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Abstract

The slowing down of Moore’s law and evolving of applications has underscored the increasing signif-

icance of domain specific architectures. Programmable domain-specific accelerators, such as coarse-

grained reconfigurable arrays (CGRAs), have emerged as a promising middle-ground between effi-

ciency and flexibility, but they have traditionally been difficult compiler targets since they use a

different memory system. In contrast to general purpose compute platform, the memory hierar-

chies of reconfigurable accelerators use push memories: memories that send input data streams to

computation kernels or to higher or lower levels in the memory hierarchy, and store the resulting

output data streams. To address the compilation challenge caused by push memories, in this thesis,

we have introduced a novel abstraction, namely, the unified buffer, designed to support the ap-

plication compilation process to reconfigurable accelerators as well as facilitating physical hardware

design for reconfigurable architecture.

The unified buffer abstraction enables the compiler to separate generic application scheduling

optimizations from the mapping to specific memory implementations in the backend. This approach

automates push memory scheduling optimization through a collection of compiler techniques, includ-

ing polyhedral analysis and software pipelining, effectively shielding users from the low-level hard-

ware details. This separation also allows our compiler to bridge the gap between resource-agnostic

application description and resource-constrained hardware implementation, mapping applications

to different CGRA memory designs, including some with a ready-valid interface. Furthermore, the

separation also opens the opportunity for optimizing push memory elements on reconfigurable ar-

rays. Our optimized memory implementation, the Physical Unified Buffer (PUB), uses a wide-fetch,

single-port SRAM macro with built-in address generation logic to implement a buffer with two

read and two write ports. It is 18% smaller and consumes 31% less energy than a physical buffer

implementation using a dual-port memory that only supports two ports.

Finally, our system evaluation shows that enabling a compiler to support CGRAs leads to perfor-

mance and energy benefits. Over a wide range of image processing and machine learning applications,

our CGRA achieves 4.7× better runtime and 3.5× better energy-efficiency compared to an FPGA.

iv



Acknowledgments

I want to extend my gratitude to the individuals who have been instrumental in shaping my academic

journey and personal growth during the course of my PhD adventure.

First of all, I would like to express my thankfulness to my advisor, Mark Horowitz. I would

say that Mark is not one of the most hands-on advisor I have seen. However, when I ask for help

during the challenging times, Mark is always there and provides me with immense support. I enjoy

those heated discussions during our meetings’ whiteboard sessions and am truly appreciated that

he can go over every details with great patience. He thoughtfully tailor his advising style to match

my personal characteristics, emphasizing tactfulness and encouragement while keep challenging me,

has built up my confidence and profoundly influenced my thinking process. I learnt that he always

challenging me not because he thinks that I am incorrect but because he wants me to figure out the

intrinsic characterization of the problem. His influence on my behavior, prompting deeper reflection

and consideration of underlying reasons, has been transformative.

I have the privilege to collaborate with several Stanford faculties through the comprehensive

scope of the Agile Hardware (AHA) project. Working under Priyanka Raina’s advising and with

her team has been amazing. The weekly discussion when leading up for our chip tapeout has

been an enlightening experience. Her rigorous approach to research, meticulous attention to detail,

and guidance through complex questions have been pivotal. Next, I would also like to thank the

mentorship from Fredrik Kjolstad. I often wish that I had met Fred earlier in my PhD journey. His

insights from the compiler perspective and guidance through various challenges have been invaluable.

Beyond academic, hiking with Fred has provided not only enjoyable moments but also opportunities

for rejuvenation. Lastly, I want to express my gratitude to Christos Kozyrakis. His support and

inspiration left an indelible mark. Despite taking different paths, Christos’s academic insights and

positive attitude continue to inspire me.

I extend my sincere appreciation for the invaluable support and mentorship I received beyond

Stanford, particularly from Nvidia Architecture Research. I am deeply grateful to Angshuman

Parashar and Joel Emer for their guidance and supervision during my summer internship. Their

openness and encouragement to collaborate on diverse research projects have been instrumental in

v



broadening my perspective. Engaging in their weekly meetings significantly expanded my under-

standing of industrial architecture and compiler research, enriching my experience and knowledge

in this field.

My greatest fortune was encountering a number of great colleagues. During my early PhD

journey, Xuan Yang and Mingyu Gao gave me a lot of academic guidance and paved the road for

my own research project. Later on, Dillon Huff became my polyhedral analysis guru, teaching me

not only the secrets of compilers but also the geekiest coding styles. Jeff Setter provided incredible

support on coming up the idea of unified buffer, as well as setting up and conducting experiment

when I was heads-down on implementation. It’s my great honor to have collaborators that easy to

approach and always stay positive when our paper was rejected multiple times. I also want to express

my gratitude for the memory backend team member, Max, Kavya, Taeyoung and Jake, our CGRA

chief architect Alex, the software magician Keyi, and the rest of AHA project member, Kalhan,

Jack, Yuchen, Kathleen and Po-han. Without your all’s support and help, I cannot accomplish

such research and much of the experiment presented here would not have existed. It’s truly a great

teamwork.

Despite the geographical distance and the time zone differences, my parents are always there

for me providing guidance, though non-technical, and moral support. Thanks mom and dad for

supporting me and believing me in every step I choose. Your encouragement and boundless love

have been the source of power that helped me navigate and conquer every challenge on this roller-

coaster ride called my PhD. It’s unfortunate that the pandemic has disrupted our physical closeness,

and I eagerly await the day when I can show both of you the place I call home in the last five years.

Lastly, I want to express my immense gratitude to my girlfriend, Iris Zhai. Our paths crossed

during the pandemic, on the ski slop. And she became an unexpected source of strength. We share

tears and laugh. Her continuous encouragement has been the greatest gift, and I am truly grateful

for her understanding and unconditional support.

vi



Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Push Memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Coarse-Grained Reconfigurable Architectures . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Compilation Delimma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Domain-Specific Accelerator Generators . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 Compilation to Push Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Scheduling Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1 Accelerator Scheduling Framework . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Polyhedral Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Software Pipelining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Compiler Overview 17

3.1 Accelerator Scheduling Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Compiler Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Unified Buffer Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Buffer Extraction 24

4.1 Loop Nest Description Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.2.1 Scheduler Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 Hardware Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.3 Dependency Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

vii



4.2.4 Variable Latency Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Loop Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3.1 Iterative Modulo Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Memory Bandwidth Requirement . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.3 Resource Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3.4 Optimizations: Loop Perfection and Flatten . . . . . . . . . . . . . . . . . . . 40

4.3.5 Putting it All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Loop Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.4.1 Loop Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Optimization: Loop Stripmining to Increase Compute Utilization . . . . . . . 50

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Buffer Mapping 53

5.1 Port Reduction Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.1 Dependence Distance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1.2 Create Shift Register Implementation . . . . . . . . . . . . . . . . . . . . . . 56

5.1.3 CGRA Routing Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.4 Output Port Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2 Memory Banking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Banking Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.2 Bank Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.3 Bank Merging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Memory Chaining . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.5 Vectorization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5.1 Vectorization for Memory Write . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.2 Vectorization for Memory Read . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.3 Scheduling for SRAM Fetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.6 Address Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Unified Buffer Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Backend Portablity 77

6.1 Physical Unified Buffer (PUB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.1 Dual-Port SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.1.2 Controller Specialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1.3 Wide-Fetch, Single-Port SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Buffet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Code Generation for Various Hardware Backend . . . . . . . . . . . . . . . . . . . . 84

viii



7 Evaluations 87

7.1 Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2 Hardware Optimization Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

7.2.1 Comparison with Buffet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.2.2 Full Application Area Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.3 Evaluation of Compiler Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.3.1 Computation Resource Aware Scheduling . . . . . . . . . . . . . . . . . . . . 93

7.3.2 Memory Resource Aware Scheduling . . . . . . . . . . . . . . . . . . . . . . . 96

7.3.3 Shift Register Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.4 System Level Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8 Conclusion 102

Bibliography 105

ix



List of Tables

1.1 The push memories in many programmable accelerators account for a large percentage

of chip area and power. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5.1 Time to address map for all ports in the unified buffer shown in Figure 3.2. The

write operation schedule expression is twrite = x + 64y and for the read operation,

the expression is tread = 65 + x + 64y. Since the read and write operation access the

same data address space. In order to derive the dependency distance between read

write we use address x and y to substitute t in the expression. . . . . . . . . . . . . . 55

5.2 The map from time-to-read to time-to-write, which calculated from Table 5.1. The

set of dependence distance is calculated by substracting the RHS of the map from

the LHS of the map. As we can see from the table all read ports in unified buffer

Figure 3.2 has constant dependence distance from its write port. . . . . . . . . . . . 56

6.1 The characteristics of our PUB memory primitive and alternative memory implemen-

tations. Our compiler, using the unified buffer abstraction, supports more memory

implementations as compared to FPGA compilers and other accelerator compilers. 84

7.1 Halide applications used in the evaluation section. All stencil applications utilize a

64x64 input image size. The ResNet conv-layer operates on a 28x28 image size with

the same input/output channel size IC=OC=16. The MobileNet layer processes a

28x28 image with 4 depthwise channels and 3 pointwise channels. The GEMM kernel

multiplies two 64x64 matrices. The SR-CNN begins with a 30x30 input image and

performs a 1x1 convolution with IC=64 and OC=8. Subsequently, a 3x3 convolution

follows with IC=OC=8. The final layer consists of a 1x1 convolution with IC=8 and

OC=64. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7.2 Total memory area and energy for a 3×3 convolution using different implementations

of the physical on-chip storage. Both area and energy decrease as we specialize the

physical buffer. Total area and energy include control logic and address generation

except for buffet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

x



7.3 Memory usage comparison between different physical memory implementations(smaller

is better). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.4 RTL simulation latency comparison between different physical memory implementa-

tions(smaller is better) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.5 The table compares the utilization of Processing Elements (PEs) across various mem-

ory implementations. The first column indicates the additional PEs incorporated for

address generation, corresponding to implementation (1) in Figure 7.4. The second

column denotes the count of extra PEs when optimized specifically for address gener-

ation, corresponding to implementation (2) in Figure 7.4. The third column shows the

baseline number of PE used for computation contributing to the blue bar in Figure 7.4 95

7.6 PE usage comparison before and after compute sharing. . . . . . . . . . . . . . . . . 95

7.7 Mem usage comparison before and after compute sharing. The number in parenthesis

indicated the extra memory tile used as bank selection controller. . . . . . . . . . . 96

7.8 Shift register optimization replaces memory tiles with registers or wires. . . . . . . 99

xi



List of Figures

2.1 Pull style memory in a CPU with centralized memory hierarchy versus push style

memory in a CGRA with distributed memory and its control. . . . . . . . . . . . . . 9

3.1 The three compiler steps for a brighten-then-blur example. Halide scheduling gener-

ates tiled loops, from which buffer extraction emits the brighten unified buffer. This

buffer is then mapped to shift registers (SR) and our optimized memory tile (MEM)

with aggregator (AGG) and transpose buffer (TB). . . . . . . . . . . . . . . . . . . 20

3.2 The unified buffer specifies the data movement between the brighten and blur kernels

in Figure 3.1. Each port is defined by a polyhedral iteration domain and an access map

that describe the data written to and read from the buffer. The schedule describes

the cycle at which those values arrive at the port. . . . . . . . . . . . . . . . . . . . . 22

4.1 (a)Loop nest for brighten blur pipeline. The brighten kernel is multiplying the input

by two, and the blur kernel is calculating average among all four input arguments.

