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A bstract

Simulation plays an important role in design verification. W ith increasingly large 

VLSI designs, the switch-level representation has become the only approach that is 

both reasonably accurate and computationally feasible.

At present, switch-level simulators use relatively unsophisticated techniques 

to  extract information from the switch-level representation, and even these small 

amounts of information are not always fully utilized. As a result, these simulators 

often lack accuracy. Most notably, the way some switch-level simulators compute 

the final value can potentially generate undesirably pessimistic results, and charge- 

sharing problems are widely ignored.

This thesis shows how to extract more information based on the same set of 

widely adopted switch-level assumptions. Using more sophisticated analyses, this 

thesis presents better final-value and charge-sharing models. The new final-value 

model uses a  systematic way to look at the relationship between the voltage and 

the resistance. This approach can also objectively compare the accuracy of different 

DC-computation schemes. Charge-sharing problems are modeled with two time 

constants. The two-time-constant approach is based on the observation that most 

waveforms due to  charge sharing are dominated by a  pair of time constants. Charge- 

sharing models are first constructed on resistor networks, then they are extended 

to  transistor networks.

These models have been incorporated into nRSIM — a RSIM-based switch-level 

simulator. The newr simulator has the same running time as the original RSIM, but 

it can handle a larger class of circuits.
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Chapter 1

Introduction

Designers of integrated circuits (IC’s) rely on simulators to do design verification, 

which includes the checking of the functionality as well as the performance of their 

designs. At present, metal-oxide-semiconductor (MOS) IC’s with several hundred 

thousand transistors are quite common, whereas, for these designs, a detailed anal

ysis in a  reasonable time frame is well beyond today’s computing power. In the 

early eighties, a  new concept called switch-level simulation was developed to cut 

down drastically the simulation time but still give reasonably accurate results.

The basic idea behind the switch-level representation is to substitute each tran

sistor with a  much simplified resistive-switch model. This abstraction filters out 

all the nonessential details of a  transistor but still catches its basic functionality. 

This technique is particularly suitable for simulating digital designs because digital 

designs are less sensitive to the exact characteristics of transistors. Switch-level 

models are gaining popularity because of their flexibility — trade-offs between the 

accuracy of the simulation result and the simulator’s computational requirement 

can be made by adjusting the details of the resistive-switch model.

1
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CHAPTER 1. INTRODUCTION 2

1.1 Organization

The next chapter describes previous work in switch-level modeling. Two well-known 

simulators, MOSSIM and RSIM, are reviewed. Even though these simulators have 

been widely used, there is still room for improvement. Chapter 2 then identifies 

problems in the logic and timing aspects of RSIM. Only delay estimation in the 

timing aspect has been investigated by other researchers, and their single-time- 

constant and two-time-constant models are summarized. The rest of the thesis will 

try  to improve other shortcomings of switch-level simulation.

Chapter 3 discusses problems encountered in evaluating the final value of a 

network. In switch-level simulations, there are times when the state of the gate 

input of a transistor cannot be determined. When this happens, it is not clear 

whether the source and drain terminals of the transistor are electrically connected. 

Since the final value of a network can change with the electrical configuration of the 

network, determining the connectivity is im portant. This chapter first surveys and 

compares the techniques suggested by other researchers in a systematic way, which 

involves the construction of the solution space formed by possible resistance-volt age 

combinations a t each node. It then proposes a  new scheme and verifies that the 

new scheme can do better than other schemes under many situations.

Chapter 4 looks at charge-sharing problems in resistor-capacitor networks. Charge 

sharing is a  timing-related problem caused by the redistribution of charge among 

capacitors of a  network. This problem can be classified into two categories depend

ing on whether a network is driven. The existing timing models are inadequate for 

charge-sharing problems because they do not take the charge-redistribution process 

into considerations. This chapter suggests methods to approximate both kinds of 

charge-sharing problems. Mathematical and intuitive arguments are provided to 

substantiate the basis of the proposed methods.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 3

Chapter 5 applies insight gained from Chapter 4 to model charge-sharing prob

lems in transistor-capacitor networks. The major problem with modeling a transis

tor network as a  resistor network is that transistors are nonlinear devices, and it is 

not clear how the nonlinearity of transistors can affect the accuracy of the result. 

By looking at MOS transistors as pseudo-linear devices, it is actually possible to 

directly apply the linear formulations to transistor networks. This chapter explores 

the differences such as the shapes of waveforms and the determination of time con

stan ts in charge-sharing models of resistor and transistor networks. A part of this 

chapter and most of Chapter 4 have been published in [6,7].

Chapter 6 examines the implementation issues of the models presented in Chap

ters 3,4, and 5. It is shown that RSIM’s existing algorithm can effectively implement 

all these models in complexity tha t is linear with respect to the number of tran

sistors in an electrically connected cluster. It also shows tha t the previous timing 

models can be generalized straightforwardly from the single-driver assumption to 

multiple drivers without complicating the evaluation algorithm.

Finally, Chapter 7 summarizes the contributions of this thesis and describes 

areas for further investigations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C hapter 2 

P revious Work in Switch-Level 

Sim ulation

2.1 O verview

The switch-level representation of a transistor circuit is an abstract model that 

lies between the logic-level and circuit-level representations. This representation is 

particularly suitable for simulating digital VLSI designs because it makes a good 

compromise between the speed of simulation and the accuracy of its result. Gener

ally speaking, switch-level simulators run about two to three orders of magnitude 

faster than circuit-level simulators such as ASTAP[27] and SPICE[17], while provid

ing most of the  information needed to analyze digital designs. Although, by solving 

complicated differential equations, circuit-level simulators are capable of generating 

detailed analog waveforms, this information is often irrelevant for analyzing pure 

digital circuits. In contrast, a fast simulator is invaluable for large designs.

Problems with most logic-level simulators[9,25] are not their speed; their short

comings are in  the evaluation of logic and the estimation of delay. For MOS 

technologies, logic-level simulators’ ability to handle pass transistors (transmission

4
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CHAPTER 2. PREVIOUS W O R K  IN  SWITCH-LEVEL SIMULATION 5

gates) is limited by their Boolean-gate model, which does not manipulate bidirec

tional signals well. In addition, logic-level simulators which use designer-supplied 

minimum, nominal, and maximum gate delays to estimate circuit speed are often 

awkward at modeling MOS circuits where the loading depends on the logic value. 

These shortcomings negate the speed advantage of logic-level simulators.

This chapter summarizes prior works in switch-level simulation. In Section 2.2, 

the fundamentals of two widely used switch-level simulators are presented. These 

simulators substitute transistors and capacitors with abstract elements. In doing 

so, they try to maintain the essential features of the original circuit while simplify 

those which are irrelevant to the analysis of digital VLSI designs. However, it is not 

completely effortless to analyze circuits that are in the switch-level representations. 

These difficulties are explained in Section 2.3. Only one of the difficulties, namely 

delay estimation, has been extensively investigated by other researchers. Their re

sults are reviewed in Section 2.4. The following chapters will then describe methods 

of improving the remaining problems.

2.2 Switch-Level M odels

In switch-level models, a node is characterized by its capacitance, which is deter

mined by the node’s physical layout. This capacitor has to be charged or discharged 

in order to  change the node’s state. Since a capacitor does not charge or discharge 

instantaneously, there is a  delay associated with each state change. This delay is di

rectly proportional to the capacitance of the capacitor, and is inversely proportional 

to the current driving the node.

To model the sources of current, each transistor is represented by a resistive 

switch which links the transistor’s source and drain terminals. The switch is further 

modeled by a perfect switch in series with a resistive device. The state of the switch
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CHAPTER 2. PREVIOUS W O R K  IN  SWITCH-LEVEL SIMULATION 6

is determined by the transistor's gate input. For nMOS devices, the switch conducts 

if the gate is high: for pMOS devices, the switch conducts if the gate is low. If the 

value of a transistor’s gate input cannot be determined by its simulator, then the 

state of the corresponding switch cannot be specified either.

The resistive component reflects the current-conducting ability of the transist or. 

There are many ways to calibrate the conductivity. The two most well-known 

switch-level schemes were proposed bjr Bryant[4,5] and Terman[26j. Bryant’s scheme 

is more abstract in that only a small set of discrete values are used to do the 

calibration. In contrast, Terman uses a  continuous spectrum of effective resistances, 

which is more realistic in measuring the conductivity of a transistor.

2.2.1 Bryant’s Scheme (MOSSIM)

Bryant’s scheme, which is adopted by switch-level simulators such as MOSSIM[5], 

MOSSIM II[3], and C0SM0S[2], does not calculate the exact conductivities of 

transistors; it only keeps track of the relative conductivities. The notion of relative 

conductivity is essential in modeling ratioed logic, which requires one conducting 

transistor to overpower another conducting transistor. The scheme labels relative 

conductivity with discrete strengths 7 1? 72, . . . ,  7max- The required difference in con

ductivity to put transistors into different strength classes is set by the user, and 

is normally set such tha t ratioed logic can operate properly. Consequently, this 

scheme is also known as the “order-of-magnitude” scheme. The number of different 

strengths required for simulation is usually small. For example, most CMOS de

signs do not involve ratioing, hence, they can be modeled with one strength; while 

most Mead-and-Conway[16] style nMOS designs only need two strengths: one for 

depletion load transistors and one for all other transistors. Since conductivities of 

devices with different strengths differ significantly1, a  weaker device can be ignored

1 Typically a factor of four for Mead-and-Conway style nMOS designs.
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CHAPTER 2. PREVIOUS W O R K  IN SWITCH-LEVEL SIMULATION 7

when connecting in parallel with a stronger device, but forms a bottleneck if the 

connection is in series. In other words, no m atter whether two devices are connected 

in parallel or in series, they can always be replaced by one device. For parallel de

vices, the strength of the new device is set by that of the stronger one of the original 

devices, while for series devices, it is set by that of the weaker one of the original 

devices.

Not only are transistors’ conductivities measured in a relative sense, but sizes 

of capacitors are also relative. A small number of strengths kj, k2, . . . ,  Kraax are 

assigned to capacitors. The criterion in assigning these strengths is such tha t when 

two capacitors with different strengths are connected together, the capacitor with 

the weaker strength can be charged to the voltage level of the other capacitor. For 

example, a precharged node is often assigned a stronger strength than an ordinary 

node because a precharged circuit works through capacitance ratioing.

A third kind of strength is assigned to  input nodes. These nodes are labeled 

w ith strength u> regardless of their logical states. Strengths of transistors, capacitors, 

and inputs can be compared to  one another. An input has the strongest strength 

because it can directly change the state of a node. A node which has an electrically 

connected path  to  an input node is said to  be driven, and the path  is called a  driving 

path. W hen passing through a transistor, the strength of an input is attenuated by 

the transistor. Hence, the strength on the other side of the transistor is set by the 

strength of the transistor. W hen two or more driving paths merge at a node, the 

path  with the strongest strength suppresses all other paths weaker than it. Driven 

values always overpower capacitors because capacitors can always be driven to the 

state  of the driving source. This reasoning implies that capacitors are “weaker” than 

any driving path, and thus have weaker strengths than transistors. In a nondriven 

network, a signal originating from a capacitor retains its strength when passing 

through a transistor. Such a  path  is called a charging path. A weaker charging path
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CHAPTER 2. PREVIOUS W O R K  IN SWITCH-LEVEL SIMULATION 8

can be ignored when a stronger one is present at the same node. The ordering of 

the three kinds of strengths is

Kj <  f<2 <  • • • ^max <'  *1 ”72 ^  ^  Tmax ^

This ordering is hand}' in filtering out weak paths with negligible effects. By 

blocking out weak paths, the problem of determining the state of a node is simplified: 

the state depends on unblocked paths only. If all the unblocked paths have the same 

logical state, then the node has tha t state as well. In contrast, if the unblocked paths 

have different logical states, then the state of the node is undefined because it is 

unclear which of the paths is the dominant one.

2.2.2 Terman’s Scheme (RSIM)

The other widely used switch-level model was developed by Terman for RSIM[26]. 

This scheme models a  transistor as a linear resistor. Terman assigns two sets of 

equivalent resistances to  each transistor in its conducting state: one set for dynamic 

purpose and the other for static purpose. Thus, this scheme is also known as the 

“effective-resistance” scheme. Both sets of equivalent resistances are, among other 

factors, functions of a device’s dimensions and material.

The dynamic equivalent resistance is used for delay estimation. Its value depends 

on the circuit context of the transistor. For example, it is much easier to discharge 

than  to charge a capacitor through an nMOS transistor due to the device’s nonlinear 

current-to-voltage characteristic. RSIM, with help from a circuit simulator, assigns 

d y n am ic equivalent resistance to  take nonlinearity into account. In order to find the 

equivalent resistance of an nMOS transistor charging a capacitor, Terman assumes a 

step function for the transistor’s gate input, and finds the duration required for the 

capacitor to  reach certain switching voltage. This duration is defined as the rising 

time constant. The ratio between the rising time constant and the capacitance is
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defined to be the dynamic equivalent resistance of the transistor. A complete set of 

dynamic equivalent resistances can be gathered by doing experiments on all possible 

combinations of simple circuit configurations.

In addition to a set of dynamic equivalent resistances, Terman uses, probably 

incorrectly,2 a different set of equivalent resistances, namely the static equivalent 

resistances, to find the DC voltage of each node in a transistor network. For a 

CMOS circuit which does not depend on device ratioing for its correct operation, 

static equivalent resistances can have any value. For an nMOS gate in which a 

voltage divider is formed between a depletion load and one or several enhancement 

pull-down paths, there is still considerable freedom in assigning static equivalent 

resistances to ensure correct simulation.

Since a  transistor network in Terman’s scheme is modeled as a resistor-capacitor 

network (or an RC  network), linear circuit theories can be used to simplify the net

work. For example, two transistors in series axe modeled as one linear resistor 

having the sum of their equivalent resistances; similarly, the resistance of two par

allel transistors is the parallel combination of their equivalent resistances. The DC 

voltage of a node in an R C  circuit can be determined by analyzing its resistors 

alone. RSIM also provides a delay estimation, which is approximated by the prod

uct of the lumped sum of resistances and the lumped sum of capacitances. This 

approach is illustrated by an example in Figure 2.1, where the delay at node n  is 

estimated to be

r = (£Rk)(jZC„). ( 2 .1)
k=1 k=1

2Since the same factors that affect a transistor's ability to drive a capacitor also affect the DC 
value, one can use a single effective resistance for both the dynamic and static analyses. This not 
only simplifies the analyses, but also give better results.
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Figure 2.1: A distributed RC  line.

2.2.3 Comparisons between MOSSIM and RSIM

MOSSIM and RSIM put emphases on different issues. By assigning discrete strengths 

to transistors and capacitors, MOSSIM does not have to deal with detailed current- 

voltage relationships. In contrast, RSIM uses resistors and capacitors to form a more 

accurate, but also more complex, model of a circuit. Although MOSSIM makes ma

jor approximations up front, its higher level abstraction allows it to  achieve gener

ality through simplicity. MOSSIM’s path blocking and state evaluating algorithms 

axe cheap to implement and can accurately model the abstracted circuit. On the 

other hand, RSIM has to  deal with a more complex model and must often make 

approximations at the evaluation stage.

In order to  limit its complexity, RSIM only handles tree-like networks. A network 

is tree-like if it does not contain any closed path (loop) formed by transistors (or 

resistors). Loops are rare in digital designs, and they axe expensive to analyze 

because a  simple parallel-and-series collapsing of resistors can no longer be used. To 

solve a  general resistor network with loops requires finding the inverse of a  matrix, 

which is prohibitively expensive for an effective-resistance based simulator. On the 

other hand, MOSSIM solves feedbacks by an iterative algorithm which terminates 

when nodes in a loop stabilized. This process is relatively inexpensive for MOSSIM 

because only a small set of discrete strengths are involved.

One major drawback of MOSSIM’s elegant high-level representation is its lack

R l
 W\A—
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of timing information. The notion of relative strength is insufficient to specify the 

exact delay, hence, unit delay is assumed. Since speed is the principal advantage of a 

fully customized IC. timing information is crucial for most designers. RSIM, on the 

other hand, carries enough information to be as accurate as the resistor-capacitor 

modeling can be. As a m atter of fact, the R C-modeling approach has even been 

used by timing verifiers[l4,18,2l] whose main purposes are to  estimate delays and 

find critical paths.

Unfortunately, in their original implementations, neither MOSSIM nor RSIM is 

satisfactory in simulating nontrivial circuit structures such as complicated gates, 

pass-transistor networks, and charge-sharing designs. Although MOSSIM is intrin

sically limited by the available information in its abstracted model, RSIM is only 

limited by its inability in extracting information from R C  networks. Since this 

thesis aims at improving the accuracy of simulation, and the effective-resistance 

representation has a  greater potential for accomplishing this objective, RSIM is 

chosen to  be the groundwork.

2.3 A nalysis o f R SIM

The m ajor challenge for an effective-resistance based simulator is how to inexpen

sively, bu t accurately, extract logic and delay information from R C  networks. In 

order to  determine the logical state of a node, the node’s DC voltage has to be 

computed. In order to find the exact delay of a node, the node's waveform has to 

be derived from a set of differential equations.

The computational complexity of a simulator is further increased by the presence 

of the unknown logical state, X. A transistor with an X on its gate is called an X 

transistor, which can be either conducting or nonconducting. Thus, the number 

of possible electrical configurations that can be derived from a network increases
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exponentially with the number of X transistors in the network. Different circuit 

configurations can drive the same node to different final voltages with different 

delays, and only an exhaustive evaluation can uncover all possible outcomes.

An exhaustive algorithm which requires solving differential equations at each 

step is extremely expensive. At the expense of sacrificing some accuracy, RSIM 

uses two schemes to drastically reduce the computational complexity. One scheme 

is based on an intelligent way of handling X transistors such that not all circuit 

configurations are evaluated. The other is to use the easv-to-compute empirical 

model described in Equation 2.1 to approximate the delay time constant.

RSIM manages to  avoid exhaustively evaluating X transistors by making con

servative approximations on possible outcomes. An approximation is conservative 

if it is no more optimistic than the worst case scenario created by setting X transis

tors to all possible conducting and nonconducting combinations. The definition of 

a  “worst case scenario” depends on the subject being examined. Since DC voltage 

is used to determine the logical state of a node, the worst case scenario is that 

the node reaches voltage levels which represent different logical states by setting X 

transistors to different combinations. If a  node can have more than one possible 

state, then the node is considered as logically invalid.

Determining the achievable voltages is a difficult problem, as the example in 

Figure 2.2 illustrates. The circled part of the figure is a resistor divider in series with 

a  switch in an unknown state. The switch conceptually represents an X transistor. 

In order to  find the maximum achievable voltage at node a, the switch should 

be considered as OFF. However, if node a is later on merged with a strong pull

down such as node b, then in order to find the maximum achievable voltage at the 

combined node, the switch should have been considered as ON! In other words, the 

decision of whether a bridging X transistor should be considered as conducting or 

nonconducting depends on what it is going to combine with and the information
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oa

Figure 2.2: Potential complications that can be caused by a switch in an unknown 
state.

tha t is being looked for.

RSIM’s X-transistor scheme can intelligently handle some X-transistor config

urations, but it also generates pessimistic results on some other configurations. A 

detailed description and analysis of RSIM’s scheme can be found in Section 3.3.

In terms of delay modeling, RSIM has been quite accurate for simple transistor 

clusters. A transistor cluster is a group of nodes that are electrically connected, and 

it is the smallest unit that RSIM operates on. Generally speaking, the complexities 

of transistor clusters do not vary with the complexities of designs, and in order to 

minimize delays, complicated transistor clusters such as pass-transistor networks 

are often avoided if possible. Thus, most transistor clusters are of the type in 

which a  logic gate drives an output capacitor, and the lumped model described in 

Equation 2.1 is adequate for these clusters.

