e ... 9

2.2 Tradeoffs of F la t Comparison T e c h n iq u e s .. 29

4.1 Times to Generate and Compare the S I C .. 60

4.2 Correspondence for the E x a m p l e s .. 69

5.1 Transformations of the Reconciliation of the MIPS-X pc u n i t 91

5.2 Cell Structure Transformations in the Reconciliation of the MIPS-X pc 91

5.3 Connections in a Sense-Abstract View of an XOR Implementation . . 107

5.4 Cut Cell Type S iz e s .. 116

5.5 How to Combine Senses of C o rresp o n d en ce .. 123

j

I
1

r
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f F igures
i
!

2.1 A Fragment of a H ie ra rc h y .. 8

2.2 Distribution of MIPS-X pc Layout Cell Types by Number of Subcells 10

2.3 Function S l ic in g ... 12

2.4 Bit S l ic in g ... 13

2.5 Use of Mirroring and Extra S tructure to Share F e a tu re s 14

2.6 Periodic Contacts in an A r r a y ... 15

2.7 Split M u l t i p l e x o r ... 16

2.8 Scattering of Transistors Implementing a Boolean O p e r a to r 17

2.9 A Synchronous Edge-Triggered C i r c u i t ... 22

2.10 Segmenting a C i r c u i t .. 23

2.11 A Circuit and Its G r a p h ... 26

2.12 Structural Comparison Does Not Understand I n v e r s io n 27

2.13 Structural Comparison Does Not Understand Commutativity of Bool

ean Function Inputs ...27

2.14 Structural Comparison Cannot Distribute AND Over O R 28

2.15 Factorization of Comparison Between Views at Different Levels of Ab

straction ... 32

2.16 Comparison Across Levels of Abstraction by Simulation and Raising

the Level of Abstraction of Simulation T r a c e s ... 35

3.1 An Informed C om parison ... 39

3.2 A Simple Reconciliation ... 42

3.3 Split Multiplexor R eco n c il ia t io n ... 43

3.4 A Switch-Level View, with Problematic P u l l u p ... 46

x i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.5 A Clean Digital V i e w ... 47

4.1 Division of Two Views by Corresponding Cell Types 56

4.2 Array with Delayed C o n n e c t i v i t y .. 58

4.3 Original Source Core Cell Type Size Distribution in the S I C 60

4.4 Original Extracted Core Cell Type Size Distribution in the SIC . . . 61

4.5 Reconciled Cell Type Size Distribution in the S I C 61

4.6 Correspondences in P W C o r e L ic h e n .. 63

4.7 Views for the E x a m p le s ... 68

5.1 Two Flat-Identical Views with Different W i r i n g 81

5.2 Wiring Differences R e c o n c i l e d ... 83

5.3 Funsim View of the pcinc ... 92

5.4 Introduction to Layout View of the p c i n c ... 92

5.5 Layout View of the p c i n c ... 94

5.6 Reconciled Funsim p c i n c ... 96

5.7 Reconciled Layout p c i n c ... 97

5.8 Tightness of Lichen and PWCoreLichen Reconciliations of the MIPS-X

p c ..98

5.9 An Informed Comparison for MIPS-X Using Plan A 100

5.10 An Informed Comparison for MIPS-X Using Comparison Modulo Bor

ing Components ... 106

5.11 A Sense-Abstract View of an XOR I m p le m e n ta t io n 107

5.12 Reconciled Layout pcinc After Inverting Certain Wires and Ports . . 109

5.13 Reconciled Layout pcinc After some Inversions and M e r g e s I l l

5.14 Layout pcinc After Deletion of Boring Components and Fractions . . 112

5.15 Correspondences in the Informed Comparison of the MIPS-X Funsim

and L a y o u t .. 118

x ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 1

In trod u ction

An Integrated Circuit is an electronic circuit fabricated in a small ‘chip’ of some semi

conducting material. As this technology has developed, the sizes of circuit elements

have continually shrunk. This has increased the speed of circuit operation, as well as

the amount of circuitry that can fit on a given area. At the same time, the size of

the chip th a t can be practically fabricated has increased. These trends have greatly

increased the complexity of the circuits being designed and fabricated. The acronym

V L S I , for Very Large 5cale In tegration, refers specifically to these complex circuits.

Because of their complexity, it is quite difficult to quickly produce working VLSI

| designs. This dissertation introduces an idea that makes it easier to design complex

circuits.

Designing a large complex IC is an enormous task. Designers cope with this

complexity by using divide-and-conquer strategies. In fact, a single IC design is often

divided up in several different ways. The central idea of this dissertation concerns

keeping some coherence across those different ways of dividing.

There are two m ajor ways of dividing VLSI designs. One way is to divide a

circuit into interacting sub-circuits, and then divide each sub-circuit into interacting

sub-sub-circuits, and so on. These divisions define the hierarchy, or the structure,

of the design. The other way to divide the design is by issues. A VLSI design

must address several different kinds of issue: solid s ta te , electrical, geometrical, and

logical. There are various levels o f abstraction at which IC designs are described;

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. I N T R O D U C T I O N 2

each level of abstraction focuses on one or a few kinds of issues. Examples of these

levels of abstraction are the solid-state device, the masks used for fabrication, the

electrical circuit, and the logical circuit. Let us refer to a description, a t some level

of abstraction, of a circuit as a view of that circuit.

Most designs describe the whole circuit at more than one, but not every possible,

level of abstraction: often there is bo th a mask and a logical view of the whole circuit,

but rarely is there a solid-state view of the whole circuit. Each view of a VLSI circuit

is itself so large th a t it is hierarchically divided. Should all the views of a circuit use

the same hierarchy? This is controversial.

There is a strong reason to allow each view to use a different hierarchy: it improves

the clarity of the views. Recall th a t the essence of a hierarchy is the division of a part

into interacting sub-parts. The fewer and simpler those interactions, the greater the

clarity of the view. But the interactions depend on the abstraction employed; thus,

a hierarchy th a t is good for one view many not be good for another.

But a design has more than one view, and if the relationship between those views

is sufficiently tortuous, the overall clarity of the design suffers. A part in one view

might not correspond to any one part in another view. This makes it difficult to test

or maintain consistency between views. The reason for forcing all views of a circuit

to use the same hierarchy is that it avoids these difficulties.

T he consistency problem arises because, although the various levels of abstraction

focus on different issues, the information content of the views is not completely dis

joint. For example, both an electrical view and a logical view describe the behavior

of the circuit. Those behaviors will be in different terms: electrical circuit behavior

is cast in terms of continuous functions of time for voltages and currents, and logical

circuit behavior is cast in terms of Boolean functions of discrete points in time for

logical variables. Even though they are in different terms, the two behaviors can be

compared. Logical TR U E and FALSE can be associated with ranges of voltage, and

the discrete time points of the logic behavior can be associated with moments of t ime

in the electrical behavior. Thus, we can ask whether an electrical circuit and a logical

circuit have consistent behavior.

One way to answer the behavioral consistency question between an electrical and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. I N T R O D U C T I O N 3

a logical circuit is to simulate both, and check whether the voltage functions and

logic variables are consistent, as outlined above. To do this requires knowing which

voltage function is supposed to correspond with which logical variable. This is an

example of why it is useful to know the correspondence between the entities of the

two views. Another example is a simple cross-referencing function. It would be nice

if a designer could point at an entity in one view, and get back an indication of what

tha t corresponds to in a different view. There are many other examples. Any task

tha t needs to use more than one view needs to know the correspondence between the

entities of the views.

Most existing techniques for maintaining the correspondence between entities in

different views simply insist tha t all the views of a design use the same hierarchy,

which makes for a direct correspondence between design entities. While the other

techniques are more sophisticated, they are not able to accurately represent the cor

respondence across general hierarchy transformations. Most existing techniques for

assuring consistency either (1) insist tha t all the views use the same hierarchy (or

allow only certain minor differences in the hierarchies), and take advantage of tha t

sameness, or (2) can only compare flat views. A flat view is one that does not employ

hierarchy: it simply describes one large set of interacting indivisible parts. The hi

erarchical techniques have significantly greater performance than the flat ones. The

hierarchical techniques also have greater precision and flexibility, except for th a t one

requirement of sameness of hierarchy.

This dissertation introduces a new hierarchical comparison m ethod, called In

formed Comparison , that does not require the views to use essentially identical hier

archies, yet has many of the benefits of other hierarchical techniques. In preparation

for an Informed Comparison, the designers must document the intended relation be

tween the hierarchies of the views. This information is called the key. An Informed

Comparison of two views is done in two stages: first the reconciliation of the views’

hierarchies, and then the base comparison of the reconciled views. The base com

parison can be any existing (or new) hierarchical technique tha t requires essentially

identical hierarchies. T he reconciliation consists of applying hierarchy transform a

tions to copies of the views, under the guidance of the key, until their hierarchies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. I N T R O D UCTION 4

are similar enough for the base comparison. An Informed Comparison can both ver

ify consistency and determine the correspondence between the entities of two views.

The power of Informed Comparison depends on bo th the base comparison and the

repertoire of transformations available for the reconciliation.

Informed Comparison cannot remove the tension between the clarity of the indi

vidual views and the clarity of the relationships between the views. Informed Compar

ison’s contribution consists of enabling designers to use whatever hierarchies maximize

overall clarity without paying the penalties associated with flattening. While there

are other difficulties in the comparison problem (such as coping with the differences in

level of abstraction), and not every design benefits greatly from hierarchical division,

Informed Comparison is useful because it is an efficient technique for coping with

hierarchy differences.

The rest of this dissertation is organized as follows.

• Chapter 2 presents the comparison problem in detail: why it is desirable to

use alternate views at different levels of abstraction with different hierarchies,

and why it is desirable to test consistency and determine the correspondence

j between the entities of two views. Chapter 2 also presents existing comparison

techniques.

• Chapter 3 introduces the m ethod of Informed Comparison. Some of the char

acteristics of Informed Comparison depend on the base comparison technique

and the repertoire of reconciliation transformations; these dependencies are dis

cussed in general in this chapter.

• Chapter 4 presents one particular version of Informed Comparison, called P W

CoreLichen. It is a program in a design aids suite created and used at Xerox

PARC. PWCoreLichen has a particularly simple base comparison and limited

repertoire of reconciliation transformations.

• Chapter 5 presents a more general Informed Comparison, the Lichen and MIPS-

X study. Lichen is an experimental program for applying reconciliation trans

formations, with a general repertoire. MIPS-X is a microprocessor designed at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 1. I N T R O D U C T I O N 5

Stanford. This chapter presents an Informed Comparison of two views of part of

MIPS-X. This comparison requires a new method, called Comparison Modulo

Boring Components , for the base comparison.

Chapter 6 presents a review of Informed Comparison, a discussion of its p rob

lems and limitations, and suggestions for further research.

Appendix A presents Lichen’s repertoire of transformations and the key used

in the MIPS-X comparison.

!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 2

B ackground

Informed Comparison is a method for comparing alternate views of a VLSI design,

where those views use different levels of abstraction and different hierarchies. This

chapter provides the background necessary to understand and evaluate Informed

Comparison. The chapter begins by presenting the reasons for using alternate views

a t different levels of abstraction and with different hierarchies, and then describes

the need for comparing those views. Comparison involves both checking consistency

between the views and finding the correspondence between the parts of th e views.

Finally, some existing techniques for comparison are presented, because Informed

Comparison makes use of them and will be evaluated against them.

2.1 T h e P ro b lem

2.1.1 W ays to D ivide

One of the problems in VLSI design is coping with the great quantity and complexity

of the da ta involved. W ith current technology, chips containing a million transistors

are regularly made. Some chips, such as memories, can have relatively simple struc

ture, because they consist mainly of a large repetition of a small pattern; o ther chips,

such a microprocessors, have much more complex structure. To cope with the large

amount of information, designers and programs use divide-and-conquer strategies. In

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 7

fact, two different ways of dividing, by abstractions and by hierarchy, are popular.

D ivid ing by A bstraction s

In this way of dividing up design information, a number of different abstractions are

employed, each of which focuses on only some of the concerns of the VLSI design

problem. Examples of such abstractions are solid state devices, fabrication masks,

electrical circuits, Boolean equations, and register-transfer machines.

Dividing design information by abstractions is good practice because it allows the

designer attacking only some aspects of the problem to focus on just those aspects.

For example, the designer can develop a set of Boolean equations before designing the

electrical circuits tha t will implement them. It is helpful to be able to think about

the logic of the problem separately from the details of the electrical implementation.

In this dissertation, the word view is used to m ean a description in a particular

abstraction.

H ierarchies

In this way of dividing up design information, the chip is divided into interacting

sub-parts, and then those sub-parts are divided into interacting sub-sub-parts, and

so on. The value of this is also tha t it lets the designer focus on only some of the

design problem at a time. Dividing by hierarchy differs from dividing by abstrac

tion in the way the locus of attention is defined: hierarchies organize by structural

relations, abstractions organize by conceptual relations. Hierarchies also support a

use/definition dichotomy, which makes hierarchical descriptions more succinct than

flat ones.

A number of different formulations of hierarchy have been used; this dissertation

uses the following one. The basic division into parts and sub-parts is described with

cell types and cell instances-, the interactions between parts are described with wires,

ports , and connections. T he type/instance dichotomy for cells makes it possible to

describe, design, and analyze multiple occurrences of the same pattern succinctly. A

cell type is either atomic (has no internal structure) or composite. Each composite

cell type contains a number of cell instances and wires; each cell instance represents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 8

Shift Register

Latch

elk

Latch

elk

n out

Shift Bit

n out

Shift Bit

n out

Shift Bit

n out

Shift Bit

in

Ich

Shift Bit

Ich

out

Figure 2.1: A Fragment of a Hierarchy

a use of the cell type it instantiates. A view has a distinguished composite cell type,

called its root, th a t stands for the whole chip; the other cell types describe parts of

the chip. Every cell type has an explicit interface, which is a set of ports. Each

connection is between a wire and a port at a site, where a site may be either a cell

type or cell instance. The cell instances at which a wire may be connected are only

those contained in the same cell type that contains the wire—that is, a connection

cannot ‘skip’ levels of hierarchy; this is what it means to have explicit interfaces on

the cells. The only cell type at which a wire may be connected is the cell type th a t

contains the wire; such a connection indicates the fact that the port to which the wire

is connected exports the wire.

See Figure 2.1 for an example of part of a hierarchy. It shows the definitions

of two cell types, Shift Register and Shift Bit. The Shift Bit cell type has two cell

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 9

Wire Port Site
in in Shift Bit
in D lch0

mid Q lch0
m id D lchi
out Q Id h
out out Shift Bit
<P i <Pi Shift Bit

elk lch0
f>2 f>2 Shift Bit
P2 elk lchi

Table 2.1: Connections in the Bit Shift Cell Type

instances (both of the same type Latch), five wires, and four ports. The wires of Bit

Shift participate in 10 connections, which are listed in Table 2.1.

A few more terms concerning hierarchical structure will prove useful. T h e cell in

stances contained in a cell type are called its subcells. A genealogical cast is sometimes

applied to cell structure. The subcells of a cell type are also called its children, and

a cell type is considered to be a child (the only child, in fact) of each of its instances.

Cell type or instance (hereafter, simply cell) A is considered to be an ancestor of cell

B iff either .4 = B or A is a parent of some cell C that is an ancestor of B. Two

cells tha t share a parent are called siblings. Clipping a hierarchy is an operation that

discards details. It changes some composite cell types into atomic ones, forgetting

their decompositions into interacting sub-parts. Cell types tha t are no longer used

are forgotten entirely. Clipping can be done to various degrees. A particular clipping

is specified by a frontier, which is a set F of cell types such that every cell type in the

view has at least one ancestor or descendant in F. A frontier conceptually divides

the cell types of a view into three disjoint sets: (1) the frontier F itself, (2) the cell

types above the frontier, and (3) the cell types below the frontier. Since a cell type

can have both ancestors and descendants in F, the concepts of above and below need

to be defined carefully. A cell (type or instance) not in F is above F either if it is the

root cell type of the view or if tha t cell has a parent that is above F. Cells neither

above F nor in it are below it. The cell types above F are unaffected by the clipping;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D . 10

$ ^ 32-|
0.1)
H i> 16“
= 2 8 -
P I* 4 -

150 200 250100
Number of Subcells

Figure 2.2: Distribution of MIPS-X pc Layout Cell Types by Number of Subcells

the cell types below F are the ones forgotten. There is no point in including in F a

cell type th a t is below F.

A flat description can be considered a degenerate hierarchical one, wherein the

root cell type is the only composite cell type. Flattening is the process of removing

hierarchical structure, and can be done to various degrees. Complete flattening re

moves as much hierarchy as possible, leaving the root as the only composite cell type.

One partial degree of flattening is replacing every instance of a cell type with its first

level of decomposition, suitably interconnected of course; this is called flattening out

that cell type. A lesser degree of flattening is replacing only one cell instance with its

type’s first level of decomposition; this is called flattening out th a t cell instance.

The type/instance dichotomy makes hierarchical descriptions compact. For ex

ample, Figure 2.2 shows a histogram of the cell types in the layout of the program

counter unit of M IPS-X (a 32-bit microprocessor th a t will be introduced in more

detail later), according to number of subcells. More than 95% of the composite cell

types have fewer than two dozen subcells; only one, a PLA , has more than about three

dozen. The whole hierarchical description uses 705 cell instances. When completely

flattened, the description uses about 6740 cell instances.

The distinguishing features of this formulation of hierarchy are two: the use of

a cell type/instance dichotomy, and the use of explicit interfaces on the cells. The

type/instance dichotomy makes the descriptions compact, and the explicit interfaces

on cells facilitate the hiding of information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 11

2.1.2 M ethodological C hoices

The previous section presents two different ways to divide up the information in a

VLSI design. The quantity and complexity of the information in a VLSI design are

so large tha t both techniques must be used together in order to make the design task

manageable. How should these two different techniques be coordinated? This is an

open question of design methodology. This dissertation does not purport to settle

this question—only to address a problem tha t arises in the context of one popular

answer. This section sets forth, and argues for, two methodological principles tha t

form that context.

U se M ultip le , Independent V iew s

One methodological principle is tha t each design should use multiple, independent

views. Two views are independent when a designer can work on (i.e., edit, analyze,

and so forth) one without having to work on the other simultaneously (note tha t

this definition is not directly concerned with how the design information is stored in

files, databases, or whatever). The motivation for this principle is that it allows the

abstractions to perform their intended function—focusing attention on only some of

the design information.

U se D ifferent H ierarchies in D ifferent V iew s

The other methodological principle is th a t the views of a design need not all use

the same hierarchy. This is a controversial rule, and both sides talk about clarity.

The argument against this rule is th a t when the views use different hierarchies, the

overall clarity of the design suffers. The argument for this rule is that forcing all the

views to use the same hierarchy reduces the clarity of some or all of the views, which

in turn reduces the overall clarity of the design. Recall that hierarchy involves the

division of a part into interacting sub-parts. The best division minimizes the number

and complexity of the interactions— and the interactions of interest vary from one

view to another. The freedom granted by this rule allows the designers to maximize

the clarity of the individual views ju s t enough to maximize the overall clarity of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 12

Datapath

Register
File

S
hi

fte
r

ALU

Shifter

ShiftCell

ShiftCell

•
•
•

ShiftCell

• • •

Figure 2.3: Function Slicing

design. Some examples of desirable differences in hierarchy between views follow.

A familiar example arises in the design of the canonical microprocessor da tapath :

the schematic view divides the da tapa th into a register file, a shifter, and an ALU,

each of which is, say, 32 bits wide; but the layout view uses a 32-fold replication

of a bit-slice cell, which contains one b i t ’s worth of each of the three major parts.

Figure 2.3 illustrates the function-sliced hierarchy, while Figure 2.4 illustrates the

bit-sliced one. For the schematics and other high-level views, the function-sliced

hierarchy is best, because it most clearly exposes the function of the circuit; for the

layout, the bit-sliced hierarchy is best, because it focuses on the most interesting

layout problems—the interaction of adjacent bit cells from the different major parts.

A number of cases of desirable differences in hierarchy arise because there are

special considerations to be made in layout that should not disturb the clean organi

zation of more abstract views. A very im portan t layout consideration is minimizing

area. One way to do this is to share features between adjacent cells; sometimes it is

best to use mirroring and intermediate levels of s tructure to accomplish this. An ex

ample is shown in Figure 2.5. This example concerns a horizontal array of 32 inverter

cells. When mirrored in the horizontal dimension and overlapping properly, adjacent

inverter cells share the power lines and contacts, saving a significant amount of area.

To accomplish this in the layout hierarchy, there is an extra intermediate level of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 13

Datapath
| BitSlice

| BitSlice

BitSlice

BitSlice
Register
File Slice ShiftCell ALU Bit

Figure 2.4: Bit Slicing

structure—the pair cell, which contains two inverters, one of which is mirrored; the

pair cell is replicated 16 times to make the whole array. In the higher levels of ab

straction, the mirroring of every other element cell in the array is uninteresting (and

perhaps not even expressible); thus the pair cell serves no purpose, and the whole

array is best described as a simple array of 32 inverters.

Another layout consideration is how to send signals down long wires. This is

particularly vexing when the wire is long because it traverses a large array. In this

case the array structure is disrupted by the need to do something every few elements

to restore the strength of the signal traveling down the long wire. Figure 2.6 shows

an example: here a control signal is routed through an array on the polysilicon layer,

because it is used as the gate of some transistors; since polysilicon is not a very

good conductor, the signal is also routed through the array in metal. There is a

contact between the polysilicon and the metal every few elements; the contact is

not put in every element because tha t would cost more area. The layout hierarchy

would probably use an extra intermediate level of structure, as for the mirroring of

alternate elements, to express the periodic appearance of a contact. At higher levels

of abstraction the contact is not even expressible, and having the ex tra intermediate

level of structure would just be a nuisance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 14

(a) An inverter layout

Q O s s
O V

■ o u t

(b) An array, with mirroring & overlap

in in
o 1

in in
3 0 31

inv
array

inv • • • inv
pair

X 16
pair

OiVf out
1

out o u tn _
30 31

(c) The array, built with pairs

inv
array

X 32out out

(d) A simple array

Figure 2.5: Use of Mirroring and Extra S tructure to Share Features

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 15

• • • • • •

Figure 2.6: Periodic Contacts in an Array

Another way to send a signal through a large array is to insert buffers every few

elements. Again, the layout hierarchy could use extra intermediate structure. In this

case the buffers could appear at some of the higher levels of abstraction— specifically,

at the electrical and switch-level. But at even higher levels— Boolean and above— the

buffering is not significant. This is a case where two views of the same circuit should

differ not only in hierarchical structure, bu t in flat s tructure as well.

Another layout consideration is the need to align the hierarchy with the geometry.

Most hierarchical layout systems (the analysis tools play a significant role here) require

that: (1) cells have rectangular areas, (2) the area of a cell be a superset of the area

of every child cell, and (3) the areas of siblings usually be mostly disjoint. Thus,

parts tha t are in the same layout cell will tend to be close to each other, and vice

versa. The geometric relations between circuit parts can be different from the logical

relations because of the need to minimize things like the area of the circuit and the

lengths of critical wires. A layout hierarchy thus has geometric reasons to differ from

the best hierarchy 'Dr a more abstract view.

A simple case of this occurs in the MIPS-X design: in the functional view, a latch

appears in the execute section, where it logically belongs; in the layout view, the latch

appears in the instruction register, where it fits better.

A more complicated case occurs in the register file in MIPS-X, and it goes, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 16

Sel Sel

Mux

Producer 0

Producer 1

Consumer

(a) Functional description

Sel Sel

Producer 0 Producer 1Consumer

(b) Layout description

Figure 2.7: Split Multiplexor

essence, as follows (see Figure 2.7). In the functional description there is a multiplexor,

which takes two inputs from two producer cells, chooses one according to some control

signals, and sends it on to a consumer cell. In the layout, for reasons having to do

with routing other signals, the geometrical arrangement places the consumer of the

m ux output between the two producers of the mux inputs. In this situation it is very

advantageous to implement the multiplexor by two tri-s ta te drivers, separated and

placed as shown in the figure. In this layout, there is no point in making a cell for

the whole multiplexor; in the functional description, using the multiplexor instead of

the two tri-state drivers is clearer.

An even more vexing and common case concerns the implementation of Boolean

functions. In a Boolean view, simple functions like A N D are leaves—they have no

internal structure, as far as that view is concerned. But in the layout, those Boolean

functions are not leaves— transistors are. Each simple Boolean function is imple

mented by a few transistors and some wiring. Often the transistors implementing a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 17

(a) Functional view

req req

El t Elt

(b) Layout view

s o m e

s o m e

Figure 2.8: Scattering of Transistors Implementing a Boolean Operator

single simple Boolean function are scattered throughout a few cells (see Figure 2.8

for an example); also the transistors implementing several simple Boolean functions

commonly are grouped together into one cell. A PLA is a structured example of the

latter; there are also many unstructured examples. In these examples, some leaves of

the high-level view have no corresponding cell in the low-level view. These are thus

examples of differences tha t cannot be reconciled simply by flattening.

In summary, the different views focus on different interactions, and this means

tha t different hierarchies are sometimes preferable. O ther work that uses alternate

views with different hierarchies can be seen in [Blackburn85] [Blackburn88] [Katz86]

[Parker84] [Sequin83l [Walker85] [Walker87] [v.d.Wolf88]. The differences in hierarchy

complicate the comparison problem, as will be seen in the next section. However, with

the use of Informed Comparison, the comparison problem is not so difficult that it

should preclude the use of different hierarchies.

2.1.3 T he C om parison Problem

The preceding sections explain why it is desirable to use multiple views, at differ

ent levels of abstraction and with different hierarchies, in a VLSI design. In this

methodological context, two related problems arise: testing consistency between the

views, and discovering the correspondence between the entities used in the views.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 18

This section explains exactly what these problems are and why they arise.

C onsistency

Although two alternate views used in a VLSI design are at different levels of abstrac

tion, there is some overlap in their information content; for this reason, it is im portant

to be able to test for consistency of this common information. For example, consider

an electrical view and a Boolean view of the same chip. Although the electrical view

focuses on issues not even present in the Boolean view, the behavior of the electrical

circuit should be consistent with the behavior of the Boolean description. Although

the electrical behavior is more detailed, there should be some way of abstracting from

it a simple Boolean behavior tha t matches the behavior of the Boolean view.

Note that the problem is not simply to determine whether two views are consistent;

if they are not consistent, it is helpful to identify the causes of the inconsistency. For

example, if two distinct wires in one view are accidentally merged together in another

view, the designers would benefit from an indication of that situation.

C orrespondence of Entities

W hen multiple views are used, design tasks th a t involve more than one view involve

knowing which entities1 in one view correspond to which entities in another view. For

example, consistency checking is often given some of this correspondence, and then

discovers more of it in the course of doing the comparison. For another example, a

designer revising the design needs to know parts of the correspondence in order to

make a consistent revision.

When the views follow identical hierarchies, the correspondence between their

entities is simple: each entity in one view corresponds to exactly one entity in the

o ther view (unless one view isn’t as s tructurally detailed as the other or the entity' is

concerned solely with issues that a ren ’t addressed in the other view, in which case it

corresponds to nothing). When the views use different hierarchies, the correspondence

is complex. For an example, recall the different hierarchies presented in Figure 2.5.

