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Abstract

Recent vision applications provide exciting new opportunities in photography, autonomous driving,

and image generation. In turn, new hardware platforms have similarly risen to efficiently execute

this class of applications. Effective compilers are necessary to seamlessly run these new applications

on hardware accelerators. However, hardware accelerators use specialized memories to increase

efficiency, which makes them challenging compilation targets. Addressing this issue requires changing

the abstraction that the compiler uses to represent memories.

In this dissertation, we present such a compiler. It compiles image processing and machine

learning applications to dataflow accelerators. To create this system, we extend the Halide domain-

specific language (DSL) to target streaming accelerators. Using new scheduling primitives, the user

has full control over optimization decisions. These optimizations can be tailored to new hardware

accelerators. We introduce a unified buffer abstraction to provide an interface between application

definition and hardware memory configuration. This abstraction enables efficient hardware imple-

mentations while supporting the generality of applications that are represented in our abstraction.

Our compiler enables compute sharing by generating designs that time-multiplex compute operations

with low utilization. We demonstrate the effectiveness of this compiler by running applications on

the Amber Coarse-Grained Reconfigurable Array (CGRA), designed by the Agile HArdware (AHA)

group at Stanford.
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Chapter 1

Introduction

In recent years, we have witnessed remarkable advancements in the field of vision applications, en-

compassing image processing [37,102], autonomous driving systems [9,93], and generative image cre-

ation [5,12,83]. Traditional image processing techniques have been augmented with the integration

of machine learning, leading to significant improvements in accuracy and performance [32, 61, 98].

To meet the growing demands of these vision applications, hardware accelerators have emerged

as key enablers, offering enhanced computational power and efficiency. These accelerators span a

range of platforms, from small systems on the edge like mobile phones [6, 41], to large-scale data

centers [47,74].

Some recent studies have shown Coarse-Grained Reconfigurable Accelerators (CGRAs) as a

promising hardware platform that can accelerate a wide range of applications [21,48,74,99]. CGRAs

are hardware accelerators consisting of a 2D array of computational and memory tiles that are con-

nected with programmable wires. CGRAs benefit from computation elements that efficiently perform

stencil and tensor computation, while also maintaining the flexibility that eases mapping applica-

tions. These aspects make CGRAs a nice blend of the flexibility of CPU processors while seeing

some of the efficiency gains from ASICs.

While the pace of designing applications and hardware has accelerated, designing the compilers

necessary to map these applications to custom hardware remains a challenge. CGRA accelerators

usually suffer from poor programmability. Many designers choose to use custom software languages

rather than provide compilers from more popular front-ends [19,97]. Building a robust and effective

compiler is necessary to support a wide array of applications and properly utilize the available

computational power of the accelerator.

One gap in accelerating an algorithm is taking an existing algorithm and porting it to more

efficient hardware. The current process typically consists of creating an algorithm for more generic

hardware, such as a CPU, and then making the modifications necessary to run on the target ac-

celerator [7, 23, 47]. However, this porting process can lead to lower than expected performance

1
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gains unless the algorithm is modified significantly to match the underlying accelerator. Ideally, an

application developer would be able to use the same algorithm with scheduling directives to target

an accelerator.

Once an appropriate algorithm is found, another challenge is memory mapping. Prebuilt hard-

ware accelerators have trended towards using complex address generators and controllers bundled

with the SRAM for efficiency [15,73]. Standard compiler flows use intermediate representations at a

lower level, which makes it harder for them to map their results to this higher-level object. Instead,

we would prefer a compiler that works on higher-level memory primitives rather than at the level of

individual loads and stores.

Finally, some applications have low hardware utilization, which leads to inefficient usage of the

computation elements. These situations arise from the popular mapping technique where each oper-

ation maps to its own computation element [76,109] combined with the fact that not all operations

need to process the same amount of data. In these types of situations, we would like to allow the

user to use hardware scheduling to improve compute utilization by instructing multiple algorithmic

sections to use the same hardware elements.

Our research group developed a CGRA for image processing and machine learning applica-

tions [15]. I helped build the application compiler that we needed to map applications to our

custom hardware. During this process, we made key design decisions to construct the compiler to

address the aforementioned issues. In this dissertation, I describe our compiler that maps to our

custom CGRA. This compiler uses additional scheduling and memory abstractions to incorporate

new efficient hardware designs seen on CGRAs.

My main contributions shown in this dissertation are:

• Extend the Halide scheduling language to map to CGRAs.

• Develop the unified buffer abstraction to encapsulate the memory transfers and dependencies

for image processing and machine learning.

• Enable compute sharing for reconfigurable accelerators through Halide scheduling and proper

mapping through the compiler system.

My contributions on the front-end compiler are part of a larger compilation system. The penulti-

mate chapter describes how the Halide front-end fits within the application compiler. I then describe

the strategy I use to schedule applications to the CGRA. The full compiler and CGRA hardware

are then evaluated on image processing applications and machine learning kernels. I finally conclude

with what I learned while working on this dissertation.



Chapter 2

Background

Hardware accelerators have seen a rise in popularity as more complex algorithms clash with the desire

for more energy-efficient devices. Due to the end of Moore’s Law and Dennard Scaling, hardware

devices are no longer getting dramatically more efficient from process technology [42]. At the same

time, applications are becoming more complex with the rise of many new image [37,102] and video

algorithms [32] as well as the growing use of deep neural networks (DNNs) [25,43]. For users to be able

to run these new applications on their portable devices, they need to run on hardware accelerators,

which have proven to be more energy efficient and faster than general compute [42]. However, once

a hardware accelerator is designed, there is still the arduous task of mapping applications to the new

accelerator, a task usually handled by a compiler for that accelerator. It must find a way to map the

application while utilizing the accelerator’s special hardware features to provide performance and

energy efficiency gains.

The next section, Section 2.1, describes foundational image processing and machine learning

applications that our compiler must handle. With these motivating applications, Section 2.2 de-

scribes how hardware designers have created specialized, efficient accelerators for vision applications.

These accelerators show the potential of hardware designs, along with their drawbacks in flexibility.

Section 2.3 then surveys different reconfigurable accelerators that have better flexibility over the

domain-specific accelerators. Our primary target is the Amber CGRA, which is described in that

section. And finally, Section 2.4 details previous work on compilers for hardware accelerators and

reconfigurable architectures as well as some of the abstractions needed for these compilers. We use

these abstractions, along with the contributions of this dissertation, to form a complete application

compiler for reconfigurable accelerators.

3
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Figure 2.1: This is a sample stencil application called camera pipeline that transforms a mosaicked,
raw image taken from a camera sensor and converts it to an RGB image. It exhibits a pipeline of
four kernels with stencils of different sizes.

2.1 Applications

The key to developing efficient hardware accelerators is understanding the applications that are

running on devices. Today, people are using many devices with image processing, video processing,

and machine learning applications. These tasks include image enhancements on smartphone cameras,

vision systems on autonomous vehicles, and generative images built using large language models

(LLMs). While the number of tasks using visual data has not diminished, many applications are

not using the pure image processing techniques of the past. A new class of vision applications

[61,80,98] take concepts of traditional image processing algorithms and combine them with the power

of DNNs. DNN models have been trained to do noise reduction, super resolution, and segmentation

to widen the capabilities of image applications. Understanding both of these domains is important

for constructing new vision applications and hardware.

Image Processing

Image processing is a vast class of applications that ranges from improving image quality by removing

noise, to stitching multiple images together to create a composite. Most of these applications share

similar characteristics. They use image data as an input, and make heavy use of data in the vicinity

of a pixel to determine intermediate results for an image patch. The overall computation is usually

described as a series of computational kernels, each of which only uses a small stencil of data around

each input pixel to generate the kernel’s output. Thus, most of these applications can be described

by a pipeline of stencil computations, as illustrated with the example in Figure 2.1. These stencils are
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Figure 2.2: This line buffer efficiently stores values for a 3 × 3 stencil by keeping a little over two
lines in its working set. The output of the line buffer memory is convolved with filter weights to
compute each output pixel.

commonly convolution kernels, which consist of an element-wise product of weights and input data

followed by a sum. With this pipeline of kernels, efficient execution looks for the fastest execution

and the minimum memory required for each of the required kernels.

To find an efficient hardware execution for image processing applications, we need to use a proper

memory implementation. One fundamental memory implementation used with stencil pipelines is a

line buffer, as shown in Figure 2.2. Line buffers use the fact that many image processing applications

read their input images in scanline order (left to right for each row, then from top to bottom). A

stencil computation waits as the input pixels are scanned row by row. The first stencil computation

can then start once enough input pixels are available to fill a stencil. Once a single stencil is

completed, the next stencil computation overlaps with the last stencil’s data. Only a column of

pixels to the right needs to be added. The crux of achieving efficiency in a line buffer is exploiting

the overlap between successive stencils, and realizing that only a few lines of the image need to be

stored at any time.

We use streaming memories to optimize the hardware efficiency of performing convolutions in

hardware. Line buffers improve the efficiency of successive stencils by avoiding refetching overlapping

data. Figure 2.2 depicts a 3× 3 stencil where each pixel is used nine times in an application: three

times consecutively in a row, and for three separate rows. A pixel is stored temporarily in a stencil

register so that it can be used in consecutive clock cycles. Since the pixel is reused in the two

subsequent cycles, the pixel is retained using a chain of two shift registers. This reuse ensures no

refetching of the pixel as the stencil computes horizontally across a row. Reuse of pixels is also

possible vertically on successive rows. Pixels are later used when the stencil returns for computation

on the next row. We need to calculate the time before the pixels are reused, known as the reuse

distance. Since the image is read in scanline order, these pixels are delayed for the number of pixels

in a line. The name “line buffer” comes from the storage elements holding pixels for reuse after a

scanline. By using line buffers with stencil registers, pixels are only streamed into the accelerator
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a single time, and the pixel is available from various memory ports at the correct times. Due to

the gained efficiency of line buffers, they have become the basic hardware building block for image

processing pipelines.

Image processing applications are defined by a series of simpler computation kernels. Under-

standing these individual kernels provides a foundation for constructing efficient implementations

of larger applications. We next go through a set of simpler image processing kernels that are later

used in the evaluation of our compiler system. One of the simplest examples is basic filtering with

convolution kernels to improve the input images. Gaussian blur uses a weighted average of adjacent

pixels to reduce visible noise. Unsharp masking is an image processing application that subtracts

a blurred version of the input image to produce a sharpened output image. Finding corners is an

important component of image processing as it provides a preliminary step for image alignment,

registration, and tracking. Harris corner detector [36] is a pipeline of gradients and blurs that are

combined together to identify where corners exist on an image. FAST corner detection [85] is another

technique that uses twelve circular pixel comparisons to determine a corner. Camera pipeline [3] is

a series of hot pixel suppression, demosaicking, and gamma correction to take raw pixel values to a

recognizable color image. Each of these image processing applications are implemented in hardware

with a pipeline of stencil computations connected by line buffers.

Pyramid Computation

Stencil processing provides a great framework for applying local computations that focus on small

patches in an image, but are not the right structure to use for computations that need longer range

or global computation. A common method for constructing global image processing applications is

pyramid image processing. Pyramid image processing retains the same stencil techniques and small

local patch computation, but makes global computation feasible by creating a stack of images, where

image resolution decreases as you move up the stack. Thus the same size stencil has a larger reach

as you move up the pyramid. The first step for pyramid applications is creating an image pyramid

through successive stages of Gaussian filtering followed by downsampling kernels. The filtering is

done to reduce aliasing artifacts in the downsampled images. Each pyramid level creates an image

of half the width and half the height of the previous level. This process is repeated several times

to create the same image, but of different sizes. The pyramid varies from the original image size at

the lowest level, to a much smaller version for the highest level. If desired, one can continue this

pyramid to a single pixel to find the average value of the original image. An example application is

shown in Figure 2.3.

The most basic image pyramid, the Gaussian pyramid, creates a multi-scale representation of

the input image using a Gaussian blur. Another common type of image pyramid is a Laplacian

pyramid. This pyramid is constructed by first creating a Gaussian pyramid. Then, for each level

in the pyramid, the smaller level is upsampled (becoming the same size as the next larger level)
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Figure 2.3: An example pyramid application that blends two images together. Each input image is
decomposed into a Laplacian pyramid. Each pyramid level is then convolved with specific weights
to provide the feathered blending. Next, each level is summed with the corresponding level on the
other input. Last, the blended pyramid is flattened using a series of upsamples and addition to
create the final image.

and subtracted from this level. The difference in pixel values becomes the value of the Laplacian

pyramid of the larger level. The Laplacian pyramid along with the smallest level of the image is

able to reconstruct the original image by summing the upsampled image with the Laplacian level,

and repeating until it is the size of the original image. Another property of the Laplacian pyramid

levels is that they represent the different spatial frequencies of the image with finer features (higher

spatial frequencies) captured in the larger image levels.

Once an image pyramid is created, certain image processing algorithms work on the image

pyramid. These algorithms have the benefit of working on patches that occur from images of

different sizes [4]. This leads to algorithms that are multi-scale, meaning they are able to identify

features regardless of their patch size in the actual image. Typically, the same computation kernel

is performed at all levels of the pyramid. The same features are found and refined at each level.

There are numerous uses of pyramids in applications. These use cases include: using the inherent

decomposition of frequencies from Laplacian pyramids; utilizing the hierarchical nature of image

pyramids to reduce computation; or applying algorithms on different pyramid levels to identify

features of various sizes. Pyramid blending [13] takes two images and seamlessly combines them
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together using their Laplacian pyramids, as depicted in Figure 2.3. Burt and Adelson in [11] extend

the Lucas-Kanade optical flow algorithm [60] used for stereo vision to hierarchically find the pixel

displacement between two images. Google HDR [37] uses pyramids to hierarchically align image

bursts. Implementing these pyramid applications with specialized hardware could follow similar

line-buffered pipelines as seen in image processing. However, constructing and processing smaller,

downsampled images in an image pyramid can lead to inefficient hardware. We revisit this dilemma

in Chapter 5.

Input 
Image

copy, crop, and concatenate 

2x2 max pool 2x2 up-conv

1x1 
conv3x3

conv

Output
Image

Figure 2.4: An example DNN application showing U-Net. This application takes an image input
and outputs a cropped image with a segmentation mask around target regions. The application
consists of 19 convolutional layers, 4 downsampling max-pool layers, and 4 upsampling concatenate
layers. The series of layers resembles a U, hence its name.

DNNs

More recently, machine learning has become an important application for hardware acceleration.

One popular implementation for machine learning is a deep neural network (DNN). These imple-

mentations use a large amount of data in the form of tensors, which are n-dimensional arrays. The

data is then fed into many computation layers. The deep descriptor in DNN comes from the large

number of layers in a DNN as compared to previous architectures that had far fewer layers. Re-

searchers found that more layers had better result accuracy, but they also require far more training

and computation than early network architectures.

The computation in a DNN is commonly a convolutional neural network, which consists of a

series of convolutions similar to image processing as shown in Figure 2.4. However, there are some

important differences. First, these convolutions compute on input tensors, not images. Each input

tensor consists of multiple channels, where each channel is a conventional 2D image. Similarly the

output is also a tensor, again consisting of multiple channels of 2D images. If we attempted to use
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1 // Host loops , a single iteration since inputs fit within the accelerator memory

2 for y_host = 0:1

3 for x_host = 0:1

4 // Iteration loops in outermost accelerator memory

5 for yo = 0:2

6 for xo = 0:2

7 for wo = 0:4 // output channel

8 // Innermost loops on innermost accelerator memory

9 for ro.z = 0:2 // reduction loop of input channel

10 for r.y = 0:3 // reduction loops of conv kernel

11 for r.x = 0:3

12 for yi = 0:26

13 for xi = 0:26

14 unroll for wi = 0:8 // output channel; parallel execution

15 unroll for ri.z = 0:8 // parallel execution of input channel

16 // Define the overall variables after considering tiling

17 host_tilesize_x = 26 * 2; outer_tilesize_x = 26;

18 x = x_host * host_tilesize_x + xo * outer_tilesize_x + xi + r.x

19 host_tilesize_y = 26 * 2; outer_tilesize_y = 26;

20 y = y_host * host_tilesize_y + yo * outer_tilesize_y + yi + r.y

21 outer_tilesize_w = 8

22 out_ch = wo * outer_tilesize_w + wi

23 outer_tilesize_z = 8

24 in_ch = ro.z * outer_tilesize_z + ri.z

25 // Computation for convolution

26 output(x, y, out_ch) += weights(r.x, r.y, in_ch , out_ch) * input(x, y, in_ch)

Figure 2.5: Sample loop iterations for a convolution layer in a DNN. Loops are tiled, reordered, and
performed in parallel on hardware accelerators.

a line buffer with DNNs, we would need to use every input channel while computing each output

channel simultaneously. This almost always is not possible because the computation is too large.

Instead, we carefully block the computation to reduce the storage working set, and reorder the

computation loops. This blocking means that input image tiles are reused multiple times, which

means that we need to store the full tile, and not just a few lines. Thus, we use a different memory

structure, known as a double buffer, that allows data to be reused multiple times.

A single layer in a DNN has thousands of times more computation than a convolution in an

image processing application. Because of this, accelerating a DNN typically focuses on just a single

DNN layer at a time. Even with a single DNN layer, the inputs and weights must be tiled and

accumulated over multiple accelerator executions due to their sheer size. By tiling these memories,

we can keep a small working set of values that are reused many times. Reuse of memory values is key

to creating an energy-efficient implementation of an application. The multi-dimensional data along

with tiling creates many loops for computation. The order of the loops affects the opportunity for

reuse, and becomes an important factor for the efficiency of the hardware acceleration. Figure 2.5

shows some pseudocode on how tiling, iteration order, and computation look for convolution layers.

To optimize the efficiency of DNN applications, we look again towards the data reuse as we did

for image processing. Matrix multiplications as well as multi-channel convolutions have different
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Figure 2.6: A double buffer efficiently stores and distributes input values for DNN applications.
The two buffers alternate in phases where one buffer distributes values to the compute kernel (right
buffer in example), whereas the other buffer stores input values for the next tile. After both buffers
have completed the phases, they switch roles where the filled input tile is now fed into the compute
kernel. Each of the memory operations are potentially vectorized to provide parallel execution.
Vectorization can be performed independently with a mismatch of rates; however, it is more optimal
with a similar number of iterations on each side.

reuse patterns as compared to stencil pipelines. Memories are blocked into a memory hierarchy

and loops are reordered to achieve as much reuse as possible. With DNN loops, we have utilized

parallelism in output and input channels and perform an iterative reduction on the convolution

kernel loops. This leads to a different memory access pattern that cannot be optimized by line

buffers. Line buffers are optimized for parallelizing computation in the x and y spatial dimensions;

meanwhile, DNN layers can be reordered such that we compute pixels across channel dimensions

where we see more parallelism. Rather than reusing a single block as we stream through an image,

we ensure that a steady state of tensor blocks have a high throughput. These blocks take many

cycles to initialize, accumulate, and output. To ensure the computation kernels always are busy,

these phases are commonly overlapped with loop pipelining. To overlap this computation, we use a

different streaming memory, called a double buffer, so that two blocks can operate at once as shown

in Figure 2.6. In this configuration, half of the buffer feeds values into the computation kernel;

meanwhile, the other half of the buffer initializes the subsequent block of values. This overlap is

necessary to ensure that communication (initializing the next tensor) is not a bottleneck for the

computation pipeline. We can increase bandwidth of the memory transfers into the double buffer

as well as overlap these data transfers to ensure that useful computation is occurring on each cycle.

Similar to image processing, this memory technique is used to ensure the compute kernel is always

highly utilized.

Recently, there have been many advances in DNN applications. This recent surge in DNN

advancement began with convolutional neural networks tackling the problem of image classification.

The ImageNet competition [24] challenged researchers to build systems to identify 1000s of classes in

an image database. AlexNet [52] found that creating a convolutional neural network (CNN) along

with increased training time on GPUs could improve the error rate dramatically. VGGNet [91]

improved upon their results by increasing the number of layers from 5 in AlexNet to 16 layers

and using only 3 × 3 convolutions. Network architectures continued to grow in depth with each
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year. Furthermore, new architecture techniques were introduced such as 1 × 1 convolutions by

Inception [95] and skip connections by ResNet [38]. With the growth of all of the architectures,

the number of parameters was growing rapidly and not amenable to mobile platforms. Although

model accuracy continued to improve, they were taking larger computers and more time to train.

MobileNets [43] suggested methods to reduce model sizes by using separable filters and a resolution

hyper-parameter to reduce overall model size. These separable filters use less computation than the

convolution neural networks in other models, and their execution looks more like image processing

by first performing a normal convolution and then a 1× 1 convolution (DNN convolution layer with

1 input and 1 output channel). However, not all models can be distilled into fewer parameters with

the techniques introduced in MobileNets.

Apart from CNNs working on images, DNNs have also been used on sequence data, such as

speech [86], text [35], and translation [94]. The structure of these algorithms is different, since

they need to keep track of context and state. Due to these unique needs, early architectures used

recurrent neural networks (RNNs) that took advantage of long short-term memory (LSTM) to keep

track of temporal behavior. Later works improved upon RNNs and instead used attention modules

in a Transformer architecture to improve training speeds [100]. BERT [25] enhances the performance

of even more NLP tasks by using a bidirectional architecture. GPT-3 [12] introduced a large pre-

trained language model that performs exceptionally well across NLP tasks, which has started the

craze for highly capable large language models (LLMs).

Although the application space of DNNs is large and continuing to grow, their hardware ac-

celeration follows a consistent implementation. A large array of multipliers and adders connected

to double buffers remains the fundamental component of DNN hardware accelerators. By creating

a hardware accelerator with these fundamental computation and memory blocks, we are able to

efficiently run many of these applications.

2.2 Domain-specific Hardware Accelerators

With the large number of applications in image processing and DNNs, hardware designers have

created domain-specific accelerators (DSAs) to run these applications efficiently. Each of these

hardware implementations strive to accelerate a class of applications to remain useful across many

tasks.

Image Processing Accelerators

Image processing accelerators take a variety of strategies to improve efficiency. Some accelerators

simply provide many vector processing units to provide the compute necessary for these data-parallel

applications. NVIDIA’s programmable vision accelerator [87] uses this approach of creating systems

with simply more compute. Microsoft’s Hololens Processing Unit [96] employs this same strategy
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of providing ample SIMD units for computation, but also includes application-specific hardware

for image processing. There is a hardened joint bilateral filter and neural network to improve the

efficiency of these operations even further. Finally, some accelerators include specialized compute

as well as specialized memory systems to accommodate image processing applications. The research

accelerator Convolution Engine [77], Google’s Pixel Visual Core [79], and Movidius’s vision processor

[68] all include processing units as well as line buffer implementations. These accelerators all use these

efficient hardware implementations to provide better performance as well as include the flexibility

to handle a wide array of image processing applications.

DNN Accelerators

As DNN applications have become popular, ways to accelerate DNNs have also emerged. Neuflow [28]

is one of the earliest accelerators developed by university researchers. This accelerator uses a 2D array

of processing elements that can execute multiply-accumulates (MACs), normalization operators, and

non-linear operators. This flexibility allows all layers of a convolution neural network (CNN) to run

on the chip. DaDianNao [18] is a 2D array of tiles that have abundant local storage along with the

compute units to maintain adequate memory bandwidth. Eyeriss [17] studied the role of dataflow

and reusing locally stored elements to improve accelerator efficiency. By interchanging loops in a

convolution layer, an application can keep the weight, output, or input stationary within a compute

unit to increase reuse. TETRIS [31] is a proposed accelerator that uses 3D memory layout and

hierarchical tiles to gain more performance and efficiency for large DNN layers.

In addition to university DNN accelerators, companies have created even larger DNN acceler-

ators. NVIDIA Research created Simba [88], which uses an even larger systolic array of multiply-

accumulates. Tesla created neural processing units [9] to run vision applications on their self-driving

vehicles. Google found that their cloud services were running more DNNs, so they created tensor

processing units [47] to achieve greater efficiency and cost savings over their datacenter GPUs. With

applications seeing no size limit, Cerebras unveiled their Wafer Scale Engine [58], which creates a

giant systolic array with MACs and local storage across an entire silicon wafer.

Hardware accelerators have started to converge towards a systolic array structure with local

connections between tiles with MACs and storage. This hardware can efficiently execute both

convolution layers and matrix multiplication. From the description of all of these accelerators that

have been developed in academia and industry, one may suspect that their usage is widespread.

However, the opposite is true: most DNN implementations are running on NVIDIA GPUs. The

main reason is the difficulty of compiling applications onto these accelerators, which will be discussed

further in Section 2.4.
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2.3 Reconfigurable Accelerators

Although domain-specific accelerators gain tremendous efficiency in a single domain, they are much

more rigid in their dataflow. On the other side of the spectrum, CPUs provide the most flexibility

with control-flow instructions and programmable instruction streams. Reconfigurable accelerators

strike a middle ground between generic CPUs and dedicated ASICs. They remain programmable

to support a wide range of applications, but also are limited enough in scope to allow for high-

performance and energy-efficient hardware implementations compared to generic CPUs. This group

of accelerators includes FPGAs and CGRAs. They get their flexibility from programmable wires

that connect their generic compute elements. This flexibility comes with drawbacks though. Pro-

grammable wires and muxes require silicon area to implement and additional energy to run an

application. With image processing and DNN applications spanning different domains, the addi-

tional flexibility is useful for accelerating new vision applications.

FPGAs

FPGAs, or Field Programmable Gate Arrays, are a flexible hardware platform for running appli-

cations. They can be used to verify new hardware architectures before tapeout [29], or efficiently

implement ever-changing algorithms in production [20].

FPGAs are composed of lookup tables (LUTs), digital signal processors (DSPs), flip-flops (reg-

isters), and Block RAMs (BRAMs). LUTs implement bit-level logic. By composing many LUTs

together using the FPGA’s programmable wires, one can create fundamental gates (such as ANDs,

ORs, and XORs) as well as more recognizable operators (such as 16-bit adders and comparison op-

erators). As gates get larger, the overhead of combining so many bit-level gates becomes expensive,

so DSPs are used. DSPs typically implement a multi-bit multiplier. For memory, FPGAs use shift

registers and BRAMs. Shift registers are used on the FPGA fabric for pipelining while BRAMs

provide storage for larger arrays.

There are two major FPGA products on the market today. These are Altera FPGAs [46] sold

by Intel and Xilinx FPGAs [105] sold by AMD. Each of these FPGAs are composed of similar

hardware units as well as software to map and integrate applications with FPGAs. The generality

of the compute elements allow them to run any computation, while the programmable wires can

implement deep image processing pipelines or systolic arrays for DNNs. Lowering applications

to FPGAs is relatively straightforward, since LUTs and DSPs implement all computation, while

BRAMs and registers hold all state in the application.

Coarse-Grain Reconfigurable Architecture

The Coarse-Grain Reconfigurable Architecture (CGRA) is a class of reconfigurable accelerator that

provides higher-level primitives than FPGAs. Instead of bit-level LUTs, CGRAs use multi-bit
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operators such as adders and multipliers. This sacrifices the efficiency that precise bitwidths can

achieve, but suits the needs of applications that are accustomed to bitwidths of common datatypes

(such as 8, 16, 32, or 64 bits wide). Additionally, creating operators of higher bitwidths improves the

energy efficiency over the equivalent configuration needed on an FPGA. CGRAs remain a research

topic with no standard design for the processing elements (PEs) or memory units.

ADRES [63] is one of the earliest CGRAs; it is built with an array of tiles with processing and

memory combined with a flexible interconnect. The CGRA is built with the host processor in mind

with a shared memory for communication. FPCA [21] increased the complexity of each PE by

chaining together operators to increase potential usable transistors over an ALU design where only

a single operator is used. FPCA memory is stored in local memory banks with configurable address

generators. DySER [34] increased the PE size differently by using vector SIMD units. Plasticine [75]

similarly uses vector units in each PE. For memory, Plasticine uses scratchpad memories and on-

chip address generators to generate different memory patterns. Plasticine has been adapted for

commercial use with SambaNova’s RDU [74], which uses similar tiles but with a much larger grid

of 10× as many tiles. 4D-CGRA [48] uses a custom processor in each PE that tracks loop iteration

and branch divergence. Combined with the spatial dimensions in the array, the 4D-CGRA works

with data in four dimensions. SNAFU [33] and Ultra-Elastic CGRA [97] both aim to create very low

power CGRAs by reducing buffering and using DVFS, respectively. SNAFU [33] and DSAGEN [103]

build a framework where a designer can create unique PEs and compose their own CGRA fabric.

These frameworks create the abstractions necessary to integrate your own PE implementation as

well as the compiler necessary to use the generated CGRA. To make compilation easier, we found

it useful to create our own abstractions, which we introduce below in Section 2.4.

Amber CGRA

Figure 2.7: Our Amber CGRA is a 16× 32 array of processing element (PE) and memory (MEM)
tiles. One-fourth of the tiles are MEMs and the rest are PEs. The memory tile contains the optimized
Physical Unified Buffer (PUB) depicted in Figure 2.8.
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We constructed a new reconfigurable accelerator called Amber [15] in the Stanford AHA group.

This new Coarse-Grain Reconfigurable Array demonstrates how a flexible hardware fabric can run

an entire class of applications. The first iteration of this CGRA accelerated just image processing

applications [99]. The Amber CGRA runs image processing and deep neural network applications

and has many updates to the processing elements, memory tiles, and memory hierarchy. The Amber

CGRA is our main motivating hardware target, so we describe its components in detail below.

The Amber CGRA consists of a 16 × 32 sized grid of tiles that are connected together by

programmable wires. As shown in Figure 2.7, processing element (PE) and memory (MEM) tiles

are connected by routing tracks through switch boxes and connection boxes. The computing fabric

consists of 16-bit tracks as the primary data width, as well as 1-bit tracks for boolean values. Each

PE is a simple computing element with an ALU and multiplier for 16-bit values as well as a 3-input

LUT to perform logic operations. Before accelerator execution, configuration registers are set to

choose which operation each PE performs.

Single 
Port 
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Memory
Address Generation 

and Scheduling Logic

Aggregators Transpose Buffers
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Resource 
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Figure 2.8: Diagram of a Physical Unified Buffer (PUB) with a wide-fetch single-port SRAM,
aggregator (AGG), and transpose buffer (TB). Sets of ID/AG/SG controllers (blue/red/green blocks
respectively) control the input and output of each sub-component.

Every fourth column on the CGRA fabric consists of memory tiles, which we call Physical

Unified Buffers (PUBs). As shown in Figure 2.8, each memory tile is not simply a bare SRAM.