However, there are two classes of circuits which the lumped model does not han

dle well. The first one is distributed RC  structures, which include the models of long

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. PREVIOUS W O R K  IN SWITCH-LEVEL SIMULATION  14

R, = 10, C, = 1, R„ = 1, Cn = 10 
R, = 1, C, = 10, R^s 10, Cn = 1 
All other R’s and C’s are 0

0 30 60 90 120 150
Time

Figure 2.3: Waveforms at node n in Figure 2.1 with different sets of R ’s and C ’s.

polysilicon or diffusion lines and pass-transistor networks (which are unavoidable in 

some designs). W ith reference to the example shown in Figure 2.1, even without a 

rigorous definition of delay, the lumped model seems doubtful. The fallacy of the 

model is that not all capacitors discharge or charge through all resistors. Therefore, 

a  voltage waveform can change significantly just by rearranging the -R’s and C ’s in 

a  network while keeping J2k -Rfc and Ylk Ck in constants. An example is shown in 

Figure 2.3.

In  addition, the lumped model assumes that transistor clusters are always driven 

by one and only one voltage source, which, unfortunately, is not true. For example, 

some circuit structures, such as NAND and NOR gates, can have multiple voltage 

supplies, and the lumped model cannot effectively handle these structures.

The other class of circuits which the lumped model does not handle are those 

■with timing problems caused by the redistribution of charge among capacitors (i.e. 

charge-sharing problems). Charge sharing is the focus of Chapters 4 and 5, and it 

will be discussed more extensively there.
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Among all the shortcomings that can be potentially improved, only delay mod

eling has been extensively investigated by other researchers. In the early eighties, 

a number of researchers came up with more sophisticated timing models for RC  

networks. Their results are reviewed in the following section.

2.4 E nhancem ents in Tim ing M odels

Research in timing has been concentrated on R C trees driven by a single voltage 

source with all capacitors starting at the same voltage. An early analytical result 

by Elmore[8] is adopted as the definition of delay. Elmore defines the delay of a 

node to be the first moment of its impulse response. This value is also equal to 

the centroid of the impulse response in the time domain, which matches the fuzzy 

notion of what a  “delay” should be.

The definition of delay was then extended to approximate waveforms. This led 

to the single-time-constant model[12,15,19,24]. This model provides an estimate of a 

waveform, hence, the approximate time required for a  node to reach any voltage level 

can be determined. Bounds of an estimate were also developed to check the accuracy 

of the approximation. Although waveform bounding is theoretically interesting[28], 

it is difficult to use in simulators.

When both the single-time-constant model and its bounds match poorly with 

the real waveform at a  node, there is a good chance that the node does not have 

a dominant time constant. This observation prompted some researchers to ex

periment on other more complicated timing models. Among them, there is the 

two-time-constant model[l2], which is most helpful in improving the estimates of 

a small class of unusual waveforms. However, its technique has profound influ

ences in works presented in a later chapter. Both the single-time-constant and the 

two-time-constant models are summarized here.
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2.4.1 Single-Time-Constant Model

The idea behind the single-time-constant model is quite simple. An RC  tree is a 

linear system, and its solution is the sum of exponential functions. For circuits 

appearing in digital VLSI designs, an output waveform is often dominated by the 

slowest exponential, which is caused by the lowest-frequency pole. Thus, a single 

exponential fmiction is a good model for an output waveform. The area under an 

exponential is equal to its time constant, and it also turns out tha t for a node in 

an R C  tree, the area under its voltage waveform in the time domain is quite easy 

to  find from the circuit's network topology. Hence, this area, which has the same 

value as the Elmore’s delay, is used as the approximate time constant.

Assume tha t the root of an RC  tree is the ground, and that all the capacitors 

in the tree axe charged high initially. The voltage3 drop Ve between any node e and 

the ground can be formulated by collecting the current from each capacitor and 

adding them  together as follows:

Ve = ' £ R keik = - ' £ R k e C k^ -
k k d t

where z* is the current from the capacitor Ck at node k, and is the resistance 

of the path  to  the ground shared by both node k and node e. The area of Vt in the 

time domain is given by

[°°Ve dt = Y . R k'Ck = rDc.Jo k

Figure 2.4 shows a simple RC  tree where nodes a, 5, and c are charged high initially. 

The exact waveform at node b is plotted against the single-time-constant model in 

Figure 2.5.

Unfortunately, not all waveforms can be modeled successfully with a single time 

constant. The example in Figure 2.6 is derived from the one in Figure 2.4 by

3A11 voltages are normalized to range between 0 and 1 unless specified otherwise.
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Figure 2.4: A simple R C  tree.

•a 0.8

S  0 6  f -  \

 The single-time-constant
model

  Hie exact waveform

15 20
Time in RC

Figure 2.5: Voltage waveform of node b in Figure 2.4.
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A/WV | b

Figure 2.6: Node b in this network has a low-frequency pole-zero pair.

increasing the capacitance at node c and the resistance between node a and node 

c. The voltage at node b initially falls a t its own rate; however, the rate of decay is 

eventually controlled by the dominant time constant set by the capacitor at node 

c. In frequency domain, this circuit has a low-frequency pole-zero pair, and the 

low-frequency zero partially cancels the dominant pole. This causes the output to 

have a  two-time-constant behavior. As shown in Figure 2.7, although the areas 

below the single-time-constant model and exact waveform are still the same, the 

approximation is not good for most regions.

2.4.2 Two-Time-Constant Model

Horowitz[12] proposed a model with a slow and a fast component for this class of 

networks. His model approximates a node’s network transfer function,4 H(s), which 

is defined as Laplace transform of the derivative of the node’s voltage waveform (its 

step response) by

H{s)  «  — - =  k( 1 +  (r , -  t p ) s  +  t p ( tp  -  rz -  rMe)s2 +  • • •) (2.2)
(1 +  5 T j) ( l  +  s t 2 )

4The only difference between a network transfer function and a network function is that the 
former can have arbitrary initial state while the latter is a zero-state response.
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Figure 2.7: Voltage waveform of node b in Figure 2.6.

where Tp = Tj ■+■ r2 and r ^ t = r ^ / r p .  The magnitude of k is equal to the product 

of all zeros in H (s)  divided by the product of all poles in H(s).  The model also 

approximates rp by the sum of all r 's  in the original system, which is equal to 

J2k RkkCk- The network transfer function which the model tries to approximate can 

be derived from its circuit description by finding the moments of the real waveform 

as follows:

TOO

H (s)  =  /  hee~st dt 
Jo

r  oo roo 5 2
=  / h€ dt — s th e dt + — / t 2he dt H-----

Jo Jo 2 Jo

/ r  oo r  oo
dVe +  s J  Ve dt — s2 J  tVe dt-\-----

= J a V ' - s Z  f  ^  a , )  + jT a t )  +■■■.

=  - 1  +  S T D c - S 2 ^ 2  R k e C k T D k  + (2.3)

where he is equal to  the derivative of Ve.

The idea behind modeling a network transfer function by a two-pole-one-zero 

system is to match the boundary conditions at time zero and infinity as well as the
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area and the first moment of the estimate with that of the real voltage waveform. 

Similar to that of a Taylor’s series expansion, the accuracy of an estimated waveform 

improves with the orders of matching moments, but the amount of computation 

also increases accordingly. By matching the coefficients of the first three terms in 

Equations 2.2 and 2.3, the time constants rA and r2 can be uniquely determined. 

In  Figure 2.7, the output of this two-time-constant model is compared with other 

models.

Since fan-outs in- VLSI designs usually have roughly the same timing, circuits 

w ith low-frequency pole-zero pairs are rather rare. As a result, this model has not 

been widely used. Nevertheless, the technique of modeling by matching the terms 

of an expanded network transfer function can be applied to other unexplored timing 

and glitch-detection areas.

2.5 Sum m ary

Switch-level simulators balance the accuracjr of circuit-level simulators with the 

speed of logic-level simulators. They are accurate enough to simulate pine digital 

designs but fast enough for large networks. The order-of-magnitude scheme and 

the  effective-resistance scheme are the two most widely used switch-level modeling 

techniques. The former scheme transforms transistors and capacitors to  devices with 

discrete strengths. In contrast, the la tter scheme transforms a transistor network 

to  an R C  network. Between these two schemes, the effective-resistance scheme is 

more suitable for timing and other detailed analysis.

The switch-level simulator RSIM follows the effective-resistance approach, but 

has many shortcomings. These shortcomings axe caused by difficulties in extracting 

in fo rm ation  from an R C network. Although delay modeling has been investigated 

by many researchers, there are still timing issues which need attentions. Most
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notably, the existing timing models assume that circuits are driven by a single 

voltage source; hence, they can neither model circuits without a driver nor model 

circuits with multiple drivers.

X transistors also cause problems to switch-level simulators because of the uncer

tainties of their states. RSIM tends to handle X transistors too conservatively, and 

produces pessimistic results. These issues axe explored in  the following chapters.
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Chapter 3 

Fined-Value C om putation

3.1 O verview

RSIM models a digital circuit as having three logical states — 1 (high), 0 (low), 

and X (invalid). It determines a node’s logical state by first estimating its voltage 

and then comparing the voltage with two thresholds: if the voltage is higher than 

the high threshold, then it is considered as logical high; if the voltage is lower than 

the low threshold, then it is considered as logical low; if the voltage is in between 

the two thresholds, then it is considered as invalid. Theoretically, there can be 

a  fourth state for simulators, which is usually referred to as “valid-but-unknown” 

state. For example, although the two outputs of an R-S  latch must have opposite 

polarities, their states cannot be determined during initialization. In this chapter, 

a  valid-but-unknown state is treated the same as an invalid state.

The two principal considerations in computing DC voltages at the switch level 

are accuracy and complexity. In terms of accuracy, design flaws such as drive 

fight and ratio error which result in invalidated outputs must be caught. Although 

simulators should err on the conservative side such that real design errors do not slip 

through, indiscriminately pessimistic results tend to discourage a designer because

22
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invalid states spread quickly in simulators. The spreading of invalid states has been 

examined by Breuer[l]. The fundamental problem is that ternary logic does not 

obey the Law of Excluded Middle (Q +  Q = 1) as digital circuits do, consequently, 

cross-coupled structures which rely on this property to settle valid-but-unknown 

states cannot be handled correctly. The dilemma is how to catch real design flaws 

without invalidating nodes winch are otherwise valid. In terms of complexity, the 

method chosen should be computationally inexpensive such that simulation at the 

VLSI level can be done interactively if so desired.

While KirchhofFs current law and voltage law provide a  systematic way in an

alyzing any lumped electric circuit, their application to circuits in the switch-level 

representation is complicated by X transistors. Although all achievable voltages at 

a  node can be found by evaluating X transistors exhaustively (by setting them to 

combinations of conducting and nonconducting states), it is bo th  expensive and un

necessary to do so. For digital circuits, the logical state of a node is only determined 

by its minimum and maximum achievable voltages; hence, instead of solving for all 

achievable voltages, a  simulator only has to  find the achievable voltage range.

Yet, determining the achievable voltage range is still a nontrivial task, as the 

example in Figure 2.2 has already shown. In addition, although voltage range 

alone dictates the logical state of a node, combining two or more nodes requires 

the nodes’ resistance information. Since the effective resistance associated with a  

node depends on how X transistors are set, it can also have multiple values. These 

values can be bounded by a resistance range. Voltage range and resistance range are 

closely related, and their relationship is best visualized in a  two-dimensional Veq-R eq 

(voltage-resistance) plane. This technique is first documented by Terman[26], and 

it is reviewed in the next section.
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3.2 Solution Space R epresentation

Thevenin's theorem states that any two-terminal network of resistors and voltage 

sources can be represented by an equivalent voltage source (Vtq) in series with an 

equivalent resistor (Req). As mentioned in the previous section, if some of the 

resistors in the network do not have fixed values, then the output of the network 

can be represented by a collection of Thevenin equivalents. The collection can be 

represented in a plot with its X  axis being Veg and its 1' axis being Reg.

A simple resistor divider shown in Figure 3.1 (a) illustrates the construction of 

such a plot. To start with, assume tha t Ru, =  Ruh =  Ru  and that Ru, = R uh =  Ru- 

In this case, the effective output resistance and the effective output voltage are 

equal to  Ru  || R u  and R d / ( R u +  R d ) respectively. This Thevenin equivalent can 

be specified in the Veq-Req plane by a  point. The relationship between the effective 

output resistance and the effective output voltage, as a function of Ru  and Ru,  is:

Reg(Ru,RD) = RuVeq(R u ,R D ) =  R d ( 1 — Veq(Ru, R d ))-

In the resistor divider, if the pull-down resistor varies between 0 and oo (that 

is Ru, = 0 and R u h =  oo) while holding the pull-up resistor in constant a t Ru,  

then all possible Veq-Req pairs (Thevenin equivalents) form a segment of the fine 

R eq(R u ,r ) =  RuVeq(R u ,r ) where 0 <  r < oo. This segment resides in the first 

quadrant of the Veq-R eq plane, has slope Ru, and terminates at (0,0) and (1, Ru)- 

In  contrast, if the pull-up resistor has the range [0, oo] while the pull-down resistor 

is held at constant Ru,  then all Veq-R eg pairs form the first-quadrant segment of the 

line R eq( r ,R u ) =  Ru(  1 -  Veq(r ,R u))  terminating at (0,R u )  and (1,0).

If neither the pull-up nor the pull-down resistor is at constant, then the plot of 

all Veg-Reg pairs forms a diamond-shaped quadrilateral; see Figure 3.1 (a) and (b). 

A systematic way to construct this solution space is to vary the pull-up resistance 

between 0 and oo with the pull-down resistance equal to R u ,, and then to repeat the
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Figure 3.1: A resistor divider and its output solution space.

operation with the pull-down resistance equal to R o h- Thevenin equivalents formed 

by the operations can be described by two straight lines in the Veg-R eg plane. The 

region in the first quadrant between these two lines represents all possible output 

Veg-R eg combinations for the resistor divider with its prill-down resistance between 

[Rd iiR d ]̂ and any positive pull-up resistance. By reversing the roles of Ru  and 

R d in the above process, one can calculate all Veg-Req combinations for the resistor 

divider with its pull-up resistance between [Ru,,Rvh\ and any positive pull-down 

resistance. These combinations form another triangular region in the first quadrant 

of the Veg-Reg plane. The solution space is the intersection of these two regions.

Although a  diamond-shaped quadrilateral can be expressed quite easily with 

four parameters, the solution space of a more complicated circuit can be highly 

irregular. W ith reference to  the circuit shown in Figure 3.2 (a), since the series 

resistor only affects the output impedance, the circuit’s output voltage range is the 

same as that of Figure 3.1 (a). Its solution space can be visualized by shifting
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Ru HR] Ru HR]
(a) (b)

Figure 3.2: A resistor divider in series with a resistor and its output solution space.

the shaded area in Figure 3.1 (b) Ri units along the R eq axis and stretching the 

upper boundary by another R^ — R[ units. The result is graphically illustrated in 

Figure 3.2 (b).

Several seemingly reasonable final-value computation schemes axe actually heuris

tics to handle complicated solution spaces. However, only a  systematic analysis can 

explore the limitations and shortcomings of these heuristics. The following sections 

examine two methods of approximating complicated solution spaces.

3.3 B ox M ethod (RSIM )

The implementation which comes with the original distribution of RSIM approxi

mates the solution space of a circuit by a rectangular-shaped area in the Veq-Req 

plane; see Figure 3.3 (a). Due to its highly regular shape, a solution space can be 

specified by two sets of mutually independent parameters and [V/,!7/,]. The
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Figure 3.3: A rectangular solution space and its equivalent circuit.

notation box{R\, Rh , V/, 14) will be used to  denote the above solution space. A box 

(a rectangular solution space) can be physically realized by a voltage range in series 

with a resistor range; see Figure 3.3 (b).

Boxes axe basic building blocks in RSIM’s DC-computation scheme. In order to 

find the solution space on one end of a resistor R  when the other end is connected 

to  the equivalent circuit of a box, one only has to transform the box R  units up 

along the R eq axis. Connecting the equivalent circuits of box(Rln i?lh, Vi,, V\h) and 

box(R2n R 2h, V2l, V2h) ir  parallel yields a hexagonal solution space as illustrated by 

an example in Figure 3.4. Since only rectangular solution spaces are allowed in the 

box method, a hexagonal solution space is approximated by its bounding rectangle 

box(Ri, Rh, Vi, 14) where Ri , R h , Vi, and 14 are determined as follows.

Since the effective output resistance is equal to the resistance of its component 

resistors in parallel, the minimum and the maximum output resistances are
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Figure 3.4: The exact solution space on top of the approximate solution space 
formed by concatenating the equivalent circuits of box{4.0, 20.0, 0.15, 0.45) and 
box(5.0, 15.0, 0.6, 0.85).

The effective output voltage is determined by the resistor divider formed between 

the voltage sources. To calculate its minimum value, one should set both voltage 

sources to their minimals and adjust the variable resistors such that the one which 

is associated with the voltage source with the lower voltage is in its minimal while 

the other resistor is in its maximal. The opposite applies to finding the maximum 

output voltage. In the above example, Vi and Vh are set by

if (Vi, <  H ,) V, =  else V, =  ^
r t l, -t- I t 2h x t lh +  l i 2l

•f(r - r w  vihR2H + V2hRh r V2hRih + VlhR2,if ( \‘ih >  1-2J  'h  = --------- g  , p  else Vh = --  -   .
Jti, i t 2h r t i h +  i t 2l

The box method is seemingly reasonable because it is conceptually familiar — 

the equivalent circuit of a box resembles a Thevenin equivalent. One advantage of 

the method is th a t the result is guaranteed to be conservative. Any operation on a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. FINAL-VALUE COMPUTATION 29

box, be it series connection with a resistor or parallel concatenation with another 

box, generates a solution space which is either equal to or forms a superset of the 

exact solution space; therefore, any Vtq-Rtq combination at a node must belong to 

the solution space computed by the box method.

Unfortunately, the conservative merit also brings undesirable pessimism to the 

box m ethod's results. For example, as shown previously, a hexagonal solution space 

has to  be approximated by its bounding rectangle. When the equivalent circuit of 

such an approximate solution space is concatenated with that of another box, the 

box method uses the boxes’ boundary information to compute the result. In other 

words, once an error or an approximation is introduced, it propagates and amplifies 

through operations between boxes. By building error upon error at places where 

they can cause the most damage, it is possible for the solution space approximated 

by the  box method to  have a much wider voltage range than that of the real solution 

space. Consider the example of connecting the equivalent circuits of box(Ri, R i,  0, 

0), box(0, oo, V, V), and box(R3, R 3, 1, 1), which is shown graphically in Figure 3.5. 

Let the  value of V be R i /{R \  +  R 3) such that the output voltage is equal to V  

regardless of the effective resistance of the second box. In this example, the box 

m ethod does not always provide a good approximation for the output. For instance, 

if the first box is first combined with the second box, then with the third box, the 

approximate voltage range is shown as a  function of V  in Figure 3.6. Although the 

exact output voltage is equal to  V ,  the approximate voltage range is equal to [0, 

2V — V 2], which grows wider with V. As a result, the box method signals the output 

to  be invalid whenever 2V — V 2 is greater than the low threshold; in reality, the 

output is invalid only if V  lies between the low threshold and the high threshold.

The same example also illustrates another problem with the box method — its 

result is inconsistent with respect to the order of evaluation. For example, if the 

output voltage is computed by combining the third box with the second box and
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Figure 3.5: Concatenating the equivalent circuits of box(Ri, R i ,  0, 0), box(0, oo, 
F , V ), and box(R3, J?3, 1, 1).

Invalid
£  0.75

8 0.50

i'; iltnii
0.25 —

Figure 3.6: Approximate voltage range as a function of V  if box(Ri, iJj, 0, 0) is 
first combined with box(0, oo, V ,  F )  then with box{Rz, R$, 1, 1).
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H I  High 
i l l  Invalid

Figure 3.7: Approximate voltage range as a  function of V if box(Rz, i?3 , 1, 1) is 
first combined with box(0, oo, V, V) then with box(Ri, Hi, 0, 0).

then with the first box, then the approximate voltage range becomes [V2, 1], which 

is plotted as a  function of V  in Figure 3.7. Although either ordering guarantees a 

conservative approximation, the two results are quite different, and neither is very 

good.

