AN ARCHITECTURE FOR HIGH-PERFORMANCE
SINGLE-CHIP VLSI TESTERS

A DISSERTATION
SUBMITTED TG THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

By
James A. Gasbarro

May 1989

(© Copyright 1989 by James A. Gasbarro
All Rights Reserved

i1

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

el _fnisa)

Mark A. Horowitz/
(Principal Adviser)

I certify that I have read this thesis and that in mv opin-
ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

= Wﬁé

Bruce A. Wooley

I certify that I have read this thesis and that in my opin-
ion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Gt

Approved for the University Committee on Graduate

€%
“gi%mm elo&sq;@—

Dean of Graduate Studies

Studies:

i

Abstract

Testing is an important factor in the production of useable custom integrated circuits.
Verification of the functional and AC parametric characteristics of a device are usually
performed on large and expensive test systems. This thesis presents a new approach to
tester architecture that seeks to greatly reduce both the size and cost of these systems.
The principal idea is to base the tester design on the same high-density technology
as that of the devices being tested. Through the use of novel test vector compression
techniques and closed-loop timing calibration methods, high performance and high
density can be achieved in a CMOS technology. The proof is the implementation
of a single-chip multi-channel tester which has the size and cost attributes of the
very low-end testers, yet impleients many of the features found on only the most
expensive machines.

The high level of integration achieved results in a number of other advantages
as well. The close proximity of the tester to the test device eliminates most of the
signal transmission and loading issues encountered in larger systems. The extremely
compact size enables in-circuit probing and performance analysis of the test device
without custom fixturing. Finally, and perhaps most importantly, by implementing
the tester in the same technology as that of the device to be tested, future upgrades

of the tester capability can evolve along with the capabilities of the subject device.

iv

Acknowledgments

My route through the Ph.D. program at Stanford was somewhat unusual since I
was a full time employee at the Xerox Palo Alto Research Center during the entire
course of my studies. As a result, I wish to thank many people for helping me finish
successfully. Bob Sproull, Brian Reid, and Chuck Geschke first persuaded me to leave
my previous job and come to Xerox with the lure that I could pursue my degree while
working full time. Through the continued support of my managers at PARC, [was
able to finally complete this work. I would particularly like to thank Bill Spencer,
Ron Rider, Bob Ritchie, Mark Weiser, and Bryan Preas for their encouragement and
backing.

The original idea for this thesis came from a conversation I had with Chuck
Thacker nearly six years ago. I was new to PARC and wanted to learn about VLSI
design. Chuck suggested that I build a “chip tester chip” as a quick introductory
project. Sorry it took so long, Chuck. Rick Barth worked with me on that initial
project and has been a continuing source of good ideas ever since. Don Curry and
Louis Monier provided help with the design automation system to get the Testarossa
chip assembled. Additional thanks to Rick and Louis for reading early drafts of this
thesis. I am also indebted to Dan Greene and John Gill who taught me all I know
about data compression, and Stafan Pfab and Gerhard Greisle, visiting scientists from
Seimens, who provided assistance with analysis of compression algorithms.

I would also like to thank ray advisor, Mark Horowitz, and the members of my

committee, Cal Quate and Bruce Wooley, for help in refining my final draft. None of
this would have been possible without Mark’s guidance and cooperation, particularly
since I was not really a full-time student. I have greatly enjoyed and benefited from
working with him.

Finally, I would like to thank my parents and Beth who put up with me, and

encouraged me, when it seemed like the job was insurmountable.

vi

Contents

Abstract
Acknowledgments

1 Introduction

1.1 Organization

2 Background
2.1 Introduction

2.2 Pin Electronics L.
2.3 Data Generator,
2.4 Limits of Current Systems,

3 Integrated Testers

3.1 Introduction

3.2 Don’t Think Big

3.3 Think Small
3.4 Limits . . .

3.5 Summary .

4 Pin Electronics

4.1 Introduction

vil

v

34

4.2 Force Section e
4.3 Formatter
4.4 AcquireSection
4.5 Calibration
4.6 Results and Summary

Vector Storage

5.1 Introduction
5.2 Compression Alternatives
5.3 Compression Requirements
5.3.1 Architectural implications
5.3.2 Bandwidth considerations
5.3.3 Compression efficiency
5.4 Model Selection L
5.5 Decompressor Architectures
5.5.1 Huffman decompressor
5.5.2 Fiala-Greene decompressor
5.6 Compression Efficiencies
5.7 Analysisof Results
5.7.1 Architectural comparison
5.7.2 Bandwidth comparison 0oL
5.7.3 Compression efficiency comparison
58 Conclusions
Implementation
6.1 Introduction
6.2 System Overview
6.3 Testarossa Architecture

6.3.1 Pinout e 87

6.3.2 Registermodel 89

6.3.3 Programmer’sinterface L. 91

6.4 Technology Constraints 94
6.5 Assembly 94
6.6 Results. 101
Conclusions 103
7.1 Summary e e e 103
7.2 FutureWork L 104
Bibliography 107

ix

List of Tables

4.1

5.2
5.3
5.4

7.1

Delay element ranges and resolutions 33
Static Huffman coding 66
Copy command parameters 67
FG experimental results 70
Number of optimum efliciency occurrences vs. buffer size 70
Comparison of static and dynamic RAM implementations 105

List of Figures

4.1
4.2
4.3
4.4
4.5
4.6
4.7

4.8
4.9
4.10

4.11
4.12
4.13
4.14
4.15
4.16
4.17

Pin electronics block diagram
Force timing generator,
Edge deviation
Timing chain
Edge adjust (transistor widths in microns)
Shift register L

Replica of an oscilloscope photo showing the edge resolution waveform

Edge adjust unit with improved range.
Schematic of format generator
Replica of an oscilloscope photo of the PE chip generating five output
formats at 20 MHz (10 ns/div.) L.
Non-overlapped clock example,
Addition of a fourth delay generator for calibrating RC mode
Pin driver circuitry
Acquisition and synchronization logic
Clocked analog voltage comparator

Phase detector

xi

5.1
5.2
5.3
5.4
5.5
5.6
5.7

5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15

Data compression through mapping 49

Taxonomy of compression alternatives 50
Huffman decoder block diagram 60
Codeword CAM cell schematic 61
Fiala- Greene decoder block diagram 64
FG compression vs. buffer size: FPand EU 68
FG compression vs. buffersize: DC 69
Branch operation 72
Single board integrated test system 78
Skew elimination by counter propagating signals 80
Block diagram of Testarossa chip 81
Controlmap 82
Test vector fields 83
Compression opcodes 83
Decompressor data path with bus widths 85
Errorbuffer L 86
Pin electronics registers L. 90
Decompressor control registers 92
Testarossa floorplan 95
Testarossa layout 96
Typical schematic entry for standard cell control logic 97
Graphical FSM description implemented in standard cell logic 97
Decompressor data path segment 99

xi

Chapter 1

Introduction

Anyone who has designed a custom or semi-custom integrated circuit knows the ex-
citement of producing the initial layout for a new device. After months of logic and
mask design work, there is finally a picture that can be hung on the wall. Experienced
designers know that this is only a {raction of the overall effort. Extensive simulation
.must be performed before the device can be submitted for fabrication. Eventually,
the mask tape is shipped to the fabrication house and in a few weeks the actual sil-
icon is in hand. But then what? Much more work remains to ensure that the chip
performs the intended function. If the device is a high-volume part, then considerable
resources can be brought to bear, typically in the form of a multi-million dollar test
system devoted exclusively to that one device. In the case of the much lower volume
Application Specific Integrated Circuit (ASIC) however, it is difficult to justify such
expenditures, even though testing is equally important to the final application of the
device. The result is that the testing is either contracted out to a vendor, resulting
in the loss of direct access and control of the tester, or else performed on a some-
what inferior in-house test set-up. The low cost testers which are available for such
purposes lack the speed, accuracy, and flexibility of their larger counterparts thus

compromising the thoroughness of the testing, as well as requiring extensive custom

CHAPTER 1. INTRODUCTION 2

fixturing for each device to be tested. As bad as the situation is presently, it is likely
to worsen as ASIC development costs continue to drop while performance increases.
The result will be widening disparity between design and testing costs. The funda-
mental problem is that the current generation of testers are based on speed-aggressive
technologies, such as Emitter Coupled Logic, to achieve the performance required to
test ASICs. Due to thermal and device limitations, as well as market forces, such
bipolar logic families are not experiencing the same growth in terms of integration
density and speed as their MOS counterparts. The result is that it is difficult to track
the performance improvement of the device under test by simply scaling the devices
used in the tester.

This thesis focuses on a new approach to tester architectures. The principal idea
is to base the tester design on the same technology as that of the devices to be
tested. Ordinarily this would seem difficult, if not impossible, since one would not
expect a system as complex as a tester to have performance characteristics superior
to any other device fabricated in the same technology. A conclusion of this thesis,
however, is that this goal is achievable through novel architecture and circuit design.
The proof is a single-chip, multi-channel tester which has the size and cost attributes
of the very low-end testers, yet implements many of the features found on only the
most expensive machines. The high level of integration achieved results in a number of
other advantages as well: the close proximity of the tester to the test device eliminates
most of the signal transmission and loading issues encountered in larger systems;
the extremely compact size enables in-circuit probing and performance analysis of
the test device without custom fixturing; finally, and perhaps most importantly, by
implementing the tester in the same technology as that of the device to be tested,
future upgrades of the tester capability can evolve along with the capabilities of the

subject devices.

=

CHAPTER 1. INTRODUCTION 3

1.1 Organization

The following chapter describes earlier developments in tester architectures. The
basic structure of existing test systems is outlined and the significant developments
in tester architectures are discussed. Future trends in circuit size and performance
are presented along with the implications that they will have on tester performance
requirements.

In Chapter 3 the basic properties of each of the components of large test systems
are investigated with a view toward how to improve them using VLSI techniques. A
new architecture is then proposed, with some discussion of the expected performance
characteristics. The fundamental limits of this approach are then examined.

Chapters 4 and 5 focus specifically on the problems associated with the design of
the two major functional elements of the system, the pin electronics and vector storage
sub-systems. The pin electronics provides the formatting, timing, and sampling func-
tions for the tester. Chapter 4 presents the detailed design of circuitry for achieving
sub-nanosecond resolution in a VLSI technology. The techniques are demonstrated
in an experimental four-channel pin electronics chip that was fabricated and tested
to validate these ideas and verify performance data. Chapter 5 deals with the diffi-
culty of storing a significant number of test vectors in a single-chip tester along with
all of the other circuitry required in the device. A survey of data compression tech-
niques examines possible means for increasing vector storage by storing compressed
vectors and decompressing them in real-time. Specific requirements are outlined and
the suitability of the various compression techniques to the vector storage problem is
investigated.

The overall design and implementation of a single-chip tester device is presented
in Chapter 6, including an overview of how the chip would be used to build a complete

test system. The details of the actual device are presented along with performance and

CHAPTER 1. INTRODUCTION

programming data. The design constraints and assembly techniques for the device

are also discussed.

Finally, Chapter 7 provides an overview of the results achieved and presents di-

rections for future work.

Chapter 2

Background

2.1 Introduction

Since the early 1960’s when the first integrated circuits were produced, a large num-
ber of different test systems have been developed. The earliest testers were fairly
simple descendants of board-level testers. It was not long, however, hefore differences
in board and integrated circuit testing caused the two types of testers to take on
separate identities. Diversification in IC product lines resulted in further subdivision
of the integrated circuit tester field into specific product categories. General purpose
digital testers were developed for the growing SSI (Small Scale Integration) and MSI
(Medium Scale Integration) market. Memory testers were devised with special pur-
pose pattern generators to meet the needs of testing array structures. More recently,
mixed analog/digital testers have appeared for testing a variety of products that com-
bine linear and/or high voltage circuits with digital circuits on the same die. Each of
these market segments faces its own challenges: general-purpose digital testers must
track the test requirements of increasingly complex VLSI devices: memory testers
must keep pace with the increasing speed and density requirements of new RAM tech-

nologies; and the mixed analog/digital testers must improve in their [/0 flexibility

CHAPTER 2. BACKGROUND 6

and signal analysis capabilities. The general-purpose digital field though, is in many
ways the most challenging. Here, nearly all aspects of the tester architecture are
changing at exponential rates. Ten years ago, the state-of-the-art in LSI (Large Scale
Integration) technology was 50K transistors/chip, clock speeds of around 5 MHz,
and pin counts which rarely exceeded 64. By the year 2000, as digital IC technol-
ogy matures from VLSI (Very Large Scale Integration) to ULSI (Ultra Large Scale
Integration), the number of transistors on a chip will exceed 100 million, new pack-
aging technology will push pin counts into the thousands, and shrinking geometries
will allow devices to operate at frequencies well in excess of 100 MHz [Me84, Bi83,
KMT78]. Coupled with these increases is the fact that these devices will encompass
the memory and analog domains as well. It is not at all uncommon even today to
find large embedded memories or analog I/Os in devices which are primarily digital.
These demands of complexity, speed, pin-count, and I/O flexibility conspire to make
the problem of building general-purpose testers quite formidable.

Tester architectures can be divided into two major components, the data generator
and the pin electronics. The data generator produces the digital stimulus vectors for
the Device Under Test (DUT), while the pin electronics is responsible for formatting
these vectors to produce a waveform of the desired shape and timing, and for sampling

the DUT outputs at the desired time.

2.2 Pin Electronics

In most test systems, there is a separate printed circuit card for every one or two pin
electronics channels. In a tester with several hundred pins, it is easy to see why the
pin electronics portion of a tester represents a significant fraction of the overall system
cost. In many tester systems, resources, such as timing generators and voltage sources,

are shared among pins, which restricts the flexibility of the tester but lowers its cost

CHAPTER 2. BACKGROUND 7

[He83]. Another cost-reducing technique is to provide individual input and output
pin types rather than a single general I/O pin. Testers of this class also frequently
provide hardwired signal groups where all pins of the group have the same timing
characteristics, in order to reduce the number of timing generators in the system. In
such systems, it is up to the user to manually wire signals from the I/O groups to
the proper DUT pins {IM85]. Even in medium range machines, the most expensive
resources, such as timing generators, are often shared among pins, requiring complex
switching matrices to distribute clock edges. Machines of this nature are said to have
a shared resource architecture. At the high-end of the tester spectrum are machines
which provide pin electronics with a general 1/O architecture that has little or no
sharing of resources [Bi83]. Since each pin is equivalent in power to every other pin,
the organization is known as a tester-per-pin, or simply a per-pin architecture.

The term pin electronics has traditionally referred only to that portion of the
tester system which is pin specific. In shared resource systems, this implies three
major sub-circuits: the output driver, the input comparator, and a loading device.
The output driver determines the output high (Vog) and output low (Vor) drive
levels of the tester, while the input comparator determines the tester input sample
threshold. Some testers have multiple input comparators which can be used either
for measuring the Vpg and Vo of the DUT or for measuring its output risetimes.
A programmable current load device is sometimes included in the pin electronics for
simulating the effects of a bipolar load on an output of the test device [Fe78].

In a per-pin architecture, pin electronics takes on a broader meaning. In such a
system, the functions of edge timing generation and formatting are encompassed in
the pin electronics in addition to drive, sense, and loading functions. Formatting is
a means for obtaining higher /O bandwidth to the DUT and also for reducing the
size of the high speed memory necessary to hold the test vectors. The format unit

takes the drive level supplied by the test vector and combines it with the output of

CHAPTER 2. BACKGROUND 8

one or more timing generators to produce a pulse waveform of the desired shape. The
position and duration of the pulse within the test cycle are controlled by the outputs
of individual timing generators. Some of the standard format modes are Non-Return
to Zero (NRZ), Return to Zero (RZ), Return to One (RO), and Return to Tri-State
(RT).

The timing generators provide a clock edge at the desired point during the tester
cycle. The quality of the placement of these edges is an important aspect of the tester
performance, particularly in production oriented testers. Edge quality is measured
in terms of two parameters: accuracy and skew. According to Abbot’s definitions

[Ab84]:

“Accuracy is the closeness by which measured change in the timing of a

function edge corresponds to its programmed change.”

“Skew is the error between any two tester functions [edges] at the same

programmed time, as perceived at the DUT.”

Thus, accuracy is measured in terms of the ability of the timing generator to place an
edge at an absolute point in time, whereas skew is a relative measure between pins.
When testing a device, the worst case error caused by accuracy and skew problems
must be factored into every timing parameter that is to be measured. This technique,
referred to as guardbanding, prevents bad devices from being accepted as good ones by
the system due to poor measurements. The downside, however, is that guardbanding
can also cause components which are actually good to fail the test operation, thus
reducing production yield.

In order to maintain a high degree of accuracy and minimize skew, most testers
have some built-in calibration mechanism. In low cost testers, this usually consists

)

of “torque adjustments,” variable capacitors or delay lines which are adjusted man-

ually at the factory or by a field technician. More expensive testers have built-in

CHAPTER 2. BACKGROUND 9

auto-calibration facilities using fairly sophisticated techniques such as Time Domain
Reflectometry (TDR) to measure signal delays right at the end of the probe tip.
Typically, the calibration operation consists of two steps. First, the accuracy of each
timing generator is calibrated to an external standard, usually a National Bureau of
Standards traceable crystal. Second, the pin-to-pin skews are calibrated by switching
a TDR system into the path to each probe tip and varying a per-pin skew adjustment
[De83]. In a shared-resource architecture, the per-pin skew adjustment is dependent
on the machine configuration specified by the test program. It therefore must be
performed for each different device to be tested. In per-pin testers, the accuracy and
skew adjustment can be combined into a single element, thereby reducing the number
of skew and jitter-inducing delay blocks [CF83]. Other calibration techniques exist
[Da87, SM87], but are minor variations on the same theme. Even with such sophis-
ticated systems, the best overall system accuracies attained are on the order of one
to two nanoseconds, which is rather poor considering the typical 50 to 100 ps inher-
ent resolution. The reason for this poor system performance is primarily due to the
large number of gate delays and physical components between the timing generators
and the DUT. Gate counts as high as 50 are not uncommon, nor are tens of feet of
interconnect path [CF83]. Each such element introduces drift and jitter terms which
limit the maximum attainable accuracy. A solution to this problem is to integrate
the pin electronics circuitry as much as possible. By nature of their small size and
uniform thermal characteristics, integrated circuits are an ideal means for reducing

component-induced errors [CR81].

