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Abstract

Symbolic layout tools have enormous potential for easing the task of custom
integrated circuit layout by allowing the designer to work at a higher level of abstraction,
hiding some of the complexity of full custem design. Unfortunately, the practicality of
symbolic layout tools has been limited for several reasons. Most important, the CPU
resources required to compute a full size integrated circuit from a symbolic description
are prohibitively large; this problem has been avoided either by restricting the range of
applicability to a narrow class of integrated circuits, or by using a sirpler translation
algorithm, which reduces the quality of the output. Other problems include: producing
poor quality layouts, insufficient user control of the generated output, and inability to
cooperate with other layout tools. There problems make symbolic design of complete
chips difficult.

This thesis presents an approach to the symbolic layout problems that produces
high-quality layout for an arbitrary circuit without requiring excessive CPU time. The
key to this approach includes the use of hierarchy to improve CPU time, the use of wire-
length minimization to improve quality, a good balance between optimization of the
layout and optimization of CPU time, and a smooth transition over varying degrees of
automation. The result has been a symbolic layout tool that has been successfully used to

lay out several chips from a design-rule-independent input.
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1. Introduction

Custom integrated circuits offer the highest performance, function density, and lowest
manufacturing cost of various IC design techniques. These properties, in turn, allow smaller and
less expensive devices to be built. The problem with custom ICs is that their design and
verification is difficult, and, therefore, expensive.

One way to make IC design simpler, is to use a semi-custom design method such as gate-
array or standard cell, where design consists of interconnecting a number of pre-designed sub-
circuits. This yields larger chips than full custom, where most of the pieces (subci;cuits) have
been designed to fit together for a particular chip.

‘Why is the process of designing a custom IC difficult? There are many reasons, although
one of the major difficuities is the process of layout — that is, transforming an electrical descrip-
tion into geometry (the actual *‘picture’’ that will go on the masks at fabrication time). Layout is
made difficult by a desire to minimize the area while obeying certain design rules. These design
rules specify minimal distances between certain geometrical features to ensure manufacturability.
For example, in Figure 1.1a, the distance between metal lines might have to be greater than 3p
(microns) to ensure they will not be shorted and the minimum required width of the metal lines

might be 411 to ensure that they are continuous. Another example of a design rule is in Figure

z .

231 (microns) minimum spacing

g Metal ( 2 41 minimum width 2

Figure 1.1a  Examples of width and spacing design rules

1.1b, where the polysilicon line must extend beyond the gate of the transistor by at least 3u to
ensure the transistor does not become shorted. Many of the design rules also depend upon
whether the objects involved are electrically connected or whether they are intended to be carry-

ing different signals.
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Figure 1.1b  Example of overlap design rule

Simplified design-rules sets have about two dozen of these rules. Regular design-rule sets
are 30 page documents. Constructing a layout that contains over a million objects and does not
violate the design rules is a monumental task. Even worse is the task of synthesizing an IC to be

of minimal size while obeying these rules. Design rule errors are inevitable.

How do we avoid working with design rules? The designer must be able to express his
intent in a manner that has no implicit knowledge or assumptions about the design rules. This is

precisely the intent of symbolic layout.

Symbeolic Layout

In symbolic layout, the designer works with a notation that is representative of, but much
more abstract than, the layout that finally appears on the chip. Typically, position information
that would require knowledge of design rules is left unspecified, positions are approximate and

relative, components and sometimes connection are referred to by names, etc.

The process of designing a custom IC consists of a series of transformations from a more to
a less abstract specificationl. Figure 1.2 illustrates a typical sequence of such transformations.
Different design methods may break the problem into transformations in different ways. Each

transformation is expensive and involves some *‘art’’ (for a high-quality result).

1 At many of these levels, the specification is not a well defined machine readable notation, but is only an
ambiguous human understandable notation.
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Architecture/Algorithms
RTL (register transfer language)
Logic
Circuits: Electrical/Topological

Geometric

Figure 1.2 Design Transformations

The last transformation is probably the most tedious since it works with the largest data set.
This transformation involves turning an electrical description with some topological information
(approximate relative locations) into the geometry that will finally appear on the chip, taking into
account the design rules and attempting to minimize the chip area. It should be the first to be
mechahized, not only because it is probably the most expensive and tedious, but also is the easi-
est to mechanize well and will provide a basis for work on automating higher level transforma-
tions.

An example of a symbolic notation is sticks [Williams 78). Sticks is a design-rule-
independent layout description notation. In sticks, interconnect is drawn as narrow lines, posi-
tions are relative, transistors are represented as crossing polysilicon and diffisuion lines, etc. See
Figure 1.3b for an example of a stick diagram for an inverter. Figure 1.3c is the layout
represented by the stick diagram of 1.3b. Distances in the stick diagram are meaningless as the
final dimensions will be computed from the design rules during translation. Sticks notation
works best for describing low-level cells consisting of transistors, vias, and wires, but becomes

awkward when extended to compose subcells into higher level cells.
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Figure 1.3 An NMOS Inverter

Symbolic Layout Translation

Some of the major difficulties of symbolic layout translation for entire ICs are caused by the
immense size of the task. Also, when composing a large chip, the designer wishes to describe his
layout to the translator in different terms than he would for a lower level cell. Efficiently imple-

menting these higher-level translations is a distinct task.

Translation of stick diagrams or other forms of symbolic notation was attempted many
years ago [Williams 78] [Hsueh 79], and much work continues in that area [Weste 81] [Buric83]
[Dunlop 81] [Juran 83] [Kedem 84].

There are still problems, however, that have prevented symbolic layout from becoming a
practical tool. Some systems are slow to translate even small cells and are impractical for transla-
tion of any significant portion of a chip. Others produce layouts of too poor quality to be used for
designing serious chips. Most sticks translators are only designed to produce leaf cells (bottom
level cells, which have no subcells), not entire chips, and therefore only produce maximally com-

pacted cells. The user is left with the task of composing the compacted cells to form the whole
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chip. Unfortunately, composing maximally compacted cells rarely produces a minimal sized
chip, or even a small chip. In many cases, as in Figure 1.4 it is far more area efficient to compose

cells by stretching and abutting them than to wire together mismatching subcells.

OR

Figure 1.4 Advantages of stretch and abut.

CPU time is also an important consideration. Many algorithms are satisfactory for translat-
ing a single cell witlf a small number of elements in it. For an entire chip, which is a much larger
problem, not only is the speed of the algorithm important, but also how the CPU time grows with
the size of the chip (the asymptotic time complexity of the algorithm). CPU time that is linear in
the chip size (area) would be ideal. Many translators’ performance are far worse than linear

because they contain algorithms that are quadratic, cubic, or even exponential in the worse case.

The quality of the output is another important consideration. While the notion of quality is
hard to quantify, suffice it to say that merely producing any correct layout is not sufficient. The
translator must produce a good layout in terms of area, wire length, ezc ., though not necessarily

the best correct layout.
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My work

This dissertation presents a method to make symbolic layout of entire chips practical.
While there is no single approach to achieve this goal, I have made a sequence of design deci-
sions that appeared to lead most directly to a practical symbolic layout translator, and have made
a number of measurements along the way. Many of the alternatives appeared to have significant
problems, but now that one successful course has been charted and measured, exploring these
other averues more carefully should be much easier. In order to test many of the design deci-
sions, and the algorithms they required, a system was implemented that could be used by
designers of integrated circuits. This design system, called Lava, has been used by designers
who had no part in implementing it.

The next chapter discusses previous related work in symbolic layout translation and solu-
tion of optimization problems. Chapter three begins by discussiag iire goals for an IC description
method, then discusses the major features of the new IC description language Lava. The sum-
mary is a description of a partially compiled intermediate form upon which the algorithms of the
next chapter are based. Chapter four describes the algorithms for generating systems of con-
straints and optimization problems from the intermediate form. Chapter five characterizes the
optimization problems, then presents solution methods based on the characterization and analyzes
their performance. Various tradeoffs and alternatives for performance improvement are dis-
cussed. Chapter six concludes the dissertatior with a discussion of some of the major decisions

made in designing Lava and the ramifications of those decisions.
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2. Background

This chapter discusses previous work relevant to this dissertation. The first section covers
symbolic layout and layout compaction. Many approaches to the layout compaction problem
reduce the task to & general mathematical optimization problem. These problems are not unique
to the field of IC design automation, but have been studied by many other researchers. The

second portion of this chapter deals with the solution of these optimization problems.

2.1. Layout Automation

One of the more tedious and error prone tasks in custom IC design is layout. For well over

a decade, researchers have tried to automate this phase of IC design.

Symbolic layout began as simply a shorthand notation for representing layouts: easy-to-
write symbols were used instead of combinations of carefully drafted rectangles [Gibson 76],
[Barnes 75]. These symbols were drawn on a courser grid than the layout would have been,
resulting in some waste of area. The course grid spacing was chosen to ensure the layout con-

tained no design rule errors.

The loss of area due to the course grid can be mitigatéd by performing automatic spacing or
compaction on the layout. Akers proposed IC-mask layout tools in a style similar to printed cir-

cuit board layout, but with some expansion and compaction features [Akers 70].

Sticks

Williams coined the term sticks to represent a kind of symbolic notation that was similar to
a sketch the designer might draw of the circuit before laying it out [Williams 78]. The stick
diagram is somewhere between a schematic diagram and a layout: relative placement of com-
ponents and mask layers for interconnect have been chosen, but actual positions and dimensions
have not been chosen. He also proposed a program to translate the stick diagram to rectangles
and perform the compaction to produce a design-rule-correct layout. For instance, an NMOS
inverter would be represented as in Figure 2.1b, while the schematic and layout are as in Figure

2.1a and Figure 2.1c.
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Figure 2.1 AnNMOS Inverter

Layout Compaction

The task of layout con}pacﬁon is to minimize or reduce the area of a layout (or portion
thereof) while obeying the design rules and maintaifing the integrity of the circuit. Although
reducing the area to the absolute minimum is a very difficult problem for any significant layout,

simply reducing the area to close to the optimum is practical.

The reason that optimal area reduction is so difficult is that the search space is not convex!,
meaning that it is not always possible to move smoothly and directly from one legal set of posi-
tions to another without passing through illegal positions as in Figure 2.2. The non-convex
search space means that there may be many local minima, which make finding the global

minimum much more difficult.

A popular technique for compaction is to reduce or minimize each dimension separately,

alternating between dimensions until no further improvement is made2. Such an approach (called

1 Precisely, a convex set is defined as a set such that if X, and X, arc in the set, then
oX, ,-Kl-a)}?z, ae[0,1] is in the set. Here, the vectors represent the positions of all the objects in the layout,

2 Each one dimensional problem (as formulated) usually has a convex feasible space.
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A B

Figure 2.2 Non-convexity of compaction
one-dimensional compaction) frequently comes close to the best that may be achieved without
reorganizations such as interchanging or rotating components. Another technique, called two-
dimensional compaction, moves objects in both dimensions simultaneously [Kedem 84] [Wolf

84].

There are several approaches to layout compaction. One approach involves placing the
mask features on a grid or other data structure representing the allocation of chip area, and
directly manipulating these features. Another involves generating a system of inequalities
representing the design rules and the relationships among the mask features. This system of ine-
qualities, which can be represented as a directed graph, is solved to yield a set of compacted posi-
tions for the mask features. In many cases, the geometry manipulation algorithms can be

described in terms of graph manipulations.