3.4 D iam ond M ethod

A different heuristic to approximate the solution space has been proposed by Ter- 

man in [26]. Terman suggests using resistor dividers same as the one shown in 

Figure 3.1 (a) as basic building blocks. As explained in Section 3.2, a diamond

shaped quadrilateral can be specified by four parameters: Ru,, Ruh (the minimum 

and the maximum pull-up resistances), R d,-, and R u h (the minimum and the max

imum pull-down resistances). The notation diamond(Ru,, Ruh, R d,-, R o h) will be 

used to  denote such a region.

Since all resistor dividers in this method are defined between the same power
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supply and the ground, connecting the outputs of two resistor dividers is straight

forward. When two resistor dividers with solution spaces diamond(Pit, P in  Qir 

Q\h) and dia.m.ond(P2r  Pih, Q2,, Q 2h) are connected, the overall pull-up resistance 

must be within [P1( || P2l, P\h || P 2J  (similarly for the overall pull-down resistance). 

These two ranges are sufficient to specify a resistor divider with the solution space 

diamond{P\l II i V  A ,  II f t , ,  Q\, || Q2„ Qih II Q2h)- Unlike the box method, no 

approximation is made in this step.

On the other hand, the solution space formed by connecting a resistor R  in series 

with a  resistor divider diamond(Ru,, Ruh, R d,, R dh) is much more complicated. It 

can be constructed from th a t of Figure 3.1 (b) by shifting the shaded region R  units 

up along the R eq axis. Although the result is still a  diamond-shaped quadrilateral, 

no resistor divider of the kind shown in Figure 3.1 (a) can produce such a solution 

space. This result is unacceptable to the diamond method because the new solu

tion space can no longer be merged with other resistor dividers using the previous 

algorithm. Hence, the diamond method must construct a resistor divider which ap

proximates this solution space. Terman reasons that the most im portant part of a 

solution space is its  voltage range, thus it is not compromised. This constraint fixes 

the left and the right vertices of a  diamond-shaped area in the Veq-Rtq plane. He 

also decides to preserve the lowest effective resistance seen at the output because it 

seems to be more prudent to overestimate than to underestimate resistances. These 

constraints uniquely define a  resistor divider with the solution space diamond(A\, 

A h, Bi, B h) where

At =  Ru, 4  R  4  R-zr1 ^  =  Ruh 4  +  R lpT '
Di f*'U{ f*,Di

B, = R D t+ R  + R ^  B k = RDh+ R ^  + R ^ .
Hu, Hd, Hu,

The exact and the approximate solution spaces are illustrated in Figure 3.S. Since 

the exact solution space is not a  subset of the approximate solution space, this
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R+Rtt lIRi Exact solution space 
Approximate solution space

Ru HR]

Figure 3.8: The exact solution space and the diamond method’s approximation.

approximation is not conservative.

While the box method can overestimate as well as underestimate the effective 

resistances associated with the comers of a solution space, the diamond method 

never underestimates them. This is best illustrated by comparing the solution spaces 

in  Figures 3.4 and 3.8. Since the comers of a solution space define the interface 

w ith other solution spaces, the box method is conceivably more vulnerable to error 

because it tends to  exaggerate the strength of a stronger driver while understate 

the strength of a weaker one. In this context, a stronger driver is the one with the 

higher voltage when computing the maximum output voltage (and vice versa for a 

weaker driver).
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The diamond method is also more consistent than the box method with respect 

to the order of evaluation. Approximations are introduced only at places where they 

are intrinsically order independent (i.e. series connections). Despite its conceptual 

complexity, the computation and memory requirements of this scheme are no worse 

than the box method.

Unfortunately, this scheme has one major drawback. As hinted in Figure 3.2 (b), 

a solution space can lose its diamond shape due to a series X transistor. However, it 

is beyond the diamond m ethod’s ability to take the upper bound of a series resistor 

range into consideration, hence, an X transistor is modeled indifferently from an 1 

transistor! This inadequacy negates all the potential usefulness of this method; it 

is not even clear how any nontrivial diamond-shaped solution space can be formed 

without X transistors.

3.5 Im proved R esistor-D ivider M odel

The major limitation of the diamond method can be removed by extending the set 

of basic elements used to model circuits. A new scheme is proposed here. This 

scheme uses four kinds of basic building blocks: resistor, resistor range, definite 

block, and indefinite block. A resistor is used to approximate the conductivity of 

a transistor when it is ON. Similarly, an X transistor is substituted by a resistor 

range with its bounds set by the equivalent resistance of the X transistor when it 

is ON and infinity.

A definite block is defined to  be a resistor divider same as the one shown in 

Figure 3.1 (a) with the constraint that Ruh and R oh cannot be infinite at the same 

time. Hence, the output of a  definite block is guaranteed to be driven. The circuit 

shown in Figure 3.9 (a) is defined to be an indefinite block. Its solution space is 

shown in Figure 3.9 (b). There is no constraint on Rjjh and R n h of an indefinite
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/

[R^  R u J
[0,00] 

— VWV—

-V

Ru HR]

(a) (b)

Figure 3.9: An indefinite block and its solution space.

block; thus, a  high impedance node is also an indefinite block. Other than the high 

impedance case (whose output is nondriven), the output of an indefinite block may 

or may not be driven because the series resistor range is conceptually equivalent to  a 

switch in an unknown state. Definite and indefinite blocks such as those introduced 

above are referred to as definite(Rur  Ruh, R d,i R v h) and indefinUe(Ru,, Ruh, R d,i 

R dh) respectively.

Two operators, series operaior(+) and parallel operator{||), will be defined on 

the four basic building blocks. Series operator operates between the output terminal 

of a  definite or an indefinite block and one of the terminals of a resistor or a resistor 

range. The four possible combinations under this operation and their corresponding 

ou tput types are shown in Figure 3.10. Parallel operator links the outputs of two 

definite and /o r indefinite blocks. There are three possible combinations, and they 

are shown in Figure 3.11. Series and parallel operators are defined to generate 

definite and indefinite blocks only; thus the four basic building blocks are closed
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Definite

Definite Indefinite

Indefinite

R,oo]
Indefinite  VWv O

Indefinite Indefinite

Figure 3.10: Domain and output type of the series operation.

Definite

Definite

Definite

Indefinite

Indefinite

Indefinite

Definite Definite Indefinite

Figure 3.11: Domain and output type of the parallel operation.

under the two operators. This property is introduced such that a  complicated circuit 

can be built or analyzed from the fundamentals.

3.5.1 Series Operator

Ideally, the series operator would find the exact equivalent, in the form of either a 

definite block or an indefinite block, for the unconnected terminal of the resistive 

element. However, it has been shown in Figure 3.8 tha t even for the simplest case 

of a  definite block in series with a resistor, the result does not have a definite-block
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or an indefinite-block equivalent. In general, none of the combinations shown in 

Figure 3.10 has either a definite-block or an indefinite-block equivalent. In order to 

satisfy the property that basic building blocks are closed under the series operator, 

the operator is defined as follows: it produces a definite or an indefinite block, 

depending on whether the output is guaranteed to be driven, whose minimum and 

maximum output voltages and their corresponding minimum resistances match the 

exact solution space. This definition is different from the one used by the diamond 

m ethod in tha t the diamond method matches the minimum and the maximum 

voltages and the overall minimum equivalent resistance seen at the output. The 

new definition is made to  eliminate errors at the left and right comers of a solution 

space; after all, the maximum range of the voltage is the subject of this study. Of 

the four cases shown in Figure 3.10, three of them generate indefinite blocks because 

their outputs are not guaranteed to be driven; only the series connection between 

a definite block and a resistor produces a definite block. The latter combination is 

illustrated with an example in Figure 3.12. The series operator is summerized as 

follows:

definiie(Rul,R uh,R.Dl,RDh) + R  =  definite(Ai,Ah,Bi,Bh), 

indefiniie(Rul,R u h,RD,->R'Dh) + R  = indefinite(Ai,Ah,Bi,Bh), 

definite(RVl, Ruh, R d, , R dh ) +  [R-, °o] =  indefiniie{Au A h, B h B h), 

indefinUe(Run RuhiR-DiiRDh) ^ [ R i 00] = indefinite(Ai,Ah,Bi,Bh) (3.1)

where

A, = Rvt + R  + R § ^ ,  A h = Rvh + R  + R
•K'Di

B, = R Dl + R  + R ^  B k = R Dh+ R  + R
itUh

This operation is guaranteed to be conservative because the approximate solution 

space is always a superset of the real solution space.
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Exact solution space 
Error due to approximation

R+Ril HR]

R u HR]Ru HR]

Figure 3.12: The exact solution space on top of the solution space defined by the 
series operator at the output of a  resistor R  when the other terminal of the resistor 
is connected to a  definite block definUe(Run Ruh, R dh)-

Error introduced in the series operation does little damage, if any, to the ac

curacy of the overall result due to a  subtle but important property of the solution 

space: if all resistor dividers are defined between the same power supply and ground 

(in other words, only definite and indefinite blocks are allowed), then the solution 

space of a  definite block can be bounded by its left and right comers. This is 

because the right comer of a definite block’s solution space has a  lower pull-up 

resistance but a  higher pull-down resistance than any other point in the solution 

space. Hence, when the definite block is combined with any resistor divider between 

the same power supply and ground, this combination is guaranteed to  minimize the 

combined pull-up resistance and maximize the combined pull-down resistance; as a 

result, it produces the highest combined voltage. Consequently, this combination is
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labeled as the strongest pull-up combination of the definite block. Similarly, the left 

corner has the highest pull-up resistance but the lowest pull-down resistance, and 

is labeled as the strongest pull-down combination. The analysis can also be applied 

to  the solution space of an indefinite block because an indefinite block is basically 

a definite block in series with a switch.

W ith reference to Figure 3.12, the approximate solution space, according to the 

above argument, is bounded by the left and right comers of its solution space. At 

the  same time, these corners also match the left and right comers of the exact 

solution space. Thus, the approximate solution space represents the smallest region 

which is still conservative and is realizable by either a  definite block or an indefinite 

block.

3.5.2 Parallel Operator

The parallel operator would ideally provide an exact equivalent for those parallel 

connections depicted in Figure 3.11. Yet it suffers the same problem as the series 

operator — an exact equivalent is not always realizable by either a definite block or 

an indefinite block. Approximations targeted a t minimizing errors a t the left and 

right corners of a  solution space will be introduced to  define the parallel operator.

The parallel connection between two definite blocks, definite{P\0 Pih, Qi , , Q ih) 

and definite(P2n P2hi Q2 0  Qih)-> has been worked out in Section 3.4. Its result is 

restated in the  following expression:

definite(Ph ,P lh,Q h ,Q u ) || d e f in i t e ^ , ,P 2h,Q 2n Q 2h) =

definite (Pi, || P2|, P ih || P2h, Qh || Q 2,, Qi„ || QaJ- (3.2)

No approximation is required.

It is more complicated to define the parallel operator between a definite block 

definite(Pin P ih, Q1,, Qih) and an indefinite block indefinite(P2, , P2h, C?2|, <J2h)•

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. FINAL-YALUE COMPUTATION 40

The indefinite block may or may not contribute to the output depending on the 

resistance of its series resistor range. A conservative approach is to take both 

extremes into considerations. At one extreme, the resistance of the series resistor 

range is set to zero such tha t the indefinite block behaves like a definite block. In 

this case, the output solution space is equal to

definite(Ph || P 2p PXft || P2h, Qh || Q2l, Qih || Q2h)-

This solution space can be bounded by its left and right corners. The other scenario 

is to assume the series resistor range to have infinite resistance. In this case, the 

output of the indefinite block is in high impedance. Hence, the solution space of 

the combined output is the same as that of the definite block. This solution space 

can also be bounded by its left and right corners. In either extreme, the combined 

output is driven; hence, the output type is definite.

In order to  satisfy the conservative criterion, the output solution space is approx

im ated by the smallest region in the Veq-Reg plane which contains all four comers 

in the above two cases and which is realizable by a definite block. This concept is 

graphically illustrated in Figure 3.13 (b) where each pair of left-and-right corners 

axe joined by a line for clarity. It is easy to tell from this figure tha t the top pair is 

set by the definite block alone because they have higher equivalent resistances than 

the lower pair.

The upper bounds of the approximate pull-up and pull-down resistor ranges, 

R v h and R p h in Figure 3.13, are set by the upper bounds of the definite block’s 

pull-up and pull-down resistor ranges. By the same token, the lower bounds of the 

approximate pull-up and pull-down resistor ranges, f?[/, and R d1 in Figure 3.13, are 

set by the lower bounds of the combined pull-up and pull-down resistor ranges when 

the  resistance of the series resistor range of the indefinite block is set to zero. This
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Figure 3.13: Approximate solution space of a definite block in parallel with an 
indefinite block.

result can be expressed as follows:

definite(Ph ,P lh,Q h ,Q lh) || indefinite(P2„ P2h, Q2l, Q2h) =

definite(Ph || P 2|, Pi„, Qh || Q2o Qih). (3.3)

Error will be introduced in this step. As shown in Figure 3.13, the strongest pull

down combination (the left comer) of the approximate solution space is stronger 

than  any pull-down combination of the exact solution space; similarly, the strongest 

pull-up combination (the right corner) of the approximate solution space is stronger 

than  any pull-up combination of the exact solution space. Thus, the approximation 

is always conservative, but it can occasionally be pessimistic as well. The following 

example illustrates the most pessimistic scenario.

Assume tha t both the pull-up and the pull-down resistances of a given definite 

block are equal to  R, and both the pull-up and the pull-down resistances of a given
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indefinite block axe equal to r. When the outputs of these two blocks are connected 

together, one can easily see the combined output has a. voltage of 0.5 regardless 

of the state  of the X transistor associated with the indefinite block. However, 

according to Equation 3.3, the improved resistor-divider model approximates the 

result to  be definiie(R || r, R. R. || r , R). This approximation can be extremely 

pessimistic when r  <C R  — the approximate voltage range is equal to [0,1]. In 

general, the approximation tends to be pessimistic when the pull-up and the pull

down resistances of the definite block are much larger them that of the indefinite 

block.

The parallel operator also has to be defined between two indefinite blocks; say 

indefinite(Pil, P in  Qiti Qih) indefinite(P2t, P*n Qio In essence, this case

is the same as the case between a definite block and an indefinite block. However, 

the output here can either be in one of the three driven states or be in the high 

impedance state. The three driven scenarios are derived from different combinations 

of the two series resistor ranges. Each of their solution spaces is bounded by its 

left and right comers. The approximate solution space is defined to be the smallest 

region in the Veq-R eq plane which contains all three pairs of comers and which is 

realizable by an indefinite block. Mathematically, it can be stated as follows:

indefinite(Pl n Plh,Q h ,Q lh) || i n d e f in i t e ^ ,  P 2h, Qiv <?2h) =

indefinite(Ph || P2|, m zx(P lh,P2h), Qh || Q2„ max(Qlh,Q 2h)). (3.4)

The parallel operator introduces error in this operation just like it does to that 

between a  definite block and an indefinite block.

3.5.3 Merits

The improved resistor-divider model has the following merits. First of all, the 

state of an X transistor is not predetermined; instead, it is properly handled as an
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unknown. As a result, the major drawback of the diamond method is eliminated. 

Secondly, this scheme computes the exact voltage range for a node when there is 

no bridging X transistors in the associated cluster. In other words. X transistors 

which lead to the power supply or ground do not result in any error. This is because 

without bridging X transistors, the only indefinite blocks are 1) a node driven to 

the Vdd through an X transistor, 2) a node driven to the ground through an X 

transistor, and 3) a node driven to the Vdd through one X transistor and to the 

ground through another X transistor. These circuits are shown in column (a) of 

Figure 3.14.

In order to proof tha t these three circuits do not introduce uncertainty to  the 

final-value computation, one can look at their equivalents shown in Figure 3.14 (b). 

The equivalents have all the characteristics of a  definite block except that they are 

not guaranteed to be driven. W hen any of them is combined with a definite block, 

Equation 3.2 gives the exact solution. Since Equation 3.3 gives the same result 

under the same situation, it is also free of error.

When any two of the circuits shown in Figure 3.14 (a) are combined, the output 

still belongs to the same group of three circuits. The exact solution can either 

be obtained by Equation 3.4 or by applying Equation 3.2 to the corresponding 

equivalent circuits. Thus, if a  cluster has no indefinite blocks other than those 

shown in Figure 3.14 (a), then the improved resistor-divider model gives the exact 

solution.

The box method, on the other hand, does not have the same characteristic. 

As explained in Section 3.3, a nondegenerate box appears whenever there is an X 

transistor, and error propagates and amplifies in the box method through parallel 

box operations which involve a t least one nondegenerate box.

This brings up another merit of the improved resistor-divider model: error prop

agates slower in this scheme than  in the box method in general. This is because
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Figure 3.14: Three indefinite circuits (column (a)), which do not introduce uncer
tainty to  the final-value computation, and their equivalents (column (b)).
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Figure 3.15: Approximate voltage range as a  function of V  — R \ /{R i  +  iZ3) if 
definUe(oo, oo, R i, Ri), indefinite(R3, i?3, i?i, i?i), and definite(R3, R 3, oo, oo) are 
paralleled together.

parallel operations between definite blocks do not need any approximation, hence, 

error is confined to parallel operations involving indefinite blocks. When an indef

inite block is combined with a definite block in parallel, error can be introduced; 

however, since the result is a  definite block, the error does not amplify itself through 

future operations! For instance, if the improved resistor-divider model is applied to 

the  example

definite(oo,co,Ri,Ri)  || indefinite(R3, R 3, R i , R i)  || definite(R3,R 3, oo,oo)

as described in Section 3.3, the result is shown in Figure 3.15. This result is less 

pessimistic than the ones shown in Figures 3.6 and 3.7 because the bounds axe 

much tighter; yet it is still conservative because the shaded region includes the 

exact solution space.

The result shown in Figure 3.15 is order independent because the improved 

resistor-divider model is order independent. This can be proved by looking at the 

definitions of the series and parallel operators. The series operator is intrinsically
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order independent because it is controlled by the circuit topology. The parallel 

operator has three variations. The two variations expressed in Equations 3.2 and 

3.4 are order independent because finding the parallel or the maximum of a group 

of numbers is order independent. The third variation, which is expressed in Equa

tion 3.3, involves a definite block and an indefinite block, and the upper bounds of 

the indefinite block’s pull-up and pull-down components are ignored in computa

tion. This variation does not cause order dependency because 1) if the indefinite 

block is first combined with an indefinite block, then the result is still an indefinite 

block; 2) if the indefinite block is first combined with another definite block, then 

its upper bounds are ignored in that operation.

Last but not the least, the computational complexity of this scheme is low, and 

its data structure is simple. As a  m atter of fact, this method uses no more resources 

than either the box method or the diamond method. The implementation details 

are discussed in Chapter 6.

3.6 Sim ulation Exam ple

The example shown in Figure 3.16 is encountered during the simulation of the 

MIPS-X processor[11,10], which is a CMOS design with an on-chip instruction cache 

of 2K bytes. This example provides a realistic comparison between the box method 

and the improved resistor-divider scheme.

The figure shows the 6-T RAM designed for the instruction cache. When RSIM 

is first activated, nodes B ,  C, and D of the circuit are all in unknown states. In 

order to  write a zero into the memory cell, signal A  is first raised such tha t the bit- 

line capacitor can be discharged. Then the word-line control signal will be raised 

to pass the low signal into the memory cell. At this moment, the state of node D 

is still unknown, hence RSIM thinks that the lower inverter of the memory cell can
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bit

word line

P: 6/2 
N: 6/2

J---- 1
6/2.5

P: 72/2 
N: 72/2

P: 6/2 
N: 6/2

Figure 3.16: A 6-T RAM and its driver.

fight with the much stronger bit-line driver. The cluster of interest is circled in the 

drawing.

RSIM models the cluster as a resistor network. The version of RSIM th a t runs 

a t Stanford sets the normalized low and high thresholds at 0.4 and 0.6 respectively. 