Instead, each memory tile consists of SRAM connected to address generation and scheduling logic

that is programmable during configuration time. This way, the memory reads and writes have pre-

programmed locations and timing. The memories are controlled by an iteration domain (ID), address

generator (AG), and schedule generator (SG). The ID sequentially counts through the tensor; the

AG produces address values for the memory operations; and the SG calculates when each memory

operation occurs. We go into more detail about calculating memory tile parameters in Chapter 4.

In addition, the SRAM has a single wide-fetch port with four 16-bit words written or read every

cycle. This configuration increases the power efficiency of the memory operations, but comes at

additional complexity in scheduling the reads and writes. To accommodate the wide fetch and
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single port, words are accumulated in aggregators (AGGs) and transpose buffers (TBs). The AGGs

accumulate adjacent words over several cycles before writing all four words to the SRAM. Similarly,

the TB holds four adjacent words so that they can be transferred out of the memory tile over four

cycles. Overall, the memory tile is able to achieve high efficiency with its embedded controllers

and wide-fetch SRAM port, but it also requires a configured static schedule to dictate the memory

operations. It becomes a challenge to compile applications to a memory tile like this with a complex

configuration space.

Connecting the PEs and MEMs is an interconnect of switch boxes and connection boxes. The

programmable wires are configured before execution to connect a tile output to any set of tile inputs

on the CGRA fabric. The role of place-and-route (PnR) is to find an efficient placement of the

application’s PEs and MEMs that can then be routed with these flexible wires. Registers also exist

in the PEs and switch boxes to allow applications to be pipelined to meet timing. A set of 32

input/output (IO) tiles are above the top row of tiles. These allow for data to be streamed into and

out of the the global buffer (GLB). The GLB consists of 16 large SRAM banks each with their own

dedicated controller, similar to the memory tiles. The GLB then is connected to DRAM through

the host processor. It is the role of the application compiler to find an efficient way of configuring

the PEs, MEMs, and routing resources to execute the application.

2.4 Compiling to Hardware Accelerators

To bridge the gap between applications and target hardware architectures, compilers must lower

and map input applications. It remains a challenge to automatically compile these domain-specific

applications to new hardware accelerators. Accelerators differ from traditional CPU hardware in

their method of computational parallelism as well as their memory structures. We find that CPUs

and hardware accelerators are trying to solve different problems. CPUs have powerful control flow

mechanisms to handle any type of program, and then use branch prediction and decoupled fetch

units to alleviate any memory stalls. Hardware accelerators take a different approach with very wide

compute parallelism. Since missing data would end up stalling the very large compute resources,

they prevent memory stalls by construction with software-managed memories, which makes the

compiler job much more difficult. These differences require compiler back-ends that are tailored for

each of their unique requirements. When mapping an application to physical hardware, one must

consider four components:

• computation kernels that perform numerical operations on data;

• memories that store values for reuse and possible reordering;

• addressors and controllers that calculate memory addresses and execution timings;

• network that wires together different elements on the accelerator fabric.
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Understanding these fundamental hardware building blocks is critical to developing an effective

compiler. The granularity and complexity of these blocks impose restrictions on the applications

and hardware mappings. Furthermore, abstractions are necessary to bridge the gap between software

concepts and their eventual hardware implementation. Different languages and techniques have been

developed to facilitate this complex series of steps.

Mapping Applications to FPGAs

FPGAs originally were programmable solely by hardware languages such as Verilog, VHDL, and

SystemC. However, there was a desire to create hardware implementations from software languages,

known now as high-level synthesis (HLS). Zhang worked on creating the first system [109] that took

a subset of C++ code and created hardware that mapped to FPGAs; this work eventually evolved

into Vivado HLS.

Today, HLS is a common way to produce designs for FPGAs. Designers create an application

and testbench using a subset of C++. These designs are modified with special hardware types

to specify exact bitwidths. Furthermore, pragmas and directives are used to decorate and direct

the HLS tool to produce the desired hardware results. The commercial tools created by hardware

vendors are Vivado HLS (now Vitis HLS) [104] for Xilinx FPGAs, and OpenCL [45] for Altera/Intel

FPGAs. Another popular HLS tool is Catapult HLS by Mentor Graphics [67] which can target

Xilinx FPGAs, Altera FPGAs, or even generate custom ASICs. MaxCompiler [62] and LegUp [14]

are other HLS compilers for FPGAs.

Due to the success of HLS compilers, many projects have built on top of these compilers to map

to FPGAs. These projects start from higher-level languages and domain-specific languages, then

generate HLS C code, and lastly use the vendor HLS compilers to map to FPGAs. Hipacc [81] uses

C++ templates to implement an image processing domain-specific language (DSL) that creates HLS

C. SODA [19] uses a custom high-level DSL for describing stencil applications to generate HLS C

whose parameters are automatically tuned for high performance. HeteroCL [55], HeteroHalide [57],

and Halide HLS [76] use a separate algorithm and schedule to independently create the algorithm

from the hardware schedule. We share this strategy and explain its benefits in Section 3.1. All of

these systems use HLS to ease the compilation process to hardware since HLS C is semantically

closer to the DSL languages than RTL hardware languages. Therefore, many systems compile their

DSL language to HLS C, and then use high-level synthesis to generate hardware. Furthermore,

the languages that use a separate schedule have a clear mechanism for generating the pragmas and

directives used in HLS. Combining application schedules with DSL front-ends allow users to create

efficient FPGA implementations from a higher-level language.

Other projects map to FPGAs but elect to not use HLS for mapping. Instead, they produce

hardware designs directly and then map the RTL to the FPGA. Darkroom [39] and Rigel [40] use a

novel high-level DSL with structural composition to create line-buffered image processing pipelines
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in Verilog. Aetherling [27] and µIR [89] create Chisel [8] code. Both Verilog and Chisel are hardware

design languages that can then produce an ASIC design or map to an FPGA. Their DSL front-ends

already closely align with the structural hardware semantics, so generating RTL is a straight-forward

process.

DNNs can also be mapped to FPGAs. DNNWeaver [90] creates a tiled and batched schedule to

efficiently run on an FPGA’s limited memory resources. DNNBuilder [107] builds a pipeline of DNN

layers made possible by low-bit quantization. Both of these projects use parameterized hardware

generators that are tailored for the application and available hardware resources on the FPGA.

FPGAs enable users to create hardware accelerators for image processing and DNNs starting

from DSLs. By generating an RTL design, FPGAs can map the hardware components to the

flexible FPGA fabric. With recent advancements in HLS, compilation from software DSLs to FPGAs

has become much easier. The simplicity of the compute and memory elements allow for flexible

arrangements that can implement any application. FPGAs provide a high performance with the

flexibility to accommodate many applications. However, to improve energy efficiency further, we

look towards more specialized accelerators such as programmable domain-specific accelerators and

CGRAs. These hardware platforms improve energy efficiency and performance, but due to their

specialized nature, also make a more difficult compilation target.

Compiler Systems for DSAs and CGRAs

Domain-specific accelerators (DSAs) and CGRAs use specialized computation to gain performance

and energy efficiency benefits over FPGAs. However, these unique computation blocks also become

more difficult compilation targets. This issue was identified very early on with the ADRES paper [63]

in 2003, stating that “we believe the compiler is even more important than the architecture.” Most

CGRA papers acknowledge the difficulty of compilation and discuss their compilation strategy in

their papers [21, 33, 48, 63, 75, 97, 103]. The compiler for CGRAs are challenging, because the PEs,

memory units, and address generators create a large configuration space with their own set of

constraints and limitations. The growing number of hardware accelerators increases the importance

of creating better hardware/software abstractions and sophisticated compilers.

Due to the complexity of mapping applications to CGRAs, many systems have accompanying

papers that describe the compiler for their hardware accelerator.

• Google uses Tensorflow [1] as a language to describe DNNs. In order to map these applications

to CPUs, GPUs, and custom TPU [47] accelerator, they use the XLA compiler [56]. XLA helps

to dynamically configure applications and uses kernel fusion to ensure high performance on

each target platform.

• TVM [16] has become a popular framework for generating efficient hardware schedules for

DNN applications. TVM enables applications written in popular DNN front-end languages to
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compile through the TVM system. TVM then automatically tunes the schedule parameters

and searches for the highest performing schedule. VTA-TVM [69] is an extension to this system

that allows TVM to target efficient hardware-accelerated executions that run on FPGAs.

• MAERI [54] introduces a unique DNN accelerator that uses a distribution and reduction tree

to implement different DNN layers. The many configurable switches require a robust compiler

to map each of the different DNN layers in an application. MAESTRO [53] is an analytical

model that is able to evaluate the performance of different dataflows on the accelerator to

make improvements on the accelerator schedules for MAERI.

• Plasticine [75] is a CGRA with an interlaced array of vector PEs and memory tiles. Address

generators control the memory tiles, while switches control the flow of data between tiles.

Spatial [50] provides a high-level interface to create applications for reconfigurable hardware,

including Plasticine. SARA [108] extends Spatial by abstracting the resources to allow for

better partitioning and scheduling of resources.

My effort has focused on creating a compiler for image processing and DNN applications for our

own Amber CGRA. To build this application compiler required integrating different abstractions

that were built by other members of Stanford AHA. Understanding some of these other components

in the compiler help provide context for the front-end compilation steps. We next describe some of

the abstractions that are needed in a complete application compiler.

Compute Representation

Our compiler for the Amber CGRA uses CoreIR [22] to represent the application graph. Compute

kernels are directly mapped to CoreIR after the application compiler. CoreIR is again used after

memory mapping to construct the full application. CoreIR defines a set of basic computation

primitives. This set is composed of operations based on smt-lib [10].

The Amber CGRA uses PEak [26] to formally define the available compute operations, and then

rewrite rules can map the compute operations in CoreIR to the PEs on the Amber CGRA [51]. With

the compute kernels defined, and the rewrite rules providing the mapping to the PEs, we are next

faced with mapping the memory units.

Streaming Memory Representation

Memory mapping is a critical and challenging step of the hardware mapping process. Hardware

accelerators typically use optimized memory structures that buffer streams of data. The Buffets

paper [73] describes a memory primitive that can express many types of buffers, such as line buffers

and double buffers. Buffets provide storage for explicitly decoupled data orchestration (EDDO),

which is commonly found in hardware accelerators. EDDO memory systems push data directly by
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address, and allow for overlapping write and read phases. PolyEDDO [72] provides the framework

for how to compile to Buffets. PolyEDDO introduces an abstraction called Hardware Space-Time

to allocate across spatially-instantiated compute units and time during application execution.

Polyhedral analyses have been developed to understand memory operations, and calculate when

to schedule operations for optimal execution. Clockwork [44] is one such compiler that utilizes

polyhedral analysis. We utilize Clockwork in our compiler system to perform loop fusion as well as

schedule our accelerator. We elaborate on the usage of Clockwork more in Chapter 4.

Outline of the Next Chapters

Previous work has shown exciting new applications in image processing and machine learning. Fol-

lowing the interest in these applications, researchers have designed programmable accelerators to

improve efficiency on constrained devices. Efficient memory implementations come at the cost of

compilation difficulty. Furthermore, we strive to give the user choices to trade off application re-

source usage and runtime performance. In this dissertation, we build a system where a high-level

Halide application is scheduled to an efficient implementation on a CGRA. The upcoming chapters

are as follows:

• Halide: application language for image and array processing

• Unified buffers: memory abstraction to describe flexible memory primitives

• Shared hardware: extension to Halide scheduling and memory mapping for shared compute

• Application flow: full system built to target CGRAs from Halide



Chapter 3

Halide: Scheduling to Hardware

Halide [78] is a high-level language for image and array processing applications. Its convenience

for creating high-performance code has led to its adoption at Adobe, YouTube, and Qualcomm.

The high productivity and performance comes from its unique property of separating the algorithm

from the schedule. The algorithm describes what operations to perform (to specify what the output

values should be). The schedule then specifies how to perform these operations (in terms of loop

optimizations and blocking) to ideally achieve a high performance on the specified hardware target.

We use Halide as our front-end due to its expressiveness for describing image processing applications

and DNNs, as well as its extensibility to target new hardware. In this chapter, my main contributions

are extending the scheduling language to CGRAs with new scheduling primitives and new declarative

scheduling using semantic sugar. Below we introduce the semantics of Halide, go in more depth about

constructing algorithms and schedules, and then discuss the extensions to the Halide primitives for

targeting hardware accelerators.

3.1 Halide Overview

The Halide language can create high-performance code for several hardware targets. These targets

include CPUs (x86, ARM), GPUs (CUDA, Apple Metal), and DSPs (Qualcomm Hexagon). Halide

applies optimizations to applications in its own internal intermediate representation called HalideIR.

Each of these hardware targets have their own instruction set which HalideIR can generate. In

addition, each hardware target has different memory sizes and parallelism. The differences between

hardware targets motivate separating the algorithm from the schedule. For an application, we can

create a different schedule to specialize the loop transformations for the specific hardware target.

Since the algorithm and schedule are separate, we can use the same algorithm for every hardware

target to make easy comparison and verification for an application evaluated on different hardware

targets. This is because each schedule is ensured to not change the output values described in the

21
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algorithm [82].

The basic element of each Halide algorithm is a Func. A Func is a named storage element that

is defined in a multi-dimensional space. For images, this might be three dimensions: two spatial

dimensions, x and y, and a dimension for the color, c. In the algorithm definition, the bounds for

these dimensions are not defined. In fact, the size of the index variables and iteration in terms of

for-loops are absent from the algorithm. Instead, the bounds of each index variable is defined and

calculated during compilation or runtime. A computational pipeline is created by indexing Funcs

by variables in each dimension. This provides an easy way to define every point in the space. This

method of definition of multi-dimensional spaces lends itself well for defining algorithms in image

processing and machine learning. Images and tensors consist of multi-dimensional arrays where the

computation is repeated for every point.

Halide scheduling is important for defining the iteration loops and optimizing them for high-

performance code. Even with the algorithm defined, the values of the index variables still have

not yet been determined. Using scheduling primitives bound and tile, the size of for-loops can

be defined. These work by defining the size of the output. bound specifies the absolute bounds

of a variable at runtime. tile splits a loop variable into two parts with the inner loop variable

having a specified bounded length. Bounds analysis is then propagated through the definition of

the producer Funcs and input Funcs to calculate the bounds of each multi-dimensional Func. This

step is important for determining how large each Func needs to be, and in turn how much storage

is necessary to hold all intermediate values.

There are additional scheduling primitives, store at and compute at, that further refine the

storage size of each Func. These are unique scheduling primitives introduced by the Halide language

that trade off storage with recomputation. store at defines a loop level at which a memory for a

Func should be created. Defining the storage level to outer loops increases the storage required to

hold all values, but reduces recomputation. compute at defines the loop level where a Func should

calculate and populate its memory. By defining the compute level to be the inner loop, the user can

improve locality at the cost of making parallelism more difficult. Setting the compute level at the

outer loop allows for greater parallelism, but also inhibits optimizations to reduce storage.

Exploring the trade offs can lead to higher performing code. The user is expected to try different

schedules to optimize the performance. However, generating good schedules can be difficult. Several

papers [2, 70] have aimed to automatically find good schedules for any application. These auto-

schedulers relieve the burden of creating good schedules by generating them after exploring through

the complex search space.

Halide is our choice for front-end language for our applications. It is able to succinctly describe

both image processing and deep neural networks. The specialization for each back-end is a useful

way to optimize for each hardware architecture. In this dissertation, we extend the Halide compiler

to enable compilation to hardware accelerators, and specifically generate applications for our CGRA.
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1 using Halide :: ConciseCasts ::u16; // cast to 16-bit unsigned int

2

3 /* Algorithm */

4 Var x("x"), y("y");

5

6 // Define 3x3 kernel weights

7 Func kernel;

8 RDom r(0, 3, 0, 3), r2(0, 3, 0, 3);

9 kernel(x,y) = 0;

10 kernel (0,0) = 1; kernel (0,1) = 2; kernel (0,2) = 1;

11 kernel (1,0) = 2; kernel (1,1) = 4; kernel (1,2) = 2;

12 kernel (2,0) = 1; kernel (2,1) = 2; kernel (2,2) = 1;

13

14 Func conv1 , conv1_norm , conv2 , conv2_norm;

15 Func hw_input , hw_output;

16 hw_input(x, y) = u16(input(x, y));

17

18 // First convolution

19 conv1(x, y) = u16 (0);

20 conv1(x, y) += u16(kernel(r.x, r.y)) * hw_input(x + r.x, y + r.y);

21 conv1_norm(x, y) = conv1(x,y) / 16;

22

23 // Second convolution

24 conv2(x, y) = u16 (0);

25 conv2(x, y) += u16(kernel(r2.x, r2.y)) * conv1_norm(x + r2.x, y + r2.y);

26 conv2_norm(x, y) = conv2(x,y) / 16;

27

28 hw_output(x, y) = conv2_norm(x, y);

29 output(x, y) = cast <uint8_t >( hw_output(x,y));

Code 3.1: Halide algorithm code for the cascade application. It consists of two 3 × 3 convolutions
using predefined weights that are normalized after convolution.

3.2 Halide Algorithm

We use Halide to define image processing and deep neural networks applications. As introduced in

Section 3.1, Halide uses a functional style code with Funcs being the means of storing intermediate

values. Index variables, such as x and y, are used on each Func, but their bounds are only defined

later. By hiding the inherent loops from the algorithm, we can later manipulate the nature of loops

to improve our hardware implementation during Halide scheduling.

Code 3.1 shows the algorithm for the cascade application. It consists of two 3 × 3 convolutions

that use kernel as the weights for those convolutions. Since the weights sum up to 16, this value

is normalized out on lines 21 and 29. The convolutions are performed using reduction domains

(RDoms), which introduces a set of reduction variables (r.x and r.y) as well as loops to perform

the reduction. The reduction domain definition, RDom r(0, 3, 0, 3), defines a two-dimensional

reduction domain with initial value 0 and extent 3, meaning each is a 3× 3 reduction. The usage of

the reduction domains on lines 20 and 25 with the += operator shows that the reduction is adding

each partial result a defined Func. The RDom accumulation on line 20 is an update to the initial

value for Func conv1. Line 19 shows the initialization stage where each index point is set to 0; then,
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line 20 is the accumulation to the same Func. These two lines produce two separate loopnests, and

are scheduled separately using conv1 and conv1.update() respectively. In the next section, we see

how scheduling Funcs change their loopnests and execution.

3.3 Halide Scheduling

Halide scheduling is a unique aspect of the Halide language where loop transformations are added

separately from the algorithm definition. Halide schedules strive to make the code run faster.

Schedules alter the branching structure, affect locality for memories, and create parallel code. The

success with separated scheduling in Halide has inspired other works to also use a decoupled schedule

[16,49,55,92]. Below we explore the scheduling of the cascade application in Code 3.1 by introducing

scheduling primitives gradually while measuring their effects on runtime.

split(), reorder(), and tile()

split, reorder, and tile are used to modify loops by strip mining and interchanging their order.

In Halide, execution on a smaller tile of the input image is commonly beneficial since the full input

image does not fit in a CPU cache. split is used on a loop to break it into two separate loops:

an inner loop and an outer loop. split is then combined with reorder to have the inner loops

executed before the outer loops. Using two splits and a reorder on a 2D image can create a loop

order xinner, yinner, xouter, youter from innermost to outermost. Due to the frequency of this exact

scheduling sequence occurring, tile is the syntactic sugar to do these splits and then reorder.

Code 3.2 shows how the cascade algorithm in Code 3.1 can be tiled. The scheduling to generate

the tiling is shown on line 3 (on the left). Alternatively, one could use split and reorder as shown

in lines 6-9. The original x and y loops are broken into rectangular tiles of 512 × 32. Lines 1-4 of

the generated loopnest (pseudocode on the right) show the iteration order. The variables for the

number of tiles in the x and y directions are calculated at runtime based on the input image size.

Lines 5 and 6 show how the tile indices are used with the inner indices to calculate the original image

indices. The generated loopnest, however, provides little benefit on its own. All computation is by

default computed inline leading to lots of recomputation. The nested reductions lead to 81 loads

and multiply-accumulates for each output pixel even though much of the computation overlaps with

previous iterations. We use the next scheduling primitives to overcome this issue.

store at() and compute at()

store at and compute at are used to assign where buffers are created and populated. store at

denotes which Funcs should be stored as intermediates in buffers. The default is that Halide inlines

all computation resulting in recomputation of previously computed values. By creating intermediate
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1 // Schedule 1: tiled loops

2 output

3 .tile(x,y, xo,yo , xi,yi, 512 ,32);

4

5 // This is equivalent to:

6 // output

7 // .split(x, xo , xi , 512)

8 // .split(y, yo , yi , 32)

9 // .reorder(xi, yi, xo, yo);

10

11 // Manually -tuned time: 3643.11 ms

1 for yo = 0 to img_y_tiles:

2 for xo = 0 to img_x_tiles:

3 for yi = 0 to 32: // inner tiled loops

4 for xi = 0 to 512:

5 int x = xo * 512 + xi;

6 int y = yo * 32 + yi;

7 allocate conv2[uint16 * 1];

8 for r2.y = 0 to 3:

9 for r2.x = 0 to 3:

10 allocate conv1[uint16 * 1];

11 for r.y = 0 to 3: // all inline

12 for r.x = 0 to 3:

13 allocate kernel[int32 * 9];

14 kernel = ...

15 conv1 [0] += kernel(r.x, r.y)

16 * input(x + r.x, y + r.y);

17 allocate kernel[int32 * 9];

18 kernel = ...

19 conv2 [0] += kernel(r2.x, r2.y)

20 * conv1 [0] / 16;

21 output(x, y) = conv2 [0] / 16;

Code 3.2: An example schedule for the cascade app shown in Code 3.1. This Halide schedule (on
the left) tiles the output into 512×32 blocks. The default scheduling leaves all producers computed
inline with output. This leads to excessive recomputation and a slow baseline execution time. The
generated loopnest (pseudocode on the right) shows the tiled loops and computation locations.

buffers, the CPU stores the computed values. store at takes an argument on which loop level to

allocate the buffer. Halide’s loopnests are constructed based on the output and producer-consumer

dependencies, so the store at loop level must be one of the loops in its consumer chain. The Func

allocation then is sized such that all calculation of Func within the buffer’s scope are stored. Thus,

the user can influence the buffer size based on the bounds of the enclosed calculations. This is helpful

for ensuring that buffers fit in the cache to decrease execution time due to temporal locality.

compute at is used in conjunction with store at to specify at which loop level a buffer is filled.

compute at takes an argument on which loop level to fill the buffer with values. All producer

values needed to create an iteration of the consumer is populated into the buffer. By defining at

what granularity the buffer is populated, both sliding window and storage folding optimizations

can improve the generated code. Sliding window ensures that values stored in the buffer are not

recomputed. Storage folding then determines if the buffer size can be reduced by implementing it as

a circular buffer where consumed data space can be reclaimed and reused for future computation.

Both of these analyses are done at compile time so that execution and buffer sizing can be statically

known. Computing at inner levels provides greater opportunity for storage folding, but also leads

to a serial dependence where parallelism is hampered. The extreme case of never recomputing

output values leads to an inability to parallelize work, since each output tile overlaps slightly with

its neighbors. Instead, it is common to tile the output to allow for parallel threads to work on

different tiles and allow for some redundant work at the boundary of tiles.
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1 // Schedule 2: memory granularity

2 output

3 .store_root ()

4 .compute_root ()

5 .tile(x,y, xo,yo , xi,yi, 512 ,32);

6

7 // allocate and compute at xo

8 conv1_norm

9 .store_at(output , xo)

10 .compute_at(output , xo);

11

12 kernel

13 .store_at(output , xo)

14 .compute_at(output , xo);

15

16 // Manually -tuned time: 394.655 ms

1 for yo = 0 to img_y_tiles:

2 for xo = 0 to img_x_tiles:

3 allocate kernel[int32 * 9]; // allocate at xo

4 kernel = ...

5 allocate conv1_norm[uint16 * 514 * 34];

6 for yi = 0 to 34:

7 for xi = 0 to 514:

8 int x = xo*512 + xi; int y = yo*32 + yi;

9 allocate conv1[uint16 * 1];

10 conv1 [0] = 0;

11 for r.y = 0 to 3:

12 for r.x = 0 to 3:

13 conv1 [0] += kernel(r.x, r.y)

14 * input(x + r.x, y + r.y);

15 conv1_norm(x,y) = conv1 [0] / 16;

16 for yi = 0 to 32:

17 for xi = 0 to 512:

18 int x = xo*512 + xi; int y = yo*32 + yi;

19 allocate conv2[uint16 * 1];

20 conv2 [0] = 0;

21 for r2.y = 0 to 3:

22 for r2.x = 0 to 3:

23 conv2 [0] += kernel(r.x, r.y)

24 * conv1_norm(x + r.x, y + r.y);

25 output(x,y) = conv2 [0] / 16;

Code 3.3: Schedule 2 (on the left) adds on storage and computation locations for conv1 norm and
kernel. This stores and computes a tile of the first convolution that is small enough that it is cached
by the time it is used in the next convolution. This speeds up the computation time by 9.23×.

Code 3.3 shows store and compute levels added to the cascade app. The output is by definition

the root level, so store root and compute at are provided simply for clarity. Both conv1 norm and

kernel are stored at the xo tile level, leading to their allocations within that loop level. They are

computed at the same level, leading to a tile of conv1 norm being calculated before a tile of the

output is calculated. Notice that in lines 6 and 7 of the loopnest, the producer tile is 514×34. This

is because the 3× 3 convolution creates a halo of a slightly larger producer tile than consumer tile.

These halos lead to recomputation of border pixels in the producer, but this is worth the benefit of

caching the results.

unroll()

unroll removes iteration loops by duplicating the statements in the body. Loop unrolling is helpful

because it removes branch instructions and jumps in the program. Branches disrupt the predictable

instruction sequence leading to worse execution time. When unrolling a loop, the iteration variable

is replaced by all values that it would have had. Replacing iteration variables with constants can

then lead to further simplification of the generated code. Generally, small loops are unrolled to

improve the execution time, and LLVM provides some of these optimizations by default. In our

example schedule, we disable this LLVM optimization to show how this optimization affects runtime
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1 // Schedule 3: unrolled reductions

2 output

3 .store_root ()

4 .compute_root ()

5 .tile(x,y, xo,yo , xi,yi, 512 ,32);

6

7 // unroll reduction

8 conv2.update ()

9 .unroll(r2.x). unroll(r2.y);

10

11 conv1_norm

12 .store_at(output , xo)

13 .compute_at(output , xo);

14

15 // unroll reduction

16 conv1.update ()

17 .unroll(r.x). unroll(r.y);

18

19 kernel

20 .store_at(output , xo)

21 .compute_at(output , xo);

22

23 // Manually -tuned time: 124.455 ms

1 for yo = 0 to img_y_tiles:

2 for xo = 0 to img_x_tiles:

3 allocate kernel[int32 * 9];

4 kernel = ...

5 allocate conv1_norm[uint16 * 514 * 34];

6 for yi = 0 to 34:

7 for xi = 0 to 512:

8 int x = xo*512 + xi; int y = yo*32 + yi;

9 allocate conv1[uint16 * 1];

10 conv1 [0] = 0;

11 // unrolled reductions for 9 updates

12 conv1 [0] += input(x,y)

13 * kernel (0 ,0);

14 ...

15 conv1 [0] += input(x+2,y+2)

16 * kernel (2 ,2);

17 conv1_norm(x,y) = conv1 / 16;

18 for yi = 0 to 32:

19 for xi = 0 to 512:

20 int x = xo*512 + xi; int y = yo*32 + yi;

21 allocate conv2[uint16 * 1];

22 conv2 = 0;

23 // unrolled reductions for 9 updates

24 conv2 += conv1_norm(x,y)

25 * kernel (0 ,0);

26 ...

27 conv2 += conv1_norm(x+2,y+2)

28 * kernel (2 ,2);

29 output(x,y) = conv2 / 16;

Code 3.4: Schedule 3 (on the left) adds in unroll directives so that the small reduction loops occur
on individual instructions rather than a loop. The generated loopnest (on the right) consists of nine
updates for each convolution; we show just two each for conciseness. By removing the branches from
the loops, our speed increases by another 3.17×.

when the user is given full control of the scheduling.

Code 3.4 shows the cascade application after both convolutions are fully unrolled. Instead of

the reductions being two loops, the reductions consist of nine updates to the value. The unroll

scheduling primitive takes an optional parameter to unroll a given number of iterations; otherwise

it defaults to unrolling all iterations. Note that in the Halide schedule, the unroll is performed on

the update() stage of each Func. This refers to the algorithm’s accumulation statements on lines

20 and 25 of Code 3.1 rather than the initializations. This optimization leads to another 3.17×
reduction in execution time.

vectorize() and parallel()

vectorize and parallel increase the parallel execution of the generated code. With these schedul-

ing primitives the code generator adds the necessary decorators to the generated C++ code. The

Halide schedule by default has all iteration loops run serially. By adding these scheduling primitives,
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1 // Schedule 4: loop parallelism

2 const int vec = 16;

3 output

4 .store_root ()

5 .compute_root ()

6 .tile(x,y, xo,yo , xi,yi, 512 ,32)

7 // perform vector instructions

8 .vectorize(xi , vec)

9 // threads run tiles in parallel

10 .parallel(yo);

11

12 conv2.update ()

13 .unroll(r2.x). unroll(r2.y);

14

15 conv1_norm

16 .store_at(output , xo)

17 .compute_at(output , xo)

18 // perform vector instructions

19 .vectorize(x, vec);

20

21 conv1.update ()

22 .unroll(r.x). unroll(r.y);

23

24 kernel

25 .store_at(output , xo)

26 .compute_at(output , xo);

27

28 // Manually -tuned time: 2.96118 ms

1 parallel -for yo = 0 to img_y_tiles: // in parallel

2 for xo = 0 to img_x_tiles:

3 allocate kernel[int32 * 9];

4 kernel = ...

5 allocate conv1_norm[uint16 * 514 * 34];

6 for yi = 0 to 34:

7 for xi = 0 to 32:

8 int x = xo*512 + xi; int y = yo*32 + yi;

9 allocate conv1[uint16 * 16];

10 conv1[x16] = x16 (0); // vector instructions

11 conv1[x16] += input[x16](x,y)

12 * x16(kernel (0 ,0));

13 ...

14 conv1[x16] += input[x16](x+2,y+2)

15 * x16(kernel (2 ,2));

16 conv1_norm[x16](x,y) = conv1[x16] / x16 (16);

17 for yi = 0 to 32:

18 for xi = 0 to 32:

19 int x = xo*512 + xi; int y = yo*32 + yi;

20 allocate conv2[uint16 * 16];

21 conv2[x16] = x16 (0); // vector instructions

22 conv2[x16] += conv1_norm[x16](x,y)

23 * x16(kernel (0 ,0));

24 ...