1 Entities include the structural ones (cell types and instances, ports, and wires), and possibly
also som e non-structural ones.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 19

Consider the left inverter in the inv pair cell; what in the functional view corresponds

to it? The most obvious answer is the even-numbered inverters in th e simple array—

but th a t is not the whole story. It would be more accurate to say th a t the left
J . T f t ,

inverter of the 0 inv pair instance in the pair array corresponds to the 0 inverter

in the simple array, and th a t the left inverter of the 1st inv pair instance in the pair

array corresponds to the 2nc ̂ inverter in the simple array, and so on. For an even

more complicated example, recall the hierarchy difference illustrated in Figures 2.3

and 2.4; both the Shifter and the BitSlice have no corresponding cell type in the

other view. However, in the style of the previous example, paths— from the Datapath

to the Register File Slice, the ShiftCell, and the A L U B it—can be used to give a

precise correspondence between the two views. Also as before, vague indications can

be given of the correspondences of problematic entities. An even more problematic

example occurs with the difference illustrated by Figure 2.8; the best that can be

done is to indicate th a t the one N O R gate of the functional description corresponds

to the paths to its implementing transistors. Trouble of a different kind arises when

multiple cell types of one view all correspond to the same cell type of the other view,

i This could happen, for example, when there are several different layouts for latches

(because different driving strengths are required) but only one latch cell type in the

functional description. Note tha t these examples illustrate two different senses—one

conjunctive, one disjunctive— in which one entity can correspond to many. Of course,

these two senses must be kept distinct.

The full correspondence between design entities is quite detailed. Since it is a large

quantity of information, this suggests tha t most of it should be generated by a pro

gram. The consistency checker is an obvious candidate. For this reason, and because

of their logical closeness, consistency checking and discovery of the correspondence

between entities are put together to make the comparison problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 20

2.2 E x is tin g T echniques for C on sisten cy C heck

ing

The previous section sets forth the problem that informed comparison solves: compar

ison of alternate views at different levels of abstraction and with different hierarchies.

This section discusses several known consistency-checking techniques. Some of these

techniques don’t solve exactly the same problem, either because they can ’t compare

views at different levels of abstraction, or because they can’t compare views tha t

use different hierarchies. The remainder of these techniques don’t use hierarchy well

(they flatten it out). Nevertheless, understanding these techniques provides impor

tant background for understanding Informed Comparison. The existing techniques

of comparison fall into three groups: those tha t compare flat views at the same level

of abstraction, those th a t address the issues of comparison between views at differ

ent levels of abstraction, and those th a t seize some of the opportunities offered by

hierarchically s tructured views.

2.2.1 F lat, Sam e-A bstraction C om parison

The techniques for flat same-abstraction comparison fall into three classes: simula

tion, algebraic comparison, and structural comparison. T he variety provides different

trade-offs between speed, completeness, and soundness. There cannot be one tech

nique that is fast (runs in less than exponential time), complete (able to verify the

consistency of any two consistent views at the same level of abstraction— no false

negatives), and sound (never claims two inconsistent views to be consistent— no false

positives), because comparison problems are hard. For example, comparing two Bool

ean functions to see if they produce the same result for every combination of inputs

is NP-complete,2 which means tha t all solutions take an amount of time (in the worst

case) that grows exponentially with the size of the problem (unless someone proves

that P = N P) .

2T his com parison is easily shown to be equivalent to the Boolean satisfiability problem , which is
well known to be N P -com plete [Hopcroft79, Theorem 13.1].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 21

Simulation

In simulation techniques both views are simulated against consistent stimuli, and

their responses are compared. These techniques have the advantage of being rela

tively simple to implement—in fact, it is even feasible to implement simulators in

hardware [Pfister82] [Beece88]. A serious issue in simulation is its soundness: in

consistencies may be overlooked if the right stimuli are not tried. To assure th a t the

two views are really consistent requires extensive simulation. For example, two purely

combinational3 Boolean circuits of I inputs must be tested against 2l input p a tte rn s .4

W hen the circuits to be compared have state (which most do), another complication

arises: the output may depend on past inputs as well as the present ones. The num

ber of input patterns that must be applied to do a sound comparison depends on how

much analysis of the circuits is done. The following techniques illustrate this, while

making two simplifying assumptions: (1) the circuits are synchronous, with one clock

(see Figure 2.9), and (2) the circuits should have consistent inputs and ou tpu ts on

\ each cycle. The term test vector is used to mean the pattern of inputs for one clock

cycle.

The minimum analysis that enables a sound comparison is counting the number

of s tate bits. W hen comparing two finite s ta te machines with M s tate bits each,

the shortest sequence of test vectors th a t exposes an inconsistency may be as long

as 2m - 1 or longer. Thus, a sound comparison by simulation requires applying all

sequences of test vectors that are 2M — 1 long. If the machines each take I input

bits, there are 2/x (2M_1) such sequences. Even for very modest numbers of inputs and

sta te bits, this is wildly impractical.

The following techniques place a restriction on the circuits: they must both have

the same number of memory bits, they must both go through the same number of

states, and they must both use the same encoding of states. As Figure 2.9 makes clear,

when this restriction holds it is necessary only to compare the purely combinational

3A com binational circuit is stateless— the outputs are a function o f nothing more than the current
inputs.

4The number of input patterns can be reduced by using 3-valued logic [Stabler87], but this
increases the cost o f sim ulation [Chang87]; since this is equivalent to Boolean satisfiability, there is
no fast solution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 22

c ircu i t
inpu ts

c i rcu i t
'outputspurely

combinational
logic

state
register

clock
[|

I Figure 2.9: A Synchronous Edge-Triggered Circuit

|t
1 logic th a t computes the circuit ou tpu ts and memory inputs from the circuit inputs
1I and memory outputs. With I circuit inputs and M memory bits, this comparison

| can be done soundly with 2I+M tes t vectors. Even very modest circuits today have

I dozens of input and memory bits, which makes this technique decidedly impractical.
[I| For example, if I + A1 = 100 (a small chip), and, if a trillion (1012) vectors could be

tried every second (much faster th an currently possible [Beece88]), the comparison

would take about 40,000,000,000 years—on the order of the estimated age of the

universe!

Fortunately, there is a faster way to compare ‘interesting’ purely combinational

circuits. This technique relies on two observations. The first is th a t for circuits with

multiple outputs, the comparison can be broken up into a num ber of independent

comparisons, one for each output. For each ou tpu t, it is only necessary to compare

tha t segment of the circuit tha t contributes to the computation of th a t ou tput. Fig

ure 2.10 shows an example. Only the part of the circuit outlined with a dashed line

is necessary to compare the way this circuit computes the sum ou tpu t with the way

another circuit computes sum. Similarly, only the part outlined with a dotted line

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 23

sum
b —

carry
d —

Figure 2.10: Segmenting a Circuit

needs to be considered for the carry ou tpu t. The second observation is tha t for ‘in

teresting’ circuits, the size of each segment is limited. This limit comes from the facts

tha t (1) any real implementation technology has limits on computation and propaga

tion speed and component fan-in, and (2) a circuit is generally allotted only a small

amount of time in which to compute its results.5 These two observations together

mean tha t a single ou tpu t can depend on no more than a certain constant number of

inputs, where th a t constant is fixed by the technology and the cycle time (which does

not vary much for a given technology). This in tu rn means that the am ount of time

necessary to verify each ou tput is bounded, and thus the time necessary to verify a

whole circuit grows no faster than proportionally with the number of outputs . This is

much better than the exponential growth seen with earlier techniques. However, even

though this is very good asymptotic behavior, the constants can be very bad. For

example, 32-bit adders are not uncommon, and the most significant bit of the result

depends on all 64 inputs. Since the maximum num ber of inputs is thus at least 64, at

least 264 test vectors may be necessary to test some ou tpu ts . If a billion vectors could

be tested each second,6 it would take almost 600 years to verify the most significant

5A long com putation tim e m eans that each com ponent spends m ost o f each com putation idle;
more can be com puted in many short steps than a few long ones.

6T his is not currently possible, but only by a few decim al orders o f m agnitude.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 24

bit of a 32-bit adder. Thus, even this technique is not practical for sound comparison.

Most inconsistencies tha t actually occur are revealed long before the last vector

is applied. Many designers trade off soundness for speed by trying only a small,

carefully chosen, fraction of the necessary vectors. However, choosing a revealing

fraction is problematic, and even a miniscule fraction of these astronomical numbers

can be quite large. Nevertheless, many designers consider the unique ability to make

this trade-off to be an advantage of simulation techniques.

Simulation is one of the most popular verification techniques. Many hardware

description languages suggest simulation as a verification technique [Waxman86]

[Crawford84] [Veiga84], many simulators exist [Bryant81] [Beece88] [Grodstein87],

and in many design environments comparison is done primarily through simulation

techniques [Acosta88] [Morison87] [Saunders87] [Suzuki85] [Suzuki87].

Algebraic Comparison

The next class of flat same-abstraction comparison techniques is algebraic comparison.

Although these techniques are devoted to solving the same NP-complete problem,

and so must take exponential time on some instances, they offer the hope of usually

being faster than sound comparison by simulation.7 The central idea of algebraic

comparisons is to find an analytical expression for the function of a circuit, and to

compare two circuits by attempting to prove their functions equal. An example would

be to compare two views at the Boolean level of abstraction by converting each into

a set of Boolean equations, and then testing for equality in Boolean algebra.

When the circuits to be compared have state, the problem of dependence on past

inputs arises again. The same two solutions are available: restrict the two circuits to

have identical states, or try to compare circuit operation across many cycles. The first

solution again yields a technique whose running time is asymptotically proportional

to the number of outputs, for the same reasons (the size of each o u tp u t ’s segment is

bounded). And at the Boolean level of abstraction, the constants are not so large. For

example, PRIAM is able to verify a 32-bit adder against its specification in under a

7Unsound com parisons are flatly rejected in m any design projects, in recognition of the high cost
o f overlooking inconsistencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 25

m inute of SPS9 R ID G E/62 C PU time [Madre88]. Another fast Boolean example can

be seen in [Chandrasekhar87]. However, when the level of abstraction is raised above

the Boolean, to include arithmetic and data structures, verification becomes much

more difficult—the HAVE project a t Manchester tried several specification languages

and theorem provers, and the quickest one took half a man-day to verify a simple

adder [Stavridou88].

The techniques tha t do not require identical states [Supowit86] [Devadas87] are

much slower, both because they cannot factor the circuits as the restricted technique

can and because they have to compare the operation of the circuits over multiple

cycles. These techniques may take an amount of time th a t is polynomially equivalent

to 2m [Devadas87]; while this is be tter than robust simulation, it is still impractical

for large circuits.

Other examples of algebraic comparison appear in [Barrow84], [Gordon81a],

[Gordon81b], [Gordon83], [Hwang87], [Malik88], [Odawara86], [Maruyama85],

[Milne84], [Narendran88], and [Roth77]. All of these techniques are best suited for

the Boolean level of abstraction and above, because none of them can model the

bidirectional nature of MOS transistors well.

Structural Comparison

The inspiration of the third class of flat comparison techniques, s tructural comparison,

is that two circuits are equivalent if (although not only if) they are constructed from

equivalent interconnections of equivalent components. Because the implication does

not hold in the other direction, structural comparison techniques lack the power of

the previous classes: many pairs of consistent views cannot be verified by structural

comparison. In exchange for completeness, structural comparison techniques gain

speed: many take an amount of tim e that is proportional (or nearly so) to the size of

the circuits being compared.

One popular way to do structural comparison is to convert the circuits into labelled

graphs, and then use a graph isomorphism checking algorithm. Figure 2.11 shows a

sample circuit and its corresponding graph. Both the devices and the wires in the

circuit appear as vertices in the graph; the connections in the circuit become the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 26

and

wire

outor

wire

and

W —

X —

Y —

Z —

Figure 2.11: A Circuit and Its Graph

edges in the graph. The edges are labelled to indicate the role of the connection.

Device vertices are labelled to indicate the device type. The vertices for input and

ou tput wires are labelled with unique labels; internal wires are all labelled with the

same bland label. The graphs model interchangeability by giving the interchangeable

entities the same label (as the input edges to the O R gate in Figure 2.11).

Graph isomorphism, whether the graphs are labelled or no t,8 is in general a hard

problem, although its complexity is not known: it is clearly in NP, but it is not

| known to be NP-complete [Hoffman82] [Johnson81] [Read77]. However, the graphst
that result from circuits tend to be easier to compare. For example, there is an

algorithm [Kubo79] th a t usually terminates in O (N log N) time. O ther examples

can be seen in [Ablasser81], [Baker80j, [Ebeling83], [Takashima82], [Tygar85].

Structural comparison techniques are less powerful than algebraic ones in a number

of ways. Figure 2.12 shows one example, in which two views differ by the inversion of

the sense of the unlabeled wires. This difference is insignificant in Boolean algebra,

but definitely significant structurally (a N A N D gate is not equivalent to an A N D or an

OR gate). Figure 2.13 shows another example: two identical CMOS implementations

8 U nlabeled graph isom orphism is poly normally equivalent to vertex and edge labelled graph
isom orphism . T he labelled problem can be polynom ially reduced to the unlabeled one by adding
subgraphs to encode the labels, as in [Hoffman82, proof o f Lem m a 1 of Chapter 2j; the unlabeled
problem can be reduced to the labelled one by choosing a trivial labelling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 27

X

Y

Z

Ft

W —

Y —

Figure 2.12: Structural Comparison Does Not Understand Inversion

B

C

B

C

Figure 2.13: S tructural Comparison Does Not U nderstand Com m utativity of Boolean
Function Inputs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 28

D -

Figure 2.14: Structural Comparison Cannot Distribute AND Over OR

i

of a Boolean N O R gate, with swapped inputs. T he N O R operator is commutative in

Boolean algebra, but there is a struc tura l difference between the two inputs to the

transistor netlists: one input is connected to a transistor closer to Vdd than the other.

Figure 2.14 shows a final example: A N D distributes over OR in Boolean algebra, but

the circuits have very different structure.

Some techniques are based on structural comparison and include extensions to

recapture some of the power of algebraic comparison. For example, the technique

presented in [Shiran86] can handle the swapping of inputs in Figure 2.13. Also, a

technique presented in Section 5.5.3 of this dissertation can handle the example of

Figure 2.12. But no technique can have all the power of algebraic techniques without

also having an exponential worst-case running time.

Flat Comparison Sum m ary

T he trade-offs made by the flat same-abstraction comparison techniques are sum

marized in Table 2.2. The table shows that we must either (a) live with certain

restrictions, (b) face the possibility th a t an inconsistency will go undetected, or (c)

keep the problem size small.

2.2 .2 H ierarchical C om parison

Hierarchical techniques improve the speed and quality of comparison by taking advan

tage of the hierarchical organization of the views. All these techniques work essentially

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 29

1

Technique Speed* Restrictions Failings

Simulation
Complete absurdly slow—

0 (2 / x (2M-1) a ^

none none

Restricted extremely slow— 0 (0) * identical states none
Partial moderate— O (m x N) * none false positives

Algebra
Restricted m oderate— 0 (0) § identical states,

high level of abstr.
none

Unrestricted slow— 0 (p (2m)) 11 high level of abstr. none

Structure fast— 0 (N log N) essentially identical
structure

none

*7 is the number o f inputs, 0 is the number o f outputs, M is the number of memory bits, and
N is the total circuit size

'constant is extrem ely bad
*only m test vectors are applied
 ̂constant is not good

^for some polynom ial P

Table 2.2: Tradeoffs of Flat Comparison Techniques

the same way. They start by requiring, or establishing, th a t the two views to be com

pared have essentially identical hierarchies. There is thus a one-to-one correspondence

between the cell types of the two views, and consequently the whole views can be

compared by independently comparing the corresponding cell types. The advantages

of this factoring of one big problem into many small problems are many:

e The sum of the small problem sizes is smaller than the big problem size.

• Algorithms with worse-than-linear complexity benefit greatly from the small

size of each cell type comparison.

• The cell type comparisons can be done in parallel, or serially, or according to

any convenient schedule.

• Different techniques can be applied in different cell type comparisons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 30

• The independence of the cell type comparisons fosters incrementality: once two

whole views have been compared, and one cell type is then edited, it is only

necessary to re-compare th a t cell type.

• Flattening would multiply errors and obscure their origins.

A simple example of this is the CO M PARE program from Valid Logic Systems

[Tygar85]. It compares each pair of cell types structurally. Another example is the

system used at NEC for the design of the SX -l/SX -2 supercom puter [Suzuki85];

this system compares each pair bjr simulation. Another example is Barrow’s V E R

IFY [Barrow84], which compares structural and behavioral views by an algebraic

technique.

As mentioned earlier, different flat techniques can be mixed. For example, Silica

Pithecus [Weise87] compares the lowest level composite cell types algebraically, and

the higher ones structurally. This is a member of the class of structural/semantic

hierarchical comparison techniques, which are particularly attractive. These tech

niques in general identify a low frontier in each view, compare structurally above

that frontier, and use a more powerful (semantically-oriented, such as simulation or

algebraic comparison) technique to compare the corresponding frontier cells. The use

of structural comparison above a low frontier gives these techniques speed; the use

of a more powerful technique at the frontier gives these techniques an often-sufficient

amount of power.

Many of these techniques allow slight deviations from absolute identicalness of

hierarchy. For example, Silica Pithecus, which compares a switch-level view to a

digital one, allows the switch-level hierarchy to go lower than the digital one. T ha t is,

every digital cell type has a corresponding switch-level cell type, but some switch-level

cell types may have no corresponding digital cell type (but they must be descendants

of cell types tha t do); these two hierarchies are identical modulo bottom. In general,

when comparing a high-level view to a low-level one, it must be expected tha t their

hierarchies are no more than identical modulo b o t to m —the leaves of a Boolean circuit

(the Boolean operators) cannot be leaves in an electrical circuit. Another deviation

from identicalness allowed by Silica Pithecus concerns wiring: the power supply wiring

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 31

appears in the switch-level view, but not in the digital.

Neither of those two variances seriously redresses the fundamental wrong of re

quiring identical hierarchies. There is one variance th a t begins to make a fundamental

difference: some comparison programs (this option is logically available to any tech

nique) allow extra intermediate cell types (as exemplified by the Register File, Shifter,

and A L U cell types in Figure 2.3 and the BitSlice cell type in Figure 2.4) to be present

in the views— and flatten out these extra intermediate cell types before doing com

parison. An example th a t does this is CO M PARE [Valid87]. However, this variance

alone is not enough, for two reasons: (1) flattening reduces the am ount of hierarchy,

and thus also the amount of benefit received from it, and (2) when comparing views

at different levels of abstraction, flattening may not be powerful enough to establish

identical hierarchies (recall the example from Figure 2.8 of a Boolean leaf cell with no

corresponding electrical cell). Reason (2) does not apply to some algebraic and sim

ulation techniques, because they only require that the hierarchies be identical above

some frontiers.

The cell type comparisons are not completely independent in some of the hier

archical techniques. For example, Silica Pithecus generates constraints in cells, then

propagates them up the hierarchy, until they are discharged in some higher cell. This

places constraints on the scheduling of, and communication between, the cell type

comparisons. It also reduces the incrementality: after a cell is edited, all its ancestors

may have to be re-compared.

The amount of benefit derived by hierarchical techniques depends on the structure

of the views. One of the largest sources of benefit is repetition. If a cell type has

many instances in a hierarchy, hierarchical techniques can spend effort only once, on

tha t cell type, tha t flat techniques must spend on every instance. Some views have

more repetition than others.

In summary, hierarchical techniques are a ttractive because they factor the whole

comparison problem into m any smaller, independent problems. Unfortunately, the

existing techniques require th a t the views to be compared have essentially identi

cal hierarchies. This is an undesirable restriction, and the only existing way to

deal with substantially different hierarchies is to flatten out the differences— and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 32

view 1 (using
abstraction A)

c h a n g e level
of abs traction
/ comparison in

view 1 (using
y abstraction B ^ view 2 (using

abstraction B) ^ abstraction B)

Figure 2.15: Factorization of Comparison Between Views at Different Levels of Ab
straction

this is not a completely satisfactory solution.

2.2.3 A bstraction Crossing

The previous sections set forth techniques for comparing views at the same level of

abstraction, and for taking advantage of hierarchy; however, the real problem involves

comparing views at different levels of abstraction. The techniques for doing this can

be factored into a technique for changing the level of abstraction of one view and a

technique for comparing views at the same level of abstraction; see Figure 2.15. The

techniques for changing the level of abstraction of a view again fall into three classes:

those that raise the level of a view, those that lower the level of a view, and those

tha t change the level of simulation traces. Many of these techniques are acceptably

fast, but some impose constraints on the choices of hierarchies.

Raising the Level of A bstraction of a V iew

The most obvious, and one of the most popular, class of level-crossing techniques is

raising the level of abstraction of one view to match th a t of the other. For example,

for comparing masks to higher views, there are many programs available [Chiang88]

[Ablasser81] [Baker80] [Gupta83] [Wong85] for extracting electrical or switch-level

circuits from masks. There are also programs that abstract Boolean, or similar,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 33

views from electrical or switch-level views [Bryant87b] [Wu87] [Weise87]. And there

are programs th a t work between even higher levels of abstraction [Lathrop87].

These techniques vary greatly in their efficiency. Electrical circuit extraction can

be done in 0 (N log N) time (where N is the num ber of mask features) [Chiang88].

Boolean circuit extraction has a more complicated analysis. For example, in

B ryant’s m ethod [Bryant87a] [Bryant87b], conversion of a switch-level circuit of N

transistors into a set of Boolean equations may produce a result of size O (N 3/,2j

and take a proportional amount of time. However, most circuits produce O (N) re

sults in O (N) time. Unfortunately, B ryan t’s m ethod is alone in its efficiency; the

others can require exponential time and produce exponential results. Fortunately,

the Boolean extraction problem can be factored into many small sub-problems by

noting tha t there is no communication through the power supply wires and tha t in

formation flows unidirectionally into a MOS trans is to r’s gate. Also, technology and

clock cycle considerations limit the size of the resulting circuit segments, and so the

time required to do Boolean circuit extraction actually grows linearly with the size

of the whole circuit. Although the constant is not small, it is usually acceptable. For

example, B ryan t’s COSMOS is able to extract the Boolean view of a 64-bit nMOS

ALU, containing 1664 transistors, in under 5 C PU minutes on a DEC MicroVax-II.

Many techniques for raising the level of abstraction of a view have interesting

interactions with hierarchical concerns. For example, techniques for extracting elec-

J trical circuits from masks have to work harder when there is overlap between the

areas of sibling cells. Another kind of interaction is exemplified by Boolean circuit

extraction: all the transistors tha t implement a given Boolean gate have to be in the

same cell (otherwise some cells do not have an appropriately9 Boolean interface); the

scattering illustrated in Figure 2.8 violates this restriction. Requiring the hierarchies

to be identical modulo bottom prevents this problem. Another popular solution is

to extend Boolean algebra with a value that roughly means ‘high-impedance’. When

this is done, most MOS cells can be abstracted— but the structure of the results will

not match that of the natural Boolean description. For example, the result of raising

9As COSM OS dem onstrates, sw itch-level behavior can be cast in Boolean terms; however, the
Boolean cast o f the sw itch-level behavior o f a fragment o f the im plem entation of a Boolean gate will
not, in general, correspond to anything in the Boolean view.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 34

the description in Figure 2.8b will not have an OR gate in it, like the description in

Figure 2.8a. And even such extended algebras are not able to describe the operation

of some MOS cells (those in which some transistor transmits information in both

directions, and this is visible at the cell’s interface).

Lowering th e Level o f A bstraction o f a V iew

The level of abstraction of a view can be lowered, as well as raised. Although doing

a good job of this is very hard (it is the synthesis problem) doing a poor but correct

job is often quite easy. The biggest concern with this technique is the extra infor

m ation introduced in the process— what if it is inconsistent with the corresponding

information in the other view? For example, suppose one view is Boolean and the

other is switch-level. The Boolean view could be lowered by replacing every Boolean

i primitive with a s tandard switch-level implementation. But recall from the example

of Figure 2.13 tha t the ordering of the inputs to a transistor network can m atte r

(to structural comparison, for instance), even though that network is implementing

a commutative Boolean function.

This problem has two resolutions. One is to live with it. On the face of it, this

sounds like a bad idea— the lower view can be no better than a poor synthesis from

the higher view. It is actually not so bad, for two reasons. One is th a t the synthesis

does not have to be poor. The other is th a t in addition to lowering the level of

abstraction of one view, the level of abstraction of the other can be raised— which

means the views can differ by more than the synthesis. This is one way of looking at

the comparison done in the DATools at PARC [Barth88j, where masks are compared

to schematics containing arbitrary abstractions.

The o ther resolution is to use a same-level comparison technique th a t can overlook

the differences in the added information. An example is reported by Roth [Roth77].

One view is in PL /R , which is similar to the P L /I programming language. The other

view is a Boolean circuit. A compiler generates an inefficient but correct Boolean

circuit from the P L /R view, then the two Boolean circuits are compared in Bool

ean algebra—in which efficient and inefficient circuits can be proven functionally

equivalent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 35

view 2 (using view 1 (using
abstraction B) abstraction A)

s im u la te

simulate

simulation traces
from view 1
in abstr. A

change level
o f abstract ion

simulation traces
from view 2
in abstr. B

com pare
traces simulation traces

from view 1
in abstr. B

Figure 2.16: Comparison Across Levels of Abstraction by Simulation and Raising the
Level of Abstraction of Simulation Traces

Changing the Level o f A bstraction of Simulation Traces

The final class of techniques work by raising the level of abstraction of simulation

traces. These techniques extend simulation techniques to enable comparison across

levels of abstraction; see Figure 2.16 for a schematic of this process. These techniques

generally are fast and don’t place any additional restrictions on the circuits— beyond

the obvious one tha t says the less abstract view can in fact be converted into a more

abstract one.

2.2.4 Sum m ary o f C onsisten cy Techniques

The preceding sections present several existing comparison techniques, each of which

does well on some aspects of the comparison problem. However, none of the exist

ing techniques solves the problem of comparing alternate views at different levels of

abstraction with different hierarchies well. They either don’t solve it at all (because

they require the views to use identical hierarchies) or they solve it poorly (by flatten

ing out the hierarchy or accepting only flat input). The one tha t deals with differing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 36

hierarchies best, Valid’s COM PARE, can be considered a simple version of Informed

Comparison.

2.3 E x istin g T echn iques for th e C orresp on d en ce

o f E n titie s

The previous section presents existing techniques for solving one part of the com par

ison problem: verifying consistency between views with redundant information. This

section presents existing techniques for the other part: discovering and maintaining

the correspondence between the entities of a lternate views.

The most trivial techniques simply insist th a t all the views of a design use the

same hierarchy. This makes the correspondence trivial: it is one-to-one between the

entities of every pair of views. A leading exponent of this is the Mead/Conway design

methodology [Mead80]. The Version Server [Ka.tz86] is another example: it is able to

note one-to-one equivalences, but nothing more sophisticated. These techniques are

clearly incapable of handling correspondences between views tha t differ by hierarchy

transformations.

The CORAL-II program [Blackburn88] is more sophisticated. It is part of the Sys

tem Architect’s Workbench [Walker87], which uses alternate views with independent

hierarchies. CORAL-II is responsible for maintaining the links between the views as

the views are synthesized and transformed; it specifically addresses the problems of the

correspondence between an original view and a transformed version of it. CORAL-II

relaxes the restriction th a t the correspondence be one-to-one. Each entity is tagged

with the set of entities to which it corresponds. Unfortunately, that is not good

enough to accurately describe the correspondence across transformations tha t break

cell boundaries. Recall the examples of Section 2.1.3, where the correspondence must

be between paths, not ju s t single entities.

DDS [Parker84], which is a da ta s tructure for use in synthesis from a register-

transfer-level description, employs a very sophisticated treatm ent of the correspon

dence between view entities. In DDS, there are four views, called domains-, the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 2. B A C K G R O U N D 37

behavioral domain, the structural domain, the physical domain, and the timing and

control domain. There are also five relations between the entities of those domains.

Three of those relations are binary, and the other two are 3-way. This complex

ity is needed to handle the fact that a value from the behavioral domain appears at

different places in the structural domain at different times. While DDS gives a sophis

ticated treatm ent to correspondences between alternate views, it does not address,

and cannot well represent, correspondences across hierarchy transformations.