It also sets the effective resistances of nMOS and pMOS transistors as follows:

nMOS pMOS

Dynamic Low 6000 f t /  □ 24000 f t/ □

Dynamic High 12000 f t /  □ 12000 ft/ □

Thus, the circled cluster becomes a resistor network shown in Figure 3.17.

In order to  compute the voltage at node C, Figure 3.17 can be partitioned into 

three -subcircuits as illustrated. The box method views each subcircuit as a box, 

and computes the output according to rules described in Section 3.3. Assume that
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Subcircuit #2

Subcircuit #1

167
[2000,co]

Subcircuit #3

Figure 3.17: A resistor model of the circled cluster shown in Figure 3.16.

box 1, box2, and box3 represent the solution spaces of subcircuits # 1 , # 2 , and #3  

respectively. Since the box method is order dependent, its approximation can vary 

w ith how boxes axe combined. If box 1 is first combined with box2 or 6ox3, then the 

approxim ate output voltage range is [0,0.4]. This range accurately reflects the worst 

case scenario for the output, and node C can be properly driven to the logical low 

state. However, if box2 and box3 axe combined first, then the output voltage range 

becomes [0,0.67]! In this case, the box method signals the output to be invalid. 

Thus, if the order of evaluation is totally random, then in one third of the time, the 

box m ethod cannot properly initialize this memory cell.

On the other hand, the improved resistor-divider model views subcircuit #1  as a 

definite block while it views subcircuits # 2  and #3  as indefinite blocks. It computes 

the output voltage range to be [0,0.4] regardless of the order of evaluation. Thus, 

the  memory cell can always be properly initialized.
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3.7  Sum m ary

Transistors with unknown gate states (i.e. X transistors) post great difficulties 

to the determination of DC voltages. These transistors introduce uncertainties to 

simulators because they can be considered as either conducting or nonconducting; 

thus, they can vary the electrical connectivity of a circuit.

Since the logical state of a circuit depends only on the minimum and maximum 

voltages that the circuit can reach, simulators need not to exhaustively evaluate 

all achievable voltages of the circuit. There are many heuristics to approximate 

an achievable voltage range. A better known heuristic is the one implemented in 

RSIM. This heuristic is shown to be conservative, but it also has many problems. 

For example, it can occasionally give pessimistic approximations, and it suffers 

consistency problem — its results may depend on the order of evaluation.

A new DC-computation scheme is introduced in this chapter. This scheme is 

also conservative, but it is in general less pessimistic than RSIM’s scheme. The new 

scheme is self-consistent in tha t its results are not order dependent. An example 

from an actual simulation shows that the new scheme compares favorably to  RSIM’s 

scheme.
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Chapter 4 

Linear Charge-Sharing M odels

4.1 Overview

The t iming models reviewed in Chapter 2 assume that charge flows unidirectionally 

between capacitors and a voltage supply, and that voltage waveforms axe monotonic. 

In  reality, neither the unidirectional nor the monotonic assumption is universally 

true. For example, if a network does not have a voltage source, then there is not 

an exclusive supplier or drainer of charge. Hence, if charge is to be redistributed 

among the capacitors of such a network, it is incorrect to assume that the charge will 

always flow in one direction. Another example is that if capacitors in a network start 

a t different voltages, then their waveforms may not be monotonic. Complications 

caused by the redistribution of charge among capacitors are commonly referred to 

as charge-sharing problems. This chapter focuses on how to model charge sharing 

on R C  networks.

Charge sharing often occurs in IC ’s and causes problems to switch-level simu

lators. Formal definition and detailed analysis of charge sharing are provided in 

Section 4.2. Sections 4.3 and 4.4 then introduce methods tha t can be used in a 

switch-level simulator to model charge sharing. These methods are presented with

50
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both mathematical and conceptual arguments. Mathematical argument is based on 

the frequency-domain analysis, which expands a network transfer function. On the 

other hand, a more intuitive physical picture provides insight for easy understanding 

and potential improvements. The parallel between mathematical rigor and physical 

basis also helps the construction of charge-sharing models for nonlinear networks in 

the next chapter.

4.2 Charge-Sharing Networks

Charge sharing refers to  the voltage variations on nodes caused by the redistribution 

of charge when two R C networks at different steady-state voltages are connected 

together. There are two kinds of charge sharing. The first kind is pure charge shar

ing in which two nondriven R C subnets are connected through a resistive switch. 

Since sharing charge is the only means to achieve voltage variations, it is impor

tan t to  model the charge-redistribution process in order to  calculate the elapsed 

time for a node to reach its switching voltage — a threshold between the old and 

the new logical states. A simulator can use this delay information to schedule the 

transition events a t the correct time. The lack of an active drive in pure charge 

sharing causes a great problem to the single-time-const ant model which uses the 

dominant-pole approximation. The dominant time constant in pure charge sharing 

is infinite (since the  nodes are not driven to either 0 or 1), which is much slower 

than the time constants set by the redistribution of charge. Since a major voltage 

variation occurs during the redistribution of charge, a  single time-constant model 

is inadequate.

The other kind of charge sharing is illustrated in Figure 4.1. Charge sharing 

with a driven path is the same as pure charge sharing except tha t one of its subnets 

has a resistive path  to  a voltage source. The subnet with the driven path will
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RC Subnet 
# 2

RC Subnet

Charging TreeDriving Tree

Figure 4.1: Charge sharing with a  driven path.

be called the driving tree. In the steady states before and after the concatenation, 

capacitors in the driving tree have the same voltage as the voltage source. The other 

subnet which is not driven initially will be labeled as the charging tree. Capacitors 

in  the charging tree start at a  certain voltage but are eventually driven to the 

steady-state voltage equal to that of the driver in the driving tree. A model for this 

kind of charge sharing needs multiple time constants because there are two events 

happening simultaneously. One event is caused by the redistribution of charge, 

and the other is due to  the driving source. A node in the charging tree always 

has a monotonic voltage waveform, and the two-time-constant model described in 

Section 2.4 works well. A node in the driving tree is more complicated since it 

starts  and ends at the same voltage but can have a  voltage spike whose amplitude 

is large enough to cause the node to temporarily change its state. The amplitude 

of a  voltage spike is defined to  be the maximum voltage fluctuation during the 

transition. In order to catch glitches, a simulator must calculate these fluctuations.

Charge sharing occurs in many places. In nMOS designs, precharged logic is used 

to  gain speed while avoiding static power dissipation. This circuit technique works 

through pure charge sharing: a precharged node shares its charge with another 

node, which has a  much smaller capacitance, without degrading its signal level.
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Nondriven clusters can also occur due to flaws in design or simulation vectors.

Charge sharing with a driven path appears in all kinds of MOS technologies. 

It corresponds to situations where a switching pass transistor connects an actively 

driven network, such as a gate, with a high-impedance fan-out network whose ca

pacitors are initially charged to a different polarity.

At present, most switch-level simulators, including RSIM, use ad hoc approaches 

to  model these events. W ithout a good timing model, these simulators assume 

th a t charge-sharing event's happen instantaneously and schedule them before driven 

events. To estimate the amplitudes of voltage spikes, these simulators use the ratio 

of the total charge to the to tal capacitance and in essence ignore all the resistors 

in the circuit. These schemes often introduce fictitious events that slow down the 

speed of simulation and sometimes cause flip-flops to latch incorrect values.

Two examples dem onstrate these shortcomings. The circuit shown in Figure 4.2 

is similar to the barrel shifter of the MIPS processor[20], which is an nMOS de

sign. The node marked N  reads from one of the several sources. Each source is a 

precharged capacitor of 2 pF. Assume that (p (phi) goes high ahead of Load.l such 

th a t by the time Load. 1 goes high, the voltages of the capacitors on both sides of the 

transistor gated by <p are the same, and their values are different from that of the 

source capacitor. The elapsed time for node N  to change its logical state is crucial 

in determining the speed of this barrel shifter. An effective-resistance model of the 

circuit is shown in Figure 4.3. If node N  is scheduled to  change instantaneously as 

suggested by RSIM, then the performance of the circuit is overestimated.

The RAM cell from the MIPS-X processor, which is shown in Figure 4.4, il

lustrates another problem in simulating charge sharing. In order to read from the 

memory cell, both bit and bit are precharged. Assuming a zero is stored in the cell 

when the word line goes high, one can see that the large ratio in capacitances be

tween the bit line and the internal node will cause a voltage spike on the latter. An
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Precharge j H
PhiLoad.l

J--- 1
.5 pF .02 pF

Load.2

Figure 4.2: A circuit which is similar to the MIPS processor’s barrel shifter.

6000

■A /w v— — r

2pF

6000

■AAAAr

.5pF

N

.02 pF

Figure 4.3: An effective-resistance model of the barrel shifter shown in Figure 4.2.
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bitbit

word line

6/2.5

P: 6/2
.5pF

N: 6/2

.05 pF

Figure 4.4: The RAM cell designed for the instruction cache of the MIPS-X pro
cessor.

effective-resistance model of the RAM’s read/write network is shown in Figure 4.5. 

The access transistor’s effective resistance is doubled because it is passing a high 

voltage. Despite the ten-to-one ratio in fat-line and intemal-node capacitances, the 

amplitude of the voltage spike is merely 0.25. However, a simpleminded approach 

such as RSIM’s, which uses the ratio of the total charge to the total capacitance, 

predicts a voltage spike with an amplitude of more than 0.9. This poor prediction 

propagates through the cross-coupled inverters and destroys the value stored in the 

cell!

As the next sections will show, by using only a slightly more complex method, 

one can form much better estimates of the charge-sharing effects.
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—VWV-
.05 pF

Figure 4.5: An effective-resistance model of the RAM’s read/write network.

4.3 P u re Charge Sharing

In a pure charge-sharing network, the steady-state voltage Vf is determined by the 

ratio  of the total charge to the to tal capacitance. However, during a transition, 

the voltage at any given node is closely coupled with its neighbors, which makes 

a  closed-form solution very complicated. In some sense, even a single-driver RC  

network can be classified as a special case of pure charge sharing because the voltage 

source is functionally equivalent to a  gigantic capacitor with the initial voltage equal 

to  tha t of the voltage source. As a m atter of fact, pure charge-sharing networks 

and single-driver networks share many common characteristics. For example, both 

kinds of networks are linear systems, and their transient waveforms are usually 

dominated by a single pole. The reason for the transient or the charge-redistribution 

portion of a  pure charge-sharing waveform to  have a single pole is tha t pure charge- 

sharing designs usually have a  dominant capacitor that acts as a virtual voltage 

source. Thus, pure charge-sharing problems can be approached in a way similar to 

tha t of the single-time-constant model: by calculating the area between an output 

waveform and a time-independent line representing the final voltage and choosing an 

exponential function with the same area and boundary conditions. This approach 

was also independently suggested by Raghunathan and Thompson[23,22].
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In the single-time-constant model, an output voltage is expressed in terms of 

capacitors1 currents flowing towards a fixed voltage source. However, in pure charge- 

sharing networks, all nodes are floating; there is no distinguished node which acts 

as a supplier or drainer of charge. Nevertheless, a  derivation similar to the one in 

Section 2.4 can be followed to express the voltage difference between any pair of 

nodes. After the voltage differences between every node and a randomly selected 

reference node r  axe established, conservation of charge can be used as an additional 

condition to decouple the relationship.

4.3.1 Waveform Estimate

If each capacitor Ck of a pure charge-sharing network is replaced by its equivalent 

current source ik =  — the voltage difference between node e and the reference

node can be written as

v , - v ,  = Y . K , h  = - ' £ . R i . , c ^  ( « )
k k a z

where R Tke is the resistance of the path to the reference node r  shared by both node 

k and node e. The area between Vt and Vr in the time domain is equal to

f v . - v r *  = - Y . K A  [ ’i v t - Y . R l c { [ ' i v k
Jo k 1 k 0

k k

=  TA, (4.2)

where Ck is equal to  Ck if Ck is at logical high initially and zero otherwise (vice versa 

for Cl). Equation 4.2 is not the desired result because it gives the area between

two waveforms which are changing simultaneously. Conservation of charge provides

the necessary information to decouple node r from node e. Since CeVe =  CjVj 

where Cj is the sum of all capacitances, one can multiply both sides of Equation 4.2
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by the capacitance C( of node e and sum over corresponding equations from every 

node to give an equation for /0°° Vj — Vr dt:

r  C '( i ;  -  v r)dt =  c T r  Vj -  v r dt = J2  c t TAr.
e Jo  Jo t

Combining this equality with Equation 4.2 gives the area between the waveform Fe 

a t any node e and Vj:
roc

/  V ' - V j d t = T Ar - C ? Y , C kTAr .  (4.3)
k

Assuming the transient waveform is dominated by a single time constant, the esti

m ated voltage waveform V-/  is

\v;) 
v;)

(4.4)

This model is used to  estimate the voltage waveform a t node N  of the RC  

network shown in Figure 4.3. Comparison with the exact waveform is plotted in 

Figure 4.6. The model works extremely well for this example because the circuit in 

Figure 4.3 practically has only one nondegenerate pole. Although the approximation 

for a  more complicated circuit is not guaranteed to be as good as this one, designs 

with pure charge sharing in mind are usually quite simple.

The time constant re in Equation 4.4 may seem counterintuitive at first glance 

because T^r varies with the reference node. As a m atter of fact, Raghunathan and 

Thompson[23,22] suggested always using the node of interest to be the reference. 

Their scheme results in excessive computation because a  different set of parameters 

is required for each and every node. Computation can be drastically reduced by 

using one randomly selected reference node, since Ctt^ t — J2k CkL4j is a constant 

regardless of the node chosen to  be the reference! The consistency of this result is 

not a coincidence. The next section will prove tha t the above result is a degenerate 

version of the standard two-pole-one-zero model.

Vf  + ( 1 -  V/ )e -</T« 

Vf ( 1 -  e - ^ )
where r , =

<-'TTAr - L k^k rAr
(1 - V , ) C T 

E* Ĉ Al~CTrAr 
Vj C't

(for falling 

(for rising
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Figure 4.6: The pure charge-sharing model versus the exact waveform for node N  
in  Figure 4.3

4.3.2 Frequency-Domain Interpretation

Since the time-domain derivation is based on an intuitive understanding of the 

single-time-constant model, it says little about the fundamentals of the model. In 

order to discover the limitations and pitfalls of this result, frequency-domain analysis 

is carried out. A new network is first constructed by connecting a weak driver to 

any node r  of the original pure charge-sharing network. The weak driver consists 

of a  fixed voltage source equal to V/ in series with a large resistance R l - Although 

the total charge in the new network is the same at time zero and infinity, charge is 

continuously introduced or drained by the voltage source before the system reaches 

equilibrium. Yet in the limit of a very large R l , voltage waveforms in the new 

and the old networks are practically the same for timing purposes. The reason to 

construct the new network is to provide a reference node with a fixed voltage, such 

th a t the standard frequency-domain formulation can be applied.

In this new system, voltage V* at node e with respect to the voltage source 

becomes V* — Vj =  — J2k(R-L +  Rke)Ck~^~i and the network transfer function at
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node e is equal to

H( s )  = Id(Y; -  vf) + * £ \ v ;  -  vs) dt -  s2 J~t (v; -  v »  dt + ■ ■ ■

(Vj -  1) + $ t A t -  s2 'ZkiRL + R rkt )CkrAi + ■■■ (if v t* starts at 1)
(4.o)

Vf + ^ Ar ~  s2'£,k{RL + R rkt)CkTAi + ■ (if starts at 0)

It is worth noting tha t the area between V* and Vf in the new system is exactly

the same as the area between Ve and VT in Equation 4.2 but is quite different from 

the area between Ve and Vj in Equation 4.3. Although V)* can be as close to Ve as 

desired by increasing R l , a large R i  results in a  slow charge-restoration process. In 

other words, the weak driver significantly changes the area and higher moments of 

a  waveform without a noticeable change to the waveform itself.

The network transfer function can be approximated by models with different 

degrees of accuracies. However, a single-time-constant model cannot catch both the 

charge-redistribution and the charge-restoration portions of a  waveform. The two- 

pole-one-zero model given by Equation 2.2 is the next simplest model. By matching 

the coefficients of the first three terms in Equations 2.2 and 4.5, one can show that 

the ratio  between the product and the sum of the two approximate time constants, 

TMe — T\T2I{T\ +  ^2 ) 1  bears the following relationship:

lim rMt - — (1 -^ Jdr ^  (if StaltS a t X)

^ k--°kv % CrT- - (if Ve starts a t 0)

Since the sum of the two approximate time constants, 7> =  J2k(R-L +  Rlk)Cki is 

unbounded when R l approaches infinite, one of the poles is located at the origin, 

and the other is at —1 /TMe- A pole a t the origin gives a degenerate time constant, 

which accounts for the restoration of charge by the weak driver. On the other hand, 

the faster time constant controls the transient. This derivation gives the same result 

as th a t of the time-domain approach.
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In general, higher order of accuracy can be obtained, at the expense of compu

tational complexity, by modeling the transient with more than one pole. In reality, 

such extra accuracy is seldom necessary for switch-level simulators.

4.3.3 Limitations o f the Model

An intrinsic limitation of the model is due to the implicit assumption that waveforms 

in pure charge-sharing networks are monotonic — the area between a waveform 

and the time-independent line representing the final voltage increases monotoni- 

cally with time. This condition is only guaranteed for charge sharing between two 

capacitors connected by a resistor. Therefore, it is not surprising to find out that 

the model gives the exact solution to such networks. Unfortunately, in its most 

general form, a waveform in a pure charge-sharing network can cross Vf several 

times before settling a t the steady state.

In the time domain, the area computed by Equation 4.3 cannot differentiate a 

monotonic waveform from a waveform crosses Vf several times. In the latter case, 

the areas below and above the reference line can partially cancel each other. In the 

frequency domain, high-frequency poles are ignored when the transient is modeled 

by a  single pole. W ith these limitations in mind, it is not hard to construct a 

hypothetical circuit which cannot be properly handled by the above model. An 

example is shown in Figure 4.7.

Assume that onfy the capacitor at node c is charged high initially. The capacitor 

a t node b is negligible comparing to  its neighbors, and the resistor to the right of the 

switch is much smaller than the one to the left. When the switch is closed, charge 

sharing is done quickly between nodes b and c. This drives the voltage of node b 

across the final voltage as shown in Figure 4.7. Due to the large resistor between 

nodes a and 6, the capacitor at node a does not come to play until a later stage. 

Looking at the frequency domain, one can see that the network transfer function
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Figure 4.7: A hypothetical pure charge-sharing network which breaks the model.

of node b has a low-frequency zero which partially' cancels the low-frequency pole 

contributed by' node a, hence, the high-frequency pole becomes important. This is 

exactly the same reason why some circuits fail the single-time-constant model as 

described in  Section 2.4.

The aforementioned pure charge-sharing model can only reasonably approximate 

the waveforms at nodes a and c. The area of the voltage waveform at node b is 

negative, and consequently' its approximate time constant is also negative, which 

literally means that the waveform is unbounded when time approaches infinity. 

This unexpected result is easy to detect, and a safeguard can be built in. Since it is 

prohibitively expensive to  come up with a more accurate model for this rare error, 

the  time constant in Equation 4.4 can be redefined as

max (o, CTTÂ c TkTAl)  (if v e starts a t !) 

max fo, kVjCT T **) ^  ^  starts a t 0)
tv =

Even though the new definition can occasionally underestimate a  delay, it is 

guaranteed to do no worse than scheduling a charge-sharing event instantaneously'.
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4.4 Charge Sharing w ith a D riven P ath

The general two-pole-one-zero approximation can also be used to estimate the am

plitudes of voltage spikes in driving trees. Assume, without loss of generality, that 

the driving source of a network is the ground. Thus, driving-tree nodes start and 

end at the ground voltage. The network transfer functions of these nodes must 

have a zero at the origin. A proof is provided in Appendix A. A zero at the origin 

contradicts the basis of the two-pole model described in Section 2.4, which assumes 

th a t one pole is closer to the origin than all other poles and zeros. The breakdown 

in assumption calls for a  different kind of approximation.