25 conv2[x16] += conv1_norm[x16](x+2,y+2)

26 * x16(kernel (2 ,2));

27 output[x16](x,y) = conv2[x16] / x16 (16);

Code 3.5: Our final schedule (on the left) adds in vector instructions for the convolutions, as well
as sets the tiles to run in parallel on separate threads. This dramatically increases the parallel
computation, leading to an increase of speed by another 42×. Overall, 1230× faster than the
original schedule in Code 3.2.

the loops are modified. vectorize replaces several iterations of the specified loop and runs them

using SIMD instructions. These instructions work on vectors of data allowing the CPU arithmetic

units to execute multiple iterations simultaneously. Vectorizing works best with inner loops so that

spatial locality can exploit cache lines prefetching data stored adjacent to each other. LLVM again

will attempt to vectorize the code, but we disable this to make the contribution of vectorization

more evident.

Halide’s parallel scheduling primitive instructs the generated code to assign different iterations

of the loop to different threads on the machine. Each thread runs different iterations simultaneously

leading to better execution times. It is best to assign the outer loops to different threads to ensure

that the threads do not collide when trying to access the same memory locations.

Code 3.5 shows how we can use these scheduling primitives on the cascade application. The

vectorization takes a vector width, which we use as 16 words in this instance. Each of the computed

blocks are vectorized, leading to all of the inline computation also being vectorized, as seen on the

loopnest on the right. The casts to vectors are shown with x16() while vector memory accesses



CHAPTER 3. HALIDE: SCHEDULING TO HARDWARE 29

are shown with [x16]. The vectorized execution decreases the innermost loop iterations from 512

to 32. Furthermore, the conv1 and conv2 allocations for accumulation are expanded to vectors to

accommodate the vector execution. The Halide parallel primitive decorates the outermost loop

to be run in parallel, which does not change the generated loopnest significantly, but helps the

execution time dramatically. By increasing the parallelism in our code, the code runs another 42×
faster. Figure 3.1 shows the progress of execution time by adding Halide scheduling. Overall, the

scheduling increases the execution time by 1230× over the default Halide schedule.
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Figure 3.1: Execution time for the sequence of Halide schedules. On a log scale, the execution time
consistently decreases as proper scheduling is added.

3.4 Scheduling to FPGAs

Halide’s scheduling targets include CPUs, GPUs, and even the Hexagon DSP. However, no back-end

for FPGAs exist in the mainline branch of Halide. Several research projects [57,76,92,106] extend the

Halide compiler to add FPGAs as a back-end target. Halide HLS [76], written by Jing Pu, brings

line-buffered image processing pipelines to Xilinx FPGAs by generating HLS C for Vivado HLS.

Standard Halide scheduling primitives are used, but interpreted in a similar style to HLS. Notably,

in HLS the unroll primitive is used for hardware duplication due to the semantics of translating HLS

C into hardware. Our work builds upon Jing’s work in Halide HLS, so we focus on the scheduling

primitives added in that work. Below, we go through newly introduced scheduling primitives, as

well as how existing primitives perform differently when targeting FPGAs.

accelerate()

accelerate is a new scheduling primitive that creates the overall accelerator interface in a Halide

application. Within the overall application, the hardware accelerator runs a subset of the entire

application. This scheduling primitive specifies which Funcs and loops are in the accelerator. The
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scheduling primitive is: accelerate(input funcs, cycle var, block var). The scheduling prim-

itive is performed on the output Func for the FPGA accelerator. The output Func is a data stream,

while input funcs is a list of Funcs that are streamed into the accelerator. cycle var refers to the

inner variable, corresponding to a single cycle of accelerator execution. block var denotes the loop

level outside the bounds of the accelerator. Many times the input images are too large to fit in the

accelerator’s memory. Therefore, the input image is tiled and a single tile is streamed into the accel-

erator on each execution. To complete the entire application, the host runs the accelerator on each

tile. block var shows which output loop variable represents a single execution of the accelerator.

split(), reorder(), tile(), and bound()

Similar to CPU execution, FPGAs need scheduling to split loops and determine the loop order.

FPGAs benefit from memories where the size is statically known. split and tile set the inner loop

to a static size which helps create static buffers. Similarly, bound sets the expected iteration range

of an index variable for the input or output. All of these variables help to create memories and

iteration counts of a fixed size. reorder rearranges the loop variables to ensure that loop variables

determined at runtime, such as the number of tiles, are placed outside the bounds of the accelerator.

store at(), compute at(), and linebuffer()

store at and compute at create memories for CPU implementations. For image processing appli-

cations, line buffers efficiently buffer data between computation kernels as described in Section 2.1.

Line buffers use far less memory than a complete tile due to the smaller working set size during execu-

tion. Furthermore, shift registers and buffer banking for multiple consumers increase the bandwidth

of a memory. These lead to less of a concern for the loop levels. Instead, we can reuse all values sent

into the accelerator by using a store at loop level of the full accelerated tile; and we can populate

the memory on every cycle, meaning we compute at the innermost loop. Since these two options are

so common for buffering memories, the linebuffer scheduling primitive was introduced by Halide

HLS as syntactic sugar for these options for store and compute level.

fifo depth()

fifo depth creates a fixed-length FIFO between a producer-consumer pair. The user must create

FIFOs when reconvergent data streams require additional buffering. This scheduling pass informs

the code generator to create additional buffering on the FPGA. Halide HLS creates streams using

ready-valid interfaces, but the application deadlocks without the appropriate FIFO insertion when

streams reconverge with different delays. The user is expected in Halide HLS to calculate this FIFO

depth manually, but integer linear programming could also calculate the necessary delay [40].
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in()

in is a scheduling primitive useful for creating memory hierarchies. Accelerators typically have

a memory hierarchy where subsets of data are copied from one memory to another. The FPGA

accelerator designs in Interstellar [106] use explicit copies between push memories. Halide provides

the in scheduling primitive to create these duplicate copies of data. These copies perform no

computation, but provide the user with a way to represent the memory hierarchy transfers that

exist in the hardware accelerator.

unroll()

unroll increases parallelism using hardware duplication. Unrolling a loop reduces the number of

iterations by duplicating the body of the loop along with advancing the index variable. For an

HLS-style interpretation of the program, this results in more computation hardware in the mapped

application. unroll is thus used to increase the parallelism of the application to make the execution

faster by using more resources. Unrolling computation also changes the memory bandwidth needed to

serve the computation kernel hardware. Halide HLS creates additional memory streams to facilitate

this increased traffic. Memory ports are shared whenever multiple consumers need the same data,

such as for overlapping stencils. This effectively allows for all aspects of the memory, computation,

and network to be duplicated to ensure that parallel hardware does not bottleneck at any particular

resource.

We use unroll to increase the parallelism of the application. However, note that for FPGAs there

is no interpretation of vectorize or parallel. Their absence is due to no SIMD processing elements

or parallel threads on the FPGA. Instead, unroll provides all means of parallelism by duplicating

compute hardware. Unrolling all hardware components by n leads to hardware that executes n×
faster. We use similar HLS semantics as we extend Halide lowering to CGRA hardware.

3.5 Scheduling to CGRAs

We extended the Halide compiler further to target our custom Amber CGRA, whose hardware

features are described in Section 2.3. Scheduling for CGRAs is fairly similar to FPGAs, since

both are reconfigurable accelerators. We take a similar approach to Halide HLS [76] by using HLS

semantics. This means that unrolling loops leads to hardware duplication and data is streamed

between compute kernels. CGRAs differ from FPGAs due to higher-level compute blocks and

specialized memory configurations. Many of these complexities lead to a specialized mapper. In

the Halide scheduling, we assist the back-end compiler by tagging memories with their intended

memory modules to simplify mapping. We also clean up the scheduling semantics by separating the

accelerator definition into two scheduling primitives. Code 3.6 shows how all of these scheduling
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1 /* CGRA Schedule */

2 Var xii , xio , yii , yio , xi , xo , yi, yo;

3 output.bound(x, 0, outImgSizeX)

4 .bound(y, 0, outImgSizeY );

5

6 // Accelerate 360 x360 tiles in GLB

7 hw_output.in(). compute_root ()

8 .tile(x,y, xo,yo , xi,yi , 360 ,360)

9 .hw_accelerate(xi , xo);

10

11 // Send 60x60 tiles to CGRA fabric

12 hw_output

13 .tile(x,y, xio ,yio , xii ,yii , 60 ,60)

14 .compute_at(hw_output.in(), xo)

15 .store_in(MemoryType ::GLB);

16

17 // conv2 kernel with unrolled reduction

18 conv2_norm.compute_at(hw_output , xio);

19 conv2.update ()

20 .unroll(r2.x). unroll(r2.y);

21

22 // conv1 kernel with unrolled reduction

23 conv1_norm.compute_at(hw_output , xio);

24 conv1.update ()

25 .unroll(r.x). unroll(r.y);

26

27 // MemoryTile and GLB for input stream

28 hw_input.in().in()

29 .compute_at(hw_output , xio);

30 hw_input.in()

31 .compute_at(hw_output.in(), xo)

32 .store_in(MemoryType ::GLB);

33 hw_input.accelerator_input ();

34

35 kernel.compute_at(hw_output , xio);

Code 3.6: An example CGRA schedule for Code 3.1. This algorithm runs at 1 pixel/cycle with two
buffers: one for each 3 × 3 convolution. A memory hierarchy is created for both the hw input and
output. Tiled execution sends 360× 360 tiles to the GLB, which in turn sends 60× 60 tiles to the
CGRA fabric.

primitives create a CGRA schedule for the cascade application. Below we describe how each of the

scheduling primitives are used for CGRA scheduling.

hw accelerate(), stream to accelerator(), and accelerator input()

hw accelerate, stream to accelerator, and accelerator input denote the output and input

Funcs for the hardware accelerator. In this way, hardware accelerator input and output bounds can

be defined within applications, with the rest of the application run on the host CPU. hw accelerate

denotes the output stream of the application while stream to accelerator identifies each of the

input streams. As an alternative for specifying accelerator inputs, accelerator input is a more pre-

cise way of defining inputs, especially when there is a complex memory hierarchy. accelerator input
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denotes the boundary Func on the host side before any memory copies to the accelerator. However,

this primitive requires any memory copies to be specified by the user. stream to accelerator is a

simple primitive for small test cases that bakes in an assumption for the memory hierarchy: a single

copy from the host to the accelerator.

These scheduling primitives for defining accelerators have many similarities to their corresponding

FPGA definitions, but with some important differences. hw accelerate is very similar to the FPGA

accelerate call, except it does not include the input Funcs or a cycle variable. The innermost loop

for each loopnest is assumed to iterate for each cycle. If an inner loop should be entirely executed in

a single cycle, the user should unroll that loop. Another change is removing the list of input Funcs.

Instead, stream to accelerator or accelerator input is used on each input Func. One reason

for this change is that Halide’s scheduling language tends to be written from output to input. The

scheduling calls then specify the consumer Func for storage and compute loop levels. accelerate

broke from this convention by specifying producer Funcs. The new stream to accelerator and

accelerator input adhere to this convention by using the scheduling primitives directly on the

producer Funcs.

store at() and compute at()

Both store at and compute at are again used in tandem to define intermediate memories. We

schedule our application memories that consist of line buffers and double buffers, as introduced in

Chapter 2. Our target CGRA contains memory primitives that implement efficient line buffers with

adequate memory bandwidth, as well as double buffers for DNN applications. Instead of specifying

the exact memory scheduling, we leave this memory mapping step to a separate compiler stage.

In order to leave this memory scheduling decision for later, we require that the user schedule mem-

ories in serial order. This means that in Halide, the compute at variable is always the same variable

as that provided for store at. This generates a schedule where each Func is computed with a serial

loopnest with no interleaving. This corresponds to compute at(block var).store at(block var),

where block var is the accelerator loop variable for a block run on the CGRA fabric. Later during

mapping, the loops are analyzed to determine if loop fusion or loop pipelining should happen. In

both cases, the loopnests are later scheduled such that efficient hardware implementations are used.

in() and store in()

Our target CGRA consists of multiple levels of hierarchy, including the host DRAM, the accelerator’s

global buffer, memory tiles on the CGRA fabric, and ponds within processing elements. There are

several scheduling primitives used for creating these memory hierarchies. in is a scheduling primitive

that generates a copy instruction, which is the computation that occurs for transfers in the memory

hierarchy. Using in, the user can create multiple copies of data as it travels through the memory

hierarchy from the host to the CGRA fabric.
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store in helps the memory mapper determine what type of physical memory to implement

for a Func. Our CGRA consists of different memory primitives of different sizes, as described

in Section 2.3. The GLB is the highest level that communicates between the Host memory and

CGRA fabric. The CGRA fabric consists of MemoryTiles that store values on a wide SRAM. Each

processing element has a smaller register file, known as a Pond. Finally, a special implementation

of the memory tile is a ROM, where the addressing is controlled by external calculation. These

bolded memory types are added to Halide’s existing set of memory types to assist the subsequent

mapping phase to these memory primitives.

unroll()

Similar to the FPGA, we use unroll to create parallelism for the CGRA. unroll informs the

compiler to duplicate the hardware to increase the rate of a component. Small reduction loops are

typically unrolled to allow the hardware to run at a single pixel per cycle. The innermost loop

can then be unrolled even more to increase the rate further. It is important to unroll each kernel

to match the rates. Without proper rate matching of memory transfers, initialization, and kernel

computation, a scheduled application will be slowed to the constricting rate. For DNNs, unrolling

increases the number of multiply-accumulate operators that are generated for the compute kernel.

Creating a grid of multipliers is as simple as reordering two loops to become the innermost loops,

and then unrolling the innermost reduction loops. This provides a large computation kernel that

can map to the CGRA.

For our CGRA, neither vectorize or parallel is used. However, other CGRAs use vector

processors, so mapping to them would have a use case for the vectorize scheduling primitive.

parallel could also be implemented at the host-CGRA interface to denote multiple iterations of

an application running on a single CGRA. This can be useful since smaller applications with less

unrolling have better PnR and pipelining results. Implementing parallel instances of a smaller

application could be another way to achieve parallelism and hardware utilization on a CGRA.

compute share()

Our applications can normally be mapped to efficient implementations with the scheduling primitives

above. One exception, though, is when compute kernels have low utilization. In these instances,

creating hardware that is exclusively used by a single compute kernel may not be an efficient use

of valuable compute tiles. Instead, it would be best if we could share compute tiles among several

underutilized compute kernels.

compute share is a new scheduling primitive that we introduced to provide an efficient implemen-

tation for underutilized compute kernels. This scheduling primitive allows multiple exact matching

compute kernels to share the same compute tiles. We go into more detail about the implementation

and compiler implications in Chapter 5.
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1 output.bound(x, 0, 368 * 16);

2 output.bound(y, 0, 196 * 20);

3 hw_output.in(). compute_root ();

4 hw_output.in()

5 .tile(x, y, xo , yo , xi, yi, 368 * 16, 196 * 20) // GLB size

6 .reorder(xi, yi, xo , yo)

7 .hw_accelerate(xi , xo);

8 hw_output.in()

9 .unroll(xi, myunroll , TailStrategy :: RoundUp );

10 hw_output

11 .tile(x, y, xo , yo , xi, yi, 368, 196) // tile size

12 .reorder(xi, yi, xo , yo);

13 hw_output.compute_at(hw_output.in(), xo);

14 hw_output.store_in(MemoryType ::GLB);

15 hw_output.unroll(xi , myunroll , TailStrategy :: RoundUp );

16

17 cim.compute_at(hw_output , xo). unroll(x, myunroll , TailStrategy :: RoundUp );

18 lgxx.compute_at(hw_output , xo);

19 lgyy.compute_at(hw_output , xo);

20 lgxy.compute_at(hw_output , xo);

21 lgxx.update (). unroll(box.x). unroll(box.y). unroll(x, myunroll , TailStrategy :: RoundUp );

22 lgyy.update (). unroll(box.x). unroll(box.y). unroll(x, myunroll , TailStrategy :: RoundUp );

23 lgxy.update (). unroll(box.x). unroll(box.y). unroll(x, myunroll , TailStrategy :: RoundUp );

24 lgxx.unroll(x, unroll , TailStrategy :: RoundUp );

25 lgyy.unroll(x, unroll , TailStrategy :: RoundUp );

26 lgxy.unroll(x, unroll , TailStrategy :: RoundUp );

27 lxx.compute_at(hw_output , xo). unroll(x, myunroll , TailStrategy :: RoundUp );

28 lyy.compute_at(hw_output , xo). unroll(x, myunroll , TailStrategy :: RoundUp );

29 lxy.compute_at(hw_output , xo). unroll(x, myunroll , TailStrategy :: RoundUp );

30

31 kernel_x.compute_at(hw_output , xo);

32 kernel_y.compute_at(hw_output , xo);

33 kernel_x.unroll(x). unroll(y). unroll(x, myunroll , TailStrategy :: RoundUp );

34 kernel_y.unroll(x). unroll(y). unroll(x, myunroll , TailStrategy :: RoundUp );

35 kernel_x.compute_at(hw_output , xo);

36 kernel_y.compute_at(hw_output , xo);

37 kernel_x.unroll(x). unroll(y). unroll(x, myunroll , TailStrategy :: RoundUp );

38 kernel_y.unroll(x). unroll(y). unroll(x, myunroll , TailStrategy :: RoundUp );

39

40 grad_x_unclamp.compute_at(hw_output , xo);

41 grad_y_unclamp.compute_at(hw_output , xo);

42 grad_x_unclamp.update (). unroll(r.x). unroll(r.y). unroll(x, myunroll , TailStrategy :: RoundUp );

43 grad_y_unclamp.update (). unroll(r.x). unroll(r.y). unroll(x, myunroll , TailStrategy :: RoundUp );

44 grad_x_unclamp.unroll(x, myunroll , TailStrategy :: RoundUp );

45 grad_y_unclamp.unroll(x, myunroll , TailStrategy :: RoundUp );

46 gray.compute_at(hw_output , xo). unroll(x, myunroll , TailStrategy :: RoundUp );

47

48 hw_input.in().in(). compute_at(hw_output , xo); // represents the mem tile

49 hw_input.in().in()

50 .unroll(c)

51 .unroll(x, myunroll , TailStrategy :: RoundUp );

52 hw_input.in(). compute_at(hw_output.in(), xo); // represents the glb level

53 hw_input.in(). store_in(MemoryType ::GLB);

54 hw_input.in(). unroll(c)

55 .unroll(x, myunroll , TailStrategy :: RoundUp );

56 hw_input.compute_root ()

57 .accelerator_input ();

Code 3.7: Full original schedule for Harris with a memory hierarchy, unrolled rate, and buffers.
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3.6 Declarative Scheduling

While the above scheduling primitives all work for describing a schedule with a hardware target,

some of the scheduling is not intuitive. Creating a memory hierarchy with tiled loops is cumbersome,

and is a difficult schedule to read. Code 3.7 shows the schedule for the Harris application. Due to

the large number of buffers, there is a lot of duplication needed to create each of the buffered

intermediates. Additionally, each of the streams are unrolled to match the rates.

1 // Declarative Schedule:

2 // Create three level memory hierarchy with iteration_order (and set rate)

3 auto level1 = IterLevel("CGRA", {{x, 368}, {y, 196}}); // tile size

4 auto level2 = IterLevel("GLB", {{x, 1}, {y, 1}}); // No GLB -specific tiling

5 auto level3 = IterLevel("host", {{x, 16}, {y, 20}}); // host tiling

6 hw_output.output_rate(myunroll)

7 .iteration_order ({level1 , level2 , level3 });

8

9 // Specify compute variables for memory hierarchy

10 auto x0 = Var("x0");

11 auto compute_cgra = hw_output.get_looplevel("CGRA", x0);

12 auto compute_glb = hw_output.get_looplevel("GLB", x0);

13 auto compute_host = LoopLevel ::root ();

14

15 // Create hardware accelerator

16 hw_output.get_memory_level("GLB")

17 .hw_accelerate(Var("x1"), x0);

18

19 // Create memories (and set rate)

20 hw_output.get_memory_level("GLB"). output_rate(myunroll)

21 .create_memories ({cim , lgxx , lgyy , lgxy , lxx , lyy , lxy ,

22 grad_x_unclamp , grad_y_unclamp , gray}, compute_cgra );

23 kernel_x.compute_at(compute_cgra ). unroll(x). unroll(y)

24 .unroll(x, myunroll , TailStrategy :: RoundUp );

25 kernel_y.compute_at(compute_cgra ). unroll(x). unroll(y)

26 .unroll(x, myunroll , TailStrategy :: RoundUp );

27

28 // Stream input to accelerator (and set rate)

29 hw_input.output_rate(myunroll)

30 .stream_to_accelerator ({"CGRA", "GLB", "host"},

31 {compute_cgra , compute_glb , compute_host });

32 hw_input.in(). get_memory_level("CGRA"). unroll(c);

33 hw_input.get_memory_level("GLB"). unroll(c);

Code 3.8: Full declarative schedule for Harris. This schedule is equivalent to Code 3.7, but with
new syntactic sugar. These new scheduling primitives make assumptions common for the CGRA.

To provide an alternative to this scheduling, we also developed some syntactic sugar to provide

these schedules with a more readable syntax. These new scheduling primitives do not implement

anything new, but simply call the above scheduling primitives internally. One motivation for this

new scheduling scheme is to specify properties of the hardware in a more declarative way. The

scheduling primitive arguments are exactly the target loop iterations, loop ordering, and output

rate that the user declares. Code 3.8 shows this new syntax, which implements the same schedule as
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1 // Define iteration levels in the memory hierarchy

2 auto mem_lvl = IterLevel("CGRA", {{x, 368} ,{y, 196}}); // tile size

3 auto glb_lvl = IterLevel("GLB", {{x, 1}, {y, 1}}); // no specific GLB tiling

4 auto hst_lvl = IterLevel("host", {{x, 16}, {y, 20}}); // host tiling

5 // Set the output memory hierarchy order

6 hw_output.iteration_order ({mem_lvl , glb_lvl , hst_lvl });

7

8 // Get handles for different loop levels

9 Var x0 = Var("x0"); // Internal variable x in compiler

10 auto x_cgra = hw_output.get_looplevel("CGRA", x0);

11 auto x_glb = hw_output.get_looplevel("GLB", x0);

12

13 // Use the memory level to define the accelerator

14 Var x1 = Var("x1");

15 hw_output.get_memory_level("GLB"). hw_accelerate(x1, x0);

Code 3.9: Define a memory hierarchy using new declarative memory scheduling. IterLevel

and iteration order defines the memory hierarchy on the output. get looplevel and
get memory level provide handles to variables and Funcs for further scheduling.

Code 3.7. Next, we go into detail for each of the new scheduling primitives by going through each

of the components of this new Harris schedule.

IterLevel() and iteration order()

One of the unique elements of hardware accelerators is the memory hierarchy. We see in both GPUs

and hardware accelerators that an application needs to take values from the CPU host memory and

copy those values into a software-managed memory hierarchy. One common hierarchy structure has

memory levels each with their own number of iterations, and each larger memory level includes the

values of the lower memories.

IterLevel is a way of defining an iteration level in a memory hierarchy. It consists of a name

(so that the generated loops have more understandable names), and a sequence of iteration loops.

The loops are listed from innermost to outermost level, and each loop variable is bundled with its

size at that level. Note that a variable can be used multiple times to specify multiple loop splits.

Multiple iteration levels are created, and then they can be ordered on the full computation using

iteration order. The combination of IterLevel and iteration order provides an alternative to

split, reorder, and in. Code 3.9 shows how a set of ordered loops can be defined with these new

scheduling primitives.

get memory level() and get looplevel()

With the creation of loops using a new iteration level scheduling primitive, we have created new

loops and memory levels. However, we also need a way of scheduling with these newly generated

loops and memory levels. Therefore, we introduced two scheduling primitives to provide handles
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to those components. get looplevel provides a handle to the new loop variable at a defined loop

level name. get memory level provides a handle to a Func (memory level) that is created with

IterLevel. Code 3.9 shows how these scheduling primitives are used.

stream to accelerator()

The input memory hierarchy is similar, but our original scheduling also used accelerator input to

specify which memory level involved the transfer from host to accelerator. For our new declarative

syntax, we again use the iteration levels defined using IterLevel. The stream to accelerator

function is then redefined with two new parameters: an input array of memory level names, and

then the equivalent output loop levels used as each of the compute levels. This syntactic sugar takes

the iteration levels and loop names to create the compute at statements needed by Halide to create

a memory hierarchy. We show how to use the new stream to accelerator to define the accelerator

interface below:

hw_output

.iteration_order ({mem_lvl , glb_lvl , host_lvl });

hw_output.get_memory_level("GLB")

.hw_accelerate(x1, x0);

hw_input

.stream_to_accelerator ({"CGRA", "GLB", "host"},

{x_cgra , x_glb , x_host });

create memories()

Our above syntactic sugar focuses on the memory hierarchy. Another component of hardware

schedules is the repetition of key scheduling arguments. An example of this repetition is in the

creation of memories between compute kernels. Each of these memories uses the same store and

compute level. To reduce repetition, we introduce create memories to specify a list of Funcs that

should have a memory, and then a loop level where they should be created. For example, in the

Harris application, we have multiple intermediates (seen as compute at in Code 3.7 on lines 17 to

46) that can be scheduled as CGRA memories using:

hw_output_glb

.create_memories ({cim , lgxx , lgyy , lgxy , lxx , lyy , lxy ,

grad_x_unclamp , grad_y_unclamp , gray}, compute_cgra;
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output rate()

In addition to the repetition of memories using store at, we also see lots of repetition of unroll.

Unrolling duplicates compute kernels and IO bandwidth. For image processing applications, we

typically want to match all of the rates so each of the compute kernels have a similar compute

utilization. Using the original scheduling primitives, the entire compute pipeline repeats the same

unroll primitive for every memory.

Instead, using the new declarative scheduling primitive, we can specify an output rate. We use

the output rate in conjunction with create memories to specify that each should be unrolled by

the same amount. Similarly, we can apply an output rate to an output iteration order and input

streaming declaration to increase the bandwidth of these interfaces. Below is an example:

hw_output.output_rate (8)

.iteration_order ({mem_lvl , glb_lvl , host_lvl });

hw_output.get_memory_level("GLB"). output_rate (8)

.create_memories ({blur , blur_out}, hw_output_cgra );

hw_input.output_rate (8)

.stream_to_accelerator ({"CGRA", "GLB", "host"},

{x_cgra , x_glb , x_host });

Note that all previous scheduling primitives have fairly straightforward Halide scheduling using

the original primitives. However, achieving a set rate by matching unrolling and loop iteration counts

is a little more difficult. Iteration counts are not expected to be exactly equal due to convolution

kernels shrinking produced images at the edges. Furthermore, the rate of a DNN layer is a lot harder

to quantify due to the bursty output of the tiles during the readout phase. Currently, you can set

the rate for an image processing application. This will properly unroll all of the compute kernels

and memory transfers for an application. For DNNs, output rate is harder to define as a single

integer, so output rate does not work for these applications. This scheduling primitive is a work in

progress, but is the start of redefining Halide scheduling for hardware accelerators in a declarative

way.

Generating Halide Schedules

As discussed above, the declarative scheduling primitives provide a new interface for the user, but in

reality are simply semantic sugar for the original scheduling primitives. When the Halide front-end

is given these new scheduling primitives, internally the compiler calls the corresponding original

scheduling primitives.

For example, IterLevel specifies the iteration loops at different levels. These structs are then

provided to the output Func. This results in a tiling of the output Func using the IterLevels

provided. To calculate the values of the original tiling call, the compiler takes the product of variables
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Figure 3.2: Declarative schedule for Harris application. Left uses original Halide primitives while the
right uses the new declarative scheduling. The scheduling lines are classified using different colors
to show that concepts are further grouped with our new declarative scheduling.

of the same name (all x’s multiplied together, and all y’s multiplied together). In our example in

Code 3.8, we have three IterLevels, which generate multiple in, compute at, and store in calls

for our memory hierarchy. The corresponding memory hierarchy created on the input side is created

by the new stream to accelerator. The memory hierarchy levels are given corresponding names,

and the compute level variables needed to create these original scheduling calls.

The next set of scheduling calls generate the intermediate memories and compute kernel paral-

lelism. create memories and output rate are provided the necessary parameters to generate the

original scheduling. store at and compute at use the provided memory level, while unroll uses

the output rate. Each of these scheduling primitives are applied to each Func in the list provided

create memories. In all, the declarative scheduling primitives have strong correspondence to the

original scheduling primitives, but provide a more compact and direct interface for scheduling to our

CGRA.
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Full Application: Harris

With these scheduling primitives, we can schedule a full application. Code 3.7 and Code 3.8 show

two versions of the same Harris schedule: original scheduling primitives and the new declarative

schedule. Figure 3.2 shows the mapping of these scheduling primitives between the two schedules.

Notice that the number of lines in the schedule decreases, mainly due to less repetition of memory

creation and unrolling. More importantly, I find that the declarative schedule is easier to read and

understand.

3.7 Summary

Halide is a high-level language for image and array processing applications known for its ability to

generate high-performance code by separating the algorithm from the schedule. Halide schedules

invoke loop transformations to optimize code execution by altering memory locality and parallelism.

It supports various hardware targets such as CPUs, GPUs, and DSPs. Extensions to Halide have

been made to target FPGAs using HLS as an intermediate. We choose to extend the Halide com-

piler to support reconfigurable accelerator targets more generally, including the Amber CGRA. Our

set of scheduling primitives for reconfigurable accelerators refine the scheduling used previously

for FPGAs, including the ability to define accelerator scope within an application, defining memory

hierarchies, and providing hardware duplication for additional parallelism. With declarative schedul-

ing, we simplify the specification of these hardware schedules with more readable syntactic sugar.

These schedules provide the necessary tools for application designers to create efficient application

executions on reconfigurable accelerators.



Chapter 4

Unified Buffers: a Memory

Abstraction

CGRAs pose a unique challenge for application mapping due to their higher-level hardware primi-

tives. In Section 2.3 we introduced our primary target, the Amber CGRA. This CGRA consists of

simple PE tiles that directly map from compute primitives. On the other hand, the memory tile is

more complex due to its shared SRAM port for both reads and writes, wide SRAM port that fetches

four words at a time, and embedded address generators. These complex memories are commonplace

on accelerators, which strive for high performance streaming of large amounts of data. In order to

more easily map an application to hardware, we created the unified buffer abstraction [59]. Our

unified buffer abstraction describes the data movement for every memory element in the applica-

tion. We found that the description of the memories and address generators were linked, so our

abstraction captures the intent of both of these components. Thus, the job of the front-end layer of

the compiler is to map the high-level application to a collection of unified buffers. Then separately,

a hardware mapper maps from the unified buffers to the custom hardware.