Shear Line and Virtual Grid Compactors

Dunlop, in SLIP, places the mask features on a course grid, and then searches for a
sequence of grid points crossing the chip (the compression ridge) that are either adjacent, or con-
nected by a shear line, that can all be eliminated without changing the circuit [Dunlop 78].
Shear-line compactors, in theory, are capable of performing almost as good a one-dimensional
compaction as the coarseness of the grid allows. Unfortunately, the search for the removable grid
points involves exploring many avenues and backtracking, and therefore can be time consuming.
As the search time is a functior of the number of grid points, a faster compactor requires a

coarser grid and therefore can waste more area.
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In virtual grid compactors, such as MULGA [Weste 81] [Boyer 83] or VIVID [Rosenberg
84), the layout is densely placed on a grid without regard to design rule spacing. The grid is then
scanned to determine what spacing between each pair of grid lines is necessary to satisfy the
design rules. For larger layouts, there are more unrelated components on a grid line, yet all must
be moved together to account for the worst case spacing and cannot be moved relative to each
other. For example, a virtual grid compactor could not achieve the following compression (in x ),

because ““‘A”’ and *“B”’ are on the same virtual grid line:

A A

B B

Figure 2.3  Animpossible compaction
This inflexibility of virtual grid compactors can exact a large area penalty in large layouts. A

more flexible compactor might be able to produce the drawing on the right.

Constraint System Compactors

One of the earlier compactors to build a system of inequalities was Hsueh’s CABBAGE
[Hsueh 79]. In Cabbage (as in many others), the constraints (inequalities) arise only from design
rule spacing constraints as in Figure 2.4. Because the only user constraints are lower bounds on
distance between features, Cabbage’s constraint graph is acyclic and can therefore be solved for
longest paths in time linear in the number of edges. Upper bound constraints are only checked,

but not used to determine the solution.

A penalty of acyclic constraint graphs is that connections must be made to fixed locations
on a component rather than being allowed to slide over a larger permissible area as in Figure 2.5.

Hsueh uses a form of automatic jog introduction to mitigate the area costs of this rigidity.

Similarly, Mosteller in REST builds an acyclic constraint system (again, except for user-
provided upper bound constraints), but does no automatic jog insertion [Mosteller 81]. Dunlop in

SLIM [Dunlop 81] also builds an acyclic constraint graph, but does automatic jog insertion and
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uses a variety of methods for reducing the difficulty of compacting large layouts. McGarity
claims area performance of SLIM is poor [McGarity 83]. ALI uses a longest-path constraint
graph where all edges have a non-negative length [Lipton 82]. Such a graph cannot have non-

trivial cycles and is solvable in linear time.

Both Schiele and Kedem use cyclic constraint graphs to represent flexible connections
[Schiele 83], [Kedem 83] [ Kedem 84]. Schiele is also minimizing wire lengths in his compac-
tion algorithm,

Kedem is trying to minimize area by compacting in both x and y directions simultaneously

using an integer programming formulation to coupie the probiems. This simuitaneous x and y
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compaction is called two-dimensional or 2-D compaction, as opposed to 1-D, which compacts in
each dimension sequentially. While 2-D compactions could potentially perform better than 1-D,
Kedem offers no data comparing either performance (expected to be better) or CPU time

(expected to be worse). Sastry shows that optimal 2-D compaction is NP-complete {Sastry 82].

2.2. Optimization algorithms

Most of these symbolic layout translators make use of the solution of some kind of
mathematical optimization problem to perform the compaction operation. Most of these
mathematical optimization problems have had applications in other fields than integrated circuit

layout, and therefore have been well studied.

The graph-based symbolic layout tools compile the layout problem into a mathematical

optimization problem, usually a longest-path problem. The longest-path problem is stated as fol-

{XH'CSIJ'} .

find the minimal difference between a pair of distinguished variables:

lows: Given a set of inequalities

Xsink=Xsource
The source and sink variables might correspond to the positions of the left and right edges of the

cell being compacted, respectively (or bottom and top). This problem corresponds to finding the
longest path in a graph from a source vertex to a sink vertex, where the arc lengths are the con-

stants in the inequalities.

In practice, the result desired is not just the longest path from source to sink, or its length,
but the length of the longest paths from the source to all other vertices. Fortunately, this informa-
tion is what is most often computed by the longest-path algorithms, or it is easily computable in

linear time from information available.

If the arc lengths are negated, this problem becomes the shortest path problem, an iso-
morphic, and more frequently studied problem. To be solvable, the graph must has no positive

weight cycles (infinite longest path) and must be connected (no path).
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Acyclic longest path

The simplest of the optimization problems is the longest-path problem when the constraint
graph is acyclic. This problem can be solved in time O (v+¢), where v is the number of vertices
and e is the number of edges. These correspond to the number of variables and inequalities,
respectively. The algorithm traverses the edges of the graph in topological sort order, which may

also be determined in linear time, propagating the longest-path lengths onto the vertices.

Unrestricted Longest path

Slightly more difficult to solvé is the longest-path problem where the constraint graph may
have cycles. For there to exist non-trivial cycles, negative arc length must be permitted. Since
the longest-path problem is a subset of the linear programming problem, the simplex method
[Dantzig 63] could be used. As linear programming problems are quite a bit more general than
longest-path, the simplex method is overkill and costs far inore memory and CPU time than is

necessary.

If an initial feasible (though not necessarily optimal) solution is available, it can be used to
solve the problem in O (elogv) time [Johnson 73]. Johnson transforms all the variables (in the
corresponding shortest-path problem) by the amount of the initial solution, resulting in a
shortest-path problem with non-negaﬁve arc weights, and then uses a priority; queue to traverse
the edges in proper order to solve it. By making portions of his algorithm adaptive he is able to

achieve a slightly better bound than mentioned above.
The Floyd-Warshall algorithm [Floyd 62] computes longest paths without an initial feasible
solution, computes longest paths for all pairs of edges, and, unfortunately, requires O (v7) time.

Mathews used a relaxation-based algorithm to solve the longest-path problem [Mathews
81]. He found the time bound to be O (B -e), where B is the number of ‘‘back-edge’’ trees in the
graph. Very similar are D. B. Johnson’s **Arc set partition algorithms”’ [Johnson 73]. Liao uses

a relaxation method that relies on the existence of an initial feasible solution [Liao 83].
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A network flow formulation can be used to solve the longest-path problem. Kennington and
Helgason describe a *‘Primal Simplex method on a graph®’ suitable for solving the network flow
problem [Kennington 80]. Discussion of empirical performance of network flow as applied to IC

layout may be found later in this dissertation.

Multiple longest paths

Some symbolic layout systems require the longest paths from multiple source vertices. If
all vertices were used as source vertices, this problem would become the all-pairs, longest-path
problem. The simplest, the Flbyd-Warshall algorithm (O (v?)) mentioned above, computes all
pairs. D. B. Johnson has an all-pairs algorithm with a somewhat better time bound. In either
algorithm, far more data than is needed by Lava is being computed, with the excess discarded.
Mathews found it faster to compute individually the longest path from each source vertex, using

results from the previous vertex to accelerate the speed' of convergence [Mathews 81].

Reduction of wire length can be useful as a secondary objective during compaction. W. L.
Schiele presents a method of reducing wire length [Schiele 83), although it is not clear whether a
minimum is achieved. A method of minimizing wire lengths based on a network flow formula-

tion is discussed later in this dissertation (§5.2).

Summary

In this chapter, I described some of the approaches that have been taken to automate the
task of IC layout. First, a symbolic representation is used to ease the task of describing the lay-
out. Because a direct translation of the symbolic representation leads to a waste of area, layout
improvement called compaction is employed. Many of the compaction algorithms construct a
system of linear inequalities and minimize some objective function subject to those constraints.
In the second part of this chapter, I describe some of the existing optimization algorithms that are

well suited to the optimization problems that result from symbolic layout translation.
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3. Lava: A New Layout Description Method

A new method of describing IC designs was developed to give the designer much greater
expressive power than previous layout description methods. In this chapter I will describe in gen-
eral terms some of the features of the new language, Lava, to motivate the work described in the
next chapter. After describing some of the goals and major features of Lava, I will describe the
primitive objects and operations of the language. Finally, I will describe a canonical intermediate

form that is used as input to the algorithms of the next chapter.

3.1. Goals and Specifications for an IC Description Method

This section describes the motivation behind the design of the IC layout language Lava. I
also will list some general goals for IC descriptions, and then give a set of design specifications

for an IC layout language, while relating them to the goals.

Modern programming languages embody solutions to problems of managing complexity
and representing structure. Similar problems exist for the task of describing hardware. In the
design of Lava analogies with programming languages have proved very useful and were fre-
quently used as a guide.

Goals

A high level of abstraction is one way to provide the designer with some *‘leverage’’ over
the design. By using automation to avoid details, the designer can potentially gain much more
leverage than if he had to work with the details, even with machine assistance. Potential benefits
include reduced need for design auditing tools, reduced errors, and relative design-rule indepen-
dence of the design. The programming language analogue would be high-level programming
languages.

At odds with the goal of a high level of abstraction is that of providing a generality of appli-
cation. Many special purpose layout tools have been constructed that are very powerful, but good

only for a narrow range of applications. In contrast, my objective is a tool that could replace

15
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current IC layout tools, produce any topology that the designer intends, and would not restrict the

design methodologies available to the designer.

Also conflicting with the goal of a high level of abstraction are the designer’s goals of area
efficiency, speed, etc. The design tool must have an acceptably small performance penalty for its

use.

The IC description should be concise in order to be easier to read, write, and modify.

Design specifications for an IC description method

Given these general goals, there are many ways to design an IC description method. The

following are the important features of Lava.

Hierarchy has fong been used to deal with the complexity of programs, ICs, ezc. because it
reduces the qﬁanﬁty of information that must be manipulated at any given time. As ICs are
organized and designed in a hierarchical fashion, an IC description method should be capable of
representing this structure. A hierarchical description also reduces the effort required for pro-

grams that implement the design description.

The notion of parameterized cells is another useful idea borrowed from programming
languages. It allows variants of a cell to be created and used without the user dealing with all of
the details of its construction. These parameters can be used for modifying the size of devices in
a cell or they can be used to control repetition and conditional inclusion, thereby making it possi-
ble to specify a generic cell that can generate variants of a cell. Typical uses might be for speci-
fying the width of a register, or for selecting one of a number of variant cell types, such as the
least significant bit versus a center bit of an adder. Parameters lead to more concise descriptions
and keep the designer from having to respecify nearly identical objects. The elimination of dupli-
cate similar cells makes bug fixes much simpler — one orily needs to fix the generator rather than

all the versions of the cells.

Another simplifying concept is the use of wire aggregates. Arrays and records are con-

structs in programming languages for grouping together related variables and manipulating them
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as one entity. A similar concept can be very useful for describing hardware. Busses may be
described as an array of connections or wires; a collection of control lines not part of a regular
array can be thought of as a “‘record’” of wires. In Lava, these records are called bundles. A bus
including control lines would be a bundle that includes an array. Connection between such
aggregates may be made in a manner analogous to plugging together muiti-pin connectors (such
as the connection between a terminal and a computer), provided that the shape and size of the
connectors matches. Aggregates allow an IC description to b2 much more concise by hiding
details that are unimportant. At a high level when a connection is been made between two
blocks, you know that the left signals of block A connect to the right signals of block B, but the
names of the individual connections are irrelevant. After all, when you last plugged together a

multi-pin connector did you think about each of the many connections being made?

In Lava, the electrical éircuit is the fundamental method of description. It is specified expli-
citly and unambiguously using a variety of language features included solely to make the electri-
cal specification convenient and concise. Since the electrical circuit is ore of the levels of
specifications that the designer works through on his way to designing the IC, he should specify
the electrical description directly rather than indirectly through a topological or geometric
description.