(b) The corresponding DSL that constructs the loop nest in Figure 4.1a . . . . . . . 26

4.2 Iteration domain and access map for unified buffer brighten. . . . . . . . . . . . . . 28

4.3 Loop nest for the multi channel 3x3 convolution DNN layer. It has 4 input channels

and 2 output channels. The computation is fully unrolled (parallel) along the input

channel dimension c and the output channel dimension k. The 3x3 kernel dimension

is calculated sequentially. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Dependency graph of brighten and blur pipeline. . . . . . . . . . . . . . . . . . . . . 34

4.5 Resource Reservation Table for Brighten and Blur Pipeline. . . . . . . . . . . . . . . 34

4.6 Resource Reservation Table for Multi-Channel Convolution Layer. . . . . . . . . . . 35

4.7 Schedule Reservation Table for Brighten and Blur Pipeline. . . . . . . . . . . . . . . 36

4.8 Modulo Reservation Table for Brighten and Blur Pipeline. . . . . . . . . . . . . . . . 37

4.9 The unified buffer brighten with schedule. . . . . . . . . . . . . . . . . . . . . . . . . 38

4.10 Topological Sort Result of the Convolution Layer Loop Nest in Figure 4.3. . . . . . 39

4.11 Schedule Reservation Table for Multi-Channel Convolution Layer. . . . . . . . . . . 39

xii



4.12 Schedule Reservation Table for Multi-Channel Convolution Layer with memory band-

width optimization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.13 Loop nest for 3 Level Gaussian Pyramid . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.14 Modulo Reservation Table for Gaussian Pyramid Application in Figure 4.13. The

Memory Part is left out. The left diagram depicts the schedule reservation table,

while the right diagram depict the modulo reservation table with the coarse grained

II = 4096. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.15 Modulo Reservation Table for Gaussian Pyramid Application with all pyramid kernels

shared the same compute kernel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.16 Example for a 1D convolution loop nest applying HLS scheduling optimizations, in-

cluding loop perfection and loop flatten. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.17 Loop nest before and after loop fusion optimization. The interleaving of brighten

kernel and blur kernel changes. We assume buffers for input, brighten and blur

are allocated at root level and data could be reused between iterations. . . . . . . . . 46

4.18 The unified buffer brighten after loop fusion. . . . . . . . . . . . . . . . . . . . . . . 47

4.19 Loop alignment examples. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.20 During loop fusion, the scheduling algorithm will check the relative rate of each sub-

kernel to be fused, if they share the same hardware resource, it will apply an automatic

loop stripmining algorithm to match the data processing rate in every coarse grain

iteration, removing the pipeline stall and improving the computation utilization. . . 50

5.1 Different Shift Register Optimization Implementations . . . . . . . . . . . . . . . . . 57

5.2 Cyclic banking partitions data in four different banks and sustains the bandwidth

requirement for four parallel compute engines. . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Loop nest for the a multi channel 3x3 convolution DNN layer. It has 4 input channels

and 4 output channels. The computation is fully unrolled (parallel) along the input

channel dimension c. The output channel dimension k is unrolled by two and the

3x3 kernel dimension is done sequentially. The kernel of loading input feature map,

initializing and draining of the output feature map is ignored. We will focus on the

data access pattern on the weight unified buffer. . . . . . . . . . . . . . . . . . . . . 62

5.4 A simplified diagram of how to use single port wide fetch SRAM with serial-to-

parallel(SIPO), parallel-to-serial(PISO) to imitate a multi-port memroy. . . . . . . . 67

5.5 Unified buffer abstraction before and after vectorization. The innermost dimension

x is strip-mined into xi, and xo. The unified buffer MEM is the memory in the

brighten-then-blur application after introducing a shift register (Figure 5.1c). . . . . 68

xiii



5.6 Illustration of the memory address transformation from single word address to wide

word address. The upper case shows a trivial case that the boundary of the address

is aligned with the wide fetch word, so that there is no extra padding. The bottom

case shows the original address is skewed with wide fetch word and we need to pad

one extra wide-word fetch at the end in order to cover all the needed data. . . . . . 69

5.7 Pseudo loop nest for a unified buffer that is read to conduct 1D convolution (sliding

window) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8 The data access pattern from the example B loop nest in Figure 5.7. Horizontally,

it shows the access in the innermost x loops. Vertically, it illustrates the iterations

among different dx loops. Because of the sliding window access pattern is not aligned

with the wide fetch word, we need to pad one extra wide fetch to cover all the data

that is going to be read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 A common physical buffer implementation with a dual-port SRAM. Two IterationDo-

main (ID) modules each drive an AddressGenerator (AG) and a ScheduleGenerator

(SG) to orchestrate writes to and reads from the memory. The output has a multi-

plexer for memory chaining. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2 Area optimizations in the affine function hardware for address and schedule generation

with a two-dimensional iteration domain. (a) An implementation that uses the value

of the counters in the iteration domain. (b) An implementation that embeds the

address delta between loop levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 An example of a simple downsample-by-2 iteration pattern over an 8×8 image. The

relationship between the strides and deltas for a two-level loop nest are shown. . . . 81

6.4 Diagram of a PUB with a wide-fetch single-port SRAM, aggregator (AGG), and

transpose buffer (TB). Sets of ID/AG/SG controllers control the input and output of

each sub-component. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.5 Buffet storage idiom, utilizing ready-valid timing protocol . . . . . . . . . . . . . . . 83

6.6 Compilation process targeting different memory backends.This diagram shows the

compiler process for different hardware targets. All applications start with Halide

which is extracted and mapped using the Unified Buffer Abstraction. From here, the

usage of FPGAs, address generators, SRAM Macro, and control protocol determines

which backend mapping to use. These options include BRAMs+LUTs, Ready-Valid

Buffets, DP-SRAMs + PE, DP-SRAMs + AG, and our physical unified buffer(PUB)

implemented by single port SRAM with address generators. . . . . . . . . . . . . . . 85

7.1 SoC consisting of the CGRA and the global buffer. . . . . . . . . . . . . . . . . . . . 89

xiv



7.2 Our CGRA is a 16× 32 array of processing element (PE) and memory (MEM) tiles.

One-fourth of the tiles are MEMs and the rest are PEs. The memory tile contains

the optimized PUB described in Section 6.1.3 depicted in Figure 6.4b. . . . . . . . . 90

7.3 Power consumption compared between DP-SRAM +AG and PUB among different

applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Comparison of area for different memory implementations with stacked bars divided

into MEM addressing and control area, MEM SRAM macro area, and PE area used

for computation. Four different implementations of a physical buffer are evaluated:

(1) a dual-port (DP) SRAM with unmodified PEs for address generation, (2) a DP

SRAM with PEs optimized for address generation, (3) a DP SRAM with optimized

address generator (AG), and (4) our final PUB with a single-port SRAM with fetch

width of 4, aggregator (AGG), and transpose buffer (TB) each with their AGs. . . . 93

7.5 Execution time versus resource utilization tradeoff by using Halide’s scheduling. At

high unrolling factors, designs do not fit on the CGRA (384 PEs, 128 MEMs); this is

indicated on the charts by the red shaded regions. . . . . . . . . . . . . . . . . . . . 94

7.6 Gaussian Pyramid PE temporal occupancy and latency change after enable compute

sharing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.7 SR-CNN PE temporal occupancy and latency change after enable compute sharing. 98

7.8 Ablation study of the effectiveness of coarse-grained loop optimizations. For ResNet

layers, compute occupancy increases as double buffering (DB) and loop optimizations

(LO) are added. A quad-port memory leads to even higher compute occupancy with

less energy efficiency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.9 Compute occupancy for different memory backends. Blue bars indicate the schedule

with dual port memory(1 read 1 write) and red bars indicate the schedule with quad

port memory(2 reads and 2 writes). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.10 Comparison of energy per operation for running kernels on a CGRA and FPGA. . . 101

7.11 Time per pixel on CGRA, FPGA, and CPU. . . . . . . . . . . . . . . . . . . . . . . 101

xv



Chapter 1

Introduction

In recent years, high-resolution embedded imaging sensors have become ubiquitous components

in numerous commercial hardware products. They have revolutionized our ability to capture im-

ages and videos with unprecedented clarity and detail, opening the door to applications such as

autonomous vehicles and robotics. These autonomous systems rely on real-time environment per-

ception and rapid decision-making, placing a need for low-latency image processing. Simultaneously,

the realm of deep learning and artificial intelligence (AI) has undergone a remarkable transformation.

Groundbreaking research in this field has yielded algorithms that deliver exceptional performance

improvements [32, 19, 81]. These algorithms have proven to be powerful in tasks like image recog-

nition and language understanding, enabling machines to perform with a level of sophistication

previously unattainable.

However, while these cutting-edge algorithms excel at processing high-resolution images, they de-

mand higher power consumption and impose a substantial memory footprint on embedded systems.

This conundrum presents a significant challenge as we strive to bring up the full potential of image

processing and machine learning in embedded devices. This thesis addresses some of these challenges

and helps empower embedded systems to deliver efficient, high-performance image processing and

machine learning capabilities.

To fully understand what the challenges are, let’s start the discussion with the limitations of

general purpose platforms, such as CPUs. As the clock frequency plateaued following the end of

Dennard Scaling, the microprocessor industry pivoted towards multi-core architectures. The mo-

tivation was clear: to leverage the increasing transistor count, provided by Moore’s Law. While

multi-core processors offered improved performance through parallelism, adding processors also in-

creased power dissipation. Power constraints and the complexity of exploiting parallelism effectively

[23] led to diminishing returns from increasing processor count. To increase performance at constant

power requires minimizing the energy overheads of moving data to the computation. [75].

To illustrate this point, consider a scenario where a processor must access data from a distant

1
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cache level or external memory. The energy expenditure for data movement, in terms of fetching

data from a remote location, can overshadow the energy required for the actual computation. For

example, in 45nm technology, fetching 32-bit data from the L1 cache consumes ten times more energy

than performing a floating-point addition operation. This discrepancy escalates to a factor of 1000

if the data fetch occurs from off-chip DRAM [36]. This growing disparity between computation and

data movement cost raises a fundamental question: Can we find a more efficient way to orchestrate

computation, particularly in scenarios where data movement is the dominant factor influencing

energy efficiency and overall performance?

Fortunately, both image processing and machine learning workloads share the characteristics

of high locality, statically analyzable access patterns as well as massive parallelism, which make

hardware accelerator an ideal computation platform. Hardware accelerators have dedicated data

path and control logic scheduled at circuit level, which is customized to specific applications. Thus,

the specialization removes the instruction overhead in general purpose computation. Besides data

parallelism inherent in the form of computation, the application’s pipeline stages can be spatially

mapped to hardware modules, yielding pipeline parallelism. In terms of data movement, the ex-

plicit software managed memory hierarchy is decoupled from the computation instructions, which

can overlap the data fetch with computation, resulting in shorter latency. Moreover, the memory

controller can be configured to reuse the data in local on-chip memory which further reduces energy

overhead for moving data around.