2.3 Data Generator

The concept of the data generator for a high-speed tester seems simple enough: a

data generator is a device which produces a single digital test vector that specifies

CHAPTER 2. BACKGROUND 10

the drive and response data for each pin during every tester cycle. The difficulty
comes when size and speed constraints are placed on the system. Most testers store
three to four bits per pin in the vector memory to specify output drive level, expected
input level, whether the pin is input or ouiput, and whether or not to signal an error
if the input compare operation fails. A state-of-the-art tester with 512 pins would
therefore require a memory word width of 2048 bits. To test the most complex VLSI
devices, the tester should be capable of delivering test sequences as long as one million
vectors. Furthermore, if the tester is to cycle at speeds up to 100 MHz, high-speed
(but low-density) ECL or GaAs RAMS would be necessary to supply the required
bandwidth. It is easy to see how a data generator can stretch the limits of available
memory technology. Many approaches have been taken to alleviate the constraints
on this problem, all aimed at reducing the required amount of high-speed memory.

Schemes that have been implemented for reducing the memory size requirement
for data generators fall into four main classifications: reduced functionality, memory
overlay, algorithmic generation, and general compression. Some low-end testers re-
duce data generator word width by simply eliminating functionality. Pins of the tester
are made to be either fixed-direction or unmaskable in order to reduce the number
of high-speed memory chips. Such testers represent the least elegant approach to the
problem since they reduce the potential tester applications.

The memory overlay schemes, which are somewhat more general, employ a small
amount of very high-speed RAM, a larger amount of lower-speed memory, and some
technique for loading the fast RAM from the slower one. Sherman and Madsen [SM80]
discuss several techniques utilizing dual-ported or double-buffered RAMS to load one
part of the high-speed memory while another is being emptied. Such schemes require
very wide word access from the low-speed memory to achieve the desired bandwidth
or else require pauses in the test sequence to allow for refilling the high-speed rRAMS.

Albrow [Al83] presents a technique which utilizes one high-speed vector storage RAM

CHAPTER 2. BACKGROUND 11

for holding invariant data and another which can be overlaid from the low-speed
memory. The idea here is that the invariant memory holds common device-related
routines which are used repeatedly in the test sequence, while the variant memory
holds the non-repetitive test sequences. In order to transparently overlay the variant
memory, the tester must be executing out of the invariant memory for a long enough
period of time to refill the variant memory. Such schemes have the disadvantage that
they must be manually implemented by the test programmer.

A third class of memory reduction scheme takes advantage of the algorithmic
nature of many test sequences. Memory testers are the classic example of such gen-
erators. In memory testers, the test patterns must exhaustively search the DUT
memory array for sensitivities between adjacent bits or lines of the array. Such algo-
rithms can be efficiently coded in the form of nested loops, but if these loops were
to be expressed as in-line vector sequences they would be extremely long. Another
common use of algorithmic generation schemes is in serial-scan design structures such
‘as LSSD [EWT77]. In such designs, a serial shift register is used to provide read/write
.access to internal buses of a device, facilitating testing by allowing internal partition-
ing of the chip. When loading or unloading the serial shift register, only a few of the
DUT pins are actively used while the rest remain idle. An algorithmic generator can
be employed to convert parallel data from the vector memory to a serial data stream
and to provide the necessary clock and control signals. These techniques can result in
significant improvement in memory utilization [Al83], but require custom hardware
for each algorithmic scheme.

Relatively little work has been done in the realm of general purpose compaction
schemes for testing purposes. Jackson et al. [JM84] have implemented a scheme which
identifies clock-like patterns and repetitive sequences and substitutes a code-word and
repetition count for these. Excellent results have been achieved using this technique

on certain types of data. However, the drawback of their implementation is that the

CHAPTER 2. BACKGROUND 12

compaction is performed on a pin-by-pin basis. By compressing across & group of
pins, some of the advantages of an algorithmic pattern generator can be achieved
by gaining some degree of vector width/depth tradeoff. Consider for example the
LSSD case. Here, some pins are idle and achieve maximum compression while other
pins, such as the Serial Data pin, transition at the maximum rate, resulting in poor
compression. Assuming that there is no on-the-fly refill capability, the maximum
tester run-time is determined by the compression ratio of the worst pin. If a general
purpose compression scheme is applied to a group of pins, the effects of active and
inactive pins can potentially be averaged, resulting in a longer average maximum

run-time.

2.4 Limits of Current Systems

Users of the current generation of integrated circuit testers are becoming increasingly
aware of their limitations in testing VLSI devices. As a result of simultaneous in-
creases in both pin-count and device speed, testers are becoming increasingly large
and expensive. Size is important not only because of the cost implications, but also
because overall performance degrades due to the increased length of the transmission
line between the pin electronics and the DUT. When testing ECL or GaAs devices,
which have low impedance outputs, it is easy for the tester to maintain a matched
impedance environment for both input and output signals to the DUT. Both the tester
and the DUT are capable of driving the terminated transmission line which connects
them. The only electrical effect of the transmission line is a pure delay which can
be calibrated and compensated before actual testing is performed. This is not the
case, however, when testing typical CMOS VLSI devices. Because of the limited drive
capability of such devices, which is in turn related to their high pin counts, it is typ-

ically not possible for the DUT to properly drive a 50 or even a 90 ohm terminated

CHAPTER 2. BACKGROUND 13

line. Source termination at the tester outputs can be used to produce high-fidelity
waveforms at the DUT inputs, but there is no easy solution to the problem of driving
the response signal. The high impedance DUT driver looks into a long open-ended
transmission line and requires several round-trip delays before it settles to a final
value and can be sampled. In current systems, the one-way path length can be as
long as 50 cm yielding a round trip delay time of about 5 nanoseconds. This figure is
likely to become worse as pin counts increase [Ba83]. One technique for dealing with
this problem is to pre-compute the transmission line settling time and factor this into
the tester sample delay [Ba84}, but to achieve sub-nanosecond timing accuracies, the
round trip delay must be reduced. Another consequence of the impedance mismatch
between DUT and transmission line is the inability to make accurate measurements
under capacitive load. Most devices specify their timing parameters under specific
capacitive loading conditions. The lumped capacitive load of the pin electronics at
the end of the unterminated transmission line can appear quite large to the DUT
output making such measurements difficult or impossible to achieve [Ba84].

The physical size of the test system, particularly the pin electronics, has other
influences on the utility of the test system in addition to the electrical problems
discussed above. In failure analysis work, for example, it is necessary to connect the
test head to the DUT with a good electrical signal environment and still provide
microscope and micro-probe access to the circuit. Even with custom fixturing, this
is an extremely difficult task. In the near future, device geometries will shrink below
one micron making mechanical micro-probing obsolete. When this happens, more
exotic techniques, such as electron-beam probing, will become necessary. In this type
of system, the test device must be isolated in a vacuum chamber, further complicating
the mating of the tester and DUT. The need for smaller testers is evident.

There is clearly a need for testers which are greatly reduced in size from those

currently available. The following chapter discusses the basic problems encountered

CHAPTER 2. BACKGROUND

when taking this approach to tester design. It then introduces the basic concepts for

a fully integrated CMOS tester.

Chapter 3

Integrated Testers

3.1 Introduction

The previous chapter discussed some of the features found in large commercial test
systems. A high degree of versatility in a tester is valuable since it permits rapid
adaptation of the tester to many different types of test circumstances. The problem
is that, in the current generation of machines, versatility implies a large and expensive
system. Because of their size and cost, these machines are typically used only in high
volume production testing, leaving the average designer with poor facilities for design
debug and diagnostic testing. This chapter develops the basic concepts for building
integrated test systems that are small and low cost, but which still preserve many of
the useful features that are found in the larger test systems. While this may seem
to be contrary to established principles, it is one of the aims of this thesis to prove
that there is a non-linear relationship between tester size and complexity: when the
system is forced to occupy a much smaller physical space, many of the engineering
problems that the designers of larger systems must face simply disappear, allowing a

much cleaner system design.

15

CHAPTER 3. INTEGRATED TESTERS 16

3.2 Don’t Think Big

A survey of the market today for high-end test systems, would find many mainframe-
sized testers, each costing on the order of a few million dollars. The basic structure
of these machines is essentially the same: several racks full of electronics to generate
the test vectors, connected via a large number of high speed cables to a bulky pin
electronics head, which in turn interfaces to a single small test device. The obvious
question is, “Is all of this really necessary?” Indeed, is it the case that designers
of such equipment have built themselves into a self-fulfilling prophecy? In setting
out to create a world-class tester, they have assumed, based on previous designs,
that it would be a physically large machine. The large size imposes a number of
problems having to do with signal skew, loading, accuracy, and distribution that
require additional hardware and software subsystems to correct. As the number of
subsystems increases, the communication and control costs increase as well, leading to
further system complexity. In the end, the tester must be a physically large machine
to accommodate all of the overhead hardware, thus justifying the designers’ initial
assumption. In order to test this hypothesis, the initial assumption must be changed.

What would a VLSI test system be like that was designed to be as small as possible?

3.3 Think Small

In order to build the smallest possible system, the obvious choice is to employ high
density VLSI technologies. The number of transistors that can be implemented in
a bipolar technology is fairly limited due to power dissipation, so a higher density
technology like CMOS seems to be the likely candidate. CMOS has other inherent

advantages that make it a good technology choice as well: it supports low power,

CHAPTER 3. INTEGRATED TESTERS 17

is relatively easy to fabricate, and is the dominant technology in use for ASICs to-
day. Also, the tools required for chip development are widely available and there is
a substantial body of design experience available. Thus, there is some hope that the
design can be ‘portable,’ so that as improved fabrication processes become available,
the performance of the tester can readily track the technology. The main disadvan-
tage of choosing CMOS is that it is not a particularly fast technology. If the principal
application of the tester is for testing CMOS ASIC components, then the technology
of the tester is only on par with that of the DUT. This can be turned into an advan-
tage, though, for if the desired performance is achievable, then the tester technology
relies only on the same technology as the device to be tested. No other more exotic
technology is required, thus allowing the tester technology to track that of the DUT.
Let us put aside the speed difficulty for now by assuming that it can be handled
through clever circuit design and parallelism. It will be revisited in Chapter 4.
High-speed interconnect in any system is a difficult problem. In commercial test
systems, one typically finds large masses of bulky coaxial cables tying various pieces
of the system together. This type of interconnect cannot be tolerated in a test sys-
tem that is to be as small as possible. The best way to avoid it is to constrain all of
the high-speed components of the system to fit together on a single printed circuit
card where signal impedances can be carefully controlled and properly terminated.
Constraining the system to a single card has other advantages, as well. A crucial pa-
rameter of any test system is the physical length of the transmission line between the
pin of the DUT and the driver/receiver electronics of the tester. The length of this
path should allow several round-trip propagations within the minimum edge risetime,
in order to achieve good signal fidelity for both driven and received waveforms. Al-
lowing several round-trip propagations provides sufficient time for the signal to settle

so that signal termination is not needed. The short path length also minimizes the

CHAPTER 3. INTEGRATED TESTERS 18

capacitive loading on the DUT output. Another advantage of placing all of the high-
speed portion of the system on a single board is that it drives the system towards a
clean, low-speed interface to the outside world. Presumably, the system is controlled
by a host mainframe, workstation, or PC, so eliminating all real-time constraints from
the host’s interface ensures that this part of the system can be simple and low cost
as well.

With the single board system concept in mind, attention can now be focused on
the individual components that make up the building blocks of the system. There are
three main functions that these components must implement: timing generation, pin
drive/sense, and vector storage. In most test systems, timing generation is considered
to be a relatively expensive part of the tester design. Typically, a test system will have
a limited number of timing generators (8 to 32) and distribute these via a switching
matrix to the various pins of the system. This is a classic case where thinking small
and applying new design techniques can improve the overall system. The switching
matrix in the typical system represents considerable overhead since it must perform
the function of an m X n crossbar switch, where m is the number of timing generators
and n is an integer multiple of the number of pins in the system (each pin uses
several timing edges). When coupled with the fact that the clock distribution must
be performed with near zero skew, it is clear why the switching matrix is complex.
To eliminate it from the design, a separate timing generator is necessary in each
place where one is needed. In conventional systems, the timing generators are highly
accurate, providing timing resolution on the order of a hundred picoseconds or so.
This necessitates a considerable amount of logic working at frequencies in the range
of hundreds of MHz, making it impractical for high density integration and in turn
difficult to replicate for each pin. An alternative solution to this problem is found
by removing the restriction that the timing generators be very accurate. Rather,

provide only one accurate timing source in the system and distribute it uniformly to

CHAPTER 3. INTEGRATED TESTERS 19

all elements. Then, through calibration and feedback, adjust each of the local timing
generators to have precise delays. This approach completely eliminates the switching
matrix and all but one of the high speed, high accuracy, timing generators. As shown
in the following chapter, the local timing generators can then be highly integrated
using conventional CMOS technology.

The second functional element of the design is the DUT pin drive/sense electronics,
or pin electronics. The pin electronics portion of a tester is the area of tester design
that can be most easily mapped directly into CMOS circuitry. The pin electronics
must be capable of driving an output waveform to the DUT with known timing and
voltage level characteristics. It also must be able to capture a response waveform
from the DUT and compare it with an expected value. Thus the key elements of
the pin electronics are the output driver and input comparator. It is essential that
these circuits be located as close as possible to the DUT for rapid settling. For an
unterminated signal, the round trip delay on the wire connecting the pin electronics
and DUT should be less than the minimum rise time of the driven or sensed signal.
Given a 2 ns edge rate, this limits the distance to about 10 cm. Some tester systems
provide additional features in the pin electronics such as programmable load devices
for voltage and current. In large testers, these devices allow rapid prototyping of ex-
ternal load conditions, which is important when tester time is expensive. In a small
system, perhaps dedicated to a particular device, it is feasible to implement load-
ing with external individual components, thereby reducing the amount of integrated
analog circuitry in the pin electronics.

The last important element of the design is the vector storage unit. The vector
storage unit is a special purpose memory that holds the test vectors that are to be
applied to the DUT. In the worst case, the memory is several times as wide as the
maximum number of pins to be tested, since several bits are needed to represent

the vector information needed by each pin in every cycle. The trend in commercial

CHAPTER 3. INTEGRATED TESTERS 20

testers in recent years has been to greatly increase the depth of the vector storage,
thus allowing much longer test sequences. There are two reasons for this trend: the
increasing number of transistors per chip, which require more vectors to test, and the
increasing use of automatic test pattern generation programs, which are not as good
as hand-coded vectors in terms of coverage efficiency. In an expensive system where
tester time is costly, it is important to achieve maximum throughput by holding all of
the test vectors in the vector storage unit at once to avoid the overhead of reloading.
This is not the case, though, for a low cost system. As long as sufficient vector memory
is available to prevent excessive reloading and the reloading time is relatively small,
the cost of the tester time is negligible. In the case of dynamic test devices, some
additional cost is incurred since each buffer load must be capable of restoring the
DUT state at the beginning of the load. The alternative is to provide the tester
with the ability to run a “keep alive” loop while the vector storage is being reloaded,
although this may not always be a feasible alternative for the DUT. In either case,
the overhead should be small.

To examine the feasibility of this approach, consider an example test system with
256 active DUT pins, vectors of four bits per pin, one million test vectors, and a
vector buffer 8K deep. A large tester, to be sure. Assume that vector bits can be
loaded 16 bits at a time and that each transfer into the vector memory takes 10
microseconds (software loop). Each buffer then consists of 256 x 4 x 8K = 8 Mbits,
and the transfer rate into the buffer is 16 / 107 = 1.6 Mbits/second. So a single
buffer reload takes only 5 seconds. To perform 16 buffer reloads (1M/8K), requires
80 seconds. Thus, even in the worst case situation, the time to run a million vector
test is still only a little more than a minute. With a minimal amount of external
DMA support, the transfer time could be reduced by nearly an order of magnitude,

bringing the test time down to a few seconds.

CHAPTER 3. INTEGRATED TESTERS 21

Reducing the amount of memory required by the vector storage unit to the ab-
solute minimum is an important issue because the size of the RAM determines the
feasibility of including the vector storage on the same chip as the rest of the system
logic. The alternative is to use external commercial memory components. Including
the storage on the chip avoids a number of complexities encountered with board level
RAMS, the primary problems being bandwidth and delay. Again, consider the case of
a 256 pin tester. Assuming that each pin of the tester will require one to four RAM
bits, depending on the encoding scheme used, the tester requires a RAM data word
width in the range of 256 to 1024 bits. Each bit of the data word requires a pin on
a tester chip, a pin on a RAM, and some length of printed circuit trace. This greatly
increases the pin count and package size of the tester chip, the spacing between tester
chips due to the large number of etch traces on the board, and the number of external
components. The widest RAMS currently available are 8-bit wide parts, so between 32
and 128 external components are necessary. This is already quite a severe limitation
for a single board tester. The situation clearly worsens when higher pin count testers
are considered. The limitations on word width also have a direct impact on RAM
bandwidth. Due to component count, multi-banking the RAM to improve data band-
width is extremely expensive, so a single RAM bank must be capable of delivering its
data at the maximum tester cycle frequency. On-chip RAM, on the other hand, avoids
all of these problems. Multi-banked RAM is not a problem since bit multiplexors can
be placed directly on RAM outputs. With proper floorplanning, signal routing can be
virtually eliminated, and extra pin count and component count are eliminated.

The ideal device for building a single board tester would incorporate all three of
the functions of vector storage, timing generation, and pin electronics for several tester
channels on a single chip. In addition, it would contain the necessary interface and
control logic so that it would interface directly, via a low speed interface, to the host

computer and directly, through short traces, to the DUT. A number of these devices

CHAPTER 3. INTEGRATED TESTERS 22

could be used in parallel to build testers of arbitrary width. A small number of clock
and calibration signals would be common to all elements of the system, but since they
are relatively few in number, a good deal of care could be taken in their generation
and distribution. The master timing source would either be a custom device or a
small amount of board level logic since only one copy would be required. The systern
would easily fit on a probe card for wafer analysis and in-circuit debugging. It could
also be added as a single board to a workstation for packaged-part testing. Such a

tester could have good performance characteristics, yet still be small and low cost.

3.4 Limits

Before delving into the detailed design of the system, it is worth considering what
the fundamental limits of the system may be. The two most important parameters
of any tester design are “how fast” and “how accurate.” In its basic form, a tester
architecture can be viewed as a simple serial machine. At one end, test vectors are
fetched from a vector memory, perhaps processed in some manner to add timing
or control information, and then presented to the DUT. The response, meanwhile,
is captured from the DUT output pins and compared to a similar reference data
stream. Every vector operates on the DUT in isolation and there is no communication
between non-sequential pipeline stages in the data path. Since there are no latency
requirements on the delivery of data from vector memory to DUT, or for sensing when
an error occurred, the ultimate data-handling speed in such a machine is limited only
by the extent to which the processing element delays are pipelined. In the case where
the memory data path is of limited width, as with off-chip RAM, the memory fetch
time is a limiting factor, as well. Thus, given enough die real estate, speeds close to
the maximum register transfer frequency of the technology could be achieved. In a

practical system, however, the restriction limiting inter-pipeline stage communication

CHAPTER 3. INTEGRATED TESTERS 23

is difficult to maintain, and excessive pipelining can be impractical. In Chapter 5, the
idea of data compression is introduced for improving the efficiency of on-chip RaM
storage. This breaks the one vector per RAM word assumption and forces feedback to
determine the starting position of the next word of data. Chapter 5 also introduces
the requirements of branching, which places additional demands on the vector delivery
system. From the test programmer’s point of view, the ideal branch operation has a
zero cycle latency, requiring that the succeeding word in the Force Data pipeline be
modifiable by the current DUT response. This is difficult to do, since it requires either
the elimination of all pipelining from the system or else a complex branch prediction
mechanism. Some compromise must therefore be made between branch latency and
tester performance.