In a utopian world, the electrical specification is all that would be necessary to produce an
optimal layout. In reality, a better layout can be produced if the designer provides topological or
geometric information such as the orientation or relative position of a component, or the width,
layer, or route of a wire. Such information will be referred to as a hint , that is, information that
aids the compiler of the description to produce a layout from an electrical description. Lava con-
tains a number of variants on the method of description, the major difference being the types of
hints required. When the electrical specification (or a higher level) is the primary specification of
circuit behavior, there are fewer conversion steps to be performed by the designer, and topologi-
cal and geometric hints need be specified only after the circuit (or chip) has been completely

electrically specified and a functional simulation perforn.ed.
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A Lava IC description does not contain assumptions about the geometric design rules.
Assumptions about the form and specifics of geometric design rules should not be a part of the
description that the designer provides. The design-rule-independent description also precludes
the specification of most physical dimensions, as dimensions are almost always a function of
design rules. There are many benefits of a design-rule-independent description, but one of the
most significant is reducing the amount of detail the designer must specify. Since the design tool
now has the responsibility for maintaining design-rule correctness, it also has the power neces-

sary to do some layout minimization and other optimizations, which will be discussed later.

A design-rule-independent description allows the design rules to be changed with little
effort, thus permitting a great deal of portability of designs among fabrication facilities. Univer-
sal design-rule sets, whose aim is also to increase portability, rely on the assumption that as the
technology improves, it improves uniformly for all the design rules so that designs can simply be
scaled for different fabrication facilities. This assumption is poor, because different design rules
have shrunk at different rates. For example, recently minimal transistor dimensions have been
reduced far more than minimal line widths. While scaling still works, the scaled design gradually

becomes less optimal.

Currently, design tools that offer the designer some degree of automation (i.e., do more than
just Mng) to aid him in IC layout often do not produce an optimal result. If the layout is not
satisfactory, the designer is faced with the choice of putting up with the tool and layout or using
less automatic methods. Rather than abandoning this automation, the designer should be able to
provide hints, or otherwise constrain the design tool, to produce a result more to his liking.
Allowing the designer to add more and more constraints results in a continuum from automatic to
manual design. This continuum is important for allowing the designer to produce layouts with an

acceptably small area and performance penalty.

Cell stretching and pitch matching are useful cell composition techniques for achieving
efficient designs. In order to make cell stretching easy for the designer, he should not have to

specify the rules by which the cell stretches. Computing the set of rules that guarantee that a
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cell’s geometry remains design-rule correct as it is stretched in both dimensions is a tedious and
error-prone task for a designer. Computing this set of rules can better be done by machine.
Automatically generated stretch rules allow the designer to work at a higher level of abstraction
and make the description more concise. Because the design tool has the power and responsibility
for design-rule correctness, it is capable of generating stretchable cells, as will be shown in the

next chapter.

Form of the description

The previous section described some of the capabilities of the Lava language; this sectionA
will discuss some of the implementation decisions. There are a number of choices to be made
when you create a new IC layout language. While I do not claim that there is a correct or best
answer, I will justify the choices I have made. In general, Lava uses the form that was the most

general and put the fewest restrictions on what could be represented.

The first major question was whether to use a graphical input form or a textual language as
the basis for Lava. A textual descﬁpﬁdn was chosen fér several reasons. First, there are many
concepts that are ee;sy to express textually, but are very difficult to express graphically. For
example, the ideas of repeating an object N times, where N is a parameter yet to be specified, or
of conditional inclusion, where different objects are placed in the layout depending on a parame-
ter, are more naturally expressed textually. However, graphics does seems better suited for '

expressing specific instances of the more general specification.

Probably more important, as long as the textual description is at least as general as the
graphical description, a preprocessor can be written to manipulate the lauer to produce the
former. In fact, such a program has been written (called SEDIT [Burns 82]) to manipulate graph-
ically portions of layout descriptions and produce a textual equivalent. It has proved very useful,
but its weaknesses are just where one might expect: the concepts for which the graphical descrip-
tion does not have sufficient expressive power, such as iteration, wire aggregates, and conditional

inclusion.
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Finally, developing a graphical description entails spending a large amount of time develop-
ing a graphical user interface. Eventually, graphics will be important in the overall solution to
the problems of IC layout, but it-is not essential for exploring what fundamental operations and
facilities are needed and how to implement them. Therefore, the design of a graphical user inter-

face was deferred.

Another major design decision was whether to make Lava a stand-alone or an embedded
layout language. Lava is a stand-alone language, not an extension of an existing programming
language. The purpose of this project was to try to understand what facilities are necessary to
specify ICs, and a stand-alone language is superior for that purpose. If some feature is missing,
the IC designer cannot fall back on the surrounding programming language, but must complain to
the language designer. The problems become obvious this way. Many embedded design
languages are merely facilities for writing design tools, but not design tools. The design decision
is: What is the language with which the designer describes his design? not What is the language
with which to write a design tool? Creating a stand-alone language is not giving up anything, as
the stand-alone language can later be embedded in a conventional programming language by

including statements or procedure calls to generate the stand-alone language statements.

The Lava input is a concise, powerful notation for hierarchical, design-rule-independent,
textual IC description. Major features include an electrically explicit, but geometrically ambigu-
ous, description supplemented with hints to provide a continuum from automatic to manual

translation.
3.2. Lava Overview

Organization

In Lava, an IC layout is described as a hierarchy of cells. A cell may recursively contain
subcells, and appear multiple times in a layout, but may not intersect another cell. A cell that
contains no other cells is called a leaf or leaf-level cell. From an electrical view, cells and sub-

cells could be called circuits and subcircuits. A cell may have a number of connections points
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called terminals. A logical grouping (by means of bundles or arrays) of one or more terminals is
called a pin. Physically, each cell has an inviolate rectangular boundary enclosing transistors,
wires, vias, subcells, etc. The terminals appear only on the boundary. A pin is a logical entity
and has no physical existence independent of the terminals of which it is composed.

Cells in Lava may have parameters. A parameter is numeric information provided to a cell
by the cell abéve it (its parent in the hierarchy) in order to customize the cell or its subcells. The
customization is done by controlling repetition, subscript indices, or conditional inclusion. There

is no information returned (passed up the hierarchy) that is under control of the designer.

Features common to most cell types

Most cell types are similar except for the hints. What follows is a description of those
features in common among most all cell types. I will discuss objects, their interconnections, and

then a few points of notation.

Objects

Cells are composed of interconnected objects. There are two kinds of objects: primitive
components (such as transistors, loads, or vias), which are defined in a technology database, and
cell calls (the creation of an instance of another cell). Depending on the component, there may be
optional information included: a sub-type (such as transistor type), parameters (such as dimen-
sions or aspect ratio), transformations (such as rotations and reflections), and various hints as
required by the cell type. Instances of objects may be given names, which are used to refer to that
object instance.

Cell calls can either be single cell calls or iterated cell calls. A single cell call causes an
instance of a subcell to be included in a cell, gives local names to each pin {group of terminals) of
the subcell, and provides values to the parameters of the subcell (from expressions in the cell

call). Transformations and hints may be included, as with primitive components.

An iterated cell call additionally includes a count, a direction, and a description of how

adjacent faces are to be connected, anid produces a linear array of identical cells. (The iterated
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call is not the only way to generated an array of cells. The foreach construct (see section on

notation below) may also be used to generate multiple single cells calls.

The wiring operator and wire expressions

Lava is an expression-based language where the existence of an expression causes an object

to appear or a connection to be made. Central to wire expressions is the wiring operator.

Lava’s method of description is primarily electrical; consequently, interconnections are
specified electrically, while the geometric or topological aspects are derived from the electrical -
description as much as possible. Hints are used to supply physical information that cannot be
determined from the electrical description. The interconnections are specified by a symbolic
equivalencing of names or expressions that represent nets or connection points. The expression
might refer to a particular connection point on a primitive component or a pin on the cell boun-
dary. An electrical description that is independent of physical information allows the circuit to be
designed and its description to be debugged prior to layout (by means of functional simulators
and circuit-analysis tools). The equivalencing is done by an operator *‘#’* which will be referred
to as the wiring operator, bl-lt it is important to remember that the operation actually being per-
formed is to make its operands electrically equivalent, and may or may not cause a wire to be

generated.

There are several types of permissible operands for the wiring operator. For one, a pin of
the cell being constructed may be equivalenced. These pins are known as formal pins in analogy
to formal parameters of programming languages. Another is a terminal of a primitive com-
ponent. Such a terminal is just a reference to the component, possibly with a qualification to
specify which terminal if the component has multiple terminals. An entire wire expression may
itself be used as an operand in another wire expression. Lastly, an otherwise unknown identifier
is simply equivalenced to the other operand and may then be used elsewhere in the cell to
represent those net(s). What about connections to the pins of subcells? Subcell calls have
implied wiring operations for each of the pins. Thus, an identifier used as an actual pin name

(analogous to an actual parameter in programming languages) becomes synonymous with the
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subcell pin. This same name may be used in another subcell call, making a connection between
the cells without introducing additional names or statements. More on this technique appears in

the section on notation.

In addition to wiring together individual nets, the wiring operator is capable of wiring
together corresponding elements from aggregates of nets. These aggregates are the hardware
designer’s equivalent of the programmer’s arrays and records. In Lava they are called arrays and
bundles, respectively. Roughly, an array is a collection of connections or nets where the indivi-
dual elements are of similar structure and are accessed by a numerical index, whereas a bundle is
a collection of inhomogeneous connections or nets accessed by element name. Either a bundle or

an array may have bundles or arrays as elements.

To prevent unintentional or nonsensical connections, the wiring operator only permits wir-
ing together things of identical structure. If the operands are arrays, they must be of the same size
and the elements must be of the same structure; if the operands are bundles, there must be the
same number of elements, and the corresponding elements must be of the same structure. Essen-
tially, if we are looking at the trees corresponding to the aggregate’s structure, the trees must have

the same size and shape.

An aggregate’s structure may be defined in several ways. First, pins of cells may be expli-
citly given structure in the pin declarations. Second, the structure of terminals on primitive
objects is known (scalar) and the structure of pins on subcells is known (from the subcell pin
declarations). Third, wiring to something of known structure will propagate the structure infor-
mation to an identifier of unknown structure. Since subcell calls have an implied wiring opera-
tion, they are just a special case of this structure propagation. Thus, an element selected from an
aggregate also has known structure, and therefore may be used to define the structure of some-
thing else. There are some examples of this kind of structure inference in the next section.
Finally, an iterated cell call creates arrays whose elements have the structure of (and are wired to)

the pins of the subcells.
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Notation

A design in lava consists of a set of bundle definitions and cell definitions. The bundle
definitions give a name to a bundle type so that pins throughout the chip can be conveniently
given the same structure. A cell definition consists of a cell header, pin declarations, and the cell
body. The cell header and pin declarations name the cell, the pins, and the parameters, and
specify properties (including the structure) of pins.

The cell Sody is a block of statements. In Lava, the order of statements within a block is
irrelevant, as they are not executed sequentially (or even executed) as they would be in a pro-
gramming language.

There are two statements for conditional inclusion and repetition: if and foreach.
The if statement chooses one of two blocks of statements based on the value of an arithmetic
expression, which may be a function of parametess. The foreach statement causes a block of
statements to be reproduced some number of times, possibly with a variation. The number of
time the block is reproduced can be a furction of the cell’s parameters. An index variable is set
to a different integer for eacki copy of the block of statements. It can be used within the block in
arithmetic expressions just as cell parameters are used. These arithmetic expressions can be used

as parameters in subcell calls, to control if or foreach statements, etc. For example:

foreach x to 5 {
if(x < 3 |l x> 4) {
cell call(pin; x+Jj);
} else {
other_cell_call(pin2; x):;
}

is equivalent to:

cell_call(pin; 1+Jj):
cell call(pin; 2+3j);
other_cell_call(pin2; 3);
other_cell_call(pin2; 4):;
cell_call(pin; 5+3j):

Lava is an expression-based language, and the remaining statements are of one of two types

of expressions: instance expressions or wire expressions. As with operators in arithmetic
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expressions, Lava’s instance or wire operators have precedence and associativity, which may be
modified by parentheses. What is different is that the expressions do not have values, but express
relétionships. Most binary operators say something about the relationship of things referred to by
their operz;nds. If an expression is being used as an operand, it refers to one, or the other, or some

combination of its operands.