In the previous chapter, we introduced Halide as our front-end language. To lower Halide appli-

cations to the unified buffer abstraction, Halide runs optimization passes and a code generator. The

Halide passes transform the intermediate representation to fit the unified buffer abstraction. After

the code transformations, we can output the unified buffers and computation kernels in a format

that is ready to map to our hardware accelerator using our memory mapper called Clockwork [44].

Our group collaborated to design the unified buffer abstraction and compilation scheme, where my

contributions focus on the Halide front-end and codegen.

This chapter first specifies the parameters for the unified buffer abstraction. Then, we explain

how Halide is used to lower the application memories to the unified buffer abstraction. And lastly,

we describe the code generation to create the unified buffers that can be mapped using Clockwork.

42
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4.1 System Overview

(x+2, y+2) (x+1, y+2) (x+1, y) (x, y)

HalideIR

Abstract 
Unified Buffer

Physical 
Unified Buffer

Scheduling

Buffer Extraction

Buffer Mapping

RDom r1(0, 3, 0, 3), r2(0, 3, 0, 3);
conv1(x, y) += input(x + r1.x, y + r1.y) / 9;
conv2(x, y) += conv2(x + r2.x, y + r2.y) / 9;
conv2.in().tile(x, y, xo, yo, xi, yi, 60, 60)

.hw_accelerate(xi, xo);
conv2.update().unroll(r2.x).unroll(r2.y);
conv1.store_at(conv2.in(), xo).compute_at(conv2.in(), xo);
conv1.update().unroll(r1.x).unroll(r1.y);
input.store_at(conv2.in(), xo).compute_at(conv2.in(), xo);
input.stream_to_accelerator();

for (y, 0, 62)
for (x, 0, 62)
conv1(x, y) = (input(x,   y)   + input(x+1, y) + ..... +

input(x+1, y+2) + input(x+2, y+2)) / 9;
for (y, 0, 60)
for (x, 0, 60)
conv2(x, y) = (conv1(x,   y)   + conv1(x+1, y) + ..... +

conv1(x+1, y+2) + conv1(x+2, y+2)) / 9;

(x, y)
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Figure 4.1: The three compiler steps for the cascade example application. Scheduling generates tiled
loops, from which buffer extraction emits the conv1 unified buffer. This is mapped to shift registers
(SR) and our optimized memory tile (MEM) with aggregator (AGG) and transpose buffer (TB).

Our compiler system uses a modified Halide compiler as the first stage in translating Halide

code to the unified buffer abstraction. This modified Halide front-end parses application code,

then schedules and transforms it using an internal imperative intermediate representation known

as HalideIR, and finally generates a hardware representation of the application. The hardware

representation consists of two files: one representing the computation kernels, and one representing

the buffers. Figure 4.1 shows these steps for a small sample application.

During application compilation, we manipulate and modify HalideIR to create a version of the

application that can be readily converted to hardware primitives. The desired intermediate repre-

sentation for our compute kernels in HalideIR, right before conversion into hardware primitives, is

a compute pattern commonly used in high-level synthesis (HLS). In this interpretation of HalideIR,

for-loops are eventually mapped to control flow while mathematical operations become distinct hard-

ware computation units. Whereas CPUs run through a block of statements in sequential order, our

desired intermediate representation (IR) creates a hardware processing element for each statement.

A block of n statements can thus be performed in a single cycle. Due to these semantics, common

loop transformations done on software code have hardware interpretations, as seen in HLS pragmas.
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Most notably, loop unrolling reduces loop iterations and causes hardware duplication in HLS. We

see how Halide scheduling affects the generated hardware in Figure 4.3.

After representing the Halide application in our IR, we need to extract unified buffers from our

application. To lower the IR needed for Clockwork, several Halide passes are used to analyze and

modify the loopnests as described in Section 4.4. The codegen step of the compiler takes the final

version of HalideIR and generates separate memory and compute files for Clockwork. Here, the

memory dependencies are organized by buffer name and the unified buffer parameters are extracted

and calculated.

The unified buffer is a critical interface between the application representation of memory op-

erations and mapping these functions onto the hardware accelerator. After defining the Halide

application, we only need to focus on representing the application with unified buffers. After that,

Clockwork takes these unified buffer properties and optimizes them by performing loop fusion and

scheduling to determine an absolute order of the application execution. Clockwork then performs

memory mapping by taking the unified buffers and mapping them to configurations on the hardware

accelerator. The final steps for mapping to the Amber CGRA are described in Section 6.1, where we

describe the full compiler system. Since the unified buffer abstraction provides an important division

between the front-end and back-end of the compiler, we start our description with properties of the

unified buffer abstraction.

4.2 Unified Buffer Abstraction

Unified Buffer Abstraction

Iteration Domain

Schedule
Access Map

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 61 ∧ 0 ≤ 𝑦 ≤ 61}
𝑥, 𝑦 → conv1 𝑥, 𝑦
𝑥, 𝑦 → [130 + 64𝑦 + 𝑥]

𝑥, 𝑦 → conv1 𝑥, 𝑦
𝑥, 𝑦 → [260 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 59 ∧ 0 ≤ 𝑦 ≤ 59}

𝑥, 𝑦 → conv1 𝑥 + 1, 𝑦
𝑥, 𝑦 → [260 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 59 ∧ 0 ≤ 𝑦 ≤ 59}

𝑥, 𝑦 → conv1 𝑥 + 1, 𝑦 + 2
𝑥, 𝑦 → [260 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 59 ∧ 0 ≤ 𝑦 ≤ 59}

𝑥, 𝑦 → conv1 𝑥 + 2, 𝑦 + 2
𝑥, 𝑦 → [260 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 59 ∧ 0 ≤ 𝑦 ≤ 59}

13
0 

cy
cle

s
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1 cycle0 cycles

… (5 other ports) …

Figure 4.2: The unified buffer specifies the data movement between the first 3 × 3 compute kernel
conv1 (shown above) and the second 3× 3 compute kernel conv2 as illustrated in Figure 4.1. Each
port is defined by a polyhedral iteration domain and access map that describe the data written
to/read from the buffer. The schedule describes when those values arrive at each port.
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The Buffets paper [73] describes our target accelerators as explicit decoupled data orchestration

(EDDO). These memories take streams of data, store a working set of values, and then after some

latency, output a possibly reordered stream of the data. The goal of the unified buffer abstraction is

to fully represent this type of memory—representing the storage and controllers needed to properly

depict the data as it flows through the hardware over time. The abstraction encapsulates both

the memory space needed as well as the addressor configurations necessary to control where and

when data is written/read. Grouping these components together is critical for CGRAs and other

accelerators where, for efficiency, the memory components have complex addressing and scheduling

bundled together. Memory tiles in the Amber CGRA couple the SRAMs and addresses generators

for efficiency, so lowering to this high-level hardware primitive requires a similarly high-level memory

abstraction. More broadly, Buffets [73], Plasticine [75], and other efficient accelerators also create

higher-level memory structures. Therefore, we find that a unified buffer abstraction is a concept

that can be used for compiling to many of the image processing and machine learning accelerators

designed recently.

Figure 4.2 shows the unified buffer abstraction for the conv1 Func. The buffer consists of write

ports (on the left) and read ports (on the right). Each port on the buffer has parameters to describe

how these streams of data interact with the buffer. The unified buffer abstraction defines these

streams using three types of parameters: the iteration domain, which describes the data which

needs to be stored; the access functions, which describe the order of data in the stream; and the

operation schedule, which describes when the data will be valid. Finally, each of the write and read

ports are connected to compute kernels, and in turn, other unified buffers to describe the memory

dependencies.

This abstraction provides a nice interface between the application’s desired memory function

and the implementations of both the compute kernels and the storage implementations. Outside

the abstraction are the compute units. The compute operations performed between the buffers do

not affect unified buffer parameters, except for the latency of the compute units. Therefore, the

only information kept about a compute unit is its latency. Furthermore, knowledge about how

hardware implements unified buffers is also not needed for this specification. With this interface, a

full application can be separated into its computation kernels and memories. Next, we go into detail

about the three unified buffer parameters.

Iteration Domain

The first important property for storing a variable in memory is how many elements exist. The

iteration domain determines the total number of values for a particular memory. An iteration

domain consists of index variables and the range of values for each variable. The iteration domain is

represented using multiple index variables to maintain the natural multi-dimensional variables that

are used in the application. For example, this means that a color image is specified using spatial
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Table 4.1: Unified buffer parameters for the cascade application. The cascade application consists
of two 3 × 3 convolutions each with an access map with nine output ports. The memory size of
input and output are 0, resulting in wires; the hw input memory has a capacity of 130 and the
conv1 memory has a capacity of 126.

Buffer Dir. Iteration Domain Access Map Schedule

input in (0 ≤ x ≤ 63) ∩ (0 ≤ y ≤ 63) (x, y)→ input(x, y) (x, y)→ [64y + x]
out (0 ≤ x ≤ 63) ∩ (0 ≤ y ≤ 63) (x, y)→ input(x, y) (x, y)→ [64y + x]

hw input in (0 ≤ x ≤ 63) ∩ (0 ≤ y ≤ 63) (x, y)→ hw input(x, y) (x, y)→ [64y + x]
out (0 ≤ x ≤ 61) ∩ (0 ≤ y ≤ 61) (x, y)→ hw input(x, y)

(x, y)→ hw input(x + 1, y)
... (5 other ports) ...
(x, y)→ hw input(x + 1, y + 2)
(x, y)→ hw input(x + 2, y + 2)

(x, y)→ [130 + 64y + x]

conv1 in (0 ≤ x ≤ 61) ∩ (0 ≤ y ≤ 61) (x, y)→ conv1(x, y) (x, y)→ [130 + 64y + x]
out (0 ≤ x ≤ 59) ∩ (0 ≤ y ≤ 59) (x, y)→ conv1(x, y)

(x, y)→ conv1(x + 1, y)
... (5 other ports) ...
(x, y)→ conv1(x + 1, y + 2)
(x, y)→ conv1(x + 2, y + 2)

(x, y)→ [260 + 64y + x]

output in (0 ≤ x ≤ 59) ∩ (0 ≤ y ≤ 59) (x, y)→ output(x, y) (x, y)→ [260 + 64y + x]
out (0 ≤ x ≤ 59) ∩ (0 ≤ y ≤ 59) (x, y)→ output(x, y) (x, y)→ [260 + 64y + x]

variables x and y, as well as a color channel, c.

Each variable is specified as a range of values. For images and deep neural networks tensors,

these spaces are typically rectangular prisms. However, the concept of iteration domains comes

from polyhedral models, where the only limitation of the iteration domain is that it is convex. Being

convex means that any linear interpolation between two iteration points is also a point within the

iteration domain. In reality, a large fraction of interesting programs fit within the definition of linear

programs, and if we make this assumption of linear relations, we can make optimizations in the

hardware.

The iteration domain is important to the unified buffer configuration to determine the extent

of the iterators. The iteration space determines how many written values exist for each buffer.

Table 4.1 shows the iteration domains for each buffer in the cascade application, which performs

two 3 × 3 convolutions. The hw input buffer has an output iteration domain with index variables

x and y between 0 and 61, meaning each output port is read 62 · 62 = 3844 times. Notice that the

iteration domain shrinks in later stages of the application due to convolution kernels reducing the

defined iteration domain extent based on their kernel size (econsumer = eproducer − (kconv − 1)).
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Access Functions

The multiple streams of data interacting with the unified buffer are usually related in some manner.

The access functions specify the relative offsets of streams for the output ports in relation to the

input ports. An input port on a unified buffer is used to store the result of a computation kernel.

Multiple input ports occur when there are multiple writing streams, such as when a memory address

is updated several times. An output port on the unified buffer is created whenever a computation

kernel uses the buffered intermediate. Multiple output ports are created when several values from

the same buffer are used by another memory (or memories). Stencils are a common computation

pattern in image processing applications that result in multiple output ports.

The listed relationships between the input and output port map the iteration domain values to

the actual indices needed by that port. For example in Table 4.1, the third output port has access

function: (x, y)→ hw input(x+ 1, y) and iteration domain x = 0 to 61 and y = 0 to 61. While the

iteration domain specifies that there are 62 values in the x dimension, instead of taking the first 62

values in each input row, instead we offset our index by 1, and take values in indices 1 to 62. Each

of the access functions map the iteration domain to the actual indices on the input.

The input and output ports that are created for the unified buffer abstraction are logical ports,

and do not directly translate to that quantity of physical ports on a physical memory unit. Instead,

these ports are later analyzed during the memory mapping phase to reduce the number of physical

ports needed to support these logical ports. For a convolution, our memory mapper replaces many of

the logical ports with stencil registers to implement the unified buffer abstraction in a more feasible

and efficient manner.

The access map is used to select a group of indices for the compute kernel. Table 4.1 shows the

access map for each of the unified buffers in the cascade application. The first 3×3 convolution uses

nine indices of hw input to calculate conv1. Using this access map, when x = 0 and y = 0 we need

the hw input indices from (0, 0) to (2, 2). The size of the access map is later used by Clockwork

scheduling to determine how many pieces of data must be buffered before all outputs are available.

Operation Schedule

The final piece of our abstraction defines the order of memory operations on a unified buffer. The

operation schedule specifies when each value is written to and read out of the memory. The

order of memory stores/loads is calculated using the index variables in the iteration domain. The

equations that are typically formed by these schedules are affine equations. These affine schedules

appear due to the rectangular size of the iteration domain and linear access functions, leading to

periodic execution. Inherent to the operation schedule are the loop order and loop tiling. Each

index variable is used in the affine operation schedule to specify when loads and stores occur. The

index variable with the smallest stride is the innermost loop for the iteration order.

In Table 4.1 we show the final, optimized schedule for each of the unified buffer outputs. The
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Table 4.2: Halide code supported by our compiler toolchain. Italicized fields are not supported by
Clockwork during memory mapping.

Use case Halide algorithm code Support? Memory data Write Address Read Address

Affine indexing out(x) = in(2*x) + 5 * x Yes Data dependent Affine Affine
Stencil taps taps(x) = 1; taps(1) = 2;

out(x) =
∑2

i=0 taps(i)*in(x+i)

Yes Constant Constant Constant

Lookup table lut(x) = max(512, x*x);

out(x) = lut(in(x))

Yes Constant Constant Data dependent

Non-affine indexing out(x) = in(x*y) No Data dependent Affine Non-affine
Histogramming out(bin(x)) += 1 No Data dependent Data dependent Data dependent
Recursion fib(x) = fib(x-1) + fib(x-2) No Affine Affine Affine

output of x = 0 and y = 0 occurs on 130 = 130 + 64 · 0 + 0. Note that each compute kernel must

have all of its input values before executing, which explains why we wait until 130 before reading

hw input; it takes two full lines of length 64 and two additional pixels before all nine stencil pixels

are ready.

The schedule of the unified buffer shows the absolute order for all operations in the application.

By directly converting the values to cycle counts, we have a possible cycle accurate schedule for

the accelerator. However, we may need to modify the schedule to account for any hardware-specific

implementations. For example, we assume zero cycles needed for each compute kernel, but pipelining

might lead to multiple cycles to execute a compute kernel.

With this abstraction, we can determine the configurations needed for the memories on the

CGRA. The storage capacity can be calculated from the schedule difference in write and read times

of each iteration point. The controller needed for writing and reading values is determined directly

by the schedule.

4.3 Halide Algorithm and Scheduling for Hardware

Using Halide as a front-end language, we are able to readily define image processing and deep neural

network applications. These applications can be tested using the default CPU codegen with test

images. The same algorithm can then be scheduled for the CGRA. All that is needed is a unique

schedule to conform and take advantage of the hardware accelerator.

Not all Halide code is right now supported by our current hardware accelerator. Several comput-

ing patterns and indexing strategies cannot be mapped to our memory tiles on the Amber CGRA.

Specifically, the address pattern into the memory must follow an affine index pattern. Although we

can express non-affine address patterns in Halide and in the unified buffer abstraction, the eventual

mapping to memory tiles fails. Similarly, data dependent indexing can be expressed in the front-end,

but mapping to hardware has not been implemented by the memory mapping yet. A representative

set of examples of the supported Halide code is shown in Table 4.2.

Once an algorithm has been created, we must schedule the code to target our hardware accelerator



CHAPTER 4. UNIFIED BUFFERS: A MEMORY ABSTRACTION 49

hw_accelerate()

CPU

CPU

xcel

(a) hw accelerate: define accelerator output

tile()

Host mem

Xcel mem

compute

Host mem

Xcel mem

compute

(b) tile: stream input subset to the xcel

output

input

intermediate

+
+

× × ×

+
+

× × ×

input

output

+
+

× × ×
+
+

× × ×

+
+

× × ×

+
+

× × ×

store_at()

(c) store at: create a buffer

× ×
+

+
+

+
+

+ +
+

×
× × ×

× × ×

+

× psum
unroll(9)

iterations/pixel = 9 iterations/pixel = 1

(d) unroll: duplicate hardware

Figure 4.3: Depicted are the effects of four Halide scheduling hardware when added to a Halide
schedule that targets CGRA hardware as described in Section 3.5. A user adds each scheduling
primitive to a loop in order to transform the generated application running on the accelerator.

using our extension to the Halide scheduling primitives described in Section 3.5. When scheduling

buffers, the Halide schedule for unified buffers is stored and computed at the outermost tile level,

since we perform loop fusion later in the compiler during memory scheduling in Clockwork.

Figure 4.3 visually shows each of the hardware scheduling primitives, while Code 3.6 gives a full

example of the Halide schedule for the cascade application. Using these scheduling primitives, we

can create a schedule tailored for our CGRA.

4.4 Halide Compiler Passes

Once the user writes an application and schedules it for hardware, our modified Halide compiler

performs transformations for the target hardware.

Accelerator Extraction

The first step is to create a separate scope for the hardware accelerator. This boundary is defined by

the hw accelerate scheduling primitive. Once the target output Func is found, the compiler pass

traverses through the producer loopnest to find the loop where the accelerator begins. hls target,

a new identifier in HalideIR, is used to enclose the full scope of the hardware accelerate block.

Once the scope of the accelerator has been created in the IR, the boundaries are checked. A
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Table 4.3: Classification of different memory types based on their memory usage and index pattern.
The italicized memory types are not handled by the Amber’s memory tiles.

Memory Usage
initialized streaming RMW iterative

Index Pattern

constant tap register — — —
affine tap memory buffer accumulation recursion
non-affine tap memory buffer accumulation recursion
data dependent LUT RAM histogram pointer chasing

closure is conducted on the enclosed block of code to determine the input Funcs that are necessary

to compute the accelerator. Every data dependent stream must be identified as an input stream.

Any input stream that fails this assertion results in a termination of the compiler for the user to fix

the Halide schedule. This check is performed so that the user is fully aware of which input streams

are needed for the hardware accelerator.

Multi-dimensional Indexing

Typically, Halide’s built-in passes for CPU processing lower down the multi-dimensional indexing

to a one-dimensional index. This works better for the C codegen where the sizes of one-dimensional

buffers are more clear. However, our compiler system prefers using multi-dimensional indices to do

polyhedral analysis in Clockwork. Therefore, this compiler pass ensures that every Func that is in

the accelerator retains its multi-dimensional indexing. This is accomplished by tagging each of the

Funcs used by the accelerator with .stencil, so that these multi-dimensional index calls are not

lowered to one-dimensional loads. All Funcs outside the accelerator scope (and run on the CPU

host) are lowered to one-dimensional loads.

Memory Classification

To ensure that we have covered different Halide use cases in terms of memory manipulation, we

classify memory operations used in an application. Identifying the indexing patterns of memory

calls is useful for eventual scheduling and mapping to memory tiles. This compiler pass analyzes the

usage pattern of each memory and classifies them. There are two parts to this classification: the

memory usage and the index pattern. This pass analyzes the memory data, write addresses, and

read addresses of each Func to classify them as single-initialization, streaming, RMW, or iterative

memories with constant, affine, non-affine, or data dependent addressing. A full table of the inter-

section of these two properties is shown in Table 4.3. This classification categorizes some of the use

cases shown in Table 4.2.

The memory usage of a Func is based on how the the algorithm performs initialization and

updates to the values in the memory. Halide supports many variations of initialization and updates,

which we have categorized here. By categorizing the space of memory usage in Halide, we can have
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better confidence that the Halide language space is covered by our compiler system. Both constant

registers and ROMs are initialized to particular values, and then the values are never modified

during the execution of the application. Streaming memories encompass most of the memories on

our accelerator, where data dependent values are written into a memory that are later read out for

computation. RMW memories use values that are written back to the same memory location. And

finally, iterative memories use stored values to calculate other values in that same memory. For

example, a Fibonacci sequence can be defined as an iterative algorithm where Fn = Fn−1 + Fn−2

meaning two previous values (Fn−1 and Fn−2) are needed to calculate a new value (Fn).

The index pattern of a Func is determined by the read and write address calculations for

a memory. The index pattern is defined by the addressing function used in index calculation,

and later becomes a constraint when mapping to specific memory addressors. These addressing

functions must be mapped to address generators in our hardware, so classifying the different types of

addressing schemes shows which parts of the language any given specialized hardware can accelerate.

A constant index is an unchanging value seen in single-initialization memories such as the write

patterns of constant registers and ROMs. An affine address uses an affine expression of index

variables, as commonly seen with stencil applications. Non-affine addresses use index variables for

address calculations but without affine expressions. Note that this non-affine group is defined mainly

based on the capabilities of the address generator. Our CGRA can only handle affine addresses, so

most other index calculations are lumped into this unsupported group, but other hardware that is

able to calculate a larger set of index calculation would include more supported categories. Finally,

data dependent index expressions use values from other memories to determine the index.

Identifying the memory usage and index pattern is important for later analysis and optimiza-

tion. Our Halide compiler identifies constant registers as single-initialization with constant indexing.

Similarly, ROMs are single-initialization with constant write addresses and data dependent read ad-

dresses. Both constant registers and ROMs are generated in the computation files instead of being

treated as memories. This allows for Clockwork to focus on the streaming memories with more com-

plicated dependencies rather than these simple cases that can be generated without much analysis.

Memory identification also helps with memory scheduling. Iterative and RMW memories must

be scheduled to ensure values have been written back to a memory before trying to use them for

calculation. Data dependent addresses become a challenge to the scheduler because the addresses

cannot be pre-computed, so vectorizing memory reads and writes is more difficult. Our CGRA has

affine memory addressors, but non-affine indexes do not map to these dedicated addressors. Our

memory analysis is performed in Halide and provided to the memory scheduler and mapper to guide

compilation to the hardware.
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Figure 4.4: Our Halide pass removes ROMs and constant registers and directly maps them to their
components on the CGRA. These mappings are stored directly with the compute mappings so our
memory mapper does not need to analyze them, simplifying the memory mapping process.

ROM and Constant Register Extraction

After identifying different memory structures, we extract ROMs and constants so we can later classify

them as compute kernels in the codegen. Both ROMs and constants differ from the other memories,

since they do not require the built-in addressors. Instead, ROMs use data dependent values to index

an SRAM, and constants are always the same, so they can be stored in registers.

Using the Memory Classification pass, we are able to determine which Funcs are ROMs or

constants. The realization nodes for ROMs and constants are removed so that they are not created

as memories during codegen as shown in Figure 4.4. Instead, we will later place the ROMs in the file

with computation kernels, and the ROM kernel will be implemented using an SRAM on a memory

tile using a special mapping process. The stores into the ROMs and constants become preloaded

initialization values during memory configuration.

Update Merging

Update merging combines statements created after unrolling reduction domains. Reduction domains

exist in the Halide algorithm to more elegantly create stencils. A reduction domain creates multi-

dimensional index variables with a user-specified range of values and creates additional loops that

iteratively accumulate values. Unrolling small reduction domains is a common strategy for hardware

to use parallel computation units to perform the reduction in fewer cycles.
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for y:

 for x:

  for r.y = 0 to 2:

   for r.x = 0 to 2:

    out(x,y) += in(x + r.x,

                   y + r.y);
for y:

 for x:

    out(x,y) +=   in(x  ,y) 

                + in(x+1,y)

                + in(x,  y+1)

                + in(x+1,y+1);

for y:

 for x:

    out(x,y) += in(x  ,y);

    out(x,y) += in(x+1,y);

    out(x,y) += in(x,  y+1);

    out(x,y) += in(x+1,y+1);
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Figure 4.5: Our Halide pass merges together unrolled accumulation operations into a single com-
pute kernel. This provides the memory mapper with stencil memory operations that can be more
efficiently analyzed.

When reduction domains are unrolled, separate statements are created for each iterative update

in the reduction. Using our HLS interpretation of the IR, this is equivalent to multiple computation

kernels and more memory operations on the same memory address. The hardware-efficient solution

is to not save the unrolled intermediate results, but simply build a hardware unit which produces a

single output. Thus in hardware we desire a single compute kernel with the entire reduction and a

single memory that is accessed at several indices based on the reduction domain.

This update merging pass identifies repeated read-modify-write operations, and combines them

together. Namely, statements matching x = x + a;x = x + b; are coalesced to x = x + a + b. This

simplification is done by first unrolling the reduction domain. Then in the unrolled loop body, the

compiler remembers each assignment into the Func. The next usage of that Func is replaced with

the right-hand-side of the store statement. This complete process is illustrated in Figure 4.5.

Memory Index Shifting

One final memory modification before codegen is shifting the memory indices. When a Func has

been tiled, the relative placement of the indices is held in HalideIR. However, when we use the tile

in the hardware accelerator, this relative location is not known, and instead the top-left corner of

the tile is assumed to be the zero point. Therefore, we must shift the memory indices that Halide

uses to access the Func.

This pass is performed during the allocation of the Func. First, the minimum index for each of

the dimensions is found. Then, each memory operation that uses the Func has its index shifted by

the minimum index. This effectively realigns the indexing to properly index the tile given to the

hardware accelerator with a redefined zero point.
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BFloat Emulation

Our compiler supports compilation of bit-exact execution of bfloat operations. The CGRA hard-

ware natively supports 16-bit bfloat addition, subtraction, and multiplication using dedicated bfloat

hardware. The Halide language was extended to support the bfloat datatype so that we could write

applications with that data. During compilation, bfloat operations that are run on our target hard-

ware accelerator are unmodified. They are represented as normal IR adds, subtracts, and multiplies,

except they are operating on bfloat data.

BFloat execution on the CPU requires emulation by conversion operations to properly compute

bfloat results. In this BFloat Emulation pass, any bfloat operations outside of the accelerator block

are replaced by datatype casts before and after every bfloat computation. The CPU emulates

bfloat16 computation by running float32 instructions. The conversion from bfloat16 to float32

involves simply appending zeros to the mantissa. For conversion from float32 to bfloat16, values are

rounded to match the precision of the bfloat datatype. We round numbers to even values to match

the rounding performed by the CGRA hardware. Using this emulation, we are able to perform the

same bfloat computation on the CGRA and CPU. By scheduling loops so the computations run in

the same order, we can perform bit-exact comparisons of the results.

4.5 Codegen to Clockwork

The last step of the Halide compiler is the codegen. Our codegen produces code for the CPU host,

compute kernels for the CGRA, and unified buffers for the Clockwork memory scheduler and mapper.

Clockwork: Memory Mapping

Before we talk about Halide’s codegen to Clockwork, let’s review Clockwork. Clockwork is a DSL

that uses C++ objects and functions to describe hardware kernels and dependencies. The creation of

an application is centered around an op, short for compute operation. Each op associates a compute

kernel, consisting of a single C++ function, with several inputs and a single output value. The

particular computation is not very important for Clockwork; instead the graph of input and output

dependencies plays an important role for Clockwork’s scheduling. Each op denotes the name of all

memory inputs (the memory loads) as well as the name of the memory output (memory store). The

memory operations are indexed by multi-dimensional variables with offsets to create stencils.

With the application ops and dependencies defined, Clockwork runs to determine an efficient

execution ordering. By analyzing the dependencies, op execution can be fused so that their execution

can be overlapped with each other. After op fusion, Clockwork uses polyhedral scheduling and

isl [101] to calculate the exact timing of all computation. The schedule obeys all dependencies from

the application definition, and overlaps the computation as much as possible to reduce memory
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requirements and decrease application runtime. Our objective in the Halide codegen is to produce

a format that Clockwork can use as an input to then assign a schedule and map to memories.

Accelerator Generation

We generate the multiple files from our final form of HalideIR. By traversing through the nodes in

the HalideIR application, we are able to create the requisite host code, Clockwork memory file, and

CoreIR compute file. For an accelerated application, the accelerator is defined by the hls target

IR node. Outside of the accelerator, all generated code goes into a standard CPU C executable file.

In place of the hls target node and its entire code body, the generated CPU code includes a call

to the accelerator with all necessary input variables.

The call to the accelerator is typically within a set of loops in order to execute the accelerator

for each tile of output. A single accelerator call requires index variables to indicate which tile of the

input and output images are needed. The example host code for the cascade application is shown in

Code 4.1. This host code iterates over the input tiles, and then runs the hardware accelerator with

the input data, while collecting the output. RDAI helps define the interface of our accelerator call.

Our application compiler uses a library developed in our research group that provides a recon-

figurable device access interface (RDAI) [51]. RDAI provides the calls to configure and start an

accelerator from the host machine. RDAI is further modularized to provide a single interface for any

of the possible runtimes that are later run on each specific device. Each platform-specific runtime is

implemented in RDAI to provide the correct calls needed to configure devices, move data, and start

the device for an accelerator run. RDAI is a subset of OpenCL [45], which abstracts accelerator

calls in a similar manner.

Code 4.1 contains multiple RDAI classes and calls, each of which is prepended with RDAI .

RDAI MemObject defines the size of each of the inputs and output buffers needed for an accelerator

call. RDAI PlatformType on line 25 then specifies which runtime platform is being used, in this

example, Clockwork. RDAI VLNV on line 27 then defines what specific application is being used

(in a similar fashion to Vivado’s vendor, library, name, and version). The most important call

is RDAI device run on line 33, which runs the hardware accelerator given the set of inputs and

output buffers. One can see how these calls are very generic functions which would be necessary to

implement on an accelerator-host interface with any device. RDAI provides the implementations for

the CGRA and other devices that we are interested in.

Once the host CPU code is generated, the accelerated code is created for the hardware accelerator.

This accelerator code is generated into its own files: one for memory and two versions of the compute.

Memory

After creating the host code, the next step is generating the code for the hardware accelerator. The

Halide codegen uses a visitor pattern to generate the Clockwork files. The Halide compiler follows
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1 // Allocate and provision _hw_input_stencil.