This section presents some existing techniques for conceiving of, discovering, and

maintaining the correspondence between entities. Few techniques even address the

problems of correspondences across hierarchy transformations, and those th a t do are

not very capable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 3

In trod u ction to Inform ed

C om parison

The previous chapter presents the comparison problem and some of the existing tech

niques for solving it. These techniques are not fully satisfactory, because they do not

handle different hierarchies well (they either flatten out the differences or refuse to

accept them). This chapter presents a new comparison technique, called Informed

Comparison, that allows the views to use different hierarchies (as well as different

levels of abstraction) and has many of the benefits of other hierarchical methods.

3.1 T h e S ch em a

The inspiration of Informed Comparison is that if the designers keep track of the

intended relationship between the different hierarchies of the views, then the views

can be compared by simply applying hierarchy transformations, under the guidance

of that intended relationship (called the key), to copies of the views until they have

sufficiently similar hierarchies that an existing hierarchical comparison technique can

be applied. See Figure 3.1. The process of transforming the hierarchies is called the

reconciliation o f the views, and the base comparison completes the comparison. The

method of Informed Comparison is so named to emphasize the im portance of the key.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO IN F O R M E D C O M P A R ISO N 39

co
• i—HwC3

CJ
c
Oc_>

OC

Apply
H ierarchy

Transformations

Apply
H ierarchy
Transformations

Base Comparison

Key
original

view

reconciled
view

original
view

reconciled
view

Figure 3.1: An Informed Comparison

During reconciliation, Informed Comparison builds up the correspondence be

tween the original view entities and the transformed ones. Knowing this, error reports

from the base comparison can be transformed to speak in terms of the original entities.

Furthermore, once the base comparison determines the correspondence between the

reconciled entities, that correspondence can be composed with the correspondences

back to the original entities, to yield the correspondence between the original entities.

In a cleanly divided Informed Comparison, the transformations of the reconcilia

tion change only the hierarchical organization of a view. In particular, the transfor

mations are flat-insignificant: if the original and reconciled versions of a view were

completely flattened, they would be identical. A cleanly divided Informed Compari

son is thus as sound as its base comparison.

Although the transformations focus on the hierarchical structure of a view, it must

be remembered tha t there is more to a view than structure . An Informed Comparison

considers the non-structural information to be a ttached to the structural. Thus each

structural transformation must also transform the non-structural information, in such

a way as to have no effect that would be discernable after flattening. By virtue of

the a ttachm ents between the structural and the non-structural information, and of

the requirement to be flat-insignificant, the required non-structural changes can be

derived from a purely structural specification of each transformation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO I N F O R M E D C O M P A R IS O N 40

It is not logically necessary th a t the transformations be flat-insignificant. W hat is

necessary is that the reconciliation not change any of the information being compared

for consistency. A blurred Informed Comparison is one whose reconciliation changes

more th an the hierarchy of the views. Such a comparison is called “blurred” because

the reconciliation is doing some of the base comparison’s work. A simple example is

deleting, during the reconciliation, wires not connected to anything. The reconcili

ations of blurred Informed Comparisons are more powerful and complex than those

of cleanly divided ones. The soundness of a blurred Informed Comparison depends

on the soundness of its flat-significant reconciliation transformations as well as the

soundness of its base comparison. Although the two Informed Comparisons studied in

the following two chapters are slightly blurred, a complete study of blurred Informed

Comparisons is beyond the scope of this dissertation.

In what language should the key sta te the intended relationship between the

hierarchies? How can a computer program determine from such a sta tem ent the

transformations to apply? Informed Comparison answers both questions thusly: the

key consists of invocations of transformations. The transformations are a valid rep

resentation of the relationship between the hierarchies of the original views— if the

hierarchies of the reconciled views are identical. If they are not identical, the differ

ence is not represented in the key. That is acceptable, because th a t difference will

be in only a few, easy-to-resolve areas (such as whether the power supply wiring is

explicit) that the base comparison can handle. The key also contains more informa

tion th an the relationship between the hierarchies: it also implies a choice for the

hierarchies of the reconciled views, and a strategy for changing the original hierar

chies into the reconciled ones. Of course, even a plain statement of the relationship

between the original hierarchies would have to employ some strategy for expressing

that relationship in terms of the available relational primitives.

In order for informed comparison to be advantageous, creation and maintenance

of the key must not be too onerous. One possible difficulty can quickly be laid to

rest. Most of the discussion in this dissertation focuses on the problem of comparing

two views, but designs can use more than two views. When N views are used, there

are which is * (N 2 — N), different pairs of views to be compared. Since

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO IN F O R M E D C O M P A R IS O N 41

grows quickly with N , it would be tedious if the key had to have sections (one

for every pair of views). There are two design practices tha t keep the key size small.

In one, the views can be ordered by information content. When this is done, it is only

necessary to compare each view with its immediate successor and predecessor. Thus

N — 1 comparisons are done, and the key size is linear, ra ther than quadratic, in N.

This practice has benefits even when followed only partially: if only a subset of the

views can be ordered by information content, the number of comparisons required

between members of that subset is only linear, not quadratic, in the subset size. The

second practice can restrict the size of the key even when the number of comparisons

is quadratic. This is done by choosing one “ideal” hierarchy, and independently

reconciling each view to it. The key thus has only N sections, one for each view.

3.2 E xam p les

The two example steps of reconciliation here are drawn from MIPS-X, a 32-bit mi

croprocessor designed at Stanford. The two views being reconciled are a functional

simulation (called the f u n s i m) and the layout. Figure 3.2 shows the first example, in

which the layout has some “ex tra” structure, the P C F S M cell type and instance. The

reconciliation step removes this difference by flattening out the PCFSM cell type; this

f promotes the SquashFSM and CacheMissFSM cell instances to be contained directly

in the PC cell type, as is the case in the funsim view.

The other example concerns the split multiplexor, introduced in Figure 2.7. The

difference of hierarchies in this example is that the funsim has a multiplexor whereas

the layout has instead two tri-state drivers. Figure 3.3 depicts the reconciliation of

this difference, accomplished by adding some structure, the multiplexor cell type and

instance, to the layout. In this example the reconciliation does not yield identical

hierarchies. In general the reconciliation does not need to yield identical hierarchies:

it only needs to make them similar enough for the base comparison. In this example

it is impossible to make the hierarchies identical, because the multiplexor cell type of

the funsim is atomic and the multiplexor cell type of the layout is not. There are base

comparison methods for which this reconciliation brings the hierarchies close enough:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. IN T R O D U C T I O N TO I N F O R M E D C O M P A R ISO N 42

PC

SquashFSM

CacheMissFSM

(a) Original Fumsim Hierarchy
: Reconciled Layout Hierarchy

PC
PCFSM

SquashFSM

CacheMissFSM

(b) Original Layout Hierarchy

I

i

PC
Cell Type

PC
Cell Type • • •

PCFSM
Instance

CacheMissFSM
Instance

SquashFSM
Instance

- rem oved by
reconci l ia tion

PCFSM
„ Type

CacheMissFSM
Type

SquashFSM
Type

CacheMissFSM
Instance

SquashFSM
instance

CacheMissFSM
Type

SquashFSM
Type

Figure 3.2: A Simple Reconciliation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO IN F O R M E D C O M P A R ISO N 43

(a) Original Fumsim Hierarchy
Register / Cell Type

Consumer
Inst.

Mux
Type

Consumer
Type

(b) Original Layout Hierarchy

Register I Cell Type

Consumer
Inst.^tf Driver

Inst. 0
Driver
Inst. 1

Driver
Type

Consumer
Type

(c) Reconciled Layout Hierarchy

Register \ Cell Type

a d d e d by
reconc i l ia t ion

Mux
Inst.

Consumer
Inst.

Mux
Type

Consumer
Type

Driver
Inst. 0

Driver
Inst. 1

Driver
Type

Figure 3.3: Split Multiplexor Reconciliation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
i

C H A P T E R 3. I N T R O D U C T I O N TO INFO RM E D C O M P A R IS O N 44

an example is comparing the simulated inp u t/o u tp u t behaviors of the multiplexor

cell types of the reconciled views.

3.3 C hoices

The method of Informed Comparison is actually a “m eta-m ethod” : it is a modification

(prefacing by the reconciliation) of another method (the base comparison). Many

qualities of Informed Comparison vary with the base comparison and the repertoire

of transformations available to the reconciliation. The transformation repertoire gives

Informed Comparison most of its power to see through hierarchy differences; all the

other comparison power comes from the base comparison. Even once these factors

are fixed, there are some choices left to the designers tha t also affect the Informed

Comparison.

The transformation repertoire affects the length and complexity of the key, and

the power and efficiency of the reconciliation. A large, complicated transformation

can be composed from small simple ones. Borrowing from group theory terminology,1

we can speak of the set of transformations generated (through taking all possible

compositions) by a given set. The set of flat-insignificant transformations can be

generated by a small set of simple transformations. However, composing a real rec

onciliation from such small pieces could be very tedious. To keep the key small,

the repertoire of transformations should match the designers’ abstractions concern

ing hierarchy relationships. This could become problematic, because designers, being

human, can invent new abstractions. However, the study in chapter 5 suggests that

a fixed repertoire (of modest size and complexity) can enable reasonably short keys.

Conciseness of the key also requires that the amount of information necessary

to specify each transformation be small. For example, when moving a cell around,

the key should not need to explicitly mention what happens to all of the attached

wiring. In general, when only the effects on cell structure are specified, alternatives

for the wiring effects remain. However, for each transformation in the two example

U nfortu n ately , hierarchy transform ations do not form a group: m ost transform ations are not
applicable to every hierarchy, which m eans that either the closure property or the existence o f
inverses cannot be achieved.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO IN F O R M E D C O M P A R IS O N 45

systems of later chapters, there is one ‘most na tu ra l ’ alternative, whose au tom atic use

leads to reasonable keys. Explicitly describing what happens to the non-structural

information is not necessary either, as mentioned earlier.

A repertoire of transformations is called complete if it generates every flat-

insignificant transformation. While is possible to do Informed Comparison with an

incomplete repertoire, the power of the Informed Comparison may be reduced. W hen

the hierarchies of two views cannot be reconciled, and the base comparison cannot

handle the remaining differences, Informed Comparison cannot verify the consistency

of the views. Even an incomplete repertoire can enable reconciliation of any two flat-

identical2 views, for the reconciliation involves transforming both original hierarchies

to new ones, not one original to the other. Consider a repertoire tha t consists only

of flattening transformations. Any two flat-identical views can be reconciled by this

repertoire, by complete flattening. However, such a reconciliation leaves the base

comparison with no hierarchy to take advantage of. Furthermore, views at different

levels of abstraction are unlikely to be flat-identical: normally one hierarchy will at

least go lower than the other, and may be even more different. Some base comparison

techniques do not require the reconciled views to have identical cell structure , but

do require tha t a frontier can be chosen for each reconciled view so tha t they have

identical cell s truc ture above their chosen frontiers. If only flattening transformations

are available, those frontiers may have to be as high as the root cell types. Figures 3.4

and 3.5 show an example. In the switch-level view, the transistors implementing a

Boolean gate (B in the digital view) are not all in the same lowest composite cell.

Suppose the base comparison uses a frontier in each reconciled view: above the fron

tier the views are compared structurally, and at the frontier the switch-level view’s

level of abstraction is raised to digital and then digital equivalence is checked. Silica

Pithecus [Weise87] is such a method. In this example, the frontiers must be the root

cells. The B and C cells cannot be in the frontier; even though the use of a ‘high-

im pedance’ value makes it possible to generate a digital description of the switch-level

B cell, that digital description will not match the description of the original digital

2Two views are f la t - id en t ica l when either can be changed into the other with only flat-insignificant
transform ations. Put another way, if both views were com pletely flattened, the results would be
identical.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO IN F O R M E D C O M P ARISO N 46

)

4!*

4

Figure 3.4: A Switch-Level View, with Problematic Pullup

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO IN F O R M E D C O M P A R I S O N 47

(d f (A X y) (n o t (and X y)))
(d f (B w Z) (n o t (and w z)))
(d f (C X y z) (B (A x y) 2))
(d f (D u V) (n o t (o r iJ V)))

(d f (E t) (n o t t))
(d f (F u v) (E (D u v;I))
(d f (G X y z v) (F (C X << N <

(a) A Digital View

(b) Its Hierarchy

Figure 3.5: A Clean Digital View

B cell, which does not use the ‘high-impedance’ value. The A cell cannot be in the

frontier because the frontier must be above A ’s parent C. T he frontier cannot include

D, E, or F for similar reasons. In this small example, the transform ation repertoire’s

lack of power and the difference in hierarchical placement of the pullup force both

views to be completely flattened. This can also happen in large designs, where a large

amount of flattening is very disadvantageous.

The key can be stored in a number of ways. It can be an independently maintained

file or can be distributed throughout the views, by annotating the view entities. The

transformations can be specified textually or graphically. Where synthesis tools are

used, they can generate germane parts of the key. These choices can greatly affect

the “user-friendliness” of Informed Comparison.

For a given Informed Comparison system and pair of alternate views, the de

signers generally have some freedom in choosing the reconciled hierarchies and the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N T O I N F O R M E D C O M P A R ISO N 48

transformations used to make them. These choices also affect the conciseness of the

key. Flat-insignificant transformations come in pairs, where each mem ber of a pair

is the inverse of the other. One member generally takes less information to specify

than the other. For example, flattening is simpler to specify than un-flattening.

The order in which the transformations are used is also im portant. For example,

it is easier to specify applying some transformation T to the contents of some cell

type followed by flattening out that cell type than it is to specify flattening out tha t

cell type followed by applying T at every former instance of the now flattened out

cell type.

Although the designers must, in general, pick a strategy for reconciling two views,

in some methodologies some kinds of differences are easier to reconcile: there is a

canonical form to which each view can be automatically reduced, so that views that

differ in these certain ways no longer differ. A transformation that reduces a view

to a certain canonical form is called a canonicalization transformation. A common

example is deletion of wires with no connections.

3 .4 T h e N a tu r e o f th e C orresp on d en ce

Informed Comparison requires a careful trea tm ent of the correspondence between the

entities of views. Since the reconciliation is composed from many transformations,

the correspondence between the original entities and the reconciled ones is composed

from many correspondences across the individual transformations. It is im portant

that those component correspondences give detailed accounts of how the entities are

related; vagueness, compounded over and over, would be practically useless. The

exact nature of the correspondences will depend, like many things, on the repertoire

of transformations and the base comparison. Two detailed formulations of correspon

dence appear in later chapters; a few generalities are discussed here.

Informed Comparison’s trea tm ent of correspondences rests on two foundations:

(1) instance paths and wire paths are used to give a completely detailed accounting

of transformations that ‘break cell boundaries’, and (2) the correspondence is, in

essence, simply a binary relation, and composition of correspondences is accomplished

1 ~
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

m
am

wa
rn

C H A P T E R 3. I N T R O D U C T I O N T O I N F O R M E D C O M P A R I S O N 49

mainly by simply composing binary relations. Since (1) shifts the focus away from cell

instances and wires to paths, when a designer asks for the correspondence of a single

instance or wire (or even cell type) the answer may be complex. T ha t is proper—the

correspondence may actually be complex. The complete answer is contained in the

correspondence between the paths. If the designer does not want the full complexity,

a vague but shorter answer can be given. Notational shortcuts can also be used:

an example is using a short p a th to s tand for all the longer paths of which it is a

prefix. In simple cases, the binary relation is one-to-one; unfortunately, complications

commonly make it many-to-many.

3.5 W h y In form ed C om p arison s A re B e tte r

Existing comparison methods handle differing hierarchies poorly, either by rejecting

them or flattening them. Informed Comparison can compare views with differing hi

erarchies and has many of the benefits of other hierarchical m ethods. In addition to

checking consistency, Informed Comparison can also discover the correspondence be

tween the entities of the views— and in a more flexible way than existing comparisons

do.

Informed Comparison is faster than existing methods tha t allow differing hier

archies. The existing methods handle differing hierarchies by complete or partial

flattening. Even those tha t flatten only partially may be required to create very large

and complex cell types. Many base comparison methods take an amount of time that

grows much faster than proportionally to the size of the description of a cell type.

Increasing the complexity of cell types is thus very disadvantageous.

Conversely, Informed Comparison is more flexible than the existing methods that

are fast. These require identical hierarchies, which is an undesirable restriction.

The additional costs of Informed Comparison, beyond those of existing methods,

are the creation and maintenance of th e key and doing the reconciliation. These

costs depend on the transformation repertoire and the base comparis '. Creation

and maintenance of the key are not grea t burdens. The examples of tue following

two chapters show tha t keys are small: in one example, the key is ‘free’ (it is taken

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 3. I N T R O D U C T I O N TO INF O R M E D C O M P A R I S O N 50

automatically from design d a ta present for other purposes); in the other the key is

explicitly maintained and larger, but still much smaller than the views being com

pared. The knowledge of the key has to be distributed among the designers in order

for them to be able to do their work, regardless of whether Informed Comparison is

used. Informed Comparison does the designers a service by enabling them to write

the key down in a machine-checkable form.

Informed Comparison enables hierarchical comparison of views with different hi

erarchies. Of course, this does not solve all the problems of comparison. For example,

there are still the problems arising from the fact that the views are at different levels

of abstraction. Also, as pointed out in Section 2.2.2, not every design benefits greatly

from hierarchical techniques. Furthermore, there are still reasons to keep the hierar

chies somewhat similar—hierarchy differences still have a negative impact on overall

design clarity.

j

i

I'!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 4
j
3|

A S im ple S y stem

Previous chapters present the comparison problem and introduce Informed Com par

ison; this chapter presents a particular, simple, Informed Comparison method: PW-

CoreLichen.1 It was developed in the C om puter Science Laboratory of Xerox PARC

as a member of the DATools [Barth88], which have a simple, well-defined m ethodol

ogy. The requirements of tha t methodology precisely determine the transformation

repertoire and base comparison for PWCoreLichen. In the DATools methodology, the

key is small and “free” : it is determined by design information already captured for

other purposes. The correspondence between entities of a lternate DATools views is

relatively simple.

4.1 T h e D A T ools M e th o d o lo g y

The DATools are an integrated suite of programs: they all operate on a common

in-memory design representation called the Core da ta structure. The basic paradigm

for design data flow is this: first source Core is created, and then layout is generated

according to it. PWCoreLichen compares the source core with the layout.

' “Lichen” is the nam e of the general system studied in the next chapter; the prefix “PW Core”
is added here to keep the distinction clear. “PW C ore” is the nam e o f the main com ponent o f the
“PatchW ork” system , introduced later. “P W ” is an abbreviation o f “PatchW ork” , and “C ore” refers
to the central data structure.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S I M P L E S Y S T E M 52

4.1.1 T he Core D ata S tructure

The Core data s truc tu re focuses on the hierarchical s truc ture of a view; the non-

s truc tura l information is a ttached to the structure through the widespread use of

property lists. Core uses a formulation of hierarchy different from the one adopted in

this dissertation (see Section 2.1.1). In Core, there are no ports; instead, some wires

are simply declared public. The atomic cell types have public wires and no others. In

Core, wires are structured: each wire either is atomic, or has a non-empty sequence

of child wires. A wire may be used as a child more than once; thus, the structure of

the wires may form any directed acyclic graph (DAG).

In Core, the composite wires serve only to highlight regularity in the connectiv

ity of the atomic wires: at every composite connection, the corresponding children

are also connected. The composite wires are thus superfluous; they could be deleted

without losing any information about the communication in the view. Since the com

posite wires are no more significant than the intermediate cell types, transformations

that change only the composite wiring are considered flat-insignificant.

A picture editor called ChipNDale and its d a ta s tructure are used for layouts and

schematics. ChipNDale pictures are also hierarchical: there are picture types and

picture instances. ChipNDale has nothing analogous to ports or wires; the layout for

a wire consists of instances of picture types for rectangles of various shapes and colors.

Other im portan t atomic picture types include transistors and texts. The ChipNDale

picture entities also have property lists, and there are links between the Core data

s tructure and ChipNDale. For example, on the property list of a Core cell type may

be found the ChipNDale picture type for the cell’s layout.

4.1 .2 T he M eth od ology

Source Core is created either by program or by extraction from schematic pictures;

the programs and schematics are created by hand using editors. Low level composite

layout cells also are created by hand. The higher level layout cells are created by

programs, layout generators, by combining the lower cells following the structure of

the source Core. A program called PatchWork is responsible for establishing and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM P L E S Y S T E M 53

following the links between the source Core and the layout, for calling the layout

generators as necessary, and for other mediation in support of layout generation. A

source Core cell type may specify in its property list a layout k e y , which is the name

of the layout generator to use for tha t cell type.

The two views (source Core and layout) are independent only for the low level

composite cells; for the higher ones, the layout generators fix the layout as a function

of the source Core. However, the DATools are an open system, and thus designers

can (and do) add layout generators. In fact, th e designers and the tool builders

are essentially the same people. Some layout generators are design-specific, in the

sense tha t they are used for only one design (so far); however, they are usually non

specific, in the sense that they implement a generally interesting layout technique

that could be used in a later design. The layout generators are ‘m eta-da ta ’: the

knowledge they embody is about VLSI design in some generality, not one specific

design. The layout generators are thus beyond the scope of Informed Compari

son, which is for comparing views, not verifying general design knowledge. P W

CoreLichen does not directly check the layout generators, but it does check their

work.

The level of abstraction of the source Core is similar to the switch-level (some

high-level directives concerning layout are also present), but it is easy for designers

to think of it as being more abstract, because the schematics extractor is extensible.

Special graphical sub-languages can be invented for various formalisms. For example,

there is an extension for finite-state-machines: the designer draws the state diagram,

and the extraction produces Core for the finite-state-machine. That Core goes all

the way down to transistor netlists, but the designer need not see anything below the

finite-state-machine. Of course, the programming language th a t provides the other

way to create source Core also supports abstraction.

A simple charade makes the design da ta flow appear uniform: there is a layout

generator tha t follows a naming convention to simply fetch the desired layout from

a ChipNDale file. Thus, even though some layout cells are created by hand, all

layout can be considered to come from layout generators. O ther layout generators

implement general layout techniques (such as abu tm ent, routing, and standard cells)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM PLE S Y S T E M 54

and more specific ones (such as various styles of logic arrays, decoders, memories, and

datapaths).

4.1.3 T he R elationship B etw een th e Hierarchies o f th e

V iew s

PWCoreLichen compares source Core and layout. The difference in level of abs trac

tion is handled by calling a circuit extractor to get extracted Core from the layout.

The extractor is trusted to do a sound translation, and it leaves links between the

two descriptions. T ha t leaves PWCoreLichen with the problem of comparing the two

Core descriptions. The level of abstraction of the extracted Core is the same as tha t

of the source Core: mainly switch-level, with a few annotations concerning layout.

The DATools methodology stipulates the kinds of differences allowable between the

hierarchies of the two Core views.

The DATools methodology is rather restrictive about the ways the cell s tructure

of the two views may differ—there are only two. One difference is the presence of an

extra intermediate cell type in either view (or, equivalently, the lack of an in termediate

cell type in the other view). This difference gives welcome freedom to both designers

and the layout generators. The other allowable difference is the appearance in the

layout of several transistors in parallel, corresponding to one (wide) transistor in the

schematic (this is a common design practice— at least in CSL). The parallel transistors

must be of the same type and length.

The DATools methodology allows somewhat more complicated differences in wir

ing. The extracted Core never has any composite wires, because the layout system

has no way of representing them. This is not a problem, since composite wires serve

only to highlight regularity in atomic ones. For the atomic wires, the methodology

requires that there be a partial surjection2 from extracted public wires to source

public wires. This allows two kinds of difference: an extracted public wire may not

correspond to any source public wire, and a single source public wire may correspond

2 A surjection is a function that is onto: every m em ber o f the declared range is related to at
least one m em ber o f the dom ain. A partial function is one th at may not have a m apping for every
member o f the declared domain.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM PL E S Y S T E M 55

to several extracted public wires. The first kind of difference arises from a feature

of the extractor: it sometimes makes wires public that need not be so. The second

kind of difference arises from a common design practice, delaying connectivity up the

hierarchy. Where a source Core cell type has one wire, the corresponding layout cell

may have several, because connecting them in tha t cell would cost more area than

] connecting them higher in the cell hierarchy. The methodology also allows a small

| difference between the atomic private wires: either view may have atomic private

I] wires that are not connected to anything and do not correspond to any wire in the

I other view.

4.2 H ow P W C o reL ich en C hecks C o n sisten cy

PWCoreLichen starts by calling a circuit extractor to translate the layout into an

1 approximately switch-level description using Core. Then copies of the source and

| extracted Core are made and reconciled. Because of the simplicity of the transforma-

] tion repertoire, the reconciliation is done during the copying process: the reconciled

copies are produced directly from the original Core. The base comparison is hierarchi-

| cal s tructural comparison. PW CoreLichen extracts its key from information already

I known to PatchWork for the support of the layout generators.

\ PWCoreLichen gives transistors special attention. The transistor cell types are

! the atomic cell types of both the source and extracted Core. There are many different

j transistor cell types, each for transistors of a particular type (e.g., n, p, depletion),

j length, and width. PWCoreLichen first checks consistency and determines the corre

spondence between entities (including transistors) without regard to transistor shape,

i but with regard to transistor type; it then checks that the shapes of corresponding

transistors agree within a designer-specified tolerance.

! PWCoreLichen conceptually chops the hierarchies up into many smaller hierar-

; chies, by dividing at the cell types th a t have corresponding cell types in the other

view. The resulting sub-views are compared independently. Figure 4.1 shows such

a division. The solid lines indicate which cell types use (via cell instances, which

are not shown) which cell types, and the dashed lines indicate the correspondence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S I M P L E S Y S T E M 56

Figure 4.1: Division of Two Views by Corresponding Cell Types

between the cell types of the two views. The singly-circled cell types are flattened

out in the reconciliation. In this example, each view is divided into two sub-views;

the four sub-views are:

1. one with root A and leaves B, F, G, and H ,

2. one with root B and leaves D, J, and K,

3. one with root E and leaves <I>, T, A, and II, and

4. one with root $ and leaves 0 , T, and D.

Two sub-view comparisons are made: 1 vs. 3 and 2 vs. 4. PWCoreLichen works in a

bottom -up fashion: it is applied to a sub-view only after it has been applied to the

sub-views below it. This m ethod meshes well with the rest of the DATools, wherein

generators construct layout in a bottom -up way.

4.2.1 P W C oreL ichen’s R econciliation

The key for PW CoreLichen is the correspondences, already known to PatchW ork, be

tween the source and ex tracted Core cell types, and between the source and extracted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM PL E S Y S T E M 57

atomic public wires. These correspondences can be easily interpreted as invocations

of transformations: a cell type in one view with no corresponding cell type in the

other is to be flattened out; multiple ex tracted public wires tha t correspond to the

same source public wire are to be merged; and an extracted public wire that corre

sponds to no source public wire is to be re trac ted (made private). Because of the

DATools methodology, PWCoreLichen also applies the following three canonicaliza-

tion transformations without even consulting the key: (1) every composite wire is

removed; (2) every private atomic wire with no connections is removed; and (3) every

set of parallel extracted transistors of the same type and length is merged. Because

the last two are flat-signiflcant, PW CoreLichen’s version of Informed Comparison is

blurred.

Flattening out intermediate cell types and removing composite wires are always

flat-insignificant, while merging parallel transistors and deleting unconnected wires

are always flat-significant but sound, because of the kind of consistency being checked.

However, the remaining two wiring transformations are flat-insignificant only under

certain conditions, and PWCoreLichen checks tha t they hold. A public wire can

be retracted only if at every instance of its containing cell type that public wire is

connected to a wire tha t is connected to nothing else. If PWCoreLichen finds tha t

this condition does not hold for a public wire it must retract, an error message is

given to the designer.