To get some feel for the actual speed that may be attained from the tester for a
given technology, the best method may be to compare it to some other device which
has been already implemented in that technology. A good choice is a microprocessor
CPU. A microprocessor cycles through the operations of fetching instructions from
memory (e.g., an on-chip cache), decoding them in a pipelined fashion, and producing
some result. These are the same functions performed by the vector generator in a
tester. A great deal of effort typically goes into a new microprocessor design, which
would tend to positively bias the maximum speed, but perhaps this is balanced by the
relative simplicity of the tester data path. For a 2u CMOS process, it is reasonable
to expect a microprocessor to operate in the 25 MHz range. This speed should scale
fairly linearly as device geometry shrinks, as long as transistor velocity saturation
effects can be avoided. Similar speeds should be attainable in a tester.

A performance aspect that is equally important to cycle speed is edge placement
accuracy, both for output waveform transitions and input sampling. With a feed-
back calibration scheme, near perfect accuracy can be assumed in the reference delay

generator since only one is required in the system. The edge placement limitation

CHAPTER 3. INTEGRATED TESTERS 24

then depends primarily on the capture uncertainty of the phase comparator and the
phase noise and accuracy of the local delay generator. Through repetitive sampling
techniques [Ke86], the noise introduced by the phase comparator can be arbitrarily
reduced, leaving the local delay generator as the principal source of noise. The phase
noise added by the delay generator is difficult to characterize, as it is heavily depen-
dent on both the circuit implementation and the system packaging. The basic gate
delay in CMOS technology is strongly influenced by supply voltage, so supply noise
and printed circuit board layout are important issues. Temperature variations also
introduce a low frequency noise component, so some form of regulation or feedback
is needed to insure long term calibrated accuracy.

Though there are many technical issues left to be resolved, no fundamental reasons
exist that would prohibit the building of a tester with performance characteristics

sufficient to test nearly any device fabricated in the same technology.

3.5 Summary

Current generation integrated circuit testers are large and expensive. By taking
the radical new approach of integrating most of the features of large testers onto a
single chip, a much better cost/performance tradeoff can be achieved. The following
chapters describe the detailed design of a single chip tester system based on the

principles outlined here.

Chapter 4

Pin Electronics

4.1 Introduction

In the previous chapter, the structure of integrated test systems and the inherent
advantages of the integrated approach were presented. In this chapter, we begin to
investigate some of the issues encountered in the design of an integrated tester chip.
Part of the problem of building a fully integrated VLSI tester is to integrate the
functions performed by the pin electronics. The design of integrated pin electron-
ics circuitry cannot be found by recasting existing designs into a new technology.
Rather, the fundamentally different nature of the target technology requires a wholly
new approach to both the architecture and circuit design. This chapter presents an
architecture for building CMOS pin electronics circuitry. An experimental four chan-
nel pin electronics device was designed using these ideas to prove the validity of the
concepts. The experimental device performed according to design specification with
only a few minor problems.

A block diagram of a single channel of the pin electronics architecture is shown in
Figure 4.1. It consists of three main sections: Force, Acquire, and Calibration. The

Force section takes the stimulus information of the test vector, combines it with timing

25

CHAPTER 4. PIN ELECTRONICS 26

Force Data Inhibit Data DUT Pin Compare Data Mask Data
| ! L
+——> Error
Poyc——>{ Format Pin Drive Acquisition e—®Pcyc

®ORef —31 Calibration

dox —> Force Acquire e— Pk
Timing gost Timing
®Cyc—>| Generator omputer Generator_f&—%cyc
2 2
3 Force e— Calibration —6——— Acquire —]

Figure 4.1: Pin electronics block diagram

information, and drives the input pins of the DUT. The Acquire section samples
the output pins of the DUT at a specific time and compares the results with the
information supplied by the Acquire vector to determine if an error has occurred. The
Calibration section closes the loop on both the Force and Acquire units to provide
high accuracy timing. Each timing generator in a channel is independent of other
channels on the chip. Each channel can also independently select high or low drive

voltage and input threshold voltage, providing a true per-pin architecture.

4.2 Force Section

The Force section consists of three sub-blocks: the Force Timing Generator, the
Format unit and the Pin Drive circuitry. The Force Timing Generator provides a

timing control pulse which determines where the edge transitions will occur in the

CHAPTER 4. PIN ELECTRONICS 27

®Cyc/2 } > Pulse

Figure 4.2: Force timing generator

DUT waveform. This pulse determines the transition times of the waveform created
by the Formatter. The Pin Driver buffers the low-level internal signal up to the
external drive level and also adds the analog high and low level voltage information.
The setup and calibration of the timing pulse, format mode, and drive level are all
done statically before the test is run, although there can be a number of register
sets for each of these units that are initialized with different calibration and format
parameters. Dynamic switching would then be possible between various timing and
format modes during test execution.

The Force Timing Generator consists of two independent delay generators: one for
pulse delay and one for pulse width (Figure 4.2). Of all the functional elements in the
pin electronics architecture, the element that has the greatest impact on the die area
is the delay generator. Three of these generators are in each channel (one additional
unit in the Acquire Timing Generator). Each generator must be capable of covering
a wide delay range, from 0 to 1 us, with a resolution of less than 1 ns. Because of this
large “storage” requirement, the generators occupy a considerable fraction of the die
area, so an efficient scheme is needed for implementing the function. There are two
basic approaches to the problem: either build high accuracy delay generators using
techniques such as PLL delay lines [JB87], or use circuits that have low absolute
accuracy but are stable and can be easily calibrated. The latter approach is more

suited to the CMOS implementation because the projected die size is better, and also

CHAPTER 4. PIN ELECTRONICS 28

because of the ability to calibrate the intrinsic delays caused by other elements of the
system, such as the Format Generator and Pin Driver electronics.

For full flexibility in shaping the output waveform, the timing control pulse must
cover the maximum possible range of duty cycle and edge placement within cycle
boundaries. Allowing the user to place edges near the beginning or end of the tester
cycle makes the design of the pulse generator difficult because of the intrinsic delays
of the logic. In addition, producing pulses with very small or very large duty cycles
is difficult since delay lines tend to distort narrow pulses. Both of these problems
become more serious when a relatively low speed technology like CMOS is used. The
diagram of the Force Timing Generator in Figure 4.2 shows the circuit that was used
to overcome these problems. Two programmable delay lines are used, one for pulse
delay and one for pulse width. The delay lines consist of three different delay elements:
a shift register for coarse delay adjustment, an inverter chain for finer resolution, and
set of ratioed inverter delays for very fine (sub-nanosecond) resolution. The input to
both delay lines is the square wave clock, ®cyc/2, whose period is one-half that of
the tester cycle. To form the timing pulse, one delay line is set to the desired delay
time and the other to the desired delay plus the desired width. The outputs of the
two delay lines are then exclusive-ORed to produce a double frequency pulse train
of the required shape. This technique eliminates the problem of narrow pulses since
the delay lines always see a 50% duty cycle signal. The periodic nature of the pulse
traveling through the delay lines provides a method of placing transitions near the
tester clock edges. For example, if an output transition is desired near the beginning
of the clock cycle at a point less than the inherent delay, the timing pulse is delayed
into the next tester cycle. Since the pulse train is periodic, the result is the same as
building a pulse generator with zero inherent delay. Thus, the circuit makes it very
easy to position a pulse anywhere in the cycle: there are no dead bands.

The delay elements and the XOR operation are not perfect and do introduce some

CHAPTER 4. PIN ELECTRONICS 29

81 82 81 82

Delay <> <> <> <>
83) 4 83) 4
Width <> <> <> <>
81 83 82) 4 81 83 82) 4
Pulse > <> > <> > <> <> <

Figure 4.3: Edge deviation

edge timing distortion in the pulse waveform. The effect of XOR-ing two slightly
distorted 50% duty cycle waveforms is to produce a waveform: whose basic period
consists of a pair of pulses with each edge of the pair deviating slightly from the
desired timing (Figure 4.3). The distortion can be corrected during calibration by
use of the high resolution edge adjust units at the final stage of the delay elements. As
seen in Figure 4.4 and Figure 4.5, the edge adjust units consist of a simple NAND gate
that applies the waveform to be adjusted applied directly to one input and through
a high resolution delay element to the other input. The effect of the gate is to allow
falling input edges to propagate with minimum delay and rising edges to propagate
with a controlled delay. The output of the NAND inverts the original signal so that
concatenating two such units gives individual control over both rising and falling
edges of the waveform. Since both the Delay and Width generators have independent
controls on the rising and falling edges of each of their respective output waveforms,
the XOR output edges, §; through 64, can be independently calibrated as well.

Each of the three different delay types employ a different technique to achieve
the desired delay and resolution required by that stage. In order to obtain relatively
long but stable delays, a shift register is used with an external clock to supply stable

reference (Figure 4.6). The final output stage of the shift register allows selection

CHAPTER 4. PIN ELECTRONICS

Shift Register
30ns resolution

Inverter Chain
2ns resolution

Rising/Falling
Edge Adjust
0.6ns resolution

Mux

I
-
D>

o>

ST

T

Figure 4.4: Timing chain

15
6

[:23
9

Out

Figure 4.5: Edge adjust (transistor widths in microns)

CHAPTER 4. PIN ELECTRONICS 31

Master only latch _j
Erryal

P> P> > rd D> >

fe———— 10 Stages—3

Figure 4.6: Shift register

of either a normal rising edge triggered D-flop output, or a falling edge triggered
master-only stage. This provides an overall resolution of one half of the clock period.
The inverter chain stage uses the minimum delay through a pair of inverters as a
compact means of obtaining moderate resolution (approximately 2 ns) over a range
that covers slightly more than one half the shift register clock period (40 ns). Two
-additional stages in the inverter chain allow the selection of a constant 1 or constant
0 at the output. This is useful during calibration to make each of the internal delay
elements independently observable. The final delay type is the differential inverter
path. Here a resolution is achieved which is better than the minimum gate delay
of the technology by utilizing the difference in path delay through pairs of carefully
sized inverters (Figure 4.5). The incremental delay obtainable using this method is
limited by the phase noise of an inverter, which is heavily dependent on Vpp noise.
The gate widths shown in the schematic were derived using Spice simulations and
achieve a resolution of about 600 ps (Figure 4.7).

A delay element using the techniques described here was incorporated into an
experimental pin electronics device built to verify the validity of these design princi-
ples. Upon testing this circuit, the range of the edge adjust units was found to be

insufficient to correct the skew errors (§; through 4,) introduced by the two delay

CHAPTER 4. PIN ELECTRONICS 32

g
4

80

\

4
7

I
/)

50

7

Y’

LIRS LR BN LI LR SLIRS V\l T T T T LB
40 :\\\

\- \

N

g Ll
LI S N L N

4
T

=
N W
it

Figure 4.7: Replica of an oscilloscope photo showing the edge resolution waveform (1
ns/div.)
generators. To remedy this situation, the delay range of each of the adjusters was
extended from 2.5 ns to 8.5 ns by adding a four stage inverter chain as shown in
Figure 4.8.

To accurately probe the frequency limits of the DUT, the pin electronics needs

to provide continuous operation over a wide range of frequencies. This presents a

In

Figure 4.8: Edge adjust unit with improved range

CHAPTER 4. PIN ELECTRONICS 33

problem in the multi-stage delay generator chain. For the scheme to work, the range
of delay provided by each of the delay types must be greater than the resolution of
the previous stage. A problem occurs in the shift register delay stage as the tester
frequency is reduced from the maximum. The resolution of the shift register decreases
with the clock frequency, but the range provided by the following stage, the inverter
chain, remains constant, since it is not tied to the clock frequency. To solve this
problem, the shift register clock is selected to be a multiple of 1, 2, 4, or 8 times the
cycle clock frequency depending on the cycle frequency. By doing this, the resolution
of the shift register is always constrained to be within the range of the inverter chain.
Table 4.1 shows the relationships between the tester cycle clock, shift register clock

(SR), inverter chain (IC) and differential inverter path (DIP) elements.

Cycle ®cx/ SR SR. IC IC |DIP| DIP
Freq. ®cyc Res. | Range | Res. Range | Res. | Range
(MHz) (ns) | (cycles) | (ns) (ns) | (ns) | (ms)
30-15 1 15-30 | 9.00 2 40 0.5 8.5
15-7.5 2 15-30 | 4.50 2 40 0.5 8.5
7.5-3.75 4 15-30 | 2.25 2 40 0.5 8.5
3.75-1.88 8 15-30 | 1.13 2 40 0.5 8.5

Table 4.1: Delay element ranges and resolutions

As can be seen from the table, below 1.88 MHz, the on-chip delay elements no
longer have sufficient range to cover a full tester cycle. A broader band coverage can
be achieved by adding a fourth delay type to the front of the delay chain consisting
of a shift register clocked at one-eighth of the successive shift register frequency to

provide coverage well into the kHz range.

CHAPTER 4. PIN ELECTRONICS 34

NBRZData NRZData |
Pulse oPulse
Data Rata
oNRZ ZI : Drivel
= E—- | - i‘
nlnhibit lohibit
nData nData
BRZ_ nRO n
BT] oRT o

Figure 4.9: Schematic of format generator

4.3 Formatter

The Formatter combines the stimulus data of the Force Vector with the edge place-
ment information of the Timing Generator. This data/timing mixing is performed
by the logic shown in Figure 4.9 in one of five selectable modes: Non-Return to Zero
(NRZ), Return to One (RO), Return to Zero (RZ), Return to Tri-State (RT), and
Return to Complement (RC). The formatter is designed such that all paths through
the generator have equal delay, permitting the format mode to be changed during
test vector execution without affecting the timing calibration. Figure 4.10 shows the

oscilloscope waveforms produced by the experimental pin electronics chip generating

CHAPTER 4. PIN ELECTRONICS 35

NRZ | T

RZ 1 \

RO B LA e LERER] /l LIRS LR IE;| T LIRS LIRS LIRAR BRI LRI
0 EE \

T AaNE

RC 1

Figure 4.10: Replica of an oscilloscope photo of the PE chip generating five output
formats at 20 MHz (10 ns/div.)

each of the five output formats'. As seen in this figure, the NRZ format is a non-
pulsed mode; that is, a transition is made to the level specified by the input vector
after a given delay and that level is maintained until the next tester cycle. There is at
most one data transition per cycle. This mode is useful for simulating edge-triggered
events such as register or counter outputs. All of the other four formats are pulsed
modes: they start at a default level (ZERO, ONE, or tri-state for RZ, RO, and RT,
respectively), transition to the desired level after a given delay, maintain that level
for a set width, then return to the starting level. In operation, these modes allow
the tester to simulate events at rates higher than the basic tester cycle rate would

allow. For example, consider the problem of generating the two-phase non-overlapped

'The kink in the rising edge of the output waveform was due to an unexpectedly long wire
(generated by an automatic router) between the pre-drive and final-drive stages of the output buffer.
The extra capacitance introduced enough skew to cause a few nanoseconds of overlap between the
pad Drive High and Drive Low signals. This problem was corrected in a later version of the device.

CHAPTER 4. PIN ELECTRONICS 36

®cve _/__/__/__/_\J__f__]__/_k_/

PRANRZ) /T 1

/ \ /
PhB (NRZ) —
G /AN AN A AN AN A

= SN NN NN NN

PhB (RZ)
Figure 4.11: Non-overlapped clock example

clock used in many MOS systems. The simple method would be to use successive
tester cycles to generate the four clock states (Low-Low, Low-High, Low-Low, High-
Low). A better method would be to use two channels in RZ format with delays and
widths adjusted appropriately to form the desired non-overlapping pulses within a
single tester clock cycle (Figure 4.11). An additional advantage of this method is
-that the clock duration and non-overlap times are individually programmable with
high resolution. The RO format could also be used in such an example to generate
the complementary clock.

The RT mode doubles the channel’s IO bandwidth in much the same manner that
used by the RZ and RO modes to increase the output event rate. Consider again
the non-overlapped clock example. Suppose the DUT latches its inputs on ® 4 and
supplies a response on ®p. RT mode can be used to drive the force data during
@, and then inhibit the output during ®5 when the DUT is driving the bus. The
sample clock in the channel would be programmed to capture the DUT response at
the appropriate point during ®5. This situation is the only case where both of the
test vector bits Force Data and Compare Data are needed in the same tester cycle.

The primary use of the RC mode is for making set-up and hold measurements.

In RC mode, the default level is the complement of the data to be driven. After

CHAPTER 4. PIN ELECTRONICS 37

‘
Width
L

®Cyc/2 |

Formatter |—»

ForceData
M
——>(Initial) > U
X

Figure 4.12: Addition of a fourth delay generator for calibrating RC mode

a programmed delay the output transitions to the value specified by Force Data
maintains that value for the specified width and then returns to the complementary
value. By adjusting the delay and width of the drive pulse to exactly meet the
specified set-up and hold requirements of the DUT, the device will fail if it exceeds
specifications. The RC mode differs from each of the other four modes in that it
can cause up to three data transitions per cycle (RT can have three or even more
transitions per cycle, but only two are caused by the pin electronics driver). One
transition occurs at the start of each cycle to assume the complementary drive value,
and two more occur when the cutput pulses to the drive value and back to the
complementary value. Since the timing generator can only adjust the delay and width,
the initial edge is neither adjustable nor calibrated. One solution to this problem is to
add a fourth delay generator to the pin electronics circuitry as shown in Figure 4.12.
The only use of this generator would be to position the initial transition in RC mode.
The die area required for this fourth generator is fairly large, particularly in the
2p technology used for the experimental pin electronics chip and the demonstration

single-chip tester discussed in Chapter 6. Also, when the RC mode is used as intended

CHAPTER 4. PIN ELECTRONICS 38

TTLMode

viED

iz e

nDriveLow %E—
=5

Pad

SOWOPUD
SOWOPPA
I11puH
ILLPPA

Figure 4.13: Pin driver circuitry

for making set-up and hold measurements, this edge would fall completely outside
of the capture window of the DUT, so the exact placement of the transition is not
crucial. For these reasons, the fourth delay generator was not included in either
design. A compromise solution is possible, which requires very little die area. By
simply clocking the flip-flop in Figure 4.12 with the inverse of the tester cycle clock,
the initial data transition can optionally be moved from the beginning of the cycle to
mid-cycle. This allows the deadband to be moved around, so RC measurements can
be near the cycle boundary.