2 RDAI_MemObject *_hw_input_stencil = RDAI_mem_shared_allocate (10183592);

3 for (int _hw_input_y = 0; _hw_input_y < 0 + 499; _hw_input_y ++) {

4 for (int _hw_input_x = 0; _hw_input_x < 0 + 5404; _hw_input_x ++) {

5 int32_t input_addr = calc_input_addr(_input_buffer , _hw_input_x , _hw_input_y );

6 uint8_t _252 = ((const uint8_t *) _input )[ input_addr ];

7 uint16_t hw_input_value = (uint16_t )(_252); // computation outside accelerator

8

9 uint16_t *_hw_input_stencil_host = (uint16_t *) _hw_input_stencil ->host_ptr;

10 int32_t hw_input_addr = calc_hw_input_host_addr(_hw_input_x , _hw_input_y );

11 _hw_input_stencil_host[hw_input_addr] = hw_input_value;

12 } // for _hw_input_x

13 } // for _hw_input_y

14

15 // Allocate and produce buffer _hw_output_stencil.

16 RDAI_MemObject *_hw_output_stencil = RDAI_mem_shared_allocate (5346000);

17 for (int _hw_output_yo = 0; _hw_output_yo < 0 + 5; _hw_output_yo ++) {

18 for (int _hw_output_xo = 0; _hw_output_xo < 0 + 9; _hw_output_xo ++) {

19 RDAI_MemObject* _yo_obj = RDAI_mem_shared_allocate (1);

20 _yo_obj ->host_ptr = (int32_t *) _hw_output_yo;

21 RDAI_MemObject* _xo_obj = RDAI_mem_shared_allocate (1);

22 _xo_obj ->host_ptr = (int32_t *) _hw_output_xo;

23

24 // Define and set up the hardware accelerator that we will run.

25 RDAI_PlatformType platform_type = RDAI_PlatformType :: RDAI_CLOCKWORK_PLATFORM;

26 RDAI_Platform ** platforms = RDAI_get_platforms_with_type (& platform_type );

27 RDAI_VLNV device_vlnv = {{"aha"}, {"halide_hardware"}, {"cascade"}, 1};

28 RDAI_Device ** devices = RDAI_get_devices_with_vlnv(platforms [0], &device_vlnv );

29 // Define the input variables needed for this accelerator call.

30 RDAI_MemObject *mem_obj_list [5] = {

31 _yo_obj , _xo_obj , _hw_input_stencil , _hw_output_stencil , NULL };

32 // Execute a tile on the hardware accelerator.

33 RDAI_Status status = RDAI_device_run(devices [0], mem_obj_list );

34 // Clean up RDAI call after execution.

35 RDAI_free_device_list(devices );

36 RDAI_free_platform_list(platforms );

37 } // for _hw_output_xo

38 } // for _hw_output_yo

39

40 // Produce final output by copying from the accelerator output.

41 for (int _output_y = 0; _output_y < 0 + 495; _output_y ++) {

42 for (int _output_x = 0; _output_x < 0 + 5400; _output_x ++) {

43 int32_t hw_output_addr = calc_hw_output_addr(_output_x , _output_y );

44 uint16_t *_hw_output_stencil_host = (uint16_t *) _hw_output_stencil ->host_ptr;

45 uint16_t hw_output_value = _hw_output_stencil_host[hw_output_addr ];

46

47 int32_t output_addr = calc_input_addr(_output_buffer , _output_x , _output_y );

48 uint8_t _435 = (uint8_t )( hw_output_value ); // computation outside accelerator

49 (( uint8_t *) _output )[ output_addr] = _435;

50 } // for _output_x

51 } // for _output_y

Code 4.1: The host code includes the code outside the accelerator as well as the looped calls to the
accelerator for each tile.
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1 // Pseudocode for generating Clockwork Memory and Compute files.

2 // Entry to the visitor implementation is at the bottom using ‘Main ’.

3

4 // Append given compute kernel to ComputeFile.

5 EmitComputeKernel(compute , loads , store):

6 interface = CreateInterface(loads , store ); // Create inputs and output interface

7 EmitToComputeFile(interface ); // Generate compute kernel interface to ComputeFile

8 for (rom in compute ):

9 EmitToComputeFile(rom); // Generate rom used in this compute kernel

10 EmitToComputeFile(compute ); // Generate compute operations

11

12 // Translate ‘provide ’ statement.

13 Visit(provide ):

14 // ‘provide ’ consists of computation on the RHS , and store on LHS.

15 compute = provide.rhs;

16 loads = Closure(compute ); // Determine loaded memories using a closure

17 store = provide.lhs;

18 Emit(provide ); // Generate ‘add_op ’ and ‘add_function ’ for this provide

19 for (load : loads ):

20 Emit(load); // Generate ‘add_load ’

21 Emit(store); // Generate ‘add_store ’

22 EmitComputeKernel(compute , loads , store); // Generate compute in a separate file

23

24 // Translate loop and then codegen loop body.

25 Visit(loop):

26 Emit(loop); // Generates ‘add_loop ’

27 Visit(loop.body);

28

29 // Entry function for codegen , implemented using visitors. Generates primarily

30 // to MemoryFile , but also generates a separate ComputeFile.

31 Main(program ):

32 Visit(program.body); // Visit the first HalideIR node

Code 4.2: Pseudocode for the codegen. Implemented using a visitor pattern that visits each of the
HalideIR nodes. The codegen generates two Clockwork files: a memory file and a compute file. The
HalideIR example in Code 4.3 would start with the accelerator node, then visit the loops, and last
visit the provide statement.

the psuedocode in Code 4.2 to codegen the Clockwork files from the HalideIR. First, the Halide

compiler analyzes and codegens based on the block of code labeled from our original hw accelerate

scheduling primitive. The first IR nodes in the accelerator block are the iteration loops as shown in

Code 4.3. These are represented in HalideIR as for-loops that give the initial value and extent for

each iteration variable. These loop variables are then used in the memory loads and stores. These

surrounding loops become the iteration domain for the unified buffer. An example of these loopnests

are seen in the example generated Clockwork input in Code 4.4.

Within the body of the for-loops are memory loads and stores. HalideIR statements consist of

a memory store on the left-hand-side, while the memory loads and computation are on the right-

hand-side. These computation statements become the basis of the codegen. For each memory

store statement encountered in HalideIR, the memory file generates a function (add function in

Code 4.4). This function encloses a computation block and is populated with as many memory
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1 _hls_target: // entry point for the accelerator

2 for y = 0 to 99: // outer loops

3 for x = 0 to 600:

4 // Next 5 lines are a ‘provide ’ statement.

5 // Left -hand -side: store

6 // Right -hand -side: computation on loads

7 conv2_stencil_1(x, y) =

8 conv1_stencil(x, y) + 2* conv1_stencil(x+1, y) + conv1_stencil(x+2, y) +

9 2* conv1_stencil(x, y+1) + 4* conv1_stencil(x+1, y+1) + 2* conv1_stencil(x+2, y+1) +

10 conv1_stencil(x, y+2) + 2* conv1_stencil(x+2, y+2) + conv1_stencil(x+1,y+2) +

11 conv2_stencil(x, y);

Code 4.3: Example HalideIR for the accelerator depicting the conv1 kernel for the cascade applica-
tion. The accelerator begins with the hls target node. A provide statement defines each compute
kernel where the LHS is a memory store, and the RHS performs computation on memory loads.

loads and stores as in the statement. A closure is used on the single expression to determine any

memory loads and ROMs that are needed. As specified earlier, the ROMs are treated in a special

manner and are codegen’ed into the compute file. Each memory operation consists of a named

memory buffer and multi-dimensional indexing into the buffer. In addition, a unique computation

kernel is created for the statement, which is generated in its own file. Code 4.4 shows a computation

kernel with nine add loads and a single add store. The first argument in each memory operation

is the buffer name, and then is a list of multi-dimensional indices. For this example, the indices

are affine addresses, but these indices could just as well be non-affine. Furthermore, these indices

are indexed by iteration variables. When the codegen finds data-dependent addresses, we emit

add dynamic load and add dynamic store. In those examples, there are multiple buffer names in

a single call, and a line defines multiple memory ports in the application.

The access maps are the next parameter in the unified buffer. They are determined for each

unified buffer based on the loads and stores. The codegen creates the application centered on the

computation kernels. The unified buffer abstraction reorganizes the memory operations around each

named buffer. All stores and loads to a buffer are grouped together to help determine any reuse

later in the memory mapping phase. At this stage of the compiler, a single buffer might contain

many loads, such as nine loads for a 3 × 3 stencil. The physical limitations of a memory tile, such

as how many read ports it has, is resolved later during the memory mapping phase.

The last unified buffer parameter is the unified buffer schedule. HalideIR provides only a little

insight into these values based on the dependencies created in the algorithm. These dependencies

are implicitly defined by showing that a store into a named memory requires several loads from other

memories. The default schedule that Halide provides is a sequential schedule where all producer

values are calculated before the consumer is started. The default schedule is not shown in the

generated Halide file, but instead is assumed by Clockwork. This assumption is the simplest schedule

that adheres to the dependencies outlined by the construction of the memory transfers. Clockwork

then later optimizes the timing of loads and stores, but this requires greater knowledge into the
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1 // Cascade has a unified buffer named "conv2_stencil" storing 16-bit values

2 prg.buffer_port_widths["conv2_stencil"] = 16;

3

4 // These loops correspond to the iteration domain

5 auto y = prg.add_loop("y", 0, 99);

6 auto x = y->add_loop("x", 0, 600);

7

8 // The function indicates which compute kernel to use

9 auto hcompute_conv2_stencil_1 = x->add_op("op_hcompute_conv2_stencil_1");

10 hcompute_conv2_stencil_1 ->add_function("hcompute_conv2_stencil_1");

11

12 // These loads are access maps for outputs of the "conv1_stencil" buffer

13 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "y", "x");

14 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "y", "(x + 1)");

15 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "y", "(x + 2)");

16 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "(y + 1)", "x");

17 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "(y + 1)", "(x + 1)");

18 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "(y + 1)", "(x + 2)");

19 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "(y + 2)", "x");

20 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "(y + 2)", "(x + 2)");

21 hcompute_conv2_stencil_1 ->add_load("conv1_stencil", "(y + 2)", "(x + 1)");

22 hcompute_conv2_stencil_1 ->add_load("conv2_stencil", "y", "x");

23

24 // This store is an access map for the input of the "conv2_stencil" buffer

25 hcompute_conv2_stencil_1 ->add_store("conv2_stencil", "y", "x");

Code 4.4: This is a sample of generated Clockwork input code. Above is the loopnest for a compute
kernel that takes nine values from conv1 stencil and calculates a value of conv2 stencil. From
the generated code, one can readily extract the iteration domain and access maps for this op.

hardware timing of the ports. Therefore, optimization of the unified buffer schedule is performed

later during compilation.

Compute Kernel

The compute kernel is created using the computation blocks between the loads and stores into

memory. The interface to each compute kernel is a set of memory inputs and outputs. When

generating the compute kernels, two representations are created: a Clockwork C representation, and

a CoreIR representation. The Clockwork C file is used during pre-mapping simulation to ensure

there are no translation differences from Halide to Clockwork. The CoreIR representation is closer

to a hardware representation where hardware modules are instantiated and then wired together.

HalideIR consists of mainly recognizable operations that match with the CoreIR instructions.

These include arithmetic instructions (add, multiply, divide), sinusoidal functions (sin, tan, acos,

cosh), and comparison operators (equal, greater than, less than or equal). A full list of the operations

are in Table 4.4. The HalideIR input bitwidth (1, 8, 16, or 32 bits) and data type (unsigned, signed,

bfloat) are used to determine the exact operator used in CoreIR.

Instruction selection for more complex operations also takes place during codegen. We ensure

that any complex operator is not lowered until absolutely necessary to ensure the compiler does
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Table 4.4: Available CoreIR operators created by Halide during codegen. The signed column indi-
cates if the operators exist with signed and unsigned variants. The bfloat column indicates if the
operators also have variants that work on bfloat numbers.

Library Category CoreIR Operators Symbols Signed? Bfloat?

coreir arithmetic add, sub, mul + − × yes
div, rem, mod / % yes yes

comparison eq, neq == 6= yes
lt, gt, le, ge < > ≤ ≥ yes yes

shift shl, lshr, ashr << >> >>>

bitwise inv, and, or, xor ∼ & | ^

ternary mux c ? a : b
corebit boolean not, and, or, xor ! && || ^

commonlib add with carry adc a + b + 1
multiply mult middle i16( (i32(a) ∗ i32(b)) >> 8 )

mult high i16( (i32(a) ∗ i32(b)) >> 16 )
minmax min, max, clamp min max clamp yes yes
absolute abs, absd |a| |a− b| yes

float round frnd, fflr, fceil round bac dae yes
exponential fsqrt, fsqr, fpower

√
a a2 ab yes

fexp, fln exp ln yes
sinusoid fsin, fcos, ftan, ftanh sin cos tan tanh yes

fasin, facos, fatan, fatan2 arcsin arccos arctan yes

not need to lift complexity later. Some operators exist in HalideIR, but are not base primitives in

CoreIR. These include min, max, abs, and absd. For these operators, we create an extension library

in CoreIR (called commonlib) that implements these operators using more basic CoreIR primitives.

The CGRA contains some complex operators that do not cleanly map to HalideIR. The CGRA

multiplier is able to multiply two 16-bit numbers and output the bottom 16-bits, middle 16-bits, or

top 16-bits. The equivalent Halide algorithm to perform this computation involves casting the inputs

to 32-bits, multiplying, shifting the result, and casting back to 16-bits. In the codegen, we match

this exact sequence of operations and replace the operators with the mult middle or mult high

CoreIR operators based on the shift amount.

ROM Creation

In the Halide compiler, ROMs are identified and treated differently from other memories. As opposed

to keeping multi-dimensional indexing, ROMs are lowered to one-dimensional memories. During

codegen, these ROMs are treated in a special manner. Instead of being created as part of the

memory file, they are directly mapped to a memory tile and stored with the compute kernels.

There are several conditions that need to be met to properly extract a ROM from HalideIR. The

extent must be a fixed value, since the initialization of the memory is performed during configuration

before data has been streamed through the system. Furthermore, the ROM initialization indices

and values should be precomputed. The user can do that with Halide scheduling by unrolling the
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computation if it is defined using an index variable.

The configurations needed for the ROMs are the overall ROM length as well as the the initial

values. Initial values are collected through the unrolled initialization statements. The values are

then stored in a JSON structure. The depth is found in the realization node and then rounded up

to a multiple of four to ensure proper configuration of the memory tile.

Clockwork Memory Mapping

After the Halide compiler, we use Clockwork to do loop fusion and memory mapping to hardware.

With the original Clockwork compiler [44], we can generate FPGA code. This process does loop

reordering, kernel grouping, unrolling, kernel scheduling, line buffer synthesis, and code generation

to HLS C. However, Clockwork’s original system uses a different front-end with fewer user controls

on loop scheduling. With the Halide loop scheduling, we reduce the role of Clockwork to just loop

fusion and scheduling the timing for each kernel execution.1

In regards to the unified buffers, Clockwork performs three jobs: scheduling the kernels, com-

posing the unified buffers, and mapping the buffers to hardware. The first step, scheduling the

kernels, creates and then optimizes the op schedule, the last unified buffer parameter. The gen-

erated Halide code is created sequentially with disjoint loopnests and no loop fusion. Clockwork

analyzes the kernels using polyhedral analysis to determine when each kernel can run. For stencil

pipelines, overlap can occur and loop fusion takes place. If the most compute-intensive kernel does

not have full utilization after loop fusion, then double buffers with loop pipelining is used. In all

cases, Clockwork scheduling determines the exact cycles when each load, compute, and store occurs

during accelerator execution.

After Clockwork scheduling, all of the dependencies on a memory are collected together to

generate the unified buffers. Importantly, little hardware information has been used to generate

the unified buffers. The unified buffer abstraction holds just the information on loop sizes, memory

dependencies, and the sequence of computation. These properties are then mapped to either the

original FPGA codegen to create code in HLS C, or it goes through a specialized mapper for the

CGRA memories. The CGRA mapper consists of an extension to the original Clockwork system to

map memories to our Amber CGRA, described in Section 2.3. In both cases, the same unified buffers

hold the information needed to fully understand and encapsulate the application. We describe the

full mapping process to the final CGRA bitstream in Section 6.1. Most importantly, the unified

buffers provide a common interface for the software lowering to either FPGA or CGRA.

1Note that Halide scheduling and Clockwork scheduling have different intentions despite the same word choice.
Halide scheduling consists of the user-added primitives to dictate the loop transformations for the generated code.
Clockwork scheduling uses polyhedral analysis on the dependencies of the compute kernels to determine when each
of the kernels can run; kernel execution scheduling consists of the exact cycle scheduling when each kernel executes.
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Table 4.5: Halide applications used in the evaluation section.

Application Type Description

gaussian stencil 3× 3 convolutional blur
cascade stencil back to back gaussian convolutional blurs
harris stencil corner detector using gradient kernels and non-maximal suppression
upsample stencil up sampling by repeating pixels
unsharp stencil mask to sharpen the image
camera stencil camera pipeline with demosaicking, image correction, and tone scaling
nlmeans stencil edge-aware denoising using non-local means
histogram data-dep bin input pixel values into a histogram
bilateral data-dep edge-aware smoothing of the image using histograms
gaussian pyramid hierarchical convolution and downsampling
laplacian pyramid hierarchical pyramid decomposition of image
exposure fusion hierarchical pyramid blending of images based on brightness
image blend hierarchical stitching of two images using pyramid decomposition
optical flow hierarchical pyramid search of direction of pixel movement
gemm DNN general matrix multiplication
resnet DNN ResNet layers using multi-channel convolution
mobilenet DNN MobileNet layers using separable, multi-channel convolution
jitnet DNN layers in JITNet [71], including convolution and upsampling
unet DNN layers in U-Net [84], including conv, maxpooling, and transposed conv

4.6 Evaluation

This section evaluates the front-end application compiler, looking at the effectiveness of each step.

Halide Algorithm and Scheduling

We use Halide to describe image processing and deep neural network applications. A list of the

applications we have created is in Table 4.5. Here, we have created stencil applications that use line

buffers as memories; this includes the cascade application, which has been our running example.

Some image processing applications use data dependent indices, like the histogram example which

counts the number of data values in each data range. A final common stencil application type is

hierarchical image processing. These hierarchical applications create image pyramids by downsam-

pling the images and then processing each level. These levels are useful for understanding the images

in high versus low frequencies as well as pixel versus patch comparisons.

As explained in Section 2.1, deep neural networks (DNNs) consist of convolution layers and

matrix multiplication. We can accelerate a single DNN layer and find large benefits in runtime.

Using Halide, we are able to describe this wide array of applications that have ample data-parallel

computation that can be accelerated by hardware. Using our new set of Halide scheduling primitives,

we are able to compile all of the applications in Table 4.5 to Clockwork. A large subset of these

applications also meet the constraints of the CGRA, and can be further mapped to the hardware.

The hardware schedule that we create for each application must conform to the memory hierarchy.

Each application uses the global buffer to input values onto the CGRA fabric. Each application then

uses memory tiles to maximize the reuse of computed values rather than create more compute. The
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Figure 4.6: Execution time versus resource utilization tradeoff by using Halide’s scheduling. At high
unrolling factors, designs do not fit on the CGRA (384 PEs, 128 MEMs).
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Figure 4.7: There is a reduction in memory statements by using the Halide passes. The two passes
are: (1) inlining kernel and LUTs and (2) coalescing reduction updates into a single statement.

computation is tiled such that the buffer capacities fit into memory tiles. Furthermore, we can use

Halide scheduling to perform hardware duplication. As shown in Figure 4.6, several applications can

be unrolled to dramatically increase performance. As the unroll is increased, the runtime decreases

at the cost of a larger number of tiles needed to implement the schedule. This shows that Halide

scheduling empowers the user to create an application design that can run on the CGRA as well as

make decisions on how to trade off characteristics of the final design.

Halide Compiler Passes

Next, we evaluate the Halide passes that transform HalideIR into usable Clockwork code. Figure 4.7

shows that the Const/ROM Inlining and Update Coalescing passes work to reduce the number of

generated memory operations. These passes help Clockwork by removing Funcs, so that there are

fewer memory statements that need to be scheduled using polyhedral analysis. Const/ROM inlining

takes Funcs that can be mapped without a schedule, and automatically creates their mapping in
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Table 4.6: The characteristics of our physical unified buffer (PUB) memory primitive and alternative
memory implementations. Our compiler, using the unified buffer abstraction, supports more memory
implementations as compared to FPGA compilers and other accelerator compilers.

Memory Back-end PUB (ours) DP-SRAM + AG DP-SRAM + PEs Ready-valid (Buffet) BRAM + LUTs

SRAM Macro SP DP DP DP DP
Built-in AG Yes Yes No No No
Control Protocol Static Static Static Ready-valid Static
Accelerator Architecture CGRA CGRA CGRA ASIC FPGA

Unified Buffer X X X X X
Vivado HLS [104] 7 7 7 7 X
SODA [19] 7 7 7 7 X
PolyEDDO [72] 7 7 7 X 7

the compute file. Update Coalescing removes Funcs that are generated as intermediates, which are

remnants of using unrolled reduction domains.

In Figure 4.7, the gaussian application is unaffected by the Const/ROM Inlining pass. The

gaussian application contains no LUTs or ROMs that can be inlined, and also does not use a Func

to store the convolution weights. This means that the inlining pass is not needed for this particular

application. The camera application has a large decrease in memory operations due to the inlining

pass. This is because there are three LUTs that are simplified into ROMs during the inlining pass.

Each ROM is initialized for 1024 addresses before being used for computation. The large number of

initialization operations correspond to the large reduction in memory operations due to the inlining

pass. Another aspect of the camera application is that there is no effect of coalescing. This is

because none of the stencil computations are represented in Halide as unrolled RDoms, so there are

no computation kernels to coalesce during this pass.

Unified Buffer Abstraction

After the Halide lowering passes and code generation, we construct the unified buffers for our ap-

plication. The unified buffer abstraction provides a framework to describe the memories. From this

abstraction, Clockwork maps to memory back-ends including FPGAs and CGRAs.

Table 4.6 shows the wide array of hardware platforms that can be generated from our uni-

fied buffer abstraction. These include FPGA, ASIC, and CGRA memory primitives. FPGAs use

BRAM and LUTs to store memory and generate address controllers (AGs) from basic compute

gates. The original Clockwork compiler compiles to FPGAs using HLS. Common in ASICs are

latency-insensitive memories that use ready-valid protocols between modules. Using our specialized

mapper, the cycle accurate schedule can be stripped away to build ready-valid memories.

CGRAs can be grouped based on their address generators and SRAMs. Three strategies for

address generation include building counters from processing elements (PEs), building from PEs in-

cluding specialized address generation operators, and building address generation into the memories

for maximum efficiency. Our CGRA mapper supports all three of these addressing modes. We also
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Figure 4.8: The Lake memory mapper provides the final mapping step to the specific hardware.
The optimized abstract unified buffer is analyzed by Lake, which then specializes the configuration
values for each memory type.

can support buffers built using SRAMs that are single-ported (SP) or dual-ported (DP). Schedul-

ing a buffer with a dual-port SRAM is easier to configure because reads and writes can happen

simultaneously. However, a single-ported SRAM is far more energy and area efficient. Our com-

piler is able to create the configurations for all of these different buffer types, including our highly

specialized physical unified buffer (PUB), where the addressing logic is packaged in the same tile as

a single-ported SRAM. Figure 4.8 shows how our Lake mapper takes the unified buffer abstraction

and identifies different memory properties to target each of the specialized accelerator memories.

Our unified buffer abstraction and physical unified buffer implementation support both image

processing and DNNs. By using the unified buffer abstraction, we keep our memory abstraction at

a high level, allowing users to lower it to a wide variety of accelerator targets as well. We attribute

this portability to the careful lowering of the IRs to the unified buffer abstraction before specializing

the memory mapping to our target architecture.

4.7 Summary

We discuss the challenges of mapping applications to CGRAs with higher-level hardware primitives,

especially complex memory tiles. To address this, we introduce a unified buffer abstraction that de-

scribes the data movement for every memory element in the application, capturing the requirements

on both the memory and address generators. We utilize a modified Halide compiler to transform

memories in HalideIR to fit the unified buffer abstraction. The final code generator produces uni-

fied buffers for the Clockwork memory scheduler and mapper. The compiler system excels in its

versatility, supporting a wide range of applications and hardware accelerators. This is achieved

through its unified buffer abstraction and physical implementation, which enable efficient mapping

of applications to different reconfigurable architectures.



Chapter 5

Shared Hardware: Multiplexing

Underutilized Compute

While looking at our applications, our strategy of creating a dedicated compute kernel for each stage

has some inefficiencies. Some kernels rarely perform useful computations since the required data

rate of these kernels is much less than other kernels in the application. One situation where this

occurs is in pyramid applications, such as the one shown in Code 5.1. To enable an application

to work with an image at different spatial scales, these applications create a set of versions of the

input image downsampled into smaller image sizes. Processing each of these different scaled images

enables the algorithms to be multi-scale. Due to the small image sizes in most of these pyramid

levels, there are fewer computation resources needed for the inner compute kernels. Therefore, each

dedicated computation kernel sits idle as the other levels perform computation.

Qiuling Zhu investigated different potential strategies of accelerating pyramid applications [110].

She found that some accelerators create dedicated hardware as described above. Another strategy

was to utilize a single compute kernel that sequentially performs each pyramid level. Sharing a single

compute kernel is possible because pyramid applications conveniently have similar computation

performed at each pyramid level. This solution keeps the compute blocks busy during the entire

application execution. However, this strategy also requires additional storage for intermediates,

which can be reduced by interleaving the computation of the different pyramid levels.

Ideally, we want our hardware to have a high compute occupancy as well as limited storage

for intermediates. This solution would have the compute blocks running useful computation most

of the time. Additionally, the memory needed for the intermediates would be minimal. The final

solution proposed in [110] is to share a single computation kernel to perform the calculations for

multiple stages but interleave the computation to minimize storage requirements. To properly share

a computation kernel, it needs to be scheduled so that it performs only one stage at a time. Based

66
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1 // Algorithm: Each pyramid layer is successively blurred

2 blur0(x, y) = (k(0,0) * hw_in (2*x,2*y) + k(1,0) * hw_in (2*x+1,2*y) +

3 k(0,1) * hw_in (2*x,2*y+1) + k(1,1) * hw_in (2*x+1,2*y+1)) / 4;

4 blur1(x, y) = (k(0,0) * blur0 (2*x,2*y) + k(1,0) * blur0 (2*x+1,2*y) +

5 k(0,1) * blur0 (2*x,2*y+1) + k(1,1) * blur0 (2*x+1,2*y+1)) / 4;

6 blur2(x, y) = (k(0,0) * blur1 (2*x,2*y) + k(1,0) * blur1 (2*x+1,2*y) +

7 k(0,1) * blur1 (2*x,2*y+1) + k(1,1) * blur1 (2*x+1,2*y+1)) / 4;

8 blur3(x, y) = (k(0,0) * blur2 (2*x,2*y) + k(1,0) * blur2 (2*x+1,2*y) +

9 k(0,1) * blur2 (2*x,2*y+1) + k(1,1) * blur2 (2*x+1,2*y+1)) / 4;

10 hw_output(x, y) = blur3(x, y);

Code 5.1: Pyramid blur application which applies four levels of blur on the input image.

on Qiuling’s findings, I made modifications to the application compiler to enable compute sharing.

In this chapter, we introduce how the user can specify in Halide which computation kernels

should be shared together. In this way, the user can choose to share computation kernels to increase

compute occupancy as well as choose the desired interleaving. Implementing this function required

changes to the Halide front-end as well as extending Clockwork scheduling to implement the new

execution order specified in the Halide schedule. The modified compiler back-end then generates new

connections for the application hardware graph to account for the sharing of the compute kernel.

We show optimizations on our Amber CGRA to provide the compute kernel sharing with minimal

hardware overhead and then show results on the effectiveness of compute sharing.

5.1 Halide Scheduling

Modifying the Halide front-end scheduling is our first step. New Halide scheduling primitives allow

users to specify which compute kernels should be shared together. In keeping with Halide philosophy,

we enable compute sharing with a new scheduling primitive that the user can control. In addition

to specifying which compute kernels should be shared, the user also must specify the interleaving of

the computation.

The interleaving granularity refers to how often the computation kernel switches between which

stage it is computing. The interleaving options for an image are interleaved after every pixel, line

of pixels, or block (tile) of pixels. Each of these interleaving choices change the number of cycles

spent computing a certain pyramid level before switching to the next pyramid level. The choices are

described based on the number of output pixels that are calculated in a single iteration.

Figure 5.1 shows four different interleaving decisions for three levels of 2× 2 convolution down-

sampled by 2 in each level. The horizontal axis shows the progression of time while the colors on

different rows in a grouping depict the different compute kernels as they execute. The top choice is

how the three compute kernels would execute with exclusive compute kernels. Each compute kernel

executes whenever its requisite input pixels are ready. The red input pixels stream in continuously,

and the compute kernels in green, blue, and purple execute once the necessary values have entered.
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Figure 5.1: How interleaving choice affects the order of computation. Note that pixel interleaving
additionally requires streaming the input data in a different order, which may not be feasible.

Notice that different compute kernels can align vertically since they can execute at the same time.

The second grouping of executions in Figure 5.1 shows sequential execution. In my Halide-

specified scheme, this is interleaved by block. The full tile of the first convolution in green executes

before the next convolution in blue starts. Last, the four purple output pixels are calculated. In this

scheme, the execution of each pyramid level runs entirely before the next level runs. Note that the

total execution time can be visually observed by the horizontal space. Tile interleaving has a modest

increase in the execution time compared to the exclusive kernel execution, but this is compensated

with fewer compute resources required for the shared compute version.

Row-interleaved execution is the third group of executions in Figure 5.1. Here, just the necessary

input for a single row of output at the highest level of the pyramid is read. Once the first convolu-

tion has executed for four rows, the subsequent convolutions execute to calculate a row of output.

The input then resumes its reads and repeats to calculate the second row of output. With this

interleaving, the computation switches between kernels based on generating a single line of output.

Notice that the input pixels can overlap the execution which helps reduce the total runtime. Note

that when we try to schedule each of the kernels to an affine schedule, we end up with a small gap in

input scans and kernel computation. This gap is needed to ensure that there is no resource conflict.