In order to take the dominant zero into consideration, the network transfer 

function should be approximated by

H ^  ~  771— v71---T = k(s ~ (Tl + T2̂ 2 + '" )-(l +  ST1)( l- t- s r2)

Since the coefficients of s and s2 shown here are not the same as the corresponding 

coefficients from the two-pole-one-zero model given by Equation 2.2, a  separate 

derivation is necessary for this case.

4.4.1 Amplitude Derivation

For a two-pole-one-zero-at-the-origin system to match the area and the first moment 

of a  real waveform, the sum of inverses of the two approximate poles, Tpc =  rx -f- r2, 

is equal to

TP' =  Z kR k'c kTAk where =  r»  ye dt =  £  Rk'C H 
TA' k

This is in contrast to  other two-pole-one-zero models where the sum tj -I- r2 =  

J2k HkkCk depends strictly on the circuit configuration. tac can be interpretated as 

a modified form of the Elmore’s delay — a form taking the initial charge distribution
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into formulation. However, delay is meaningless for nodes in driving trees because 

they start and end at. the same voltage.

Since a two-pole waveform cannot be uniquely specified by its area and first 

moment, this model returns a family of waveforms as a function of the approximate 

lowest-frequency pole, —1 /tj. The approximate voltage waveform V '  of node e of 

the driving tree can be expressed in terms of :

V '  =  — ---- [e- ‘/u _  e - t / ( T P' - T ,)] _

2 r i  -  t Pc !• J

The peak amplitude of Vem, as a function of Ti, is equal to

f  _ n _ Y nl(2,' - rr-)
rpc -  n  \ r Pt -  n  J

By definition, the dominant pole is closer to  the origin than any other poles, so for 

a  two-pole system, (rPt/2) <  rj < rPc. In this domain, the peak amplitude of wave

forms in a  fa m ily increases monotonically with Tj and is bounded by (2 /e)(rj4t/ rp J  

and taJ tp, (the value of the lower bound is approximately equal to 73.6 percent of 

th a t of the upper bound).

4.4.2 Physical Interpretation and Improvement

The above mathematical model can be improved by investigating its physical basis. 

The charge-sharing network shown in Figure 4.8 has exactly two poles. If C2 is 

charged high initially, then the network transfer function of node E  has a zero at 

the  origin. In other words, the two-pole-one-zero-at-the-origin model actually tries 

to  map a node in the driving tree to a node in a two-capacitor-two-resistor circuit. 

The mapping is done by matching geometric waveform characteristics such as the 

area and the first moment. The mapped two-capacitor-two-resistor circuit will be 

defined as the  reduced network of the original node. Unfortunately, the two matches 

are insufficient to  determine the four unknowns in a reduced network. As a result,
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Figure 4.8: The simplest circuit with two poles and a zero at the origin.

the amplitude calculation leaves a 26.4 percent (i.e. 1 — f ) uncertainty between the 

lower and the upper bounds. Additional constraints can be introduced to  narrow 

the search space. The obvious one is to  compute the second moment of a node’s 

step response, which, however, is computationally expensive. A subtler but much 

cheaper to compute constraint can be used.

Since both the original and the reduced network are linear systems, the locations 

of their poles axe subject only to  their network topologies. Hence, a  reduced network 

should be reasonablely capable of modeling the original node regardless of the initial 

charge distribution. One way to  ensure this capability is to introduce an additional 

constraint such tha t if all capacitors of the original and the reduced systems are 

charged high initially, the Elmore’s delays of node E  of the reduced network and 

node e of the original network are equal. The Elmore’s delay of node e can be derived 

from the topology of the original network and is equal to tdc = J2k RkeCk- This 

constraint does not interfere with or contradict to the area and the first moment 

constraints. Solving these constraints gives

c x =  T S i- ^ c ,
tac

T3 _
R i ~ c ;

R2= Tf'c,Tp' - (4-6)
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The analytic solution Ve =  a{t ^ Tl — t  t^T2) of a reduced network is easy to 

obtain, and the peak voltage V^ax is given by

^ m ax =  Tjr ~  / ( ( * > .  -  TD t ) ( T Dt  -  TA J /  )
TPr.

where the normalized amplitude function /  ranges between 2/e and 1, and its 

equation is presented in Appendix B. This model gives the exact solution if the 

original circuit itself has only two time constants. Two-time-constant circuits are 

quite common; the read/w rite network of the RAM cell shown in Figure 4.5 is an 

example. In fact, according to the simulation on the execution unit1 of the MIPS-X 

processor, 77.5 percent of its dynamic clusters have two or fewer transistors. Hence, 

being able to solve a reduced network without error is an extra bonus of this model.

4.4.3 Limitations of the Model

The charge sharing with a driven path model is plagued by the same problem 

as the pure charge-sharing model: it is vulnerable to circuits with low-frequency 

zeros tha t cancel the effect of low-frequency poles. A circuit similar to  the one 

shown in Figure 4.7 illustrates this deficiency. Assume tha t a resistor of value 10 

connects node a to  the ground. Since the capacitor at node b is insignificantly 

small compared to  its neighbors and the capacitor at node a is large enough to 

be considered as a  virtual ground, the resistive-divider between node a and node 

c dictates the initial voltage waveform at node b. The whole system is eventually 

discharged at approximately the same rate through the driving resistor. As a result, 

the amplitude at node b cannot be reasonably modeled with two poles. This failure 

can be caught by the model: R 2 in Equation 4.6 becomes negative, which is not 

physically realizable.

JThe RAM cell is located in the instruction cache, which is not part of the execution unit.
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The problem is expensive to fix. Matching higher-order moments is not only 

computationally demanding, it is still vulnerable to the same problem though at 

a different level. Fortunately, even though pedagogical circuits with multiple low- 

frequency zeros are easy to construct, the}7 are very rare in digital designs. In order 

to recover gracefully after detecting that the model fails, the definition of R 2 needs 

to be modified:

R 2 =  max(0, Tp'- ~ -TD' ) .
C/2

4.5 Sum m ary

Charge sharing can be classified into two kinds: pure charge sharing and charge 

sharing with a  driven path. In the former kind, a waveform is hard to estimate be

cause its dominant time constant is infinite. In the latter kind, delay is meaningless 

because a  node starts and ends at the same level; yet its transient waveform may 

cause a  glitch.

Pure charge sharing needs to be modeled by two poles in order to catch the 

charge-redistribution portion of a waveform. However, the previous two-pole model 

cannot be directly applied because there is no distinguished reference node. The 

similarity between pure charge sharing and a fully-charged driven case is used as 

the basis for the time-domain derivation. Frequency-domain interpretation of the 

result is also presented. It is shown tha t a  waveform can be modeled with the sum 

of two exponential functions, though one of them degenerates to become a constant.

Charge sharing with a driven path  is controlled by two events: sharing charge 

between the charging tree and the driving tree, and a driving voltage source. The 

amplitude of a  voltage spike is determined by high-frequency components of a wave

form. These components can usually be taken care of by introducing an additional 

pole in the model. However, some care must be taken in using the two-pole-one-zero
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model because there is a zero at the origin in this case. Although a  similar approach 

to  the one reviewed in Section 2.4.2 can match the area and the first moment of 

a waveform, these two constraints are not enough to uniquely determine a wave

form. Fortunately, matching the Elmore’s delay can provide an additional piece of 

information, which is then sufficient to specify a unique waveform estimate.
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C hapter 5

C harge Sharing in Transistor 

N etw orks

5.1 O verview

C hapter 4 has introduced charge-sharing models for resistor-capacitor networks; 

however, the circuits being modeled are really transistor-capacitor networks (or TC 

networks). The major complication in modeling MOS networks is due to transistors’ 

nonlinearity. For example, an nMOS transistor passes a low signal more effectively 

th an  a high signal, but the opposite is true for a pMOS transistor. To compen

sate for this asymmetry, switch-level simulators usually assign different effective 

resistances to transistors depending on the signal level being passed[26]. However, 

there is always an underlying uncertainty about how this ad hoc compensation can 

change the accuracy of a model. To address this doubt, this chapter attem pts to 

construct nonlinear charge-sharing models which take transistors’ nonlinearity into 

consideration.

Since a step function has been assumed for the gate input of a  switching tran

sistor, all transistors which belong to the same cluster enter the linear region either

69
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right away or shortly after the input changes. By assuming a quadratic transistor 

model. Horowitz[l2] was able to formulate a pseudolineax current-voltage relation

ship for transistors operating in the linear region. This relationship has been used 

to  develop timing models for TC  networks[l2]. The pseudolinear transformation is 

reviewed in Section 5.2.

Although the pseudolinear transformation does not remove the nonlinearity of 

a transistor, it allows the voltage of a node in a TC network to be formulated in a 

way similar to that in an RC  network. Sections 5.3 and 5.4 rely on this property to 

construct charge-sharing models for nondriven and driven TC  networks respectively.

5.2 Transistor as a Pseudolinear D evice

The current through the drain and source terminals of a MOS transistor is not 

linearly related to the voltages associated with these terminals. Horowitz[12] noticed 

tha t when a transistor is in the linear region, its drain-source current, based on the 

quadratic transistor model, is linearly related to some function g(Vr>, Vs) of the 

terminal voltages. Moreover, the function is separable with respect to the two 

parameters Vr> and Vs'. ’g(Vn,Vs) =  /(V b) — f(Vs). As a result, the drain-source 

current and the transformed voltage /(V ) of a terminal node are linearly related. 

This transformation, unfortunately, does not totally remove the nonlinearity of a 

TC  circuit because linear capacitors become nonlinear devices in the transformed 

domain. Thus, such transformation is called pseudolinear.

Using an nMOS transistor as an example, the drain-source current ips  is equal

to
^ W  c r  tr VD S ^ r ,, Tr J n ( V o )  ~  fn(VS)

IDS =  VnCox —  \VGS ~  Vth  —  )V d s =  (1 “  Vth )  -J j-J ----------

where all voltages are normalized by the power supply. The function / n(Vb) is equal 

to  1 — [1 — VD/(1 ~  Ka)]2> and likewise for the function f n(Vs). R ef j  is equal to
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2L /[W iinCcr{\ — V*/,)] and, up to the first order, only varies with the dimensions 

of the transistor. Since i?c/ /  is the proportional constant in the above expression, 

it has the semantics of an effective resistance. Due to a threshold drop between 

the gate and source terminals of a MOS transistor, noninput nodes of a transistor 

circuit with exclusively n-tvpe devices have a range between 0 and 1 — Vth- Assuming 

a step gate input, one can see that V ds  of any transistor in such a circuit is always 

less than or equal to  its corresponding I-fes — Vth', thus, all conducting transistors 

operate in the linear region.

The pseudolinear current-voltage relationship of a  pMOS transistor is symmetric 

to  tha t of an nMOS transistor, but the source and drain labelings are reversed. For 

a  pMOS transistor, the drain-source current is equal to

irs = -HPCoxyf(V GS -  Vth -  ^ ) V DS = -(1 -  \Vth\)& (VD)~ & ----L  Z K efJ

where / p(Vb) =  1 — [l — (1 — Vd)/(1 — |V/,|)]2, and likewise for / P(V?). The threshold 

voltage Vth of a  pMOS device is negative, hence, |Vt/J is actually equal to —Vth- ReSS 

in this expression is equal to 2T/[IVnPC0X{\ — |Vt/,|)]. Noninput nodes of a circuit 

with exclusively pMOS devices range between \Vth\ and 1 due to a gate-source 

threshold difference. W hen a step gate input is assumed, Vds > (Vgs — Vth) for all 

transistors, thus they all operate in the linear region.

Since pMOS technology can easily be mapped1 to  nMOS technology, the follow

ing presentation will be in nMOS only. Furthermore, in order to simplify notations, 

all voltages will be normalized by 1 — Vth, and symbol U will be used to  represent 

the transformation of a  normalized voltage; for instance, U d  = 1 — (1 — Vb)2.

1This can be accomplished by replacing each pMOS device by an nMOS device with proper 
adjustments in R ej f ' s  (to compensate for the differences in the hole and electron mobilities and the 
magnitudes of threshold voltages) and reversing the polarity o f each node (replacing V  by 1 — V) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. CHARGE SHARING IN  TRANSISTOR N E TW O R K S

5.3 N onlinear Pure Charge Sharing

Modeling pure charge-sharing transistor networks consists of two sub-problems: the 

determination of waveform shapes and the approximation of time constants. These 

concerns are shared by the linear pure charge-sharing model, hence, insights can be 

gained by looking at the physical basis of that model.

In essence, the linear pure charge-sharing model maps a node in an R C network 

to  a node in a two-capacitor-one-resistor network. The output of this model is an 

exponential, and the value of its time constant is set such that the areas under the 

true  output and the model output match. An equivalent technique for a nonlinear 

model would be to  map a  node in a  TC  network to a node in a two-capacitor- 

one-transistor network. Adopting this equivalent technique is appropriate because, 

in  spite of the differences between transistors and resistors, a waveform in a pure 

charge-sharing MOS network usually has a simple shape and is dominated by a 

single time constant.

For TC  networks, the area under the true output is, in general, impossible to 

find because of transistor’s nonlinear current-voltage relationship. Fortunately, the 

aforementioned nonlinear transformation from V  to U allows a limited application 

of superposition. Equation 4.1 can be rewritten for a  TC  network as

where R rke is set by the R ej j  of the path  instead of the resistance of the path as in 

the  linear model. The area between Ut and UT in the time domain is equal to

r  Ue -  UT dt = TAr. (5.1)
Jo

The idea is to  find / 0°° Ue — Uj dt and to use it to approximate the time constant 

for the U waveform at node e. Since there is a one-to-one mapping between a U
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and its corresponding V' waveforms, the time constant for the V  waveform can be 

estimated as well.

5.3.1 Shapes of Waveforms

The falling and rising waveforms for nodes in a two-capacitor-one-transistor network 

can be solved explicitly:

V  = 1 “  (i-v^v^Slyr) (for the fallins node) (5 2)

(i— (for the risinS node)

where r  =  RC h (R  is the Re}} of the connecting transistor, and Ch is the capac

itance of the node which is originally charged high). Although falling and rising 

waveforms of nodes in an arbitrarily complex TC  network can have much more 

complicated formulas, the functions in Equation 5.2 can roughly depict any falling 

or rising node because, to  first order, all falling nodes fall at approximately the 

same rate and so do rising nodes.

These two waveforms are monotonic, and they approach V/ asymptotically from 

the opposite sides. In the [/-domain, where V  =  1 — (1 — V)2, the transformations 

of these two waveforms are also monotonic, and they approach U} — 1 — (1 — V/)2 

asymptotically from the opposite sides. Equation 5.2 and its transformation will 

be used to approximate the voltage and [/-domain waveforms in any pure charge- 

sharing MOS network.

5.3.2 Approximate Time Constant

Even though Equation 5.1 looks very similar to Equation 4.2, the charge-conservation 

technique (multiplying both sides of Equation 4.2 by the capacitance Ct of node e 

and summing over corresponding equations from every node) used to separate nodes 

e from r  in Equation 4.2 cannot be applied to Equation 5.1. That is because U is a
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function of V2. hence Ct Ue is a function of the total energy in the system. Unlike 

the total charge, the total energy stored in all capacitors of a pure charge-sharing 

network does not conserve.

Fortunately, in the proposed scheme, the time constant of a waveform is approx

imated by its area in the time domain, and there are countless waveforms that have 

the same area. Hence, for the purpose of approximating a time constant, it is not 

necessary to find the exact shape of a waveform, but any waveform G which has 

the same area as U can be used. In addition, if it is possible to find a particular 

G function, P , which is linearly related to V, then conservation of charge can be 

applied to  a set of / 0°° Pe — PT dt =  r^r equations to  decouple nodes e and r.

In general, P  is impossible to define without knowing the area under U, but 

finding the area under U is the reason P  needs to be defined. However, for a 

two-capacitor-one-transistor network, its P  function, Z7’, can be defined for both 

the rising and falling nodes because the system can be solved analytically; see 

Equation 5.2. In this case,

U‘ =
F(V,)(V-V,)  +  V, (farV>V» 
m v , ) ( v  - V j )  + Uf (for F < Vj)

can be obtained by substituting Equation 5.2 to ft[o)(V — Um)fy d V  and setting the 

la tte r to  zero. It is not surprising that, instead of linear in V, U* is piecewise linear. 

This is because the shapes of the rising and falling waveforms of a two-capacitor- 

one-transistor network are quite different. The two portions of Equation 5.3 are 

monotonic and they approach Uj asymptotically from the opposite sides just like 

the transformations of Equation 5.2. These monotonic and asymptotic properties 

simplify the problem: the area between the transformation of the rising waveform 

and Uj is equal to  /0°° R(V/)(V — Vf) dt (similarly for the falling waveform). The
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Figure 5.1: Proportional constants as functions of the normalized final voltage.

proportional constants of Equation 5.3

"  21/ -  1 ln[2(l — V/)]

and

R(Vf ) = 2(1 - V j Y

(if Vj ±  0.5; F(0.5) =  0.75)

(if V/ ^  0.5; F(0.5) =  1.25)
1 - 2  Vj ln[2(l — Vj)]

are functions of the final voltage only, and they axe plotted in Figure 5.1.

Although U" is nothing more than the P  function of the trivial case (a two- 

capacitor-one-transistor network), it has been decided previously that waveforms 

in any network usually resemble those in a trivial case. Hence, Equation 5.3 can, 

and will, be used to approximate the P  function of any node in any network. Since 

J ~ P e - P T dt = f 0°° Ut ~ U r dt = TA r ,

rJo
U' -  u; dt«  tAt (5.4)

After Equation 5.4 is collected for every node, conservation of charge can be 

applied to the sum of the weighted CUm products. This technique is fundamentally 

the same as summing over the unweighted C V  products in constructing the linear
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pure charge-sharing model. The trick in weighting C U * products is to multiply the 

CU" product of a rising node by F(Vj)  and the CU" product of a falling node by 

R(Vj)  such that both products are proportional to F(V/)R(V/){V  — Vj). The stun 

of the weighted products is

FJo
f(v,)£ C[w; -  v;> + R(V,)zChk(u-t - IK) dt

k k

k k

When Equation 5.3 is substituted into the above equation, the left-hand side can 

be simplified to (Cl F( V j ) +  CHR(Vf )) /0°° Uj -  U; d t  where CL =  Ek C[ and CH =  

E „ C t.  Thus,

I  u ‘ - V' d t K --------CLF (V ,) + CHR(V,)--------

and it provides the necessary information to do decoupling: /0°° U’ — Uj d t  for any 

node e can be computed by combining /0°° 17* — U" d t  with /0°° Uj — U* d t .

The estimated waveform V "  for node e has the shape given by Equation 5.2, and 

its time constant, determined by /0°° V* — Vf d t  through combining /0°° U* — Uj d t  

with Equation 5.3, is as follows:

(CLTAr - E  kCkrATk)+Y[vf)(C«TAl-lZ kCkTAl) , ^ s----------- *(1_Vj)ic ------------------ -- (for falling nodes)
T ^ ( 1 2 kClTArk- CLTA')+CLkCkTAl-CHTAl) t ^
— I------------- Vj(i_vjjcT------ -----------  (for rising nodes)

Just like its counterpart in the linear model, this time constant is independent of 

the reference node. Since the time constants depend on the ratio between F(Vj) 

and R(Vj), this ratio is plotted in Figure 5.2.

This nonlinear model provides accurate estimates for networks with a single 

dominant time constant; for circuits with only two capacitors, the estimate is exact. 

On the other hand, the model fails the same class of circuits tha t causes problems 

to the linear model. The reason is tha t the nonlinear model also implicitly assumes

Tr =
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Figure 5.2: The ratio between the proportional constants as a  function of the nor
malized final voltage.

th a t voltage waveforms are monotonic. Hence, it can occasionally give poor, but 

conservative, estimates to nonmonotonic waveforms. It is even more difficult to 

improve the n o n lin ear model than to improve the linear model because the concept 

of poles and zeros cannot be applied to nonlinear devices. In order to safeguard the 

consequence of a breakdown in the model, the aforementioned time constant can 

be modified as m ax(0,re).