Hardware accelerators implemented as fixed-function ASICs achieved best energy efficiency and

performance. However, this efficiency comes at the cost of loss of flexibility. With limited reconfig-

urability, the fixed-function ASICs easily become obsolete as image processing and machine learning

applications evolve. Accordingly, there is significant interest in building hardware accelerators with

programmability. FPGAs’ flexible reconfigurable routing network and fine-grained on-chip resources

are capable of quickly adapting to different application algorithms. However, the overhead of rout-

ing network and building logic with Look-up Tables (LUTs) results in lower resource density and

low clockwork frequency, making FPGA system less performant and energy-efficient than ASIC.

[15, 66] Coarse granularity reconfigurable arrays (CGRA) address the energy efficiency issue by

raising the abstraction level of the hardware building block. Instead of building memory control

logic and compute engine out of LUTs and FFs, dedicated access pattern generators and processing

elements(PEs) with domain specification are distributed as building blocks on the chip. With a

reconfigurable routing network connecting all the resources, CGRA architecture is able to form a

customized computation pipeline that achieves higher resource density and better energy efficiency

while maintaining programmability.

However, along with the flexibilty and programmability, reconfigurable hardware accelerators also

bring us a unique challenge: to compile applications to the accelerator and achieve good performance

and resource utilization. The key compiler challenge is that efficient domain-specific accelerators use
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Table 1.1: The push memories in many programmable accelerators account for a large percentage
of chip area and power.

Domain Accelerator Area Power

Multiple Plasticine CGRA [69] 30% Not specified
DNN TPU [42] 37% Not specified
DNN Eyeriss [12] 67% 36–44%
DNN Simba PEs [76] 41% 56%
Sparse DNN EIE [30] 93% 59%

a different memory abstraction than CPUs and GPUs. General purpose hardware architectures, like

CPUs, issue load/store instructions to pull the needed data from hardware managed on-chip memory

system (known as cache) for computation, as is shown in Figure 2.1a. However, a reconfigurable

accelerator like CGRA uses software-managed on-chip memories distributed across the chip to ’push’

data to the computing units and store the data stream they produce. The compiled program

comprises not just a single piece of code but a set of configurations running on different memory

controllers distributed across various memory hierarchy levels. Since push memories control both

temporary storage and the flow of data, they account for a large fraction of the chip area and

power in accelerators, as shown in Table 1.1. Thus creating efficient execution schedules for these

memories, which prefetch the data and maximize reuse, is crucial to achieve higher performance

and better energy efficiency. Last but not least, unlike a cache used by CPUs, programmable

push-memory accelerators do not have a widely adopted hardware implementation for their memory

system. Compilation for push memories requires the compiler to retain the capability to target

different memory hardware implementations. As a result, this compiler must support backend

portability to enable exploring the design space of memory hardware to achieve the best energy

efficiency.

To create a compiler that can efficiently target accelerators with push memories requires:

• A unified abstraction that covers a variety of applications’ behavior while maintains the support

for different backend memory architectures.

• A compiler which maps applications to spatially distributed memory resources on the recon-

figurable hardware accelerator.

• A collection of optimizations to automatically schedule the applications and program the flex-

ible resource to reduce energy consumption and latency.

Neither conventional software compilers nor existing hardware compilers meet our requirements

for targeting these types of push memory. Conventional compilers for imperative programming

languages that assume a Von-Neumann machine, such as LLVM, are built around an intermediate
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representation that separates control, data access, and arithmetic. They assume that the most im-

portant piece of architectural state that the compiler must manage is the register file. However,

when using efficient push memories, memory, address generation, and control are grouped into a

hardware unit, and the compiler must configure each of these units. High level synthesis (HLS) tools

such as Vivado [87], LegUp [7], Catapult [56] and others [52, 40], are designed to solve scheduling

and resource binding problems at a finer granularity than those seen when compiling to push mem-

ories. Their strategy works well when targeting FPGAs or ASIC technology libraries, because the

architectural primitives (such as registers and LUTs) are more fine-grained than the compiler IR

instructions. To efficiently execute DNN work loads, Interstellar[88], Timeloop[65] , Marvel[9] build

an architecture-aware schedule optimizer to search the optimal DNN execution schedule. While this

type of tool is essential for overall loop optimization, they cannot map to hardware, and do not sup-

port fusing applications with multiple stages. Accelerator generators, for instance, DNNBuilder[91],

DNNWeaver[77], VTA[59] take a different approach and create an architecture template1 for an

accelerator and build a library based method to efficiently map certain application kernels down to

this template. Compiler for reconfigurable architectures, including SARA[92], StreamDataFlow[63],

and Exo [39] offer more abstract programming models for this specialized distributed push mem-

ory. However, their frameworks heavily rely on the backend implementation and require expert to

create high efficient schedule. Extending these frameworks to support new applications or different

hardware implementations would require significant development effort from domain experts.

We address these challenges by creating a new push memory abstraction that we call a unified

buffer [51], so named because it generalizes push memories for different application domains (such as

image processing and machine learning) and different reconfigurable targets (our custom CGRA[8]

as shown in Figure 7.2, accelerator memory with ready-valid[67], and FPGAs[38]). In particular,

we propose that the representation of push memories in the compiler must combine storage, address

generation, and sequencing control logic. Unified buffers serve as the interface inside the compiler

between the application and the architecture. They define both the abstraction used by the compiler

during push memory mapping and the logical behavior that the hardware architects must implement.

The unified buffer abstraction allows us to compile a program to a single understandable intermediate

representation (IR), perform application-specific yet hardware agnostic optimization at that level,

and then tailor mapping to different hardware targets.

1.1 Thesis Outline

Chapter 2 reviews the background of the thesis by describing the characteristics and challenges of

the three major domains that the compiler must interact with:

1These templates can vary from a fine-grained layer-based pipeline architecture with row buffers to a multi-PE
hierarchical architecture with local and global buffers.
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• A push memory, the unique type of memory that the compiler must configure

• A coarse grained reconfigurable array(CGRA), the hardware target of the compiler

• Scheduling space and optimization methods, including Polyhedral analysis, software pipelining,

and High-Level Synthesis (HLS) style scheduling, the tools the compiler will use to accomplish

its task.

The chapter also explores relevant academic research in this field, assessing their contributions and

identifying their limitations.

Based on the compilation techniques and requirements elucidated in background chapter, Chap-

ter 3 first provides an overview of the application’s scheduling space when deployed onto a push

memory reconfigurable architecture, outlining the objectives and major tasks of an effective sched-

ule. It then introduces the concept of the unified buffer abstraction. This abstraction serves as a

foundational element in our compiler framework, which is designed to support tensor computations

for machine learning and stencils pipeline for image processing. The overall compilation process

is outlined in this chapter. The following three chapters then provide more information about the

detailed scheduling, mapping, and optimizations through the lowering passes.

Chapter 4, Buffer Extraction, introduces the extraction of access patterns and iteration do-

mains from application descriptions in the form of loop nests. It places particular emphasis on

leveraging polyhedral and software pipelining techniques to effectively schedule workloads and es-

tablish a hardware pipeline.

Chapter 5, Buffer Mapping, explains how the compiler analyzes the information extracted

in the previous stage and maps it onto the physical hardware. Within this lowering pass, various

transformations are applied to reduce resource utilization, enhancing data reuse and optimizing for

the constraints of physical memory.

Chapter 6, Backend Portablity, addresses the backend of the compiler. It first introduces

the optimized physical unified buffer (PUB) implementation and various hardware backends. This

chapter demonstrates the generality of our unified buffer abstraction, showcasing its capacity to

generate code for various push memory implementations, thus achieving backend portability.

Finally, Chapter 7, Evaluation, analyzes the benefit brought by the scheduling algorithm intro-

duced in Chapter 4 and optimization passes introduced in Chapter 5, and evaluates the full system

energy efficiency and performance on our CGRA against FPGA and CPU.



Chapter 2

Background

The fundamental goal of accelerating applications using specialized hardware is to exploit the par-

allelism and locality within the applications. These hardware accelerators are often equipped with

a massive amount of functional units, facilitating the extraction of data parallelism within each

compute kernel and task parallelism across different compute kernels. However, this hardware par-

allelism comes with a cost. To efficiently leverage it demands precise coordination of data flow to

ensure that the large number of functional units remain fully engaged and stall-free. This careful

orchestration of data means these machines use a different type of memory system than normal pro-

cessors, which stream the data to the functional units. These push memories are described in more

detail in Section 2.1. In response to the evolving algorithms and the need to support a wide range

of applications, enabling programmablity for hardware accelerators has become a prominent and

actively researched field. To efficiently implement push memories in hardware, accelerators gener-

ally bundle memory and control logic together, creating the address and sequence information right

where it is needed. Similarly, reconfigurable hardware platforms like Field-Programmable Gate Ar-

rays(FPGAs) continue to incorporate specialized functional units such as DSP blocks or AI engines

to improve efficiency. Following this trend, Coarse-Grained Reconfigurable Arrays (CGRAs) emerge

as a compelling alternative to traditional FPGAs. To better understand the hardware our compiler

will need to target, Section 2.2 provide a thorough review of programmable spatial accelerators.

Although building a specialized memory storage/controller block improves hardware efficiency,

it brings significant challenges as the hardware target of an application compiler because it increases

the granularity of the hardware target. Traditional application mapping approaches, such as High-

Level Synthesis, stop being effective because they target resources with much finer granularity,

making them incompatible with the coarser-grained nature of CGRAs. The compilation challenges

encountered when mapping applications for CGRAs with push memory are discussed in detail in

Section 2.3.

The last section of this chapter, Section 2.4, explores the scheduling space the compiler needs to

6
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consider when mapping applications to spatial accelerators. The spectrum of factors influencing this

space is extensive, including considerations like loop transformations, dataflow optimization, memory

hierarchy management, and the binding with specific hardware resources. Given the complexity of

schedule optimization, we divided the scheduling process into two distinct steps, a global and a

local process. In this section, we first introduce the tools developed by other research groups,

which aid in finding efficient global schedules. This result can be leveraged by our flexible compiler

interface, Halide scheduling primitive, introduced in Section 3.2. Next, our proposed method will

transition from the global schedule to the local loop nest. To facilitate the understanding of the

proposed compilation flow, two compiler techniques, polyhedral analysis and software pipelining, will

be introduced, which play a pivotal role in creating optimized schedules and mapping applications

onto CGRAs with push memory.

2.1 Push Memories

As we described in the introduction, massive hardware parallelism comes with a cost. To fully utilize

its compute power, accelerators need a memory system to keep all function units busy. However,

the latency of getting data from a processor’s memory system to an accelerator is inherently non-

deterministic: the accelerator’s requests are queued with other processor requests to access the main

memory (DRAM) or processor cache. To shield the compute functional units from this uncertainty,

data must be meticulously managed. Data will be prefetched from off-chip DRAM to on-chip SRAM,

pushed through the computation units, and the stream of computational outputs are subsequently

collected into a memory before being flushed back to the main memory. Concurrently, given the

accelerator’s focus on extracting parallelism, staging buffers are inserted between compute kernels to

accommodate intermediate data and provide enough bandwidth when feeding data to the functional

units. Usually a specialized controller, associated with the memory, takes on the responsibility of

orchestrating the dataflow between memory hierarchy levels or delivering it to the compute units,

as shown in Figure 2.1b. This unique memory architecture, where data is actively pushed to its

destinations, is what we call push memory.