For example, for the row interleaving version, 8 rows of the input are read. During this execution, 4

rows of the largest pyramid level are created (in green). At the end of this execution, we can create

the next two pyramid levels. This is by design; we run all of the producers for enough iterations

until we can create a single output row. However, this also means that we must serially produce the
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1 // Schedule: Share the compute kernels

2 hw_output

3 .compute_root ()

4 .tile(x, y, xo , yo , xi, yi, 8, 8)

5 .hw_accelerate(xi , xo);

6

7 blur3.store_at(hw_output , xo). compute_at(hw_output , xo);

8 blur2.store_at(hw_output , xo). compute_at(hw_output , xo);

9 blur1.store_at(hw_output , xo). compute_at(hw_output , xo);

10 blur0.store_at(hw_output , xo). compute_at(hw_output , xo);

11

12 // Share the compute kernels

13 blur3.compute_share_root(y);

14 blur2.compute_share(blur3 );

15 blur1.compute_share(blur3 );

16 blur0.compute_share(blur3 );

17

18 // Assign coarse -grain loops

19 std::vector <Func > funcs = {blur3 , blur2 , blur1 , blur0 , hw_in.in()};

20 for (auto& func : funcs) {

21 func.coarse_grain_loop(y);

22 }

23 hw_output.coarse_grain_loop(yi);

24

25 hw_in.stream_to_accelerator ();

Code 5.2: Schedule for compute sharing for Code 5.1. Each level shares a single compute kernel,
and has the same coarse-grain loop using the y loop.

output (since we only have a single compute kernel). This means we must hold back the execution

of the next input rows until we have completed the output row (purple), so that we don’t have a

resource conflict when we get to the next computation of the largest pyramid level (green). Notice

that we hold back the input pixels (red) for just enough cycles so that compute kernel is available

for the green computation precisely when the stencil is ready.

The last interleaving in Figure 5.1 is executed with a pixel interleaving. Each output pixel is

calculated before proceeding to the other pixels in the input image. However, unlike the previous

schedules, this one is not possible with our current input traversal order. Reading just the input

needed to produce a single pixel on the output requires a subset of the input; for example, our first

output pixel requires the upper-left quadrant of the input image. However, our hardware usually

prefers reading the input data in row-major order. Even if we were to gather the input data in

a different order, our problems continue if we are using line buffers. Line buffers work based on

row-major traversal order. When you reorder the input traversal, the reuse pattern of the input

becomes more complicated when the stencil size is larger than the stride size. Due to these issues,

we will not consider a pixel interleaving in our final evaluation, even though it has the lowest storage

requirements and overall latency.

We have seen that the different interleaving choices affect the order of computation and the

resulting execution time. In addition, the choice in interleaving affects the required memory size.
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1 // HalideIR mutator that annotates IR with each user -provided coarse -grained loop.

2 InsertCoarseLoops(program , coarse_loop_names ):

3 for (loop : program ):

4 if (loop.name in coarse_loop_names ):

5 InsertAnnotation(loop , "coarse_grain_loop_tag");

6

7 // HalideIR mutator that annotates IR with each compute share mapping

8 // during memory definition.

9 InsertKernelMappings(program , compute_share_mappings ):

10 for (memory_definition : program ):

11 if (memory_definition.name in compute_share_mappings ):

12 // Compute share mapping: original_kernel name -> new_kernel name

13 // and compute share looplevel

14 InsertAnnotation(memory_definition ,

15 compute_share_mappings[memory_definition.name ]);

16

17 // Change to codegen: new ‘provide ’ visitor pass. Note the changes in the middle.

18 Visit(provide ):

19 // ‘provide ’ consists of computation on the RHS , and store on LHS.

20 compute = provide.rhs;

21 loads = Closure(compute );

22 store = provide.lhs;

23

24 // compute_share_mappings populated based on HalideIR annotations.

25 if (provide.name in compute_share_mapping ):

26 // Generate ‘add_function ’ pointing to the shared kernel

27 Emit(compute_share_mapping[provide.name ]);

28 else:

29 Emit(provide ); // Generate unique ‘add_op ’ and ‘add_function ’ for this provide

30

31 for (load : loads ):

32 Emit(load);

33 Emit(store);

34 EmitComputeKernel(compute , loads , store);

Code 5.3: Pseudocode for the Halide compiler changes for shared scheduling. HalideIR is mutated
with annotations for coarse-grain loops and compute kernel mappings to the shared kernel. The
codegen for provide, described in Code 4.2, is modified to emit the shared kernel based on the
HalideIR annotations.

As the interleaving size increases, the number of values that are stored for the next stage increases.

When interleaving by tile, we must buffer an entire tile’s pixels before they are consumed. On the

other extreme, we minimize the producer-consumer length by interleaving by pixel. Reducing the

time between production and consumption of the intermediates reduces the memory requirement up

to a point: given that we are performing convolutions, we always need to have line buffers for each

level of the pyramid storing the data that will need to be reused by future rows. Thus, our choices

have minimal memory requirements when interleaving by pixel, modest when interleaving by line,

and a large memory requirement when interleaving by tile. We examine the different tradeoffs in

more detail later in Section 5.4.

At the Halide stage, the user identifies which kernels can be shared and the interleaving loop

level. The schedule for Code 5.1 is shown in Code 5.2. The new Halide scheduling primitive is
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1 // Clockwork input file with shared compute kernels

2 auto blur0_y = prg.add_loop("blur0_y", 0, 32);

3 blur0_y ->coarse_grain_loop_tag ();

4 auto blur0_x = blur0_y ->add_loop("blur0_x", 0, 32);

5 auto hcompute_blur0_1 = blur0_x ->add_op("op_hcompute_blur0_1_stencil");

6 hcompute_blur0_1 ->add_function("hcompute_blur3_1"); // Shared function

7 hcompute_blur0_1 ->add_load("blur0_1_stencil", "(blur0_y *2)", "(( blur0_x *2) + 1)");

8 hcompute_blur0_1 ->add_load("blur0_1_stencil", "(blur0_y *2)", "(blur0_x *2)");

9 hcompute_blur0_1 ->add_load("blur0_1_stencil", "(( blur0_y *2) + 1)", "(( blur0_x *2) + 1)");

10 hcompute_blur0_1 ->add_load("blur0_1_stencil", "(( blur0_y *2) + 1)", "(blur0_x *2)");

11 hcompute_blur0_1 ->add_store("blur0_1_stencil", "blur0_y", "blur1_1_s0_x");

12

13 // blur1_y definition , blur1_y ->coarse_grain_loop_tag (), blur1_x definition

14 auto hcompute_blur1_1 = blur1_1_s0_x ->add_op("op_hcompute_blur1_1_stencil");

15 hcompute_blur1_1 ->add_function("hcompute_blur3_1"); // Shared function

16 // Loads and stores: 4x [ ->add_load () ] + 1x [ ->add_store () ]

17

18 // blur2_y definition , blur2_y ->coarse_grain_loop_tag (), blur2_x definition

19 auto hcompute_blur2_1 = blur2_1_s0_x ->add_op("op_hcompute_blur2_1_stencil");

20 hcompute_blur2_1 ->add_function("hcompute_blur3_1"); // Shared function

21 // Loads and stores: 4x [ ->add_load () ] + 1x [ ->add_store () ]

22

23 // blur3_y definition , blur3_y ->coarse_grain_loop_tag (), blur3_x definition

24 auto hcompute_blur2_1 = blur2_1_s0_x ->add_op("op_hcompute_blur3_1_stencil");

25 hcompute_blur2_1 ->add_function("hcompute_blur3_1"); // Basis function

26 // Loads and stores: 4x [ ->add_load () ] + 1x [ ->add_store () ]

.

Code 5.4: The generated input code to Clockwork. Note that each generated kernel in the pyramid
has the same shared function. Generated by pseudocode in Code 5.3.

compute share(root func, loop level). The root Func is the last Func in the chain of shared

compute stages. And the loop level specifies the granularity of sharing: the innermost loop level to

share by pixel, the outer loop level to share by tile. The scheduling coarse grain loop specifies

which loop is fused together to create the desired interleaving.

In the Halide compiler, we must annotate these new shared kernel mappings and loop level

granularity to pass to the codegen. These steps are shown as pseudocode in Code 5.3. The shared

kernels and loop level granularity information is stored within the HalideIR nodes. These nodes

are simply tagged with the compute kernel and loop levels so that this information can inform

the Clockwork codegen. During codegen, the compute kernels in the Clockwork memory file are

annotated with ->add function(), which points to the execution function. When two compute

kernels point to the same function rather than their own dedicated function, then these compute

kernels share an execution unit. The compute granularity is labeled on each of the loop levels where

the coarse-grain loop is for each of the kernels. Clockwork scheduling and hardware generation will

use this information to create the modified schedule timing and hardware design. Code 5.4 shows

the generated annotations for our pyramid downsample example.
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// Original loops

for y = 0 to 63:

for x = 0 to 63:

hw_in = ...

for y = 0 to 31:

for x = 0 to 31:

blur0 = ...

for y = 0 to 15:

for x = 0 to 15:

blur1 = ...

for y = 0 to 7:

for x = 0 to 7:

output = ...

// Split on coarse -grain loop

for y_o = 0 to 7:

for y_i = 0 to 7:

for x = 0 to 63:

hw_in = ...

for y_o = 0 to 7:

for y_i = 0 to 3:

for x = 0 to 31:

blur0 = ...

for y_o = 0 to 7:

for y_i = 0 to 1:

for x = 0 to 15:

blur1 = ...

for y_o = 0 to 7:

for y_i = 0 to 0:

for x = 0 to 7:

output = ...

Code 5.5: Compute kernel loops before and after refactoring for later coarse-grain loop fusion. This
example uses row interleaving with a coarse-grain loop of y. The coarse-grain loops are split such
that each shared compute kernel has the same sized outer loop.

5.2 Clockwork Scheduling

Once we have outputted the needed information from Halide, we use Clockwork to generate the

new schedules based on a shared compute kernel. The new schedule needs to be modified such that

(1) the shared compute kernel does not execute on overlapping clock cycles, and (2) the frequency

of compute kernel switching is based on the user-directed interleaving. Clockwork scheduling must

assign the cycle times that each stage should execute on the shared compute kernel. Calculating the

new loopnest schedules requires loopnest modifications and proper timing of the kernels. Next, we

go over how Clockwork creates the new schedules.

Coarse-grain Loop Fusion

The first change to Clockwork scheduling is to modify the loopnests to account for the interleaving.

The interleaving dictates several properties of the modified loopnest. Each new loopnest follows a

sequence of steps to execute each of the shared compute kernels. Also, the last step of the sequence

calculates a portion of the output pixels. Based on the interleaving, these steps are repeated to

calculate the entire output block. For example, a coarse-grained tile interleaving only iterates a

single time before the output is complete. On the other hand, when interleaving at a fine-grained

pixel granularity, each sequence calculates a single output pixel and so it is repeated many times to

construct the full output block. To reflect the repetition of the fine-grained interleaving, we split

the outer loops, and then fuse the inner loops across different compute loops. The interleaving loops

are coarse-grain loops that are split so that each of the shared loops can be fused together. For this

reason, Halide labels the coarse-grain loops to guide this step.
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Our loop fusion process mirrors the strategy taken for coarse-grain loop fusion for DNN appli-

cations. For both use cases, some of the outer loops are fused together for a set of pipeline stages,

while the innermost loops are separate. This creates a loopnest that is not perfectly nested, but

instead has distinct coarse-grain blocks as seen in the row interleaving in Code 5.5. Each of the

compute kernels are executing the same number of coarse-grain loops (including all of the outer

loops). However, the body of the coarse-grain loops differ for each distinct compute kernel. Their

final Clockwork schedules will also differ to obey the producer-consumer dependencies and hardware

constraints (only a single compute kernel for our use case with shared compute).

One complication of the coarse-grain loops is that the size of the loops is not the same across all

pipeline stages. Due to downsampling and stencil contractions, the loop extents are different across

stages. Therefore, the first step in Clockwork scheduling is to split the loops to create evenly-sized

loops that can be fused. First, all of the coarse-grain loops are analyzed and the rate of the smallest

loop is used as the loop length. For a series of downsamples, this is the size of the last, smallest

pyramid level. All other coarse-grain loops are split such that the outer loop length is the determined

size. In Code 5.5, the coarse-grain loop is y, and the last loop level has just 8 iterations. Therefore,

we split the y loop for each function so that each outer iteration, y o, has 8 iterations.

After all of the loops are split, the loops can be effectively fused. The outermost loops all match

in size until the coarse-grain loop, and then the inner loops are distinct for each pipeline stage.

Note that the difference in pipeline stages results in very different execution times for each pipeline

stage. A series of four stages with downsampling in the x and y dimensions results in the first

stage calculating 16 lines that each are 16× longer than the single output line that is calculated in

a coarse-grain block. In this way, the computation has been fused such that a block of input lines

is calculated for the next line of output pixels. The following section describes how the modified

Clockwork schedule is calculated.

Coarse-grain Block Timing

The next step is calculating the block timing to schedule each pipeline stage within a periodic shared

schedule of the compute kernel. Each pipeline stage was split so that the coarse-grain loops could

be fused. Now, the execution timing must be determined so that there is no overlap in execution.

Our interleaving strategy and coarse-grain loops determine an inner block that is repeated by each

of the compute kernels. We expect that our schedule will be periodic using the outer, coarse-grain

loops. To accomplish this, we calculate the execution time for each compute kernel within a single

iteration of the coarse-grain loop. One other constraint is that every pipeline stage gets a contiguous

slot of time to execute within the coarse-grain loop before switching to the next compute kernel.

This constraint allows each schedule to be affine so that we can eventually map the schedules to the

affine address generators on the Amber CGRA.

With these goals, we can use the address generator parameters with our desired constraint of



CHAPTER 5. SHARED HARDWARE: MULTIPLEXING UNDERUTILIZED COMPUTE 74

non-overlapping cycle assignments to formulate the new schedules. The timing of a pipeline stage

is expressed using a cycle-accurate affine expression using the loop extent, stride, and delay. We

represent each of the schedules using a vector with entries for each loop level. Each pipeline stage

has their own vector for the extent, stride, and delay to calculate the timing of its execution. The

loop extent, ~e, represents the total iterations at each loop level. The stride, ~s, is an initiation interval

consisting of the computation interval and the loop execution time. This stride depicts how many

cycles occur between executions at different loop levels. The computation interval, ~q, refers to how

often the computation executes; while the loop execution time, ~l, is the number of cycles for a single

iteration of each loop level. Finally the delay, ~d, is the number of initial iterations of each loop level

to stay idle in order to respect producer-consumer dependencies. Next, we go more in depth on

calculating each of these vectors.

Loop Extent (~e): The loop extents are already defined by the loop iteration. The loop extents

are simply how many iterations each for-loop must repeat the statements in its loop body. Each

of these iteration domains of the produced output is used to calculate the bounds for its inputs.

Every downsampling kernel results in a larger loop extent for its producer as compared to the loop

extents of the consumer. These loop iteration values and bounds analysis are already computed and

provided in Halide, so no further calculation is necessary in Clockwork.

Stride (~s, ~q, ~l): The stride (~s) is comprised of a computation interval (~q) and loop execution time

(~l). The computation intervals denote the relative kernel sizes between producer and consumer. The

larger the computation interval, the more producer pixels must be produced before the computation

kernel can be executed. For example, a downsample of 2 results in a computation interval of 2. The

loop execution time is how many cycles occur in each loop level. Calculating the loop execution time

is different for the inner and outer loops. Since the inner loops inside the coarse-grain loop are run

sequentially, this value is just the product of all of the loop extents up to that loop (li =
∏i−1

j=1 ej),

starting with l1 = 1. For the coarse-grain loop, we must consider how much time a coarse-grain loop

iteration takes. The length of the coarse-grain loop level is the sum of the executions of all of the

pipeline stages that shared the kernel. Outside the coarse-grain loop, the execution is fused with all

other pipeline stages. We multiply the previous loop level size by the maximum loop size to get the

extent of each successive level. Putting these together, we can get the stride of the computation. The

consumer kernel must wait for the loop execution time for each pixel in the computation interval,

so the total stride for the consumer is the product of these values.

Delay: The delay for a kernel is derived using the stencil size and represented using a multi-

dimensional value. For typical image-processing stencils, this is one less than the stencil size in each

dimension. This means that a 3 × 3 stencil would have a delay of 2 rows in the y dimension and

2 pixels in the x dimension. The delay for shared kernels is based on the loop being inside the

coarse-grain loop or not. Inside the coarse-grain loop, the stencil delay is set to zero, since we no

longer fuse these inner loops. Instead, the granularity of delays begin at the coarse-grain loop. This
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is because the innermost loops are all run sequentially to achieve the desired interleaving. At the

boundary between shared compute kernels and dedicated kernels, delay is not set to zero, since the

producers using dedicated compute kernels produce pixels at a consistent rate. For the innermost

loop (at the cycle level) we have a phase delay accounting for the execution of the compute kernel

within the shared compute pipeline. This delay is the cumulative execution times of all previous

computation kernels.

Altogether, the execution time for N -dimensional point ~p is:

N∑
i=1

li(qi · pi + di)

Each of the N dimensions has its own loop extent (~e), computation interval (~q), loop iteration

interval (~l), and delay (~d). Subbing in a multi-dimensional point into this equation gives the iteration

time for that compute stage. This expression can be rewritten to more closely match the memory

configuration values for the address generators in the Amber CGRA as:

D +

N∑
i=1

si · pi

where the initial delay is:

D =

N∑
i=1

li · di

and strides are calculated as:

si = li · qi

(a) buffers muxed together (b) buffers sharing registers (c) buffers chained

Figure 5.2: Multiplexed inputs, stencil register sharing, and memory chaining are ways to share a
single compute kernel between multiple buffers.
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5.3 Hardware Generation

The final part of Clockwork mapping is generating the hardware for the application. This hardware

represents the MEM and PE tiles needed to execute the application as well as the connections

between tiles. Sharing compute kernels alters the generated hardware where its primary purpose is

to reduce the number of compute kernels. Instead of each pipeline stage having its own dedicated

compute kernel, only a single compute kernel is created. Since the data from the different kernels

might come from different unified buffers, hardware generation needs a mechanism to choose which

unified buffer is feeding the compute kernel. The following section explores different approaches to

accomplishing this data multiplexing.

Multiplexed Inputs

A set of multiplexers provides a traditional method of connecting all of the inputs to a shared

compute kernel. Each of the pipeline stages maintains their own distinct memories, and during the

scheduled period of time executes on the shared compute kernel. Effectively, the pipeline stages time

multiplex the compute kernel.

Time multiplexing the inputs requires an N -input multiplexer for each input to the compute

kernel. For example, if a 3 × 3 compute kernel is shared among 4 stages, then 9 different 4-input

multiplexers are necessary. Furthermore, the multiplexers need signals to select which input is

executing for each cycle. Each memory has already been scheduled based on the calculations shown

above to exclusive time slices. Therefore, we need to simply output a signal from each memory when

they are outputting values. Luckily, Clockwork already has a mechanism to create a signal when

there are outputs from a memory. Collectively, the memories create a one-hot signal that directs

the multiplexer on which stage is executing.

Using multiplexers effectively connects the memories to the shared compute kernel; however,

there is some redundancy in the implementation with each unified buffer having their own stencil

registers and memory. Furthermore, implementing the multiplexers and control signals requires

additional PE resources on the CGRA fabric. Next, we show some optimizations to reduce the

hardware overhead.

Stencil Register Sharing

One inefficiency of our first implementation is that each of the unified buffers have their own exclusive

stencil registers. However, when interleaving at the row or block level, the stencil registers can be

shared between pipeline stages. Our original mux design creates stencil registers for each of the

pipeline stages, and then the outputs of each stencil register are multiplexed into the compute

kernel. Instead, for row or block interleaving we can share each of the stencil registers by placing a
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multiplexer between the memory tiles and the stencil registers. For this new hardware configuration,

instead of N sets of stencil registers, only a single set of stencil registers is needed.

The reason this approach can’t support pixel interleaving is that shared stencil registers can’t hold

any necessary data for a compute kernel during an interleaving transition. This constraint means

that sharing stencil registers cannot occur at the pixel level since you need them to store previous

pixels in the line. For a pixel interleaving, exclusive stencil registers are needed for each unified

buffer to store values that are needed on successive computations, which makes pixel interleaving

expensive.

Row interleaving works well, since stencil registers don’t hold useful data once a row is complete.

Stencil shift registers help for temporal locality in the innermost traversal dimension, but do not

help for further rows. If our interleaving is by row or coarser, the stencil registers can be shared.

With this scheme, the stencil registers are used by the currently executing pipeline stage, and then

change ownership when the compute kernel switches to the next pipeline stage. This means that

each stencil register isn’t dedicated to any one compute kernel.

This concept of shared memory can be extended beyond stencil registers, but is not explored

in our compiler. Taken one step further, a shared compute kernel interleaved by block could share

entire line buffers created by memory tiles. This is because once a pipeline stage has executed,

its values are no longer needed, so the memory can be reclaimed. Extending the sharing beyond

registers requires more complicated addressing in the memory tiles, and so is not explored here.

Memory Chaining

Once we have reduced the number of stencil registers, we still have the overhead of the multiplex-

ers. Ideally, we would want to optimize our hardware mapping to free up the resources used for

implementing the multiplexers. Our target CGRA has memory tiles that have a chaining feature.

The original intent of memory chaining was to allow memory tiles to implement buffers that are

larger than a single SRAM block. Chaining multiple memory tiles together gives a unified buffer its

cumulative SRAM size and is implemented using a special chain input data port. When chaining

is enabled, the output port switches between output read from its own SRAM and data from the

chain input. Internally, this multiplexer is controlled by the schedule of the memory tile, meaning

whenever the memory tile reads out data from its own SRAM, it is outputted to the output port.

Note that this gives priority to its own SRAM. At the end of the chain of memory tiles is a single

output port where all of the chained data is used.

The simple implementation of memory chaining means that it can be used to multiplex any two

memories. While the original intention was that the memory tiles were chained for capacity reasons,

this is not enforced by the hardware. Instead, we can chain together the memories that are needed

for each port of the shared compute kernel. The multiplexers that exist within the memory tiles

replace the multiplexers that we were originally implementing on the CGRA fabric. The control of
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the chaining multiplexers comes from the same schedule that determines when values are read from

each SRAM. Since we scheduled the computation so that there is no overlap, there is no conflict

with multiple inputs arriving at the same time to a multiplexer, so they can be chained in any order.

The output of the final memory can then be connected to the shared stencil registers.

Memory Sharing

With changes to the memory tile, we can reduce the number of memory tiles needed for an application

even further. The memory tiles that are chained together sometimes do not utilize the entire SRAM

in the memory tile. Due to the downsampling that occurs in a pyramid application, the necessary

memory tile capacity decreases with each stage; the last stage may have a very small utilization

of the memory tile capacity. The central purpose of sharing the compute kernels was to improve

utilization of the CGRA, so we should extend that consideration also to the memory tiles if possible.

The strategy for reducing the number of memory tiles is to store multiple unified buffers in a

single memory tile. In this single memory tile, each pipeline stage gets its own exclusive range of

addresses in the SRAM. Therefore, multiple unified buffers can be consolidated if the sum of their

storage space is less than the capacity of a single memory tile.

There are multiple considerations on capacity to ensure that multiple memory tiles can be stored

together. In order to fit multiple memories together, they first have to have small enough sizes to

fit into a single memory tile. Line buffers for our stencil applications typically only hold a couple

hundred pixels, and pyramid stencils have buffer sizes that shrink by 50% each successive stage. For

our memory tiles that hold 2048 words, we can hold the buffers for many stages in a single memory

tile. In addition to capacity, the loads and stores for each stage cannot overlap, otherwise there

would be a conflict on using the input and output ports for the memory tile. Conveniently, our

pipeline stages have been scheduled to not overlap when employing compute sharing.

Once the memories are merged together, the limiting factor becomes the address generator.

Instead of mimicking a simple loopnest, the address generator is now responsible for alternating

between a set of affine loops. Our current target CGRA only holds an address generator that can

perform two affine loopnests independently. This capability is sufficient for creating the piecewise

address pattern for merging two buffers together, but in our applications, we could benefit from

merging many more buffers together. Providing this increased flexibility should be considered in

future CGRAs.

This new strategy of storing multiple unified buffers in a single memory tile can be used in other

applications as well. There are many unified buffers that are not able to utilize the entire available

SRAM in a memory tile. Therefore, with this new strategy, it would be useful to add a new Halide

primitive for memory sharing. This new primitive could be used to indicate to Clockwork that

multiple unified buffers should be mapped to a single memory tile. Note that a major consideration

for sharing memories is whether the memory usage is prone to overlap with each other. Using a
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Table 5.1: Evaluation of different compute granularities for shared compute kernels. We see that
sharing compute kernels use a single compute kernel over the original spatial scheduling choice.
Additionally, sharing at a granularity per line gives a good blend of decreasing the latency, without
reordering the input, and without a large increase in memory usage.

Application Compute
Granularity

Compute Kernels Memory Size
(words)

Latency
(cycles)

cascade spatial 2 256 4096
shared - pixel 1 256 8192
shared - line 1 316 8064
shared - block 1 33974 7816

gaussian pyramid spatial 3 115 4096
shared - pixel 1 115 4106
shared - line 1 225 4244
shared - block 1 1345 4672

single read/write port for an SRAM would greatly hinder two memories trying to access an SRAM

simultaneously and would cause the scheduling to increase execution times to ensure there are no

conflicts on the SRAM port. However, a different physical unified buffer that uses multiple read/write

ports would be able to implement memory sharing more easily.

5.4 Results

Next, we present results for using shared compute with different compute granularities, showing

how it saves compute resources with minimal overheads. Below we evaluate our interleaving options

based on the resulting memory size and the application latency.

Interleaving Comparison

When sharing a compute kernel, we also choose at what granularity we want to interleave the

compute kernel execution. This interleaving choice leads to a question of what trade offs exist

between the options. Table 5.1 numerically lists the results for the interleaving choices visually

depicted in Figure 5.1 for gaussian pyramid as well as sharing the cascade application.

Our baseline comparison is a spatially scheduled application. These implementations use multiple

compute kernels and thus have the lowest latency of 4096 cycles, since there is no contention for

the compute units. When we interleave for the cascade application, we see that interleaving at a

fine granularity (per pixel) has the lowest memory size and highest latency. The lower memory is

explained by the smaller intermediates that are kept throughout execution, since we switch compute

kernels to use these values instead of storing them. However, with these compute kernel switches, we

also incur the largest latency of 8192 cycles. When we interleave at a coarser level, we also require
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Table 5.2: Comparison of cascade and gaussian pyramid implemented with a spatial schedule versus
a shared compute kernel interleaved by line. We see an increase in the frames per second per compute
kernel for both applications.

Application Schedule Compute
Kernels

MEMs Latency
(cycles)

Slowdown fps / compute
kernel

cascade spatial 2 2 4096 - 111
shared - line 1 2 8064 97% 113

gaussian pyramid spatial 3 3 4096 - 74
shared - line 1 3 4244 3.6% 214

that the intermediates are fully buffered. However, we also are able to skip any “dead” cycles used

in the finest interleaving. The dead cycles are incurred during the first few lines of computation

when the second compute kernel has no work to do. During execution of cascade, the first compute

kernel takes 64 cycles for a single row. Since the resulting row output is only 62 pixels, computing

a row of the next kernel only takes 62 cycles. In total then, we execute 64 lines with these slightly

smaller lines ((64 + 62)×64 = 8064). If we interleave at the block level, we only need to compute 60

output lines, since the output of the second kernel is 60×60, yielding another additional savings. We

find that interleaving per line has many advantages. Interleaving per line uses minimal memory size

overhead due to the efficiency of line buffers, enables shared stencil registers and “free” multiplexers,

and provides a small latency benefit from the coarser interleaving size (as compared to per pixel).

For gaussian pyramid, we again find that sharing compute kernels reduces the resources needed

for our application implementation. Again we find that memory requirements increase as we have

coarser interleaving, with a large jump in memory needed to store entire blocks of intermediates.

Recall that sharing by pixel is largely infeasible for our hardware, due to a requirement of input

reordering and problematic reuse patterns. Therefore, we focus primarily at the other interleavings.

The latency of the gaussian pyramid interleaving is a bit different. We are able to interleave the

computation in a more optimized way when scheduled by line. We are able to effectively fill the

gaps in the original compute pattern. In fact, we see that interleaving by line with a shared compute

kernel takes only 3.6% longer than the original spatial schedule, but also we have a third of the

compute resources. The latency is able to come much closer to the spatial schedule in the gaussian

pyramid, since many cycles have no active computation for many of the gaussian pyramid levels.

Due to these observations, we recommend sharing compute kernels for pyramid applications, and

interleaving per line.

Shared Compute Evaluation

We now look at the effectiveness of sharing compute kernels. Based on the results of interleaving

above, we now focus just on the interleaving by line. Table 5.2 shows the compute kernels and
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Table 5.3: The number of components used for the cascade application with compute sharing.
Each optimization shifts the resource usage to a more available resource, or reduces the number of
resources.

Optimization # Kernels # Shift Regs # Muxes # MEMs

no sharing 2 12 0 2
muxes 1 12 10 3
shared shift registers 1 6 10 3
memory chaining 1 6 0 3
memory sharing 1 6 0 1

memory used by each application and schedule. As expected, we see the number of compute kernels

decrease when we share compute kernels. We also see that the number of memories does not change

since the number of intermediates does not change between our schedules. The schedules are simply

changing how we connect these same memories with the compute kernel(s).

In terms of latency, we find that cascade has a 97% slowdown while gaussian pyramid incurs a

small 3.6% slowdown. We expect this result, because of the different structures of these applications.

Cascade has similar compute kernels to be shared, but there is no utilization issue with the spatial

schedule which instead has a high compute occupancy. Thus, when we share the compute kernel,

we are increasing our latency. We see that we are utilizing the compute kernels in a similar manner

when looking at the frames per second per compute kernel. Sharing a compute kernel for cascade is

only beneficial for the reduction in compute resources.

For gaussian pyramid, we find that the latency is only increased by 3.6%. The lower compute

occupancy of the pyramid levels means that we have a large opportunity when sharing compute

kernels. This increase in compute utilization is best seen in the fps / compute kernel, where we

increase from 74 to 214. This is almost a threefold increase since we are achieving almost the same

runtime with a third as many compute kernels.

Hardware Optimization

In Section 5.3 we saw how compute sharing can be implemented with different techniques. Each of

these optimizations try to use less additional hardware to implement the needed multiplexing. By

reducing the overhead of compute sharing, we achieve our goal of reducing compute tile usage with

compute sharing.

Table 5.3 shows a count of the hardware components needed for each optimization for the cascade

application. Note that not all components are equally as valuable. In particular, memory tiles and

compute tiles (for kernels and muxes) are less plentiful than stencil registers. We see from the table

that each optimization reduces the number of resources or exchanges a valuable register for a more

plentiful resource.