Merging atomic public wires is even trickier. It is only flat-insignificant if at every

instance of the wires’ containing cell type either

• those public wires are all connected to the same wire, or

o the wires they are connected to themselves will be merged.

Figure 4.2 shows some examples. Merging the four Vdd wires of the Driver Array

is flat-insignificant;3 merging the four Gnd wires and merging the last two In also

are flat-insignificant. However, merging all four In wires is not. The figure does

3... assum ing that there are no other instances o f the D r iv e r Array cell type, or that if there are,
they also connect all four Vdd wires together.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM PLE S Y S T E M 58

O
o

[>
Driver in .
Array o Vdd. In 1 Vddi In.

In Vdd

Driver

Gnd Out
G n d . Out.

In Vdd

Driver

G nd Out
G nd Out

Vdd. In.

In Vdd

Driver

Gnd Out
Gnd. Out.

Vdd.

In Vdd

Driver

Gnd Out
Gnd. Out.

Figure 4.2: Array with Delayed Connectivity

not contain enough information to tell whether merging the four Out wires is flat-

significant, which illustrates a problem PWCoreLichen has: within a sub-view it

may not be possible to tell whether merging a set of public wires is flat-significant.

PWCoreLichen solves this by posting, propagating, and discharging constraints. The

constraints are posted on original extracted public wires of cell types th a t root sub

views. Each constraint is simply a subset of the atomic public wires of th a t cell type,

and corresponds to the above ‘i t ’s-valid-to-merge’ condition. Thus, the discussion

above tells when to post these constraints, how to propagate them, and when they are

discharged. Such a constraint reaching the root cell type of a chip is not necessarily an

error—it means only that certain pins of the chip must be wired together externally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S I M P L E S Y S T E M 59

4.2.2 P W C oreL ichen’s B ase Com parison

Two views tha t are consistent according to the DATools methodology will have identi

cal hierarchies after reconciliation. Thus a very simple and efficient base comparison,

hierarchical structural comparison, will suffice. PWCoreLichen and the reconciliation

guarantee that the base comparison starts with a known one-to-one correspondence

between the cell types of the two reconciled views, and a known one-to-one corre

spondence between the public wires of those cell types. Each pair of corresponding

cell types is compared structurally. No flattening is done— the subcells are the atoms

| of the structures compared. The structural comparison is done by labelled graph

isomorphism, as discussed in Section 2.2.1. The reconciled views, which are produced

directly from the original Core, are represented in the graph da ta s truc ture used by

| the graph isomorphism checker.

4.2.3 A N ote on P erform ance

Most of the time and space required by the algorithms and d a ta structures of P W

CoreLichen are linear, or nearly so, in the size of the inputs and outputs. The

graph isomorphism checker takes a little worse than linear time. It uses a ‘refine-an-

autom orphism-partition’ technique modeled closely on Gemini [Ebeling83]. The step

that merges parallel transistors takes an amount of time proportional to the sum of

the squares of the number of transistors in each original extracted Core cell type;

this could be improved to linear (by using hash tables), but has not been a practical

problem. The remaining algorithms are linear.

Taking time and space proportional to the size of the inputs and outputs is ra ther

good asymptotic performance— but what are the input and ou tpu t sizes? Because

PWCoreLichen can do little more to cell structure than flatten it, the size of a rec

onciled view can be an exponential function of the size of the original view. As

discussed in Section 3.3, if flattening is the only reconciliation transformation of

cell structure available, a great deal of flattening may be required to reconcile two

views. This problem is inherent in the DATools methodology. Designers (and lay

out generator writers) avoid provoking this problem: they keep the original views

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S I M P L E S Y S T E M 60

Seconds Step
602 Extrac t schematics
965 Generate Layout
666 Extrac t circuit from layout
383 Copy &; reconcile both views

61 Base Comparison

Table 4.1: Times to Generate and Compare the SIC

128-}
£ 6 4 -B£ 3 2 -

Number of Subcells

Figure 4.3: Original Source Core Cell Type Size Distribution in the SIC

close enough to avoid an excessive amount of flattening.

Table 4.1 gives the times for the steps in the generation and comparison of one

of the chips designed with the DATools, the Scanner Interface Chip (SIC). The

table shows tha t PWCoreLichen takes a minor portion of the time. This chip has

about 40,000 transistors, and Figures 4.3, 4.4, and 4.5 show the distribution of the

sizes4 of the original source, original extracted and reconciled cell types, respectively.

These histograms reveal th a t although there was a significant amount of flattening,

especially for the reconciliation of the source Core, the resulting cell types were of a

definitely manageable complexity.

How much better is PWCoreLichen than a program that flattens completely? This

depends on the regularity of the design and the degree to which the hierarchies of

4Here the size o f a cell type is the number o f its subcells.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A SIM P L E S Y S T E M

8192

| 2048
H 512

§ 128
0 32

1 8
3 2>
Z

0-4 i l l . i i . i l i . L l . l i l i I
n -------------1------------1-------------1----------1-----------1------------1------------1------------1 i i
0 1 2 4 8 15 30 61 122 244 487 974

N um ber of Subcells

Figure 4.4: Original Extrac ted Core Cell Type Size Distribution in the SIC

16-,
(fl O
£ 8 -

OJ
O

0).a
s3z

4 -

1-

- j -------------- 1-------------- 1---------------1-------------- 1-------------- 1—

4 8 15 30 61 122
N um ber of Subcells

II II I
— i-------------- 1-------------- 1
244 487 974

TT
0 1

Figure 4.5: Reconciled Cell T ype Size Distribution in the SIC

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM P L E S Y S T E M 62

the two views differ. For the SIC, an estimate5 can be made based on the above data

and some statistics from the SIC. The following analysis rests on the conservative

■ assumption th a t the struc tura l comparison is simply linear in the graph sizes. Be

cause of this assumption, the time for the base comparison increases by the regularity

factor of the SIC, which is the ratio of the number of cell instances and wires in the

completely flattened views to the total number in the hierarchical views. Each of the

two reconciled hierarchical views of the SIC has about 1,500 cell instances and 2,600

wires, for a to ta l of about 4,100 graph vertices. The completely flattened and recon

ciled SIC has about 35,000 transistors and 18,000 wires, for a to ta l of about 53,000

vertices in the completely flattened graph, and thus a regularity factor of about 13.

So the time for the base comparison would become about 13 x 61 % 800 seconds. The

time to copy and reconcile the views also increases—flattening is even more time-

consuming than simply copying. Assuming the time required to copy and reconcile

is proportional to the size of the output, tha t time increases to 13 x 383 ~ 5,000

| seconds. Actually, a fraction (experimentally measured to be less than 10%) of those

| 383 seconds are spent on reconciliation procedures that wouldn’t take appreciably

longer when completely flattening, and thus 4,500 seconds is a be tte r estimate. A

program that uses complete flattening thus would take about 5,300 seconds to flatten,

 ̂ reconcile, and structurally compare the two views of the SIC, which is about 12 times

| longer than PWCoreLichen takes to copy, reconcile, and structurally compare.

4.3 T h e E n tity C orresp on d en ce D e te r m in e d by

P W C oreL ich en

Figure 4.6 illustrates the correspondences relevant to PW CoreLichen. The grand

correspondence relates the entities of the source Core with those of the layout; this

correspondence is the composition of the main correspondence and the extraction cor

respondence. The extraction correspondence is maintained by PatchW ork and is very

straightforward (because the hierarchies of the layout and the ex tracted Core are very

5I tried to com pletely flatten the SIC— and ran out of memory!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM P L E S Y S T E M 63

4 ------
V -------

Grand Correspondence

Main Correspondence

£ = = = = = * = = = = ^ = = = - *Source
Correspondence

Base
Correspondence

Extracted
Correspondence

/

Extraction
Correspondence

Original
Source

Core

Reconciled
Source

Core

Reconciled
Extracted

Core

Original
Extracted

Core
Layout

Figure 4.6: Correspondences in PWCoreLichen

similar). The rest of this section is concerned with the main correspondence, which

is more illustrative of the correspondences produced by Informed Comparisons. The

main correspondence is the composition of three subsidiary correspondences: (1) the

source correspondence , between the original source Core and the reconciled source

Core; (2) the extracted correspondence, between the original extracted Core and the

reconciled ex tracted Core; and (3) the base correspondence, between the reconciled

source Core and th e reconciled extracted Core. This tr ipart ite decomposition is char

acteristic of the correspondences produced by Informed Comparison: two are from

the reconciliation of the two views, and the remaining one is from the base compari

son. Because of the DATools methodology, the base correspondence is simple: it has a

one-to-one association between the cell types of the two reconciled views, between the

cell instances of th e views, and between the wires of the views. Because of the trans

formations applied during the reconciliation, the reconciliation correspondences6 are

more complicated than the base correspondence. Because the main correspondence

incorporates the reconciliation correspondences, it too is more complicated than the

base correspondence. The ways in which the reconciliation transformations increase

aT he reconc i l ia t ion correspondences are those betw een reconciled entities and their origins; in
PW CoreLichen, they are the source and extracted correspondences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM PL E S Y S T E M 64

the complexity of the main correspondence are presented in turn.

4.3.1 P W C oreL ichen’s B ase C orrespondence

The base correspondence can be represented by a binary relation between the entities

of one view and those of the other. The symbol ~ is used to denote such a relation.

Since there are three kinds of entities being related, ~ is the disjoint union of three

smaller relations (~ , and ~) , one for each of cell types, cell instances, and atomic

wires. T he relation ~ is one-to-one and total: every cell type, every cell instance,

and evtzy atomic wire of one view is related by ~ to exactly one entity in the other

view. The composite wires need not be included in since each view describes the

relationships between its composite wires and its atomic ones, that plus ~ suffices to

describe the correspondences of a view’s composite wires. Because of this, the deletion

of composite wires adds no complexity to this formulation of the correspondence

1 between view entities.

To compose two such correspondences, say ~ 12 and ~ 23 , ordinary binary relation

composition is used: ~ 13 = ~ i 2 o ~ 23.
1

j 4.3.2 T he C om plexity D ue to F latten ing
i

The possible expansion of cell types adds considerable complexity. To describe the

correspondences across such transformations, ~ must be allowed to omit some cell

types (the ones flattened out), ~ must be changed to relate introductory instance

paths instead of instances, and ~ must be changed to relate introductory wire paths

instead of wires. An instance path is a sequence of cell instances, where each instance

is contained in the type of its predecessor. An instance path is introductory when it

starts at a tagged cell type, ends at another tagged cell type, and does not pass through

any tagged cell type. A tagged cell type is one related by ~ to some o ther cell type. An

instance path starts at the cell type th a t contains its first element, ends at the cell type

instan tia ted by its last element, and passes through every cell type instantia ted by

non-final elements (or, equivalently, every cell type containing non-initial elements).

A wire path is like an instance path , except th a t its last element is a wire. A wire path

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S I M P L E S Y S T E M 65

is subrooted when it starts in a tagged cell type and does not pass through any tagged

cell type. A wire path is introductory when it is subrooted and ends with a wire that

is either private or the only element in the path; a wire path is secondary when it

is subrooted but not introductory. There is a one-to-one correspondence between

the introductory instance paths of a sub-view and the cell instances of the result of

flattening tha t sub-view. Similarly, there is a one-to-one correspondence between the

introductory wire paths of a sub-view and the wires of the result of flattening that

sub-view. An introductory wire path directly describes the ‘h ighest’ origin of one of

the wires of the flat sub-view; the secondary wire paths describe the lower origins,

of which there may be several. Because the main correspondence relates entities

forwards through flattening and then backwards, paths must be used on both sides.

A given correspondence can be represented by many different binary relations. For

every binary relation ~ tha t directly states the correspondence of two intermediate

cell types t\ ~ t2, there is an equivalent binary relation th a t does not directly

j sta te that correspondence. Because tags different cell types, its set of introductory
1

instance and wire paths is different. In particular, the in troductory paths of ~ that

start or end at t\ or t2 are not introductory in but some of their concatenations

} are. Thus, the correspondence of t x and t 2 is represented indirectly in by the
!
j correspondences of the longer paths. A binary relation ~ is said to be tighter than an

j equivalent binary relation if ~ tags more cell types than There is an analogous

degree of freedom in the reconciliation: for every reconciliation tha t does not flatten t x

and t2, there is an alternate reconciliation tha t does (albeit unnecessarily). However,

the binary relation used to represent a correspondence can be tightened or loosened

without changing the reconciliation. Each correspondence has one tightest and one

loosest representation. The loosest tags only the root and atomic cell types. The

tightest tags every cell type tha t any other representation tags.

W hen two of these more complex correspondences are composed, simple compo

sition of binary relations may not suffice. Consider composing ~ 12 (which relates \'\

with V2) with ~ 2 3 (which relates V2 with V3) to get ~ 13 (which relates Iq with V3).

If ~ i 2 and ~ 2 3 tag the same cell types of V2, simple composition of binary relations

suffices: ~ 13 = ~ 12 o ~ 23. However, if ~ 12 and ~ 2 3 tag different cell types of V2, this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S I M P L E S Y S T E M 66

different must first be canceled. This cancellation is done by finding tighter or looser

~ j 2 and ~ 2 3 tha t do tag the same cell types of V2 (there is always at least one solu

tion). Once this is done, composition of binary relations completes the composition

of correspondences: ~ 13 = ~ '12 o ~ 23.

4.3 .3 T he R em ain ing C om plexity

The remaining four transformations require relaxing the restrictions that ~ be one-

to-one and total. Because of the possibility of merging parallel extracted transistors,

~ might relate one source introductory instance path to many extracted ones. Be

cause of the possibility of merging public wires of a tagged extracted cell type, ~

might relate one source introductory wire pa th with many extracted ones. Because

of the possibility of retracting public wires of tagged extracted cell types, ~ might

be partial. ' The possibility of deleting private wires with no connections is another

reason ~ might be partial. No change is required in the procedure for computing the

composition of two correspondences.

In summary, the rules for ~ are as follows.

• ~ is the disjoint union of ~ , ~ , and ~ .

• ~ is a partial one-to-one relation between the source Core cell types and the

extracted ones. The tagged cell types include at least the root and atomic cell

types, and maybe others.

o ~ is a total one-to-many relation between the source introductory instance paths

and the ex tracted ones.

9 ~ is a partial one-to-many relation between the source introductory atomic wire

paths and the extracted ones.

7A partial relation between two sets S and T is one that does not guarantee that every member
o f S and T is related to at least one member o f the other set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A SIMPLE S Y S T E M 67

i

!

4.3 .4 A Sim pler P resen ta tion o f a C orrespondence

It should be possible for a designer sitting at a workstation to point at a cell instance

(or wire or cell type) in one view get the DATools to highlight the corresponding

part(s) of the other view. T h a t seems inconsistent with the representation of the

correspondence in terms of paths instead of single entities. This inconsistency is

a manifestation of the fact th a t the correspondence may be so complicated tha t it

is difficult to say what a single entity corresponds to. However, there are three

mitigating factors:

• To the degree tha t the correspondence actually is simple, tha t simplicity can be

determined from the paths, and the dialogue with the designer can be carried

on in those simpler terms.

• The designer may not want all the details kept in ~ , in which case the dialogue

can be simplified further.

• There are graphical, as well as textual, ways of interacting in terms of paths

instead of single instances or wires.

This section suggests a way in which PWCoreLichen could accept simple queries of

1 the correspondence, and provide relatively simple answers.

Each query consists of a single cell instance, cell type, or wire. The answer sought

is the corresponding part(s) of the o ther view. The answer is determined by following

three steps:

1. normalize the given entity to an equivalent structure of in troductory paths in

its own view,

2. follow ~ across to a structure of introductory paths in the other view, and

3. simplify that structure of paths as much as possible.

Steps (1) and (3) use the same equivalences, in opposite directions.

A few examples follow. These examples concern the views shown in Figure 4.7;

Table 4.2 shows Each example includes a summary of the form

r
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM P L E S Y S T E M 68

Source Core Structure

Vdd

Gnd

Extracted Core Structure

Vdd

G nd

Figure 4.7: Views for the Examples

r ___
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM PL E S Y S T E M 69

Source Extracted
Cell Types

F ~ F'
G ~ G"
l t

-W v -

In t r ’y Instance Paths

{/) ~ (/')
(c ,a , i) ~ (c ' ,a ' , i ')
(c , a , j) ~ (c' ,a ' , j ')
(c, a, k) (c1, a', k')

Source Extracted

i n t r ’y Instance Paths
(continued)

(c , b , i) I''Nrf (c ' ,6 ' , 0

(c, b, j)
X (c ' ,b ' ,m ')

(c, b,k) I

(»')
(d,p)

X

(e',P')
(d, q)

I
{d\q')

(d, r }
I

(d'y)
(e,h) X (e',h>)
(e,o) X'■V/ (e',o')

(e,o)
X (e',o")

I: Correspondence for the E

a % u>

Source Extracted
In tr’y Wire Paths

(Vdd) ~ (Vdd)
(Gnd) “ (Gnd)

(*) ” V)
(■y) ” (y')
(.x) (x')
/ \ w (v) (v')
/ \ w(s) V)
/ \ w (u) (u>)

(c,w) ~ (c ' ,w ')
(f , t) ~ (M

(c,a,9) Z (c',a',tp)
(c, b, 9) ~ (c', b ' y)

x]

where a is the single entity of the query, (3 is the equivalent structure of in troductory

paths in a ’s view, x ' s the corresponding structure of introductory paths in the o ther

view, and uj is the simplified answer. Although each example shows and discusses the

in term ediate steps, the designer need only give a and get back u.

In the first example, the cell instance / in one view simply corresponds to the

instance / ' in the other.

/
[(/)

/ '

(/')]

This is w hat happens when the correspondence really is simple. The correspondence

is directly represented in ~ by two unit paths (a unit path is one tha t has only one

element).

The next example shows that ambiguity arises when PWCoreLichen is asked about

a cell instance k contained in a cell type .4 th a t gets flattened out in the reconciliation.

k 1 f tk or n

i
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM P L E S Y S T E M 70

[(c, a, k) or (c, b, k) ~ (c', a', &') or (n')]

Because k ’’s containing cell type A is flattened out, simply giving k is not enough to

uniquely determine what in the other view corresponds to k. The answer is tha t k

corresponds to one or the other of two extracted transistors, depending on which k

of the source is started from. On the other side, k' appears in only one introductory

instance path, and thus can be used as a shorthand for that path. In this example and

the previous one, the simple s ta tem ents are completely faithful to in the following

examples that is not so.

The next example shows tha t a “structure of introductory instance pa ths” can be

complex.

A % A' o t (B ' and n')

 ̂ (c, a,i) and (c, a , j) and (c, a, k) ^ ̂ (c', a', i') and (c;, a ', j ') and (o', a', k') ^

or or

y (c, b. i) and (c, b,j) and (c, 6, A;) ^ ̂ (c', 6', lr) and (c', 6', m') and (n') y

This example uses both disjunctive and conjunctive structure, reflecting the facts tha t

there is ambiguity about which .4 is meant and th a t A must be represented by its

components. This example discards some of the information in ~ by not considering

the wire paths tha t pass through the cell types.

The final example restates the previous correspondence in an even less precise

way.

.4 * { A ' , B ' , n ' }

j (c, a, z) , (c, ci, j) , 1 j (c , a , i) , (c , tt , y) , (c , u , fc) ,)

j (c ,b , i) , (c , b , j) , (c ,b,k) J ~ I (c ' , 6 ' , 0 , w , b ' , m ') , (n’) J

Instead of keeping the conjunctive s tructu re and the disjunctive structure distinct,

this example simply uses undifferentiated sets. This vaguer answer is easier to indicate

with the typically limited highlighting facilities of most graphical editors. While this

vaguer answer is also more confusing, it is good enough to give the designer a rough

idea of what is going on— and that is all th a t some tasks require.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A S IM P L E S Y S T E M 71

4.3.5 Sum m ary o f PW C oreL ichen’s C orrespondence

The correspondence between the entities of the source Core and the entities of the

layout is composed from the following four subsidiary correspondences:

1. the source correspondence, which relates the entities of the original source Core

with those of the reconciled source Core;

2. the base correspondence, which relates the entities of the reconciled source Core

with those of the reconciled extracted Core;

3. the extracted correspondence, which relates the entities of the reconciled ex

tracted Core with those of the original extracted Core; and

4. the extraction correspondence, which relates the entities of the original ex

tracted Core with those of the layout.

Because of the DATools methodology, the base correspondence is extremely simple:

a one-to-one association between the cell types, cell instances, and wires of the recon

ciled views. The extraction correspondence is also simple: it associates each entity of

the extracted Core with the layout picture elements th a t form its graphical represen

tation. The other two correspondences, the source and extracted, are more complex,

jj because of the possible reconciliation transformations. The added complexities con

sist of (1) changing the focus from instances and wires to introductory instance and

wire paths, in order to handle the flattening of cell types, and (2) relaxing the re

striction tha t the association be one-to-one, in order to handle merging and removal

of features. Although the correspondence is represented by an association between

paths, dialogues with designers can often be carried out in simpler terms.

4.4 P W C o reL ich en S u m m ary

PWCoreLichen is a simple example of Informed Comparison. The DATools methodol

ogy determines PW CoreLichen’s reconciliation repertoire and base comparison. P W

CoreLichen is limited in two ways: (1) its only reconciliation transformation that can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 4. A SIM P L E S Y S T E M 72

make a m ajor change in the cell structure is flattening out a cell type, and (2) it com

pares views at the same level of abstraction. Because of these limits, PWCoreLichen

can find its key in design da ta already captured for other purposes. Another con

sequence of the limited reconciliation repertoire is tha t the reconciled views may be

very flat, which makes for both a costly reconciliation and a costly base comparison.

Designers avoid these costs by restraining the degree to which the hierarchies differ.

PWCoreLichen is fast enough and useful enough tha t its use is a s tandard step in

chip design in CSL. PWCoreLichen has caught real bugs, in both hand work and in

layout generators.

Since PWCoreLichen is an Informed Comparison technique, the correspondence

it determines between the entities of the two compared views is more complex than

that determined by many existing techniques. However, because of PW CoreLichen’s

limitations, its correspondences are not as complex as Informed Comparison corre

spondences can be.

1
i

•I

i
3

!
i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 5

T he L ichen and M IP S -X S tu d y

The previous chapter presented a simple, restricted instance of Informed Comparison:

PWCoreLichen. This chapter presents a more general, and therefore more complex,

instance: the Lichen and MIPS-X study. Lichen is a general program for transforming

views,1 while MIPS-X is a microprocessor designed at Stanford. An Informed Com

parison of two views of part of MIPS-X was studied. PWCoreLichen is simple and

restricted because of the design methodology it supports. The Lichen and MIPS-X

study was more general because it was intended to develop and explore the m ethod of

Informed Comparison. The experience with Lichen and MIPS-X shows how a richer

set of transformations enables a tighter correspondence between the reconciled hier

archies (that is, generally smaller cells), which increases the benefits of hierarchical

methods at the cost of a more complex key and reconciliation.

^ h e name invites comparison with the plant, which is composed o f a fungus and an alga in a
symbiotic relationship. In a rough analogy, the program Lichen enables two views o f a circuit to
have a symbiotic relationship; also, by virtue of the near independence o f the cell type comparisons
in the base comparison, Lichen enables two base comparison techniques to have a symbiotic relation
ship. Furthermore, lichens grow on rocks, in which silicon figures prominently; Lichen is concerned
with VLSI, in which silicon also figures prominently. The name “Lichen” is also apt because its
pronunciation is the sam e as that of “liken” , to “compare” . Finally, the name “Lichen” fits well into
the botanical tradition o f CSL. Thanks to Carl Black for encouraging and helping me to find such
a good name.

' i
J

ii

i 73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L I C H E N A N D M IP S-X S T U D Y 74

5.1 O verview

The study initially focused on reconciliation, because th a t is the central new idea of

Informed Comparison. The purpose of the study was to explore the possibilities of

reconciliation in general and to try it on a real example. The questions were:

• W hat is a good set of transformations to have available?

• How large and complex will a real key be?

• How much detail must be specified in the transformations?

• How abstract must the transformations be in order to keep the key size small?

The plan was to make an initial hypothesis of what a good set of transformations

is; to implement them in a program called Lichen; and to reconcile a pa ir of views from

a real design project, enhancing Lichen’s repertoire of transformations as required.

Later sections report on the resulting repertoire of transformations in Lichen and the

key used for the actual reconciliation.

I initially expected th a t the reconciliation would transform the two views so that

they could then be compared in a straightforward way (using simulation and struc

tural comparison), which I will call Plan A. However, doing the reconciliation revealed

th a t there are differences between the two MIPS-X views tha t cannot be removed by

flat-insignificant transformations, and which Plan A cannot handle. I therefore ex

panded the study to include devising a new base comparison m ethod tha t can verify

the consistency of two views that differ in those ways.

While working on the reconciliation I discovered tha t the two views of the MIPS-X

are inconsistent: certain debugging features, added late in the design, are represented

in one view but not in the other. I then edited my copy to remove these features

(in a real application, the designers would have made the views consistent by adding

the debugging features to the view tha t lacked them). This chapter presents the

comparison of the consistent views. While Informed Comparison per se is not confused

by inconsistencies, the base comparison method used in this s tudy would generate

many secondary error reports as a consequence of the primary inconsistencies.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L IC H E N A N D M IPS-X S T U D Y 75

5.2 In tro d u ctio n to M IP S -X

I chose the MIPS-X design [Horowitz87] to be the test case because of its availability

and difficulty. MIPS-X has about 150,000 transistors and an area of about 0.6 c m 2.

Although the design project was headed by two members of my reading committee, I

was not involved in the design of MIPS-X, and the MIPS-X design team did not take

Informed Comparison or my study into consideration when choosing their m ethod

ology and producing their design. Most of the MIPS-X design work was completed

before I decided to use it in my study.

The design team at Stanford created and used two views in the MIPS-X design: a

functional simulation, called the funsim, and a layout. For the most part , the funsim

was created first, and then the layout; however, some of the layout work (exploring

alternatives for critical structures) began very early. T he MIPS-X was divided into

eight major parts, and the same designer(s) were generally responsible for both the

funsim and the layout of each part.

The methodology employed in the MIPS-X design places very little emphasis on

keeping the hierarchies of the two views similar. At the top level in both views, the

MIPS-X is divided into the same eight major parts. Below that , the methodology

places no constraints on the relationship between the hierarchies used in the views;

the designers were free to do whatever made their tasks easiest, and they did. For

this reason, the MIPS-X views make a strong test of the ability of Lichen to reconcile

two real views.

The funsim consists of two parts: a general purpose simulation kernel, and a

model of MIPS-X. Both are written in Modula-2 [Wirth83]. The kernel takes a flat

circuit structure, and simulates it with an event-driven selective-trace technique. The

wires are modeled by 32-bit Modula-2 integers. The computational models of the

components are Modula-2 co-routines that fetch values from the wires, compute, and

then selectively drive values onto wires. The circuit s tructure is described in the model

by calls on kernel procedures to create and connect components and wires. Although

the circuit struc ture given to the kernel is flat, the model code th a t describes tha t

structure has hierarchy. Linfortunately, little discipline was followed in creating this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D MIP S-X S T U D Y 76

program structure. I would have preferred to extract the hierarchy of the funsim by

program, but I found it more expedient to do so by hand; Lichen thus was given a

hand-translated version of the funsim view.

The layout, created with the Magic [Ousterhout84] system from U. C. Berkeley,

is essentially a hierarchical description of a set of colored rectangles. Magic includes

a circuit extractor, which produces an essentially electrical view of the design. A

few geometric abstracts , such as perimeters, areas, and positions, also appear in the

extracted circuit description. The extracted circuit is put into “ .ext files” , one com

posite cell type per file. The atomic cell types are transistors and parasitic capacitors,

which are fully described at each instantiation. In Magic’s formulation of hierarchy,

cells have no explicit interfaces; connections can reach down into descendant cells to

pick out the desired wire.