The nonlinear model has been applied to the barrel shifter shown in Figure 4.2, 

and the result is compared with SPICE simulation in Figure 5.3. The excellent 

m atch is because the barrel shifter really has only one dominant time constant, 

even though the circuit has three capacitors.

5.4 N onlinear Charge Sharing w ith a D riven P ath

This section introduces a  charge-sharing model for driven TC  networks. The major 

concern in modeling TC  networks is the nonlinearity of MOS devices, which usually
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Figure 5.3: The nonlinear model versus SPICE simulation for node N  of the barrel 
shifter shown in Figure 4.2.

has a  decisive effect on the shape of a waveform. For example, neither the rising 

nor the falling waveform in a  TC  network is exponential in nature[12] as opposed 

to  those in an R C  network. Furthermore, the general shapes of waveforms in a pure 

charge-sharing TC  network (described in Equation 5.2) are also quite different from 

those in an R C  network.

The simplest driven TC  network with a charge-sharing problem is a two-capacitor- 

two-transistor circuit shown in Figure 5.4, where C2 is initially charged to  a  different 

polarity from the voltage source V  (V can be either 0 or 1), and the transistor X2 is 

being switched on. Even in such a simple case, the voltage spike at node 1 can have 

quite different shapes depending on the type of the MOS devices and the voltage 

level of the driver. This circuit configuration deserves special attention because it 

is statistically the most common charge-sharing-with-a-driven-path scenario (77.5 

percent of the dynamic clusters in MIPS-X processor’s execution unit have two or 

fewer transistors).
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T
Figure 5.4: The simplest driven TC  network tha t has a charge-sharing problem.

5.4.1 The Trivial Case

The trivial configuration (the two-capacitor-two-transistor configuration) is simple 

enough tha t it can be analyzed directly. Unfortunately, as fax as the author knows, 

there is no closed-form solution for its output waveforms. Hence, they must be 

solved numerically.

Before attem pting to  solve the output waveforms, it is useful to put the circuits 

in a  normal form. W ith reference to Figure 5.4, assume, without loss of generality, 

th a t the voltage source V  is a t the ground level. Let Ri  and i?2 be the R t f / s  of 

T\ and T2 respectively, and let a  =  R \/{R \  -f fZ2) and /? =  C\/(C \  -f C'2) such that 

both cn and /? lie between 0 and 1. A circuit parameterized by a  and /3 is shown in 

Figure 5.5, and it is the normal form of the circuit shown in Figure 5.4. The proof 

in Appendix C shows th a t voltage V^t at node N e in Figure 5.5 and voltage Ve at 

node e in Figure 5.4 are related as follows:

VN'(t') = Ve(RCt')

where R  =  Ri + R?-, C — C\ + C2, and t' is dimensionless.

Since voltage waveforms at corresponding nodes of any two networks with the 

same normal form are different only by a stretching factor in time, voltage spikes in 

two such circuits will have the same amplitude. This property reduces the number 

of variables in a two-capacitor-two-transistor network from four to two, and it allows
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1 — a

Figure 5.5: A normalized network.

a simulator to  use a table, indexed by a  and /?, to look up the amplitude of a voltage 

spike.

The nonlinear differential equations associated with the circuit shown in Fig

ure 5.5 can be solved numerically using schemes such as the fourth order Runge- 

K u tta  method[13]. Figure 5.6 plots the maximum voltage fluctuation, as a function 

of a  and /?, of the voltage spike at node JVj. The color code used in the plot is ex

plained in Figure 5.7. Jags on the curves in Figure 5.6 are due to the low resolution 

of the numerical data  set.

When comparing the voltage spike in an nMOS two-capacitor-two-transistor 

network driven to the ground to tha t in a corresponding R C  network, which is 

shown in Figure 5.8, one can see tha t the former has a lower amplitude. The 

differences in the two plots can be explained qualitatively by looking at nMOS 

transisto rs  current-voltage relationship. When a step gate input is assumed, the 

drain-source current ( i n s )  and the drain-source voltage (Vd s ) of an nMOS transistor 

are related as shown in Figure 5.9. The plot shows that iDS decreases with a 

higher Vs (source voltage) or a  lower Vds-, therefore, an nMOS transistor is more 

effective in discharging a capacitor than in charging one. For example, in Figure 5.5, 

capacitor C\ (labeled with /3) is charged through transistor T2 (labeled with 1 — a) 

and  discharged through transistor T\ (labeled with a ). When the voltage of C\
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Figure 5.6: The maximum voltage fluctuation of a  spike in a normalized nMOS 
network driven to the ground.
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Figure 5.7: Color code for voltage-fluctuation plots.
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Figure 5.8: The maximum voltage fluctuation of a spike in a normalized RC  network 
(driven to either Vdd or the ground).

increases, the current conductivity of Ti increases while that of T2 decreases. As a 

result, Ci cannot be charged to  as high a  voltage as that in the corresponding RC  

network.

In contrast, if a two-capacitor-two-transistor nMOS network is driven by Vdd, 

then the amplitude of its voltage spike is expected to be higher than that of a 

corresponding RC  network. This conjecture is verified by the numerical result 

shown in Figure 5.10.

Although Figures 5.6 and 5.10 are derived from the nMOS technology, they can 

also be applied to pMOS networks. Thus, only one set of plots is required for both
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Figure 5.9: The drain-source current (i o s ) of an nMOS transistor as a function of 
its drain-source voltage (Vd s ) f°r different source voltages (Vs)-

the nMOS and pMOS technologies.

5.4.2 Nontrivial Cases

W hen a driven network consists of more than two capacitors and two transistors, 

its precise charge-sharing outcome is too complicated to  find without a circuit-level 

simulator. However, Section 4.4 has shown th a t it is possible to model a nontrivial 

R C  network by mapping it to a  two-capacitor-two-resistor network. The output of 

the model can closely approximate the real output because most circuits’ spikes are 

dominated by a pair of time constants. Since the two-time-constant characteristic 

holds for transistor networks as well, it is reasonable to apply the modeling-by- 

mapping strategy here.

For the linear model described in Section 4.4, the mapping is done through 

matching the first-order and the second-order geometric characteristics of a voltage 

waveform (namely the area and the first moment). For a  nonlinear model, it is more 

convenient to do the mapping in the transformed domain because the nonlinear
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Figure 5.10: The maximum voltage fluctuation of a  spike in a normalized nMOS 
network driven to Vdd.
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current-voltage equations can be written in a pseudolinear form. For example, 

given a TC  tree driven to the ground, the transformed waveform Ut at any node e 

can be written as

where Rkt is set by the R ej /  of the path to the ground shared by both nodes k and 

e. Integrating both sides of the above equality, one can see th a t the area under Ut 

in  the time domain is equal to J2 k RkeCk-

Unfortunately, without having the exact shape of Ue, it is impossible to  derive 

/ 0°° Ve dt from the transformed-domain area. As a result, the first moment of Ut

H t U '  dt =  J 2 R keCk r°Vk
Jo  L Jo

dt
k Jo

cannot be determined. Thus, the linear modeling technique cannot be directly ap

plied to transistor networks. Yet its result still provides useful insights to  the map

ping process because the technique’s dependency on the second-order information 

only supplements but not invalidates its dependency on the first-order information.

As a m atter of fact, the first-order information alone makes some major modeling 

decisions for the linear model. This is best illustrated by constructing a simpler 

linear model using exclusively first-order intuitions and comparing its result with 

the more elaborate linear model described in Section 4.4. For node e of an RC  

network shown in Figure 5.11, one can construct a charge-sharing model as follows. 

To the zeroth order, the charging tree is just a large capacitor whose capacitance 

is set by the sum of all the charging-tree capacitors. Since charging-tree capacitors 

discharge through R cc (which is the resistance of the path between the ground and 

the node connecting the charging tree and the driving tree), R cc needs to be included 

in  the first-order model to connect the charged capacitor to the ground. In order to 

customize the model for node e, the waveform characteristics at node e have to be 

emphasized. There is only one point on R cc of the first-order model whose voltage
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Charging TreeDriving Tree

Figure 5.11: A modeling example.

'C e

Figure 5.12: A charge-sharing model based on first-order intuitions.

waveform has the same time-domain area as that of node e. This point is located 

a t R ct away from the ground because the area under Ve is equal to J2k RkeC^  and 

since all Cfc’s are in the charging tree, Rke s are all equal to Rce. Let this point be 

labeled as node E\ see Figure 5.12.

Node E  needs some capacitance to  catch the collective effect of the driving-tree 

capacitors being modeled. This capacitance can be approximated, to the first order, 

by matching the Elmore’s delays at nodes e and E. In this context, the Elmore’s 

delay is the time-domain area under a  waveform if all capacitors are initially charged 

high. In order to  match the Elmore’s delay J2k R-ktCk at node e, the capacitance at 

node E  has to  be equal to (H* RkeC\.)/ Rce-

Up to this point, a two-capacitor-two-resistor model has been constructed. This
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model is obviously missing something because the resistors in the original charging 

tree have not been incorporated. The voltage spike at node e can be overestimated 

if all the charging-tree capacitors are modeled as being lumped at node c when they 

are actually not. This shortcoming can be improved by inserting a resistive element 

as shown in Figure 5.12. The size of this resistor can be determined by looking at the 

functionalities of the charging-tree capacitors. As far as charge sharing is concerned, 

charging-tree capacitors are charge suppliers. Thus, if they are modeled as one ca

pacitor, then this capacitor should share some common charge-supplying character

istics with the original charging tree. By looking at the total charge Q = CkVk 

in the charging tree as a function of time, one can define charge-supplying charac

teristics as geometric waveform characteristics of the charge-supplying waveform. 

This definition is analogous to  using the voltage-waveform characteristics to define 

the corresponding node’s voltage characteristics.

The first-order charge-supplying characteristic is the time-domain area under the 

charge-supplying waveform; a  definition similar to  that of the first-order voltage- 

waveform characteristic. Mathematically, the area under a charge-supplying wave

form is equal to

r  q a = T y. c* v* a =r«Y d  + Zd(Z
Jo J° k k k j

where R jk is the resistance of the path to node c shared by both nodes j  and k. In 

order to match this area, a resistor of size

EtCKZjfyC?)
(Etd)1

has to  be inserted into the first-order model as shown in Figure 5.12.

This first-order model is actually very similar to the elaborate model presented 

in Section 4.4. The latter model is dissected in Appendix D. Comparing the two 

models, one can see tha t they are only differed by one component — a resistor. This
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resistor (i?2 , =  ) is in Figure D.l but it is absent from Figure 5.12.Ek L k
The interpretation of 7?22 is nonintuitive because its value is determined by the sum 

of second-order resistive terms.

In order to  evaluate the differences between the first-order and the elaborate 

models, a  detailed analysis of how the amplitude of a  voltage spike varies with R 2i 

is carried out in Appendix E. The conclusion is tha t R 2i plays a relatively minor 

role in determining the amplitude. Thus, the first-order model is quite sufficient in 

modeling charge sharing in driven RC  networks.

A similar first-order model can be constructed for transistor networks. It is 

easiest to  do this in the transformed domain in which transistors are characterized 

by R ef f ’s and voltages are characterized by V s .  Using node e of the TC  network 

shown in Figure 5.11 as an example, one can argue that, to the first order, charging- 

tree capacitors act like one device which discharges through Rcc to the ground. In 

order to  m atch the said node’s 17-waveform area and the Elmore’s delay, the first- 

order model should have a capacitor equal to  ( £ fc RkeClk) /R ce locating at R ce away 

from the ground just like its linear counterpart; see Figure 5.12.

Even though the capacitors of a TC  network’s charging tree still act as charge 

suppliers in the charge-sharing context, their charge-supplying characteristics are 

not as easy to  find as tha t in an RC  network. For instance, there is not sufficient 

information to  find the first-order charge-supplying characteristic (f^° Q dt) because 

each node k is characterized by 14 instead of 14. However, Uk and 14 have a simple 

relationship, and all waveforms in the charging tree usually have approximately the 

same shape. Thus, by matching /0°° £4  Ck Uk dt, one can argue that /0°° Q dt is also 

closely matched. As a result, the transistors in the charging tree can be modeled as
R c C h)

one transistor w ith i?e/ /  =  —k ^  <4)8* 1 '

In conclusion, first-order charge-sharing models for RC  and TC  networks have 

the same set of parameters. As a m atter of fact, the charge-sharing model for driven
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T C  networks may as well use the set of parameters determined for R C  networks in 

Section 4.4. This is because the simulation results summarized in Appendix F show 

that i?22, which is the only difference between the two sets of parameters, does not 

play an important role in the nonlinear modeling either.

The first-order and the elaborate models are applied to  the read/write network 

of the RAM cell shown in Figure 4.4. Since the cluster of interest has only one 

noninput node in its driving tree, J?22 ° f the elaborate model is equal to  zero. 

Consequently, the two models are identical, and the result from either model can 

perfectly match SPICE’s prediction (at level 1) of the real output.

5.5 Sum mary

Charge-sharing problems in MOS designs are complicated by transistors’ nonlinear

ity. Since the conductivity of a  transistor varies with the signal level being passed, 

it is not always reasonable to statically assign a set of resistances to  a  transistor. On 

the other hand, the voltage-current equations of transistor networks are in general 

somewhat intricate to formulate. Fortunately, if transistors in the same cluster are 

of the same type and the switching transistor has a step gate input, then these 

transistors operate exclusively in their linear regions.

Assuming a quadratic transistor model, Horowitz noticed tha t the drain-source 

current of a  transistor operating in the linear region is linearly related to  some 

nonlinear function of the transistor’s terminal voltages. Although this observation 

does not change the essence of the problem, it helps to formulate the voltage of a 

T C  circuit in a  fashion similar to that of an RC circuit.

This chapter presents a pure charge-sharing model for TC  networks. This model 

includes two functions to describe the rising and falling waveforms of a transistor 

network. The time constant of the model is determined by the network’s circuit
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elements through matching waveform characteristics.

Charge-sharing problems in driven TC  networks are also discussed. The con

jecture is tha t voltage spikes in complicated TC  networks share many waveform 

characteristics with those in a two-capacitor-two-transistor network. Thus, a first- 

order approximation can be made to  “map” a node from a complex network to 

a two-capacitor-two-transistor case. Even though two-capacitor-two-transistor net

works do not have closed-form solutions, numerical results can be used to determine 

their amplitudes.
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Chapter 6

Im plem entation  o f a Switch-Level 

Sim ulator

6.1 O verview

In previous chapters, ways to improve switch-level models have been presented. 

This chapter describes how to efficiently implement these models.

Simulators have to handle more than the idea loop-free single-driver setting 

assumed throughout most of Chapters 2, 4, and 5. Terman[26] has proposed a 

simple scheme to randomly break a nontree network to a loop-free network. Even 

though his scheme is ad hoc, it is usually adequate for simulating MOS designs 

because nontree networks are so rare. On the other hand, networks with multiple 

drivers seem to be a  more common and more important problem. For example, 

when more than one pull-down of a  NOR gate is conducting simultaneously, the 

charge on the output capacitor can be drained through multiple paths. It is not 

always possible to straightforwardly merge multiple driving paths because there can 

be capacitors on the paths. Fortunately, multiple-driver problem is in principle very 

similar to  the single-driver problem, and Section 6.2 suggests a simple method to

91
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transform the former problem to a more familiar single-driver form.

Section 6.3 describes the actual implementation of nRSIM — a new switch-level 

simulator which incorporates all the models presented in this thesis. It shows that 

in spite of the complexity of the models, the implementation only requires simple 

d a ta  structures and little computation.

6 . 2  M odeling M ultip le Drivers

The timing and charge-sharing models presented in this thesis are based on finding 

the area and the first moment of an output waveform. The most widely used 

derivation assumes a single driving source. Lin[15] has proposed a multiple-driver 

derivation, which is quite general but rather complicated. This section reviews Lin’s 

work and introduces another solution that is less general but much simpler.

Lin’s LRD (Load ReDistribution) algorithm is based on the block Gauss-Seidel 

method for solving a  system of linear equations. The algorithm can be applied 

to  both tree and nontree networks. The basic idea behind the LRD algorithm 

is to carefully convert a  general network to a  set of single-driver tree networks 

such that nodes in the la tter set of networks are indistinguishable, as far as their 

delays are concerned, from the corresponding nodes of the original network. The 

LRD algorithm consists of two steps. In the first step, the general network is 

topologically decomposed into a  set of independent subnetworks. Each subnetwork 

is a tree and has one and only one voltage source. This step is referred to as tree 

decomposition. The decomposition process involves splitting nodes that cause loops 

or that connect multiple drivers together. Split nodes are referred to  as secondary 

nodes, while the original nodes are called primary nodes. The second step determines 

how the capacitors associated with the split nodes are split, and it is known as load 

redistribution. Load redistribution is a relaxation process which distributes the
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capacitance at a primary node to the corresponding secondary nodes such that the 

delays at all secondary nodes are eventually equal to one another. During each 

relaxation step, Elmore’s delays are computed for all secondary nodes. The time 

complexity of load redistribution is proportional to the product between the number 

of relaxation steps and the number of secondary nodes. The number of relaxation 

steps is controlled by the required accuracy. Since each split tree has its own driver, 

all drivers in the original network must have the same voltage; otherwise, a group 

of secondary nodes split from the same primary node can end up with different 

voltages.

Even though the LRD algorithm is capable of solving nontree as well as tree 

networks, most networks found in MOS designs are free of loops. It turns out that 

for multiple-driver tree networks, there is a scheme much simpler than the LRD 

algorithm to  calculate timing and charge sharing. The following sections present 

this scheme.

6.2.1 Current Distribution in a Resistor Tree

For a  single-driver resistor tree, the voltage induced at a node due to a current 

source at another node is a function of the resistance of their shared path towards 

the driver. Unfortunately, the “shared path  towards the driver” is topologically ill- 

defined when there is more than one driver. However, there is also a  nontopological 

way of looking at path  sharing. Assume, without loss of generality, that a loop-free 

network has only one driver: the ground. The voltage at any node e is equal to the 

product between the current through th a t node and the resistance between that 

node and the ground. If there is no current passing through node e, then the node 

has the same voltage as its neighbors. For example, if a current source i at node k 

is farther away from the ground than node e as shown in Figure 6.1 (a), then all 

its current passes through node e. Hence, the voltage Ve at node e is equal to R eei.
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Figure 6.1: Voltage induced at node e due to a current source at different positions 
relative to the ground.

In contrast, if the current source is closer to the ground than node e as depicted 

in Figure 6.1 (b), then Ve is equal to  the voltage at node k because there is no 

current between nodes e and k. In the third variation, when nodes e and k appear 

on different branches as shown in Figure 6.1 (c), voltages at nodes e and c are equal, 

and they are determined by the current discharging through resistor R cc.

The volt age-current relationship can be generalized to circuits with multiple 

voltage sources. Assume that a  resistor tree has several ground drivers and has 

a current source at node k. The current through each resistor can be solved by 

Kirchhoff’s current law, and the voltage at any node is equal to the sum of current- 

resistance products along any path  from that node to the ground.

Computing current through each resistor can be tedious; fortunately, the fol

lowing transformation provides a  systematic way to do that. W ith reference to the 

systems shown in Figure 6.2, the transformation states that the current source i at 

node Y can be replaced by a current source that has

;  Rk i — — i
R  +  Rk

at node X without changing the voltage Vx at node X.

It is worth noting tha t the transformation says nothing about the voltage at node

e
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System A

System B

Figure 6.2: By properly adjusting its value, it is possible to move current source i 
from node Y to node X without changing the voltage at node X.

Y. As a  m atter of fact, the transformation is not transparent to  node Y. Hence, 

systems A and B are not entirely equivalent, and system A cannot be regenerated 

from system B through the same transformation.