The stimulus waveform generated by the formatter must be amplified to drive
the potentially high capacitance load of the DUT. The pin driver circuitry provides
buffering to drive loads up to 50 pF. In addition, it provides a selection of two high-
level and two low-level drive voltages (Figure 4.13). The two levels allow some DUT
pins to be driven at CMOS levels, while others are being tested for TTL compatibility.

The dual level pads essentially consist of two tri-state drivers connected in parallel.

CHAPTER 4. PIN ELECTRONICS 39

The output levels are set by choosing which driver to enable.

4.4 Acquire Section

The Acquire portion of the pin electronics circuitry is responsible for capturing data
from the DUT and determining if it matches the desired response. Both the data
value and output voltage level must be checked. In the Force Timing generator, both
delay and width timing control are needed, but in the Acquire Timing generator
only control of the sample delay timing is necessary. This allows the Acquire Timing
generator to be simplified to a single delay line. The input to this delay line is still
Dcycya, as it was for the Force Timing generator. This introduces a problem: the
frequency doubling effect of the XOR gate is not realized, so the delay line output is
only half the desired cycle frequency. Since the die area consumed by the sample and
comparison circuitry is much smaller than that of a second delay line, the solution is
simply to build two sampling circuits: one which operates on the positive transition
of the sample timing clock and one which operates on the negative transition. A
beneficial side effect of this technique is that the data at the output of the two
comparators is available for a full tester cycle. This greatly simplifies the problem of
resynchronizing the data between the sample logic and the data comparison pipeline.
Since the phase of the captured signal is known, an optional pipeline stage clocked
at the midpoint of the cycle ensures that the data can be captured at a stable point
in the cycle (Figure 4.14). In the data pipeline, the acquired value is compared with
the Expect Data from the test vector. If the comparison fails and the Mask bit from
the test vector is not asserted, the external Error bit is asserted for the cycle.

The front end of the acquisition circuitry consists of a clocked analog voltage
comparator. The positive edge triggered version of this circuit is shown in Figure 4.15.

The circuit is very similar to a dynamic RAM sense amplifier. The heart of the circuit

CHAPTER 4. PIN ELECTRONICS

DUT Input

¢ Cyc/2
e Sample

AY

40

é D>
®Cyc ;
Figure 4.14: Acquisition and synchronization logic
OlEM; High
Psample _

M1jb_1TM2

Mﬁ]}-

V2

A

Y

VRef

—4EM4

AL
DUT LJ‘ ILJI Vi1
’

I
|

Nfg}———————

Figure 4.15: Clocked analog voltage comparator

CHAPTER 4. PIN ELECTRONICS 41

is a cross-coupled inverter pair consisting of transistors M1 through M4 which can
be decoupled from the power supply rails by transistors M5 and M6. When the
sample clock is low, the inverter pair is disconnected from its supply rails and the
two transmission gates couple the voltage on the DUT test pin and the externally
supplied reference voltage Vggr to the sensing nodes, V1 and V2. After a delay
determined by the Sample Timing Generator, the sample clock rises, isolating the
sensing nodes and connecting the supply rails to the cross-coupled pair. Depending
on the initial conditions impressed on the sensing nodes while the clock was low, the
cross-coupled pair will quickly fall into one of two stable states (1, 0 or 0, 1). This
value remains latched in the sense amplifier until the next time the sample clock falls.

The comparator accuracy using this circuit is better than 50mV.

4.5 Calibration

Calibration is a key feature of the pin electronics circuitry. The on-chip timing gener-
bators are very poor in terms of absolute or even relative accuracy, but they are highly
stable for a given delay setting. In order to achieve sub-nanosecond accuracy, each
timing generator must be calibrated to an external precision timing reference. For the
experimental system, a GPIB programmable pulse generator and a small amount of
board level logic were used to synthesize the three synchronous clocks. The reference
clock was derived from these clocks using a commercial 8-bit programmable delay-line
device. This system provided 1 ns step resolution and fair (5%) overall accuracy.
An important aspect of the calibration system is the amount of on-chip circuitry
required. Since this circuitry must be present in each channel, it is necessary to keep
the real estate required to a minimum. To perform the calibration function, the phase
of a transition on the DUT pin needs to be measured with respect to a transition

on the reference clock. All that is needed is a digital Early/Late indication of the

CHAPTER 4. PIN ELECTRONICS 42

M5|p— —d|me

® Ref

M1 | oy d |Mm2

V1 V2 Late

<
w
1
s
S

g 1
g [|
Figure 4.16: Phase detector

comparison result. By searching for the Early/Late transition using progressively
finer resolution delay steps, the edge of the reference clock can be found to within
the minimum step-delay resolution of the on-chip delay generator. The only per-
channel circuitry needed to perform this operation is a digital phase detector and
some logic that allows the host computer to read the comparison result. Figure 4.16
shows the schematic of the phase detector that was used on the experimental pin
electronics chip. The schematic shown is rising-edge sensitive; an additional circuit
of complementary design is used to calibrate falling edges.

Like the clocked input comparator, the detector uses a modified differential sense
amplifier design, M1 through M4, to detect small timing differences between the DUT
and reference waveforms. Instead of precharging the sense nodes V1 and V2 to some
initial offset, the nodes are both precharged to ground. The power supply for each of
the cross-coupled inverters is connected to an input signal via M5 and M6. The input

which rises first pulls up on its output node which causes the other output node to

CHAPTER 4. PIN ELECTRONICS 43

be clamped. The additional two p-channel transistors at the top of the cross-coupled
stack act as diodes that allow the output of the detector to maintain the comparison
result even when one of the input pulses is very narrow. The output of the comparator
is latched when the reference clock falls so that the result can be sampled by the host
computer.

This circuit exhibits very good phase comparison accuracy, but suffers from one
fatal flaw, which was discovered during testing of the experimental device. When the
DUT output is driving a highly capacitive load or a long signal trace on a PWB, a
fair amount of overshoot can be seen on the DUT pad due to signal reflection. This
overshoot appears as a greater Vps bias on the p-channel devices of the cross-coupled
sense amplifier and results in a phase offset of several nanoseconds in the comparator.
Termination of the signal line could be used to reduce the signal reflection effects,
however, this is not a very desirable solution. A better approach is to use a simple
edge-triggered D-type flip-flop for phase comparison. The implementation shown in
Figure 4.17 exhibits superior rejection of overshoot effects and requires only a slight
increase in layout area. By balancing the gate loadings, the circuit has a uniform
offset of 350 ps between the clock and data inputs when sampling both rising and
falling edges. Since all edges in the system are calibrated using this circuit, the offset
does not appear in the output waveform, and minimal channel to channel skew is
achieved.

For optimal system performance, close attention to skew control is mandatory.
The DUT input to the calibration circuit is sensed directly at the DUT output pad
so that all delays and skews associated with format generation and pad drive circuitry
are compensated. In order to minimize inter-channel skew, a metallic connection is
maintained between the reference clock input pad and all channels on the chip to
eliminate propagation delays. In a multi-chip system, careful attention to board

layout is necessary to assure uniform propagation delays between signal source and

CHAPTER 4. PIN ELECTRONICS 44

CK

=y
=D

T R

Figure 4.17: Schematic of D-type flip-flop

destination. With these techniques, the output waveform can be calibrated to within
the resolution of the timing generators, which is about 600 ps.

The calibration procedure consists of setting the global timing source to the transi-
tion time of the channel-edge to be calibrated. Then, a short sequence of test vectors
are run through the output channel to allow the phase detectors to determine the
relative timing of the output transition with respect to the reference. The calibra-
tion loop is then closed by allowing the host computer system to read the state of
the phase detectors. This information is then used to compute a new setting for the
timing generators. This process is iterated until the best match between the output
transition and the reference edge is found.

As discussed earlier, there are actually four edges per waveform to calibrate (4,
through &4) in the pulsed modes. In order to calibrate each of these independently,
the reference clock is run at one half the tester cycle rate and can be programmed to

transition during either the even or odd cycle. Two different sets of calibration test

CHAPTER 4. PIN ELECTRONICS 45

vectors are used to cause transitions in either cycle so that each § can be separately
calibrated. The RT mode presents a special problem in calibration, since there isn’t a
voltage transition on the output at the transition time unless the output is terminated
to some intermediate voltage. Rather than require this external termination, the out-
put is simply calibrated in another format, either RZ or RO, with the same timing
parameters, and then the format is changed to RT. All paths through the formatter
pass through two gate delays (Figure 4.9), so the edge timing is relatively indepen-
dent of format selection and good RT calibration is achieved. Since the calibration
procedure is performed per pin, the calibration of force channels can be performed
with the DUT installed, which also compensates for mismatched driver performance
due to unequal pin loading.

Calibration of the Acquire section of the channel is performed in a manner similar
to the Force section, but since it is an input device, an indirect method must be used.
First the Force side of the channel is programmed to transition at the desired sample
time, then the sample timing generator is adjusted by the host until the transition is
found. This procedure compensates for skews introduced by the timing generator as
well as for any R-C effect of the input sample-and-hold.

Calibration software written for the experimental pin electronics chip was able
to perform the calibration operation at the rate of about one channel per second.
This could be improved significantly with better calibration algorithms and hardware

assistance in the data transfer.

4.6 Results and Summary

This chapter has shown that the implementation of high-speed, high-accuracy pin
electronics is possible even in a relatively low-speed base technology, such as CMOS.

High resolution, low accuracy delay circuits, combined with closed loop calibration,

CHAPTER 4. PIN ELECTRONICS 46

provide an area-efficient means of attaining accurate per-pin timing generation. Ana-
log CMOS interface circuits, such as drivers, receivers, and comparators, have also
been shown.

An experimental four-channel pin electronics chip which demonstrates these ideas
was fabricated in a 2p, double-metal CMOS technology. This device contained 13K
transistors in a die size of 3.9 mm x 5.3 mm. The layout area required for each
channel was 500p x 2000x. Running at a maximum frequency of 33 MVectors/sec,
the chip dissipated 125 mW with a 5V supply. Calibration routines were written for
the device and were successful in calibrating all edges to better than 1 ns over a wide
range of delays and cycle frequencies.

The following chapter deals with the issue of vector storage. Various compression
approaches are investigated to reduce the die area required by the vector memory, so
that the pin electronics and vector storage sub-systems can be integrated onto the

same chip.

Chapter 5

Vector Storage

5.1 Introduction

The purpose of the vector storage system is to supply the data necessary to drive
the Device Under Test pins. A bi-directional pin driver needs four bits of vector
information to specify all possible combinations of DUT driving and sensing in each
cycle: a force value, a drive/inhibit bit to indicate direction, an expect value, and a
mask bit to indicate if the data sensed by the pin is relevant. Some additional data
may also be stored along with the vector that indicates what set of timing values or
formats should be applied with the vector. Thus, the raw vector width is at least four
times as wide as the maximum number of pins to be tested. For a multi-hundred pin
tester, storing such a wide data format in external RAMS would necessitate a large
number of components and would present considerable bandwidth difficulties as the
design speed of the tester increased. The alternative of putting raw vector storage
on-chip limits the maximum length of a test sequence that can be run due to the
limited space for the on-chip RAM. The solution is to reduce the space consumed by
the vector data through compression.

Compression can be applied to the vectors in various ways. One method is to

47

CHAPTER 5. VECTOR STORAGE 48

combine the semantics of two or more bits of the vector into a single bit. This
reduces the tester flexibility somewhat but allows significant storage savings. This
technique can, for instance, be applied to the force and expect data values. With both
values in the same vector, a tester is able to expect a different value than it forced
within a single tester cycle. While this feature is useful in cases where the drive value
is tri-stated in the middle of a cycle, the cost of storing two data values seems high
compared with the frequency of use of such a feature. The “redundant” data bit can
be eliminated by storing a single data value and simulating the mid-cycle data value
change by using two successive tester cycles.

A second way of achieving data compression is through the use of mapping. By
adding a few bits to the overall test vector for each cycle, an entry in a map table
can be indexed to produce additional data for the vector. This method is useful
for reducing the storage requirements for the control bits such as inhibit and mask.
Within a set of test vectors, inhibit and mask tend to operate uniformly on entire
busses rather than on individual bits, typically resulting in a small number of unique
patterns. By storing these patterns in a map table, a small number of bits can be
used in each test vector to produce all of that vector’s control information, resulting
in considerable savings in vector storage space (Figure 5.1).

Through the use of bit combination and mapping operations, the amount of stor-
age required per DUT pin can be reduced from four bits to only one and a fraction bits.
However, a considerable amount of redundant information still exists in the vectors.
Repeated vector sequences and commonly occurring vectors carry less information
than the bits used to represent them. In order to take advantage of this, a more gen-
eral data compression method must be applied to eliminate the remaining redundant
information. The remainder of this chapter is concerned with the identification and

selection of a suitable compression method.

CHAPTER 5. VECTOR STORAGE 49

Map Test Vector
| I |

Index

:) d

Mask Data Inhibit Data Force Data

Figure 5.1: .)ata compression through mapping

5.2 Compression Alternatives

Selecting a fully optimal coding strategy for test vector compression is not possible
because of the arbitrary nature of the input data stream. It is possible, however,
to arrive at a good selection which will perform well under a wide variety of con-
ditions. The first step in making such a selection is to consider the taxonomy of
compression alternatives shown in Figure 5.2. As seen in the diagram, the initial
classification of compression algorithms distinguishes the special-purpose algorithms
from the general-purpose ones. Special-purpose schemes make use of a priori knowl-
edge of the characteristics of the data stream in order to obtain good compression on
certain classes of input. An example of a special-purpose situation would be a run-
length encoder applied to the binary image data of a printed page. It is well known
that individual scan lines of the image containing mostly uninterrupted background
occur frequently in the data stream for the page. Thus, good results are cbtained
when a run-length encoder is applied. For test vectors, several examples of existing
systems can be found where knowledge of the source data is used to obtain very

high compression results. Memory testers are a prime example. In these devices,

CHAPTER 5. VECTOR STORAGE 50

Compression Methods

T

General Purpose Special Purpose
Statistical Textual Substitution Run Length Memory Pattern

/\ Scan Path Custom Language

Huffman Arithmetic Fiala-Greene Ziv-Lemple
Dynamic Huffman

Figure 5.2: Taxonomy of compression alternatives

detailed knowledge of the data pattern to be applied to the test device is used in
the design of a hardware engine for producing the desired vectors. Since the core of
the vector generation algorithm is captured in the microcode of the engine, a single
compressed “vector” can produce a long sequence of operations. Another example of
a special-purpose compressor is a scan-path pattern generator [Al83]. In scan-path
designs, a large part of the internal state of the test device can be read or written by
putting the device in a special mode that serializes all of the internal flip-flops. The
state of the device is read or written by freezing the other device inputs and clocking
the scan-path a single bit at a time. Since the scan-path is used repeatedly during
testing to partition internal logic blocks, providing special hardware to perform the
serial to parallel conversion of the scan path data (or alternatively a parallel to serial
conversion of the vector data) results in a single vector being used for many clock
cycles.

Compression methods such as run-length and scan path that rely on specific knowl-

edge of the source data do very well for their intended tasks, but are restricted in the

CHAPTER 5. VECTOR STORAGE 51

types of devices that can be tested. A second, less specific, category of special-purpose
compression schemes is the use of custom languages for compact representation. In
keeping with the printed page analogy described above, a page description language
such as Interpress {Xe86], can be used to specify the contents of a printed page. Such
a high-level representation would yield a significant reduction in data beyond either
the page bit-map or the run-length encoding. This reduction occurs because the
structure of the data is captured at the source level, rather than in its compiled form.
It seems feasible to design a vector description language using a set of primitive op-
erators, such as clocks, counters, shifters, and so on. A language of this nature could
have all of the expressive power of a conventional programming language, allowing an
extremely efficient representation of the “object code” vectors. The burden of such
a language, however, falls on the implementation of the decompressor. A single chip
solution seems infeasible.

A more universal approach to vector compression is to employ general-purpose
_compression methods. While such schemes may not achieve the compaction efficiency
that is obtained with special-purpose compressors on specific tasks, their wider ap-
plicability makes them more attractive. General-purpose methods can be partitioned
into two classes: statistical and textual substitution methods. Statistical methods
obtain compression efficiency, in general, by analyzing the amount of information, in
an information theory sense, contained in source data. They then reduce the source
to a minimal representation of the same data without loss of information. Textual
substitution methods, on the other hand, use a linear history of the un-encoded source
stream to adapt to the context of the source. Using an index to extract segments of
the history stream, they obtain compression efficiency by re-utilizing portions of the
un-encoded data. To more fully understand these alternatives, a basic example of
each method is discussed in detail below.

Perhaps the purest example of a statistical method is Huffman coding [Hu32].

CHAPTER 5. VECTOR STORAGE 52

Huffman coding substitutes codewords for symbols (vectors) from the uncompressed
source such that the bit length of the codeword for each symbol is inversely related to
the frequency of occurrence of that symbol in the data stream. Frequently occurring
symbols have very short codewords, while infrequently occurring symbols have longer
ones. This technique results in a compression factor which is limited by the entropy

of the source. The entropy of a data stream is defined by the sum:
n-1
Ho=-> Pz =¢)log, P(z = ¢;),
i=0

where z is a random symbol from the source and ¢; ranges over all of the symbols of

the source alphabet. Each coefficient:
- log, P(= c:),

represents the number of bits necessary to encode the symbol ¢;, while the weighted

term:

—P(z = ¢;)log, P(z = ¢;),

represents the contribution of ¢; to the total number of bits, on average, of an optimal
codeword. Thus the entropy of a set of symbols represents the minimum average
number of bits necessary to represent each source symbol. The optimal compression

ratio then is obtained by:

)) symbol length
compression ratio = ——————,
entropy

The average length of the codewords assigned in a Huffman encoding is usually
only an approximation to the average length determined by the entropy. This is due
to the fact that the codewords must be represented by an integer number of bits, while
the entropy is a real number. Also, the decompressor implementation may limit the
maximum length of a codeword, forcing a slightly sub-optimal codeword selection.

The details of the algorithm for generating codeword assignments are not discussed

CHAPTER 5. VECTOR STORAGE 53

here, but are clearly illustrated by Knuth [Kn68]. The problem of compression loss due
to fractional bits has been solved by a technique known as Arithmetic coding [Pa76].
This technique, however, results in only an asymptotic improvement in the overall
compression while substantially increasing the complexity of both the compressor and
decompressor.

When computing the overall compression ratio for a Huffman compressed stream,
the size of the codebook, which contains the codeword-symbol pairs, is normally
counted as part of the compressed data. In the VLSI implementation of the decom-
pressor, the codebook resides in a special memory which performs the codeword to
symbol association. Since this memory is distinct from the compressed data memory,
the actual compression ratio can be computed solely on the basis of the space occu-
pied by the codewords. Thus, ratios very close to that predicted by the entropy can
be obtained. The downside of having this separate memory is that the codebook can
exceed the available space, thus imposing an additional limitation on the maximum
number of vectors that can be compressed.