The comparison studied in this chapter was between the funsim and the electrical

view presented in the “ .ext” files.

The comparison experiment focused on the program counter unit (the pc),2 which

is one of the eight major parts of MIPS-X. The funsim view of the pc is particularly

detailed, going all the way down to simple Boolean gates and memories; this makes

the best opportunity for testing reconciliation. Although the experiment focused on

the pc, it was necessary to pay some atten tion to the rest of MIPS-X because some

of the differences between the views concern whether certain components are in the

pc or another of the eight major parts.

5.3 L ichen

Lichen is a program for doing general reconciliations. It is written in Cedar

[Swinehart86l, and thus run on a Dorado |Lampson81]. Lichen considers a view

to consist of a s tructural hierarchy with other non-structural information attached.

Although the transformations are focused on the hierarchy, the non-structural infor

mation must also be transformed accordingly and sometimes is used to help specify

2...for two reasons: (1) I expected that would be somewhere near the point of diminishing returns,
and (2) Lichen runs out o f memory when it tries to read in the whole MIPS-X layout view.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L IC H E N A N D M IP S-X S T U D Y 77

the transformations. The transformations known to Lichen fall into four categories:

flat-insignificant hierarchy transformations, flat-significant bu t behaviorally insignifi

cant transformations, transformations of Lichen’s representation, and transformations

of the non-structural information.

5.3.1 L ichen’s N otion o f a V iew

Lichen considers a view to have a struc tura l hierarchy and other non-structural infor

mation. The hierarchy is constructed out of cell types and instances, wires, and ports,

as outlined in Section 2.1.1. In Lichen, wires and ports themselves have hierarchical

structure. Lichen has a special-case representation for cell types with a certain kind

of regularity, which are called arrays. The non-structural information manipulated

by Lichen consists of names and some geometrical data.

W ire and Port Structure

In Lichen, wires and ports have hierarchical structure, without a type/instance dual

ity, and without explicit interfaces. Simply put, wires and ports have tree structure:

a wire (port) either is a leaf, or has a decomposition into a sequence of child wires

(ports). The composite wires and ports simply make very evident some regularity

among the leaves; in particular, a composite port and wire are connected at a site if

and only if their corresponding children are.

Lichen allows wires and ports to have structure in order to approxim ate the de

signer’s way of thinking. A very common example of how designers apply structure

to wires and ports is to think of a set of wires running in parallel as one wire (called a

bus). Designers also go further than Lichen, sometimes applying more than one struc

ture to the same set of wires. An example is using alternate ways of breaking up an

instruction word. This richer s truc tu re could be captured by allowing the wires and

ports to have directed acyclic graph (DAG) structure, instead of jus t tree structure.

W ith DAG structure, a wire or port could be used more than once as a child. The

current version of Lichen forbids this richer s tructure because allowing DAG structure

would complicate the transforming of ports and wires, and it is not clear th a t this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D M IP S -X S T U D Y 78

added complexity is necessary. It was not needed in the M IPS-X study.

N on-S tru ctu ra l Inform ation

In addition to structure, Lichen views include names and some physical information.

This is actually a rather limited subset of all the kinds of non-structural information

used in VLSI design. However, it suffices for the purposes of the Lichen and MIPS-X

study. In general, the only non-structural information that m ust be m anipulated in

an informed comparison is that required by the base comparison; in this case, the

names alone would suffice. By manipulating some non-structural information, the

Lichen and MIPS-X study suggests th a t general non-structural information can be

handled.

Lichen profits from acknowledging two common facts about names: names are

s tructured, and one entity can have multiple names. All four kinds of Lichen’s s truc

tural entities can have multiple names (or even no names at all). The names of three

kinds— ports, wires, and cell instances— are structured: each name is a sequence of

steps, where each step is a string or an integer. The names for ports and wires are

directly associated with the ports and wires, even those th a t are children of others;

this contrasts some systems in which name steps are attached to links in the wire

structure.

In a Lichen view, physical information can be associated with structural entities in

the following ways: a cell type may have a bounding box, and a cell instance may have

a geometrical transformation (composed only of translation, 90-degree rotation, and

mirroring in A" or Y) . The bounding box of a cell type must include the transformed

bounding boxes of its subcells.

A rrays

Arrays are common, regular structures. They offer many opportunities for efficiency,

because they contain multiple instances of the same cell type, and because they

are regular. Lichen has two representations for the contents of a cell type: one

directly follows th e discussion of Section 2.1.1 and is completely general; the other is

specialized for representing array structure. Lichen’s notion of arrays is as follows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICH EN A N D M IPS-X S T U D Y 79

In an array, all the subcells are instances of the same cell type. The subcells,

also called the a rray ’s elements , are arranged on a finite two-dimensional grid. Each

position is uniquely associated with an index , which is a pair of integers. The indices

sta r t at (0,0). Lichen uses the names X and Y for the dimensions in which an array

is arrayed, but Euclidean geometry is not relevant here—the structure of an array is

only concerned with the topological properties of the connectivity.

In a Lichen array, all the connectivity is a consequence of regular connections

between adjacent elements; any connectivity established by a context of an array

is handled in Lichen by a cell instance and the context in which it instantiates the

array. Lichen makes a distinction between the regular starter connections between

adjacent elements and the ultimate connectivity, which is the transitive closure of

the starter connectivity. Because of edge effects, the ultimate connectivity can have

irregularities, even though the star ter connections are absolutely regular.

Lichen extends the applicability of its array concept beyond traditional limits by

] handling concepts like mirroring every other element. It does this by considering an

array to have a two-dimensional period , where the starter connectivity is regular with

th a t period. A period will often be denoted by the symbol r or the pair (r x , T y) .

For example, an array wherein the odd rows are mirrored would have a period of

r = (1,2). Continuing to borrow from signal-processing terminology, we can also talk

about phases. A phase is a position within a period: each index i = (ix , i y) can be

divided (independently in each dimension) by the a rray ’s period r to yield a cycle

number k and a phase (f>:
^x h x Tx -p (j)x

h = K r y +

0 <(f>x < T x

0 < (f>y < Ty

Phases are interesting because all the elements and starter connections at a given

phase have certain regularities.

In a Lichen array, the physical information (the instantiation transformations) is

also regular: all the instances at a given phase have the same rotation and mirroring,

and their translations progress in a linear fashion— with the structural A" dimension

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D M IPS-X S T U D Y 80

aligned with the physical X dimension, and similarly for Y . T he translations for a

given phase (f> are characterized by two vectors (x^,,y^) and (x^,y^,): the translation

for an index with phase (j) and cycle number k is

A A' = k ^ ^ A r xj,

A Y = kyy0 + y$

Thus, Lichen’s representation of the instantiation transformations does not depend

on the size of an array, only on the period.

5.3.2 F lat-Insignificant Hierarchy Transform ations

The preceding sections present Lichen’s formulation of views; this and following sec

tions present Lichen’s transformations. Those transformations fall into four broad

categories, and this section presents the first: flat-insignificant hierarchy transform a

tions. There are 16 of these transformations, in two subgroups: those tha t manipulate

only ports and /o r wires, and those tha t focus on cell structure. Their level of ab

straction is not very high (although, as will be seen later, it is high enough to make

i keys reasonably succinct).
1

j Transformations come in pairs: for every transformation, there is an inverse trans-
A

| formation. This is not evident in PWCoreLichen, because its repertoire of transforrna-

5 tions is so restricted. Even Lichen does not implement both transformations of every

pair, due to lack of need. Nevertheless the pairs are at least conceptually complete.

These transformations are not expensive to apply. Most take an amount of time

that is linear in the number of entities and relationships tha t obviously must be

touched. For example, flattening out a cell instance is linear in the number of wires

and subcells of tha t instance’s type.

Port and W ire Transform ations

The wiring of two flat-identical views can differ in five ways. Fortunately, four of these

five are of such a restrictive form tha t they can be reconciled almost completely by

canonicalization transformations. This is fortunate because choosing the ultimate hi

erarchy and planning the reconciliation does not require much intelligence: there is no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IP S-X S T U D Y 81

(a)

m

ix c wt

u&v

x

z

w

u

g&h

m
w&x

Figure 5.1: Two Flat-Identical Views with Different Wiring

designer involvement. Although the fifth kind of difference can be quite complicated

in general, it occurs in only a simple way in MIPS-X for methodological reasons, and

Lichen has a canonicalization transformation th a t reconciles this restricted difference.

The five ways in which the wiring of flat-identical views can differ follow. Fig

ure 5.1 shows3 examples of the first four.

1. Where one view has a private wire, the other view can have a pointlessly public

one. A pointlessly public wire is one th a t is not connected to anything else

outside its cell type. Wire e4 in cell type C of Figure 5.1a is an example of

a pointlessly public wire (assuming th a t the two instances of C shown are the

only ones).

3This figure, unlike many others, explicitly represents (with open boxes in the cell boundary) and
labels the ports.

4That wire’s name actually is (“e ”), because wire names in Lichen are sequences. In this example,
and others, all the name sequences have only one element, which is a string, and thus the notational
overhead can be (and is) dropped.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E LICH EN A N D M IP S -X S T U D Y 82

2. Where a cell type in one view pointlessly imports a wire, the corresponding cell

type in the other view can refrain from doing so. A pointlessly im ported wire

is a public wire tha t is connected to nothing else in its cell type. W ire f in

cell type C of Figure 5.1b is an example of a pointlessly imported wire; it has

no corresponding wire in Figure 5.1a. This difference and the previous one are

inside/outside duals of each other: the roles of the ‘inside’ of a cell type and

the ‘outside’ are reversed.

3. Where a public wire in one view is exported through a certain number of ports ,0

the corresponding public wire in the other view can be exported through a differ

ent number of ports. Furthermore, the external connections can be distributed

differently among those ports. A multiplicity of ports exporting one wire is

called a split port. The ports u and v exporting wire k of cell type C in Fig

ure 5.1b are a split port. In Figure 5.1a the corresponding public wire, also

named k, is exported by only one port (which has two names, u and v).

4. Where a cell type in one view has a set of ports that are all connected together

at every instance of that cell type (the ports are unnecessarily distinguished),

the corresponding cell type of the other view can have just one port (or a set

of a different size, or with a different distribution of internal connections). This

is the inside/outside dual of the previous difference. The ports w and x of cell

type C in Figure 5.1a are unnecessarily distinguished; they correspond to the

single port named both \v and x in Figure 5.1b. The root cell type of a view

presents a special problem: the whole view is itself of a part of a larger system,

which may always connect certain ports of the root cell type together— but the

fact that those ports are unnecessarily distinguished cannot be determined by

examining the given view. Lichen solves this by allowing the key to mark sets of

ports of the root cell type as unnecessarily distinguished. Of course, whatever

is verifying the larger system needs to check this assertion.

5. The two views can differ in their composite wiring, even though their atomic

wiring is identical. In MIPS-X, this takes a particularly simple form: the funsim

5Lichen’s formulation of hierarchy allows more than one port to export the same wire.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. THE L IC H E N A N D M IP S-X S T U D Y 83

m

M w&xo-

u&v

g&h

w&x

Figure 5.2: Wiring Differences Reconciled

has composite wiring, and the layout does not (Magic does not have composite

wiring).

The first two kinds of difference are removed by a canonicalization transformation

called simply cleaning up the v iew , which retracts (makes private) every pointlessly

public wire and sweeps up (deletes it and its exporting ports) every pointlessly im

ported wire. Retracting or sweeping up one wire may make another wire pointlessly

public or pointlessly imported; cleaning up the view removes not only the initially

pointless features, but also the ones revealed in the process.

The third and fourth kinds of difference are removed by a canonicalization trans

formation called unifying ports , which merges split ports and merges undesirably

distinguished ports. A set of ports are undesirably distinguished if they are unnec

essarily distinguished and also, if their cell type has array structure, merging them

would not make their cell type irregular. For example, recall Figure 4.2; the four Vdd

ports of the Driver Array are undesirably distinguished; the last two In ports are

unnecessarily, but not undesirably, distinguished. Also, ports w and x of cell type

C in Figure 5.1a are undesirably distinguished: their cell type does not have array

structure. Figure 5.2 shows the result of cleaning up the two views of Figure 5.1 and

unifying ports; both views give the same result.

The fifth kind of difference is removed by a canonicalization transformation called

deducing port and wire structure. It creates composite wiring along lines suggested

by the names. For example, in the original layout view of MIPS-X, there is a wire

named (“P C B u s ”, 0), another wire named (“P C B u s ”, 1), and so on to (“P C B us”, 31);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D MIPS-X S T U D Y 84

deducing port and wire structure creates a composite parent wire for them , named

simply (“P C B u s ”).

Sometimes it is necessary for the key to explicitly invoke transformations th a t

create pointless imports or exports, because of the interaction of wire s truc ture with

the above canonicalization transformations. When cleaning up a view, what should

be done to a composite wire of whose components some are pointlessly public and

some are not? Rather th a n break up a composite wire in order to give its components

disparate treatm ent, Lichen, when cleaning up a view, alters a composite wire only

if all its components should be altered. This reluctance to break up composite wires

helps to keep the layout view consistent with the funsim view, which, in its original

form, is unable to express disparate connections for the components of composite

ports and wires.6 However, the original layout has disparate trea tm ent of some bus

elements. This difference is reconciled by firstly exporting and importing the missing

bus elements to and from certain cells, secondly deducing port and wire structure,

and thirdly cleaning up the view. Thus these pointless publics and imports are ‘held

on to ’ by their composite parents by the time the view is cleaned up, in both the

layout and funsim views.

Cell Transform ations

The cell transformations are the most significant—they change the basic organiza

tion of a view. When transforming the cell structure, changes to the port and wire

structure must also be made. Fortunately, the key does not need to mention these

small details: for each cell structure transformation there is one most natural way to

handle the port and wire structure.

Lichen offers six pairs of cell structure transformations:

1. create/delete a cell type th a t contributes nothing to the f lat view,

2. distinguish/undistinguish cell types;

3. f latten/un-flatten a cell type or instance;

8 All the disparate treatment o f bus components is done in the Modula-2 code for atomic cell type
behavior.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D MIPS-X S T U D Y 85

4. split/m erge cell types;

5. raise grandchildren/lower children;

6. and transpose (which is its own inverse).

The first two pairs reconcile certain kinds of trivial differences. Each of the next

three can be expressed in terms of the other two in almost any combination. The last

transformation can be expressed in terms of preceding ones, in a number of different

ways. Lichen offers this diversity because use of the most direct transformation makes

1 for more succinct keys.
U
| A cell type contributes nothing to the flat view if it has no subcells and no split

] ports, or if it is not instantiated. Thus, deletion of such cell types is clearly flat-
8
] insignificant, as is the inverse transformation. The canonicalization transform ation

1 of cleaning up the view, introduced earlier, deletes all the cell types tha t contribute

j nothing to the view. Thus, designers need not invoke the creation or deletion trans-

j formations directly.

1 Some of the cell transformations, such as split/merge and raise/lower, affect every

’ instance of a given cell type. However, in some cases the relationship between the two

| hierarchies being reconciled is such tha t only some of the instances of a cell type should

be affected. T he transformation of distinguishing cell types removes th a t conflict, by

changing those instances to be instances of a new cell type tha t is equivalent to the

given cell type.

The fla tten/un-fla tten transformations can be applied to cell types or cell in

stances. Flattening out a cell instance replaces tha t instance with the contents of

its type, suitably interconnected. This is the smallest possible amount of flattening.

F lattening out a cell type consists of flattening out each of its instances (Lichen deletes

a cell type after its last instance is flattened out). The inverse transformations are

un-flattening to a cell instance and un-flattening to a cell type. F la tten /un -f la tten

transformations can be used to reconcile the difference illustrated in Figure 2.5 on

page 14: F lattening out the inv pair cell type converts the structure of part (c) into

tha t of part (d), and un-flattening to the inv pair cell type does the reverse. To spec

ify the type-flattening transformation requires only a name of the cell type to flatten;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D M IPS-X S T U D Y 86

the inverse transform ation requires much more: (1) all the names of the cell type to

create, (2) all the names of the instances to create, and (3) for each new instance, the

set of old instances to which it corresponds. In the above example, the last two parts

of the un-flattening specification can be succinctly expressed:

for j 6 [0..15] : (“pair”, j) <= { (“inv ’\ 2 j) , (“i n v ”, 2 j + 1)} .

A cell type can be split in two, and two cell types can be merged into one (provided

their instances can be paired up appropriately). Splitting a cell type replaces one cell

type with two th a t partition the original type’s subcells amongst themselves. The

ports and wires are not exactly partitioned— some ports and wires may need to show

up in b o th 7 of the new cell types in order to keep the same communication pattern.

Raising grandchildren and lowering children are like fractional flattening and un

flattening. Raising grandchildren takes a subset of a cell type’s subcells out of tha t

cell type and puts a copy of them (suitably interconnected, of course) next to each

instance of that type; lowering children is the inverse. Raising grandchildren can be

done by splitting the cell type and then flattening out one of the two resultant cell

types; lowering children can be done by un-flattening to a cell type and then merging

it with another. Also, flattening and un-flattening can be constructed from raising

grandchildren and lowering children (and creation and deletion of cell types tha t

contribute nothing to the flat view). The reconciliation of the difference illustrated in

Figure 2.8 on page 17 could use raising grandchildren to move the pulldown transistors

out of the Elt cells of part (b), or could use lowering children to move pulldown

transistors into the Elt cells of part (a).

The final cell structure transformations are transpositions: they interchange two

adjacent levels of structure. This can be made clear by an analogy with programming-

language array and record structures: transposing changes an array of records into

a record of arrays, and vice versa. For example, transposition can convert between

the function slicing structure of Figure 2.3 on page 12 and the bit slicing structure of

Figure 2.4.

7Lichen’s formulation of hierarchy does not allow one port or wire to be in two cell types; what
actually happens is that in each of the two cell types there is a port or wire corresponding to the
port or wire o f the original cell type.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D MIPS-X S T U D Y 87

A N ote on G enerality

Any fiat-insignificant transformation of a view without composite ports or wires can

be expressed as a combination of flattening out some cell types and unflattening

to some other cell types, if the unflattening transformation is parameterized by the

wiring alternative to effect. This is easily seen: a transformation is flat-significant

if the original and transformed views would be equivalent after flattening; thus, the

combination of flattening out all the original cell types and unflattening to all the

transformed cell types would serve. In many cases, simpler combinations also suffice.

If the unflattening transformation is not parameterized, but always takes the

“most na tu ra l” wiring alternative, the following three pairs of transformations re

store the power lost by that restriction: (1) pointlessly im port/un im port a wire, (2)

pointlessly export/unexport a wire, and (3) split/merge ports. These pairs change

exactly those aspects of wiring fixed by choosing the “most na tu ra l” alternative when

unflattening.

5.3.3 F lat-S ignificant Behaviorally Insignificant Transfor

m ations

There is only one pair of these: creation and deletion of a wire with no connections.

These transformations need not be directly invoked from the key: the canonicalization

transformation of cleaning up the view, introduced earlier, also deletes every wire

with no connections. These transformations, and the non-structural ones introduced

below, are flat-significant. Thus Lichen can be used in blurred Informed Comparisons.

5.3.4 Transform ations o f Lichen’s R epresentation

Lichen has some choice in how it represents the internal structure of an array-

structured cell type: either the general representation or the one for arrays can be

used. Furthermore, in the array representation, there is some freedom of choice for

the period: if a period (rx, r y) is acceptable, so is (n T x , m T y), for any integers n and

m (although if n and m are so big tha t the resulting period is larger than the size of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICH EN A N D M IPS-X S T U D Y 88

the array this is rather pointless). Lichen has two pairs of transformations tha t do

nothing more than change which of these alternatives is used.

One pair changes the representation of a cell ty p e ’s internal structure between the

general representation and the one for arrays. One direction, from the array represen

tation to the general, can always be applied. The other has restricted applicability:

the cell must be sufficiently regular.

The other pair changes the period of arrays. Again, one direction (multiplying the

period) always can be done, and the other (dividing the period) can be done only if

the cell has sufficient regularity. Lichen offers a canonicalization transformation that

ensures tha t every a rray ’s representation uses the smallest possible period.

5.3.5 N on-Structural Transform ations
3

Lichen offers some transformations of the naming and of the physical information.

The only transformation of physical information offered is simply deleting it. This is

sound because the base comparison technique does not use the physical information.

Deleting it is desirable because tha t increases the regularity of the pair arrays (pre

suming the pair cells have been flattened): because every other row (or column) is

mirrored, the physical information is periodic with a period of 2 in one dimension—

but all the other information is periodic with a period of (1,1).

Names are im portan t to Informed Comparison, for three reasons.

• Names guide the deduction of composite ports and wires.

• Names are useful hints to the base comparison.

• Names are often used in communicating with people.

Lichen has three transformations, renaming , inheriting names , and pruning less in

teresting names , th a t change names to better serve these purposes.

In the Lichen and MIPS-X study, renaming was used mainly to name wires not

named in the original layout. Neither Informed Comparison nor Lichen requires every

wire to have a non-machine-generated name; bu t naming some wires is helpful. A

minor use was to remedy inconsistent naming. In a design carried out with Informed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L IC H E N A N D M IP S -X S T U D Y 89

Comparison in mind, these uses would not be necessary—the original views would be

edited to correct these deficiencies, if they arise at all. However, renaming would still

be useful. Renaming is done before deduction of structured ports and wires; instead

of reconciling the composite wire s tructure of the funsim with that of the layout after

the deduction, the names of the layout’s atomic wires are m anipulated so th a t the

subsequently deduced structure matches that of the funsim. For example, a certain

32-bit bus in the MIPS-X layout corresponds to a 31-bit bus and an independent wire

in the funsim; the key renames the 0th element of the 32-bit bus to give it a distinctive

name and renames the other 31 elements to shift their subscripts down by 1 (there

is a concise notation for this); wire s truc tu re deduction is done later, and the result

matches the wire structure of the funsim.

The nam e inheritance and pruning transformations work together to propagate

names throughout a view to an appropriate degree, so that the designers are not

unduly burdened with labelling layout and yet most ports and wires have some names

th a t are reasonably suggestive of the ir roles. Name inheritance propagates names

‘u p ’ the cell structure: a port inherits the names of the wire exports, and a wire

connected to a port a t a cell instance inherits the concatenations of the instance’s

names and the p o r t ’s. Actually, a nam e is inherited only if it is at least as interesting

as the names already on the inheriting entity. Lichen determines the interestingness

of a name from how many strings it has, how many integers it has, whether the last

string looks like a global nam e,8 whether it looks like a machine-generated name, and

whether it looks like the name of a power supply. A label placed high in the hierarchy

suppresses inheritance of non-global names from lower in the hierarchy. Pruning of

less interesting names is also used alone as a canonicalization transformation th a t

visits each entity and prunes.

The sections above present Lichen’s repertoire of transformations, which fall into

four categories: flat-insignificant hierarchy transformations, flat-significant but be-

haviorally insignificant transformations, transformations of Lichen’s representation,

and non-structural transformations. Following sections discuss the experience of using

Lichen to reconcile the two views of th e MIPS-X pc.

8This is a concept from Magic that indicates an expectation of ultimate connectivity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IPS-X S T U D Y 90

5.4 T h e M I P S -X p c K e y and R econ cilia tion

I was able to reconcile m any of the differences between the two views of the pc. The

reconciled differences are all of the flat-insignificant ones, plus a few others th a t do not

constitute behavioral inconsistencies. The unreconciled, behaviorally insignificant,

differences are handled by the base comparison, presented later.

The answers to the four questions posed in Section 5.1 are as follows.

■ The repertoire of Lichen, presented in Section 5.3, is good.

• The reconciliation of the two views of the pc of MIPS-X consists of 61 invoca

tions of transform ations. These 61 invocations take 223 “words” .9

• The invocations have very few details. The above figures lead to an average

of under 4 words per invocation. Each invocation explicitly addresses only the

major concerns.

o The transformations do not have to be very abstract. The modest transform a

tions of Lichen’s repertoire suffice.

5.4.1 R econciled D ifferences

Table 5.1 shows the breakdown of the transformations in the reconciliation of the

pc. For the layout, each of the three port and wire canonicalization transformations

presented in Section 5.3.2 is applied once. Cleaning up the view is counted as a port

and wire transformation because that is the main thrust of its effects, even though

it also invokes some transformations from other categories. There were also two

explicit importations and one explicit exportation. Deducing port and wire structure

is not necessary for the funsim because only the layout originally lacks structured

wires. Each of the four non-structural transformations of Section 5.3.5 is applied

once10 to the layout. Physical information need not be dropped from the funsim

9 “Words” include names (of b oth transformations and view entities) and numbers, but not syn
tactic overhead like commas and brackets.

10The one application o f renaming reads a file o f name changes for the whole view. That fde lists
241 changes (some o f them using patterns, to, for example, shift indices down by one).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICHEN A N D M IP S -X S T U D Y 91

Funsim Layout Transformation

2 6 F’ort and Wire Transformations
3 36 Cell Structure Transformations
5 42 Total Flat-Insignificant Transformations

0 1 Physical Transformations
2 3 Naming Transformations
2 4 Total Non-Structural Transformations
0 8 Transformations of Lichen’s Representation

7 54 Grand Total

Table 5.1: Transformations of the Reconciliation of the MIPS-X pc unit

Funsim Layout Type
0 4 Flatten out cell instance
0 8 F la tten out cell type
0 1 F la tten nested arrays
0 11 Un-flatten
3 6 Raise Grandchildren
0 1 Lower Children
0 5 Transpose
3 36 Total

1 Table 5.2: Cell Structure Transformations in the Reconciliation of the MIPS-X pc

because it does not have any to s tart with. Also, the funsim needs no renaming. The

representation transformations of the layout consist of (a) switching seven cell types

from the general representation to the array representation, and (b) one application of

the canonicalization transformation that minimizes the period of every array. These

representation transformations are part of the process of changing arrays of pair

cells into simple arrays (see Figure 2.5 on page 14); the funsim’s arrays are simple

to s tart with, and so no representation transformations are needed. The remaining

transformations, of cell structure, are broken down by type in Table 5.2.

The uses of the cell structure transformations are exemplified in the reconciliation

of the pc incrementer (pcinc), which is one of the major parts of the pc. Figure 5.3

shows the funsim view and Figure 5.4 shows an introduction to the layout view of

the pcinc. There are several differences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L ICH EN A N D M IPS-X S T U D Y

P s il

PS Wu-s2
latch
array lncDrvPCBus-q2

Incerpcinc 32

lncDrvResBus-q2
PCBus-s1

ResultBusPC-b-pv2\

Figure 5.3: Funsim View of the pcinc

Psi1 PSWu-s2

latch
array

pcinc lncDrvPCBus-q2

pcadder lncDrvPCBus-b-q2

’ !ncDrvResBus-q2

lncDrvResBus-b-q2
PCBus-s1

32
ResultBusPC-b-pv2

Figure 5.4: In troduction to Layout View of the pcinc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L I C H E N A N D M IP S-X S T U D Y 93

<

• In the funsim view, the pcinc is given the positive sense of PSWu-s2; in the

layout view, pcinc gets the negative sense (PSWu-b-s2). There is thus an

inverter in the layout view that does not correspond to anything in the funsim.

• Where the funsim has an incrementer (the Incer), the layout has a general adder

with one of its inputs wired to 0 and the carry-in set. This general adder cell

type is also instantia ted elsewhere in the pc.

• The most significant bit of the M IPS-X program counter is special: it indicates

whether the machine is executing in user or supervisor mode. In other words,

the 0th bit of the program counter is one and the same as the s /u bit of the

program status word (PSW). W hether this bit changes from one instruction to

the next should not be determined by whether the lower 31 bits of the previous

instruction’s address are all 1, but ra ther by whether an appropriate instruction

has been executed. Thus, in the funsim, the Modula-2 code for the Incer reads

the 32-bit value of P C B u s - s l , increments it, smashes PSWu-s2 into the most

significant bit, and then drives the new program counter value onto the output.