General purpose hardware architectures, like CPUs, issue load/store instructions to their mem-

ory system to pull the needed data for computation, as is shown in Figure 2.1a. These memory

instructions usually coupled with compute and they orchestrate data implicitly [67]. Normally these

instructions contain the global address of the data, and rely on hardware-managed caches to in-

terpret the address and wait for requested data to be fetched from any of their memory hierarchy

levels. When using efficient push memory architectures, memory management, address generation,

and control are all grouped into a separate control unit. This decoupled control unit has the ability

to manage memory access independently from the compute unit. One key feature that makes push

memory stand out from its counter-part pull memory is that the dedicated controller can leverage
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domain knowledge of the applications to prefetch the data to hide latency or reuse data to extract

data locality. For instance, a double buffer utilizes the dedicated controller and assigns extra space

in the memory to overlap the memory loads with computation which hides the data movement la-

tency and reduces the hardware overhead introduced by cache-like pull memory. Moreover, in image

processing applications, data is loaded in raster-scan order and reused within neighbor convolution

windows. Therefore the locality can be captured in small memory component such as row buffer

and shift register. Such an optimized architecture is called a line buffer.

Furthermore, it’s essential to note that the SRAM macros in this scenario offer limited bandwidth.

Increasing the number of ports on these SRAM modules results in a quadratic growth in terms of

complexity and area usage. In scenarios where highly parallel compute units are involved, memory

access can become a significant bottleneck, particularly when there’s a need to access multiple data

elements from the same array simultaneously. Compilers need to take the responsibility to reduce

the bandwidth requirement or partition data into different banks of the memory to provide enough

bandwidth.

What is worse, unlike a cache used by CPUs, programmable push-memory accelerators do not

have a widely adopted hardware implementation for its memory system. These accelerators typically

use a custom implementation of push memory hardware optimized for specific applications, or classes

of applications, to minimize area and energy. Thus, compilation and optimization for push memories

require the compiler to target a different memory abstraction for every application. More details

about the push memory implementations on the target reconfigurable accelerators will be introduced

in the Section 2.2. To avoid rebuilding a mapping process for each unique memory implementation,

a compiler abstraction that can be ported to multiple backend will be beneficial.

To generalize push memory hardware that can be reused across multiple domains, Buffets [67],

a buffer implementation idiom with explicit decoupled data orchestration (EDDO), was proposed

by NVIDIA research. It can be utilized as a substitution for other on-chip memory, such as cache,

double buffered scratchpad or FIFO. It has a dedicated state machine for memory management.

Combined with address generation and decoupled functional unit, it is more energy efficient with

lower latency. We leverage many of the concepts of Buffet, a hardware primitive, when we develop

our compiler abstraction in the next chapter.

2.2 Coarse-Grained Reconfigurable Architectures

In the quest to optimize hardware acceleration, the choice of underlying architecture also plays

a pivotal role. Coarse-Grained Reconfigurable Architectures (CGRAs) represent a distinct class of

computing platforms that sit between general-purpose processors and Application-Specific Integrated

Circuits (ASICs). These architectures are designed to provide a balance between the flexibility of

general-purpose processors and the efficiency of ASICs for specific application domains.
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Figure 2.1: Pull style memory in a CPU with centralized memory hierarchy versus push style memory
in a CGRA with distributed memory and its control.

The concept of CGRAs originated in the early 1990s[31, 10] as a response to the growing de-

mand for specialized computational accelerators. These accelerators aimed to provide close to ASIC

performance and energy efficiency with the programmability typically provided by software.[36, 62].

Over the years, CGRAs have seen numerous research and development efforts to refine their architec-

tures and programming models[63, 69]. One of the key advantages of CGRAs is their suitability for

accelerating applications that exhibit regular and repetitive computational patterns[50]. Examples

of such applications include digital signal processing, image and video processing, machine learning

and artificial intelligence workload, and many scientific computing tasks. By allowing for specialized

hardware configurations, CGRAs excel in achieving high throughput and energy efficiency for these

types of workloads.

Coarse-Grained Reconfigurable Arrays (CGRAs) can be broadly categorized into two types based

on their architecture characteristics. The first type of CGRA system features processor like pro-

cessing elements(PEs) [1]. In this design, the memory components are seamlessly integrated with
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the computational units, creating a unified system where memory and computation work closely to-

gether. This approach simplifies data movement and data access. However this tighten integration

may limit the flexibility and incurs processor instruction overhead. On the other hand, the second

type of CGRA system adopts a different approach. In this setup, there is a clear separation between

the processing elements (PEs) and memory tiles. The memory tiles are responsible for pushing data

to an array of processing elements. This decoupled architecture allows for greater flexibility in terms

of memory access and data flow.

In this thesis, we adopt a recent CGRA architecture (Amber CGRA)[8], proposed by researchers

at Stanford, shown in Figure 7.2 as a representative example of the second type of CGRA which

decouple memory from compute. While some CGRA designs have proposed using PEs for calculat-

ing memory addresses [54, 24, 79], most systems, like our target CGRA Amber[8], create dedicated

addressing units associated with their push memories to reduce energy and area overhead[68]. Un-

like general-purpose hardware that has a centralized memory system, the memory systems on a

CGRA, are distributed. For instance, Figure 2.1b demonstrates the memory hierarchy of a coarse-

grained reconfigurable array (CGRA) with multi-bank global buffer (L2) and on-chip memory tile

(L1). Typically a CGRA will contains an array of memory and compute units, connected by a

flexible reconfigurable network on chip (NOC). With the goal of achieving optimal area efficiency

and minimizing energy consumption per unit fetch, our CGRA push memory architecture employs

a wide-fetch single-port SRAM units to emulate multi-ported memory (more details will be intro-

duced in Section 6.1.3). However, this hardware optimization introduces added complexity for the

compiler in terms of mapping access patterns and creating efficient configurations. This architecture

is accompanied by a comprehensive toolchain flow (AHA Flow)[4] that manages placement, routing,

and low-level hardware configuration, streamlining the application graph’s mapping onto the re-

configurable architecture. Our exploration includes the compilation process and software-hardware

co-design, with a particular focus on accelerating dense linear algebra workloads and optimizing

energy-efficient computing solutions.

2.3 Compilation Delimma

CGRAs are built on the premise that reconfigurability can be strategically applied at a coarser gran-

ularity compared to Field-Programmable Gate Arrays (FPGAs). Instead of reconfiguring individual

gates and flip-flops, CGRAs are tailored to reconfigure coarser gain blocks: functional units, data

paths, or even entire processing elements. The rise in granularity of hardware logic units poses a

dilemma. High level synthesis (HLS) tools such as Vivado [86], LegUp [7], Catapult [55] and oth-

ers [52, 40], are designed to solve scheduling and resource binding problems at a finer granularity

than those seen on a CGRA. They schedule the instructions in the standard software IR, following

by binding instructions to functional units, and finally emit code to synthesize the hardware. Their
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strategy works well when targeting FPGAs or ASIC technology libraries, because the architectural

primitives (such as registers and LUTs) are more fine-grained than the compiler IR instructions.

Programmable push memory accelerators requires the compilation process to generate instructions

or configuration for the specialized controller rather than synthesizing the hardware using reconfig-

urable logic.

Apart from the challenges brought by raising the abstraction level, another compiler challenge

comes from the push memory backend. Conventional compilers for imperative programming lan-

guages, such as LLVM[47], are built around an intermediate representation that separates control,

data access, and arithmetic and thus are not well-suited to target push memory which integrate

these components.

Luckily, researchers in this area have proposed various solutions to tackle these compilation chal-

lenges. We describe results in two key areas: one focuses on generating accelerators on reconfigurable

fabric, the other focuses on compilation to push memories.

2.3.1 Domain-Specific Accelerator Generators

Previous researchers sought to automate the domain-specific accelerator generation process and

create an implementation on a reconfigurable architecture or as an ASIC. Image processing accel-

erator generation languages such as Darkroom [33], Rigel [34], Aetherling [20], Hetero-Halide [48],

HIPACC-FPGA [73], PolyMage-FPGA [14], SODA [13] and Halide-HLS [70] automatically generate

FPGA implementations of image processing pipelines. These systems either target FPGAs that

have large overheads, or ASICs that are inflexible. AutoSA [83], AutoDSE[78], and Clockwork[38]

are some systems that use polyhedral analysis for scheduling, but they do not consider CGRAs.

To efficiently execute DNNs, Zhang et al. [90] optimize DNN data blocking using double buffer

structures and synthesize a pipelined FPGA accelerator from Caffe [41]. DNNWeaver [77] also

generates synthesizable designs automatically from Caffe, with support for more types of layer

implementations. DNNBuilder [91] proposes a fine-grained layer-based pipeline architecture with

a line-buffer-based scheme to reduce FPGA on-chip memory usage. VTA [58, 59] provides a full

hardware-software stack for DNN acceleration using a modified version of Halide IR. It proposes

an ISA to map DNN layers onto optimized operators on their proposed FPGA accelerator. These

domain-specific hardware generators reduce design effort when mapping a DNN to an accelerator.

However, their frameworks heavily rely on the backend implementation. With the architectures

determined, extending them to support new applications or more efficient hardware implementations

would require significant development effort from domain experts.

2.3.2 Compilation to Push Memory

Reconfigurable accelerators like CGRA often have parallel computation units. In order to fully utilize

the resources, staging buffers are inserted between functional units to accommodate intermediate
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data and provide enough bandwidth when feeding data to the compute units. This yields a unique

programming challenge: the compilation target is not just a single piece of code, but a set of programs

(or configuration bit-streams) running on every memory’s controller (green ovals in Figure 2.1b) that

manage the data movement. Not only must the programs contain information on which data should

be accessed (the addresses), but they must also align the timing of read and write events inside the

buffers to synchronize the flow of data from buffers, through processing elements for computation,

to another buffer.

While HLS tools can translate the compiler IR directly to hardware, they do not support the

memory optimizations as described above. Modern HLS tools such as Vivado HLS or Catapult

HLS are well suited to arithmetic mapping and exploiting pipeline parallelism within the bodies

of individual loops [53]. However, they perform limited memory [70] and cross-loop optimizations

[94]. As a result, they are not good at exploiting pipeline parallelism across different loop nests in a

computation, and require a great deal of manual effort by users to create high quality code for deep

pipelines. HeteroCL [45] uses a unified DSL frontend to describe their memory optimization and spa-

tial architecture description, But its backend implementation still depends on separate frameworks

for different categories of applications. More importantly, all of these HLS based framework can

only synthesize accelerator design on an FPGA, which is non-trivial to extend to target accelerators

with coarser level of hardware granularity.

Academic compiler systems tailored for reconfigurable accelerators, including Spatial [43] and Exo

[39] offer more abstract programming models for this specialized distributed push memory. However,

they often require users to explicitly define memory micro-architecture optimizations. Spatial [43]

provides a high-level programming language for Plasticine, but requires users to explicitly orches-

trate data movement between different memories. SARA [92] improves upon the Plasticine compiler

by scaling applications to utilize most of the hardware resources, but leaves resource binding opti-

mizations to the user. Exo empowers users with a general programming language for efficient kernel

generation on both CPU and hardware accelerators, but the memory management optimizations

and micro-architecture configurations remain dependent on the user-defined libraries. Nowatzki

[63] proposed a low-level programming model for stream dataflow CGRAs, which features a global

scratchpad memory architecture and dynamic scheduling in their memory ISA. While this approach

is suitable for the CGRA architecture with a centralized global buffer, it may not align well with

other accelerators equipped with distributed push memories.