This transformation can be generalized to handle more complex circuits. For 

example, if R j is replaced by n resistors R j1, i?j2, ..., R j n in parallel, then as long 

as R j 1 || R j2 || ... || R j n = R j , the replacement is transparent to both nodes X 

and Y. Similarly, Rk can be replaced by m  resistors R ^ ,  Rk2, . . . ,  Rkm in parallel 

where R || Rk2 || • • • || Rkm =  Rk- After replacing these two resistors, the systems 

in Figure 6.2 look like those in Figure 6.3. According to the transformation, Vx 

of system A and Vx of system B are equal in Figure 6.3, hence =  1 2 1 , h 2 =  

?22, . . . ,  ?’i„ =  »2 „- In other words, the transformation is not only transparent to 

node X but also to  the network which is downstream from node X. In this example,
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downstream refers to  the network which is to the left of node X (vice versa for 

upstream). Since the transformation only needs the knowledge of the upstream 

network, it is independent of the configuration of the downstream network.

The above transformation provides a systematic way to compute the voltage 

induced at one node (the destination node) due to a current source at another 

node (the source node): by repeatedly applying the transformation to move the 

current source from the source node to the destination node along the shortest path 

between the two nodes1 and multiplying the resultant current by the resistance 

between the destination node and the ground. If there is more than one current 

source in the system, then the operation can be repeated for each current source 

one a t a  time according to  superposition theorem. In the actual implementation 

of this algorithm, current sources which share their transformation paths can share 

their transformation information as well. This technique and its complexity will be 

discussed later.

6.2.2 Application of Current Distribution to R C  Networks

Assume, without loss of generality, tha t a  loop-free resistor network has multiple 

ground drivers. Also assume th a t there is a  capacitor Ck at node k which is charged 

high initially. The current ik coining out of the capacitor sets the voltage waveform 

Ve at any node e in the network. The relationship between Ve and ik must be 

linear, according to  Ohm’s law, and can be written as Ve = RkJk- The proportional 

constant Rke can be determined using the above transformation.

To apply the transformation, the capacitor Ck has to be replaced by an inde

pendent current source with i =  —C k It has been shown that an independent

xIt is important to do transformations along the shortest path such that the destination node is 
always downstream from the source node.
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w w

System A

A/WV

VAV

System B

Figure 6.3: Systems generalized from those in Figure 6.2.
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♦ YX *

Subnet BSubnet A

Figure 6.4: A transformation example.

current source can be transformed and moved from the source node to the desti

nation node without disturbing the voltage at the destination node. Let e be the 

destination node in Figure 6.4, and let X and Y be two nodes on the path between 

nodes k  and e. In order to preserve the voltage at node e while moving a current 

source from node Y to node X, the value of the current source has to  be adjusted 

by an adjustment factor, A y _ x , where

Thevenin resistance at node Y contributed by subnet B  
=  1 1 1 ' •mmm" ' " a ' am " " * " —. (o.lj

R  4- Thevenin resistance at node Y contributed by subnet B

W hen the current source is finally moved to node e, the product of all the adjustment 

factors (11;=^— e A?) together with the effective resistance between node e and the 

ground ( i^ )  set the proportional constant:

R ke = R e n A (6-2)
j=k— >e

The method can be extended to networks with multiple capacitors using super

position — each capacitor can be thought of as an independent current source with 

the same current characteristic as the capacitor. Hence, the voltage at node t  is 

equal to

1 =
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As a m atter of fact, the above derivation can be applied to TC  networks as 

well. According to Section 5.2, transistors are linear devices in the pseudolinear 

transformed domain. Even though capacitors become nonlinear in the new domain, 

they can still be treated as independent current sources. Thus, the linear derivation 

is still valid, and

where Rke is set by R c j / s  instead of resistances.

6.2.3 Multiple-Capacitor Multiple-Driver Example

This section presents a step-by-step execution of the above algorithm on an example. 

Through this example, the complexity of the algorithm can be better understood.

Assume tha t all capacitors in Figure 6.5 axe charged high initially. In order to 

compute the Elmore’s delay at node e, all capacitors have to  be transformed and 

moved to node e. The Elmore’s delay at node e, according to  the multiple-driver 

Rke definition given by Equation 6.2, is

TD. = '£ R t .C k  = R . '£  Ct n A i ■
k k j=k-~--- >e

The expression shows th a t there are actually two ways to  look at the delay compu

tation. One way is to find the effective resistances (i?fce’s) of the common paths to 

all drivers shared by all capacitors and the node of interest (node e), and the other

way is to find the “effective capacitance” (J2 k _,e -Aj]) seen at the node

of interest. The later approach is easier to implement, and it will be followed from 

now on.

Since both C\ and C2 are on the path between nodes a and e, these two capacitors 

can share some common transformation information. As a m atter of fact, the circuit 

can be partitioned into three subcircuits as shown such th a t C\ and C2 are upstream
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Subcircuit #1

Subcircuit #3

Subcircuit #2

Figure 6.5: A multiple-capacitor multiple-driver example.

from node e in one direction while C3 and C5 axe upstream fiom node e in two other 

directions.

Adjustment factor required to move a current source from node a to  node b is 

equal to -40_f, =  • Similarly, .4{,_e =  ^ ^ R-. Consequently, for subcircuit

# 1 , the effective capacitance is equal to (Ci-4Q_(, +  C2 )A t_e. This information is 

not only useful for node e, bu t it can also be used to compute the time constants 

for nodes c and d.

Subcircuit # 2  can be handled the same way as subcircuit #1 . Sub circuit # 3  

does not have a driver, hence, its effective resistance to the ground is equal to 

infinite. As a result, the adjustment factor A ^ t is equal to 1. Thus, C5 can be 

moved to node e without any adjustment.

While computing the adjustment factors, the effective resistance of each path to 

the  ground is also gathered as a  byproduct (for example, R i + R 2 + R 3  of subcircuit 

# 1  and R 4 + Rs of subcircuit # 2 ). This information can then be used to compute 

R e, which is equal to (R\ +  f?2 +  R 3 ) || ( i?4 +  R 5 ) .

This example shows that it is straightforward to  collect information from a 

multiple-capacitor multiple-driver setting, and the information collected for one
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node can also be used by other nodes.

6.3 Im plem entation  A lgorithm

This section shows tha t all models introduced in this thesis can be implemented 

with algorithms th a t are direct extensions of those used in the original RSIM. The 

new implementation is called nRSIM, which adopts RSIM’s event-driven skeleton 

and user interface in order to avoid duplicating Terman’s effort.

When RSIM starts up, it reads in a circuit and a set of simulation vectors. 

If these vectors change the logical state of a node, then all transistors with gates 

connected to this node change their conductivities. As a result, the source and 

drain terminals of these transistors need to be reevaluated. RSIM and nRSIM 

are different in their evaluation algorithms, and the implementation of nRSIM’s 

evaluation algorithm is the focus of this section. If the evaluation results in new 

changes, then the new changes are scheduled. The iteration terminates when the 

network is stablized or a prespecified simulation time limit is reached.

The smallest unit tha t nRSIM does its analysis is an electrically connected 

cluster of transistors. The analysis consists of two parts: the evaluation of final value 

as described in Chapter 3 and the scheduling of events as described in Chapters 2, 

4, and 5. Since the implementation algorithm for a nondriven cluster is very similar 

to tha t for a driven cluster, only the la tter will be discussed.

6.3.1 Evaluation of Final Value

The algorithm shown in Figure 6.6 computes the final value of a driven cluster. 

It calls the function finaLvalue, which is shown in Figure 6.7, on each and every 

node of the cluster. FinaLvalue implements the improved resistor-divider model

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. IMPLEMENTATION OF A SWITCH-LEVEL SIMULATOR  102

1. for each node n in cluster c {
2. compute 7?’s new logical state by calling final-value(n);
3. reset VISITED flags for all nodes;
4. if 7? does not have a definite path {
5. compute 7?’s state from its charge information
6. if 7?‘s driving result ^  n's charging result
7. 77’s new logical state is X;
8. }
9. if a voltage spike is possible at n
10. set n ’s SPIKE flag;
11. }

Figure 6.6: Algorithm to compute the final value of a driven cluster.

described in Section 3.5. It returns a data structure of the following form:

{type, Ru ,, Rvh, R di , R dh }

where type is either the definite or the indefinite type as defined in Section 3.5, 

and Rut, Ruh, R dh and R dk are the corresponding parameters of the definite or 

indefinite block.

Function series_op in step 12 of Figure 6.7 implements the series operation as 

defined in  Equation 3.1. Function paralleLop in step 13 implements the parallel 

operation as defined in Equations 3.2, 3.3, and 3.4 depending on the types of its 

operands. The VISITED flag in steps 9 and 11 forces the network traversal to 

expand outward from the starting node, hence, it can break resistor loops[26].

If a node’s type is indefinite, then the node may not have a driven path. As a 

result, its charge information has to be taken into account (step 5 of Figure 6.6). 

Terman suggested an algorithm to compute the maximum and the minimum volt

ages from the charge stored in the cluster’s capacitors. In order to find the maximum 

voltage due to charge sharing for node n, his algorithm assumes that all X nodes 

Eire charged high, and collects the total charge (C-Hmax) in the cluster. Then it
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I. final_value( n )

2> {3. if n is Vdd
4. this <—  {definite, 0, 0, oc, oc};
5. else if n is ground
6. this <—  {definite, oc, oo, 0, 0};
7. else {
S. this ■<—  {indefinite, oc, oo, oo, oo};
9. mark n  as VISITED;
10. for each non-OFF transistor t with source connected to n
I I .  if drain is not marked as VISITED {
12. other <—  series_op(finaLvalue(dram), <);
13. this <—  paralleLop(this, other);
14. }
15. }
16. retum (this);
17. }

Figure 6.7: Function to implement the improved resistor-divider model.

collects the total capacitance (C-Lmin) from all capacitors that are in low state and 

that are reachable from node n through ON transistors. The ratio

 C~Hm ax____
C-Hmax + C-Lmin

determines the maximum voltage at node n due to charge sharing. Terman’s al

gorithm to compute the minimum voltage due to charge sharing uses the same 

principle.

If the charge-sharing result of an indefinite node is different from that computed 

by the improved resistor-divider model, then the node’s new state is X (step 7 of 

Figure 6.6).

If node n starts and ends at the same state and there are capacitors, in the same 

cluster, which are charged to a different polarity, then there is a chance that node 

n may have a voltage spike. In this case, node n needs a  spike analysis (step 10 of
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1. for each state s in [low, high, X] {
2. if none of the nodes in cluster c has new state =  s
3. continue; /*  Skip to the next iteration. */
4. for each node n in c {
5. compute n 's time constants by calling compute_tau(?7, s);
6. reset VISITED flags for all nodes;
7. if n 1 s present state ^  77’s new state
8. schedule n's driven event;
9. }
10. for each node n in c tha t has (new state =  s and SPIKE flag set) {
11. compute n ’s 7>n;
12. compute the amplitude of n ’s spike from r^n, r/>n, and rpn;
13. if n has a voltage spike
14. schedule ?7’s spike event;
15. reset n ’s SPIKE flag;
16. }
17. }

Figure 6.8: Algorithm to schedule events for a driven cluster.

Figure 6.6).

6.3.2 Schedule of Events

The algorithm shown in Figure 6.8 schedules events according to the final states 

computed previously. Due to X transistors or unusual situations, there is a slim 

chance that nodes in the same cluster can end up with different final states. Thus, 

the algorithm will iterate on the three possible final states (step 1 of Figure 6.8).

Assume that some of the nodes in cluster c are driven to state s. The algorithm 

calls compute.tau, which is shown in Figure 6.9, to compute a  set of time constants 

for each and every node of the cluster. Compute_tau takes the node (n) and its 

final state (s) as parameters, and it returns a  data structure which can be used to 

compute Tj4n and rpin as defined in Chapters 4 and 5. Time-constant computation
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is complicated by X transistors, which can create more than one electrical configu

ration from each cluster. In order to be conservative in scheduling, the worst case 

timing scenario has to be identified. For example, if a node is driven to either Ydd 

or the ground, then the worst case scenario is that the node has the longest delay 

such that a  potential critical path can be discovered. In contrast, if the node is 

driven to X, then the worst case scenario is for th a t node to change as soon as 

possible because X's are undesirable in simulation.

Three resistances,2 R min, Rdomi and R mai, axe collected for each node by com- 

pute.tau . They are the effective resistances between the node and the drivers in 

different electrical configurations, and they are used for different purposes. Rmin is 

used to  compute the delay for nodes that axe driven to X. Since X is an intermediate 

state, all voltage sources are considered as drivers. Hence, Rmin is the resistance 

to all sources through non-OFF transistors (i.e. all X transistors are considered as 

conducting). On the other hand, Rmax is used to compute the delay for nodes tha t 

are driven to either Vdd or the ground. Assume tha t node n is driven to the ground, 

then Rmax is the resistance from node n to the ground through ON transistors (i.e. 

all X transistors axe considered as nonconducting). In case there are Vdd nodes 

in n ’s cluster (for instance, if n is the output of an nMOS inverter driving low), 

then the Vdd nodes are considered as open circuits because they play minor roles 

compared to  the ground (vice versa if n is driven to Vdd). In this example, the 

ground is called the dominant driver of node n while Vdd is called the secondary 

driver.

Indiscriminately turning ON and OFF X transistors yields the minimum and 

the maximum resistances to the driving sources respectively. However, in order 

to  conservatively compute the effective capacitances for time constants, a third

2In this algorithm, “resistance” refers to either the resistance of R C  networks or R ej f  of T C  
networks.
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1. compute_tau(n, s)
2 . {
3. if n is an input node {
4. if s =  X or n ’s state =  5
5. this.i? <—  {0, 0, 0};
6. else
7. this.i? <—  {0, oo, oo};
8 .  t h i s . C a #  <—  { 0 ,  0 } ;

9. }
10. else {
11. this.i? <—  {oo, oo, oo};
12. if n ’s state ^  s
13. this.Cadj i—  (cap(n), cap(n)};
14. else
15. this.Ca(ij ■<—  {0, cap(n)};
16. mark n as VISITED;
17. for each non-OFF transistor t with source connected to n
18. if drain  is not marked as VISITED {
19. other <—  transm it(dram , compute_tau(dram, s), t)\
20. this.i? *—  parallel(this.i?, other.i?);
21. this.Ca# *—  this.Cadj +  other.Ca -̂;
22. }
23. }
24. return(this);
25. }

Figure 6.9: Function to compute the delay time constants.
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variation of handling X transistors and secondary drivers is required to define the 

worst case circuit configuration from capacitors’ point of view. For example, assume 

th a t nodes n  and m are connected by an X transistor, and node n is also being driven 

to  the ground through another path. If both nodes are charged high initially, then 

in order to compute the worst case delay for node ?i, the capacitor at node m  should 

be included. In other words, the X transistor between nodes n and m  should be 

considered as conducting for n's delay calculation. Thus, Rmax is unsuitable for this 

purpose. On the other hand, secondary drivers should be considered as open circuits 

by nodes tha t are driven to either Vdd or the ground; hence, Rmin is inappropriate 

either. Consequently, a third resistance, Rdom-, is defined. Rdom assumes that all X 

transistors are conducting, but all secondary drivers are open circuits. Rmin-, Rdom, 

and  Rmax with respect to  X transistors and secondary drivers are summarized in 

the following table:

X transistors Secondary drivers

R m i n ON Not applicable

R d o m ON Open circuit

R m a x OFF Open circuit

In order to  compute ta k and Tcn, two effective capacitances, Ca and Co, are also 

collected for each node by compute.tau. Ca is defined to  be the ratio between ta „ 

and the resistance between node n  and the dominant driver. Similarly, Cd is equal 

to  the ratio between Tjjn and the same resistance. For example, if node n is driven 

to  the ground, then Ca — t an/Rmax where rAn =  Y kR kn(C k — C(). The definition 

of t a„ is a little bit different from that defined in Chapters 4 and 5 because, in here, 

capacitors at unknown states are assumed to be charged high such that the delay 

estimation can be conservative. Hence,

c a = y .  ( C t - c b  n A i  ■

k _ j=fr——►n
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I. transm it(n. accumulated. /)

2 ‘ {3. if f ’s state is unknown
4. new. R  <—  accumulated.R  4- { R t rj{t), R tjj{i),  oc};
5. else
6. new.R  <—  accumulated.R + { Rtjf{t),  R eff{t),  R tjf{t)}\
7. if f ’s state is unknown and accumulated. cadj.cA = 0

S. new .Cadj <—  {0, 0};
9. else
10. new.Cadj <—  accumulated.C0(ij * accuniul^edfi.fldom.
II . return(new);
12. }

Figure 6.10: The transm it function called by compute.tau in Figure 6.9 

Similarly,

Cd  = Y .
k

Ck n a-
j=k-<- >n

A data structure which consists of

{■R =  { R m i n » R d o m  i i C ad,j =  { C j4 , C*£> } , }

is returned by compute_tau. As shown in Figure 6.9, steps 3 through 15 initialize 

the data  structure according to the aforementioned assignments. Then compute-tau 

does a  depth-first traversal to collect the effective resistances and the effective ca

pacitances. The transm it function in step 19 is listed in Figure 6.10, which handles 

both  the resistance of a  series resistor (steps 3 through 6) and the adjustment factor 

as described in Equation 6.1 (step 7 through 10). Step 7 of the transm it function 

is particularly tricky. W ith reference to the scenario shown in Figure 6.11, if the 

capacitors in subnets A  and C are discharged while those in subnet B  are charged 

high initially, then in order to  compute the worst case charge-sharing scenarios for 

nodes in subnet A, the capacitors in subnet C  should be excluded.
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0 —► 1

H

Figure 6.11: Scenario in which some capacitors should be excluded in charge-sharing 
calculation.

When compute_tau returns the set of i?’s and C ’s for node n, the scheduling 

algorithm schedules the driven event. In case a driven charge-sharing analysis is 

required, then Tpn will be computed. Computing Tpn is very similar to computing 

rAn or rDn, and it can be done by a function similar to compute_tau.

6.3.3 Complexity o f the Algorithm

Terman[26] has done a thorough analysis of RSIM’s complexity, and his result can 

also analyze the work in this section. In essence, finaLvalue and compute_tau are 

two core routines of the simulator. Both routines are based on a recursive depth-first 

traversal, hence, their complexities are directly proportional to  the number of nodes 

in  the cluster. Consequently, the final-value evaluation and the delay estimation for 

each node can be done in linear time.

Terman also suggested a caching scheme to improve the overall complexity. He 

observed that the data  structures collected by finaLvalue and compute_tau during
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Subnet

Drain
Cache

Source
Cache

Figure 6.12: Associating a cache with a transistor to optimize computation.

each tree walk can actually be shared by other nodes. Thus, he proposed to store the 

information collected during each tree walk in caches which are associated with the 

source and drain terminals of transistors. For example, when a recursive algorithm 

has finished collecting parameters from the subnet shown in Figure 6.12, it stores the 

parameters in the cache associated with the drain of the transistor before passing 

it to the source. This cached information can be used by other nodes that require 

the same information from the same subnet. W ith this optimization, Terman has 

shown that the complete analysis of all nodes in the same cluster can be done in 

time tha t is proportional3 to the number of transistors in the cluster. Interested 

readers can refer to [26] for further details.

6.4 Perform ance Evaluation

Even though the models used in nRSIM are much more sophisticated than those 

used in RSIM, they do not seem to slow down the simulator. On a per-cluster 

basis, nRSIM indeed takes longer to  execute. Yet, it also provides more accurate 

predictions that eliminate fictitious events. Fictitious events, especially those due to 

charge sharing with a driven path, are quite common in RSIM. When not properly 

handled, fictitious events can severely slow down a simulator because they either

3More precisely, each transistor is crossed twice. One time in each direction to fill the cache.
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trigger other fictitious events or put extra burden on scheduling.

The following experiment was done by people who simulated the MIPS-X pro

cessor. A functional simulator written by the members of the MIPS-X design team 

uses RSIM and nRSIM as the back-end to simulate the mask. In order to compare 

the performances of RSIM and nRSIM, Ackerman's function was rim on the PC 

(program counter) unit of the processor. The simulation lasted for 334 MIPS-X ma

chine cycles, and it took RSIM 49 minutes and 14 seconds (8.84 seconds/cycle) on a 

VAX 11/780 running Berkeley 4.3 UNIX. However, it only took nRSIM 45 minutes 

and 44 seconds (8.22 seconds/cycle) on the same machine. The slight speedup of 

nRSIM does not indicate a definite performance edge over RSIM; however, it shows 

th a t the new models are practical for switch-level simulators.