The layout works differently: the adder only computes the 31 least significant

bits of the sum, and the proper s /u bit is connected directly into the circuitry

that accepts the new program counter.

• The adder in the layout takes both the positive and negative sense of its inputs;

the incrementer only takes the positive sense. Also, the drivers in the layout

take both the positive and negative sense of their enable inputs, whereas the

drivers in the funsim take only the positive sense.

• In the funsim, PSWu-s2 is latched on Psil before going to the drivers; in the

layout, it is fed directly to the drivers. MIPS-X uses two-phase non-overlapping

clocks, named Phil and Phi2, and Psil is a qualified version of Phi l . The

“-s2” timing signature means “stable during Phi2 ,\ and the “-q2” signature

means “qualified by Phi2”. Since the drivers only drive during Phi2 and

PSWu-s2 is already stable then, the P s i l -clocked latch for PSWu-s2 is un

necessary: its input is as good as its output needs to be. The other 31 latches

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D M IP S-X S T U D Y 94

PSWu-b-s2

pcinc

pcincfr

3 =

pcadder
- 7*-
31

PCBus-s1

32

pcincslbtO

pcincsl

pcinc2sl-array

pcincout

pcincsl

pcincsl

pcinc2sl

P s i l pcincsl

latch

PC Bus-s l

ResultBusPC-b-pv2

pcinc2sl

X 15

pcinc2sl

pcinc2sl-array

pcincslbtO

P C B us-s l

ResultBusPC-b-pv2

Figure 5.5: Layout View of the pcinc

are necessary, and are present in both views.

• Although not drawn in the figure, the power supply (Vdd and G n d) wiring is

explicit throughout the layout view. In the funsim view, Vdd and Gnd are used

in a few places as constant inputs that specialize general cells; the power supply

wiring is only as extensive as needed for tha t specialization. Another constant

voltage supply, vbias, appears in the layout, for use in making resistors out of

transistors. This signal does not appear in the funsim.

Figure 5.5 shows the actual layout view of the pcinc. It organizes the drivers, latches,

and the inverter into 32 bit slices, each of which has a positive driver, an inverting

driver, and either a latch or an inverter. The 0th bit slice is thus irregular (it has an

inverter instead of a latch). 30 of the other 31 bit slices are organized into bit slice

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L IC H E N A N D MIPS-X S T U D Y 95

pair cells, of type pcinc2sl , and arrayed in the pcinc2sl-array cell type. T he pcincfr

cell type arrays the inverters for the adder input.

The two views of the pcinc are reconciled by the following transformations.

• Un-flatten the pcadder and pcincfr instances of the layout into a new cell type

corresponding to the Incer of the funsim. The “most na tu ra l” way to handle

the wiring leaves the fixing of one of the adder’s inputs to 0 inside the new cell

type.

• In the funsim, raise grandchildren to bring the 2 most significant elements out

of the latch array and the two driver arrays.

• F la tten out the pcincout cell type of the layout.

• F la tten out the pcinc2sl cell type of the layout; this makes the pcinc2sl-arrav

into a simple array of 30 pcincsl.

• Transpose the top two levels of structure of the pcinc2sl-array cell type; this

converts between the bit-slice and the function-slice organization.

• F la tten out the pcincslbtO cell type and the lone pcincsl cell instance in the

layout pc inc ; this breaks up the top two bit slices, leaving their subcells directly

in the pcinc to correspond to the raised grandchildren in the funsim.

Figures 5.6 and 5.7 show the reconciled structures. The rest of the pc was no more

difficult than the pcinc.

5.4.2 R econciliation Perform ance

The asymptotic costs of a Lichen reconciliation are good. Each transformation takes

an amount of time tha t is proportional to the number of entities tha t are affected.

Because Lichen’s representation of views is hierarchical, it is concise— and it minimizes

the number of entities affected by each transformation.

The breadth of Lichen’s repertoire of transformations enables Lichen to produce

reconciled views tha t correspond tightly. Figure 5.8 compares the Lichen reconciliation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D MIPS-X S T U D Y 96

lncDrvPCBus-q2 lncDrvResBus-q2P s i l

latch
PS Wu-s2

m
Ich

pcinc
\ 7 ~

latchIncer
Ich

latch
array

2..312..31
P C B u s-s l

ResultBusPC-b-pv2

Figure 5.6: Reconciled Funsim pcinc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D M IPS-X S T U D Y 97

PS Wu-b-s2

pcinc

Incer

P C B us-s l

P s i l

inv

~\7~
latch

Ich

lncDrvPC Bus-q2

PS Wu-s2

lncDrvResBus-q2
!ncDrvPCBus-b-q2

30

" V

latch
array 30

32

I2..31

Resu ltBusPC-b-pv2 '

2..31

32

Figure 5.7: Reconciled Layout pcinc

- ' — ' —
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Z
b-

q-
sn

gs
ay

A
jQ

ou
i

C H A P T E R 5. TH E L IC H E N A N D M IP S-X S T U D Y 98

Original
(a) Layout

View

100 200 3000

£ 3 2 -c.
EH 16—j

a;
O

_£5
s
3

£

£ 3 2 - ,c.
H? 16-

8-

4-
2 -

1-
0-

o
O

«
S3

PS

100

100

Number of Subcells

Layout, after
(b) Lichen

Reconciliation

—I-----------------1
200 300

Number of Subcells

Layout, after
<c> PWCoreLichen

Reconciliation

I I—I---------------- 1-----------------1—
200 300 400

Number of Subcells
500 600

Figure 5.8: Tightness of Lichen and PWCoreLichen Reconciliations of the MIPS-X
pc

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D M IPS-X S T U D Y 99

of the pc with the reconciliation tha t PWCoreLichen would do. The one original cell

type with a large number of subcells is a PLA. The reconciled layout produced by

Lichen is not much flatter than the original. Because PW CoreLichen’s only way of

dealing with major differences in cell s tructure is to flatten out cell types, the rec

onciled layout produced by PWCoreLichen is significantly flatter than that produced

by Lichen. In fact, Figure 5.8 understates the degree to which PWCoreLichen has to

] flatten. The pc cell type appears in part (c) of the figure with about 545 subcells.

However, since the reconciliation moves some components between the pc and others

of the eight major parts of MIPS-X, PWCoreLichen would have to flatten out the pc

and other major parts, replacing the large pc and other m ajor cells with one even

larger cell for the whole MIPS-X.

5.5 T h e M IP S -X B a se C om p arison

I initially expected th a t after the reconciliation by Lichen, the two views of MIPS-X

could be compared by a straightforward structu ra l/sem antic (see Section 2.2.2 on

page 28) technique, to be called Plan A. This technique would compare frontier cells

by simulation, and the higher cells structurally. However, the reconciled views turned

out to have behaviorally insignificant differences th a t Plan A would flag as incon

sistencies. Most of these differences are due to the difference in level of abstraction

of the views. Remember, the comparison problem includes other difficulties besides

differing hierarchies. To demonstrate that hierarchy reconciliation does not lead to a

dead end, I devised a new base comparison m ethod, called Comparison Modulo Bor

ing Components , th a t can correctly complete the Informed Comparison of the two

MIPS-X views.

5.5.1 P lan A

Figure 5.9 shows the steps of Plan A and where they were expected to fit into the

whole Informed Comparison of the two MIPS-X views. Being a structural/sem antic

technique, Plan A is a combination of structural comparison and a more semantically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. THE LIC H EN A N D M IP S-X S T U D Y

Abstraction
Crossing extract

transform transformReconciliation

s imulate
Plan A

simulate

raise abstraction
level o f traces

* Z Z Z Z Z Z >
com pare :

traces fo r cut cells,

circuit structure +
electrical traces

circuit structure +
arithmetic traces

circuit structure +
arithmetic traces

layout

funsim:
circuit structure +
arithmetic behavior

circuit structure +
electrical behavior

circuit structure +
arithmetic behavior

circuit structure +
electrical behavior

s truc tu re above.

Figure 5.9: An Informed Comparison for MIPS-X Using Plan A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. THE L IC H E N A N D M IP S - X S T U D Y 101

powerful technique (in this case, simulation). Plan A requires me to choose a low

frontier in each view, and calls the cell types of those frontiers the cut cell types (be

cause a frontier is a cut through a hierarchy). Under Plan A, the c<. -csponding cut

cell types are compared by simulation, and the higher cell types are compared struc

turally. The s tructural comparison is efficient, and the simulation-based comparison

is powerful.11

The behaviors of corresponding cut cells do not need to be (and sometimes are

not) exactly equivalent. There are ‘d o n ’t care’ conditions: corresponding outputs

need to be equivalent only at the times when they are read as input by other cells,

and corresponding cells need to respond equivalently only to inputs that the rest of

the circuit actually provides. A familiar example of a ‘don’t care’ condition arises at

the output of any cell feeding into a latch: tha t ou tput must be consistent with the

corresponding output in the other view only at the times when the latch is enabled.

A familiar example of a ‘don ’t care’ condition on the inputs of a cell arises at a

multiplexor’s unary-encoded select inputs: the rest of the circuit guarantees th a t the

select inputs are mutually exclusive, and so the multiplexor needs to be equivalent

to the corresponding multiplexor in the o ther view only under the condition th a t the

select inputs are mutually exclusive.12

To compare the whole circuit when there are ‘don’t care’ conditions on the cut

cells requires three things:

A picking the ‘don’t care’ conditions to be used in the comparison,

B checking tha t the cut cells are equivalent modulo the ‘don’t care’ conditions, and

C checking tha t the higher structure respects the ‘don’t care’ conditions.

u The simulation-based comparison is also unsound, because some o f the cut cells are too complex
for exhaustive simulation. However, Plan A still beats the comparison done at Stanford: that
comparison also used simulation, but it had to be slower than Plan A ’s simulation (for reasons
explained near the end of this section), and thus covered fewer possibilities than Plan A can. Another
reason that Plan A uses simulation is that the Modula-2 code o f the funsim would be difficult to
use for anything else.

12Actually, it is more realistic to suppose that the rest o f the circuit guarantees the mutual
exclusion o f the select inputs only at certain times; but then the rest of the circuit can only depend on
the multiplexor’s choice at those times, and so it is st ill the case that the corresponding multiplexors
need to behave equivalently only when their select inputs are mutually exclusive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IP S-X S T U D Y 102

Stricter ‘don’t care’ conditions than those actually imposed by the circuit can be used

for comparison— if the cells’ behaviors really are consistent to tha t greater degree or

if false claims of inconsistency can be tolerated. For an example tha t illustrates the

necessity of these three steps, consider using a precharged inverter in an electrical view

where a static inverter appears in a Boolean view. The precharged inverter charges

its output high during P h i l , and may discharge its ou tpu t during Phi2 ; the static

inverter continuously assigned the inverse of its input to its ou tput. A reasonable

choice for the ‘don’t care’ conditions on the inputs and ou tpu ts follows.

• The outputs are significant only at the end of Phi2.

• The input must be low at the end of P hil.

• If the input changes, it must be high at the end of Phi2.

Establishing the consistency of the electrical and Boolean views requires showing not

only that the corresponding inverters are equivalent given proper behavior of their

inputs, but also th a t the ou tpu ts of the inverters are used only at the end of Phi2

and that the inputs provided by the rest of the circuit actually meet their conditions.

The output conditions in MIPS-X are concerned only with timing, and thus

present few problems. Dave Noice’s timing discipline [Noice83] was followed in the

MIPS-X design. In this discipline, every signal is assigned one of a few clocking types,

which give information abou t when the signal changes, when it must have its logic

value, and whether it is inverted. An efficient analysis of the electrical circuit ex

tracted from the layout suffices to verify that the layout respects this labelling. Thus,

most of the work for o u tpu t ‘don’t care’ conditions has been done: the clocking types

indicate what the conditions are, and the static analysis has verified that the higher

structure respects these conditions. The remaining task— verifying that the cut cells

are equivalent modulo ‘d o n ’t care’ conditions—can simply be done by simulating and

then comparing responses only a t the relevant times, as indicated by the clocking

types.

The input conditions of the MIPS-X cut cells are unrestricted, and thus more

problematic. Plan A takes the stimuli for the cut cells from a simulation of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICH EN A N D M IPS-X S T U D Y 103

whole funsim. This accomplishes A, B, and C in one stroke, because the cut cells are

compared using inputs derived from the operation of the rest of the circuit. However,

simulation of the whole funsim is not a hierarchical process: the simulator executes a

flat circuit. Does this mean Informed Comparison cannot work hierarchically? There

are two answers.

• Informed Comparison can work hierarchically. The problem in this case is that

the designers did not prepare for a hierarchical comparison. Any hierarchical

technique more powerful than structural comparison would be frustrated by the

‘don’t care’ conditions on the inputs of the M IPS-X cells; the problem is not due

| to the unique features of Informed Comparison. The kind of solution used for

j the outpu t conditions also would work for the input conditions: use a carefully

| designed language of constraints to anno ta te the view so that the satisfaction

of the constraints can be efficiently checked with a static analysis. I chose the

simpler solution because I wanted to avoid editing the MIPS-X design da ta or

learning more than necessary about how and why MIPS-X works.

• Even an Informed Comparison tha t is not completely hierarchical can be faster

than other methods. The comparison done at Stanford was slower (see Sec

tion 5.5.4 for an estimate of how much), because it simulated the whole of both

views. The electrical circuit extracted from the layout was simulated using

RSIM [Terman83], which works at a lower level of abstraction (than the fun

sim) and is thus significantly slower. Also, the electrical circuit is significantly

more detailed than the funsim. Thus, while improving the asymptotics is good,

improving the constants is also good.

In summary, then, Plan A requires choosing, in each view, a low frontier of cell

types, to be called the cut cell types. Above th a t frontier, the two reconciled views

are compared by structural comparison. The cut cells themselves are compared by

simulation. The ‘don’t care’ conditions are factored out by comparing responses only

at times indicated by the clocking types of the signals and by taking the stimuli (as

well as the funsim cut cells’ responses) from a simulation of the whole reconciled

funsim.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E LICHEN A N D M IP S-X S T U D Y 104

!

!

5.5.2 Problem atic D ifferences

Plan A is not sufficiently powerful to complete the Informed Comparison of the two

views of the MIPS-X. Those views have certain kinds of differences that cannot

be removed by Lichen because they are flat-significant and not of the trivial nature

reconciled by Lichen’s non-structural transformations. These differences appear to

be inconsistencies to Plan A, because they involve structural differences at and above

the frontiers. The kinds of differences are as follows.

• Where the funsim has one sense of a signal, the layout has the opposite sense,

or both senses. For example, the drivers in the pcinc of the funsim (see Fig

ure 5.6) take only the positive sense of their enabling signal; in the layout (see

Figure 5.7), the drivers take both senses.

• The layout has extra wiring, for Vdd, G nd , and vbias.

• The layout has inverters and buffers th a t do not appear in the funsim. An

example is inv in the pcinc in Figure 5.7.

• The funsim has a latch (lch0 in Figure 5.6) tha t is useless and does not appear

in the layout.

• Some or all of the function of some funsim cells is accomplished simply with

wiring in the layout. For example, the funsim ihce r’s use of PSW u-s2 in Fig

ure 5.6 is accomplished by wiring in Figure 5.7. Another example is a funsim

cell type named TrapMa.sk, whose function is entirely implemented with wiring

in the layout.

All but the second-to-last difference are due to the difference in level of abstraction

of the views. The next section presents a new comparison method that is not confused

by any of the above kinds of differences.

5.5.3 Com parison M odulo B oring C om ponents

Comparison Modulo Boring Components follows the same schema as Informed Com

parison: apply some transformations to remove problematic differences, and then

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D MIPS-X S T U D Y 105

apply a base me od. In this case, the transforming step is called the boring recon

ciliation and the base m ethod is called Plan A+ (because it is a slightly enhanced

version of Plan A). The boring reconciliation is done between the simulation and

comparison steps of Plan A+ . Figure 5.10 shows the steps of Comparison Modulo

Boring Components and where they fit into the whole comparison of the two MIPS-X

views. The boring reconciliation and the enhancements of Plan A+ add the power

required to handle the differences of the previous section.

Sense-Abstract V iew s

Comparison Modulo Boring Components uses sense-abstract views, whose purpose

is to make differences in the senses of wires ignorable. In a sense-abstract view

every wire and port carries bo th the positive and negative sense of its signal, and

any connection may connect those two senses either reversely or normally. Thus an

inverter does nothing th a t any other cell cannot do, and two wires carrying opposite

senses of a signal do nothing tha t a single wire cannot do.

Connections are more complex in sense-abstract views than in ordinary views.

Every connection is between a wire and a port at a site. A sense-abstract connection

additionally has a polarity , which is either normal or reverse. A normal connection

j connects the positive sense of the wire with the positive sense of the port, and the neg-

| ative with the negative; a reverse connection connects the positive with the negative

: and the negative with the positive. For example, Figure 5.11 shows a sense-abstract

view of an implementation of an XOR gate (the “X”s indicate reverse connections);

j Table 5.3 lists the connections. Any ordinary view (at a high enough level of ab-

1 straction) can be considered to be a sense-abstract view in which every connection’s

polarity is normal.

The Transformations o f B oring Reconciliation

Boring components are those th a t simply copy inputs to outputs , perhaps with in

version and an insignificant change of timing. A component th a t copies some of its

inputs to some of its ou tpu ts bu t also does more interesting computation is called

fractionally boring. T he boring reconciliation deletes boring components and chops

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LIC H EN A N D M IP S-X S T U D Y 106

Abstraction
Crossing

Reconciliation

Comparison
Modulo
Boring

Components

layout

extract I
/

circuit structure +
electrical behavior

funsim:
circuit structure +
arithmetic behavior

transform transform

circuit structure + circuit str ucture +
electrical behavior arithmetic behavior

simulate &
raise abs trac t ion simulate

circuit structure +
arithmetic traces

\
in vert,
merge. ^
create.

& delete

sense-abstract
circuit structure +
arithmetic traces

Plan A

Boring _
R econciliation

circuit structure +
arithmetic traces

£ z z z z z z > |
com pare :

traces fo r cu t cells,
s truc tu re above.

invert,
> merge,

create.
& de le te '

sense-abstract
circuit structure +
arithmetic traces

Figure 5.10: An Informed Comparison for MIPS-X Using Comparison Modulo Boring
Components

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L I C H E N A N D M IP S - X S T U D Y 107

XOR

Figure 5.11: A Sense-Abstract View of an XOR Implementation

'1
j

Wire Port Site Polarity
A A X O R normal
A I Tli A ndi normal
A I n 2 A n d 2 reverse
B B X O R normal
B I n 2 Andy reverse
B In \ A n d 2 normal
P Out Andi normal
P In i Or normal

q O ut A n d 2 normal

q I n 2 Or normal
c Out Or normal
c c X O R normal

Table 5.3: Connections in a Sense-Abstract View of an XOR Implementation

J
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IP S-X S T U D Y 108

out the boring pa rt of fractionally boring components. The boring reconciliation also

merges the wires between which boring components copy values. In order to be able

to merge some such wires, the boring reconciliation also swaps the senses carried by

some wires. Finally, the boring reconciliation creates and deletes power supply wiring.

The boring reconciliation cannot work directly on the reconciled layout. While

the layout’s boring components do not constitute inconsistency with the funsim, they

are very im portant to the way the layout works. The output of a buffer changes faster

than it would if the buffer were deleted and the input and ou tpu t were merged. The

correct operation of the MIPS-X layout cannot be observed w ithout a certain amount

of quantitative timing analysis (this is why the designers at Stanford simulated it with

RSIM instead of a pure switch-level simulator). Thus, the boring reconciliation would

significantly change the functioning of the layout view.

The problem is that boring reconciliation can only be applied to a view at a

level of abstraction in which the changes made by the boring reconciliation are truly

insignificant—and it should be easy for a program to verify tha t insignificance. This

means that I could not even apply the boring reconciliation to the reconciled funsim

view, because I had no tool th a t could verify that the Modula-2 code for a buffer

f simply copies input to outpu t. Comparison Modulo Boring Com ponents solves this

problem by applying the boring reconciliation after the simulation (and the raising

of the abstraction level of the layout traces from electrical to arithmetic). Once

arithmetic simulation traces are the behavioral description of the cut cells, the boring

reconciliation’s changes can easily be verified to be insignificant. This also makes it

easier to chop out the boring fraction of a component: rather th an editing a block of

Modula-2 code, the boring reconciliation simply drops some simulation traces.

T he first transformations applied in the boring reconciliation swap the senses

carried by ports and by wires; these transformations are called inverting a port and

inverting a wire. Inverting a wire involves switching the polarity of each of th a t wire’s

connections; similarly, inverting a port switches the polarity of each of tha t p o r t ’s

connections. For example, Figure 5.12 shows the result of inverting the wires and

ports named PSW u-b-s2 , IncDrvPCBus-b-q2, and IncDrvResBus-b-q2 of Figure 5.7.

After the necessary wire and port inversions, the next transformations merge wires

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L I C H E N A N D M IPS-X S T U D Y 109

lncDrvResBus-q2
lncDrvPCBus-b-q2

lncDrvPCBus-q2P s i l

PS Wu-s2PS Wu-b-s2

inv

pcinc
■Xt-
latch

Ich
Incer

latch
array

2^312TT31
PCBus-s1

ResultBusPC-b-pv2

Figure 5.12: Reconciled Layout pcinc After Inverting Certain Wires and Ports

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L IC H E N A N D M IP S-X S T U D Y 110

and merge ports. These transformations do not clearly preserve behavior, and so must

be checked. This is done by comparing simulation traces. When two wires are merged,

their simulation traces are checked for consistency. Specifically, the traces for the two

wires are compared for equality at the times indicated by their clocking types (which

must not be incompatible). The trace for the merged wire is constructed from the

traces of the wires being merged.

Ports are merged, as well as wires. This is necessary because the ports of the

frontier cells and their ancestors are significant to the structural comparison of Plan

A+ . The question of whether a port merge preserves funsim-level behavior is converted

into a question of whether wire merges preserve funsim-level behavior. Before merging

the ports, the wires connected to the ports at each site are merged—and the validity of

those merges is checked in the usual way. Once this is done, the ports are unnecessarily

distinguished and merging them is flat-insignificant (see Section 5.3.2); no further

checking is required. Figure 5.13 shows the result of merging the following three pairs

of wires and three pairs of ports of the pcinc of Figure 5.12: wires PSWu-s'2 and

PSWu-b-s2, wires IncDrvPCBus-q2 and IncDrvPCBus-b-q2, wires IncDrvResBus-q2

and IncDrvResBus-b-q2, ports PSW u-s2 and P SW u-b s2 , ports IncD rvPCBus-q2 and

IncD rvPCBus-b-q2 , and ports IncDrvResBus-q2 and IncD rvResBus-b-q2 . Although

Figure 5.13 does not show it, the boring reconciliation also inverts the negative enable

ports of the drivers and then merges them with the positive ones.

Once the wires and ports have been inverted and merged as necessary, the boring

components and fractions can finally be deleted. Figure 5.14 shows the layout pcinc

after the deletion of boring components and fractions. The inv has been deleted.

The funsim pcinc has the same structure; its reconciliation involved: (1) merging the

three wires P SW u-s2 , m 0, and r 0; (2) deleting the boring component lch0; and (3)

deleting the lncer's boring fraction, the ports formerly connected to PSW u-s2 and

m0.

Figure 5.14 does not show all of the ports and wires: the power supply and vbias

wiring is omitted. The boring reconciliation involves two transformations tha t recon

cile the power supply and vbias usage of the two views. These two transformations

need not be done at any particular time relative to the other three transformations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N A N D MIPS-X S T U D Y 111

lncDrvResBus-q2&
lncDrvResBus-b-q2

lncDrvPCBus-q2&
lncDrvPCBus-b-q2

P s il

inv

PSWu-b-s2&PSWu-s2

pcinc

latch

Ich
Incer

latch
array

2..312.,31
P C B us-s l

32 ResultBusPC-b-pv2

Figure 5.13: Reconciled Layout pcinc After some Inversions and .Merges

I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICH EN A N D M IPS-X S T U D Y 112

Psi1 lncDrvPCBus-q2&
. lncDrvP C Bus-b -q2

lncDrvResBus-q2&
lncDrvResBus-b-q2

PSWu-b-s2&PSWu-s2

pcinc
“V "
latch

Ich
Incer

latch
array

2..31 2..31
PCBus-s1

32 ResultBusPC-b-pv2

Figure 5.14: Layout pcinc After Deletion of Boring Components and Fractions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICH EN A N D M I P S - X S T U D Y 113

of the boring reconciliation. One of these transformations deletes a wire and every

port and wire hierarchically connected to it above a frontier. This transformation is

invoked with an RSIM voltage range, and its soundness is checked by testing whether

all those ports and wires stayed within th a t range during the whole simulation. This

transformation is used to remove the vbias wiring from the electrical view above the

cut cells.

The other transformation adds V dd and Gnd ports to every cell type of the funsim

that doesn’t already have them, and also adds wires and connections as necessary to

globally distribute the power supplies. This transformation also adds the appropriate

constant simulation traces for the added ports and wires. This transformation takes

a list of exception cell types, which need not get Vdd and Gnd ports. There is one

cell type in the funsim that does not logically need the power supplies (it corresponds

to a single transistor). It is easier to add Vdd and Gnd to the funsim than to remove

them from the electrical view because removal would involve even more exceptions,

in order to leave Vdd and Gnd as constant inputs to various cells.

The five transformations of the boring reconciliation remove the problematic dif

ferences listed in Section 5.5.2. Comparison Modulo Boring Components then is

completed by Plan A + .

Plan A +

Plan A+ differs from Plan A in three minor ways.

1. The comparison of corresponding simulation traces takes into account the sense

of the correspondence (see Section 5.6.2).

2. The structural comparison is enhanced to take the polarities of the connections

into account.

3. The structural comparison is further enhanced by some knowledge of De Mor

gan’s laws.

The first two are required for the sake of soundness. The third is easy and supplies

some of the power needed by some of the differences in the MIPS-X views.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L I C H E N A N D M IP S-X S T U D Y 114

The first enhancement requires no further description. The second and third are

both accomplished by small changes to the way structure is compared. T ha t compar

ison is done by converting the circuits into labeled graphs and then testing labeled

graph isomorphism. The enhancements of Plan A f are accomplished by changing the

way labels are assigned. Each wire and each cell instance becomes a vertex, and each

connection becomes an edge. An edge’s label is a function of the port and polarity

of its connection. In particular, a reverse connection gets the reversal13 of the label

that connection would get if it were normal; the label for a normal connection is

purely a function of the connection’s port. The label of a cell instance’s vertex is

purely a function of the instance’s cell type. Cell types whose behaviors differ only

by inversion of the values th a t pass through some ports are assigned the same label.

Corresponding ports of those cell types are assigned identical or reversed labels, as

appropriate. The reversal for labels of reverse connections meshes with the reversal

of the labels for inversely corresponding ports to encode knowledge of De M organ’s

laws. For example, a norm al connection to the output of a N A N D gate would get

the same label as a reverse connection to the output of an A N D gate. Thus, after

the boring reconciliation inverts the appropriate ports and wires, this choice of labels

produces isomorphic graphs from views tha t originally differed in ways described by

De M organ’s laws. T he test of graph isomorphism then completes the Comparison

Modulo Boring Components, which completes the Informed Comparison of the two

MIPS-X views.

5.5.4 Base C om parison Perform ance

This section compares the estim ated speed of the base comparison presented above

with the speed of the full-circuit simulation done by the designers at Stanford. Com

parison Modulo Boring Components can be broken down into three activities:

• simulation of the cut cell types,

• hierarchical structural comparison above the simulation frontiers, and

13The reversal can be any function R of labels such that R (R (l)) = I for every /; identities o f R,
i f there are any, cannot be used.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LICH EN A N D M IPS-X S T U D Y 115

■ boring reconciliation.