In summary, these academic compilation systems for push memory on CGRAs provide abstract

programming models but often necessitate user involvement in memory architecture optimizations

and micro-architecture configurations. We extend this work to remove the needed user involvement

by developing a novel compiler abstraction tailored to efficiently and automatically compile for such

architectures.
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2.4 Scheduling Techniques

Because of the explicit memory management and the large sum of resource on the push memory

accelerators, achieving high performance and energy efficiency in mapping application on accelerator

architecture involves considering multiple factors, resulting in an extensive design space. This di-

verse design space encompasses a wide range of scheduling and architectural features, spanning from

schedule optimizations (the inner loop of the process) like loop tiling, loop ordering and paralleliza-

tion, to more architectural considerations (the outer loop), which includes memory size, Processing

Element (PE) array size, and interconnect network topology.

In this section, we first introduce the tools that have been developed by other research groups,

as they provide valuable insights into finding efficient global schedules. It’s important to note that

coming up with a global schedule is a formidable challenge, and there is no one-size-fits-all approach

that can be universally applied. Instead, we rely on Halide’s scheduling primitives, as introduced

in Section 3.2, as a flexible interface, which we use to express these schedules. This allows us

to simplify the complexity of scheduling, enabling the compiler to automatically develop efficient

local schedules tailored to specific application workloads on the push memory backend. This local

schedule generation leverages two compiler techniques: polyhedral analysis and software pipelining.

Traditionally, these techniques have been closely associated with conventional CPU compilation.

However, in the context of this thesis, we adapt and extend these methods to address the unique

challenges arising in the scheduling of operations for push memory accelerators.

2.4.1 Accelerator Scheduling Framework

Prior scheduling frameworks like Timeloop [65], Interstellar [88], and Marvel [9] have created analyt-

ical models with specific hardware constraints to formalize the large design space. They then search

the scheduling space to minimize the architecture model’s cost. However, this brute-force approach

becomes impractical for large Deep Neural Network (DNN) layers, leading most of these works to

focus on single DNN layers and neglect the potential for fusing multiple operations.

In contrast, Tangram [26] and recent research [6] have modeled complex multi-layer DNN work-

loads with optimized inter-layer fusion scheduling, eliminating excessive data duplication and mem-

ory access overhead for intermediate data. However, their search space remains constrained to

specific data flows, employing heuristics to target particular schedule spaces due to the increased

complexity introduced by fusing multiple layers.

To avoid brute-force searching, approaches like Naas[49] and Spotlight[37] leverage feedback-

driven methods, such as genetic evolution algorithms and Bayesian optimization, to navigate the

search space more efficiently. However, these frameworks, while capable of analyzing the mapping

of tiled computations to spatial accelerators, do not provide a programming interface for users to

create arbitrary affine loop nests. What is worse, they also could not offer a fully functional backend
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for generating code for reconfigurable accelerators with heterogeneous resource.

To implement a complete compiler, previous works like [11, 60, 2] incorporate auto-tuning, beam

search, and machine learning to auto-schedule applications and generate efficient code for execution

on CPUs or GPUs. We will use the insights and schedules generated by these tools to set the global

schedule of our applications.

2.4.2 Polyhedral Analysis

The Polyhedral model is a powerful algebraic framework that has significantly advanced the anal-

ysis and optimization of affine programs. It achieves this by precisely capturing the compile-time

execution order of operations in a program. Traditional architectures, such as CPUs and GPUs,

employ a pull memory system characterized by data loads and stores that are implicitly managed

by the hardware.

Since in a cache based system, the exact timing of when the data returns is not known, most

polyhedral scheduling algorithms like Feautrier’s algorithm[25] and PLUTO[5], transform loops,

and only track the relative order of the operations. These algorithms map elements of the iteration

domain to a sequence of execution during compile time. Essentially, they transform the original

loops within a program into a new set of loops that implement these optimized execution orders,

while the hardware underneath handling the scheduling. This program execution order can be used

to reason about behavior of a hardware’s compute and memory units and help enhance improve the

program locality and data caching.

In contrast, reconfigurable accelerators with push memory system are mostly operated in a

statically programmed and explicitly managed manner. This crucial distinction allows a compiler

framework to comprehensively analyze the precise timing behavior of the operations within an

affine program. This analysis occurs during compile-time and becomes invaluable in generating

configurations that maximize performance and energy efficiency for all programmable units within

a coarse-grained reconfigurable architecture. Thus, when scheduling and mapping for push memory

accelerators, our approach diverges from conventional polyhedral scheduling algorithms. Instead of

focusing on loop transformations, we concentrate on mapping these loop nests to a wide array of

distributed hardware units that operate individually and possibly concurrently. To accommodate

this distinction, our proposed scheduling approach maps the operations of the multidimensional

iteration domain within the application program to scalar values. These scalar values represent

the number of unstalled cycles after reset when the operation begins. Given the pipelined nature

of the hardware design, multiple operations may share the same timestamp. This distinction is

essential to effectively schedule for hardware accelerator with parallel compute units and maximize

its performance.
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2.4.3 Software Pipelining

Software pipelining is an optimization technique used in compilers for VLIW processor to improve

instruction-level parallelism of loop-intensive algorithms[46]. By overlapping the execution of loop

iterations, it minimize stall cycle and improve hardware utilization. This technique orchestrates a

transformation of the operations nested within the innermost loop, rendering them as a series of

stages in a pipeline. Such an arrangement enables each stage to process different loop iterations

concurrently.

Iterative modulo scheduling, on the other hand, is a fundamental approach within software

pipelining that determines the initiation interval (II) of operations within a loop[72]. The II defines

the minimum number of clock cycles required between starting of an operation in the next loop

iteration. By iteratively scheduling operations to minimize II while meeting resource constraints

and dependencies, this technique plays a pivotal role in achieving high throughput and optimal

hardware resource utilization.

Software pipelining was utilized in HLS tools [64] to generate efficient hardware implementations

from high-level descriptions. Specifically, loop pipelining is an essential technique in high-level syn-

thesis to increase the throughput and resource utilization of reconfigurable accelerators. It relies on

iterative modulo schedulers to compute an operator schedule that allows subsequent loop iterations

to overlap partially when executed, while honoring all dependencies and resource constraints. The

HLS’s scheduler employs these techniques to automatically create a schedule that adheres to specified

constraints, such as clock frequency and number and types of compute resources available. However,

it’s worth noting that the subsequent stages in HLS, such as hardware binding and logic synthesis,

cannot be directly applied in the context of an accelerator backend featuring coarse-grained push

memory or functional units. Nevertheless, the frontend scheduling, facilitated by software pipelining,

offers an viable approach to scheduling high-level algorithms and structuring compute pipelines.

While software pipelining traditionally operated at the level of individual operations, primarily

enhancing instruction-level parallelism within VLIW processors, its application in the context of

accelerators, particularly those adopting dataflow execution models with coarse grained hardware

like CGRA-based implementations, takes on a different form. Here, a compute pipeline is generated

where discrete functional units process a continuous stream of data, collectively executing a series

of operations. Our approach extends the abstraction level of pipeline stages beyond individual

operations to encompass groups of operations or entire computation kernels. This adjustment aligns

with the organizational structure of accelerators, enable software pipelining to create hardware

pipeline on reconfigurable accelerator architecture.
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By integrating these compiler techniques into our compiler framework, we aim to bridge the gap

between software and hardware, addressing the unique challenges presented by push memory accel-

erators while striving for efficient and high-performance outcomes. In the chapters that follow, we

will give a brief introduction of our compiler flow and the novel compiler abstraction, the unified

buffer.



Chapter 3

Compiler Overview

In the preceding chapter, we introduced the compilation challenge of mapping a wide range of ap-

plications to different efficient hardware implementations of push, or streaming memories. After

examining conventional compiler approaches and recent research efforts, it was apparent that none

offers a straightforward solution for automating the compilation process for push memory accelera-

tors. To address this gap, this chapter first explores the design space when scheduling a workload

on push memory accelerators. Next we will introduce our compilation flow and describe which part

of the scheduling task each compilation stage handles. Finally we will dive into the detail of the

heart of our compiler, the unified buffer abstraction, serving as the intermediate representation (IR)

of our compilation framework.

3.1 Accelerator Scheduling Space

The push memory model of accelerators places the responsibility on programmers or compilers to

develop software that manages data movements. This model operates in an architecture with a sub-

stantial number of on-chip memories and compute units distributed on chip, enabling parallelism and

the creation of computation pipelines. However, this abundance of resources also presents schedul-

ing challenges. Scheduling applications on such architectures requires us to specify the mapping

of computation operations onto the processing elements, the placement of data into memories, as

well as the communication of data between memory hierarchy levels. Drawing insights from prior

architectural work[88, 42, 36], we recognize the importance of saving energy associated with data

movement during accelerator scheduling. Therefore, when scheduling an application on reconfig-

urable accelerator, we follow the concept proposed by Hagedorn [28, 29] where both data movement

and computation are regarded as first-class operation objects. Within this setup, two distinct spaces

come into play: the operation space and the data space.

It’s essential to note that the mapping from operation space to the data space depends on the

17
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application’s access pattern, which is a characteristic independent of the schedule itself. The major

task of scheduling is

1. Figuring out the order of all operations’ execution.

2. Mapping points in operation space and data space to their corresponding physical hardware

elements.

The first step defines the execution order of operations within each kernels, which subsequently yields

the iteration space. For instance, if we adopt the loop nest representation of the application, the

iteration space is the Cartesian product of all loop iterators. The sequence and dataflow execution

will be shaped by loop tiling factors and the loop order. If the workload contains multiple operations,

the interleaving granularity also need to be defined. An alternative strategy involves mapping the

iteration space to time, which simplifies the identification of overlapping execution among different

operations.

The next step is hardware mapping. Following the establishment of an iteration’s temporal

behavior, we proceed to associate each operation with a hardware resource, thereby introducing

parallelism. Previous work [88, 70] leverage the Halide unroll scheduling primitive to create parallel

compute unit. Alternatively, [65] annotates the for loop using spatial and temporal keyword,

which indicates whether the loop will be executed in parallel or sequentially. Similarly, when dealing

with iteration space points which belong to distinct operations, one can map the operation to the

same hardware resource, facilitating shared computation. On the other hand, these operations can

be mapped to separate hardware. In cases where no dependencies exist between these operations,

parallel execution becomes feasible when mapped to separate units. If dependencies are present, the

dedicated processing elements are employed to express pipelined parallelism.

A similar mapping strategy can be extended to the data space. For instance, a single data array

or tensor may be partitioned into multiple physical tiles. Conversely, different data arrays can be

consolidated and stored into the same physical memory. It is important to note that data space

mapping differs from operation space mapping in that data values can reside in multiple physical

location across various memory hierarchy levels.