In general, instance expression cause objects to exist, and describes physical (geometric or
topological) relations among them, while wire expressions denote electrical relationships between
these objects (connectivity).

The simplest examples of instance expressions are celi calis and declarations of primitive
objects (such as transistors). There are operators such as above or *“}** (abuts) that express
physical relationships. The objects referred to in an instance expression can be given a name,
which can be used to refer to them elsewhere. This name is called an instance name. For exam-
ple:

name = instance-expression
This instance name may be used wherever an instance expression is required. Instance names
may also be subscripted: |

insname [5] = instance-expression
which is useful for working with iterated structures.

Simple examples of wire expressions are pin names (from the cell header), or actual pin
names (from a subcell :all). The most important wire expression operator is the wiring or
equivalencing operator *‘#’’. It connects or equivalences the nets of its operands. When used
within another wire expression, the nets that are being referred to ( i.e. its “‘value’”) are simply
those of one of its operands!. If the wire expression refers to an array or bundle, subscripting or
qualification, may be used to select parts of the aggregate. This selection is done with square

brackets “‘[ 1’ or dot **.”’ as in many programming languages. To connect to a primitive

1 Which one only matters in cell types where **#'* produces wire scgments rather than pet lists. In such
cases the “‘value” is the right operand, and *“‘#" is left associative. This convention is arbitrary but will
cause the sensible result for expressions suctias a # & * ¢
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component, an instance expression referring to a single component may be used as a wire expres-
sion if the component has a single net (a # via br) or with qualification if a multiple-terminal
component (a # tranname.gate). The following sample wire expression illustrates some of
the aBove features:

((busa # busb) .data # aluin) [1] # highbit
Where busa and busb are bundles that have an element data which is an array of the same

size as aluin.

Cell types and the hints they require

The electrical circuit alone is not enough for the designer to specify the layout that he
desires to produce. Lava’s compilation algorithms require an initial, almost correct, though not
pecessarily optimal, layout. The infermation from which this layout is determined varies accord-
ing to cell type. Additional information such as the relative location of components, the layer or
width of interconnect, etc., may be necessary. These hints will be described in this section for

each of the three cell types: Stix, Abut, and Externals cells.

The purpose of the Sn'x-cell type is for designing lower level cells where the designer has a
specific idea of the layout he desires, and wishes to have a high degree of control over the loca-
tions of components and wires. In this cell type, relative positions are specified by giving each of
the components pseudo-coordinates. These pseudo-coordinates merely establish a relative posi-
tion; the magnitude has no meaning except in comparison with other coordinates. For example,
the coordinates from a stick diagram would serve well as pseudo-coordinates. Because subcells
may have several connections on a side and are potentially stretchable, rather than a pseudo-
coordinate representing the location of its center as with other components, the subcell requires

pseudo-coordinates representing each of the edges?.

In Stix cells, wires generate single wire segments with the color (layer), width, direction

and pseudo-coordinate provided as hints. In many cases the color, pseudo-coordinate, and

2 provided as a pseudo-coordinate representing the lower left corner and a pseudo-size.
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direction may be inferred from the adjacent components. The width will default to the minimum
width,

Other hints that may be specified are transformations (rotations and reflections) and user
constraints. User constraints are constraints on the relative position of objects. These differ from
pseudo-coordinates in that pseudo-coordinates only provide an initial relative position of objects, |
which may change during compaction, whereas constraints always remain in effect.

The need for pseudo-coordinates in the Stix cell type makes the use of wire aggregates
(bundles and arrays) sufficiently awkward to be not very useful. A distinct pseudo-coordinate
needs to be given to each element of the aggregate. When several elements of a bundle or array

are connected to the same subcell, pseudo-coordinates cannot be inferred and must be provided

manually.

The Ab_ut cell type is intended for the design of larger cells that are composed entirely of
subcells. The principle distinction between Abut and Stix cell types is the manner in which the

initial positions are specified and a restriction on the components allowed (only subcells in Abut).

In the Abut cell type, the area of the cell is entirely tiled by the subcells and all connections
are made by abutment. The initial positions are specified by the operators such as left of,
which specifies that a cell or group of cells is to be to the left of another cell or group of cells.
Another set of operators, of which abuts left of is an example, specifies that connections
between the cells (or groups of cells) are to be made by abutting and that the cells are to be adja-
cent3. Because of the tiling, no pseudo-coordinate, pseudo-size, or wire direction need be
specified. Also, because thé only components are subcells, the wire layer can always be deter-

mined from the subcells. Wire widths and transformations are hints that may still be specified.

The External cell type provides a way to use cells that were designed outside of Lava. This

cell type simply provides a mapping from cell and pin names to CIF cell number, cell size, and

3 The distinction between abuts left of and left of would seem redundant. The intention was
that connections that were not made by abutment would be saved for a wire router. Unfortunately, this
feature never got implemented.
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pin location. One could view the hints for this cell type as being the complete, rigid layout.

Why different cell types? At each level in the cell hierarchy cells are composed of a number
of component objects. The kinds of information that the designer would like to and not like to
specify are different at the different levels. At the bottom level (leaf level), the objects being
composed are typically single devices, and the connections are single wire segments. The rela-
tive locations are specified for most all components. In top level cells, the objects being com-
posed are often themselves large cells with thousands of devices in them. The interconnections
consist of hundreds of individual wires, which are often placed in logical groupings and wired
systematically. These wires are often not just straight wire segments, but are routed around
objects and change layers automatically. The relative placement of objects are more loosely
specified. In general, Lava is given fewer hints and more freedom in the specification of larger
cells because the optimum position, route, or stretch is frequently not known by the designer. At
lower levels, the designer often wants more exacting control over the operations performed by the
design tool and so the hints should be capable of fine control. At the higher levels, such fine con-
trol is not necessary. The designer often wishes to use broad strokes to describe layout at this

level.

3.3. Intermediate Form

Lava undergoes a partial compilation to remove parameters, conditionals, iterations, bun-
dles, arrays, etc. This expanded form is the input to the symbolic layout algorithms of the next
chapter. Since at this level the description is no longer parameterized, a cell name consists of
both the name given by the designer plus the list of parameter values that were used to produce
this *‘distilled’’ description. The contents of the expanded version of two different cell types,

Stix and Abut will be described.

For both cell types, the majority of the information in the intermediate form is contained in
a component list and a wire list. Components are terminals, subcells, transistors, vias, etc.,
although in the Abut cell type only the first two are permissible. Other information in the com-

ponent list, which is not specific to cell type, is additional information about the type of
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component, parameters (such as sizes), orientation, etc. The connection points on the components

are connected together only by wires, which are horizontal or vertical elastic segments.

In addition to the components and wires, the algorithms of the next chapter sometimes need
to know connectivity information for this cell. Such information can be computed from the com-
ponent and wire lists, and from knowledge of the connectivity of the components. The external
connectivity information (called the electrical abstraction) for the subcells was computed during
a similar prior operation. From the connectivity, an electrical abstraction for the current cell is
prepared for use by its superior cells.

In the Stix cell type, an initial (pre-compaction) position for all of the components and
wires is necessary tc corrcctly generate the compaction constraints. As these initial positions are
only used to determine an ordering, and have no relationship to any physical dimensions, they are
called pseudo-coordinates. Also, if a subcell has more than one connection on a side, the
pseudo-coordinates for all sides of the cell are necessary?. Wires have a single pseudo-coordinate
and a direction. These pseudo-coordinates may be thought of as coordinates in a picture of the

stick diagram of the cell.

In practice, much of the information such as positions, direction, layer, ezc. may be inferred
from positions, layer, etc. of adjacent components and wires. Lava does this inference so that the
user does not need to provide much of this information. For the purposes of the discussion it will

be assumed that all that information has already been filled in.

In the Abut cell type, the designer provides the information with which to construct an ini-
tial placement in a different manner. There are no pseudo-coordinates in the component or wire
lists. The only additional information is a list of instance expressions giving the relative loca-

tions of subcells or set of subcells (suchas A leftof B)as discussed in a previous section.

These lists of components and wires constitute most of the essential information required by

the constraint-generation algorithms of the next chapter. The issues involved in producing these

4 These pseudo-coordinates are provided as a pseudo-coordinate pair and a pseudo-size pair.
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lists from the Lava input are mostly language processing and compiler issues and are not particu-
larly relevant to IC design tools. A different front end (such as a graphics interface) could easily

be substituted at this point and produce the same lists as output.

Summary

In this chapter, I discussed some of the goals of producing a layout tool that allowed the
designer to represent his design at a high level of abstraction with minimal sacrifice of flexibility
or silicon area. I gave an overview of the language, which describes electrical connectivity,
showing some of the major features: wire aggregates, parameterizable cells, an overly flexible
description with disambiguating hints, and a design-rule-independent description. Finally, I

described the intermediate form which is the input to the algorithms of the next chapter.
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4. Lava Compilation

The previous chapter discussed methods to describe IC layouts using a language called
Lava. This chapter presents methods for compiling Lava descriptions into a few well-defined
optimization problems. The resulting optimization problems will be relatively small and sparse,

and can be solved by methods described in the following chapter.

The compilation of the Lava description can be converted into three different optimization
problems, longest path, LY minimization, and constraint propagation. These optimization prob-
lems will be defined precisely as they are encountered in this chapter.

A second purpose to this chapter is to set the stage for the next chapter in which the charac-
teristics of the resulting optimization problems are studied. In order for the characterization to be
meaningful, the prectse manner in which the problems are constructed must be specified. The
above, however, does not mean that the characterizations will not be typical of optimization prob-
lems created by other symbolic IC layout systems. I expect the characterizations to be typical of

other symbolic layout systems as well.

4.1. Sticks

In this section I will first talk about standard sticks compaction, then I will extend it to take
advantage of the existing hierarchy of the chip, and discuss some extensions that improve the
quality of the layout and the speed of compilation. Finally, I will summarize with a perspective

that unifies all the optimization problems used in this section.

The object of sticks compaction is to produce a minimal cell size for a given circuit while
obeying all the constraints imposed by the design rules. The optimal solution (minimal area) of
such a problem is computationally very difficult!. However, the problem can be changed to make
it easier in several ways. First, the designer is often willing to (or demands to) provide the orien-
tation and an initial relative placement of each component. The circuit description with this

1 To optimally solve such a problem, all legal combinations of relative positions, rotations, and reflections
must be considered to optimize the nonlinear objective function. Optimal sticks compaction has been shown
to be NP-complete [Sastry 82].

31
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information is similar to a stick diagram in information content. While the size of the solution
space has been cut tremendously, finding a solution of minimal area is still a difficult problem.
The objective function is nonlinear and the consticints are also nonlinear (conditional), making

the solution space nonconvex.

If the problem is broken down into a sequence of one-dimensional problems (alternately
solving for minimum width and height), the result may not quite be optimal, but the optimization
problems become very tractable. The objective (minimizing only the height or width) is linear,
and the constraints are linear, resulting in a convex solution space. This problem is the longest-
path problem, which is a special case of the linear programming problem. The next section
describes the basic compaction algorithm for sticks-like descriptions. This method will be
extended to gain efficiency (by using hierarchy) and quality (by using L! minimization) in the

following sections.