The second two require little time. As demonstrated in PWCoreLichen and other

work, hierarchical s tructural comparison is faster than any significant amount of sim

ulation. Each reconciled hierarchical view of the SIC (see Section 4.2.3 on page 59)

has a total of about 1500 cell instances and 2600 atomic wires, for a to ta l of about

4100 vertices in all the view’s labelled graphs. PWCoreLichen on the 4-MIPS Dorado

performs the whole hierarchical structural comparison of the two SIC views in 61

seconds. The reconciled hierarchical pc views each have about 400 cell instances and

1800 atomic wires above their simulation frontiers, and thus the hierarchical s truc

tural comparison of those clipped views should take about half a Dorado m inute .14

RSIM on the 1-MIPS DEC MicroVax-II simulates the approximately 50,000 transis

tors of MIPS-X minus its instruction cache memory at the rate of one clock cycle per

minute, and thus th a t half a Dorado minute should be enough for simulating about 14

cycles of the 7100-transistor flattened reconciled pc layout. The designers at Stanford

simulated roughly 30,000 cycles of the MIPS-X in their comparison, which included

finding and fixing some bugs and then simulating again to verify the fixes.

The quantity of work to be done in the boring reconciliation is actually very

small. Only five boring components in the pc layout and three in the funsim need

to be identified and deleted.13 T he comparison of simulation traces for merged wires

can be done during the simulation, costing little time. An experimental procedure,

not tuned for performance, is able to delete the vbias wiring from the 39 cell types

of the pc layout a t and above the simulation frontier in 15 seconds on the Dorado;

adding the Vdd and Gnd wiring to the 33 cell types of the funsim pc should take a

similar amount of time.

Simulation speed is of primary importance. The functional simulation runs about

100 times faster than the RSIM simulation, and so can be ignored. Table 5.4 shows

the number of transistors and atomic wires resulting from completely flattening each

of the cut cell types in the reconciled layout view of the pc. Completely flattening that

14Structural comparison is little worse than linear in the graph sizes.
l5 Although other components are also boring, only those eight need to be deleted in order to

enable the hierarchical structural comparison to succeed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E LICH EN A N D M IP S -X S T U D Y 116

T ran Atomic Layout Tran Atomic Layout
sistors Wires Cut Cell Type sistors Wires Cut Cell Type

1005 562 DispAdder 6 8 pccmlatch
941 513 Incer 6 8 pclatch
656 319 PCRandomLogic 5 6 pcdislatch
320 132 pcdriver-array 4 6 pcresdrv

10 8 pcincdrvr 4 6 pcnor
7 10 2InputLatch 4 6 pcnand
7 9 pc2inultch 4 4 pcinvsigdr
7 9 pc2inpltch 4 4 pcclamp
7 9 pc2indltch 2 4 pcnot
7 9 pc2ingltch 1 3 nfet [48,32,24,1,1]
6 8 pcinclatch 3013 1643 Total

Table 5.4: C ut Cell Type Sizes

view of the pc yields 7123 transistors and 3039 atomic wires. Thus, the completely

flattened cut cell types add up to about half the circuitry of the whole completely

flattened pc. This is not a great improvement. W hether Informed Comparison can, in

general, greatly improve simulation-based comparisons depends on certain structural

details of the views. In the MIPS-X pc, over 90% of the transistors and wires in the

flattened cut cells come from just four of those cut cells. Each of those four large cut

cell types corresponds to a funsim cell type th a t either is atomic or has no duplication

in its internal structure. Thus lowering the simulation frontier, where possible, would

not decrease the total number of transistors and wires in the flattened cut cell types.

Simply put, the improvement is small because there is not much regularity in the

funsim when the funsim elements are weighted according the amount of layout used

to implement them.

However, this Informed Comparison decreases simulation time by more than the

ratio of the total quantities of circuitry: the time required for comparison by simula

tion grows faster than linearly in the circuit size, and the cut cell types are compared

individually, rather than en masse. In other words, each pair of corresponding cut

cell types can be compared by simulating fewer cycles than required for comparing

the whole pc or MIPS-X at once. How m any fewer cycles give an equivalent level of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E L IC H E N A N D M IP S-X S T U D Y 117

confidence?16 This depends on how well the simulations of the whole pc and MIPS-X

exercised the individual cut cells— and I have no da ta on this. However, the Informed

Comparison has matched up many of the latches;17 factoring out the dependence on

their state could greatly reduce the number of cycles required.

By virtue of its reconciliation of the hierarchy differences, this Informed Com par

ison of these two views is as good as a hierarchical comparison based on simulation

can be; to get better, either a different base comparison technique must be used or the

funsim must be edited to move some of the remaining regularity out of the Modula-2

code and into the circuit structure.

5.6 T h e M IP S -X C orresp on d en ces

The previous sections present the reconciliation and base comparison of the MIPS-X

views, with an emphasis on testing consistency. This section discusses the correspon

dences between the entities of the MIPS-X views. These correspondences are similar

to those of PWCoreLichen, and are shown in Figure 5.15. The following sections focus

on the main correspondence, between the original funsim and the original electrical

view. This correspondences is composed of three subsidiary correspondences: (1) the

funsim correspondence, between the original funsim and the reconciled funsim; (2)

the electrical correspondence, between the original electrical view and the reconciled

electrical view; and (3) the base correspondence, between the reconciled funsim and

the reconciled electrical view. Lichen’s reconciliation correspondences (the funsim

and the electrical) are similar to those of PWCoreLichen. However, the MIPS-X base

correspondence is more complicated than PW CoreLichen’s, due to the complexity of

Comparison Modulo Boring Components. T he difficulties of composing the base cor-

respondance with the reconciliation correspondences make the main correspondence

even more complex.

10It is a question of confidence because practical comparisons o f large circuits by simulation are
unsound, as discussed in Section 2.2.1 on page 20.

170 f the four big cut cell types, only one (P C R an dom L og ic) keeps state; the other three, which ac
count for approximately 3 /4 o f the total flattened cut cell type circuitry, are combinational (although
the general adder used in the layout D ispA d de r and Ince r uses precharged logic).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IP S-X S T U D Y 118

Grand Correspondence /

4 ------
K ------- Main Correspondence

— — 7 \ r — — — —
Extraction

Correspondence

- ^ - - - - #
Correspondence

Funsim
Correspondence

Electrical
Correspondence

Original
Funsim

View

Reconciled
Funsim
View

Reconciled
Electrical

View

Original
Electrical

View
Layout

Figure 5.15: Correspondences in the Informed Comparison of the MIPS-X Funsim
and Layout

5.6.1 T h e R econcilia tion C orrespondences

A Lichen reconciliation correspondence can be represented with a binary relation ~ ,

in a way very similar to the PWCoreLichen reconciliation correspondences. In Lichen,

~ has the following features.

• ~ is the disjoint union of ~ , ~ t and ~ .

• ~ is a partial one-to-one relation between the funsim cell types and the electrical

ones. The tagged cell types include at least the root and atomic cell types, and

maybe others.

• A is a total one-to-one relation between the funsim introductory instance paths

and the electrical ones.

• ~ is a partial relation between the funsim introductory atomic wire paths and

the electrical ones.

is a partial relation between the funsim atomic ports and the electrical ones.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IP S-X S T U D Y 119

Paths are needed because Lichen can flatten and un-flatten. Because Lichen does

not merge parallel transistors, ~ is one-to-one. Because of the possible unification of

ports in either view, ~ cannot be restricted to being one-to-one or even many-to-one.

Also, ~ is partial because of the possible exporting and retracting of wires of tagged

cell types, as well as because of the possible creation and deletion of wires with no

connections. Finally, ~ is added because these views use explicit ports; ~ shares

many features with ~ .

Although this formulation of correspondences has no features directly related to

some of the cell structure transformations (split/merge, raise/lower, transpose), it can

represent the correspondence across any of Lichen’s transformations. This is because

those “unrepresented” cell s truc tu re transformations can be effected with flattening

and un-flattening.

5.6.2 T he Base C orrespondence

The base correspondence relates views th a t differ in different ways than the views

related by the reconciliation correspondences. The complexities of the base corre

spondence are introduced in turn, s tarting with the correspondence established by

the Plan A+ comparison. T ha t comparison is done with a combination of

• s truc tura l comparison of a clipped version of the funsim with a clipped version

of the electrical view, and

a comparison by simulation of the cut cells that specify the clippings.

The structural comparison establishes a total, nearly one-to-one, correspondence be

tween all four kinds of s tructural entities of the two clipped views. This correspon

dence might not be one-to-one because multiple layout cell types can correspond to

a single funsim cell type. In the MIPS-X, for example, there are multiple layout

cell types for single simple funsim cell types like drivers and latches. For simplic

i ty ’s sake, ~ may relate multiple electrical cell types only to atomic cell types of the

clipped funsim. Because of this restriction, no further complexities are introduced by

those one-to-many correspondences. The comparison by simulation adds nothing to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D MIPS-X S T U D Y 120

the correspondence, because it treats each atomic cell type of the clipped views as a

black box.

The power supply and vbias transformations require th a t ~ and ~ be allowed

to be partial. The deletion of boring fractions also requires th a t ~ be allowed to

be partial. The deletion of entirely boring components requires tha t ~ and ~ be

allowed to be partial. T he merging of ports and wires precludes ~ and ~ from being

one-to-one. The inversion of ports and wires requires changing ~ and ~ from binary

to three-way relations, adding a sense of correspondence (positive or inverse) to each

tuple. Because they have different arities, the four subsidiary relations can no longer

be put together in one union. Instead, a correspondence is represented by a 4-tuple

of the subsidiary correspondences

A cell instance i in a view might not be related by ~ to anything for one of two

reasons:

• i is deleted during the boring reconciliation, and thus does not correspond to

anything in the o ther view, or

• i is below the clipping frontier, and thus corresponds to part of whatever its

ancestors that survive the clipping correspond to.

Knowing the clipping frontiers is necessary to distinguish these two cases. Thus, the

representation of a correspondence m ust also represent the relevant clipping frontiers.

In summary, base correspondences have the following features.

• A base correspondence between reconciled views V\ and V2 can be represented

by a six-tuple ^Fi, ~ i 2, ~ i 2, ~ i 2 ? ~ 1 2 , F 2) , where and F2 are clipping frontiers

of I'] and V2 (respectively).

a ~ is a partial, nearly one-to-one, binary relation between the cell types of one

clipped view and the cell types of the other.

■ ~ is a partial one-to-one binary relation between the cell instances of one clipped

view and the cell instances of the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H E N AND M IPS-X S T U D Y 121

I

• ~ is a partial three-way relation between the atomic wires of one clipped view,

the atomic wires of the other, and the senses of correspondence.

• ~ is a partial three-way relation between the atomic ports of one clipped view,

the atomic ports of the other, and the senses of correspondence.

5.6.3 T he M ain C orrespondence

The base correspondence and the reconciliation correspondences have different fea

tures, and those differences make the main correspondence even more complex. T he

following formulation of correspondences covers the base correspondence, the recon

ciliation correspondences, and the main correspondence.

• A correspondence between view \'\ and view V2 can be represented by a five

tuple , ~ 12, ~ i 2) ~ i 2 > ^ 2)) where Fx and F2 are clipping frontiers of Iq and V2

(respectively). The symbol ~ 12 is used to s tand for this tuple. A correspondence

only addresses the parts of Vx th a t survive clipping by Fx and the parts of V2

tha t survive clipping by F2.

• ~ i 2 is a partial, nearly one-to-one, binary relation between the cell types of Vx

above Fx and the cell types of V2 above F2. Thus ~ is not required to tag any

of the atomic cell types of either (unclipped) view. A cell type is considered to

be tagged if either it is related by ~ 12 to another cell type or it is a member of

H ^ 1 or ^ 2 -

• ~ 12 is a partial three-way relation between the introductory instance and wire

paths of V\ above Fx, the introductory instance and wire paths of V2 above F2.

and the senses of correspondence.

• ~ i 2 is a partial three-way relation between the ports of I j above iq , the ports

of V2 above F2, and the senses of correspondence.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E LIC H EN A N D M IP S-X S T U D Y 122

So far, this formulation is not very different from earlier ones. T he biggest dif

ference, and added complexity, is in the procedure for composing two correspon

dences. This procedure is similar to the one for composing PWCoreLichen corre

spondences (see Section 4.3 on page 62). T he procedure is given the representation

^Fi , ~ i 2 , ~ i 2 i ~ i 2 > F2a) ° f a correspondence between the entities of Vj and those of V2,

and the representation (^F2b, ~ 2 3 i ~ 2 3 > ~ 2 3 i -Ph) of a correspondence between the enti

ties of V2 and those of U3- The following steps yield a representation of the composite

correspondence between the entities of Vj and those of V3. This procedure assumes

tha t no cell type of F2b is below the frontier F2a. This assumption is valid because

F2a ^ F2b only for the composition of a base correspondence with a reconciliation

correspondence, wherein the reconciliation correspondence can take the role of ~ i2,

and thus F2a is the atomic cell types of (unclipped) V2.

1. Com pute ~ (2 from ~ i 2 and ~ 23 fr°m ~ 2 3 by tightening and /o r loosening so

tha t ~ '12 and ~ 23 tag as nearly as possible the same cell types of V2. The only

exceptions necessary are for composite cells of F2b tha t are tagged by ~ 2 3 but

not ~ i 2 -

i t! ̂ /
2. Use lopsided loosening to compute ~ 23 from ~ , 3, accommodating for the differ

ences in which cell types of V2 are tagged.

, 3. Compose the relations to get the result: ^Pi> ~ 12 0 ~ 2 3 > ~ i 2 0 " “ 2 3 5 0 ~->3 > ^3^

T he m ajor difference between this procedure and the one for PWCoreLichen corre

spondences is that Step 2 may be needed to finish the job tha t would be accomplished

for PWCoreLichen by Step 1 alone. Because correspondences only address the parts

of a view above some clipping frontier, when two correspondences being composed

use different frontiers (tha t is, F 2a / F2b) for their common view (1'2) the ordinary

tightening and /o r loosening may not be enough to get the two representations to tag

the same cell types of V2. This inconsistency can arise whenever there is some com

posite cell type t2 of V2 th a t is a member of F2b but is above F2a and is not tagged by

~ i 2 - Cell type t 2 must be tagged by ~ 23 because t2 is atomic in the clipped (by F2b)

view, and thus ordinary loosening cannot ‘e x p a n d ’ it into anything. If tightening can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L I C H E N A N D M IPS-X S T U D Y 123

i

make ~ '12 tag t2, there is no problem. Otherwise, lopsided loosening must be used.

Lopsided loosening is a last-ditch effort to prepare ~ 23 for Step 3. Lopsided loosening

expands t 2 into a set of instance and wire paths tha t cover it, by replacing the paths
iw tth a t end at t2, and thus would not match up with any paths in ~ 12 (because t 2 is not

tagged by ~'12), with the longer paths that pass through t 2 and do match up with
• /

paths in ~ 12. In particular, lopsided loosening replaces every tuple (p2, s , p 3), where

p2 is an instance path tha t ends a t t2 and s is the sense of the correspondence, with all

the tuples (p2 + q2, s , p 3), where q2 is an introductory (according to ~ ia) instance or

wire path tha t s tarts at t 2. Lopsided loosening only needs to ad just the instance/wire

pa th relation; the other four components of a correspondence representation can be

used as they are.

The three-way relations are composed by linking according to the common paths

and “XORing” the senses:

»«.' iw "
' 12 0 ~ 2 3 — \ (Pl , s iPz)

iw '

3 u ,v ,p 2 3

(p u u , p 2) e ~ 12J a \^{p2,v,p3) e ~ 2 3 J a = u © v

Table 5.5 shows ©.

5.6.4 C orrespondence Sum m ary

The correspondences encountered in the Lichen and MIPS-X study are broadly sim

ilar to those of PWCoreLichen. The reconciliation correspondences are very similar,

bu t the base correspondence for MIPS-X needs additional complexity because the

base comparison is more powerful. The paradigm of using pa ths and mathematical

relations works even for Lichen and MIPS-X, provided th a t sufficient attention is

paid to the clipping frontiers of the base comparison and the difficulties of composing

correspondences.

positive
inverse

positive inverse
positive inverse
inverse positive

Table 5.5: How to Combine Senses of Correspondence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. T H E L IC H EN A N D M IP S-X S T U D Y 124

5.7 L ichen and M IP S -X S u m m ary

The Lichen and MIPS-X study investigates a more powerful informed comparison.

Lichen’s reconciliation repertoire has no a priori limits (as PW CoreLichen’s does,

due to the DATools methodology). The two views of MIPS-X make a good test

of reconciliation, because they were designed with no constraints on the similarity

of the hierarchies (below the top level of decomposition). This study shows tha t a

repertoire of 26 transformations of moderate power and complexity suffices to describe

reconciliations reasonably succinctly: the reconciliation of the pc is described with

61 invocations, taking 223 words. Lichen reconciliations are asymptotically efficient:

each transformation takes an amount of tim e merely proportional to the number of

entities affected in a hierarchical representation. The reconciled views have essentially

identical hierarchies, and yet are not appreciably flatter than the originals; thus the

base comparison aiso can be asymptotically efficient.

The base comparison method, Comparison Modulo Boring Components, is also

more powerful than PWCoreLichen’s. It m ust be, because some of the behaviorally

insignificant differences between the views are flat-significant, and thus cannot be

removed by the reconciliation. These differences are due to boring components (or

boring fractions of components), which simply copy signals from input ports to output

ports with possible inversion. Boring components include buffers and inverters, as

well as wiring cells implemented by Modula-2 code. Most of the differences involving

boring components are consequences of the difference in level of abstraction between

the views. Comparison Modulo Boring Components reduces the amount of circuitry

to be compared through simulation by a factor of a little more than two for the pc; this

factor is disappointingly small because the funsim view of the pc does not have much

regularity when its elements are weighted by the am ount of layout used to implement

them. However, because one large comparison is replaced by many smaller ones, the

number of cycles needed is also reduced, by a factor th a t is difficult to quantify.

Because the limitations of PWCoreLichen do not apply to MIPS-X, the corre

spondence between the entities of the two M IPS-X views is more complex, and more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 5. TH E LICH EN A N D M IP S - X S T U D Y 125

I
I

I

illustrative of the correspondences produced by Informed Comparison. These corre

spondences are formulated as simple m athem atical relations. Instance paths and wire

paths are used in place of simple cell instances and wires, in order to be able to repre

sent the correspondence between views with major differences in cell structure. Since

the base comparison establishes the correspondence only of entities above certain

clipping frontiers, extra care must be taken when composing such correspondences.

3

t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C hapter 6

C oncluding R em arks

Previous chapters present the comparison problem, introduce Informed Compari

son, and give two examples. This final chapter summarizes Informed Comparison,

discusses its problems and limitations, and suggests several directions for future re

search.

6.1 S u m m ary

Informed Comparison is a hierarchical comparison technique th a t can compare two

views at different levels of abstraction with different hierarchies. Informed Compari

son first reconciles the differences in hierarchy by applying hierarchy transformations,

and then finishes with a hierarchical base comparison technique tha t can take ad

vantage of the similarity of the hierarchies. The reconciliation is directed by the

key, which describes the intended relation between the hierarchies of the views. The

key simply consists of invocations of hierarchy transformations. Many qualities of

Informed Comparison depend on the repertoire of transformations available to the

reconciliation and on the base comparison technique.

Informed Comparison is superior to existing techniques, which either require the

views to use essentially identical hierarchies or reconcile the differences with (usually

complete) flattening. Requiring the views to use essentially identical hierarchies is an

undesirable restriction, because different divisions are preferable at different levels of

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. C O N C L U D IN G R E M A R K S 127

abstraction. Flattening is disadvantageous for m any reasons, the foremost of which

is a potentially large degradation of asymptotic performance. Informed Comparison

does not require any particu lar similarity between the hierarchies of the views being

compared, and has bette r ways of reconciling those differences than flattening.

Informed Com parison’s contribution is the reconciliation of hierarchy differences;

the rest of the comparison problem remains. Notable remaining difficulties arise from

the use of different levels of abstraction in different views, and the fact tha t not all

comparisons benefit greatly from a hierarchical solution.

PWCoreLichen and the Lichen and MIPS-X study illustrate the range of possi

bilities offered by Informed Comparison. PWCoreLichen has a limited repertoire of

reconciliations and fits into a well-defined methodology. The key for a PWCoreLichen

comparison is contained in design information captured for other purposes; thus, no

extra effort is required from the designers to create and maintain the key. P W

CoreLichen’s base comparison technique is hierarchical s truc tura l comparison, which

is very fast but has limited power. PW CoreLichen’s only m ajor transformation of

cell s tructure is partial flattening, and thus the reconciled views could be very wide

and flat; PW CoreLichen’s users take care to avoid provoking this problem. A P W

CoreLichen comparison beats a completely flat s truc tura l comparison by nearly the

regularity factor of the reconciled views; in an example studied in Chapter 4 that is

13.

In contrast to PWCoreLichen, the Lichen and MIPS-X study has a large repertoire

of transformations and a more powerful base comparison m ethod (the new m ethod of

Comparison Modulo Boring Components). The key is not contained in existing de

sign data , and thus has to be created by hand. Even so, the key is reasonably small:

the reconciliation of the two views of the pc unit of MIPS-X consists of 61 trans

formation invocations, with an average of under 4 “words” for each invocation. The

greater power of Lichen reconciliations means the reconciled views are not much wider

or flatter than the originals. The successful comparison of the two views of MIPS-X

also requires a more powerful base comparison m ethod than th a t used in PW C ore

Lichen, mainly because the two MIPS-X views are at different levels of abstraction.

Comparison Modulo Boring Components is able to correctly compare two views th a t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. CONCLUDIN G R E M A R K S 128

differ by the presence/absence of power supply wiring and boring components, which

simply copy signals from input ports to o u tpu t ports with possible inversion. Bor

ing components include buffers and inverters, as well as wiring cells implemented by

Modula-2 code. The Comparison Modulo Boring Components of the two views of

the MIPS-X pc would have to compare a little less than half the amount of circuitry

tha t a comparison of the whole, completely flattened, views would; this fraction is

disappointingly large because the regularity of the pc funsim, when weighted by the

amount of layout corresponding to each element, is low (around 2). The Comparison

Modulo Boring Components also benefits from requiring simulation of fewer cycles of

the circuitry being compared, because it compares multiple, smaller circuits instead

of one larger circuit.

Informed Comparison enables efficient comparison of alternate views at different

levels of abstraction with different hierarchies. T he crucial enabling factor is the

capture of a small amount of additional design information, the key. While the use

of different hierarchies still has some disadvantages, designers are no longer forced

to use essentially identical hierarchies because of the inefficiency or incompetence of

their comparison programs.

j

3 6.2 P ro b lem s and L im ita tio n s

6.2.1 R em ain ing Com parison D ifficulties

Informed Comparison only removes one difficulty of the comparison problem: the use

of different hierarchies for organizational purposes. The comparison problem includes

other difficulties, many of which are harder to resolve than hierarchy differences. In

some instances Informed Comparison’s reconciliation can not greatly ease the com

parison problem, because of the magnitude of the fundamental differences between

the views.

Some of th e remaining comparison difficulties stem from the fact tha t the alternate

views are a t different levels of abstraction. An example is comparing an expression

like ua x 6” in a high-level language with the layout of a serial multiplier. Verifying

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. CO NCLUD IN G R E M A R K S 129

the consistency of those two requires an understanding of computation; Informed

Comparison’s reconciliation uses only a simple understanding of structure. Another

example is verifying relationships tha t take time into account. Such relationships

are often used in work on synthesis driven by register-transfer level descriptions,

where, for example, a variable in the register-transfer level description might have its

value stored in different Boolean-level components at different times. The differences

between the views in such relationships go “deeper” than circuit s tructure (while

having structural differences as consequences), and no amount of flat-insignificant

transformation is going to remove these deeper differences (although certain flat-

insignificant transformations might still ease the comparison).

Two views can have deep differences even if they are at the same level of ab

straction. Figure 2.14 on page 28 shows a low-level example: two different ways of

computing a A (b V c). A high-level example is sorting by bubble sort vs. sorting

by QuickSort. When deep differences are confined within low-level cells, the higher

levels of the views’ hierarchies can be reconciled, and hierarchical base comparison

techniques can derive benefit from the essential similarity of the upper hierarchies.

The higher the levels of hierarchy affected by the deep differences, the less reconcilable

hierarchy is left, and the less the amount of benefit to be derived from hierarchical base

comparison techniques. The Informed Comparison of the two views of the MIPS-X

pc reduces the amount of circuitry to be compared by a disappointingly small factor

because of the height at which the two views have deep differences.

Hierarchical comparison techniques may be less than greatly beneficial, for the

reasons given above and more. One of the big benefits of hierarchical techniques is

reducing total problem size: because a hierarchical description succinctly represents

repetition using the cell type/instance duality, it can be much shorter than the equiv

alent flat description. However, some circuits simply do not have much repetition.

Also, the formulation of hierarchy used in this dissertation leads to lower regularity

factors than some other formulations, when wires are counted as well as cell instances

(as is appropriate, for example, when considering the performance of structural com

parison). Due to the use of explicit interfaces, every net is cut into different wires at

every cell boundary. For example, an n-bit bus tha t is passed up k levels of hierarchy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. C O N C LU D IN G R E M A R K S 130

contributes a total of n x k atomic wires to the hierarchical description. In formu

lations (such as Magic’s) th a t do not use explicit interfaces, fewer explicit wires are

needed, leading to higher regularity factors.

The need to compare modulo ‘don’t care’ conditions is another of the remaining

difficulties of comparison.

6.2.2 C om parison versus Synthesis

A strong trend in VLSI design is the growing use of autom atic synthesis programs.

This work sometimes adopts the slogan “correctness by construction” . If one view

is correctly synthesized from another, need those two views be compared? In the

grand and glorious future, when significant programs can be proven correct, those

views will not need comparison. However, in the present situation, comparison is

useful as a check of a synthesis program ’s work (as for a hum an designer’s work). Of

course, the comparison program is not proven correct either; thus comparison only

increases confidence. There are two reasons why a comparison can increase confidence

of equivalence.

• Comparison is easier th an synthesis. Many views are equivalent to a given one,

and the synthesis problem involves picking one that maximizes some criteria;

comparison is not concerned with those criteria—it only needs to verify the

equivalence. To the degree tha t a comparison program is simpler than a syn

thesis program, the comparison program can be expected to have fewer bugs

than the synthesis program.

• An independent check increases confidence. Even if the comparison and synthe

sis programs are of comparable complexity, if the comparison program works

in a different way than the synthesis program or is written by different people,

it can be expected to have different bugs. Thus a synthesized view th a t passes

comparison is more likely to be truly consistent with its specification than a

synthesized view th a t has not been compared.

Checking the work of synthesis programs is of practical value; PWCoreLichen has

found bugs in layout generators.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. C O N C LU D IN G R E M A R K S 131

6.3 F uture W ork

Difficulties, opportunities, and questions encountered in this work suggest m any pos

sible further investigations.

• Perform ance con stants. In the PWCoreLichen example reported in C hap

ter 4, the copying of the views took about six times as long as the base

comparison— even though copying seems like it should be an easier activity.

Even the fact th a t this copying set up pointers between the original and copied

da ta structures seems insufficient to explain this large cost. Why should that

step take so long? Lichen was not tuned for performance, and is very slow.

How fast could it be? Both Lichen and PWCoreLichen run out of memory dis

appointingly quickly— in a 32-megabyte address space! How little m emory can

Informed Comparison be made to use?

3 • C om paring other circuits; having real designers w rite som e keys.

These would make good tests of the generality of the techniques of this dis

sertation.