The Huffman algorithm approaches an efficiency determined by the theoretical
limit of the entropy. The entropy discussed so far, however, is only the zeroth-
order entropy. In computing the entropy, each symbol of the input is considered in
isolation; there is no memory of the ordering of the characters in the source. Greater
compression efficiencies (lower entropies) can be achieved by considering the time-
ordering of the input symbols in addition to their frequencies of occurrence. The
first-order entropy, for example, is given by:

n-1
H, = - .ZO P(z = ¢;) P(y = ¢cjlz = ¢;)log, P(y = ¢jlz = ¢;).
ij=
Here, zy is a randomly chosen pair of adjacent symbols in the source stream. If
repeated occurrences of adjacent symbols exist in the stream, then the first-order en-

tropy will be lower than the zeroth-order entropy of the stream and better compression

CHAPTER 5. VECTOR STORAGE 54

is possible. Huffman algorithms which take advantage of higher-order entropies are
complex [Kn85]. A much simpler way to take advantage of higher-order coherency
is to employ a different class of general purpose compression method, the textual
substitution compressor.

The key idea behind the textual substitution compression algorithm is to encode
output stream segments as references to previously occurring segments. An additional
mechanism allows for the inclusion of literal stream data when the segment to be
output has not occurred in the recent past. Ziv and Lempel [ZL77] have shown that
this technique approaches the efficiency bounds of the fixed codebook schemes, such
as Huffman, which have full a priori knowledge of the source. Recently, Fiala and
Greene [FG88] have described several methods for improving the original encoding of
Ziv and Lempel by employing separate commands for the Copy and Literal operations
and by making the format of these commands adaptive to the context of the source.
They also describe a scheme (A1) which is explicitly tailored for simplicity and ease

of decompression.

5.3 Compression Requirements

The number of proposed data compression schemes is large, which could poten-
tially make the selection of a suitable algorithm a difficult problem. Fortunately,
the physical constraints imposed by the need to implement the decompressor in a
small amount of hardware, in addition to the system level requirements, narrows
the search space considerably. The criteria used for evaluation of candidate compres-
sion/decompression schemes can be divided into three major categories: architectural

implications, bandwidth considerations, and compression efficiency.

CHAPTER 5. VECTOR STORAGE 55

5.3.1 Architectural implications

It is assumed that the compression operation will take place on a general purpose host
computer system, so the architectural implications deal only with the decompressor
and the inherent qualities of the compressed data. The main requirements of the

system architecture are:

Good compression relative to the decompressor die area
This encompasses a number of different compressor requirements. For minimal
die area, both the internal storage requirements and the control complexity of
the decompressor must be minimized. This implies a narrow data path, free of
excessive pipelining or buffering. Control is reduced by limiting the number of
codewords and fixing the size and position of the command and control fields.
In general, since each gate in the decompressor takes away die area otherwise

available for raw vector storage, the cost had better be justified.

Minimal critical resource restrictions in the decompressor
Critical resources are items such as RAM space or FIFO depth in the decompres-
sor which may be exceeded during the course of the decompression operation.
Ideally the only critical resource in the decompressor is the compressed vec-
tor memory itself. Having additional critical resources can lead to pathological

cases where vector depth is limited by a resource other than the vector memory.

Limited branch capability
Performing either conditional or unconditional jumps within the test vector
sequence is frequently desirable. The compression scheme should allow branches
to predetermined target locations. It is acceptable for some local compression

degradation to occur in the region of the target as a result of the target insertion.

CHAPTER 5. VECTOR STORAGE 56

5.3.2 Bandwidth considerations

The bandwidth considerations of the system deal the decompressor’s ability to deliver
a minimum decompressed output vector rate given the limited input bandwidth of
the compressed vector storage RAM. If the decompressor is treated as a black box,

the only requirements are on the decompressor input and output:

Limited number of decompressor input bytes required per cycle
The length of the input stream consumed by the decompressor within a single
clock cycle must have a fixed maximum length. This determines an upper bound
for the number of compressed data words which must be prefetched to execute

any decompression operation within a single clock cycle.

Minimum decompressed output rate
The decompressor must guarantee that at least one decompressed data word
is produced during each clock cycle. This removes any restrictions on local
minimum compression rates and obviates the need for any sort of data FIFoO. It

also allows the decompressor clock to be the same as the tester cycle clock.

5.3.3 Compression efficiency

The compression efficiency of the system is the most subjective of the system require-
ments. Compression methods are often tuned for a particular style of input data and
can perform very poorly on “unfamiliar” data. For test vectors, certain patterns are
expected to occur frequently, such as repeated loops and fixed pins. The compression
scheme should take advantage of these situations and produce high compression rates
without prior knowledge of the source code. The compressor should adapt quickly
to changes in the character of the input stream. In the worst case situation of ran-
dom input data, the compression ratio should not be much less than one. These

requirements are summed up as follows:

CHAPTER 5. VECTOR STORAGE 57

Good maximum compression for steady state inputs
Test vectors are often repeated many times. The compression algorithm should
take advantage of this and produce asymptotically high compression rates for

steady state inputs.

Good compression across the pins
Some pins may remain idle for many cycles while others within the same vector
transition frequently. The performance of the compressor should be closely
related to the number of active pins. This allows an automatic tradeoff between

vector width and depth.

No a priori knowledge of the source code
Some compression algorithms use a static analysis of the source to determine
fixed data which must be preloaded into the decompressor. This is undesirable,
because of critical resources and the lack of ability to adapt to source context

changes.

Adaptive
For a compression algorithm to be adaptive, good results must be achieved
on a wide variety of source data contexts. This includes commonly occurring
patterns such as clocks, counters, shifting bits, etc. The compression algorithm

should also quickly adapt to frequent contextual changes in the input stream.

Degrades gracefully for random input data
The overhead of the encoding scheme should be such that the result of com-
pressing a highly random data stream is not significantly larger than the original

stream. Pathological worst cases should not exist.

CHAPTER 5. VECTOR STORAGE 58

5.4 Model Selection

Given the taxonomy of compression methods and the requirements for a good vector
compression/decompression scheme described above, the search space of compression
methods can be reduced considerably. Most of the special purpose methods can be
dismissed quickly either because they are too problem-specific or because they have
pathological cases which result in very poor performance. The one special purpose
method which does seem somewhat attractive is the idea of a custom, high-level
test vector language, but there are two basic problems with this approach. First,
knowledge of the expected vector patterns must be applied in the selection of the set
of primitives. This biases the compression scheme in favor of certain types of data.
This limitation can by reduced by increasing the size of the primitive set. However, the
richer the set is made, the more complex the decompressor must become. The second,
perhaps more difficult, problem is that of source capture. In order to obtain vectors
encoded in the source language, either a compressor must be devised, which can
transform existing ones and zeros vectors into the source language (a de-compiler), or
a new programming environment must be built to allow future patterns to be coded
in the source language. Each of these problems represents a substantial technical
challenge well beyond the scope of this work. Furthermore, even if such options
existed, their solution would likely be impractical if a simpler compression scheme
could be identified.

In the realm of general purpose compression methods, it was not possible from an
abstract model of the statistical and textual substitution methods to determine which
represented a better solution to the compression problem. It was therefore decided to
examine the simplest instance of each method in more detail to determine the relative
tradeoffs between the two. The statistical method implementation selected for study

was the basic Huffman encoder. This model is the closest to the entropy theory upon

CHAPTER 5. VECTOR STORAGE 59

which all statistical encoders are based. For the textual substitution method the
Al encoding proposed by Fiala and Greene (FG) was selected, as this represented
a slight performance improvement over the original Ziv-Lempel textual substitution
model with no additional complexity. The comparison between the two methods was
based on an analysis of the relative compression efficiencies of the encoding and also

on the relative merits of the hardware implementation of the decompressors.

5.5 Decompressor Architectures

5.5.1 Huffman decompressor

A static Huffman encoder takes a set of source symbols of fixed size and maps them
into a set of variable length codewords. The compressed stream is a concatenation of
these codewords which have been regrouped into words whose fixed length is dictated
by the wordsize of the system. In order to parse a stream of this nature, a compressed
Hufiman decoder must be able to re-tokenize the codewords (across machine word
boundaries) and map these back into the original source symbols. A block diagram
of an architecture for performing such a transformation is shown in Figure 5.3.

The decoder consists of four main sections: vector storage, prefetch buffer, code-
word map, and control. The vector storage is a random access memory which holds
the entire compressed data stream. The width of the memory must be at least as great
as the longest anticipated codeword in order to meet the requirement of a minimum
decompressed output rate of one vector per decompressor cycle. The depth of the
memory is limited only by the available chip real estate. The data delivered by the
vector RAM is held in the prefetch buffer. The prefetch buffer ensures that two suc-
cessive compressed words are always available to the shifting network so that the next
complete codeword can be extracted, even if it crosses word boundaries. The control

section keeps track of the position of the compressed data within the prefetch buffer

CHAPTER 5. VECTOR STORAGE

Vector
Storage

Prefetch
Buffer

Codeword
Map

Compressed
Data Br. Target q
In l
Compressed Address
Vector € Counter]
Ram
A 4 J
=7 >
T
End
Register <€
Register <€
Codeword
alignment
| and prefetch
control
Shifter
L d
Codeword Data Length
CAM RAM RAM
Register
Decompressed
Data
Out

Figure 5.3: Huffman decoder block diagram

60

CHAPTER 5. VECTOR STORAGE 61

Bit Bit’

DataWL T T

ji o
1

l Match'

ValidWL .L _L
Match [E< lj

Logical representation Transistor level representation

Figure 5.4: Codeword cAM cell schematic

pipeline and also takes into account the length of the current codeword. With this
information the bit address of the first bit of the succeeding codeword can be deter-
mined; it is then extracted and left-justified by the shifter. The output of the shifter,
then, is a concatenation of the next codeword, contained in the most-significant bits,
with succeeding codeword or codewords in the low order bits. The purpose of the
codeword Content-Addressable Memory (CAM) is to match the unique codeword pre-
fix extracted by the shifter and ignore the remainder of the data. To implement this
function, each cell of the codeword CAM consists of two bits of storage (Figure 5.4).
One of these bits stores a value that the cell uses to match with the shifter output
data, while the other bit encodes whether or not the caM cell should participate in
the matching of the codeword at all. In operation, each line of the caM is loaded with
a different codeword prefix in the most significant bits of the caM. If the codeword

held in a line is shorter than the maximum length codeword, then the low order bits

CHAPTER 5. VECTOR STORAGE 62

of the line will have their Valid bits cleared; the rest are asserted. In the first half
of the cycle, the Match line is precharged high, while the Bit and Bit’ lines are dis-
charged to ground. Once precharge has completed, the Bit and Bit’ lines are driven
with the codeword data extracted by the prefetcher. Each cAM cell then performs
the comparison operation of its bit. If the cell does not match and the Valid bit is set,
then the Match line is pulled low. After all the compare operations have completed,
one Match line, corresponding to the unique prefix code applied to the inputs, will
remain high. This one high Match line is then used as a word select line in the Data
and Length RAMS. The Data RAM supplies the decompressed output symbol which
becomes the next word of the decompressed output stream. The Length RAM informs
the control logic of the number of bits which were actually contained in the codeword.
This allows the control logic to compute the bit-address of the most significant bit of
the next codeword so that the shifter can be set up for the next decompressor cycle.
The length information contained in the Length RAM is statically loaded at the same

time that the codewords and symbols are loaded in the cAM and Data RAM.

5.5.2 Fiala-Greene decompressor

The FG encoding takes a set of source symbols of variable length and maps them into
a set of variable length codewords. The compressed FG stream consists of a sequence
of command words interspersed with literal data words. Two types of commands
are used: Copy and Literal. The Copy command has two parameters: the length
of the run of symbols to be copied and their position in the history buffer. The
Literal command needs only one field: the length of the run of characters which
follow in the compressed stream. When Copy is interpreted, a sequence of source
symbols corresponding to the number specified by the length field is transcribed
from the history buffer of the decompressor to the output stream. The index of the

first character in the buffer is indicated by the position field. At the end of each

CHAPTER 5. VECTOR STORAGE 63

decompressor cycle, the current output symbol of the decompressor is copied into the
least recently written location of the history buffer so that the buffer always contains a
history of the most recently decompressed data. The block diagram of an architecture
which implements these functions is shown in Figure 5.5. The vector storage RAM
and prefetch buffer are nearly the same as those described for the Huffman decoder.
The principal difference is that the shifter needed to extract the command word from
the prefetch buffer has been replaced by a pair of multiplexors. In the Huffman
scheme, codewords contain a variable number of bits, which necessitates a shifter
which operates at the bit level. The boundaries between codewords and literal data
in the FG scheme are all at the word level which makes the selection of the next
operand somewhat simpler. In order to meet the minimum data delivery requirement
of one word per clock cycle, the RAM word width must be at least as great as the
number of words required for a single Literal command and one word of literal data.
Since the Copy and Literal command words are the same length, this guarantees
that Copy commands can meet the minimum data delivery requirement as well, since
only the command itself is needed to produce an output symbol. There are two
outputs of the prefetcher in the FG scheme: the next command and a literal data
word. The command is interpreted by the control logic to determine whether the
next decompressed output word should come from the history buffer or the literal
data stream. The multiplexor at the output of the history buffer selects between
these two alternatives. Unlike Huffman, the control logic in the FG decoder can
determine, merely by decoding the current instruction, where the next instruction

occurs in the prefetch buffer. This obviates the need for the RAM length field in the

history buffer.

CHAPTER 5. VECTOR STORAGE 64

Compressed
i Data L BT 4
In r. Target
Vector J’
Storage Compressed Address
Vector < Counter]
Ram
L R 7
v
=7
End
Register <«
Prefetch ‘ -
Buffer Register <
Command
selection
1 and prefetch
control
] DataPtr N Mux Mux A
[7
Literal Cmd
History x
Buffer . History
Write | Buffer . Read Address
Address Ram
v
- Mux €
D> Register
Decompressed
Data
¢ Out

Figure 5.5: Fiala-Greene decoder block diagram

CHAPTER 5. VECTOR STORAGE 65

5.6 Compression Efficiencies

Before the analysis of the two compressor/decompressor models could be performed,
it was first necessary to identify the parameters for the decompressed data format
and also to select a set of benchmark test vectors. The format required by the de-
compressor in the actual tester chip consists of a four bit control field and a sixteen
bit data field (this is described in more detail in Chapter 6). The control information
determines which bits are inputs and which are outputs and also which bits partic-
ipate in the input comparison operation. This data was not available for ali of the
sample vector files, so the comparisons were made only on the basis of the compress-
ibility of the data portion of the vectors. It is expected that if the control data were
included, the compression ratios would actually improve, since there is a high degree
of correlation between the control and data fields of a vector. A suite of sixteen test
vector files was obtained from industrial sources to benchmark the performance of the
two compressor models. The vector files contained traces from three different chips, a
floating point multiplier (FP), a micro-processor execution unit (EU), and a display
controller chip (DC). These three chips represent three substantially different vector
styles: the vectors from the floating point unit contain largely shifting data patterns
used to test the multiplier, the execution unit vectors contain short repeated instruc-
tion sequences, and the display controller vectors contain mostly random logic test.
The compression results for each of the three chips using a static Huffman coding are
shown in Table 5.1.

As seen in the table, the number of unique codewords in the vector files varies
greatly. EUO requires a rather large number of entries (434) in the codeword table. If
this value were to exceed the actual size of the table this could limit the total number
of vectors that could be compressed. Another interesting point is that the entropy

does not necessarily correlate with the number of codewords. This can be seen by

CHAPTER 5. VECTOR STORAGE

‘Data-file Vectors | Codewords Entrop); Coﬂmpréssion
- FPo 2112 47| 511 0.319
FP1 2112 a9 5.78 0.361
EU0 4634 434 5.44 0.340
EU1 4634 51 2.92 0.182
EU2 4634 58 3.09 0.193
EU3 4634 176 3.51 0.219
EU4 4634 49 2.89 0.180
EUS 4634 2 1.00 0.063
DCo 1223 2 0.64 0.040
DC1 1223 7 1.71 0.107
DC2 1223 9 2.87 0.179
DC3 1223 119 5.00 0.312
DC4 1223 127 5.18 0.324
DC5 1223 67 3.99 0.250
DCé6 1223 155 5.47 0.342
DC7 1223 126 4.85 0.303

Table 5.1: Static Huffman coding

comparing the data from FP1 and EU0. FP1, which requires a rather small number
-of codewords, has the highest entropy of any of the vector sets, even EU0. This is
due to the fact that while EUO has many unique codewords, most of them occur very
infrequently, so that the few which do occur often can be coded with relatively few
bits.

In the Huffman encoder, there are no parameters that can be used to vary the
compression efficiency. The codeword table is simply made as large as possible to
avert overflow. This is not the case for the FG encoder. There are, in fact, several
parameters which can be adjusted io maximize efficiency: the size of the history
buffer, the size of the codewords, and the rules used by the compressor to select the
encoding strategy. The size of the history buffer in the FG model has the most direct
impact. Ideally, the larger the buffer the better the efficiency, but as more space is

consumed by the buffer, less is available for the compressed vector memory storage.

CHAPTER 5. VECTOR STORAGE 67

Also, as the size of the buffer is increased, the field lengths in the compressor code-
words must expand to accommodate the varying number of buffer address bits. This
results in additional overhead in the codewords, which in turn reduces the overall
compression. Thus, a point of diminishing returns exists where the average efficiency
actually decreases as the buffer is made larger. A number of experiments were con-
ducted using various parameters for the size of the instruction words and the length
of the history buffer. For the sake of simplicity in the decompressor, the Copy and
Literal command were assumed to always be coded in equal length words. Since the
Copy command contains two parameter fields to the one of the Literal command,
Copy determines the coded command word width. Table 5.2 shows the various buffer

sizes used in the experiments and the corresponding field sizes.

Buffer | Length Position | Total
Size Field Field | Bits

32 3) 8

64 4 6 10

128 4 7 11

256 4 8 12

512 4 9 13

| 1024 4 10| 14

Table 5.2: Copy command parameters

The results of the compression experiments are shown in Table 5.3 and the two
graphs, Figure 5.6 and Figure 5.7. As can be seen from the last column of the table,
the maximum compression is not always achieved with the largest history buffer.

Table 5.4 shows the number of times each of the buffer sizes produced the optimum
compression efficiency for the sixteen benchmark vector sets. As can be seen from
these results, there does not seem to be a strong correlation between the buffer size
and its compression efficiency. This is not too surprising, since the test vector data
is basically binary data much like the BF data set used in the experiments by Fiala

and Greene. In their results, they observed fairly little sensitivity of the compression

CHAPTER 5. VECTOR STORAGE 68

_ 1.0 r

cssessnnsnasancen FPQ

——emcmm— P

- se sa xe es EUO

—_—rem = o EU1

« » s & « & EU2

07 e mmr mme e EU4

-— emam —— EUS

ey 9 @
e s as ss s BE
. as s

.
.® .