4.1.1. Standard Sticks Compaction

There are four types of constraints used in compaction. The first three types: component
constraints, connection con:straints , and boundary constraints are called fixed constraints
because they are computed once and. do not change from one compaction step to another. The
fourth type, design-rule spacing constraints are called variable constraints because they are a
function of the current positions of components and therefore may vary from one compaction step
to the next. These four constraints are used to determine the positions of the objects in the final

layout.
(x1,¥1) (x2,y2)

Y15Y23Y2

Figure 4.1 The Component Constraints for a Wire
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Component constraints are used to hold portions of each component together in some
specific relationship. Many component are not flexible or stretchable and therefore have no need
for such constraints. An example of a simple component that requires these constraints is-a wire.
In Figure 4.1, the constraints y <y and y ,Sy, keep the horizontal wire horizontal, while remain-
ing elastic in the x direction. A more complex component example is a depletion load with but-

ting contact (pullup) and is shown in Figure 4.2. Here, in this depletion load, the butting contact

-——

-

-----------------------------

P x1y1)
y1-15y2

1 : ¥y 2+7Sy 1
I :
: : X l—lez
: x~1sx,
o [ :
N S
vertical 3 ' E
= L
motion o L —(x2,y2)
;
1
[
1
........ J

Limited horizoatal relative motion
Figure42 The component constraints for a depletion load

has a limited range of motion with respect to the transistor and this range is set by the component
constraints. Component constraints are very useful for hierarchical sticks, since the subcells
become components, and the component constraints represent the pin constraints of the subcell.

The next section discusses this in more detail.

Connection constraints are used to hold together two connected components, and to main-
tain the design-rule-specified minimum width for the connection. In Figure 4.3 a polysilicon wire

is connected to a poly-to-metal contact. The constraints in x hold the connection together, while
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(x1y1) (x2,y2)

/J
J / Polysilicon

x 1+3S!2 y ~1Sy2
3= {x 7-3sxy yr-1sy;

Figure 4.3 The Connection Constraints for a Wire and a Contact
the constraints in y ensure at least a minimum width connection. Note that the wire is not res-

tricted to connect on center, but may slide one unit either way.

Boundary constraints simply constrain all components to remain within the four boundaries
of the cell. Also, connection points (terminals) are constrained to lie on the boundary. See

Figure 4.4.
(x11)

(x2,y2)

x 3y 3)

xo0yo) xgHISxs Connection Point

x+1Sxy

yotlsys
}’2‘*’15 2

y3SYo
Y3Yo yesys

Figure 4.4 Boundary Constraints
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Design-rule spacing constraints, rather than holding the components together, keep them
apart. As a consequence of decomposition into separate x and y problems these constraints must
be a function of the positions of componentsz. For the sake of this discussion assume that con-
straints are being generated for compaction in the x direction. Each pair of components is exam-
ined to determine if design-rule spacing constraints should be written between them: If their
spacing in y is less than the design rules between these eompoxients, then a constraint is gen-
erated, keeping the components greater than this design rule distance apart3. If the pair of com-
ponents are within this distance in y, then an x constraint must be generated between these
objects. The current x positions are examined to determine the direction of this constraint, i.e. , is
A constrained to be to the left or right of B?. The appropriate constraint is generated as in

Figure 4.5.

(x272)

x5y x +65x,
For design rule space of 1

Figure 4.5 The generation of a design-rule-spacing constraint

Having constructed a graph representing all of the constraints between the components, we
can find the positions of the objects by solving a standard optimization problem — finding the

longest path in a graph. The longest-path problem is defined as follows:

2 Actually, by generating many additional constraints, the design rule constraints can be made indepen-
dent of the positions of the components; however, these additional constraints tend to bind and overconstrain
the cell, preventing much useful compaction from occurring.

3 7The design rule distance is a function of layers and electrical connectivity.
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Given a set of constraints

where the ¢ ’s are unrestricted in sign,
find a solution such that xg—x; is minimized for a givenK and L.

This problem can also be represented by a directed graph, where the x’s are vertices, x;+¢;;=<x; is
an arc of length ¢;; from vertex i to vertex j, and the longest path from vertex L to K is sought?,
The problem is isomorphic to a shortest-path problem with the opposite signs on the ¢;;’s. There

are many ways to solve this problem, some of which will be discussed in the next chapter.

dashed lines (- = --- >) are critical paths
Figure 4.6a Graph with critical paths

Longest paths from S
to vertex: path length
1 3
2 4
3 5
4 11
5 13
6 12
D 25

Figure 4.6b Longest paths of graph in figure 4.6a

Typically there will be a single source vertex (usually representing an edge of the cell) from
which the length of the longest path to each of the other vertices is desired. Figure 4.6 shows a

graph with source vertex and longest paths marked. Some observations are in order. For there to

4 For sticks compaction, vertices L and K usually represent the edges of the cell.
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be a finite solution to the longest-path problem, there must be at least one path from the source to
the destination vertex, and none of these paths may be incident to a closed path (circuit) whose
sum of arc length is positive (for the graphs we will encounter, this condition means no positive
weight circuit at all in the graph). Note that closed loops with negative total lengths are permitted
(and will be used frequently). Positive length loops imply a system of inequalities with no solu-
tion. Fighre 4.7 shows examples of these three conditions and explains them.

® )

a) No Path: No Longest Path. Length of longest path is -oo

Gf —

b) Longest Path is Infinite: It includes an infinite number of loops between nodes 1 and 2.

4

S
¢) Longest Path is 5. Negative length loop is ok.

Figure 4.7 Three interesting types of constraint graphs

To perform a compactions all the fixed constraints are generated, then the variable con-
straints for the first compaction direction are generated (say x). The longest paths from the ver-
tex representing the left edge to all the other vertices are computed. These distances are the new
x positions of all the components (the left edge is at x=0)°. The variable x constraints are now

S Compaction to the right can be performed by modifying this procedure slightly: the distances from
every vertex to the right-edge vertex are computed, and, to keep the cell in the first quadrant, subtracted from
the distance from the left to the right edge.
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discarded and the variable y constraints are computed to compact in the y direction in a similar
manner. Typically, only small improvements are made on the second compactions in each direc-

tion, and rarely are improvements made on the third.

Generating an Initial Feasible Solution

. In order to separate the compaction problem into two one dimensional problems, we
assumed that we had a set of initial coordinates for each component that described a design-rule-
correct layout. Where did this set of coordinates come from? The user could have provided a
consistent set of initial positions. For the most part, providing the initial positions would be easy:
The positions from the stick diagram could simply be scaled up sufficiently so that all com-
ponents are sufficiently far from other components. These stick-diagram positions are called
pseudo-coordinates and are defined as only having a meaning in a relative sense: they only estab-

lish an ordering and do not have a distance metric.

Why is scaling necessary? How big of a scale factor should be used? The purpose of the
scaling factor is to cause the distance between components to be greater than the size of any com-
ponent. This scaling of the- stick diagram coordinates would produce an initial, consistent,
design-rule legal layout, except for one problem. The connection to some components, such as

butting contacts and depletion loads, must be off-center as in Figure 4.8. Because of this off-
(= l,’}’ 1)

..................................................

Figure 4.8 Off-center connection to butting contact
center connection, scaling will not produce an initial correct layout, as a correct layout requires a

small fixed offset from the pseudo-coordinate derived position.
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To derive an initial legal position, a special compaction step is used. Instead of the usual
variable constraints, some constraints derived from the pseudo-coordinates are added to the fixed
constraints and Qompaction steps in x and y are performed. The constraints are of the form
xo+PC,"S Sx;, where x g is the left edge, Pc; is the x pseudo-éoordinate for the object (or part of
an object such as a wire), x; is the variable-assqciated with the object, and S is a scale factor
chosen to be much larger than any component. Analogous constraints in y are also generated.
Compaction is to the left and down. The idea behind these constraints and compactions is to
keep the components apart without preventing the fixed constraints from doing their work. The
result is an initial design-rule-comrect layout. Figure 4.9 illustrates the transformation from

pseudo-coordinates to initial positions.

P.C. (10,10 N '
(\ ) ot yet proper connection Binding face of component
wireat PCy=10 P.C. (1020)
\ \
10§ 10:5 o
Bottom edge of cell (PCy=0)
Temporary P.C. derived constraiots

Figure4.9a Before initial-feasible generation step.

Why is an initial correct layout needed? Why not just go ahead and generate variable con-
straints and compact? Shouldn’t these off-center problems fix themselves after a few compaction
steps? There are two reasons to start with an initial correct layout: The first is error diagnosis. If
an initial correct layout cannot be produced, the error in the input can easily be isolated. Once
the component motions have taken place, tracing the origin of a problem becomes difficult. The
second is that there are cases, such as in Figure 4.10, where the pseudo-coordinates alone do not

give enough information with which to choose the direction for design-rule spacing constraints,
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Bottom edge of cell (y=0)
Figure 49b  After initial-feasible generation step.

but information on the structure of components would be needed. The initial-feasible generation

generation step employs this structure information.

1
]
Diffusion '
]
]

Polysilicon
O R RRRTPRITeE
________________ -
Diffusion '
------------ -
1 |
] ]
' ]
] 1
) 1
| SR

b) Geometry.

Figure 4.10 Ambiguity of Sticks
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Why do we need pseudo-coordinates (and pseudo-sizes)? When generating spacing con-

straints, two questions need be answered:

a) Do we need to generate a constraint? The answer is based on the relative position in the

other dimension.

b) If we generate a constraint, which way does it go? This answer is based on the relative

position in the same dimension as the constraints being generated.

These pre-compaction relative positions are given by the user in terms of pseudo-coordinates.
Since only relative positions are required, no assumptions are made (except for ordering) on the
relationship between pseudo-coordinates and physical coordinates. In other words, there need not

exist a function that will translate a pseudo-coordinate to a physical coordinate.

When working with simple non-stretchable components, the size of the component is
known ahead of time and can be used in answering question a above. When stretchable subcells
are used as components, pseudo-coordinates are needed for each of the edges of the subcell. In
Lava, these are derived from a pseudo-coordinate that refers to the lower left corner of the sub-
cell, and a pseudo-size. The pseudo-size need not have any relationship to the actual size
(stretched or unstretched) of the cell, only to other pseudo-coordinates and pseudo-sizes.

pseudo-coordinates are in essence **picture coordinates’’ for a sketch of the layout.

In a leaf level cell (only simple components), pseudo-coordinates were not specified for the
wires because they were inferred from the adjoining components. When the components are
more complicated, such as subcells, there does not exist a single pseudo-coordinate that can be
assigned to the wire. In some cases, the position of the wire relative to other objects cannot be
unambiguously chosen, even when taking into account the structure of the connected subcells. In
Figure 4.11, without specifying a pseudo-coordinate for the blue wire, it cannot be determined
whether the blue wire is above or below cell A, The structure of subcells will be further dis-

cussed in the next section.

In this section, I have outlined the algorithms for translating a stick diagram into a set of

longest-path problems that will produce a maximally compacted cell, beginning with generating
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(20,70) (60,70)
& alternate location for blue wire
""""""""""""""""""" ﬁ" f
possible possible
range range
of | 4 | a0 | Jof
blue O— od D A G- Ted V) blue
connection connection
point point
v blue wire
¢ @
(10,10) (50,10)

Figure 4.11 Necessity of pseudo-coordinates
an initially correct but uncompacted layout, then adding the variable constraints and compacting

one dimension at a time.