CHAPTER 5. SHARED HARDWARE: MULTIPLEXING UNDERUTILIZED COMPUTE 82

5.5 Extensions

Non-exact Kernel Sharing

The shared compute kernels in this chapter depend on being exactly the same in order to be shared.

However, not all kernels are exactly the same. Some kernels are slightly different from one another,

but share much of the same structure or computation. Some stencil computations differ just by the

weights used, and some pyramid applications have a simpler first computation layer. One useful

extension would be sharing computation kernels that have a few differences.

This feature can work by combining similar computation kernels together into a single computa-

tion kernel that can do multiple variants. This new computation kernel is slightly larger than each

individual kernel, but not as large as the sum. The computation that the kernels have in common

is not duplicated, while the differing parts are both created. A multiplexer can then choose which

computation is being run at any given time. In this way, we have created a more powerful compu-

tation kernel that is capable of doing multiple types of computation based on the configuration that

it is given.

This new feature would again affect the entire application compiler. In Halide, one would apply

compute share to two compute kernels. However, this time the compute kernels do not exactly

match. One could then generate the hardware representation of both kernels, and use a metric

similar to the frequent subgraph analysis in [64] to determine what merged compute kernel is best.

From here, we would create a merged compute kernel as well as muxes that change their computation

intent based on a control signal. During execution, the same signal that performs the memory muxing

would also control which compute kernel is executing. This implementation allows a fine-grained

switching of which compute kernel is executing at a cycle level, rather than a longer latency if

you instead attempted an implementation that utilized fabric reconfiguration. One would be most

interested in how fine-grained the execution switching can get, and then evaluate the resulting latency

and runtime. Furthermore, since the non-exact compute sharing has additional muxes, we must also

consider how much resource overhead is introduced. However, in all we expect this technique to be

useful on applications like demosaic, where there are large compute kernels that differ only slightly

from each other, and have a lower compute occupancy than the rest of the application.

If we take this concept even further, we could consider fusing compute kernels with little or no

common computation. Fusing these dissimilar kernels results in a powerful compute block that does

distinct computation, more similar to the generality of an ALU, but on larger groups of computation.

Non-exact kernel sharing would allow for such complex components to be mapped onto the CGRA.

This application of compute sharing allows the user to choose a design along the continuum of designs

that are spatially implemented (unrolled completely) and temporally implemented (sharing of a few

time-multiplexed compute kernels). One such use case would be when designing an accelerator that

must implement several different applications/kernels. This fusion function would allow for a single
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kernel block to be constructed that could be temporally scheduled along with the configuration of

which compute kernel to execute at any given period of time.

CGRA-level Compute Sharing

Bringing compute sharing up in the hierarchy, we can apply some of the same principles to sharing

the CGRA fabric over multiple DNN layers. For multiple layers of DNNs, we typically have a fixed

number of compute resources that are used in a DNN layer, and maintain a fixed structure over

multiple layers. Extending the compute sharing framework to multiple DNN layers uses the entire

CGRA compute fabric as a single compute kernel. Instead of sharing per pixel or row, we now share

the compute kernel over entire executions of the hardware accelerator. Our interleaving is elevated

to a loop level that encompasses the full DNN layer execution. Therefore, a full DNN layer executes

sequentially before continuing to the next layer.

The compute kernel in this case is a little different from those earlier in this chapter. Instead of

just PE tiles being shared, we also want to include the memory tiles to keep the same connection

structure across DNN layer executions. However, these layers have different configurations where the

loop lengths are different for each DNN layer. In order to switch between these non-exact matching

kernels, reconfiguration can be used.

The memories feeding the shared compute kernel are elevated from memory tiles to global buffer

banks. The successive DNN layers are stored in the global buffer and are multiplexed into the CGRA

fabric using the programmable global controller. Because of the size of the input, weight, and output

buffers, it becomes necessary to reclaim global buffer banks after their use to ensure there is enough

capacity for all of the data buffers.

There are several parallel concepts that we see between compute kernels and multiple DNN layer

execution. The execution becomes a demonstration of the global buffer instead of the memory tiles.

And the benefit becomes the consistency in CGRA routing structure between CGRA layers.

5.6 Summary

Sharing compute kernels aims to optimize computation in pyramid applications by sharing a sin-

gle compute kernel for multiple stages while carefully interleaving their execution. This approach

maximizes compute resource utilization and minimizes memory requirements. We extend Clock-

work scheduling to accommodate the new execution order, ensuring that shared compute kernels

run efficiently without overlapping. We also adjust hardware generation to represent shared kernels.

Chained memory tiles then multiplex between different input sources, leading to minimal hardware

overhead to implement compute sharing. Hardware sharing represents a scheduling primitive that is

exclusively for hardware. Users can employ hardware sharing to optimize their target performance.



Chapter 6

Halide to Hardware System:

Evaluating the Compiler

In the previous chapters, we have focused on the first few steps of the compiler. The major focus

of my research was on these steps. However, my work is part of a larger system [51] that compiles

Halide applications onto our CGRA. We first look at a brief overview of the full application compiler

developed by our Stanford Agile HArdware (AHA) group. We again start with Halide, but continue

our description of the application compiler with PnR and hardware execution on real silicon. This

full system description gives the context necessary for understanding some of the later evaluations.

Next, we describe the design philosophy for constructing our system, including our testing strategy of

handcrafted concepts, unit tests, and full applications. While creating these application schedules,

I found common strategies for creating schedules to create good implementations on the CGRA.

We define these evaluation metrics and then list my recommendations on how to schedule to the

CGRA. Finally, we list our motivating image processing and DNN applications, show the final CGRA

schedule parameters, and evaluate the applications.

6.1 Compiler System for CGRA

This section describes the steps for compiling a Halide application to the CGRA depicted in Fig-

ure 6.1. The first steps revisit Halide applications and mapping to the unified buffer abstraction.

The next compiler step maps the unified buffer onto CGRA hardware. Then, the application is

placed and routed onto CGRA tiles. And finally, a configuration bitstream is created for the full

application. Below, we briefly describe each of these compiler steps.

84
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M

Mconv(x, y) += kernel(r.x, r.y) *
             input(x+r.x, y+r.y);
conv.in().compute_root();
conv.in()
    .tile(x,y,xo,yo,xi,yi,64,64)
    .hw_accelerate(xi, xo);
conv.update()
    .unroll(r.y, 3)
    .unroll(r.x, 3);
conv.compute_at(conv.in(), xo);
input.stream_to_accelerator();
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Figure 6.1: This figure shows all of the steps in the application compiler.

Halide Algorithm and Scheduling

First, an image processing or machine learning application is defined in Halide. As we saw in

Chapter 3, the Halide algorithm encodes the user’s target application. Here the mathematical

operations performed on the data are translated into Halide operators. Halide provides relative

indexing and reductions to make common computation patterns easier to express.

The purpose of the Halide scheduling is to optimize our generated algorithm. The scheduling

primitives change how the algorithm is computed on hardware. When targeting the CGRA, we are

typically looking for a schedule that is as fast as possible by using as much of the CGRA as possible.

Furthermore, we use scheduling to match the constraints of the hardware resource units, such as the

SRAM capacities and memory hierarchy structure.

Halide Compiler and Codegen

After the application has been fully created using the algorithm and schedule, we need to create the

files for Clockwork, our memory mapper. As we saw in Chapter 4, each of the Halide compiler passes

modify the HalideIR to better match the expected format that Clockwork wants. During codegen,

the application is separated into the memory operations and the compute kernels. The generated

memory file contains loopnests to describe the iteration domain, and indexed memory stores for the

access maps. During Clockwork scheduling, the compute kernels are largely ignored, except for any

cycle delay incurred in any compute kernel.
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Clockwork Scheduling

Clockwork first fuses stages together, and then calculates the timing of each memory operation.

As we saw in Chapter 5, the type of fusion can be automatic or directed by Halide tags. Stencils

typically have compute stages that all can be run simultaneously, which leads to all compute stages

being fused together at the innermost loop. DNN pipelines and shared compute kernel pipelines use

coarse-grain fusion.

Once the pipeline stages are fused together, we calculate the timing of memory operations. The

access maps of each memory dictate the dependency chain from inputs until the output stage.

Furthermore, the iteration rate of each of the pipeline stages changes how often each of the stages

performs its compute kernel. Using the dependency chain and iteration rate, we create a polyhedral

model in Clockwork to calculate the schedule of each compute kernel in the application. After

Clockwork scheduling, we have the complete information for the unified buffer. With the unified

buffer, our application is fully specified for our hardware execution.

Clockwork Memory Mapping

In Clockwork memory mapping, the unified buffer specification is mapped to the target hardware.

Clockwork is capable of targeting different hardware targets, such as an FPGA or CGRA. For my

research, I focused mainly on the CGRA that was being constructed in our group. The unified buffer

abstraction is meant to serve as a high-level representation of the application that any hardware

accelerator could implement. However, each specific hardware designer might make different choices

to create their hardware accelerator.

The hardware accelerator that our group designed, called Amber, has several important param-

eters for mapping. First, there are the sizes of components. The capacity of the global buffer and

memory tiles limit how much can be stored. The address generator for the memory tile is configured

for six-level affine loops. Finally, there are two input ports and two output ports for each of the

memory tiles.

Each of these limitations in the hardware comes with hardware solutions to expand them for

unified buffers that need more resources. The memories can be chained together in order to expand

their size. Memory chaining combines the total SRAM space of multiple memory tiles. If a uni-

fied buffer uses more space than a single buffer, memory chaining enables memory tile data to be

connected through the chaining input of one memory tile to another.

Nested loops can be coalesced given that the outer loop stride is equal to the extent of the inner

loop. This helps when there are many loop levels in the iteration domain. When doing computation

for neural network layers, there can be many levels of tiling and splitting where six levels are not

enough. However, we can combine loops together using this coalescing technique.

The number of input and output ports required by each unified buffer can be solved using shift

registers and banking. Each memory tile has just two input ports and two output ports. However,
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many output ports are typically needed for stencil computation. A 3×3 stencil computation requires

nine output ports, which far exceeds the two available output ports. However, by analyzing the access

pattern of successive computation, we find that many of the output ports are reused from the last

computation. Instead of rereading these values from the memory tile, we can locally store them in

stencil registers. In fact, the purpose of the access maps being parametric indices is to make this

stencil register optimization easier.

Another means of increasing the bandwidth of our memory is banking. This process analyzes

the access maps and determines if the access maps are disjoint from one another. When they are

disjoint and require more memory bandwidth, then they are separated into their own memory tiles.

By storing them in their own memory tiles, the number of available memory ports increases for that

unified buffer.

One might wonder why two input and two output ports are useful. One of the primary uses

of the output ports is that a 3 × 3 line buffer can be implemented using a single memory tile by

using the two output ports and an input stream to provide data for the three needed lines. Another

use case is when accumulating values for DNNs. A memory tiles for a DNN go through three

phases: initialization, accumulation, and read-out. Each of these phases needs its own ports and

access patterns. Therefore, we use the four IO ports to cover all of the phases (one input port for

initialization, an input and output port for accumulation, and one output port read-out).

The final part of mapping is to create the full application graph in terms of memory tiles and

processing elements. The MEMs have been given the correct read/write timings, and the PEs have

been configured with the correct compute operations. The connections of the memories to the

compute kernels was specified during Halide codegen. Thus, all of the tiles can be wired together

into the final CoreIR hardware design.

CGRA Placement and Routing

With our final graph of PEs and MEMs, we now need to create these physical connections on the

CGRA. The CGRA fabric contains PEs and MEMs that are connected by configurable switchboxes

and connection boxes that act as programmable wires. Next, we need to choose which PEs and

MEMs in the application design will correspond to which physical locations on the CGRA fabric

during placement and routing (PnR). Our group built a specialized PnR tool [66] that does placement

and routing for our CGRA.

The first step in this process is packing. The PEs contain not just a compute operation, but also

several registers. Registers that exist in the compute kernel can be packed into a PE. Furthermore,

any constants (such as stencil taps), can be placed within a PE along with the compute operation.

Each PE also has an independent 3-input LUT that is used to do logical operations such as compar-

isons and 1-bit operations. A LUT can be packed together within a PE that is using input registers

and its 16-bit compute.
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The next step is placement where tile locations are chosen on the CGRA fabric. Placement is

done hierarchically, with global placement followed by detailed placement. Global placement places

tiles using half-perimeter wirelength (HPWL) to determine the cost of a placement. In order to

reduce HPWL cost, tiles that are highly connected with each other naturally favor shorter wire

lengths. This is a good proxy for our true goal of reducing latencies from long wires. In detailed

placement, simulated annealing refines the global placement to a fully legal placement of tiles using

an iterative approach. A cost function again is used to reduce wire lengths and decrease the number

of tiles that are used only for routing. By discouraging tiles used only for routing, the generated

placement is able to power gate more tiles on the CGRA fabric.

The last step is routing. The tiles that are connected to each other must find an unused path

through the switchboxes. This step is done iteratively, starting from the shortest wiring possible.

The shortest wiring likely has overlapping wires, in which case these wires (nets) must be rerouted.

Solving routing congestion is done by rerouting the nets with short wire lengths (most positive

slack). This allows the most timing critical nets (longest wires) to use the most congested paths.

Pipelining

After placement and routing, our application has been fully created on the CGRA; however, it cannot

run at the top frequencies, since we never incorporated timing information. Pipelining the application

involves determining the locations where the delay through the compute units, memory units, and

switchboxes exceed the frequency target of the CGRA. Our research group built a toolkit [65] that

pipelines our CGRA applications.

Registers are placed throughout the CGRA design in order to meet the runtime clock frequency.

Our CGRA was built where the delay through a single compute unit is one clock cycle, so we start

by placing registers before and after each compute unit. However, since there are a different number

of compute units on each path through the computation graph, additional registers must be placed

to balance the delays. Even with the computation pipelined, some paths still can be too long. This

is common for the wire that connects the global flush to all of the memory tiles. These remaining

long wires are pipelined to ensure all wire delays fit within a clock cycle.

Once additional registers have been placed within the design, the scheduling from Clockwork

must be redone. The scheduling in Clockwork assigns precise clock timings, so the extra delay

through compute units needs to be accounted for. In the Clockwork memory file, we annotate the

calculated delays in each part of the application. Then, Clockwork reschedules the application so

that the memories properly load and store data given the pipeline delay registers.

CGRA RTL Simulation

With the entire application mapped to the CGRA, we can simulate applications. Our system uses a

script to generate a configuration bitstream based on the mapped application. During configuration,
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the global buffer sends the configuration register values to each of the CGRA tiles and switchboxes.

We are able to simulate the entire configuration process as well as the CGRA execution using an

RTL simulator. The RTL simulator uses the same input image as the CPU simulation, so we can

verify correct execution by checking that the output images/data are identical.

CGRA Hardware Execution

Figure 6.2: This is the CGRA hardware on a 5× 5 mm die. We depackaged and delayered the chip
to show the components: a central global buffer and CGRA tiles (eight column-groups of 1 MEM
column + 3 PE columns).

The final step is running the application on the real CGRA hardware. Our research group is

fortunate to have the hardware taped-out (as shown in Figure 6.2) so that we can test that the

hardware design really works. To run the application on the hardware, there are some extra steps

to transfer the data using DMAs onto the global buffer itself. From there, the application can be

run on the hardware. With correct execution, the same input image will calculate the same output

image, verifying that the execution is correct. This additional execution on hardware is important

for truly testing that the routes all make timing.
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6.2 System Design Methodology

A key part of this project was to create an automated software system that can compile applications

to our CGRA. Since we were creating both the applications and the compiler, being able to test

our applications at many stages through the compilation flow was essential. The code is written to

make it easy to build each application and debug it. In the front-end compiler, a Makefile system is

used for each file or action that a user wants to run. The dependencies of each Makefile rule allow

slight modifications of the generated files, and then future objects that depend on these files are

remade. This allows for easier debugging. The output files needed for Clockwork are created using

make clockwork. Running this command in an application directory leads to the compilation of

the Halide generator, and execution of the generator to create the input of Clockwork code.

With so many components in the compilation process, we found it useful to generate and test all

of these parts. We created a Makefile with targets for each of the intermediate outputs. By creating

a Makefile with properly defined dependencies, we can request the final output to be made, and all

of the intermediate targets and final output are subsequently generated. Each of the projects in the

application compilation process, from Halide to bitstream generation, use a set of scripts that are

automatically called, similar to a Makefile. Each of these scripts are executed without user input

or modification. A user is encouraged to simply write an application using a Halide algorithm and

schedule, and then use a one-button command to compile it to hardware. This ease of use lends well

for integration with automatic testing frameworks. Our projects are cloned, installed, and tested

using continuous integration scripts using a triggered git repository.

Our testing strategy was to run applications at intermediate stages in the compiler. For each

stage in the compiler, we should be able to feed in input data and retrieve output data. Given the

same input data, we expect the output data to match exactly. At several intermediate points in the

compiler, we have the capability of running the application in this manner:

• Halide Reference: golden reference model using the same algorithm run on a CPU

• Clockwork Simulation: input to Clockwork using unfused, sequentially run memories

• CoreIR Simulation: output of Clockwork using configured memories and compute operators

• Mapped RTL Simulation: design after placement and routing using a configured CGRA

• Pipelined RTL Simulation: mapped design on the CGRA with pipeline registers

• Hardware Execution: application running on real silicon hardware

The first testing target is Halide’s default CPU target. Our system is built on an existing

compiler from the Halide front-end to a CPU. We depend on the CPU implementation as a golden

reference model. Using a CPU schedule, we can compare the performance of the CGRA to the CPU
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execution. For verification that the output is correct, it is sufficient to use the CPU default schedule.

For BFloat bit-exact comparisons, it is critical to perform the same loop optimizations since floating

point arithmetic is not commutative.

When compiling to the hardware accelerator, we create several files for execution. The execution

of the hardware accelerator is performed within a tiled loop in the host CPU code. This means that

a file for the CPU is needed as well as the CGRA application execution. The Halide application is

compiled and creates the host CPU wrapper in addition to the accelerated code. The production

of these auxiliary files leads to the hardware execution being consistent with the original Halide

application. The Halide application uses png image files, while the hardware accelerator uses raw

bytes (from a pgm file). While the file formats differ, the generated accelerator wrapper code

performs this conversion to ensure that the same data is used for each execution.

Once we create the input and expected output data, each step of the compiler is checked with

a test execution. The input file is fed into the application execution, and each intermediate step of

the compiler creates its own output file. The Halide application is codegen’ed to Clockwork C files,

and the generated code is tested using this method. Testing gives us confidence that the generated

application does not contain any logical differences introduced by the compilation of the original

Halide application. The same testing and assurances are given as we test the application in each

step through the application compiler. With all of these opportunities to execute the design, we are

able to narrow down where a compilation bug has occurred.

Additional testing collateral is also useful for debugging applications with an issue in the compiler.

Once the application is fully mapped to the CGRA, we can convert the hardware graph into a

visualization. We use graphviz [30] and create a dot graph with arrows between wired components.

Figure 6.3 shows an example visualization for the Harris application. This way we can quickly find

obvious bugs through inspection, as well as understand what operators and connections have been

created for our application.

6.3 Applications

In Halide, we created a suite of applications to test our compiler and the CGRA. Each of our

applications use the Halide front-end to create a golden reference model, and each application can

run through the entire compiler toolchain to the CGRA. We have three types of Halide applications:

• handcrafted: tests with user-implemented CoreIR designs

• tests: isolated usage of CGRA operators or computation patterns

• applications: implementations of real algorithms creating usable output

Handcrafted tests are ones where the compiler does not currently work. We used this early on

to hand-create designs before spending effort on handling them in the compiler. This would involve
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Figure 6.3: A dot graph made by graphviz show the connections between PEs, memory tiles, and
registers. This shows the components on the CGRA fabric after memory mapping. Common symbols
are used for PE operators while memory tile and register names are used for memory components.
IO denotes the input and output stream of the application.
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creating a Halide application. Then, instead of running the compiler, I would create the output

of the Clockwork scheduler and mapper (namely, a CoreIR file with the scheduled memories and

compute tiles). This strategy helped validate that certain schedules would work on the CGRA before

implementing the lowering and optimization passes in the compiler.

Tests are simple or isolated versions of features that exist in applications. There are tests for

each of the operators in Halide. These are meant as basic tests that can ensure that the hardware

implementation is correct. The benefit of using a small unit test is isolating the issue to a single

operator rather than debugging a full application. Furthermore, there are tests for subsets of an

application (such as a difficult individual kernel) or a computation feature (such as stencils). These

test the basic compiler functionality for a new feature as well as ensure that the hardware works for

a simple case.

Applications are full algorithms using operators in a useful manner. The input is a reasonable set

of values, and the output produces useful values. Our target set of applications are image processing

and machine learning applications. The image processing applications use real photos (some of which

are taken from my own camera) and apply traditional image processing algorithms. The resulting

images can be visually inspected to ensure that the algorithm is performing the application. This

means that gaussian creates a blurred image, harris creates an image of corner locations, and cam-

era pipeline produces an image from raw camera data (visually shown in Figure 2.1). Applications

are created for real algorithms and to evaluate the system.

6.4 Halide Scheduling Strategies for CGRAs

In the previous chapters, we saw how Halide scheduling was extended so that an application can

be mapped to hardware accelerators. However, these scheduling primitives require the user to

appropriately place these scheduling primitives on their algorithm. Additionally, each scheduling

primitive takes arguments (such as a tile size or unroll quantity). Below is guidance on where I have

found these scheduling primitives most useful, and how to tune different arguments to maximize

common performance metrics, such as application execution time.

Buffering Intermediate Values

We see that almost all values for image processing pipelines and machine learning pipelines should

be buffered to avoid recomputation. Image processing line buffers are very efficient and there are

plenty of memory tiles on the CGRA, so a line buffer should be placed between every pair of

compute kernels that could use one. Code 6.1 shows a sequence of three schedules where buffers

are successively added to the Harris corner algorithm. The algorithm is not too important for this

illustration, but instead one should notice that we iteratively add more buffers. Harris has a depth

of four compute kernels with lgxx, lyy, lgxy in the middle. We first have no buffers, then add
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1 if (sch == 1 || sch == 2 || sch == 3) {

2 // Add accelerator interface (no buffers ).

3 hw_output

4 .tile(x, y, xo , yo , xi, yi, tileSize , tileSize)

5 .hw_accelerate(xi , xo);

6 padded16.stream_to_accelerator ();

7 }

8

9 if (sch == 2 || sch == 3) {

10 // Add three buffers in the middle of the application design.

11 lgxx.store_at(hw_output , xo). compute_at(hw_output , xo);

12 lgyy.store_at(hw_output , xo). compute_at(hw_output , xo);

13 lgxy.store_at(hw_output , xo). compute_at(hw_output , xo);

14 }

15

16 if (sch == 3) {

17 // Add all of the buffers to the application design

18 grad_x.store_at(hw_output , xo). compute_at(hw_output , xo);

19 grad_y.store_at(hw_output , xo). compute_at(hw_output , xo);

20 lxx.store_at(hw_output , xo). compute_at(hw_output , xo);

21 lyy.store_at(hw_output , xo). compute_at(hw_output , xo);

22 lxy.store_at(hw_output , xo). compute_at(hw_output , xo);

23 cim.store_at(hw_output , xo). compute_at(hw_output , xo);

24 cim_output.store_at(hw_output , xo). compute_at(hw_output , xo);

25 }

Code 6.1: Halide schedule variations for Harris. The sch variable chooses which blocks of scheduling
code are applied to each algorithm. Each schedule successively adds more buffering to reduce needed
recomputation.

the buffers in the middle, and finally add all of the possible buffers. Table 6.1 shows the number of

PEs, MEMs, and runtime with these three schedules. Notice how many PEs are saved by simply

adding in some buffers. These intermediate buffers dramatically reduce the number of PEs with

negligible increases in number of memory tiles and runtime.

Note that every computation kernel can be buffered, even element-wise operations. For compute

kernels that do not need any buffering, the memory mapping analysis will recognize that no mem-

ory is needed and create a “memory” with no capacity, meaning a wire is created instead. This

optimization occurs during memory mapping in Clockwork during dependency analysis. Due to this

optimization, the user should not be worried about creating too many buffers, since any unneeded

buffers are optimized away. The only drawback is slightly more compile time for Clockwork analysis.

Table 6.1: Compiler results for Harris application with different Halide schedules. Each subsequent
schedule adds an additional memory using store at().compute at() as shown in Code 6.1.

Harris Schedule # PEs # MEMs Runtime (cycles)

sch1: recompute all 769 3 4097
sch2: recompute some 145 5 4103
sch3: no recompute 83 5 4146
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Buffering dramatically reduces the number of PEs needed, and buffering elementwise operators

is optimized to wires. Due to these observations, I recommend to:

Recommendation 1: Buffer after every compute kernel, even if you are unsure if it is

necessary. This will prevent expensive recomputation, and any unnecessary buffering will

be optimized away.

Tiling due to Memory Constraints

Once buffers are placed, we have the problem of how to fit the intermediates in memory. Our

memory tiles on the Amber CGRA are limited to a capacity of 2048 kB. We can tile the output

image, which in turn tiles all intermediates and inputs in Halide. These tiles help each unified buffer

fit within an SRAM. However, how large should tiles be? We can tile computation with many small

tiles or a few large tiles.

0.00%
10.00%
20.00%
30.00%
40.00%
50.00%
60.00%
70.00%
80.00%
90.00%

100.00%

gaussian gemm

Co
m

pu
te

 O
cc

up
an

cy

micro small medium large

Figure 6.4: Scaling based on an increased image tile size. Compute occupancy is greatest for large
input tiles for both gaussian blur and gemm.

Figure 6.4 shows how compute occupancy changes as we increase the size of a tile for two

applications. Compute occupancy measures how often the hardware accelerator is outputting useful

pixels. We find after scaling that larger tiles have better compute occupancy. Compute occupancy

drops when computation does not produce useful output data. For image processing, the end of

each input tile leads to several cycles of invalid outputs as the stencil computation wraps from one

input line to the next. The fewer times the image wraps, the better the compute occupancy. Larger

input tiles have a smaller percentage of the image classified as an edge. Thus, we prefer larger tiles.

One drawback of larger tiles are their longer compile time. Table 6.2 shows the compile times

for gaussian and gemm. Compile time is longer since we must execute a full tile during Clockwork
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Table 6.2: Compile times (in seconds) for different tile sizes. Compile time increases for larger tiles.

application tile size total
compile time

app
compilation

app
generation

clockwork
sched

gaussian micro (64× 64) 33 2.58 18.5 12.2
small (240× 180) 52 1.74 18.7 32.0
medium (640× 480) 183 2.55 18.3 162.5
large (1920× 1080) 1040 2.53 18.4 1018.9

gemm micro (32× 32) 33 2.58 17.0 13.8
small (128× 128) 38 2.39 16.9 18.7
medium (512× 512) 373 2.39 17.3 353.3
large (2048× 2048) 22386 2.42 18.1 22365.8

scheduling. However, generally we accept the longer compile time and prefer a solution with the

greatest compute occupancy. Therefore, I recommend to:

Recommendation 2: Tile algorithms with tiles as large as possible that fit within your

memory capacity constraints. Large tiles have a greater compute occupancy, leading to a

shorter total runtime for the entire application.

Code 6.2 shows how tiling is used on an application. Notice that the sizing creates a unified

buffer that fits within a single 2048 kB memory tile. Furthermore, the output is tiled such that

an integer number of tiles covers the entire output image. This ensures that each full run of the

accelerator produces useful output values rather than computing on partial images.

1 // Input image size: 6000 x 4000

2 // Output tile size: 600 x 400

3 // Number of executions for full image: 10x10

4

5 int tileWidth = 600;

6 int tileHeight = 400;

7 hw_output_mem

8 .tile(x, y, xo , yo , xi, yi, tileWidth , tileHeight)

9 .reorder(z, xi, yi, xo , yo);

10

11 int glbWidth = tileWidth; // GLB size same as tile

12 int glbHeight = tileHeight;

13 hw_output_glb

14 .tile(x, y, xo , yo , xi, yi, glbWidth , glbHeight)

15 .reorder(z, xi, yi, xo , yo);

Code 6.2: How to tile memories to fit on the CGRA. This sample code tiles the upsample application
with 10×10 = 100 iterations to create a 6000×4000 output image. Due to line buffering, only a few
lines are needed for the memory tiles; but the GLB holds the full tile for an accelerator execution.
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Figure 6.5: Unrolling compute hardware increases area and decreases latency by equal factors.
The dotted gray trendline shows the slope of an equal factor of latency decrease for an increase in
hardware area. All three applications follow the slope of this line.

Unrolling to Duplicate Hardware

Besides buffering memory, another essential part of a hardware accelerator is using the available

compute resources. For our Halide applications, we use the unroll scheduling directive to perform

hardware duplication. Unrolling a loop increases the number of compute resources used in the loop

body which in turn decreases the overall runtime, but it also affects other performance metrics.

Figure 6.6 shows how unrolling compute affects the total hardware area as well as total compi-

lation time. Each application uses a fixed input size, and then is scheduled with a varying unroll

factor shared across every compute kernel and IO unit. Under this experiment, we start and end with

values in the global buffer, which ignores the memory bandwidth bottleneck between the host and

GLB. As expected, there is a linear increase in PEs and MEMs used as we increase the unroll factor.

By unrolling, we create a design with better spatial utilization and faster execution time. Figure 6.5

shows how larger designs using more compute units decrease the latency by a proportional amount.

This means that this usage of area has a direct benefit on the resulting latency, and is a great

trade-off to make. That is, if an application pipeline fits on the CGRA fabric, one should also con-

sider unrolling all compute kernels to increase throughput and duplicate GLB/CGRA connections

to increase utilized memory bandwidth. Note that this analysis ignores the memory bandwidth that

exists between the host processor and GLB. This bandwidth is difficult to simulate, but for demon-

strations on real hardware the bandwidth between host/GLB is limited and becomes a bottleneck

once all GLB/fabric is used. It becomes difficult for the host/GLB to keep up to this rate.
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Figure 6.6: Hardware area and compilation time for gaussian, unsharp, and gemm as they unrolled.
Gaussian and unsharp use input images sized 640×480 while gemm computes on 512×512 matrices.
Unrolling applications increases the hardware area to implement them on the CGRA. Additionally,
the compile time increases for larger hardware designs, mainly for Clockwork scheduling.
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Figure 6.7: Compute occupancy with increasing unroll factor. A higher unroll factor has a lower
compute occupancy for every application.
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Figure 6.8: Compilation time for the first two steps of the compiler. Modest increases in compile
time as each application is unrolled more.