04 - .

02 p° - ~,

R]

*a
~y . . - andsebefustads, L]
0.1 - .;\:...-.-.:--..J,"‘- _..'...-.'—-'--.--\l:"lh._i'__'.‘:__,'-.iﬁb-'-

— Sye esme mme mEme e

N e wmm mee eum mas emm -—— v W -— e e —

|] i i 1)

0.0
32 64 128 256 512 1K 2K

Figure 5.6: FG compression vs. buffer size: FP and EU

CHAPTER 5. VECTOR STORAGE

1.0

0.9

0.8

07

0.6

0.5

0.4

0.3

0.2

0.1

0.0

B — - .- ~ —_
e+ " e mme s wme O
e o~~~) : o
P . - —— " - .
S NS

..
"
L
LR

LI) .
*a 44 en s Em " re W,
* es ws a8 ws

—
~ e,
— L)
'5.—-—-—-—.—.—-—-—-~.‘
Yy,
gy g g S 8 R WD

69

DCO
DCH
DC2
DC3
DC4
DC5
DC86

DC7

32 64 128 256 512 1K

Figure 5.7: FG compression vs. buffer size: DC

2K

CHAPTER 5. VECTOR STORAGE 70

File| 32| 64| 128] 256 | 512 1024 | Optimum
- FP0 | 0.149 | 0.107 | 0.095 | 0.102 | 0.108 | 0.104 | 128
FP1 | 0.175 | 0.089 | 0.095 | 0.102 | 0.097 | 0.103 64
EUO | 0.429 | 0.457 | 0.465 | 0.473 | 0.481 | 0.392 1024
EU1 | 0.121 | 0.088 | 0.085 | 0.090 | 0.095 | 0.096 128
EU2 | 0.212 | 0.180 | 0.104 | 0.107 | 0.112 | 0.109 128
EU3 | 0.218 | 0.228 | 0.243 | 0.245 | 0.259 | 0.196 1024
EU4 | 0.100 | 0.067 | 0.070 | 0.075 | 0.079 | 0.084 64
EU5 | 0.072 | 0.042 | 0.046 | 0.051 | 0.055 | 0.059 64
DCO | 0.082 | 0.054 | 0.058 | 0.060 | 0.059 | 0.064 64
DC1 | 0.114 | 0.092 | 0.092 | 0.093 | 0.075 | 0.080 512
DC2 | 0.140 | 0.116 | 0.105 | 0.110 | 0.098 | 0.099 512
DC3 | 0.473 | 0.487 | 0.502 | 0.454 | 0.435 | 0.394 1024
DC4 | 0.261 | 0.246 | 0.251 | 0.253 | 0.248 | 0.244 1024
DC5 | 0.254 | 0.252 | 0.259 | 0.269 | 0.268 | 0.268 64
DC6 | 0.451 | 0.470 | 0.475 | 0.487 | 0.406 | 0.406 512
DC7 | 0.448 | 0.468 | 0.440 | 0.447 | 0.370 | 0.372 512

Table 5.3: FG experimental results

ratio to buffer size for a binary bootfile. The important point that can be extracted
from these results is that buffer sizes as small as 64 entries can produce reasonable

compression results.

Buffer | Optimum
Size Hits
32 0

64 5
128 3
256 0
512 4
1024 4

Table 5.4: Number of optimum efliciency occurrences vs. buffer size

CHAPTER 5. VECTOR STORAGE 71

5.7 Analysis of Results

Based on the compression efficiency analysis and the details of the decompressor
architectures, a one-to-one comparison of the Huffman and Fiala-Greene methods

can be made using the requirements discussed in Section 5.3.

5.7.1 Architectural comparison

Good compression relative to the decompressor die area
The Huffman decompressor definitely suffers from the fact that the codebook
must be made as large as possible to avert overflow problems. From the bench-
mark test cases, the desirable length appears to be at least several hundred
entries. The FG history buffer, which is roughly analogous to the Huffman
codebook, appears to work quite well even with as few as 64 entries. Further-
more, the Huffman entries are nearly twice as long, due to the caM, and are
substantially more complex. This severely limits the RAM size available to store

the compressed vector data.

Minimal critical resource restrictions in the decompressor

Codebook limits in Huffman. None for FG.

Limited branch capability
Branching is feasible in both methods, although each requires some post process-
ing of the compressed stream. To simplify the hardware in both architectures, it
is desirable to have the codewords of the compressed data stream word-aligned
at both the branch End address and the branch Target address (Figure 5.8).
This serves two purposes. First, it guarantees that the codeword at the branch
Target will be fully contained in a single fetched word so there are no problems

associated with exceeding the data bandwidth of the vector RAM. Secondly,

CHAPTER 5. VECTOR STORAGE

Start

Target-1

Target

End

End +1

Case-l l

Codeword (aligned) |

Case-llll

Codeword (aligned) |

Figure 5.8: Branch operation

Case-ll

72

CHAPTER 5. VECTOR STORAGE 73

it guarantees that the decompressor sees a uniform data stream regardless of
which path is taken through the Target and End areas. Figure 5.8 shows three
cases. In Case-I, the decompressor is executing code in the block before the
target address. Since the code stream is contiguous at the Target, no special
action is needed by the decompressor when the Target address is crossed. When
the decompressor reaches the End address and the branch is taken, Case-II, it
has exhausted all of the bits at the End address (since End+1 is by definition
a new codeword). A fetch of the data at the Target address will merge neatly
into the compressor data stream. In the case where the branch is not taken,

Case-III, the resulting stream is similar to Case-I.

This technique allows conditional branches of arbitrary length. However, a few
subtleties have to be dealt with. In either Huffman or FG coding, a method is
needed to implement word-alignment of codewords. This can be accomplished
in Huffman by substituting existing codewords in the data stream with new
codewords whose bit-length is based on the length of the required pad bits.
The cost of this method is a few entries in the codebook and a slightly lower
compression ratio. In FG coding, the padding need only be done on a byte
basis, since there is no bit-level coding. To vary the byte-length of the coded
stream, existing codewords are broken up into a sequence of less compact code-
words. A Copy command of length three, for example, can be broken in three
Copy commands of length one, thereby consuming three additional bytes in the
stream. Literal commands can likewise be divided, if sufficient Copys are not
present in the stream. An additional complexity encountered when branching
in an FG code stream is that the state of the history buffer is different each time
the block between Target and End is executed. The compressor must therefore

assume that the content of the history buffer is invalid, i.e., it may not issue

CHAPTER 5. VECTOR STORAGE 74

any Copy commands at the start of each of the three blocks (pre-Target, Tar-
get to End, post-End). At worst (all literal data needed to refill buffer), this
consumes space in the compressed stream that is three times the history buffer

size to reestablish the state of the buffer.

5.7.2 Bandwidth comparison

Limited niumber of decompressor input bytes required per cycle
Both of the alternative compression methods do well. Both methods can limit

the maximum codeword length, although Huffman has a slight compression loss.

Minimum decompressed output rate
Each of the architectures delivers one output vector per cycle. The FG scheme
can be more heavily pipelined since the processing of the current instruction
does not affect the fetching of the next. In Huffman, the path through the
CcAM, Length RAM, and shifter must be evaluated within a single clock cycle.

This will be the limiting factor in Huffman performance.

5.7.3 Compression efficiency comparison

Good maximum compression for steady state inputs
Both of the alternative compression methods do well. For Huffman the maxi-
mum compression is the minimum codeword length divided by the output sym-
bol length. For FG, it is the copy length divided by the length of the maximum

number of copied words.

Good compression across the pins

Both of the alternative compression methods do well.

CHAPTER 5. VECTOR STORAGE 75

No a priori knowledge of the source code

True for FG, not true for Huffman.

Adaptive
The FG decompressor is by nature better at adapting to contextual changes in
the source code because the contents of the history buffer are constantly chang-
ing. The Huffman method utilizes fixed data which has been pre-computed and
downloaded into the decompressor. Methods exist for dynamically changing the

Huffman codebook, but these add substantially to the complexity of the design.

Degrades gracefully for random input data
In the presence of random inputs, the FG decompressor does much better than
the Huffman one. For long sequences of data that contain no repeated infor-
mation, FG simply codes the string in terms of the maximum length literal
operation. The worst-case compression, then, is the ratio of Literal command
plus data to data alone. Since the maximum literal length is quite long (typi-
cally 64 output words), the value for the worst-case compression is very near one.
Huffman, on the other hand, is limited by the size of the codebook caM/RAM,

so the compression ratio is undefined.

5.8 Conclusions

Starting with an initial four vector bits per DUT pin, it has been shown that the
control and data fields of a vector can be packed into slightly more than one bit,
on average, with little impact on the flexibility of the tester. Further reduction can
be achieved through general data compression techniques. A number of compression
methods have been discussed and two different compression methods, Huffman and

Fiala-Greene, were examined in greater detail for their applicability to the problem.

CHAPTER 5. VECTOR STORAGE 76

The compression results for both methods looks promising. The average compression
achieved over a suite of test vectors using the Huffman method was 4.3 : 1, while
the average for the FG method was 4.7 : 1 (taken across all buffer sizes). The
main disadvantages of the Huffman code are the size of the codebook caM/RAM/
and the poor compression performance for random input data. The real test of the
feasibility of using compression is to produce a full decompressor implementation and
determine the relative space efficiency of utilizing the tester die area for additional
storage capacity versus using it for decompression logic. The next chapter presents
the design of a complete integrated tester chip which employs some of the compression

concepts discussed here.

Chapter 6

Implementation

6.1 Introduction

The preceding chapters have described the fundamental ideas for building integrated
tester systems. Chapter 3 discussed the basic system architecture and re;uirements,
while Chapters 4 and 5 covered in some detail the problems of pin drive and vec-
tor storage. This chapter brings together these ideas in the design of Testarossa, a
complete integrated tester chip. Testarossa implements all of the functions of pin
electronics, vector storage, decompression, error capture, and test control for sixteen
DUT channels. By integrating all of these tester functions on a single piece of silicon,
it is possible to build extremely compact testers, thereby eliminating many of the

electrical problems associated with larger test systems.

6.2 System Overview

The goal in designing Testarossa was to produce a single device that could be used
as a building block for constructing high speed, high pin-count, VLSI test systems.

Figure 6.1 illustrates the configuration for a 256 pin test system using the Testarossa

7

CHAPTER 6. IMPLEMENTATION

D

Host connector

LU

Interface logic

T

Reference oscillator

Testarossa chips

/

164"

I

16 X 16 PGA

D <

/

10cm.

DuT

e

Figure 6.1: Single board integrated test system

78

CHAPTER 6. IMPLEMENTATION 79

chip. The system consists of sixteen tester chips, each providing sixteen I/O chan-
nels. The chips are arranged in a circular fashion around the central DUT, thereby
equalizing the lead lengths, while at the same time maintaining a total trace length
of less than ten centimeters. This limits the time-of-flight of a signal between the
DUT and the pin electronics to only a few hundred picoseconds, obviating the need
for terminated transmission lines. The short trace length also provides a stray load
capacitance on the DUT outputs on the order of only a few picofarads. This ensures
high-fidelity waveform transmission for both driven and sensed DUT signals with a
minimum of signal loading.

As illustrated in Figure 6.1, the number of support components necessary to bind
the system together is small, consisting of a few transceivers to buffer the host signals
and the necessary chip select logic for addressing individual tester chips. The only
additional logic necessary is that required to generate the reference clock. The figure
shows a single chip solution to generating this signal, though since only one copy of
the generator is required, it could also be produced by a commercial pulse generator
or a collection of standard components. The real difficulty with this signal is not its
generation, but rather its uniform distribution to all of the tester chips with minimal
skew. Minimal skew in the reference clock distribution network is essential since all
timing calibration is performed relative to the reference clock input of each tester chip.
The physical layout of the tester chips is optimized for the radial DUT signals which
tends to make the distribution of such bussed signals difficult. There are, however,
several solutions to this problem, and Figure 6.2 illustrates a particularly elegant
one. By distributing signals differentially in a counter-rotating fashion, each chip in
the loop can detect a transition with zero skew relative to other chips in the loop
simply by receiving the two counter-rotating signals with a differential amplifier. By
making the rise time of the differential signals slightly greater than the propagation

time around the loop, the crossover point is the same independent of position on the

CHAPTER 6. IMPLEMENTATION 80

ctr-ck-wise
1 o'clock
receiver Ck-wise
ctr-ck-wise
6 o'clock
receiver ck-wise
ctr-ck-wise
11 o'cleck
receiver T ck-wise

Cross-over

Figure 6.2: Skew elimination by counter propagating signals

loop [CC8T7]. The remainder of the bussed clock and control signals that connect the
chips in the loop are neither skew nor delay sensitive and thus can be routed in the

straightforward manner.

6.3 Testarossa Architecture

The Testarossa chip is composed of three main parts: the pin electronics, the decom-
pressor and associated sequence control logic, and the vector storage RAM (Figure 6.3).
The pin electronics section provides 16 I/O channels employing the timing genera-
tion, formatting, driving, and sampling techniques discussed in Chapter 4. Due to
limited die area though, only one set of calibration and format selection registers was
implemented.

The vector storage RAM was designed using a dynamic, self-timed, one transistor
per cell, folded bit line RAM architecture’. The 100 fF storage cell was constructed
using an 11p X 11y gate-oxide capacitor. This resulted in an overall cell size of 14

X 20p with a 2y technology. This RAM architecture allowed a 1K x 40 bit RAM

'Many thanks to Russell Kao who did the simulation and layout of a prototvpe version of the
DRAM.

CHAPTER 6. IMPLEMENTATION 81

15 —>
Vector Storage DRAM
1K X 40 14 ——> DUT Pins
13 —>
N
Decompressor :
64 X 29
[Force/Expect Data Pin :
Electronics !
Control Map
16 X 32
Controt o
Logic I Inhibit Data !
Mask Data
Acquire Data y
[N R
Error Buffer 1 L—> DUT Pins
Data Path
16 X 32 0 —>

Figure 6.3: Block diagram of Testarossa chip

CHAPTER 6. IMPLEMENTATION 82

Entry K 16 bits K 16 bits S

o] Inhibit Vector 0 Mask Vector 0

1 Inhibit Vector 1 Mask Vector 1

2 Inhibit Vector 2 Mask Vector 2

| | |

I | |

1 ! 1

15 Inhibit Vector 15 Mask Vector 15

Figure 6.4: Control map

to be implemented in a die area of only 3.0 mm X 5.6 mm and provided a nominal
decompressed vector storage capacity of 10K vectors. The selection of dynamic RAM
for vector storage was a rather risky decision because of the noise sensitivity of the
analog sense amplifier circuitry. However, since the dynamic design had been proven
in a prototype chip, the advantage of the increased storage capacity seemed worth
the risk, and dynamic storage was used.

Testarossa employs the Fiala-Greene compression technique and the control map-
ping method outlined in Chapter 5 as a means of reducing the on-chip storage require-
ments. The Fiala-Greene algorithm was selected on the basis of the good compression
results obtained with relatively modest hardware requirements. With a history buffer
size of only 64 entries, the compressor averages a 4.7 : 1 compression ratio over the
sample vector suite. The mapping strategy is used to reduce the storage require-
ments for the mask and inhibit data. Since most DUT pins are either unidirectional
or elements of wide bi-directional busses, only a moderate number of map entries are
required. Each test vector can select from one of sixteen combinations of mask and
inhibit bit patterns to be applied along with the force or expect data (Figure 6.4). A

single test vector, then, consists of 20 bits. The low-order 16 bits of the vector are

CHAPTER 6. IMPLEMENTATION

T T T
Ctl map index

T T T]
Vector data (16 bits)

1 1 | - — -

Figure 6.5: Test vector fields

T T I I
0 0 Length
]]]]

Length: [0, 1..63] —> [64, 1..63]

Copy

Length

Position
1 1 1

Length: [1..15]

—> [1.15]

83

Position: [0..63] ——> [0..63]

Figure 6.6: Compression opcodes

the force/expect data, while the high-order four bits form the index for the control
map (Figure 6.5).

This 20 bit requirement for vectors manifests itself throughout the Testarossa

architecture in a number of ways. The compressed data stream must efficiently pack

20 bit literal vector data words into the stream with little or no overhead, along with

DA U

the opcodes that direct the decompression operation. The size of the history buffer
and the length of the literal and copy operations require considerably less than 20 bits
to express, so a sub-multiple length of 10 bits was chosen for the compression opcode

size. Figure 6.6 shows the format of the opcodes implemented by the decompressor

CHAPTER 6. IMPLEMENTATION 84

and how the fields pack into a 10 bit “byte.” The first four bits of the opcode
determine the command type: if the bits are all zero, then the command is a Literal,
otherwise it is a Copy. The Literal command has only one field, the length field,
which indicates the number of literal vectors which follow in the compressed stream.
The Copy command has two fields: the copy length field, which indicates the number
of vectors to include in the output stream from the History Buffer, and the position
field, which points to the location in the History Buffer where the copy operation is
to begin. Copies which wrap around from the end of the buffer back to the beginning
are permitted.

Figure 6.7 shows the decompressor data path with all bus widths annotated. In
addition to vector generation, the Testarossa data path also contains the Control Map
and error detection and recording logic as shown in Figure 6.8. The data captured by
the pin electronics is pipelined one stage, then compared with the Expect data along
with the Mask information. If a mismatch occurs on a bit which is not masked, an
error is signaled. This causes the failing data to be written into the Error Buffer along
with the cycle number in which the error occurred. This information is then available
to the host after completion of execution. The buffer pointer is incremented after
each error to point to the next empty location. When the buffer becomes full, further
errors are ignored so that only the initial sixteen errors are recorded. Additional
errors can be captured by changing the contents of the control map to mask out
earlier errors and re-running the test.

The following sections present a brief “data sheet” description of Testarossa. The
device pinout, internal register model, and low-level programmers’ interface are de-

scribed in detail.