4.1.2. Hierarchical Sticks .

Sticks compaction as desc.:ribed above is unfortunately limited in it’s abilities. It cannot be
used to compile an entire chip because of the unreasonably large amount of CPU time and
memory required for a problem of that size. While compaction works for leaf level cells,
optimally compacting these cells is frequently not the desired goal since it usually does not pro-
duce an optimal chip, as discussed in Chapter 1. Instead we need to produce a stretchable cell

that can then be composed with other cells to form an efficient layout.

This section describes a method to generate a complete chip from stretchable subcells.
First, I describe how to construct stretchable cells automatically. An important feature of these
stretchable cells is that stretching in one dimension will neither prevent (nor restrict) stretching in
the other dimension, nor cause design rule errors due to stretching in the other dimension. This
decoupling of dimensions will be achieved without a significant limitation in the cell’s flexibility.

Next, I will show how to reduce the information in the stretchable cell description, producing an
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abstraction , to significantly reduce the CPU time required to process a hierarchical chip. Lastly,

I will describe how to put these abstractions together to compile an entire chip.

Stretchable Cells

To create stretchable cells, a set of rules is needed that describe the manner in which a cell
can and cannot stretch. To be useful, these rules must constitute a promise that a correct cell can
be produced if the amount of stretch chosen obeys these rules. Otherwise, composition of stretch-

able cells would at best be a trial and error operation.

I S .
Stretch direction '
:
]
' Potentially { Conflicting
) icting abjects
! objects e
Stretch :
it s P l
1
3) Unstretched Cell

b) Stretched Cell

Figure 4.12 Hazards of arbitrary stretch lines

Some cell composition systems allow the user to choose stretch lines . However, stretching
along arbitrarily chosen stretch lines will not necessarily produce a design-rule-correct layout (as
in Figure 4.12). Also, describing stretch rules that do not unnecessarily limit the degree of flexi-
bility may require describing a number of stretch lines that is worse than quadratic in the number
of connection points. In Figure 4.13a, if the section of the stick diagram in the dotted box is repli-
cated vertically » times, the resulting circuit will have a constraint graph of the form shown in
Figure 4.13b. There are (n +1)3 stretch lines, which correspond to edge cut-sets of the constraint

graph, for this layout.
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Figure4.13  Overabundance of stretch lines

The constraints used during compaction almost constitute a completely flexible set of
stretch rules. Every constraint can be traced to a design rule requiring its presence. The problem
with using these constraints is that these stretch rules are actually slightly too flexible. The x and
y constraints are computed based on the current values of the y and x variables, respectively.

One set of constraints is identical to the one just computed in the last compaction step. Since
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each of the constraint sets were based on the current x and y positions, we know that each set of
stretch rules, by itself, is correct. However, once the cell has been stretched in one direction, say
x, the x values, upon which the y constraints are based, have changed and the y stretch rules may

no longer be valid. See Figure 4.14 for an example of how this may cause troubles.

x rules allow
this motion
C
y rules
allow this
motion

Figure 4.14 Undesired x/y interaction

This problem is called the x/y interlock problem. On:.a or both of the sets of constraints need
to be modified to ensure components do not interfere. I chose to modify only one set of con-
straints. Assume that the last compaction was performed in the x direction. The constraints from
this compaction are used as the x stretch rules. A set of y constraints is constructed using a
modified method of constructing the variable constraints. In the usual method of y constraint
generation, the x positions of a pair of components are examined to determine if their proximity
in x requires ay constraint to be written. However, when generating stretch rules, because of the
possible x stretching, their x positions are not completely known. However, it is still possible to

make some useful statements about their x proximity by consulting the x constraint graph.

The y constraint may be omitted only if the pair of components will never be close in x.
To make this determination, compute the longest paths between the vertices representing the

components. If one or the other of the longest paths is greater than the corresponding x
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design-rule spacing (these spacings may be different if the components are asymmetric) then the
components will never be close. Computing the y stretch rules then involves computing longest
paths between many (almost all) pairs of vertices. Computing all pairs of longest paths is the
same as computing a closure on the constraints graph and can be done in better than O (v3)

timeS,

~_ range of motion
of object A -

[\ A
B \jUnneceuaty Y constraint

range of motion
of object B

A

_

Ranges of X motion overiap resulting in an unnecessary ) constraint
Figure 4.15 Additionaly constraint

Dan Perkins proposed a modification to this method of computing stretch rules that is faster,
but produces a somewhat more rigid set of stretch rules. Rather than computing a pair of longest
paths for each pair of components, the sets of values from a compaction to the left and a compac-
tion to the right are computed. This procedure computes a range of motion (in x) for each indivi-
dual component. These ranges are compared and y constraints are generated if they overlap.
Since computing these ranges is only slightly more difficult than a single compaction step, it is
much faster than computing a closure on the constraint graph. Using ranges for the y stretch

rules has some drawbacks, though. Figure 4.15 shows an example of this method producing

6 but worse than O (v -e). See Chapter 5 for discussion of all-pairs longest- or shortest- path algorithms.
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more rigid stretch rules than the first method. More important, the ranges method is not always

correct. Figures 4.16a and 4.16b shows an example of where it fails and produces an unsafe set

—_—X
‘ F==9
Xy p-==------- T--
fwwd
.
]
-1 =
]
Caw
Unstretched cell boundaries

v

-

The ranges of x, and x5 do not overlap

x constraint graph
Figure 4.16a  Stretch rule generation: unstretched cell

of stretch rules.

To understand why the schemes work or fail refer to Figure 4.17. To simplify the discus-
sion, assume the design-rule spacing between two squares of size two is zero. For the squares to
be sufficiently close in x so as to require ay constraints, they must lie within region “‘R’’ in x;-
x, space. This region “R’’ is computed solely from the design rules and properties of the two
components and not from their positions. It represents the set of positions of the squares such
that they overlap in x7. When generating constraints for compaction, specific x values are

7 Since R is an infinite band, the question does a region intersect R? is equivalent to does tihe projection
of a region intersect the projection of R onto a line orthogonal to R? xy+x5=0 is such a line orthogonal
o R.
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Stretched cell boundaries

x-stretched cell: x; and x, can now collide in y!
Figure 4.16b  Stretch rule generation: stretched cell

known, so the decision required is whether the point ““°A”’, representing the current values of x
and x,, lies within region “‘R”’ (i.e. do the components overlap in x ?). During stretch rule gen-
eration using the first (slow but correct) scheme, the actual values of x| and x, are unknown, but
the region of their possible values is computed (region *‘B’’) and compared with region “‘R”. In
this example there is an overlap, indicating that ay constraint must be written. What happens in
the second scheme? The ranges of possible values of x; and x5 in the compacted cell are com-
puted separately, producing a rectangular region C in x;-x3 space. Region C is an attempted
upper bound on region B with respect to projection onto x ;+x;=0. The scheme may fail if a y
constraint is not generated because region C does does not intersect region R even though
region B would have. The failure will only cause trouble when the cell is stretched. The stretch-
ing corresponds to a required enlargement of region C (the allowed range of x; and x5 may
increase when the cell stretches). Unfortunately, the constraints were generated with the region C
computed on the basis of the unstretched cell. Although the error of this scheme is usually on the

conservative side, sometimes, as shown, it is on the unsafe side.

This scheme can be easily repaired. If the ranges of motion in x appear to not overlap

(thereby not producing a constraint in y), ensure that they cannot overlap by adding an additional
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b) View in x —x 5 space
Figure4.17 Deciding when to add a constraint for stretch rule generation
constraint in x that forces the x assumptions upon which the y constraints are based to be true.
For every pair of objects, now, there exists a constraint in either x or y keeping them apart. The
improvement just mentioned has not been implemented and so the data in Chapter 5 does not
include the additional constraints. In practice, the failure of the algorithm implemented is very

rare and was not discovered through its symptoms.
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Abstractions

In order to reduce the CPU time required to produce an IC layout, it is necessary to reduce
the number of constraints in the description of a stretchable cell that needs to be manipulated at
the next level up in the cell hierarchy. The only information that is required for a cell’s instantia-
tion is its external description — only its behavior or characteristics that can effect its surround-
ings or be determined from outside the cell. For Lava this external description includes a cell’s
bounding box, external connection points, and constraints on these connection points. This
“sblack box’’ description is the cell’s abstraction. The abstraction is a set of constraints that, if

satisfied, guarantee that a design rule correct cell can be constructed.

The important information that must be in an abstraction comprises the constraints on how
each external connection point may move in relationship to every other external connection point.
These limits are the longest paths from each connection point to each other connection point.
Thus the abstraction is a pair of constraint graphs (x and y) that have had all the vertices not
associated with external connection points eliminated. All the arcs of the graph incident to the

eliminated vertices have been summarized in arcs between the remaining vertices.

The abstractions for each cell in the chip are created by a bottom-up pass of the chip hierar-
chy. First all the leaf cells are compacted and their abstractions are created. Then for each level
in the hierarchy, the constraints in the abstraction of a cell become the component constraints for

that cell while its parent cells are being compacted and abstracted.

Stretching and Realization

At the point when all cells have been compacted and an abstraction produced for each, no
actual positions have yet been decided, nor has geometry been produced. A top down pass over
the chip hierarchy does the actual stretching of the cells, choosing final positions and generating
the actual mask geometry. Beginning at the top cell, a pair of compaction steps produces final

positions for all the geometry in that cell. Doing so choses the positions of the connection points
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for the immediate subcells. Each of these subcells, along with the positions of the connection

points is placed on a queue of work to be done. Then the geometry for the top level is produced?.

For each of the cells on the queue, a similar procedure to that performed on the top level
cell is done. Before the two compaction steps are performed, the pin locations are constrained to
match the connection points. These constraints fix the size of the bounding box and the positions
of the connection points relative to the bounding box. Figure 4.18 shows the kind of constraints

added during realization of a cell. This process continues until the queue is empty.

Figure 4.18  Added realization constraints

This basic method of using hierarchy makes symbolic layout feasible for use on entire IC
designs. Both the CPU time and quality of the resulting layout need to be improved, however, to

make these methods truly practical.

8 An optimization that is used is that a cell can appear more than once on the queue if it is called more
than once. However, multiple occurrences of the same cell with the the same set of relative positions of the
connection points will all produce identical resulting geometry, so much time is saved by only placing on the
queue cells with a unique set of connection point positions.
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4.1.3. Improvements and Extensions

Lava uses many techniques to reduce the CPU time complexity of the above algorithms or
improve the quality of the resulting layout.- These methods are described below.

Variable Merging

There are many cases where a pair of cyclic constraints is generated such that there is no
slack or freedom of motion between the two components. This situation occurs when an equality
constraint x;+C=x; has been written as a pair of inequality constraints: x;+C <x; and x;—C Sx;.
The optimization problem can be reduced in complexity by eliminating these extraneous vertices
from the problem. During fixed constraint generation, the equality constraints are recorded® and
then, before variable constraint generation, a mapping from component reference points to vari-

ables is prepared. See Figure 4.19. Any equality constraints produced during variable constraint
x1-3y2) Gy (>x2y1)

i .
AR *

Reference point # x variable x offset y variable y offset
1 1 -3 2
2 1 -0 1 0

3 2 0 1 0

Figure 4.19 Variable merging
generation are treated as before (a pair of inequality constraints is used) so that the mapping

won’t keep changing during compaction.

9 This task of maintaining equivalence classes (of variables) is a very well-studied problem known as the
union-find problem and has some very efficient solutions [Aho 74].
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Shadowing

Shadowing is a method of reducing the number of constraints in the constraint graph. The
simplest method of generating the design-rule constraints produces a number of constraints that
can be as poor as quadratic in the number of objects within a cell, since it may generate a con-
straint from every object to every other object. In a large cell, most of these constraints will be
redundant. It is very important to eliminate a large portion of these redundant constraints, since
the CPU and memory requirements will at best be quadratic if the number of constraints is qua-
dratic. This section describes the shadowing method used by Lava to eliminate most of the

redundant constraints.