3.2 Compiler Overview

In order to handle the application scheduling challenge mentioned in previous section, a multi-level

compilation flow was developed, which is illustrated in Figure 3.1. Users of our system specify their

applications in Halide, a high-level domain-specific language (DSL). Halide separates the applica-

tion algorithm from its schedule to isolate computation from optimizations in execution [71]. The

algorithm specifies the computation of an output, while the schedule specifies the order in which
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the computation should be performed. Our compiler divides the problem of compiling data array in

Halide’s algorithm to push-memory implementations into three steps (shown in Figure 3.1):

1. Halide Scheduling leverages the Halide scheduling system, whose scheduling language con-

trols loop transformations and which we extend with accelerator commands. We support a

subset of the Halide input language that includes stencils, tensor computations, and lookup

tables.

2. Buffer extraction uses polyhedral scheduling and software pipelining techniques to map the

multidimensional iteration spaces of loop nests into one-dimensional cycle times, thus yielding

pipeline parallelism. The same step then extracts the full specification of each buffer port in

the unified buffer abstraction, as shown in Figure 3.2.

3. Buffer mapping converts each abstract unified buffers into a set of simpler buffers which can

be one-to-one mapped to the low-level hardware primitives, based on the low-level hardware

constraints. Through this mapping process the compiler also generates the code or configu-

ration for specific hardware primitives. This step guarantees the compiler optimized schedule

can be executed on the efficient physical memory primitives built separately.

We chose to keep the Halide scheduling language for tiling instead of placing it in the second step

(like the PLUTO scheduling algorithm [5]). The reason is that a high-quality, general-purpose tiling

algorithm for all dense linear algebra applications has not yet been found. As a result, we believe

tiling is best left to either performance experts through a scheduling language or to domain-specific

search procedures such as [88]. Thus, we limit our use of polyhedral techniques to memory analysis

and semantic-preserving loop fusion. Besides tiling, the first Halide scheduling stage also responsible

to define the sequencing of iteration space, including loop order, interleaving granularity as well data

duplication for memory hierarchy.

The following chapters of this thesis focused on the compilation flow starting from the loop

nest representations. The frontend scheduling language utilized can be any language capable of

transforming the application algorithm into a loop nest representation. For instance, it is possible

to extend domain-specific compilers used in machine learning, such as TVM [11] or XLA [74], to

accommodate our unified buffer compilation flow. In practice, we have chosen Halide as our frontend

language due to its concise scheduling language, which provides a formal definition of the scheduling

space.

Consequently, the subsequent content will center on the compiler’s lowering pass below the Halide

Intermediate Representation (IR) depicted in Figure 3.1. The input for the compiler comprises a

loop nest description language that can be targeted by the domain-specific Halide language. The

compiler’s output constitutes a hardware graph, comprising compute and memory modules, anno-

tated with configurations tailored to execute the specific workload. In the next section, we will dive
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brighten(x, y) = input(x, y) * 2;
blur(x, y) = (brighten(x, y  ) + brighten(x+1, y  ) +

brighten(x, y+1) + brighten(x+1, y+1))/4;
blur.tile(x, y, xo, yo, xi, yi, 63, 63)

.hw_accelerate(xi, xo);
brighten.store_at(blur, xo)

.compute_at(blur, xo);
input.stream_to_accelerator();

for (y, 0, 64)
for (x, 0, 64)
brighten(x, y) = input(x, y) * 2;

for (y, 0, 63)
for (x, 0, 63)
blur(x, y) = (brighten(x, y) + brighten(x+1, y) +

brighten(x, y+1) + brighten(x+1, y+1))/4;

(x, y)

(x+1, y+1) (x, y+1) (x+1, y) (x, y)
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Figure 3.1: The three compiler steps for a brighten-then-blur example. Halide scheduling generates
tiled loops, from which buffer extraction emits the brighten unified buffer. This buffer is then
mapped to shift registers (SR) and our optimized memory tile (MEM) with aggregator (AGG) and
transpose buffer (TB).

into the fundamental intermediate representation used in this compilation flow: the unified buffer

abstraction.

3.3 Unified Buffer Abstraction

In contrast to the centralized instruction issue unit employed by a CPU’s execution model, which

is control-flow oriented, push memory accelerators employ distributed memory controllers for data

synchronization, operating in a data-flow manner. A push memory is fundamentally defined by the

data stream they produce (output) or consume (input). To effectively capture and analyze this data

stream behavior, we require a data-centric intermediate representation.

In our compiler framework, we introduce a novel compiler abstraction, called the unified buffer.

This abstraction allows us to separate the part of the compiler that analyzes the application’s data

flow from the task of mapping the needed storage onto an efficient hardware implementation. Each

port of the unified buffer is specified with respect to an iteration domain that enumerates all the

elements of the data stream associated with that port. This specification also includes addressing
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information for write and read operations, allowing re-ordering and data reuse between input and

output streams, as well as precise timing / ordering details for data arrival and departure. Essentially,

for each statement that uses the port, the following information is provided:

• The iteration domain of the operations (statement instances) that use the port. The domain

is defined by the bounds of loops in the loop nest and can be used to compute the length of

the stream.

• The access map of the operations that maps each iteration domain point to a value read or

written on the port.

• The schedule of the operations in the iteration domain. It doesn’t need to be optimal, but

it does need to preserve data dependencies in the computation. This schedule specifies when

the value at each location arrives.

For this representation we use the polyhedral model [5], which provides a compact way to rep-

resent schedules and memory access patterns as integer sets and relations. Figure 3.2 shows the

unified buffer that is generated to communicate between the brighten and blur stages of the example

in Figure 3.1. The unified buffer interface is a list of ports. Each port is either an input port or an

output port. In this case there is one input port for the values written by the brighten stage, and

there are four output ports, one for each pixel in the 2x2 window read by the blur stage. This buffer

accepts one pixel per cycle from the brighten compute kernel and delivers a 2× 2 window of pixels

per cycle (after a startup delay) to the blur kernel. To accommodate the required bandwidth, this

unified buffer has 5 ports: 1 input port and 4 output ports. The iteration domain integer set, the

access map, and schedule relations are implemented using the polyhedral analysis tool ISL [82]. For

the input port in our example, the iteration domain is the integer set

{(x, y) | 0 ≤ x ≤ 63 ∧ 0 ≤ y ≤ 63}.

Since the brighten operation, which is the only user of the input port, is surrounded by a two-

dimensional loop, the iteration domain has two index variables: an outermost index variable y and

an innermost index variable x.

The unified buffer does not merely specify what operations use a port. To synthesize address

generation code and optimize memory sizes, it must also specify what memory locations are accessed

by those operations. To specify the memory locations, each port has an access map. For example,

the second output port of the brighten buffer has the access map (x, y)→ brighten(x + 1, y), which

means the accessed value is to the right of each point in the operation’s iteration space. The other

output ports have different maps, thus collectively fetching the 2 × 2 stencil required by the blur

kernel.

The last component in a port’s specification is the polyhedral schedule which maps loop nests to
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Unified Buffer Abstraction

Iteration Domain

Schedule
Access Map

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 63 ∧0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [64𝑦 + 𝑥]

𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧0 ≤ 𝑦 ≤ 62}

65
 cy

cle
s

64 cycles

1 cycles

0 cycles

Figure 3.2: The unified buffer specifies the data movement between the brighten and blur kernels in
Figure 3.1. Each port is defined by a polyhedral iteration domain and an access map that describe
the data written to and read from the buffer. The schedule describes the cycle at which those values
arrive at the port.

cycle times in a hardware design. This contrasts with conventional polyhedral schedule algorithms

which is doing loop transformation, our schedules map loop nests to time. Specifically, it’s the

number of unstalled cycles after reset when each operation begins. And to accommodate pipelined

hardware designs, our schedules map several operations to the same timestamps.

The schedule is used to calculate when reads and writes occur. In our example, the schedule for

the input port is the integer function (x, y)→ 64y+x. It specifies that the first write to the brighten

buffer input port, at coordinate (0, 0), happens 64 ∗ 0 + 0 = 0 cycles after execution begins and that

the second brighten operation, at coordinate (1, 0), happens after 64 ∗ 0 + 1 = 1 cycle. Furthermore,

the output ports emit their first value after 65 + 64 ∗ 0 + 0 = 65 cycles, which is the time the buffer

must delay the first value to generate the correctly aligned output. The internal distances refer to

the number of cycles from when a value arrives at an input port to when it leaves an output port.

Unified buffers separate the part of the compiler that analyzes programs to determine and op-

timize data movement, from the part that implements the data movement by configuring physical

memories. Therefore, they have two objectives:

1. provide a precise description of the requirements of each push memory at its interface and

2. maximize opportunities for independent optimization on each side of the interface.

The first objective preserves the functionality of the application, while the second ensures the freedom

for hardware designer to explore an efficient implementation. The unified buffer interface describes

the observed behavior of the memory at its interfaces, in terms of the operations in the original
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program. The unified buffer does not specify the internal implementation of its behavior and can be

used to map to different hardware backends. Only externally visible scheduling and binding decisions

are expressed. Crucially, unified buffers omit the physical capacity of the memory and the physical

mapping of data to locations in memory. Thus, it is a precise specification in terms of familiar data

structures for a compiler—the sets and relations of the polyhedral model—and leaves the architects

considerable room to optimize the design. Next, we describe how we extract this unified compiler

abstraction from the frontend loop nest description.



Chapter 4

Buffer Extraction

This chapter discusses in detail the buffer extraction process, starting with the domain specific

language that generates the loop nest AST. It then shows how to extract iteration domain and

access map information from this information. Then we will examine the techniques and algorithms

used to schedule the operations in the loop nest, including loop pipelining to optimize throughput

(initiation interval of the loop) (Section 4.3) and loop fusion (Section 4.4) which optimizes latency.

4.1 Loop Nest Description Language

The frontend of the buffer extraction process is a domain specific language (DSL) which creates a

representation of each application loop nest generating an output data block. Its output represents

the memory load and store addresses of the data arrays used, and the order of operations set by

loop tiling and other ordering transformations. This language constructs the loop nest by adding

two kinds of nodes, loop and op node, in the loop nest abstract syntax tree (AST). We modified the

Halide compiler, which we use for our applications, to generate this description.

The loop node in the AST encodes loop information such as the starting index and loop bound.

The operation node encodes a number of memory load operations (getting the needed inputs), one

memory store operation (storing the generated output), and a function that calculates the output

from its inputs. Here are the language primitives to construct the input loop nest to the buffer

extraction process.

• c node = p node.add loop(name:str, start:int, bound:int) creates a loop node and at-

taches it to the parent node (p node). The argument str specifies the name of the newly added

loop iterator, and the start and bound indicates the beginning value and the loop bound of

the corresponding loop.

• op node = p node.add op(name:str) creates a op node and attaches to its parent node. The

24
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argument str defines the name of the operation.

• op node.add load(name:str, addr:expr), op node.add store(name:str, addr:expr) are

used to add memory load and memory store instructions to the operation. The str argument

specify the name of the data array being accessed, which will be used as the name of the

extracted unified buffer later on. The addressing argument expr is constructed as a high-

dimensional expression that uses an affine map to calculate the memory address at which a

load or store operation should occur. The iterator names in the address expression correspond

to the names of the loop nodes in the loop nest. Thus, the address expression argument is a

pointer to the loop nodes that are on top of the current operation.

• op node.add function(name:str) declares the computation function that the operation ap-

plies on the input data to get the output. It worth noting that the sequence of the function’s

input argument corresponds to the declaration order of the memory load operations. This

alignment establishes a clear connection between the specific memory port and the input port

of the functional unit. The term str will also served as a reference to the compute hardware

unit. Mapping different operation nodes to the same hardware indicates compute hardware

sharing, which will be discussed in Section 4.3.3.