However, unrolling the application also slightly decreases temporal compute occupancy and in-

creases compile time. Figure 6.7 shows the decrease in compute occupancy with increasing unroll

factor. While keeping the input size fixed, unrolling a loop decreases the effective input tile size that

each compute unit sees. Based on the findings on image size in the last subsection, we expect and

observe a decreased compute occupancy with these smaller tile sizes.

Figure 6.6 shows the total compilation time for each application with increasing unroll factor.

Note that Clockwork scheduling includes a required execution of the accelerator. We find that

compilation time at first decreases and then increases. This is because Clockwork scheduling has

an increased runtime for both longer loop iteration lengths as well as more hardware. When the

algorithm is unrolled with a small factor of 1, the iteration time is large. When the unroll factor is a

large factor of 16 or 32, the large amount of duplicated hardware causes long Clockwork scheduling

times. In the middle with 2× or 4× unroll factors, we see a sweet spot with lower compile times.
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The compile times in Figure 6.6 are dominated by Clockwork scheduling and it is difficult to see

the compilation trends for the first two stages. Therefore, Figure 6.8 shows the compilation time

for just the first two front-end compilation steps. The front-end compilation times have a modest

increase with unroll factor, but not as drastic as Clockwork scheduling. The front-end compilation

in Halide is not as affected by large designs as Clockwork scheduling is.
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Figure 6.9: Increasing IO unroll factor on gemm using a compute unroll of 8 × 8 on 512 × 512
matrices. Greater IO unroll factor helps keep the compute kernels busy.

Although it is easy to focus on unrolling compute, it is also critical to unroll IO ports as well.

Duplicating IO ports ensures that the compute and memory units are supplied with enough data

so that they do not idle. Unrolling IO supports the compute rate for image processing pipelines,

while unrolling IO for DNNs reduces the initialization and read-out phases. Figure 6.9 shows how

compute occupancy of gemm increases as IO is unrolled with a greater factor. The target design

has 8 input and 8 output channels unrolled for the compute kernel. The IO ports are then unrolled

from 1 to 8. Unrolling the IO up to the rate of the compute kernel gives steady increases in the

compute occupancy.

We observe that unrolling as much as the reconfigurable fabric can handle is best. When you

try to unroll your application, you must consider how much compute and memory bandwidth is

available. One will find that each application will be limited either by the amount of compute (PEs)

or memory bandwidth (GLB IO tiles) based on the application. The arithmetic intensity is a cal-

culation of how many arithmetic operations are needed for each transferred byte. This calculation

helps calculate if an application will be limited based on compute or memory bandwidth once it is

unrolled to the highest extent. Overall, unrolling decreases execution time by using the available

compute units. The purpose of having a large compute array and many GLB IO tiles on a hardware

accelerator is to spatially compute an application. Therefore, I recommend to:
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Recommendation 3: Unroll compute kernels to fill the CGRA compute fabric as much

as possible. Additionally, unroll IO to match the throughput of the compute kernels.

Based on an application’s arithmetic intensity, one will reach the limits of the compute or

memory bandwidth resources on the CGRA.

Code 6.3 shows how we can unroll a DNN layer to create multiple MACs and use multiple IOs.

1 // Example tiling in conv3_1 layer of ResNet

2 // Unroll compute convolutions

3 output_cgra.update ()

4 .unroll(r.x). unroll(r.y); // Unroll the convolution reduction fully

5

6 // Additionally , unroll input and output channels for compute

7 int k_oc = 8;

8 int k_oc = 8;

9 output_cgra

10 .unroll(w, k_oc); // Unroll the output channels partially

11 output_cgra.update ()

12 .unroll(w, k_oc)

13 .unroll(rz_unroll , k_ic); // Unroll the input channel reduction partially

14

15 // Unroll IO streams to match rates

16 int glb_o = 1; // No duplication for output stream for this particular layer

17 int glb_i = 4;

18 hw_output.unroll(w, glb_o);

19 output_glb.unroll(w_cgra , glb_o);

20 input_glb.unroll(z, glb_i);

21 input_cgra.unroll(z_cgra , glb_i);

Code 6.3: Different use cases of unroll: duplicating convolution reductions, duplicating compute
across channels, and matching rates for IOs.

Sharing Compute Kernels to Save Resources

The previous chapter, Chapter 5, described how compute sharing can be added to a Halide applica-

tion’s schedule.

We observe that compute sharing can be applied to pyramid applications and matching compute

kernels to reduce necessary compute resources for large applications. When applications additionally

have downsampling and reduced temporal usage of their compute kernel, this can be performed with

minimal reduction in execution time.

Recommendation 4: Use compute sharing to increase utilization of compute elements

on the hardware accelerator. The reduced resources are freed up with minimal increases

in execution runtime. Compute sharing is most easily applied and has its largest impact

on applications with pyramid structures.
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Buffering to Create Memory Hierarchies

The Halide scheduling we have described so far are helpful strategies for making the most of the

target accelerator. However, a hardware accelerator has a fixed memory hierarchy that must be

followed. Following Halide’s philosophy, we do not need to describe this target-specific hierarchy in

the algorithm. Instead, we can use scheduling to alter the algorithm to accommodate the CGRA’s

memory hierarchy.

The CGRA’s memory hierarchy consists of a host DRAM, global buffer, memory tiles, as well

as small register files on each PE. Memory transfers between these entities should be depicted in

our IR so that they can be mapped to our CGRA interconnect. Halide’s in() schedule is used to

represent these transfers in the memory hierarchy as demonstrated in Code 6.4. Each successive

call to in() on a buffer refers to another copy of the same value. Using this scheduling primitive,

the original buffer (buf) is the producer for an exact copy of its values (buf.in()). This scheduling

primitive simply creates a statement that copies from one buffer to another with the understanding

that each buffer copy will be mapped to its own memory in the hierarchy. For example,

hw_output.in()

refers to the output values on the host level while hw output refers to the output values on the

global buffer. Note that the call to in results in a copy that is after the Func. This means for the

output, the copy (hw output.in()) is an outer memory level. When we perform this scheduling

copy on the input, we will similarly see the copy be performed after our Func (hw input.in()),

meaning an input copy will be on an inner memory level. Note that when we create these memory

copies, we may use a different number of .in() based on how many copies we need. In the example

in Code 6.4, the algorithm side of the output already contains the MEM level in the algorithm, so

we have fewer .in() calls than the input.

Besides creating memory copies, it is also important to label buffered intermediates as memory

elements in a particular part of the hierarchy. This is solved by using the parameter of store at().

The store at() scheduling primitive dictates that a memory primitive should be created while the

first parameter (Func specified using the correct number of in()s) determines at which level in the

hierarchy it should be placed. For example,

conv2.store_at(hw_output , xio)

specifies that conv2 should be stored in an accelerator memory. We can then either rely on Clockwork

to decide whether the buffer should be mapped to a memory tile, or a smaller Pond. Alternatively, we

can add Halide scheduling with store in to decide this as a user decision. The store in scheduling

primitive annotates the Func with this user decision to override any analysis that Clockwork may

use to determine how to map a buffer.
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1 // Output tiling and output stream

2 hw_output.in() // host level

3 .compute_root ()

4 .tile(x, y, xo , yo , xi, yi, 360, 360) // GLB level sized 360 x360

5 .hw_accelerate(xi , xo);

6 hw_output // GLB level

7 .store_in(MemoryType ::GLB)

8 .tile(x, y, xio , yio , xii , yii , 60, 60) // MEM level sized 60x60

9 .compute_at(hw_output.in(), xo);

10

11 // Intermediate buffer at MEM level

12 conv2

13 .store_at(hw_output , xio)

14 .compute_at(hw_output , xio);

15

16 // Input stream

17 hw_input.in().in() // MEM level

18 .compute_at(hw_output , xio);

19 hw_input.in() // GLB level

20 .compute_at(hw_output.in(), xo)

21 .store_in(MemoryType ::GLB);

22 hw_input // host level

23 .compute_root ()

24 .accelerator_input ();

Code 6.4: Memory hierarchy that creates the output stream, intermediate buffer at the MEM level,
and an input stream.

The final element of constructing the hierarchy is creating the hardware accelerator interface.

We use

hw_input.accelerator_input ()

on the input memory tile buffer to specify that it is an input to the CGRA. Similarly,

hw_output.in(). hw_accelerate(xi, xo)

.store_in(MemoryType ::GLB)

specifies that the output global buffer is the output of the accelerator. We observe that our acceler-

ator interface and Halide’s in() calls can represent an accelerator’s memory hierarchy well.

Recommendation 5: Utilize Halide scheduling to construct a memory hierarchy and

accelerator interface to match the target hardware accelerator.

Altogether, Code 6.4 shows how we schedule a single call to create a memory hierarchy using all

of the above calls. Luckily, this memory hierarchy is the same for most accelerators using the same

chip. Therefore, most applications can copy this exact set of calls to create the correct memory

hierarchy.
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Using Generator Parameters for Flexible Designs

Many of the applications we construct can be created with slight adjustments from previous applica-

tions. For example, ResNet has many layers, but many of these layers share the same structure. The

differences are the number of input channels, output channels, and kernel size. Instead of creating

many Halide applications, one for each layer, we can create a ResNet layer generator. This generator

has a generator argument for each variable that changes from layer to layer. Then, we can call the

application with different generator parameters for each distinct layer. This same technique can be

used for image processing applications where the kernel size of a convolution could be changed. One

such example in our application suite is a chain of convolution kernels where the convolution kernel

size as well as number of successive convolution kernels are user-specified arguments.

Code 6.5 shows how these generator parameters are created in Halide, and then called for a

simplified example layer in ResNet. This example uses the generator parameters to set the input

image size (in img), padding (pad), kernel size (ksize), convolution stride (stride), number of

input channels (n ic), and number of output channels (n oc). The ResNet convolution layers are all

very similar apart from these values. By representing these values with generator parameters, this

single application can be called multiple times using different values in order to create the different

convolution layer configurations. In the application, the tilesize is calculated using our generator

parameters on line 27. The input and channel bounds are defined using Halide’s bound scheduling

primitive to specify how large the input channel (z) and output channel (w) dimensions are. The

generator parameters provide a convenient way to calculate and schedule applications based on pa-

rameters. In the full ResNet application, we go even further to specify tile sizes in all dimensions,

channel bandwidth unrolling, and specifying convolutions with distinct width and height values.

Recommendation 6: Construct extensible applications using generator arguments to

reuse your code and create multiple DNN layers or convolutions from a single application.

Auto-scheduling Hardware Accelerators

With these observations on how to schedule image processing and machine learning applications,

we have found a mechanical process in scheduling applications. New applications in our domains

generally follow similar structures to other examples that we have seen. Since this guidance works

with many applications, we could also look to auto-schedule these applications. An auto-scheduler

and auto-tuner would take in the hardware constraints (such as number of compute tiles, capacities

in the memory hierarchy, and number of levels in the memory hierarchy). Then, an input application

would be tiled and unrolled to fit the target accelerator size. The application would try to minimize
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1 // make clockwork HALIDE_GEN_ARGS =" in_img =14 pad=1 ksize=3 stride =1 n_ic =256 n_oc =256"

2

3 // in_img determines the input image size

4 GeneratorParam <int > in_img{"in_img", 56}; // default: 56

5 // pad determines the padding to the input image size

6 GeneratorParam <int > pad{"pad", 1}; // default: 1

7 // ksize determines the output stencil size

8 GeneratorParam <uint8_t > ksize{"ksize", 3}; // default: 3

9 // Stride determines the sampling rate for the down sample

10 GeneratorParam <int > stride{"stride", 1}; // default: 1

11 // n_ic determines the total number of input channels

12 GeneratorParam <int > n_ic{"n_ic", 32}; // default: 32

13 // n_oc determines the total number of output channels

14 GeneratorParam <int > n_oc{"n_oc", 32}; // default: 32

15

16 // Algorithm simplified to highlight generator parameters.

17 // Reduction domain , r, for convolution in x, y, and input channel dims.

18 RDom r(0, ksize , 0, ksize , 0, n_ic);

19

20 // Accumulation on output channel ’w’ using input channels ’z’

21 output(w, x, y) +=

22 kernel(r.z, w, r.x, r.y) *

23 input(r.z, stride*x + r.x, stride*y + r.y);

24

25 // Selected usage of GeneratorParams in the application:

26 // Defining tile size based on input and computation size

27 int tilesize = floor( (in_img + 2*pad - ksize) / stride ) + 1;

28 output_glb

29 .tile(x, y, x_glb ,y_glb , x_cgra ,y_cgra , tilesize ,tilesize_y , TailStrategy :: RoundUp)

30

31 // Bounding input and output channels

32 kernel_glb.bound(w, 0, n_oc);

33 input_glb.bound(z, 0, n_ic);

34

35 /* Omitted: rest of algorithm and schedule */

Code 6.5: Usage of generator parameters in Halide application to create extensible layers. This
sample set of parameters is later used in the algorithm and schedule. Generator parameters can
take user-specified values during compile time.

the execution time under the constraining size of the target accelerator. This auto-scheduling prob-

lem has a smaller search space by focusing on the guidance of the above observations. Furthermore,

a user would be able to refine and improve the suggested schedule after it has been auto-scheduled.

Our extension of the Halide scheduling space with declarative scheduling (as introduced in Sec-

tion 3.6) reduces the boilerplate with syntactic sugar. These new scheduling primitives pose addi-

tional assumptions on the user schedules that we have seen in most of our target applications. By re-

stricting the space of the scheduling to many good choices on the Pareto front, auto-scheduling Halide

applications is an easier task. We expect declarative scheduling primitives and auto-scheduling to

make scheduling to CGRAs an easier task for future users.
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Table 6.3: The lines of code at different intermediate representations of the application during the
compilation process. Each application is unrolled to saturate the CGRA compute elements. The
“Halide” and “Clockwork” columns sum up the individual components shown on the right of each.
Each step from Halide to Clockwork to CoreIR hardware increases the lines of code dramatically.

Application Halide Algorithm +
Schedule

Clockwork Memory +
Compute

CoreIR

gaussian 124 = 52 +
72

2158 = 857 +
1301

15245

harris 165 = 88 +
77

2226 = 853 +
1373

16590

camera pipeline 425 = 292 +
133

26517 = 748 +
25769

14438

gemm 66 = 30 +
36

958 = 409 +
549

12291

resnet 64 = 29 +
35

1139 = 460 +
679

73853

geomean 170 = 89 +
81

2248 = 589 +
1659

17696

6.5 System Evaluation

We have seen how Halide applications are compiled to CGRA implementations, and then mapped

to CGRA bitstreams. This section goes through an evaluation of the compiler usability and pro-

ductivity. Then, we look at an overall evaluation of the hardware implementations for our suite of

image processing and machine learning applications.

Design Productivity

One of the main goals of a compiler is to bring high-level code down to lower-level abstractions. This

allows a user to make higher-level algorithm descriptions and decisions, and have the compiler’s job

be the lowering and mapping to the low-level hardware. It is difficult to quantify the effectiveness

of this process, but one metric commonly cited is the lines of code at different stages of the process.

Table 6.3 shows several applications showing the lines of code in the Halide algorithm and sched-

ule, in the middle-end Clockwork memory and compute code, and the CGRA hardware implemen-

tation in CoreIR. We see that there are magnitude jumps in the lines of code as we go from Halide

software code to the CoreIR hardware code. The geomean application has 170 lines of Halide, 13.2×
more lines of Clockwork, and an additional 7.87× more lines of CoreIR hardware. Halide is meant

to be a compact representation of the application using reduction domains and functional-style ex-

pressions to reduce code duplication. Clockwork has many more lines mainly due to the verboseness

of describing each memory load and store in the memory file, and static single-assignment (SSA)

form in the compute file. One particularly large Clockwork compute file is camera pipeline. This is
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Table 6.4: The lines of code for original Halide schedules and the equivalent using the new declarative
scheduling to implement the exact same schedule. The number of lines decreases for each application
in addition to being more readable.

Application Original Declarative

gaussian 36 25
harris 62 33
resnet 48 31

Table 6.5: Application parameters used to maximize CGRA utilization.

Application Output
Rate

Input Size Tile Size Tiling
Iterations

gaussian 16 6000× 4000 992× 799 6× 5
cascade 12 6000× 4000 600× 799 10× 5
upsample 4 6000× 4000× 3 600× 400× 3 10× 10× 1
harris 4 1530× 2554× 3 296× 319× 3 5× 8× 1
unsharp 3 1536× 2560× 3 378× 319× 3 4× 8× 1
camera 4 2560× 1920× 3 496× 368× 3 5× 5× 1
gaussian pyramid 1 64× 64 64× 64 1× 1
gemm 8 512× 512 512× 512 1× 1
resnet – conv3 1 8 56× 56× 64 28× 28× 8× 8 2× 2× 8× 16
unet – conv3 i0 8 140× 140× 128 28× 28× 8× 8 5×5×16×32
jitnet – enc2 c 16 160× 90× 64 20× 32× 8× 16 8× 3× 8× 4
mobilenets – pw 1 8 112× 112× 32 28× 28× 4× 8 4× 4× 8× 8

because the LUTs are expressed for all 4096 values, and duplicated three times to account for each

unrolled color channel. Unrolled compute units increase the throughput of the hardware design, and

also multiplies the lines of code in the Clockwork and CoreIR designs. Overall, we find that Halide

is a very expressive form that creates large hardware designs.

By applying our new declarative scheduling, introduced in Section 3.6, we can improve the

readability and conciseness of our schedules further. Table 6.4 compares a schedule using the original

scheduling primitives and the new declarative schedules. Each schedule creates the exact same

hardware configuration for a CGRA. All applications show a decrease in the lines of code needed to

implement them. And more importantly, my subjective view is that the readability is better with

the new scheduling.

Application Evaluation

With the recommendations in Section 6.4, we scheduled and compiled our suite of applications

to the CGRA. Our suite of applications include common imaging processing kernels as well as a

representative set of convolution layers seen in our DNN examples. We first schedule the applications
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Table 6.6: Size of the hardware implementation of the designs listed in Table 6.5.

Application # Compute Kernels # Memories MEM (B) GLB (kB)

gaussian 112 7 252 96.75
cascade 120 9 204 78.03
upsample 42 6 604 117.19
harris 92 15 300 46.11
unsharp 54 10 508 78.50
camera 84 21 500 89.13
gaussian pyramid 5 6 260 8.00
gemm 40 6 260 64.00
resnet – conv3 1 28 9 1800 24.50
unet – conv3 i0 22 9 1568 76.56
jitnet – enc2 c 72 9 1280 50.00
mobilenets – pw 1 49 13 1568 98.00

considering the application requirements and hardware constraints and show the generator argument

values for each schedule in Table 6.5. We unrolled the applications to ensure that the output

throughout was maximized. The GLB capacity dictates the ideal tile size along with the constraints

of the input image and tensor size. The output tiles fit within a single GLB tile. The total number of

GLB iterations cover the input size with minimal overlap to ensure that the computation is mostly

useful and distinct.

The image processing applications have equivalently sized tiles for the GLB and memory tiles.

This is possible because the GLB has a larger capacity, and then the memory tiles only need to

retain a small number of lines, and so the wide tiles still fit within the much smaller memory tiles.

Additionally, the output tiles represent the total CGRA output tiles which is spread across all of the

parallel data streams based on the output rate. The tiling iterations refer to the multi-dimensional

tiling (x and y) iterations that are executed by the host to fully cover the output image.

The DNN applications in Section 6.4 are multi-dimensional, reflecting the tensors with multiple

inputs and channels. The tile size represents the spatial tile size as well as input and output channels

that are brought into the memory tile. The memories are banked and parallelized, which allows the

tiles to be distributed across the CGRA fabric. The tiling iterations here refer to the subsequent

double buffering swaps with the GLB. In the DNN cases, we can actually fit the entire layer in the

GLB in many cases.

Once we have scheduled the designs in Halide, we can compile our applications to the CGRA.

Table 6.6 shows our collected results on how large the applications are based on our schedules in

Table 6.5. We count each of the compute kernels that are provided to Clockwork. This counts

all duplicated compute kernels based on the output rate as well as simple compute kernels used

for initialization. After scheduling and mapping to the CGRA, many of the unified buffers that

are described can be merged or removed. Following scheduling and mapping, we find how many
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Table 6.7: Performance metrics for our evaluated applications. The spatial utilization and compute
occupancy (temporal utilization) show the effectiveness for the applications in Table 6.5. Other
performance metrics are latency to run the application on hardware, and total compile time.

Application % PEs % MEMs Compute
Occupancy

Latency
(cycles)

Compile
Time (s)

gaussian 79% 24% 98.2% 50463 280.90
cascade 94% 36% 95.7% 41755 252.55
upsample 0% 5% N/A 6354 50.52
harris 91% 30% 95.6% 24700 110.35
unsharp 78% 23% 96.6% 41601 69.29
camera 78% 20% 95.9% 47564 149.50
gaussian pyramid 8% 3% 25% 16976 14.01
gemm 35% 63% 97.0% 2162688 20.61
resnet – conv3 1 69% 19% 93.4% 967160 266.88
unet – conv3 i0 35% 13% 83.5% 108210328 114.07
jitnet – enc2 c 71% 19% 57.5% 1804452 389.49
mobilenets – pw 1 39% 88% 40.4% 1984808 134.16

geomean 52% 20% 74.0% 213569 105.4

memories are used. We notice that the number of memory tiles is fairly low.

Additionally, the usage of memory tiles and global buffer banks are given in the fourth and fifth

columns of Table 6.6. These columns list how many bytes are used for the largest buffers in each

of the applications. One can notice that using line buffers for image processing applications results

in very low memory sizes, meaning we have ample capacity to implement them within our 2048 B

memory tiles. This also suggests that if our application domain was just image processing, we could

consider creating memory tiles with a lower capacity, since even with the largest tiles that fit in our

GLB, the memory tiles still have a much larger capacity. The DNNs have slightly larger memories,

but again fit in single memory tiles. The resulting GLB sizes are shown in the last column. Again

we notice that our scheduling choice resulted in unified buffers stored in GLB tiles having sizes that

are below the GLB capacity of 128 kB.

In addition to collecting application quantities, we can evaluate the schedule. Our application

metrics are spatial utilization, compute occupancy, application latency, and compilation time. Ta-

ble 6.7 shows these values for our application suite.

Spatial utilization refers to what percentage of the available CGRA tiles are used to implement

the application. Ideally, we want to ensure that the hardware that we designed for the CGRA is

used (otherwise we did not need to fabricate those units). We notice that the PEs have a high

utilization for most image processing applications, as well as resnet and jitnet. Upsample is the

serious exception, since no PEs are necessary for the nearest neighbor strategy that implements this

version of upsampling. Furthermore, the layers of unet and mobilenets use fewer compute resources.

Mobilenets is mostly bounded by memory and does pointwise computation rather than the full
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convolution kernels of the other DNNs. The second column shows the utilization of the memory

tiles in our suite of applications. Besides mobilenets, we notice low memory utilization across the

board. If we expect most applications to have a large compute bottleneck, the number of memory

tiles provided on the CGRA is a bit higher than necessary for most of the applications. However, as

we look forward to generative AI and LLMs of the future, we likely need larger amounts of memory

on the accelerator. So to anticipate future application demands, the current proportion of memory

to PE tiles is perhaps appropriate.

The compute occupancy metric refers to how much time the compute units are computing useful

values. This is computed by calculating how many cycles the application would take if each PE was

scheduled to execute in every cycle perfectly, and then comparing the number of cycles that our

scheduled applications actually take. This metric can also be thought of as temporal utilization,

since it is the proportion of time that is effectively used. For our applications in Table 6.7, we notice

a very high compute utilization in the image processing applications, because we use line buffered

pipelines on large tiles. The DNN compute occupancy is lower in some of the DNNs because the

schedules struggle to find useful work on unaligned tiles, and mobilenets has not much computation

in its application. Improving the compute occupancy for layers takes a multifaceted approach that

should investigate improved Halide scheduling (with better IO duplication for memory bottlenecks;

tile sizing to better match vectorization requirements) and more aggressive Clockwork scheduling

(smaller initiation intervals; more overlap between accumulation phases).

The last two columns of Table 6.7 show the total runtime of the application on the CGRA, and

the compile time from Halide to mapped CoreIR. We notice that the image processing applications

have tight and efficient streaming execution. On the other hand, the DNNs have extremely large

tensors with lots of reductions, leading to much longer total execution times. These large values

are important to consider when we construct cycle-accurate schedules, since counting cycles could

easily overflow if we are not careful. Finally, the compile time column shows that even for these

larger applications filling the CGRA, we still compile within minutes for all applications. With

the provided data, we find that our Halide compiler system has constructed reasonable application

schedules that have utilized the CGRA resources with modest compile times.
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Conclusion

In this dissertation, I have described our application compiler that takes image processing and DNN

applications and compiles them to our CGRA hardware accelerator. We set out to create a robust

compiler, and in doing so found that the challenging aspects were (1) defining and creating good

hardware schedules in Halide, (2) lowering, mapping, and assigning execution schedules for memories,

and (3) enabling hardware sharing through an integrated approach of Halide user scheduling, new

Clockwork scheduling, and hardware generation. By tackling these aspects of the compiler, we were

able to take our suite of applications and compile them to our hardware accelerator.

One key finding of scheduling these applications is that a user-guided schedule allows for great

flexibility and extensibility. The benefits of user-provided schedules are a methodology and frame-

work that lend themselves well to mapping to custom hardware. Rather than baking in heuristics

and optimizations into the compiler, a separated Halide schedule allows for a user to make important

scheduling decisions. While each compiler engineer’s intentions are to create robust, future-proof

optimizations, instead the reality is that we later encounter completely new applications that differ

greatly from initial assumptions, and hardware implementations that have constraints that are hard

to generalize across generations. When writing Halide schedules that target hardware accelerators, I

found that the same loop optimizations intended for CPU targets are also applicable when targeting

custom hardware. Additionally, I appreciate the thought model of this system to bridge the gap

between imperative software code and hardware design language (HDL) code. From this work I have

found that Halide is a good starting point for creating a system that supports both CPU targets

and hardware accelerator targets.

Another aspect of this work was creating the unified buffer abstraction. Our group decided early

to create efficient memories that couple the addressors and SRAM components together. Compiling

to these memories was very challenging, and only after constructing an understandable interface

(the unified buffer abstraction), did more consistently create correct and efficient schedules for our

hardware. This interface allowed us to ensure we were able to express applications on the front-end
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compiler (in HalideIR), while concurrently creating mapping optimizations on the back-end compiler

(in Clockwork). We did not find much difficulty in mapping compute elements, since most compute

operators in Halide mapped directly to a single compute tile. However, the next generation of

hardware (Onyx) creates a more capable compute tile where a multiply and add can be achieved

using one tile. As the capability of the compute tile grows, we again will have to create an abstraction

and mapper, this time to efficiently map the compute kernels.

The final goal of this dissertation was to unlock optimizations that only make sense for hardware

designs. We see loop tiling and parallel execution both in CPUs and hardware accelerators, and

so it makes sense that Halide had these scheduling primitives. When thinking beyond the existing

Halide primitives, I tried to think of what additional capabilities hardware designers use to create

performant and efficient hardware. For performance, we see hardware duplication with simultaneous

execution; this is achieved using unroll in Halide to hardware. For efficiency, hardware designers

can reuse the same hardware to maximize the utilization of each component. I demonstrated this

with compute sharing, but this can also be extended to co-allocating unified buffers in the same

memory tiles. And furthermore, you could find some uses of the muxes in the CGRA switching

network for additional efficiency. I am excited to see what other hardware design ideas can be

enabled by new Halide scheduling, along with the compiler transformations to achieve this unique

mapping.

While Halide is able to describe hardware schedules with mainly its original primitives (besides

our additional compute share), it still is difficult for a new user to learn. However, after creating

many hardware schedules, I find myself following the same sequence of steps to create hardware

schedules for new applications. I laid these out in Section 6.4. This led to me creating syntactic

sugar for Halide schedules that make assumptions that I regularly make about hardware schedules.

These steps hint that the space of efficient hardware schedules is really not as large as one would

expect. This is a good realization, since this narrower scheduling space means we can feasibly create

an auto-scheduler for hardware. This is great for new users, since it can recommend multiple good

schedules, and allow the user to choose and explore further scheduling based on its suggestion. I look

forward to an auto-scheduler that can generate good schedules for image processing applications and

DNNs by possibly searching this new restricted scheduling.

Our goal from the outset was to use the Halide language to map image processing and DNN

applications to our new CGRA. To that goal, we have mapped a healthy suite of applications with

many layer sizes. However, despite the success of these applications, several Halide applications

still do not map to the CGRA, or see degraded performance. Some of these issues are CGRA

hardware limitations, such as the constrained space of addresses that an affine address generator

brings. Other issues remain in the Clockwork scheduler and mapper, where we could hypothesize

how we would ideally connect and configure the CGRA to execute an application, but creating a

robust set of optimization and/or mapping passes has not been attempted yet. And finally, there
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are some expressions from Halide, such as iterative computation and data-dependent addresses,

that can be expressed in Halide, but the Clockwork understanding of these computation patterns

does not exist. All of these issues are luckily not fundamental, and we can build off our extensible

application compiler to support and optimize for more features in the future. For example, we could

hypothesize a full-rate implementation of histogram accumulation that ping-pongs accumulation

into two different memory tiles and then reduces those two entries during the readout phase. We

would first create a handcrafted example to demonstrate that it works, then create unit tests to test

the functionality of the system of this histogramming compute pattern, and then finally apply this

histogramming feature to an application like bilateral grid.

As I wrap up with this dissertation, I am reminded that a compiler is a complex tool that is

bookended by its motivating applications on its input, and by the innovative hardware designs as

its target output. As we consider future hardware accelerators, we must revise our applications and

hardware as previously state-of-the-art techniques become antiquated in comparison to emerging

ideas. Just as DNNs were taking over image processing applications as the default execution pat-

tern, we now see vision transformers replacing DNNs. These generative LLM techniques are quickly

becoming the most important applications to consider for future hardware acceleration. Current

hardware designs are built based on the computation sizes, memory capacities, and memory band-

width of current chips. However, with new application requirements, this balance of computation

and memory must be reconsidered. Along with new sizes, another challenge for the compiler is

supporting new hardware blocks by constructing new mappings. Address generator loop-nest depth

and complexity was a key focus of our compiler design. Future designs, though, will need to consider

data-dependent addressing, dynamic image sizes, and potential sparse accesses. Most important is

creating a robust compiler system that supports these features before optimizing the compilation

for the most efficient usage of new hardware components. Overall, I have learned that building

a robust compiler system that maps emerging applications to a new hardware accelerator takes a

good conceptual understanding of the fundamental application operations in order to effectively map

them to the features on the hardware. I look forward to people creating new applications, which

will challenge us to compile them to new hardware designs.
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