Shadowing tries to improve two related problems: the amount of time constraint generation
takes, and the size of the optimization problem generated. The simple constraint generation
scheme takes n2/2 time since it compares eve'ry component against every other component. It
generates an optimization problem of kztween O (n2) and O (n %) constraints, depending on the
aspect ratio of the cell and the size of the objects as compared to the cell sizel0,

How sparse of a constraint system is possible? By making some simplifyicg assumptions,
we can derive an approximation. Assume that there are two non-interacting layers, which have
only design-rule spacings between objects on similar layers: metal and polysilicon/diffusion.
There are no design rules between objects on different layers. Further, assume that even when
several objects on the same layer are electrically connected, a constraint is generated that prohi-
bits them from passing through each other and interchanging positions. Under these assumptions,
the subgraphs representing the necessary metal design-rule-spacing constraints and the necessary
polysilicon/diffusion design-rule-spacing constraints will each be planar graphs. A planar simple
graph with more than two vertices can never have more than 3v—6 edges. The union of the two

planar graphs, although not planar, will have no more than 6v—12 edgesll. Since the mmiber of

10 If the cell is square and the objects small compared to the size of the cell, the exponent would be
O (n15) If the cell is a constant height, width n, x constraints being generated, and object are the full cell
height, then O (n?) constraints would be generated .

11 Assuming that the graphs are connected (a good assumption) also climinate a common spanning tree,
reducing the bound to Sv—12. '
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connection and component constraints is also linear in the number of components, the total

number of edges in the constraint graph is linear.

How do the assumptions compare with reality? The second assumption could be made true
with some loss of flexibility. In Lava, electrically equivalent objects can pass through each other,
and a construct such as in Figure 4.20 requires n2 design rule spacing constraints. Fortunately,

such constructs with 7 >2 are rare enough to be insignificant.

n=5
— .
L J
L L) LJ J U
L J
~____ =
n=S

Figure 420 Construct requiring non-linear number of constraints

Therefore, in order to reduce the problem complexity, not only is it necessary to avoid gen-
erating constraints for all possible pairs of potentially conflicting components, it is also necessary
to avoid examining all of these pairs. Can the sparse constraint graph be easily achieved? The

following shadowing algorithm algorithm used by Lava does this.
Let us assume that constraints in x are being generated.
Step1:  Sort all components by their x coordinates.

Step2: Initialize the set F to contain the left edge of the cell. Set F will contain components
and fragments of components along with information (such as net number) that will

allow determination of electrical connectivity. This set the frontier.

Step3:  Foreach component C in order of increasing x coordinate:
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Step3.1: Compare component C against each component or fragment in the fron-
tier and write a design-rule-spacing constraint if applicable. (There is
nothing novel about the constraints generated in this step — only that

fewer component pairs are considered).

Step3.2: Update the frontier. Every component or fragment in F that is “‘sha-
dowed"’ by C is either clipped or eliminated from F. Component C is

then added to the frontier set!2,

Under certain conditions, the shadow of C will be smaller than C. For example, when a
polysilicon object shadows a diffusion object, the shadow must be reduced by Spp—Spp because
the polysilicon object now in the frontier cannot completely protect a diffusion object as yet

unencountered. See Figure 4.21.

In order to estimate the amount of time that this algorithm takes, assume that the cell is
square (a constant aspect ratio would be sufficient). The maximal size of the frontier would be
0(‘/77), where » is the number of components. n=0 (x‘y)). If a simple list is used as the data
structure for F (there are better structures), then processing each component takes 0(\/3 time.
Since there are n components, the algorithm takes O (n32). There exist faster, but more compli-
cated, algorithms which could have been used for computing this same set of consn'_aints, but this

algorithm was adequate for constraint generation.

While the above algorithm significantly reduces time and constraints during compaction, it
is less useful for generating constraints for cell stretch rules. To use shadowing for the second
direction of stretch rule generation, the algorithm must be modified. Instead of adding com-
ponents to the frontier, a ‘‘smeared”” component must be added. This smeared component is a
union of the component in all its possible y positions. The shadow cast by a component is a lot
smaller. The shadow is now the intersection of the component in all its feasible y positions.
Therefore, if a component can move in y more than its y size, it casts no shadow and causes

12 Step 3.2 is a bit of a fib if electrically connected objects are allowed to pass through each other, as is the
case in Lava. A piece of a component may only be removed from the frontier after it has been shadowed by
two objects on distinct nets.
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Figure 421 Conical Shadows
nothing to be eliminated from the frontier. As can be seen, large objects are being added to the
frontier and little is being removed, resulting in a steadily increasing frontier size and much
reduced performance.

The shadowing algorithm can be salvaged by realizing that the components that cast too
small of a shadow by virtue of their possible motion are frequently adjoining similar components
that move in concert. These components taken together will often cast a large enough shadow to
be of use. See Figure 4.22. These improvements have not been implemented and are therefore
not seen in the analysis of the next chapter.

Using a shadowing algorithm reduces both the size of the constraint system and the asymp-

totic time complexity of generating the constraints for all but the last step of stretch-rule
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Figure4.22 Second step stretch rule shadows
generation. Further improvements are also possible in the constraint-generation time for all steps

and in the constraint system sparsity for the last step.

Wire Length Minimizations

After compaction in a given direction is completed, there are often components of a cell
which can be moved without enlarging the cell. In many cases, it is very desirable to apply a
secondary objective function to move these components to more preferable relative locations.
Due to the iterative nature of compaction, such secondary objective functions have been found to
make significant improvements in the final size of a cell. This section discusses these secondary
optimizations, explains why they give cell size improvements, and explains why I chose to
optimize weighted wire length.

Why do anything with the additional freedom? During compaction, sometimes components
needlessly get in the way of other components and prevent the cell from compacting to an

optimal size. In Figure 4.23, if object A were to move to the left, B moves down and reduces the
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A

Figure 4.23 Larger than necessary cell
size of the cell. A much more intelligent algorithm (or 2 human) might recognize such a situation

and do the ‘‘obvious’’ thing.

A number of simple heuristics were tried for using this extra freedom. Sometimes, the
correct sequence of compactions in which the ““loose”’ components are pushed all in one direc-
tion and then in another may move components out of each other’s way and reduce the cell size.
In the above example (Figure 4.23), compacting to the left before compacting down will reduce
the cell size. It is not uncommon to derive some benefit from compacting the cell in each of the
four directions (alternating x and y). This *‘shake, rattle, and roll’* approach to cell compaction
is very dependent on luck, as the operations being performed only have a chance relationship to
the operations that need to be performed. Other heuristics, such as centering components in the

middle of their range of motion, have similarly unpredictable success.

‘When there is more flexibility than necessary (additional jogs in the wires, for example), the
problem only gets worse. In Figure 4.24, the wires with the jogs get in the way, and are too long
under either a leftmost or a rightmost compaction. In Figure 4.25, the cell could become shorter
if A would move to the right of B. None of the above compaction heuristics, without wire length
minimization, will move A and B differently. Thus, the wires are needlessly long and the cell

cannot be compacted further.

It should be clear that minimizing some function of wire length would be desirable from

both a geometric (compaction) and an electrical standpoint. The question is what metric should

be optimized? Several popular norms are the L! < 1z1), the L2( Zz,-z), and the L™ (m:jax z;).
i i
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' IC

a) Right-most compaction

b) Left-most compaction

Figure 424 ExtraJogs

Figure 425 A compaction problem requiring wire-length minimization
All of these work equally well when applied to the example in Figure 4.24 because in this exam-
ple there is no tradeoff between wires shortened and wires lengthened. Figure 4.26 shows each of

the three norms minimized for the example of Figure 4.25.
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Figure 4.26  Results of three different norms applied to figure 4.25
The L*™ norm, as can be seen, gives no consideration to the number of wires connected to an
object. While this fact is not obviously poor from a geometric standpoint (despite Figure 4.26), it
is very poor from an electrical standpoint. However, where the L™ norm really fails is when there
exists a long wire that cannot be shortened due to constraints. In this case the objective function
cannot be improved further by shortening any wire that is already shorter than the longest wire.

See Figure 4.27 for an example of this problem.

| 1
Longest wire cannot be shortened
These will not be shortened

|y

Figure 427 Shortcomings of L™

When using the L2 norm, the wires act exactly like springs, pulling objects to each other.
When these springs or wires oppose, a compromise on the position of the object is achieved
depending on the number of wires on either side of the object. If the number on each side is

identical, the object is placed exactly in the middle. From a geometric standpoint, right in the
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middle is the place where the object is most likely tc get in the way of further compaction opera-
tions. All the way to either side is usually better. From an electrical viewpoint, the L2 norm will
usually not ﬁxinimize capacitance or delay, the first order effects of which are usually linear in
position or dimensions. (The compactor, because it does not know otherwise, must assume all
wires carry equally critical signals). An additional fault with the L2 norm is that intuitively, two
wires in series (Figure 4.28) should behave as one wire. This behavior does not occur with the L2

norm.

O I O

O O

Figure 4.28 Concatenated wires

In choosing the position of an object, the L! norm behaves as if it were voting: the object
moves closest to the side with the most wires. Objects rarely sit in the middle, impeding the
compaction. Except for wires reversing direction, the L! norm is linear and therefore more
closely matches the c—alecuical properties that the designer is trying to minimize. Finally, only the

L! norm will cause two wires in series behave identically to a single wire.

Because different wires have different degrees of criticality, weighting the lengths of wires
differently might improve the layout. Signal wires could be given a greater weight than power
and ground, diffusion wires (which have a high capacitance) could be weighted higher than

metal, and the designer could, based on his knowledge, provide additional weighting information.

The entire optimization problem now becomes:

minimize: YW x,-,—xj,+K,,|
k

subject to: {x,-+C,-j <xj }
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User Provided ‘“Soft’’ Constraints

Lava allows the designer to specify his own constraints in addition to those generated by
Lava. Because the user tends to be error-prone, robustness and error-diagnosis are enhanced by
making these constraints soft. If an optimization problem has no feasible solution, the soft con-
straints are discarded as necessary in order to obtain a solution to the hard (Lava generated) con-
straints. This solution allows the designer to see what is happening to the cell and why his soft

constraint could not be satisfied.

4.1.4. Summary and a Unified Perspective: An Optimization Function Hierarchy

Many of the constraints and objectives used to produce a cell layout are each written
separately and solved sequentially. In this section I view these problems from a uniform perspec-
tive.

When solving the optimization problems during a compaction step, there are four objectives
that are being optimized. In order of priority they are:

1)  Satisfy all the hard (fixed and design-rule-spacing) constraints. These constraints may be

rewritten as an objective as follows:

L PO
minimize k
subject to x,-+C,-ij ,-+S,., S;,.ZO
If there exists a feasible solution to the hard constraints, the sum should vanish when optim-
ized.

2)  Satisfy all the soft constraints by minimizing }’S;, in a manner analogous to the hard con-
k

straints.

3) Compact the cell. Assuming x¢=0 (representing the left of bottom edge of the cell), the

objective is to minimize x (representing the right or top edge of the cell).

4) Minimize wire lengths:

minimize: ZW,, x,-‘—xj,+Kk|
k

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



63

In Section 4.1, I described how to implement sticks compaction, and then showed how to
extend it to be useful for entire chips by making use of hierarchy. Finally, I discussed some
improvements which aifect both the CPU time and quality of output and should allow Lava to be

a practical tool.

4.2. Abut Cell Implementation: Tiling Algorithms

Sticks description is not necessarily optimal for describing all levels of an IC design. Sticks
cells require pseudo-coordinates on all wires, and pseudo-coordinates and pseudo-sizes for all the
subcells in the cell. These requirements result in aggregates (arrays and bundles) being
sufficiently clumsy to use that little benefit is gained from them. Accordingly, this section

presents the implementation of Abut cells.