The pseudo code in Figure 4.1a outlines an image pipeline that brightens and blurs an image by

breaking it into 16 tiles and then operating on each tile. The first kernel performs a multiplication of

every pixel by two within a 64x64 tile, followed by a 2x2 average blur. And the code in Figure 4.1b

demonstrates the utilization of the AST constructing domain specific language to generate the two-

stage processing pipeline depicted in Figure 4.4, which served as the input to our compiler. To be

specific, on line 3 of the loop nest shown in Figure 4.1b, a tiling loop with a loop bound of 16 is

created, followed by two children nodes representing the two loop nodes y br and y bl. Underneath

these sub-loop nests, the operations for brighten and blur are executed. As we can see from lines

11 to 13, the brighten operation is associated with one memory load to the input and one memory

store to the buffer brighten, whereas the blur operation has four memory load operations so that it

can compute the blurred pixel and store back into the blur memory. The data load from those four

memory operations will be passed to the blur kernel’s input arguments according to their adding

sequence.

The buffer extraction step analyzes the loop nest generated from this domain specific language

to turn both loop iterations and data arrays into push memories expressed using the unified buffer

abstraction presented in Chapter 3. That is, this application specific loop nest describes computation

as operations on arrays over iteration domains defined by loop variables. The iteration domain is

the Cartesian product of the bounds of the loops surrounding the operations in the loop nest. For

instance, according to the code in Figure 4.1a line 4-5, the brighten operation is encapsulated under

a two level loop nest with loop bound equal to 64. So the end of the loop will be start+ bound−1 =
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1 //Outer tiling loop

2 for t in [0:16]

3 //Brighten

4 for y in [0:64]:

5 for x in [0:64]:

6 brighten(x, y) = brighten_kernel( input(x, y, t) );

7

8 //Blur

9 for y in [0:63]:

10 for x in [0:63]:

11 blur(x, y, t) = blur_kernel( brighten(x, y),

12 brighten(x+1, y),

13 brighten(x , y+1),

14 brighten(x+1, y+1));

15 //Definition of blur kernel

16 function blur_kernel(arg0, arg1, arg2, ar3):

17 arg_st = (arg0 + arg1 + arg2 + arg3)/4;

18 return arg_st;

19

20 //Definition of brighten kernel

21 function brighten_kernel(arg0):

22 arg_st = arg0 * 2;

23 return arg_st;

(a)

1 //Outer tiling loop

2 prog prg("br-bl");

3 ir_node* t = prg.add_loop("t", 0, 16);

4

5 //Brighten sub-loop

6 ir_node* y_br = t->add_loop("y_br", 0, 64);

7 ir_node* x_br = y_br->add_loop("x_br", 0, 64);

8 ir_node* brighten_op = x_br->add_op("Brighten");

9

10 //Brighten OP

11 brighten_op->add_function("brighten_kernel");

12 brighten_op->add_load("input", "x_br","y_br", "t");

13 brighten_op->add_store("brighten", "x_br","y_br");

14

15 //Blur sub-loop

16 ir_node* y_bl = t->add_loop("y_bl", 0, 63);

17 ir_node* x_bl = y_bl->add_loop("x_bl", 0, 63);

18 ir_node* blur_op = x_bl->add_op("Blur");

19

20 //Blur OP

21 blur_op->add_function("blur_kernel");

22 blur_op->add_load("brighten", "x_bl", "y_bl");

23 blur_op->add_load("brighten", "x_bl+1", "y_bl");

24 blur_op->add_load("brighten", "x_bl", "y_bl+1");

25 blur_op->add_load("brighten", "x_bl+1", "y_bl+1");

26 blur_op->add_store("blur", "x_bl", "y_bl", "t");

(b)

Figure 4.1: (a)Loop nest for brighten blur pipeline. The brighten kernel is multiplying the input by
two, and the blur kernel is calculating average among all four input arguments. (b) The correspond-
ing DSL that constructs the loop nest in Figure 4.1a

.
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0 + 64− 1 = 63. Therefore the iteration domain of brighten operation is defined as

{Brighten(x, y, t)|0 ≤ x ≤ 63, 0 ≤ y ≤ 63, 0 ≤ t ≤ 15}

whereas the consumer operation blur has a smaller iteration domain with one less on the boundary

because of the halo of 2x2 window,

{Blur(x, y, t)|0 ≤ x ≤ 62, 0 ≤ y ≤ 62, 0 ≤ t ≤ 15}

Each memory read operation or write operation is given a unique logical port on the correspond-

ing unified buffer. The number of logical ports indicates the bandwidth required to schedule the

operations. For each logical port, buffer extraction then extracts an access map from the buffer

accessing address expression. For example, the brighten kernel will store the calculated pixel value

into the brighten buffer while the blur kernel will load four pixels from the same buffer to compute

the final output of the pipeline. From the address expression denoted in Figure 4.1b, the access

map for the brighten buffer write is

{Brighten(x,y,t)→ brighten(x, y)} (4.1)

The Blur kernel read operations go through four logical ports to the brighten buffer, and the access

maps are

{Blur(x,y,t)→brighten(x, y)} (4.2)

{Blur(x,y,t)→brighten(x + 1, y)} (4.3)

{Blur(x,y,t)→brighten(x, y + 1)} (4.4)

{Blur(x,y,t)→brighten(x + 1, y + 1)} (4.5)

Using this DSL and information extracted from the Halide compiler makes it easy to generate the

iteration domain and access map for each of the brighten unified buffer ports depicted in Figure 4.2.

The main work of unified buffer extraction, however, is computing the cycle-accurate schedule that

maps operations in the loop nest to the cycle times specifying when they will happen in hardware.

4.2 Scheduling

Unlike traditional polyhedral schedulers that create an optimized set of loops, our scheduling ap-

proach is designed to capture the runtime behavior of individual computation operation. This
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Unified Buffer Abstraction 
Before Scheduling

Iteration Domain

Access Map

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦
𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥 + 1, 𝑦
𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦 + 1
𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

Figure 4.2: Iteration domain and access map for unified buffer brighten.

choice steams from the fact that hardware accelerators typically have a massive amount of con-

current compute resources that can be executed in overlap with others, which are challenging to

represent efficiently using imperative loop. To address this challenge, our scheduler maps each op-

eration’s iteration space to a one-dimensional timestamp. This timestamp-based schedule simplifies

the representation of pipeline parallelism, enabling each computation stages to execute on a separate

hardware unit in a pipelined fashion.

4.2.1 Scheduler Setup

Many image processing and machine learning applications have statically analyzable access patterns.

This characteristic enables our scheduler to schedule all memory accesses at compile time. The

primary objective of our scheduler is to minimize the application’s latency while adhering to essential

constraints related to dependencies and resource availability. For instance, consider a scenario where

a consumer operation, denoted as opcons, depends on data produced by another operation, opprod.

In this case, the scheduler must allocate a start time for opcons after the completion of opprod. This

relationship between the start time Tstart and completion time Tend of an operation can be expressed

as follows, with L representing the latency of the specific node within the loop nest:

Tend = L + Tstart (4.6)

As we described in Section 4.1, there are two type of nodes, a loop and an op, in the loop nest that

the frontend compiler generates. The latency of a op node can be defined by the following equation,

where Lcompute represents the compute latency, and Lmem ld, Lmem st represent the memory load
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and store latency respectively.

Lop = Lmem ld + Lmem st + Lcompute (4.7)

In order to form a cycle accurate schedule, each node was assigned a delay within its parent

node in the loop nest IR. It specifies the absolute time offset with respect to the start of its parent

node. There is another attribute that is specific to the loop node, the initiation interval (II), which

defines the time duration before starting of the next loop iterations. These attributes are essential

components that the scheduling algorithm utilize to orchestrate the precise timing of the operation.

Computing these II values is one of main tasks for the scheduling algorithm.

From these two attributes, we can calculate the latency of the sub-loopnest under this node. The

latency of a loop is defined as II multiplied with loop trip count minus one added with single loop

iteration latency. And the loop iteration latency is the max of delay + latency among all children

under this loop.

Lloop = II ∗ (trip cnt− 1) + Lloop iter (4.8)

Lloop iter = max
∀i∈loopchildren

(Di + Li) (4.9)

It is important to note that the child node could be either a loop or an operation. Consequently,

the term Li will be substituted with equation specified in Equation 4.7 when it refers to an op

node, or will apply the Equation 4.8 recursively if it’s a loop node. The next several sections will

provide insights into how our scheduler enhances performance by reducing total latency through

the computation of optimal delay and initiation interval (II) using software pipelining and polyhe-

dral analysis. Importantly, this is achieved while maintaining resource constraints and preserving

operation dependencies.

4.2.2 Hardware Constraints

An essential input to the scheduler, which significantly influences its schedule process, are the phys-

ical hardware constraints. These constraints are vital during the compilation process, as they guide

the scheduler in making optimized schedule decisions tailored to the specific target hardware. These

hardware specific constraints encompass a number of factors, including

• Latency of each mapped compute kernel (including both processing element and interconnect)

• Number of physical memory ports

• Load, store latency of memory and fetch width of the SRAM macro used by the memory

• Lowest initiation interval(II) of compute, memory and interconnect devices
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This information helps determine the innermost initiation interval of each operation and delay

needed before each operation’s output becomes valid. More details about how these constraints are

passed to the scheduler are given in Section 6.3. By incorporating such constraints, the unified

buffer extracted in this stage can be configured to map to the target physical hardware in a unified

process. This configuration flexibility ensures that the scheduler’s decisions align with the hardware’s

capabilities. As a result, not only does it ensure correct functionality, but it also leads to improved

performance and resource utilization.

4.2.3 Dependency Graph

During the buffer extraction stage, we generated a dependency graph to reason about the data

dependencies among operations. This graph is a directed data structure, illustrating how one op-

eration in the system relies on data produced by another operation, with the consumer pointing to

the producer. Given that tensor operation access patterns are statically analyzable, we can compute

data dependencies by intersecting the access maps of various operations that access the same data

array. For example, in the brighten-blur application, brighten operation write to the intermediate

buffer while blur operation will consume it. By applying the access relation from Equation 4.1 on

the right hand side of the access map of blur Equation 4.5, we can derive the data dependency as

follow

{Blur(x,y,t)→Brighten(x,y) } (4.10)

{Blur(x,y,t)→Brighten(x+1,y) } (4.11)

{Blur(x,y,t)→Brighten(x,y+1) } (4.12)

{Blur(x,y,t)→Brighten(x+1,y+1)} (4.13)

As a result, the graph representation of the data dependency is shown in Figure 4.4. This data

structure is useful when optimizing the schedule for hardware pipeline.

4.2.4 Variable Latency Support

Our schedules guarantee that data dependencies are not violated, assuming the input data is valid

and the output data can be stored. Although our application is statically analyzable, all hardware

accelerators have to deal with variable-latency operations like main memory accesses. To remove

these issues, almost all accelerators transfer memory data to a local buffer before starting operation.

However, if the operation is tiled, the accelerator is usually scheduled to transfer the next tile into

the buffer while it is operating on the current buffer. In these situations it is still possible for this

memory transfer to run “late” and not be ready at the start of the next tile iteration which stalls

the start of the next statically scheduled tile. To accomodate these possible stalls, the schedules
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count unstalled cycles instead of absolute clock cycles.