CHAPTER 6. IMPLEMENTATION

Compressed
Br. Target
Data El <

In

-

10 1

Compressed
Vector Address
Ram) Counter

1K X 40

07

~

-

40 1 =7

Register e End

Register (¢

. Command
40 :
selection

, , , , and prefetch
control

DataPtr

Y

Mux Mux €

20 - 104

Literal Cmd

0
207

History
Buffer

Write
] Ram
Address g
64 X 20

y Read Address

A~

3 4

201

v v

Mux

20 -1

~~

Register

20 - Deccmpressed
y DataOut

Figure 6.7: Decompressor data path with bus widths

CHAPTER 6. IMPLEMENTATION 86

Decompressed
Data In
Control Map
Ram 164
16 X 32
D Register D> Register D Register
16 16 161
o Inhibit Data
Mask Data . Force/Expect Data
vy vy
P Acquire Data
D Register D Register <€
Y y y
D Register D Register D Register
161 16 T 161
v \ 7
Error_
y/
Cycle \
AY
16 ¥y N
Error Buffer
Error Adr \ - Ram
\ -
4 16 X 32

Figure 6.8: Error buffer

CHAPTER 6. IMPLEMENTATION 87

6.3.1 Pinout

The interface to the Testarossa chip as seen by the host processor is quite simple,
consisting of a 10-bit multiplexed address/data bus plus a few clock and control
signals, for a total of 22 pins. Including power, ground, and the DUT I/O connections,
there are a total of 42 signals in the Testarossa pinout. These signals are described

individually in the following list:

DUT/0..15], Input/Output - These are the sixteen signals which connect to the
Device Under Test. Each can be programmed to have CMOS or TTL output

and input levels, independent format, and timing.

IOAdrData[0..9], Input /Output - This is the general purpose port for accessing
internal registers and RAMS in the Testarossa chip. It is a 10 bit bi-directional
multiplexed address/data bus. The bus is completely asynchronous and can

operate at any speed up to a few mega-Hertz.

IOAdr, Input - This signal is used to indicate that a valid internal register address
is available on the IOAdrData lines. The address setup time before the trailing

edge of IOAdr is 100 ns, and the hold time is 10 ns. The minimum [I0Adr pulse
width is 100 ns.

IORead, Input - This signal commands the chip to place the contents of the cur-
rently addressed internal register on the IOAdrData lines and turns on the
[OAdrData output drivers. The data is valid 100 ns after the rising edge and

remains valid as long as [ORead is asserted.

IOWrite, Input - This signal commands the chip to load the currently addressed
internal register with the data available on the IOAdrData lines. The write

operation is flow-through, so the data must be valid 10 ns before IOWrite is

—a

CHAPTER 6. IMPLEMENTATION 88

asserted and remain valid until 10 ns after IOWrite is de-asserted. The minimum

IOWrite pulse width is 100 ns.

ChipSelect, Input - ChipSelect conditions the response of the chip to I/O com-
mands (Read and Write). If ChipSelect is not asserted, then the device IOAd-

rData lines are high impedance and no write operations will occur.

Start, Input - This signal must be synchronous to CycleClock and indicates that
the chip should begin to execute the set of test vectors starting at address zero
in the Vector RAM. Start is rising edge sensitive so it must first be de-asserted
before re-running the same set of vectors. When the End Address is reached
during vector execution, the tester will either return to the idle mode or will

branch into a loop depending on the state of the Loop input.

Loop, Input - This signal must be synchronous to CycleClock and indicates that
the chip should branch when the End Address is reached. While Loop is as-
serted, the vector execution will loop indefinitely. When Loop is de-asserted,
execution will cease and the tester will return to the idle mode the next time
that the End Address is encountered. Upon returning to idle, the last vector

executed remains valid at the tester outputs.

Reset, Input - This signal is synchronous to CycleClock and indicates that the chip

should return to the idle state, with no internal registers selected.

CycleClock, Clock, CycleClock/2, Input - CycleClock is the clock which de-
termines the rate at which test vectors are delivered to the output. Clock and

CycleClock/2 are used for delay generation as described in Chapter 4.

RefClock, Input - RefClock provides the reference timing edge for calibration pur-

poses. It is important that the chip-to-chip skew of this signal be minimal.

CHAPTER 6. IMPLEMFENTATION 89

VThreshold, Input - VThreshold provides the threshold voltage level used by the

analog input comparators.

VddTTL, GndTTL, Input - These pins provide the high and low voltage rails for
the TTL output pad driver. These voltages must be within the voltage range
of Vdd and Gnd, nominally 2.0 volts and 0.8 volts respectively.

Vdd, Gnd, Input - These pins provide the high and low voltage rails for the CMOS
output pad driver as well as the power supply voltages for the internal chip logic,

nominally 5 and 0 volts respectively.

6.3.2 Register model

There are over 2700 bits of internal state contained in the control and status registers
of Testarossa. These registers are divided into two main classes: the pin electronics
registers and the decompressor control registers. The format of the registers for
one channel of the pin electronics is shown in Figure 6.9. The bulk of the data in
the registers is used for controlling the timing of the delay generators; this includes
the Delay Shift Register (DSR), Inverter Chain (IC), and Edge Control (EC) units
described in Chapter 4. The bits contained in these registers are un-encoded, that is,
only one bit in the register is on (asserted high) at any time, and the MSB (bit 0)
within a field always represents the minimum delay. For example, to select the third
tap of the Inverter Chain delay element, bit 2 of ICO0 would be set high, and all of
the remaining bits in IC1 and IC2 would be low. The pin electronics registers are all
eight bit quantities. These eight bits are right justified on the 10 bit IOAdrData bus
of the Testarossa chip.

To compute the address of one of the control registers within a particular timing
generator and channel, the three delay generators are assigned a numerical value:

Sample = 0, Width = 1, Delay = 2. The base address for a particular delay generator

CHAPTER 6. IMPLEMENTATION

Register |Dly. Gen. Offset Description Register | Chan. Offset Description

DSRoO 0 R/W | Delay Shift Reg {OCti 7 R/W [170 Ctl

DSR1 1 R/W { Delay Shift Reg Format F R/W | Format

ICO 2 R/W | Inverter Chain

IC1 3 R/W [Inverter Chain

IC2 4 R/W | Inverter Chain

ECR 5 R/W | Rising Edge Ctl

ECF 6 R/W | Falling Edge Ctl

DSRO DSR1
r 1T 1
0 910 11X X X X
1 L L L L 1 1 1 I L] L 1
Shift Reg delay stages ——-——T T
1/2 Clock delay
ICO IC1 IC2
i 1T 1F
0 19 X
L 1 L L 1 1 i 1 1 1 1 I3 1 1 L 1 L 1 1
Inverter Chain stages 1‘ T
Force Low
Force High
ECR, ECF
I 1
o] 3{0 3
] L 1 1 1
\
Coarse adjust ———T
Fine adjust —4—m7m — |
10Cti Format
) 1) 1
0 7 0 7
1 1 L 1 1 1 L -l ’ 1 1 1 1 1
Select Late Data (Qut) .—T r RT __-—_T
TTL output levels ———— | RC ——o
Analog sample RO
Sample late RZ
Phase comparator (read) NRZ

Figure 6.9: Pin electronics registers

CHAPTER 6. IMPLEMENTATION 91

within a channel is then given by :
base address = (channel * 24) + (delay generator 8).

A control register for any of the delay generators is accessed by adding the offset
value given in the table of Figure 6.9 to the base address. For the case of the IOCtl
and Format registers, there is only one copy each per channel and the base address

is simply the channel offset:
base address = (channel * 24).

The format of the decompressor control registers is shown in Figure 6.10. The
addresses of these registers are absolute, so no offset calculation is necessary. All of
the data available through the readable registers, with the exception of the RAM Read
Data Register, is for debugging purposes and is not really of concern. The writeable
registers contain the Loop and End addresses, as described in Chapter 5, and the
interface to access the internal RAMS. All of the on-chip RAMS have a 40-bit data
interface. To access a word in a RAM, the desired address is first written into the
ExtRAdd register. If the operation is a write, then the four write data “bytes” are
loaded into WDO - WD3. Then, the appropriate control bit is set and cleared in the
ExtRCtl register. In the event of a read operation, the data is then available in the

four Read Data registers.

6.3.3 Programmer’s interface

Given the complexity of the Testarossa chip, the programmers’ interface for the device
could be quite complex. In fact, with only a thin veneer of software, the interface
can be reduced to a few key procedures. The following list represents the operations
necessary to control all of the major functions of the device. The total length of
the source code contained in the implementation of these procedures is about two

thousand lines, including the calibration and compression utilities.

CHAPTER 6. IMPLEMENTATION

Register | Add (hex) Description Register | Add (hex) Description
Loop 180 W | Loop Add. Debug 180 R Internal status
End 181 w End Add. VAdd 181 R Vector Ram Add.
ExtRAdd 182 w External Ram Add. HAdd 182 R History Ram Add.
ExtRCHI 183 W | External Ram Ctl. Cmd 183 R Decompressor Cmd
RWD 184-187 w Ram Write Data RRD 184-187 R Ram Read Data
DCti 188 W | DRam Timing Ctl.
Loop Debug
1 1 r 1
0 9 0 9
1 1 1 1 1 1 1 1 1 1 1 1 J 1 1 1 1
A 4 N A
Reset —T F
. End - Write History Low ——
Write History High
Fetch Cmd
0 ° Prefetch
1 1 1 'l 1 1 1 1 EFTOF
ExtRAdd Error Ram Add.
' - VAdd
T R
0]
1 L 1 1 1 1 1 1 O g
ExtRCtl L 1 (S| 1 1 1 L1
; — HAdd
1) 1
0 9
1 L] L 1 1] 1 O g
4 A A A A A A
Vector Ram Bypass —1\ F i F i Lt 1
External Ram Add. —— History Write Add. 1 i
Read Vector Ram History Read Add.
Read History Ram
Read Error Ram Cmd
Read Ctl Ram l .
Write Vector Ram
Write History Ram 0 9
Write Error Ram T W N WA N S S S
Write Ctl Ram
wDO WD1 wD2 wbD3
DCtl T " " 1
0 9 110 19 |20 29 |30 39
A
Fast Timing —
ast Timing RDO RD1 RD2 RD3
1F 1] 11} i
o] 9]10 19 |20 29 130 39

Figure 6.10: Decompressor

control registers

92

CHAPTER 6. IMPLEMENTATION 93

InitSystem: PROC [|;
Performs basic system initialization, such as resetting all chips, setting DUT
outputs to high impedance, and zeroing DUT power supplies to avoid insertion

damage.

LoadVectors: PROC [s: STREAM];
Takes a stream of vectors consisting of mask, inhibit, and force/expect data for
each bit. Computes the contents of the Control Map and the uncompressed
test vectors. Applies the compression operation to test vector data and loads

Control Map memory and Vector memory.

SetTiming: PROC [ch: Channel, f: Format, dly, wid, samp: Ns];
Configures format, timing, and sample functions for a single channel in the
system. Performs the calibration operation on the three delay generators of the

channel.

SetAnalogLevels: PROC [ch: Channel, out, in: BOOLEAN];

Selects whether a channel’s output and input levels are variable or CMOS levels.

SetClock: PROC [p: Period];
Sets the tester cycle period. Computes the correct ratio for Clock and Cycle-

Clock and sets the clock divisor.

RunCtl: PROC [start, loop, reset: BOOLEAN];
Synchronously changes the state of the Start, Loop, and Reset pins of all chips

in the system. Ensures that all chips act in lockstep.

GetErrors: PROC RETURNS [LIST OF [c: Cycle, d: Datall;
Used after a test is run to retrieve the contents of the Error Buffer. Returns a

list of records containing the failing cycle numbers and the corresponding data.

CHAPTER 6. IMPLEMENTATION 94

6.4 Technology Constraints

A dominating factor in any custom IC design effort is the target technology in which
the device will be fabricated. For Testarossa, the most aggressive technologies avail-
able through Mosis [To88] were 2u and 1.6 CMOS. The 1.6p technology is reticle
based and hence somewhat expensive, so the 2i process was used for the initial proto-
type. Since the two technologies are design rule compatible, the device was designed
with a rather large die size using the 2u process, with the expectation that a later
optical shrink could be performed on the device to gain the improved density, yield,
and speed properties of the 1.6y process after the design had been proven. The oni,
impact of this approach on the 2u die was a slightly oversized bonding pad. The max-
imum die size constraints were imposed by the available package cavity size and the
tolerable yield. A source was located for a pin-grid array package with a 13.2 x 13.2
mm cévity which allowed a maximum die size of around 12 X 12 mm, leaving some
space for a scribe line and die attach wash. Previous experience with the same vendor
for the 2p1 process indicated that a die of this area would have a yield in the range of

10 to 20%, which was considered acceptable.

6.5 Assembly

The Testarossa design contains over 200K transistors, 120K of these contained in RAM
structures, and the remaining 80K distributed among the pin electronics, data path,
and control circuitry. It would ordinarily be a formidable task for one person (albeit a
graduate student) to attempt to assemble this many devices into a finished chip. For-
tunately, a number of excellent assembly tools were available that greatly shortened
the design cycle. These tools were provided by the Design and Architecture group
in the Computer Science Laboratory at the Xerox Palo Alto Research Center [3a88].

CHAPTER 6. IMPLEMENTATION 95

15
Vector Storage 14
Custom DRAM 13
8l :
Route
Pin
Decompressor Electron.
Control Custom
ontrol | = — — = — = —
4
Logic |2 P [4]
=3 Control Map <
sc |° °of
M | F-------- -
Error Buffer
Data Path 1
2] 0]
Power and pad routing [6]
Pad Frame [5]

Figure 6.11: Testarossa floor plan

The tools consist of a number of different automatic layout generators, routers, and
checkers, all driven from a schematic-based entry system.

Figure 6.11 shows a floorplan of the Testarossa chip depicting the various pieces
of the assembly, the layout generator used for each piece, and the order in which the
modules were assembled. Figure 6.12 is a plot of the completed chip. Construction
begins in the lower left corner of the core of the chip with the control logic. This block
contains mostly random logic for controlling the decompressor data path, interfacing
to the external bus, and providing timing for the dynamic RAM. It is implemented
with standard cell gates to minimize manual layout.

Figure 6.13 and Figure 6.14 illustrate two typical styles used for expressing the

96

CHAPTER 6. IMPLEMENTATION

Crerr o trerey

‘h‘!- [/]

T

Figure 6.12: Testarossa layout

CHAPTER 6. IMPLEMENTATION 97
ResetPlus9
<1L LastError ol o I
I d b4 Load
nError ,> M)
up Count
"' 3
I: D pO
CycCK D . B r\ RecaordError
ResetPlus9 ded
WriteERam _D_D“L ERamWrEn
nError D pO ded nERamAdd
CchK) 7
D b 7
i 7 ERamAdd
ExtRamAdd 10 10 Seq:4
ExtRamAccess /6 B/4 b4 DEI____EMDASLQ&Q
&
d«8
ERamAddGen.sch

Figure 6.13: Typical schematic entry for standard cell control logic

t0:"~ReadVRam * ~WriteVRam"

4
-
Init o . wo
Idle @ tO: Wm;eVRam >
00:"VRamSel”
t0:"ReadVRam" RO
00:"VRamSel”

t0:" ~WriteVRam”
0 riteVRam e

»
P

t0:"WriteVRam"
4l
-
Wi w2 w3
-
00:"VRamSel" 00:"VRamSel"
o1:"VRamEnWrite"”
t0:"ReadVRam”
<l
-
R1 R
2 t0:"~ReadVRam" Idle
> > » >
00:"VRamSel" 00:"VRamSel”

01:"VRamEnRead"

VRamAccessFSM.tsm

Figure 6.14: Graphical FSM description implemented in standard cell logic

CHAPTER 6. IMPLEMENTATION 98

control circuitry. Figure 6.13 shows a parameterized schematic that is part of the
Error Buffer control logic. The schematic uses standard logic components, with the
addition of the assignment texts on the logic icons, which allow easy specification of
component parameters. For example, “b « 4” on the counter icon in the schematic
indicates that a four bit counter should be generated, while “d «— 4” on the inverter
icon indicates the selection of a driver of four times the normal inverter strength.
Figure 6.14 illustrates another means of specifying logic. The picture is a graphi-
cal representation of a Mealy-type finite state machine used for arbitrating the DRAM
refresh. The octagons are the state nodes, with the state names listed above and the
asserted outputs listed beneath. The lines and arrows indicate the transitions, with
conditional transitions having a logical expression above the arrow. This representa-
tion is automatically interpreted at the time the circuit is extracted to produce the
standard cell gates necessary to implement the desired sequential function. These
high level means of expressing control allow rapid development of complex logic.
The second step in the assembly process is the construction of the data path logic.
This block contains the embedded RAMS for the History Buffer, Control Map, and
Error Buffer, as well as the multiplexors, buffers, and pipeline registers needed in the
decompressor data path. Figure 6.15 shows a sample schematic input used to generate
the portion of the data path containing the History Buffer. All of the logic icons in the
schematic have manually drawn layout associated with them with the exception of the
multiplexors, which are automatically generated. The compiler sequences the base
cells by the width of the data path and then automatically generates the horizontal
and vertical routing to connect them together. Each of the four columns of icons in
the figure represents a separate 10 bit data path; these are interleaved to reduce the
horizontal routing cost. The top three rows of cells in the example implement the
History Buffer RaAM. The History Buffer is a 64 x 20 RAM but, as shown in the

figure, it is actually implemented as a 32 x 40 RAM to allow the data path area to

CHAPTER 6. IMPLEMENTATION

DPRamTop DPRamTop DPRamTop DPRamTup
r Din - DIn = Din +Din
Layout: SAbutX
DPDecader . IS .- .
nea2 - b o A L R 7 e el 12 s
pporx o] . ‘ " " .
=] Bl éa o SeqY 32
nHRamRAdd
HRamRAdd o o o
nHRamWAdd - OOut - DOut r- DOut T O0um
HRamWAQd DPRamBot DPRamBot DPRamBaot DPRamBor
ReagHRamDec N]
H H l} He [} L in l} H o [}
4= out M=t out Tt out [(T=11 out
HRamwWrEn . SC . . sc . . sC . . SC .4
CycCK
DecompDataSource : IT - {
T
FrameRstDec
== o
CyeCK 1[0 eugeFF || —ITD EdgeFF O EcgeFF 0 EogefF
mQ -Q —TQ rQ
0 E — ind E — 0 E
Laynul’ SMnsaw outd SC outd sC and SC
0 10 0 10
/4 I.'./Fs P/A $4/6
CtiPtr he (& Forces ExpectData
0/6 B/10

Figure 6.15: Decompressor data path segment

CHAPTER 6. IMPLEMENTATION 100

be used efficiently. The RAM array is generated by creating a 40 bit wide row of RAM
cells using the data path compiler, sequencing this 32 times in Y to form the array,
then abutting a program-generated decoder on the left. The result is then sandwiched
between two more data path segments that contain the bit line drivers on top and
the read logic on the bottom. The remainder of the data path logic is generated in a
similar manner and finally automatically routed to the standard cell control logic on
the left.

The next step of the construction process is the addition of the full custom dynamic
RAM. Another routing channel is used to connect the address, data, and control lines
of the RAM to the standard cell and data path elements. Next, a single channel of the
full custom pin electronics is sequenced 16 times in Y and abutted to the right side.
One more routing channel connects the Force Data and Inhibit Data busses from the
data path to the pin electronics. Finally, the pad frame is generated, and the global
power and pad routing is performed.