The Abut cell type takes a different approach from Stix cells. The cell is assumed to be
completely tiled by its subcells, and the relative positions of the subcells, when specified, are
given by relations of the form cell A is to the left of cell B. No pseudo-coordinates or pseudo-
sizes are eQer needed. This section discusses the algorithms for implementation of this cell type.
First, I discuss how 'a tiling is computed from the relations and abutting information, and then I

discuss how the connection and abutting information is used to stretch the cells.

Tiling
The Abut-cell specification contains of the following information:
1)  Alist of subcells (along with their abstractions).

2)  Alist of interconnections between these subcells or between the subcells and the connection

points on the boundary.

3) A list of relations between subcells of the form: cell A is leftof/rightof/above/below cell B.
The meaning of leftof is that a vertical line may be drawn such that cell A is to the leftof it

and cell B is to the right of it. The other relations are analogous.
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4) A list of relations of the form: cell A abuts leftof/rightof/above/below cell B. These rela-
tions imply the preceding relations (item 3) and additionally mean that if the cells are con-
nected, the cells should be adjacent and the connections should be made by stretching and
abutting the cells. Lava demotes this relation if the cells have no connections so that the
designer can overspecify abut relations knowing that the nonsensical ones will be elim-
inated.

Connections without abut relations are set aside for a future wire router.

The information described above may or may not unambiguously specify a tiling of the cell.

For example, the interconnection in Figure 4.29a, specified as

A abuts leftof B
C abuts leftof D
A abuts above C
B abuts above D

could cause a tling as in either Figure 4.29b or Figure 4.29c. The tiling is computed by

A B
C D
a) specification
A B A B
c D c | D
b) A tiling ¢) Another tiling

Figure 429 Ambiguity of Abut specifications
constructing and maintaining a system of linear constraints among the subcells, beginning with

the user’s relations. Inequalities are added to prevent cells from overlapping until a tiling is
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achieved such that no cell can overlap any other cell. At each step, an interrogation of the system

of constraints determines which constraints can be added.

Let (xo.yo) and (x1,y1) represent the lower left and upper right corners of the cell being
composed, and (x,,y;) and (x,,,y,,) represent the lower left and upper right comers on subcell i.
The constraints included in the constraint system from input information are:

xy+Xsize;<x,,, and

yi+Ysize;Syy,
where Xsize; and Ysize; represent the compacted size of subcell i. On the assumption that the

subcells are completely stretchable, realistic sizes are not strictly necessary, but including them is
a heuristic that may produce a better tiling when there are several alternatives, resulting in less
stretching. The constraints:

x Osxln xmsx 1s

YoV YuY1
constrain all subcells to remain within the boundaries of the cell being composed. For relations

"cell i leftof cell j", the constraint
X Sxy,
is generatedl:". Analogous constraints are generated for the other relations. For the abut relation
‘“cell i abuts leftof cell j*’, the constraints
xlldql 2
Y1, +HC Syy, and

b/ l;+C Sy,
are generated. The first simply constraints the cells to be adjacent (in x). The last two insure that

the opposing faces have a minimum overlap of C. Lava uses the minimum width of a connection
for C, although C might better be a function of the number of interconnections between the two

subcells. See Figure 4.30.

13 For the purposes of illustration, the design rule spacing between subcells is assumed to be zero. This
assumption could be true if the required space were included within the subcells. In any event, it simply
reduces the number of nonzero constants in the constraints.
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xl‘l X ]

Figure 430  Abut constraints during tiling
For each pair of subcells we must ensure that they cannot overlap. To overlap, the subcells
must be able to overlap in both the x and y coordinates. Therefore, to overlap all of the follow-
ing statements must be feasible:

x,,‘>xh

Xy >y,
Yu>Yly

y ll1> y (A
These conditions can be tested as follows.

The type of question that will be asked of the constraint systems is: can X, <X OF Y2 <Y 2
This question is used to determine whether two cells may overlap, and if so, what constraint may
be added to prevent it. To answer the question efficiently, a closure of the constraint system is
computed!4. To determine if x,+k ;<x, is feasible (possible for some x, and x;), find in the sys-
tem the constraint x,+k,<x,. If the second constraint does not exist or if k;+k,<0, then the

former constraint is feasible.

14 In the closure of a constraint system, if X 1+a <x 5 and X y+b Sx 3 are in the system, 5o is X 1+C <X 3,
where ¢ 2a+b and ¢ is the length of the longest path from vertex 1 to vertex 3. Computing the closure is
the same as computing all pairs of longest paths. If the closure cannot be computed (some of the arcs have
infinite length), then the original problem was inconsistent. This might result froma specification such as **A
leftof B leftof A*’.
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If the subcells can overlap, one of the following constraints must be added to the system:

xuSxy,
xu ’le‘

y&syl[

yu;syl«
Note that these constraints correspond to the constraints generated by the relations. Not every

one of the above four constraints can be added while retaining a consistent set of inequalities.
They must be tested and one of the feasible constraints chosen and added to the constraint sys-
tem. An algorithm called constraint propagation (to be described in the next chapter) is used to

propagate the effects of the added constraint throughout the closure.

The tiling algorithm continues testing each pair of cells and, if necessary, adding constraints
until it either all cells have been tested or it encounters a pair of cells for which none of the four
possible relationships can be added to the system (meaning the cells are constrained to overlap).
/This problem is due to a relationship having been assumed which was a poor choice. This failure
tends to only occur for quite ambiguous descriptions. When the sequence of relationships
assumed by Lava is displayed to the designer, the solution becomes obvious. Some assumed
relations were inconsistent with the designer’s intent, so he can fix the problem by adding more

relations to better express his intent.

Abut Cell Stretching

In the previous section a set of constraints was computed to represent a set of positions of
the subcells. The constraints guarantee that no overlap of the subcells may take place and that
subcell faces that must abut are adjacent. As yet, neither the subcell’s abstractions nor the inter-
connections have been taken into account. This section describes how these additional require-

ments are included.

The system of inequalities we have been working with so far only has variables represent-
ing the edges of the cell and its subcells. To this system, variables representing all of the connec-

tion points must be added.
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The constraints of the abstractions representing each of the subcells are now merged into
the constraint system. The system of inequalities will remain consistent in all cases if the sub-
cells are stretchable, and in most cases otherwise. Figure 4.31 shows an example of an incorrect

layout description, which can only be detected at this point. C is as large as A, A is not

A
(nu¢ stretchable)

Figure 431 An unresolvable tiling description

stretchable, and the specifications included ““A abuts above B’* and *‘A abuts above D”’.

Next, the constraints répresenting the connections are added to the system. These con-
straints are the same type as the connection constraints used in the Stix cell type. Because the
wire segments used to connect the subcells together are short (exactly the cell-to-cell design-rule
spacing in length), and because the wire segment may be no wider than the connection point on
the subcell, which has already taken design-rule spacing into account, no design-rule spacing con-
straints need be determined between the wire segments or between the wire segments and the
subcells!3, The subcell-to-subcell separations have already been taken care of by the constraints

generated during the tiling phase.

At this point the constraint system is solved for the longest path either from the left/bottom
edge, or the the right/top edge just as during compaction. The resulting coordinates will work as
1S Note that at this point I have revoked the assumption about a zero cell to cell design-rule separation and

am now using the maximum design-rule separation between layers (which happens to be the metal-to-metal
rule for Mead and Conway design rules) as Lava does.
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pseudo-coordinates that can be given to the compactor. Alternatively, the x and y constraint sys-
tems can be used directly to build stretch rules and an abstractionl6. Constructing the stretch
rules is extremely easy: there were no variable constraints at all so the constraint systems are the
stretch rules. There does not exist an interdependency between x and y. Because of the lack of
variable constraints in abut ceils, computing the abstractions (and instantiating them) is a much

less complex problem.

4;3. Summary

I began this chapter by describing a simple sticks compactor. I then extended it to permit
the use of hierarchy in the IC description by creating abstraction of stretchable cells. This exten-
sion alone would allow symbolic layout to be used for the design of entire chips. However,
further improvements such as variable merging, shadowing, and wire-length minimization
improve the quality of the layout or reduce the time required to produce the layout in order to
make Lava a practical IC layout tool. Finally, I describe the compilation of the Abut cell type.
Abut cell types use a slightly ambiguous description of the cell, which is easier for the designer to

produce and also can be faster to compile.

In this chapter I have described the essence of the algorithms that compile Lava cells into
three optimization problems in such a manner that the optimization problems are relatively smail
and easy to solve. How small and easy to solve is the subject of the next chapter, which studies

the optimization problems and the solution algorithms.

16 1 ava does not do this more efficient approach simply as a matter of programming expediency. It was
easier to just reduce the abut cell type to a previously solved problem: sticks compaction.
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5. Solution of Optimizaticn Problems

In the previous chapter I discussed compiling a Lava description into a set of optimization
problems. Preference was given for small and sparse optimization problems. This chapter
discusses solution methods for the optimization problems generated by the algorithms of the pre-
vious chapter. First, I will begin by analyzing and characterizing the problems. Such measure-
ments tell us how well the constraint generation algorithms worked and help us choose appropri-
ate solution methods. Next, I develop algorithms for the solution of optimization problems based
on these analyses. Finally, I present and analyze CPU time performance measurements for these

optimization algorithms and for Lava in its entirety.

5.1. Problem Characterization

The choice of algorithm is affected by the size of the typical problems, the sparsity of the
constraint graph, and properties such as the structure of the graph and how it relates to decompo-
sability. For example, if all problems are small, the asymptotic time complexity of the solution
alg&xithm becomes less important than the actual time for small problems. The worst-case con-
straint graph might have v2 édgesl, where v is the number of variables in the problem and also
the number of vertices in the constraint graph, for which the fastest solution algorithms are typi-
cally worse than O (v 3). Fortunately, this worst case does not occur. The constraint graphs are
typically sparse with the mumber of edges proportional to v!3. The following subsections discuss
the measured characteristics of optimization problems that were generated in the compilation of
two different IC layouts. One layout is a tester controller chip (‘“TC’’) with 1633 transistors
(including PLA) and the other is the data path section from a floating point processor chip

(*‘FP”’) with 3499 Transistors.

1 | am assuming only simple graphs are permitted. To reduce a graph to a simple graph, replace all paral-
Iel edges by a single edge whose arc length is the maximum of the arc lengths.

70
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5.1.1. Problem Size

The first characteristic to examine when studying a problem is its size, which for our prob-
lems is the number of vertices (v) in the constraint graph. This number is closely related to the
complexity of the IC layout. It varies linearly with the total number of components, wires, and
terminals in the cell layout2. Also, the size of the solution to the optimization problem we seek is

of size v.

How does v compare to cell area as a measure of problem size? Because the average size
of the components and wires increases as the size of the cell increases, v will grow slower than
the cell area. Two extremes will form useful bounds on the growth of v. If we assume that the
average rectangle area is constant, then v is proportional to the area of the cell. If, on the other
hand, we assume that the average rectangle size (area) grows linearly in the linear size of the cell
(as would happen if a constant fraction of the rectangles were wires crossing the cell), then one
could expect v to be O (";;z- ) for a constant aspect ratio. If we can separate the rectangles into
two classes, those which due to their function (such as cross chip communication) would tend to
increase in average size as the chip grows, and those whose average size is constant (logic cir-
cuits), and if a non-decreasing proportion (k) of rectangles are in the latter category, then we
would expect v to be k O (area) +(1-k) 0 (\/;reTz )= 0O (area)." Since I am using v as a measure
of problem size