6.5 Sum m ary

Timing and charge sharing in multiple-driver settings are not much different from 

those in the single-driver setting. A systematic mechanism has been proposed to 

transform a multiple-driver problem to the more familiar form assumed in previous 

chapters.

The models proposed in this thesis can be implemented with algorithms derived 

from RSIM. These algorithms use simple data structures and little computation. 

Since the new models can eliminate fictitious events with better accuracy, they do 

not slow down the speed of simulation despite greater complexity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

Conclusions

Switch-level simulators work with high-level models instead of solving detailed dif

ferential equations. The precision of these high-level models determines the accu

racy of their results. RSIM, a widely used simulator, models transistor networks as 

resistor-capacitor networks, and it applies simple approximations to estimate the 

outputs of these RC networks. Some of these approximations can be drastically 

improved by using slightly more complicated models. This thesis has identified two 

m ajor sites for improvement, which cover both logic and timing aspects.

In the evaluation of logic, switch-level simulators are complicated by the pres

ences of X transistors, which introduce uncertainties to the electrical configuration 

of a network. The logical value of a  node is determined by the achievable volt

ages at that node. The difficulty with DC-voltage computation is how to get a 

conservative bu t non-pessimistic result. Voltage ranges and resistance ranges have 

always been used to  specify the achievable voltages and the associated resistances 

a t nodes; however, a closer inspection of how the relationship between voltages and 

resistance is represented in the existing schemes shows tha t the old schemes can 

produce undesirably pessimistic results.

A new scheme, the improved resistor-divider model, is then proposed. The new
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. CONCLUSIONS 113

scheme is based on a simple parallel-and-series collapsing of resistor dividers, and it 

constructs the result at each step by minimizing the errors in the voltage-resistance 

solution space. The outcome of this scheme is guaranteed to be conservative and 

order independent.

Investigation in timing leads to better charge-sharing models. Charge sharing 

in a nondriven network determines not only the final state of the network but also 

the delay at each node. In a  driven network, the charge stored in capacitors can 

introduce glitches before the system reaches equilibrium. Previously, both charge- 

sharing problems have been given low priorities because they are complex and rare. 

Although problems caused by improper charge sharing may only occupy a small 

percentage of all design problems, without accurate models, real charge-sharing 

problems may not be caught while fictitious charge-sharing events may be scheduled.

Two two-time-constant models have been proposed to  model the charge-sharing 

scenarios. These models are based on the observation that voltage waveforms in

volving charge sharing are usually dominated by two time constants. The models 

determine the time constants by matching geometric waveform characteristics such 

as the area and the first moment. The model-by-matching-waveform-characteristic 

technique can be used by linear as well as nonlinear networks. However, waveforms 

in  a  nonlinear network may have different shapes from those in a linear network.

The models described in this thesis have been implemented into nRSIM. The 

actual implementation also handles multiple-driver configurations. W ith the addi

tional accuracy provided by the new models, the new simulator can eliminate some 

fictitious events such that its speed performance is comparative to that of RSIM.
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7.1 Future Work

The charge-sharing models described in this thesis assume that the gate input of 

the switching transistor is a step function, hence, transistors always operate in their 

linear regions. In reality, the input waveform is usually arbitrarily complex, and 

before it reaches some switching voltage, the switching transistor is only partially 

turned on. Before the switching transistor is fully turned on, the redistribution of 

charge is really controlled by the current conductivity of the switching transistor 

instead of the actual arrangement of the transistors and capacitors. The charge- 

sharing models in this thesis have not taken slow inputs into account.

Horowitz[12] suggested using simple ramps to model slow inputs. In his timing 

model for a gate driving an output network, delay consists of the gate delay due 

to  the slow input and the intrinsic delay contributed by the output network. His 

model computes the gate delay by modeling the gate as a  voltage-controlled current 

source. A similar approach may be taken here to model the switching transistor as 

a  current source before the transistor reaches some switching point.

Another potential improvement is in delay estimation involving X transistors. 

The problem is fundmentally the same as that in the final-value computation — 

how to conservatively but non-pessimistically compute the delay. The present 

implementation uses the worst case transistor configuration and the worst case 

capacitor configuration. When these two configurations are based on very different 

connectivities, the delay estimation can be overly pessimistic.

The work in Chapter 3 has established a systematic way of solving a similar X- 

transistor problem by looking at the solution space formed by voltage and resistance. 

Research that follows the same line of thought may also solve the delay-computation 

problem.
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A ppend ix  A  

Zero at the Origin

Proof is presented here to show th a t in a linear system, the network transfer function 

of a node starts and ends at the same voltage has a zero at the origin.

The voltage waveform of any node in a linear system consists of the sum of

exponential functions. Assume th a t the steady-state voltage is Vo, the voltage V  

a t any node can be expressed as V  =  Vo +  12; a>e_t T̂‘- Due to the steady-state 

condition, the sum of coefficients ( J 2 i  a i )  is equal to 0.

The network transfer function of V  can be written as

a, ^  Ao 4- A is  +  A 2s2 +  • • •
i 1 +  TiS 1 +  B \s  +  B 2s2 H-----

Since A0 is equal to  22; a, =  0, the numerator of the network transfer function 

becomes s(Ai +  A 2s H ). This proves tha t there is a  zero at the origin.
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A ppendix B

N orm alized A m plitude Function

W ith reference to  Figure 4.8, the normalized amplitude function of Ve can be solved 

from two coupled linear differential equations, and it is equal to

9  / I  _  , / 1  _  A AT \

where

N  =

_______  l-v/l - 4;
1 -  V l = 4 N \  *7T=nr 

1  +  1 / 1  -41V Vi +  \ / l  - A N )

R1R2C1C2 ( t P '  -  TD c ) (  T D t  -  T Ae  )

[R1 Cl + ( R 1 + R 2 )C2y- Tpe

Although N  depends on all four circuits components, it can be represented by three 

variables: rAe, rDe, and Tpe. For physically realizable circuit components, N  > 0 

because R 1, R 2, C2, and C2 are all nonnegative. The maximum value of IV is 1/4 

because

[ r 2c 2 -  ( r 2 +  r 2 ) c 2]2 +  m \ c 2 c 2 > 0  

=4- [r 2c 2 +  ( r 2 + R 2 )C2]2 -  4 r 2 r 2 c xc 2 >  0

= »  \ > n  •

The normalized amphtude function is plotted in Figure B .l. Since the domain of 

the function is narrow, it can be pre-computed and stored in a look-up table.
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Figure B .l: Normalized amplitude as a function of tac, td*, and rpe.
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A ppendix C

P roof o f W aveform Sim ilarity

This section proves that voltage Vj t̂ at node N e in Figure 5.5 and voltage Ve at 

node e in Figure 5.4 are related as follows: = Ve(RCt') where R  =  R i + R 2,

C = Ci + C2 , and t' is dimensionless.

For the network shown in Figure 5.4,

™
Ui(t) =  - R i C i ^ ^ - { R i  + R2)C2̂ jp -  .

Let t  = R C t', then the above equations become 

Ul(RCf) .
dt1 dt'

m R C ( ) .

F/Vj and V^ 2 of the normalized network can be formulated as

r  , , / W O  q,dVN!(t')
Uk ,(‘ ) =  ------ a( ~  dt'
r  ^ W O  , ,  _ rfvx^(i')
t w o  =  -<*/>— $ —

One can easily see from the above two sets of equations that V/ve( 0  =  Ve(RCt').
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A ppendix  D

D issection  of the Linear M odel

This section dissects the model discussed in Section 4.4, and interprets its compo

nents.

Let the two-capacitor-two-resistor circuit shown in Figure 4.8 be the reduced- 

network model of node e in Figure 5.11. According to Equation 4.6, the components 

of the reduced network have the following values:

Ci =  TDt ~ TAe C2 
TA'

Tf __ ^"Ae

R i ~  c 2 •

Since the amplitude of a voltage spike in the reduced network is determined by the 

ratio of the two capacitors and the ratio of the two resistors, the exact value of C2 

is not im portant even though Ci, i?i, and R 2 are all functions of C2. However, if 

a  carefully selected value is assigned to C2, the following analysis will be easier to 

understand. Thus, let C2 be Ylk Cjt •

W ith some simple mathematical manipulations, one can show that

Ci =  £ fcg*«C l  an d  R l  =  Rce
Rr'■ce
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Strictly from 
charging tree

Strictly from 
driving tree

Figure D .l: The dissection of the linear charge sharing with a  driven path  model 
described in Section 4.4.

where c is the node connecting the driving tree with the charging tree. In addition, 

one can also show tha t J?2 is composed of the following three resistors in series:

„ _ „ _ „ „ Z „ R k , C l ( R c i - R „ )  _  Z k C f t Z ^ t C * )
— ,t*'cc •“ •cei --2 2  52 C 1̂ 1 a n a  1123 C fc)2

These components are shown in Figure D .l.

This dissection reveals one interesting fact: R i ,  R 2i, and C\ can be derived 

strictly from components of the driving tree while i?23 and C2 can be derived strictly 

from components of the charging tree. R 2l is the only component which relies on 

information from both  trees; yet J222’s dependency on the charging tree is merely 

its total capacitance. Thus, a t this level of abstraction, a charging tree and its 

corresponding driving tree can almost be modeled separately.
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A ppendix  E

E laborate M odel versus 

First-O rder M odel

This section compares the amplitude of a voltage spike found in Figure 5.12 to that 

found in Figure D .l.

R 22 is. the only element which is in one figure but not the other. However, 

the  two circuits can still be identically the same if 1?22 is equal to zero. This can 

happen under many situations; for example, when the driving tree of the circuit 

being modeled has only one noninput node1.

W hen R.22 does not have a zero resistance, its value has a limited range. It 

is maximized when the node being modeled (node e) is closer to the ground than 

all other nodes, and all other capacitors of the driving tree are located at node c; 

conversely, R 2i is minimized. Mathematically,

Y2k R k e C \ . ( 0  — R c e )  j y  _  12k R k e C [ ( R ck ~  R e t )  ^  12k R k e C j j R c c  ~  R c e )

R c e L k C ' t  22 ~  R c e Z k C £  ~  R c e Z k C t

or

- R cê  < R 23 < (R cc -  R ce)% r
l- 'H  '- 'H

1This includes the trivial configuration (i.e. two-capacitor-two-resistor circuits).
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where CL =  ( E kRktC ,k ) /R ct and CH = E k C'£. The bounds are intentionally 

generous2 such that the worst case scenarios can be evaluated more easily. If all 

other components in Figure D .l are kept constants, the peak amplitude of the 

voltage spike decreases monotonically with R 2q • Thus, the difference between the 

amplitudes in Figures 5.12 and D .l is maximized when R 2] has its extreme values. 

The two extremes are discussed separately.

If R 2j nonnegative (0 < R 22 < {Rcc — Rce )§£’), then the amplitude of the 

spike in Figure D .l is no greater than that in Figure 5.12. The difference becomes 

progressively more significant for models with a  smaller R 2l, and it is maximized 

when i?23 =  0 (and R 2l = (R cc — R ce)§^)- In this extreme, if the circuit shown in 

Figure D .l is characterized by ■< a , 8  >■, then the circuit shown in Figure 5.12 is 

characterized by <  8  > .  Among all a - 8  combinations, the difference

in the two circuits1 amplitudes can never be more than 0.076 (out of 1), which 

occurs when a  =  0.27 and 8  — 0.59. This difference is negligibly small, so R 22 does 

not play an im portant role when it is nonnegative.

On the other hand, if R 2i is negative (—R Ce.§£; < R i2 < 0), then the amplitude 

of the spike in Figure D .l is greater than tha t in Figure 5.12. The difference is 

maximized when R 22 =  —R ce§£  and it cancels out R 2l + R 2z. In this scenario, if 

the circuit shown in Figure D .l is characterized by < 1 ,  |3 > ,  then the circuit shown 

in Figure 5.12 is characterized by 1 — /?, 8  ^ >- Among all a - 8  combinations, the 

difference between the amplitudes can be as large as 0.235 (out of 1), which occurs 

when 8  — 0.40.

Although the difference in this case is significant, the scenario is rare. According 

*A pair of tighter bounds would be
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to  the analysis of Section 4.4.3. when the value of i?2 (=  # 2 1  +  R 23 + R 2 3) is very 

small or even negative, there is a good chance that the two-dominant-time-constant 

assumption is violated (i.e. the node being modeled really has more than two 

dominant poles). When this happens, neither the elaborate nor the first-order is 

sufficient a model; thus, the difference is not significant.

Consequently, any of the two models can be applied to most circuits. However, 

the elaborate model is in general more preferable because it gives a more conserva

tive approximation when the modeling assumption is breaking down.
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A ppendix  F 

Sim ulation R esu lts

This section summarizes the amplitude differences between the circuits shown in 

Figures D .l and 5.12 for nMOS1, R C , and pMOS2 technologies.

Assume tha t the circuit shown in Figure D .l is characterized by <  a , (3 ^>. 

The maximum differences in amplitudes (computed by subtracting the amplitude 

of the circuit shown in Figure 5.12 from tha t of the circuit shown in Figure D .l) for 

all possible values of R 22 are summarized in the following table:

Negative Extreme Positive Extreme

Difference a P Difference a P

nMOS -0.080 0.36 0.60 0.310 1.00 0.31

RC -0.076 0.27 0.59 0.235 1.00 0.40

pMOS -0.055 0.16 0.52 0.135 1.00 0.41

As one can see from the table that an nMOS two-capacitor-two-transistor net

work driven to  the ground is most sensitive to the variation of R2i while a pMOS

'A n nMOS two-capacitor-two-transistor network driven to the ground (or apMOS two-capacitor- 
two-transistor network driven to Vdd).

2A pMOS twocapacitor-two-transistor network driven to the ground (or an nMOS two-capacitor- 
two-transistor network driven to Vdd).
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two-capacitor-two-transistor network driven to the ground is the least. Since, ac

cording to Figures 5.6, 5.8, and 5.10, the voltage spike of the nMOS configuration 

has the lowest amplitude among the three configurations, its sensitivity to the value 

of i?22 is the least important.

One can also infer from the analysis in Appendix E that when the amplitude 

of the circuit shown in Figure D .l is much larger than that of the circuit shown in 

Figure 5.12, the basis of a  two-capacitor-two-transistor mapping is failing; under 

normal situations, the two circuits should have approximately the same amplitude. 

However, since the model shown in Figure D .l is better at detecting a breakdown 

in the mapping basis (i.e. when R 2 < 0), it can be more preferable in spite of its 

lack of physical intuition for transistor networks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bibliography

[1] M. A. Breuer. A note on three-valued logic simulation. IEEE Transactions on 

Computers, 399-402, April 1972.

[2] R. E. Bryant. Papers on a Symbolic Analyzer for MOS Circuits. Technical 

Report CMU-CS-86-114, Camegie-Mellon University, March 1986.

[3] R. E. Bryant. A switch-level model and simulator for MOS digital systems. 

IE E E  Transactions on Computers, C-33(2):160-177, February 1984.

[4] R. E. Bryant. A Switch-Level Model and Simulator for MOS Digital Systems. 

Technical Report 5065:TR:83, California Institute of Technology, July 1983.

[5] R. E. Bryant. A Switch-Level Simulation Model for Integrated Logic Circuits. 

PhD thesis, Massachusetts Institute of Technology, March 1981.

[6] C.-Y. Chu and M. Horowitz. Charge sharing models for MOS circuits. In 

International Conference on Computer-Aided Design, pages 274-277, IEEE, 

November 1986.

[7] C.-Y. Chu and M. A. Horowitz. Charge-sharing models for switch-level simu

lation. IEEE Transactions on Computer-Aided Design, CAD-6(6):1053-1061, 

November 1987.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIOGRAPHY 127

[S] W. Elmore. The transient response of damped linear networks with particular 

regal’d to wideband amplifiers. Journal of Applied Physics, 19:55-63. January 

1948.

[9] D. Holt and D. Hutchings. A MOS/LSI oriented logic simulator. In Eighteenth 

Design Automation Conference, pages 280-287, ACM/IEEE, June 1981.

[10] M. Horowitz, P. Chow, D. Stark, R. T. Simoni, A. Salz, S. Przybylski, J. Hen- 

nessy, G. Gulak, A. Agarwal, and J. M. Acken. MIPS-X: a 20-MIPS peak, 

32-bit microprocessor with on-chip cache. IEEE Journal o f Solid-State Cir

cuits, SC-22(5):790-799, October 1987.

[11] M. Horowitz, J. L. Hennessy, P. Chow, P. G. Gulak, J. M. Acken, A. Agarwal, 

C.-Y. Chu, S. A. IvIcFarling, S. A. Przybylski, S. E. Richardson, A. Salz, R. T. 

Simoni, D. C. Stark, P. A. Steenkiste, S. W. K. Tjiang, and M. J. Wing. A 

32b microprocessor w ith on-chip 2K byte instruction cache. In International 

Solid-State Circuits Conference, pages 30-31, 328, IEEE, February 1987.

[12] M. A. Horowitz. Timing Models for MOS Circuits. PhD thesis, Stanford 

University, December 1983.

[13] L. W. Johnson and R. D. Riess. Numerical Analysis. Addison-Wesley Pub

lishing Company, 1977.

[14] N. P. Jouppi. Timing Verification and Performance Improvement of MOS 

VLSI Designs. PhD thesis, Stanford University, October 1984.

[15] T.-M. Lin. A Hierarchical Timing Simulation Model for Digital Integrated 

Circuits and Systems. PhD thesis, California Institute of Technology, August 

1984.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIO G R AP H Y 128

[16] C. Mead and L. Conway. Introduction to VLSI Systems. Addison-Wesley 

Publishing Company. 1980.

[17] L. Nagel. SPICE2: A Computer Program to Simulate Semiconductor Circuits. 

Technical Report ERL Memo No. ERL-M520, University of California, Berke

ley, May 1975.

[18] J. K. Ousterhout. Crystal: A timing analyzer for nMOS VLSI circuits. In 

Third CalTech Conference on VLSI, pages 57-69, March 1983.

[19] P. Penfield and J. Rubinstein. Signal delay in RC tree networks. In Eighteenth 

Design Automation Conference, pages 613-617, ACM/IEEE, June 1981.

[20] S. Przybylski. The Implementation o f MIPS. Technical Report, Stanford Uni

versity, August 1984.

[21] R. Putatunda. AUTODELAY: A program for automatic calculation of delay in 

LSI/VLSI chips. In Nineteenth Design Automation Conference, pages 616-621, 

A CM /IEEE, June 1982.

[22] A. Raghunathan and C. D. Thompson. Signal delay in RC trees with charge 

sharing or leakage. In Asilomar Conference on Circuits, Systems & Computers, 

pages 557-561, IEEE, November 1985.

[23] A. Raghunathan and C. D. Thompson. Signal Delay in RC  Trees with Charge 

Sharing or Leakage. Technical Report UCB/CSD 85/243, University of Cali

fornia, Berkeley, June 1985.

[24] J. Rubinstein, P. Penfield, and M. A. Horowitz. Signal delay in RC tree net

works. IEEE Transactions on Computer-Aided Design, CAD-2(3):202-211, 

July 1983.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIBLIO GRAPHY 129

[25] W. Sherwood. A MOS modelling technique for 4-state true-value hierarchical 

logic simulation. In Eighteenth Design Automation Conference, pages 775-785. 

ACM /IEEE, June 1981.

[26] C. J. Terman. Simulation Tools for Digital LSI Design. PhD thesis, Mas

sachusetts Institute of Technology, September 1983.

[27] W. Weeks, A. Jimenez, G. Mahoney, D. Mehta, H. Qassemzadeh, and T. Scott. 

Algorithms for ASTAP -  A network analysis program. IEEE Transactions on 

Circuit Theory, CT-20:628-634, November 1973.

[28] C. A. Zukowski. The Bounding Approach to VLSI Circuit Simulation. Kluwer 

Academic Publishers, 1986.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