At each step of the assembly process, the netlist of the generated layout is com-
pared to the schematic netlist to ensure that cell abutment produces the desired
connectivity. This comparison also acts as a check for the automatic layout genera-
tors, such as the routers and multiplexor generators. The compilation of the entire
chip with netlist checking takes approximately 20 MIPS-hours of CPU time. How-
ever, small changes can be made to sub-modules with only incremental compilation,
allowing fast turnaround for small changes.

A number of features have been incorporated into the layout to enhance the testa-
bility of the device. All of the internal RAMS are available for reading and writing
from the external bus, as are the over 2K register bits contained in the pin electronics.
In the control section, a number of key control fields of the decompressor are readable,
such as the RAM addresses, the current command, and the state of the prefetcher.

When used together, these features enable each of the sub-modules in the device to

CHAPTER 6. IMPLEMENTATION 101

be tested independently. For example, the decompressor can be operated without a
functioning vector DRAM by bypassing the RAM and supplying the vectors externally.
The decompressed result can also be verified without use of the pin electronics by
examining the state of the History Buffer from the external bus. Such features en-
sured that the maximum amount of data could be gleaned from the part in spite of

processing or logical defects.

6.6 Results

The layout and simulation of Testarossa were completed in about six months and the
device was fabricated through the MOSIS implementation service. The first silicon
was nearly 100% functional, which is a testimony to the methodology of schematic
entry, layout versus schematic verification, and simulation, simulation, and more sim-
ulation. The only defect in the chip was a timing error in the DRAM which caused
some crosstalk between the data columns of the RaM. This prevented more than one
.‘column of the DRAM from being used. Fortunately, the column selects were derived
from the high order address bits, so that the first 128 words in the RAM could be used
reliably. This provided enough vector storage space to allow thorough testing of the
decompressor.

The maximum speed of the device was just over 17 MHz, which was somewhat
slower than the anticipated 25 MHz. The limiting factor was the poor access time
of the DRAM, which was related to the crosstalk problem mentioned above. When
the decompressor was operated in a debugging mode that bypassed the DRAM and
executed a four instruction loop out of the RAM Write Data register, a maximum
speed of 33 MHz was attained. This is indicative of what could be achieved with a
better RAM technology.

The DUT waveform exhibited good edge and timing resolution characteristics.

CHAPTER 6. IMPLEMENTATION

The rising edge kink effect observed in the experimental pin electronics chip was
eliminated in this device yielding an unloaded rising edge speed of 3 ns. The edge
resolution was 600 ps, the same as that of the earlier device. Of 27 parts tested, 4
were fully functional for a 14% yield. The temperature sensitivity of the inverter chain
delay elements was measured at 20 pS per degree centigrade per stage and the voltage
sensitivity was 70 pS per volt per stage, thus providing adequate delay stability.
Calibration routines were written for the device and were successful in calibrating all
edges to better than 1 ns over a wide range of delays and cycle frequencies.

After the design was verified using the 2p process, the follow-on 1.6u device was
also fabricated with only one change to the DRAM control circuitry to correct the
timing error. This device was 100% functional and yielded better than 40% good die.
The technology shrink improved the maximum operating speed, resulting in 25 MHz

operation and improved the edge resolution to 500 ps.

Chapter 7

Conclusions

7.1 Summary

This thesis has presented a new architecture for building high-performance single-chip
VLSI testers. New circuit and system designs for the pin electronics have been shown
which solve the problems of achieving high timing accuracy for output edge place-
ment and input sample capture in a relatively slow base technology such as CMOS.
These techniques provide sufficient density advantages over traditional methods that
they enable the implementation of a multi-channel device with true tester-per-pin
characteristics. A reduction in the size of the data generator portion of the tester
has also be achieved through the use of data compression. A number of compression
methods have been examined to determine their applicability to reducing the mem-
ory requirements of test vectors. One algorithm was identified which averaged good
compression characteristics with only modest decompression hardware requirements.
Finally, all of these ideas have been brought together in the design and successful
implementation of Testarossa: a single-chip 16-channel tester containing all of the

functions of pin electronics, vector storage, decompression, and acquisition logic.

103

CHAPTER 7. CONCLUSIONS 104

7.2 Future Work

There are many ways in which the architecture can be improved and extended as new
technologies become available. The current 2y Testarossa implementation is rather
behind the state of the art in terms of process technology. A 0.8y process would
provide a four-fold increase in effective die area while still allowing a 20% shrink in
the actual die dimensions. One way to use the additional die area would be to simply
replicate the existing logic to provide more DUT channels per chip, allowing an even
denser system to be built. However, this does not seem to be the most advantageous
use of the added silicon area. A better approach would be to use the space to increase
the on-chip resources for improving system capabilities. For example, the current limit
of 16 Control Map entries is somewhat restrictive. Increasing it to 32 or 64 entries
would make the existence of the map more transparent.

Another area that could be improved is the timing and format registers. Currently
these registers are staticly loaded during the calibration process prior to running the
test, making the wave shape and edge placement fixed for the duration of the test. An
improved version would have a number of these registers available, allowing dynamic
changes in format and timing. This would provide greater flexibility in the timing
properties of the applied vectors. The selection of the timing characteristics to be
applied to a vector could be done through the Control Map. Currently only 32 bits
of the 40-bit map entries are used. Some of these remaining 8 bits could be used to
select the desired timing entry, allowing timing change on a per-vector basis with no
increase in vector size.

A third area that could benefit from additional die area is the Vector Storage
RAM. This is the most likely candidate for consuming the majority of the added area,
since the 10K-vector storage capacity of the current implementation is rather limited,

compared to the majority of testers available. In Testarossa, the DRAM occupies only

CHAPTER 7. CONCLUSIONS 105

14% of the total die area. If all of the additional space were devoted to vector storage,
the storage capacity would increase by more than a factor of 20, providing over 200K
vectors on-chip (compressed average). As the percentage of die area devoted to vector
storage increases, the benefit of the vector decompressor becomes more evident. The
ratio of vector DRAM to decompressor areas in Testarossa is approximately 1:1. Given
that the average compression factor is about 5, the effective compression ratio is only
2.5:1, since the DRAM area could be doubled if the decompressor were not present.
The effect of a process shrink is to increase the DRAM size while decreasing the
decompressor area making the effective compression ratio much closer to the average.
Even greater storage capacity could be achieved by employing a technology which
provided a real DRAM storage cell, such as the trench capacitor process, as opposed
to the poly-diffusion cell capacitor used in Testarossa. This would improve the bit-
density by another factor of eight to ten, pushing the vector storage capacity well into
the mega-vector regime. Table 7.1 shows a comparison of static and dynamic RAM
implementations contrasting the generic 2u digital technology used for Testarossa

with the best RAM technologies currently available [Lu88, Ma87, Ok88|.

| Technology | Type Cell Size (p?, est.) | Cycle (ns, est.)
2p | Static 6T 1600 15

J 2u | Dynamic | Poly-Dif 300 35
0.8 | Static 4T 70 8

5‘ 0.8¢ | Dynamic | Trench 15 30

Table 7.1: Comparison of static and dynamic RAM implementations

An alternative approach for the vector storage is to use static RAM instead of
DRAM. The major tradeoff between these two choices is storage density versus access
speed. The data path of the tester and decompressor is a fairly simple pipelined
architecture, so the limiting factor in the tester performance is the RAM cycle time.
By going to a fast static RAM process, the performance of the system could be dra-

matically improved, but at the expense of reduced vector storage capacity.

CHAPTER 7. CONCLUSIONS 106

Advanced process technology can be applied to other aspects of the architecture
as well. Bipolar transistors, such as those available in a Bi-CMOS process, would help
in several areas of the design. For example, the higher gain of the bipolar devices
would allow the current drive of the output pad driver transistor to be improved while
at the same time reducing the capacitive load of the driver on the input. This would
enable faster output rise-times and lower DUT output loading. Bipolar transistors
could also be used in the calibration phase comparator and input sample comparator.
The higher gain-bandwidth product of the bipolar devices would result in greater
timing accuracy.

In addition to architectural improvements to the Testarossa device, some work
remains to be completed before a complete multi-hundred pin tester system can be
assembled. The bulk of the work is in the design of the reference clock generator
circuit. The requirements of this circuit are that it produces a square waveform
at the tester cycle frequency with a phase relationship to the system clock that is
programmable with sub-nanosecond resolution and accuracy over the range of a mi-
‘crosecond or so. It is no surprise that these are the same requirements as those of the
tens or hundreds of individual clock generator circuits used in commercial testers. It
should be relatively easy, then, to leverage off of these earlier designs to implement
a high quality generator using a semi-custom ECL device. Alternatively, there are
CMOS approaches employing phase-locked loop principles that could be employed

that would keep the design of the entire system in one technology [JB87].

Bibliography

[Ab84]

[A183]

[Ba83]

(Ba84]

W. Abbott IV,

Timing Specification Conformance of VLSI Test Systems,
Proceedings of the 1984 International Test Conference, pp. 105-
112, October 1984,

R. Albrow,

Test Pattern Compaction in VLSI Testers,

Proceedings of the 1983 International Test Conference, pp. 12-17,
October 1983.

M. Barber,

Subnanosecond Timing Measurements on MOS Devices Using
Modern VLSI Test Systems,

Proceedings of the 1983 International Test Conference, pp. 170-
180, October 1983.

M. Barber,

Fundamental Timing Problems in Testing MOS VLSI on Modern
ATE,

IEEE Design and Test, pp. 482-489, August 1984.

107

BIBLIOGRAPHY

[Ba88]

[Bi83]

[Bo81]

[BP85)

[CC87]

[CF3)

108

R. Barth, L. Monier, B. Serlet, and P. Sindhu,
VLSI Design Aids: Capture, Integration, and Layout Generation,
Xerox PARC Technical Report, CSL-88-1, July 1988.

S. Bisset,

The Development of a Tester-Per-Pin VLSI Test System Archi-
tecture,

Proceedings of the 1983 International Test Conference, pp. 151-
155, October 1983.

P. Bottorff,

Functional Testing Folklore and Fact,

Digest of Papers of the 1981 International Test Conference, pp.
463-464, October 1981.

G. Bowers and B. Pratt,
Low Cost Testers: Are They Really Low Cost?,
IEEE Design and Test, pp. 20-28, June 1985.

S. Cohen and J. Chen,

Maintaining Timing Accuracy in High Pin-Count VLSI Module
Test Systems,

Proceedings of the 1987 International Test Conference, pp. 779-
789, September 1987.

M. Catalano, R. Feldman, R. Krutiansky, and R. Swan,
Individual Signal Path Calibration for Mazimum Timing Accu-
racy in a High Pincount VLSI Test System,

Proceedings of the 1983 International Test Conference, pp. 188-
192, October 1983.

BIBLIOGRAPHY

[CRS1]

[Da87]

[De83)

[EWT7]

FeT8]

FG88|

109

P. Chang, E. Richards, and D. Richter,

The PIN Module: A High Accuracy Concept in Very High Fre-
quency Pin Electronics,

Digest of Papers of the 1981 International Test Conference, pp.
154-166, October 1981.

M. Dahl,

Closed-Loop Error Correction: A Unique Approach to Test Sys-
tem Calibration,

Proceedings of the 1987 International Test Conference, pp. 772-
778, October 1987.

L. Deerr,

Automatic Calibration for a VLSI Test System,

Proceedings of the 1983 International Test Conference, pp. 181-
187, October 1983.

E. Eichelberger and T. Williams,
A Logic Design Structure for LSI Testing,
Proceedings of the 14th Design Automation Conference, New

Orleans, pp. 462-468, June 1977.

M. Ferland,

Device Output Loading,

Digest of Papers of the 1978 Semiconductor Test Conference, pp.
130-132, October 1978.

E. Fiala and D. Greene,
Data Compression with Finite Windows,

to appear in CACM, spring 1989.

BIBLIOGRAPHY

[Ga84]

[He78|

[He83)

(Hu52]

[HUS8S5]

[IM83)

[JB87]

110

R. Garcia,
The Fairchild Sentry 50 Tester: Establishing New ATE Perfor-
mance Limits,

IEEE Design and Test, pp. 101-109, May 1984.

J. Healy,

An Analysis of Trends in Complez LSI Testing Strategies,
Digest of Papers of the 1978 Semiconductor Test Conference, pp.
59-64, October 1978.

R. Herlein,

Optimizing the Timing Architecture of a Digital LSI Test System,
Proceedings of the 1983 International Test Conference, pp. 200-
208, October 1983.

D. Huffman,
A Method for the Construction of Minimum-Redundancy Codes,
Proceedings of the I. R. E., Vol. 40, pp. 1098-1101, 1952.

J. Healy and G. Ure,

A Method of Reducing ATE System Error Components and Guar-
anteetng Subnanosecond Measurement Accuracies,

Proceedings of the 1985 International Test Conference, pp. 191-
202, November 1985.

Logic Master Series Operator’s Manual,
Integrated Measurement System Inc., Part no. 900-0001-POL,
March 1985.

D. Jeong, G. Borriello, D. Hodges, and R. Katz,
Design of PLL-based Clock Generation Circuits,

BIBLIOGRAPHY

[IM84]

[Ke86]

[KM78]

[Kn68)

[Kn85]

111

IEEE Journal of Solid-State Circuits, Vol. SC-22, pp. 255-261,
April 1987.

P. Jackson, G. de Mare, and A. Esser,

Compaction Technique Universal Pin Electronics,

Proceedings of the 1984 International Test Conference, pp. 471-
480, October 1984.

T. Kazamaki,
Milestones of New-Generation ATE?,
IEEE Design and Test, pp. 83-89, October 1985.

M. Keating,

Fundamental Limits to Timing Accuracy,

Proceedings of the 1986 International Test Conference, pp. 756-
762, October 1986.

T. Kazamaki et al,

Trial Model of 100 MHz test Station for High Speed LSI Test
System,

Digest of Papers of the 1978 Semiconductor Test Conference, pp.
139-145, October 1978.

D. Knuth,
The Art of Computer Programmming,
Fundamental Algorithms, Vol. 1, pp. 402-404, 1968.

D. Knuth,
Dynamic Huffman Coding,
Journal of Algorithms, Vol. 6, pp. 163-180, 1985.

BIBLIOGRAPHY

[Lu88]

[Ma87]

(Me84]

[MHS87]

[MS79]

[MS87]

112

N. Lu, H. Chao, W. Hwang, W. Henkels, T. Rajeevakumar, H.
Hanafi, L. Terman, and R. Franch,

A 20-ns 128K X 4 High-Speed DRAM with 330-Mbit/s Data Rate,
IEEE Journal of Solid-State Circuits, Vol. SC-23, pp. 1140-1149,
October 1988.

K. Mashiko, M. Nagatomo, K. Arimoto, Y. Matsuda, K. Furu-
tani, T. Matsukawa, M. Yamada, T. Yoshihara, and T. Nakano,
A 4-Mbit DRAM with Folded-Bit-Line Adaptive Sidewall-Isolated
Capacitor (FASIC) Cell,

IEEE Journal of Solid-State Circuits, Vol. SC-22, pp. 643-650,
October 1987.

J. Meindl,

Ultra-Large Scale Integration,

[EEE Transactions on Electron Devices, Vol. ED-31, no. 11, pp.
1555-1561, November 1984.

J. Miyamoto and M. Horowitz,

A Single-Chip High-Speed Functional Tester,

IEEE Journal of Solid-State Circuits, Vol. SC-22, pp. 820-828,
October 1987.

H. Maruyama, S. Sugamori, T. Sudo, and Y. Ichimiya,

A 100 MHz Test Station for High Speed LSI Testing,

Digest of Papers of the 1979 Test Conference, pp. 369-376, Oc-
tober 1979.

R. Muething and C. Saikley,
Integrated Pin Electronics: A Path Toward Affordable Testing of

R
N

BIBLIOGRAPHY

[NH84|

[0k88)]

[PaT6]

[Pe85]

[Pi78]

[Sk80)

113

High-Pin Count ASIC Devices,
Proceedings of the 1987 International Test Conference, pp. 883-
887, September 1987.

Y. Nishimura, M. Hamada, and Y. Hayasaka,

A New Timing Calibration Method for High Speed Memory Test,
Proceedings of the 1984 International Test Conference, pp. 113-
117, October 1984.

H. Okuyama, T. Nakano, S. Nishida, E. Aono, H. Satoh, and S.
Arita,

A 7.5-ns 32K X 8§ CMOS SRAM,

[IEEE Journal of Solid-State Circuits, Vol. SC-23, pp. 1054-1059,
October 1988.

R. Pasco,
Source Coding Algorithms for Fast Data Compression,
Ph.D Dissertation, Stanford University, 1976.

D. Petrich,
Achieving Accurate Timing Measurements on TTL/CMOS De-
vices,

IEEE Design and Test, pp. 33-41, August 1986.

R. Piety,

Low Cost Test System for Integrated Circuit Development,
Digest of Papers of the 1978 Semiconductor Test Conference, pp.
133-138, October 1978.

K. Skala,

Continual Autocalibration for High Timing Accuracy,

BIBLIOGRAPHY

[SM80]

[SM87)

[SY81]

[Te83]

[To88]

[We83)

114

Digest of Papers of the 1980 Test Conference, pp. 111-1186,
November 1980.

R. Sherman and D. Madsen,

Low Cost Pattern Generator for Testing Digital LSI Devices,
Digest of Papers of the 1980 Test Conference, pp. 68-73, Novem-
ber 1980.

C. Saikley and R. Muething,

A Rapid, Low-cost Technique for Precise AC Calibration in a
Focused ASIC Tester,

Proceedings of the 1987 International Test Conference, pp. 766-
771, October 1987.

S. Sugamori, K. Yoshida, H. Maruyama, S. Kamata, and R. Sudo,
Analysis and Definition of Overall Timing Accuracy in VLSI Test
System,

Digest of Papers of the 1981 International Test Conference, pp.
143-153, October 1981.

C. Terman,

Simulation Tools For Digital LSI Design,

Massachusetts Institute of Technology, Cambridge, Tech. Rep.
MIT-LCS-TR-304, September 1983.

C. Tomovich,
Mosis - A Gateway to Silicon,

[EEE Circuits and Devices, pp. 22-23, March 1988.

B. West,
Attainable Accuracy of Autocalibrating VLSI Test Systems,

BIBLIOGRAPHY

Proceedings of the 1983 International Test Conference, pp. 193-
199, October 1983.

[Xe86] Xerox Corporation,
Interpress Electronic Printing Standard,

Version 3.0, XNSS 048601, Stamford, CT, January 1986.

[(ZL77 J. Ziv and A. Lempel,
A Universal Algorithm for Sequential Data Compression,
IEEE Transactions on Information Theory, Vol. IT-23, No. 3,
May 1977.

N

R 6. IMPLEMENTATIO

CHAPTI

festaronsa

Rk AkbL

uid

ik

Testarossa lavout

“igure 6.12