• M ore abstraction tran sform ation s. Although it is easy to make a repertoire

that enables reconciliation of any two flat-identical views, it is not easy to

guarantee that the keys will be concise. The conciseness of the key depends in

part on how well the repertoire of transformations approximates the designers’

repertoire of ways of thinking abou t relationships between hierarchies. The

modestly abstract repertoire of Lichen serves surprisingly well for the MIPS-

X pc. Even so, an examination of Appendix A will suggest more abstract

transformations. For example, very early in the layout transformations, six

latches are moved from the ireg in to the p c .1 The technique used to identify

the latch components— listing transistors by their machine-generated names—is

tedious and fragile (different names could be assigned after small changes in the

‘T he six uses o f the special case o f unflattening, Unfla ttenOnce, could be replaced by one use o f
the general case— if I had taken the tim e to im plem ent it. B ecause the six latches end up below the
sim ulation frontier, it does not m atter whether they are all instances o f the sam e cell type or of six
distinct but equivalent cell types.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. C O N C L U D IN G R E M A R K S 132

layout). A more satisfying technique would involve some ability to recognize

the latches, perhaps given a prototype. This could be formulated in a purely

structural way, or via deeper semantics.

• K ey d evelopm ent. How do the designers develop and debug the key? I

developed the key presented in Appendix A incrementally, by applying it, then

printing and examining the resulting hierarchies, and then making changes. My

experience is atypical, because I was also learning about the MIPS-X design

and developing Lichen at the same time. If the Informed Comparison program

is good at translating messages concerning transformed entities into messages

concerning the original entities, the designers may not need to print out and

examine the transformed views.

• Im proving array data structures and algorithm s. Lichen’s representation

for the connectivity within an array grows proportionally with the number of

elements in the array; I suspect there is a way to represent most arrays tha t is

insensitive to the num ber of elements. Also, Lichen’s test for whether merging

a set of ports of an array cell type preserves the “arrayness” of that cell types

is conservative. It would be interesting to find a way to test that condition

precisely.

• G eneralizing arrays. W hat are the costs and benefits of generalizing arrays to

enable the insertion of components, such as buffers, every few elements? W hat

about generalizing to ‘program m ed’ arrays, such as PLAs and decoders?

e Im plem enting correspondence-keeping and C om parison M odulo Bor

ing C om ponents. A good way to test the designs presented in Chapters 4

and 5.

« M anipulating other non-structural inform ation. T he examples of this

dissertation m anipulate few kinds of non-structural information, compared to

the full spectrum employed in VLSI design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6. CO NC LU D IN G R E M A R K S 133

• Im proving th e correspondences. More sophisticated representations for

correspondences may be worthwhile. For example, the correspondences of

this dissertation have features tha t directly correspond to the fla ttening/un

flattening transformations, but none th a t directly correspond to the other major

cell s tructure transformations; perhaps this should be changed. Also, further

theoretical and practical work on simple ways of presenting these complex cor

respondences would be interesting.

• L ettin g th e key sta te only th e in tended relationship betw een the

view s; not the choice of reconciled hierarchies nor the transformations. The

reconciliation program would be responsible for choosing the reconciled hierar

chies and planning a transformation strategy.

• O m ittin g inform ation from the key. The reconciliation program would use

search techniques to determine the missing information from the views and the

given key information. The difficulty of this task is increased by the possibility

of the two views having some inconsistencies.

• A dd ing tem poral structure. By enhancing the structural theory used in In

formed Comparison to include time, enough power may be gained to express the

relationships (and thus transform) between the views used in register-transfer-

driven synthesis. However, the reconciliation repertoire would thus become the

same as the repertoire of transformations used in the synthesis— which removes

much of the benefit of using a comparison to check the synthesis. Instead, com

parison and synthesis become two applications of the same underlying mecha

nism (as noted by Parker, Kurdahi, and Mlinar |Parker84]).

• V erifying relationships m ore general than equivalence. The key could

easily invoke transformations that change information tested for equivalence in

the base comparison; the whole Informed Comparison thus tests not equivalence,

but a more general relationship stated in the key. It is unclear, however, whether

there is any methodological need for this generalization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A p p en d ix A

T he MIPS-X pc R ela tion

A .l T h e R ep erto ire

Following are the transformation procedures used in the reconciliation of the MIPS-X

pc.

U n i f y P o r t s : PROC [];

The canonicalization transformation.

D e d u c e P o r t A n d W i r e S t r u c t u r e : PROC [];

The canonicalization transformation.

C le a n u p D e s ig n : PROC [];

The canonicalization transformation.

I m p o r tA to m ic W i r e O n c e : PROC [cellType, wire: REF A N Y 1];

A special case o f pointlessly importing a wire, wherein the cell type

(cellTypeJ into which the wire is being imported is instantiated only once.

This special case is significantly easier to specify than the general one,

which would have to include a pairing of cell instances with wires.

*In Cedar, r e f means “reference-counted pointer”. Cedar provides the ability to safely discrim
inate on the type o f the actual referent o f a REF ANY. Thus the key may specify wire by its name
or by passing it directly.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D I X A. T H E M IP S-X P C R E L A T I O N 135

E x p o r tW i r e s : PROC [fro m , w ir e s : REF ANY];

Pointlessly exports wires from, their cell type.

F l a t t e n T y p e : PROC [cellType: REF ANY];

Flattens out a cell type.

F l a t t e n l n s t a n c e : PROC [in s ta n c e : REF ANY];

Flattens out a cell instance.

F l a t t e n N e s t e d A r r a y s : PROC [];

Flattens nested arrays into simple arrays.

U n f la t t e n O n c e : PROC [iName, tName: R O P E,2 parent, siblings: REF ANY];

A special case o f the inverse o f flattening out a cell type, wherein the

cell type (un)flattened is instantiated only once. iName and tN am e are

the names o f that instance and cell type, respectively; siblings are the cell

instances to be gathered together, and parent is the cell type in which they

are found.

R a is e G C s : PROC [childType, grandchildren: REF ANY]

RETURNS [raised: s e t o f c e l l in s t a n c e] ;

Raises grandchildren out o f the cell type childType.

L o w e rK id s O n c e : PROC [p a r e n t , k id s , s ib l in g : REF ANY]

RETURNS [low ered : s e t o f c e l l i n s t a n c e] ;

A special case o f lowering children wherein the cell type (^ parent) into

which the children fk id s ,) are lowered has only once instance (s ib l in g ,) .

S h o r t e n A r r a y l n s t a n c e : PROC [in s ta n c e : REF A NY , e n d : { l o w , h i g h } , by: NAT];

2ROPE is the standard type for strings in Cedar.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D I X A . T H E M IP S-X PC R E L A T I O N

A special case o f raising grandchildren wherein the grandchildren are the

by elements at the end end o f a one-dimensional array cell type. Starts

by distinguishing cell types to make instance the only instance o f its type.

T ra n s p o s e : PROC [outerType: REF ANY];

Interchanges the top two levels o f structure below outerType.

D r o p P h y s i c a l : PROC [];

Deletes the physical information.

I n h e r i tN a m e s : PROC [renamingFileName: ROPE];

Both renames and inherits names in one pass. The renamings are read

from the given file.

P r u n e L e s s I n t e r e s t i n g N a m e s : PROC [];

The canonicalization transformation.

U s e A r r a y R e p r e s e n t a t i o n : PROC [cellTypes: REF ANY];

Changes L ichen’s representation of the given cell types from the general

to the one fo r arrays; checks that those cell types do in fact have array

regularity.

M in i m iz e A r r a y P e r io d s : PROC [];

The canonicalization transformation that ensures that every array repre

sentation uses the smallest possible period.

S u b ce lls : PROC [parentTypes, instanceTypes, instanceNames: REF ANY];

A utility procedure fo r identifying sets o f cell instances. Arguments may

be name patterns, using the character to match any substring.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D I X A. T H E MIPS-X PC R E L A T I O N 137

A .2 T h e K ey

Below are the transformation invocations tha t apply to the funsim view of the pc.

In h e r i t N am es [“/ dev/null”];

UnifyPortsf];

P runeL essIn te restingN am es[] ;

CleanupDesignf];

S h o r te n A rra y In s ta n c e [“PCIncer/pcdrv4”, low, 2];

S h o r te n A rra y In s ta n c e [“PCIncer/pcdrv5”, low, 2];

S h o r te n A rra y In s ta n c e [“PCIncer/pcincl”, low, 2];

Below are the transformation invocations th a t apply to the extracted view of the

pc.

In h e r i t N am es[“pc-1. renames”];

U nf la t tenO nce [“branchLatch” , “BranchLatch” , “decoderIR”,

l i s t [“ Q 1 1 # ” , “Q 12#”, “Q28#”, “Q35# ”, “Q 40#”, “Q44#”, “Q51#"]];

U nf ia t tenO nce [“jpcLatch” , “JpcLatch” , “decoderIR” ,

l i s t [“ Q 7 # ” , “Q 8 # ”, “Q22#”, “Q27#”, “Q 3 2 # ”, “Q39#”, “Q49#”]];

U nf la t tenO nce [“jpcrsLatch” , “JpcrsLatch”, “decoderIR”,

l i s t [“ Q 9 # ” , “Q 10#” , “Q23#”, “Q 33#”, “Q 34#”, “Q 43#”, “Q 50#”]];

U nf la t tenO nce [“jspciLatch” , “JspciLatch” , “decoderIR”,

list[“Q 5 # ”, “Q 6 # ”, “Q 1 8 # ”, “Q 2 5 # ”, “Q 2 6 # ”, “Q 3 8 # ”, “Q 4 8 # ”]];

U nfla t tenO nce [“movfrsLatch”, “MovfrsLatch”, “decoderIR”,

l i s t [“ Q 3 # ” , “Q 4 # ”, “Q17#”, “Q 21#”, “Q 24#”, “Q 31#”, “Q 47#”]|;

U nf la t tenO nce [“movtosLatch” , “MovtosLatch”, “decoderIR”,

list[“Q 1 # ”, “Q 2 # ”, “Q 1 6 # ”, “Q 19#”, “Q 2 0 # ”, “Q 3 0 # ”, “Q 46#”jj;

U nf la t tenO nce [“pcOther”, “pcOther”, “ p c ” , L IST[

Low erK idsO nce[“mipsx” ,

R a iseG C s[“ireg” ,

R a iseG C s[“decoderIR”, LlST[“b r a n c h L a tc h ” , “jpcLatch” , “jpcrsLatch” ,

“jspciLatch” , “movfrsLatch”, “movtosLatch”]]],

“pc”],

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D I X A. T H E M IPS-X P C R E L A T I O N

“pO’\ “p i ”, “p c i”, “pc2”, “pep”, “pcph”]];

[] «- R a is e G C s [“pc”, R a ise G C s[“pcdisp” , “Q l # ”]];

F la t te n T y p e [“pccntdrvs”];

F la t te n T y p e [“pcdvcntdrv”];

F la t te n T y p e [“pcaludrv”];

F la t te n T y p e [“pcdisout”];

F la t t e n T y p e [“pcincout”];

F la t t e n T y p e [“pcfsm ”];

U n ify P o r ts[];

P r u n e L e ssIn te r e s t in g N a m e s[];

E x p o r tW ir e s [“pc” , LlST[“P C B u s_ b _ sl/l” , “P C B u s .b .s l/2 ”,

“P C B u s.b -s l/2 6 ” , “P C B u s-b _sl/27” , “P C B u s .s l/1 ” , “P C B u s-s l/2 ”]];

F O R i: NAT IN [1 .. 16] DO

[] <— Im p o rt A to m ic W ir e O n c e [“pcO ther”,

IO .PutFR [“p c/Im m ed -sla /% g”, [integerfi]]]];

E N D L O O P ;

[] <— I m p o r tA to m ic W ir e O n c e [“pcdisp” , “pc/Im m ed s la /0 ”];

D e d u c e P o r tA n d W ir e S tr u c tu r e]] ;

C lea n u p D esig n]];

U seA rra y R ep resen ta tio n [L lS T [“pcaludr2sP’, “pcinc2sl” , “pcxor2” ,

“pcdis2sl”, “pcincfr2sl”, “pla2driver” , “pcchn2sl”]];

F la t t e n N e s te d A rrays]];

D r o p P h y s ic a l]] ;

M in im izeA rra y P er io d s]];

U n f la t te n O n c e [“pcl4” , “2InputLatch”, “pcchnsl” , L I S T [“ p c n ” , “pep”, “Q l # ”]];

T r a n sp o se [“pcchn2sl[0:0:1103][0:15:220](pcchain.p)”];

T r a n sp o se [“pcdis2sl[0:0:307] [0:15:220] (pedisout.ped)”];

T r a n sp o se [“pcaludr2sl[0:0:561][0:15:220] (pcaludrv.pc)”];

T r a n sp o se [“pcincfr2sl[0:0:61][0:15:220] (pcincfr.p)”];

T r a n sp o se [“pcinc2sl[0:0:293][0:14:220](pcincout.p)”];

F la t t e n ln s ta n c e [“p cchain /p”];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A P P E N D I X A. TH E M I P S - X P C R E L A T I O N

F la t te n I n s ta n c e [“p c d isp /p /p c ”J;

F la t t e n ln s ta n c e [“p cd isp /p cd /p cd ”];

F la t t e n ln s ta n c e [“p c in c /p c i/p ”];

F la t t e n T y p e [“pcincsl”];

F la t t e n T y p e [“pcincslbtO”];

U n f la t te n O n c e [“PCRandom Logic”, “PCRandom Logic” , “p c ” , l i s t [

S u b c e lls [“pc” , “and*” ,

“pcOther” ,

R a i s e G C s [“cm fsm ”, LiST[“p c n 2 ”, “p c n o l” , “pcnotO”, “p c n o t l ”]],

R a i s e G C s [“sqfsm” , l i s t [“P0 ” , “p i ” , “pcO”, “p c2” , “p cs”]]]];

U n f l a t t e n O n c e [“p cincer” , “Incer” , “p cin c” , LIST[“p ” , “p c ”]];

U n f l a t t e n O n c e [“p cd ispadder” , “D ispA dder” , “p cd isp ”,

LlST[“p c a ” , “p / p c / p c O ” , “p / p c / p c l ”]];

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B ib liograp h y

[Ablasser81]

[Acosta88]

i

[Baker80]

3

[Barke84l

[Barrow84]

[Barth88

I. Ablasser and U. Jager.

Circuit recognition and verification based on layout information.

A C M IE E E 1 8 ^ Design Automation Conference, 1981.

Ramon D. Acosta, Mark Alexandre, Gary Imken, and Bill Read.

The role of VHDL in the MCC CAD system.

A C M IE E E 2 5 ^ Design Automation Conference, 1988.

Clark M. Baker and Chris Terman.

Tools for verifying integrated circuit designs.

Lambda, I(3):22—30, 4 ^ quarter 1980.

Name changed from Lambda to VLSI Design as of Volume II,

Number 3, 3r(̂ Q uarter 1981.

Erich Barke.

A network comparison algorithm for layout verification of inte

grated circuits.

IEEE Transactions on Computer-Aided Design, CAD-3(2):135-

141, April 1984.

Harry G. Barrow.

Proving the correctness of digital hardware designs.

VLSI Design , V(7):64-77, July 1984.

Richard Barth, Louis Monier, Bertrand Serlet, and Pradeep

Sindhu.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 141

[Beece88]

[Blackburn85]

[Blackburn88]

[Bryant81]

I [Bryant87a]

Ij

j [Bryant87b]
iij
i

[Chandrasekhar87]

VLSI design aids: Capture, integration, and layout generation.

Xerox Palo Alto Research Center, July 1988.

Daniel K. Beece, George Deibert, Georgina Papp, and Frank Vil-

lante.

The IBM engineering verification engine.

A C M IE E E 2 5 ^ Design Automation Conference, 1988.

Robert L. Blackburn and Donald E. Thomas.

Linking the behavioral and structural domains of representation

in a synthesis system.

A C M IE E E 22n ^ Design Automation Conference, 1985.

Robert L. Blackburn, Donald E. Thomas, and Patti M. Koenig.

CORAL II: Linking behavior and structure in an IC design sys

tem.

A C M IE E E 2 5 ^ Design Automation Conference, 1988.

Randal Everitt Bryant.

.4 Switch-Level Simulation Model fo r Integrated Circuits.

PhD thesis, Massachusetts Institute of Technology, 1981.

Randal Efveritt] Bryant.

Algorithmic aspects of symbolic switch network analysis.

IE E E Transactions on Computer-Aided Design, CAD-6(4):618-

633, July 1987.

Randal E [veritt] Bryant, Derek Beatty, Karl Brace, Kyeongsoon

Cho, and Thomas Sheffler.

COSMOS: A compiled simulator for MOS circuits.

A C M IE E E 2 4 ^ Design Automation Conference, 1987.

Mandalagiri S. Chandrasekhar, John P. Privitera, and Kenneth

W. Conradt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 142

[Chang87]

[Chiang88]

[Crawford84]

[Devadas87]

[Ebeling83]

■I

[Gordon81a]

[Gordon81b]

Aplication of term reqriting techniques to hardware design veri

fication.

A C M IE E E 2 4 ^ Design Automation Conference, 1987.

Hongtao P. Chang and Jacob A. Abraham.

The Complexity of Accurate Logic Simulation.

IE E E International Conference on Computer-Aided Design,

1987.

Kuang-Wei Chiang, Surendra Nahar, and Chi-Yuan Lo.

Time efficient VLSI artwork analysis algorithms in G 0A LIE2.

A C M IE E E 2 5 ^ Design Automation Conference, 1988.

John D. Crawford.

An electronic design interchange format.

A C M IE E E 21s ̂ Design Automation Conference, 1984.

Srinivas Devadas, Hi-Keung Tony Ma, and A. Richard Newton.

On the verification of sequential machines at differing levels of

abstraction.

A C M IE E E 2 4 ^ Design Automation Conference, 1987.

Carl Ebeling and Ofer Zajicek.

Validating VLSI circuit layout by wirelist comparison.

IE E E International Conference on Computer-Aided Design,

1983.

Mike Gordon.

A model of register transfer systems with applications to mi

crocode and VLSI correctness.

Departm ent of Computer Science, University of Edinburgh,

March, 1981.

M[ike] Gordon.

A very simple model of sequential behaviour of nMOS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 143

In J. Gray, editor, Proceedings of the V LSI International Confer

ence, Academic Press, 1981.

[Gordon83] Mike Gordon.

Proving a computer correct with the LCF-LSM hardware verifi

cation system.

C om puter Laboratory, University of Cambridge, England,

[1983].

[Grodstein87] Joel J . Grodstein and Tony M. Carter.

SISYPHUS— an environment for simulation.

IE E E International Conference on Computer-Aided Design,

1987.

[Gupta83] Anoop Gupta.

ACE: A circuit extractor.

A C M IE E E 2 0 ^ Design Automation Conference, June 1983.

[Hoffman82] Christoph M. Hoffmann.

Group-Theoretic Algorithms and Graph Isomorphism.

Springer-Verlag, 1982.

[Hopcroft79] John E. Hopcroft and Jeffrey D. Ullman.

Introduction to Autom ata Theory, Languages, and Computation.

Addison-Wesley, 1979.

[Horowitz87] Mark Horowitz, John L. Hennessy, Paul Chow, P. Glenn G u

lak, John M. Acken, A nant Agarwal, Chorng-Yeung Chu, Scott

A. McFarling, Steven A. Przybylski, Steve E. Richardson, Arturo

Salz, Richard T. Simoni, Don C. Stark, Peter A. Steenkiste, Steve

W. K. Tjiang, and Malcolm J. Wing.

A 32b microprocessor with on-chip 2Kbyte instruction cache.

IE E E International Solid-State Circuits Conference, February

1987.

r
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 144

[Hwang87]

[Johnson81]

[Katz86]

[Kubo79]

[Lampson81]

■i

[Lathrop87]

Seung H. Hwang and A. R. Newton.

An efficient design correctness checker of finite s tate machines.

IE E E International Conference on Computer-Aided Design,

1987.

David S. Johnson.

The NP-completeness column: An ongoing guide.

Journal o f Algorithms, 2(4):393—405, Academic Press, December

1981.

R. H. Katz, M. Anwarrudin, and E. Chang.

A version server for computer-aided design data.

A C M IE E E 23 Design Automation Conference, 1986.

Noburo Kubo, Isao Shirakawa, and Hiroshi Ozaki.

A fast algorithm for testing graph isomorphism.

Proceedings o f the International Symposium on Circuits and Sys

tems, 1979.

Butler W. Lampson and Kenneth A. Pier; Butler W. Lampson,

Gene A. McDaniel, and Severo M. Ornstein; Douglas W. Clark,

Butler W. Lampson, and Kenneth A. Pier.

The Dorado: A high-performance personal computer, three pa

pers.

Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo

Alto, California, 94304. CSL-81-1, January 1981.

Richard H. Lathrop, Robert J. Hall, and Robert S. Kirk.

Functional abstraction from structure in VLSI simulation models.

A C M IE E E 2 4 ^ Design Automation Conference, 1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 145

[Madre88]

[Malik88]

[Maruyama85]

[Mead80]

; [Milne84]

i

[Morison87]

[Narendran88]

[Noice83]

Jean-Christophe Madre and Jean-Paul Billon.

Proving circuit correctness using formal comparison between ex

pected and extracted behavior.

A C M IE E E 2 5 ^ Design Automation Conference, 1988.

Sharad Malik, Albert R. Wang, Robert K. Brayton, and Alberto

Sangiovanni-Vincentelli.

Logic verification using binary decision diagrams in a logic syn

thesis environment.

IE E E International Conference on Computer-Aided, Design,

1988.

Fumihiro M aruyam a and Masahiro Fujita.

Hardware verification.

Computer, 18(2):22—32, IEEE Computer Society, February 1985.

Carver Mead and Lynn Conway.

Introduction to VLSI Systems.

Addison-Wesley, 1980.

George J. Milne.

A model for hardware description and verification.

A C M IE E E 2 1 Design Automation Conference, 1984.

J. D. Morison, N. E. Peeling, T. L. Thorp, and E. V. Whiting.

EASE: A design support environment for the HDDL ELLA.

A C M IE E E 2 4 ^ Design Automation Conference, 1987.

Paliath Narendran and Jona than Stillman.

Formal verification of the Sobel image processing chip.

A C M IE E E 2 5 ^ Design Automation Conference, 1988.

David C. Noice.

A clocking discipline for two-phase digital integrated circuits.

Technical Report, Stanford University, January 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 146

[Odawara86]

[Ousterhout84]

[Parker84]

[Pfister82]

[Read77]

[Roth77]

[Saunders87]

[Sequin83]

Gotaro Odawara, Masahiro Tomita, Osamu Okuzawa, Tomomichi

Ohta, and Zhen-quan Zhuang.

A logic verifier based on Boolean comparison.

A C M IE E E 2 3 Design Automation Conference, 1986.

John K. Ousterhout, Gordon T. Hamachi, Robert N. Mayo, Wal

ter S. Scott, and George S. Taylor.

Magic: A VLSI layout system.

A C M IE E E 21s ̂ Design Automation Conference, 1984.

Alice C. Parker, Fadi Kurdahi, and Mitch Mlinar.

A general methodology for synthesis and verification of register-

transfer designs.

A C M IE E E 21s ̂ Design Automation Conference, 1984.

Gregory F. Pfister.

The Yorktown Simulation Engine: Introduction.

A C M IE E E 1 9 ^ Design Automation Conference, 1982.

Ronald C. Read and Derek G. Corneil.

The graph isomorphism disease.

Journal of Graph Theory, 1:339-363, John Wiley & Sons, 1977.

J. Paul Roth.

Hardware verification.

IE E E Transactions on Computers, C-26(12):1292—1294, Decem

ber 1977.

Larry F. Saunders.

The IBM VHDL design system.

A C M IEEE 2 4 ^ Design Automation Conference, 1987.

Carlo H. Sequin.

Managing VLSI complexity, an outlook.

Proceedings o f the IEEE, 71(1):149—166, January 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 147

[Shiran86]

[Stabler87]

[Stavridou88]

[Supowit86]

[Suzuki85]

I
■j

[Suzuki87]

[Swinehart86]

Yehuda Shiran.

YNCC: A new algorithm for device-level comparison between two

functionally isomorphic VLSI circuits.

IE E E International Conference on Computer-Aided Design,

1986.

Edward P. Stabler and Haluk Bingol.

Boolean comparison by simulation.

A C M IE E E 24^ Design Automation Conference, 1987.

V. Stavridou, H. Barringer, and D. A. Edwards.

Formal specification and verification of hardware: A comparative

case study.

A C M lE E E T b f i1 Design Automation Conference, 1988.

Kenneth J . Supowit and Steven J. Friedman.

A new method for verifying sequential circuits.

A C M IE E E 2 3 Design Automation Conference, 1986.

Shigenobu Suzuki, Kazutoshi Takahashi, Takao Sugimoto, and

Mikio Kuwata.

Integrated design system for supercomputer SX -l/SX -2.

A C M IE E E 22n<̂ Design Automation Conference, 1985.

Shigenobu Suzuki, Tatsushige Bitoh, Masao Kakimoto, Kazutoshi

Takahashi, and Takao Sugimoto.

TR IP: An au tom ated technology mapping system.

A C M IE E E 2 4 ^ Design Automation Conference, 1987.

Daniel C. Swinehart, Polle T. Zellweger, Richard J. Beach, and

Robert B. Hagmann.

A structural view of the Cedar programming environment.

A C M Transactions on Programming Languages and Systems,

8(4):419-490, October 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 148

[Takas hima82]

[Terman83]

[Tygar85]

[Valid87]

[Veiga84]

[Walker85]

[Walker87]

Makoto Takashima, Takashi M i t s u h a s h i , Toshiaki Chiba, and

Kenji Yoshida.

Programs for verifying circuit connectivity of M OS/LSI mask a r t

work.

A C M IE E E 1 9 ^ Design Autom ation Conference, 1982.

Christopher J. Terman.

RSIM — a logic-level timing simulator.

I E E E International Conference on Computer Design: VLSI in

Computers, 1983.

J. D. Tygar and Ron Ellickson.

Efficient netlist comparison using hierarchy and randomization.

A C M IE E E 22n<t Design Autom ation Conference, 1985.

Valid Logic Systems.

CO M PA R E reference manual.

SCALD star Release 9.1. San Jose, CA, 1 April 1987.

Pedro M. B. Veiga and Mario J . A. Lancja.

HARPA: A hierarchical multi-level hardware description lan

guage.

A C M IE E E 21st Design Automation Conference, 1984.

Robert A. Walker and Donald E. Thom as.

A model of design representation and synthesis.

A C M IE E E 22n^ Design Autom ation Conference, 1985.

Robert A. Walker and Donald E. Thom as.

Design representation and transform ation in the System Archi

tec ts ’s Workbench.

IE E E International Conference on Computer-Aided Design,

1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B I B L I O G R A P H Y 149

[Waxman86]

[Weise87]

[Wirth83]

r.d.Wolf88]

[Wong85]

[Wu87]

Ron Waxman.

The VHSIC hardware description language— a glimpse of the fu

ture.

IE E E Design and Test o f Computers , 3(2): 10—11, April 1986.

Daniel Weise.

Formal verification of MOS circuits.

A C M IEEE 2 4 ^ Design A utom ation Conference, 1987.

Niklaus Wirth.

Programming in M ODULA-2.

Springer-Verlag, 1983.

P. van der Wolf and T. G. R. van Leuken.

Object type oriented data modeling for VLSI d a ta management.

A C M IEEE 2 5 ^ Design A utom ation Conference, 1988.

Yiwan Wong.

Hierarchical circuit verification.

A C M IEEE 22n^ Design Autom ation Conference, 1985.

Ching-Farn E. Wu, Lionel M. Ni, and Anthony S. Wojcik.

Functional recognition of sta tic CMOS circuits.

IE E E International Conference on Computer-Aided Design,

1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