In our target CGRA, the interface between the accelerator and the host memory system uses

latency-insensitive channels, while the memory inside the CGRA uses (gated) cycle counters. Our

Halide program tiles the inputs to create execution blocks that our compiler statically schedules. All

statements within the tiled execution block are assigned a timestamp consistent with the global cycle

accurate schedule. This context information ensures the scheduler adds enough buffering to allow

internal compute kernel nodes to read the data from multiple predecessors simultaneously even if

they are produced at different times. Between the tiled execution, we use double-buffered ready-valid

channels. Thus, we only need to stall if the next tile has not been prefetched from DRAM into the

accelerator, or the previous tile output has not been stored in DRAM before the current tile stops

execution. For a CGRA implementation using ready-valid channels with buffet [67] style memory

blocks that contain dependency checking capabilities, our compiler outputs address patterns and

drops the schedule information for read after write dependency1. It thus lets the hardware handle

execution timing and potential port conflicts.

4.3 Loop Pipeline

Figure 4.1a gives the pseudo code for brighten-and-blur kernel. A valid but not fully-optimized

schedule is to run this loop nest sequentially, just like running it on a single threaded CPU. In

this scenario, the scheduler assigns a delay to each child node equal to the cumulative latency of

its predecessor. Simultaneously, it sets the initiation interval (II) of the loop to match the total

latency of its loop body. As an example, considering the brighten and blur workload, we cannot

start the next loop iteration t until the previous blur computation has completed. Assuming a

zero latency when computing the brighten and blur kernels (which of course is unrealistic , but

simplifies the discussion), this lead to a delay of 64× 64 + 63× 63 = 8065 cycles before starting the

next t iteration. We refer to this schedule strategy as a sequential schedule, which is the baseline

for scheduling optimizations. Later in this section we will use this to show how iterative modulo

scheduling, loop fattening, and loop perfection can be used to transform this base into an optimized

schedule.

Different from general purpose platform, domain specific accelerators have massive amount of

computation resources, and dedicated compute units can be assigned for different computation

operations. For most systems the brighten kernel and blur kernel would be implemented using

distinct hardware component. Therefore, a hardware pipeline is more efficient, which overlaps the

brighten kernel from iteration t = t0 + 1 with blur kernel from iteration t = t0.

In practice, the frontend compiler will generate a loop nest with a loop level to identify the target

pipeline interleaving granularity. By default, it will be the for loop with more than one child. To

1The read after update dependency is still kept, since buffet does not monitor these dependency in its hardware
controller. We simply count the number of update then enable the read.
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identify the tile loops that can be overlapped, the buffer extraction process walks from the root

of the program to the leaves, collecting all the encountered loop nodes until it gets the first loop

whose body is not a perfect loop (contains more than one child). These perfectly nested loops form

the outer loops of the coarse-grained pipeline. We refer to the operations inside the pipeline loop

as pipeline stages, but these stages are themselves typically an operation wrapped by a number of

loops. Therefore, we formally define the pipeline stage as the block of operations wrapped by the

subloops between the coarse-grained pipeline loop and the operation statement.

For instance, in the brighten-blur pipeline pseudo code shown in Figure 4.1a, the outer coarse-

grained loop, the for loop on line 2, is pipelined and it contains two pipeline stages, brighten

and blur sub-loops respectively. Since the brighten kernel produce the input for blur kernel, the

dependency graph has two nodes with brighten kernel feed into the blur kernel as is illustrated in

Figure 4.4. A more complex example is shown in Figure 4.3. This figure shows the loop structure in

a multi-channel 3x3 convolution loop nest in used in many DNNs. In this example, the pipeline loop

encompasses six stages, including initiation of the output value, loading of input from the global

buffer (GLB) into memory, loading of weights from the GLB into memory, two parallel convolution

computations and transfer of the output value stored in local memory to the GLB, which is shown

in the dependency graph in Figure 4.10.

4.3.1 Iterative Modulo Scheduling

To create pipelined hardware schedules from this information, we extended iterative modulo schedul-

ing [72], a compilation technique to enable software pipelining. It constructs a static schedule for all

operations under a loop iteration so that the same schedule can be repeated with respect to resource

constraints and data dependence. The constant interval between the start of successive iterations

is the initiation interval (II), which is one of the parameters needed to compute the cycle accurate

schedule.

In order to model the resource utilization within this static schedule, a resource reservation

table is built to record that a specific resource is used by particular operation at every timestamp.

Normally the modulo scheduling target operations under single loop iteration. In our cases, we are

dealing with operations wrapped by multi-dimensional loop nests, which is defined as pipeline stages.

Therefore, we make the assumption that once the resource is assigned to that operation, it

will be reserved for the entire duration of execution period. To keep track of the reservation

duration, we maintain a column in the table that records the latency after the initiation of that

particular operation.

Similar to the resource reservation table for a CPU which contains of ALU and registers, our re-

source modulo table for hardware accelerators contains compute elements and storage elements.

Figure 4.5 shows the resource reservation table for brighten and blur pipeline shown in Figure 4.1a.
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1 //Outer tiling loop

2 for t in [0:16]

3 //Initial output bias from GLB to CGRA Memory

4 for y in [0:28]:

5 for x in [0:28]:

6 for k in [0:2]:

7 output_mem(k, x, y) = init_bias_GLB(k, x, y, t);

8

9 //load input from GLB to CGRA Memory

10 for y in [0:30]:

11 for x in [0:30]:

12 for c in [0:4]:

13 input_mem(c, x, y) = input_glb(c, x, y, t);

14

15 //load weight from GLB to CGRA Memory

16 for ky in [0:3]:

17 for kx in [0:3]:

18 for k in [0:2]:

19 for c in [0:4]:

20 weight_mem(c, k, kx, ky) = weight_glb(c, k, kx, ky, t);

21

22 //3x3 Conv with 4 input channels and 2 output channels

23 for ky in [0:3]:

24 for kx in [0:3]:

25 for y in [0:28]:

26 for x in [0:28]:

27 output_mem(0, x, y) =

28 CONV_0(input_mem(0:4,x,y), weight_mem(0:4, 0, kx, ky), output_mem(0, x, y));

29 output_mem(1, x, y) =

30 CONV_1(input_mem(0:4,x,y), weight_mem(0:4, 1, kx, ky), output_mem(1, x, y);

31

32 //drain output from CGRA Memory to GLB

33 for y in [0:28]:

34 for x in [0:28]:

35 for k in [0:2]:

36 output_glb(k, x, y, t) = output_mem(k, x, y);

Figure 4.3: Loop nest for the multi channel 3x3 convolution DNN layer. It has 4 input channels and
2 output channels. The computation is fully unrolled (parallel) along the input channel dimension
c and the output channel dimension k. The 3x3 kernel dimension is calculated sequentially.
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Figure 4.4: Dependency graph of brighten and blur pipeline.
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Figure 4.5: Resource Reservation Table for Brighten and Blur Pipeline.

This application has three unified buffers and two compute units. Accounting for the varying num-

ber of read and write ports present in memory devices, the resource reservation table distinguish

read operations from write operations. Figure 4.5’s, resource reservation table assumes that the

underlying unified buffers have a single read port and a single write port. Thus we have one column

for both read and write operation in each unified buffer. However, it’s important to note that the

blur operation, for instance, reads four pixels to produce a result, which imposes a higher memory

port resource requirement to maintain that bandwidth. Given our reconfigurable hardware backend,

we have the flexibility to partition data into multiple physical memories to increase bandwidth.

Therefore, even for memory operations with high bandwidth requirements, a single entry in the

resource reservation table is taken. Further details regarding memory bandwidth requirements will

be discussed in the next section.

After constructing the resource reservation table, we will start scheduling for a specific hardware

accelerator architecture model. We assign a timestamp to each operation’s issuing and create a

schedule reservation table, which records the usage of a particular resource by an operation at a

specific time. This new data structure is distinct from the resource reservation table, which only

captures the occupied duration of each resource. The schedule reservation table, on the other hand,

clearly state the start and end time of resource reservation for all operations. The scheduling is

considered as valid only if there are no resource conflicts. To ensure this, the schedule reservation
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1568

Figure 4.6: Resource Reservation Table for Multi-Channel Convolution Layer.

table is used to check for overlapping resource usage between different operations. If there are no

overlapping time period where the same resource is reserved by multiple operations, the scheduling

is deemed legal and can proceed. Because this scheduled loop nest will be re-executed with period of

initiation interval (II) of the loops outside of the pipelining, if scheduling the operation at a specific

timestamp t involves the resource R, then the entry (t mod II,R) of the table will be marked as

occupied. As a result, the schedule reservation table only need to record the period of the II. Such

scheduling reservation table is called modulo reservation table(MRT)[27].

To find the II of this outer loop, we will create an empty modulo reservation table with the

minimum possible II. The lower bound of II will equal to the maximum occupied duration among all

resources. In order to get the lower bound of II, we go over each column of the resource reservation

table and calculate the total latency of all operations that use this resource. For instance, in the

Brighten Blur pipeline shown in Figure 4.1a, according to the hardware constraints, we set the

innermost loop II = 1, and the corresponding total latency of brighten kernel is

Loop boundy ∗ (IIx ∗ Loop boundx + Dx) + Dy = 64× (64× 1 + 0) + 0 = 4096

cycles and the latency of blur kernel is

Loop boundy ∗ (IIx ∗ Loop boundx + Dx) + Dy = 63× (63× 1 + 0) + 0 = 3969

cycles respectively. The blur kernel takes shorter period of time because the halo of the 2x2 convolu-

tion window. Then we can get the minimum II of the the pipeline loop is max(4096, 3969) = 4096.

Next we perform a topological sort of all the operations in the dependency graph, and schedule
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Figure 4.7: Schedule Reservation Table for Brighten and Blur Pipeline.

the operations at the earliest possible time. Once we have seen a resource conflict, we abort the

current scheduling process and increase the II. For the brighten and blur pipeline example, we can

sequentially schedule the brighten and blur kernel from the same iteration in loop t. The schedule

reservation table is illustrated in Figure 4.7 Notice that the II of the t loop in Figure 4.1a is 4096,

so the brighten computation for the next tile of input data will start instantly as we start the blur

kernel from the previous iteration. The modulo reservation table in Figure 4.8 captures the re-

source occupation in steady state of the pipeline, which is much more succinct. Upon the successful

scheduling of every pipeline stage without any resource conflict, the modulo schedule is completed

and the cycle accurate schedule for each operation is generated. The schedule is then distributed

to the ports of each unified buffer, allowing for the identification of the execution timing for each

memory operation. The cycle accurate schedule we get is

Brighten(x, y)→ [4096t + 64y + x]

Blur(x, y)→ [4096 + 4096t + 63y + x]

The Brighten operation writes the unified buffer brighten, and the Blur operation reads from the
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Figure 4.8: Modulo Reservation Table for Brighten and Blur Pipeline.

same buffer. Thus the schedule of Brighten operation is used to set the timing of the write port

while the schedule of Blur operation sets the timing of all four read ports of unified buffer brighten,

as is depicted in Figure 4.9.

4.3.2 Memory Bandwidth Requirement

To enable parallel computation, frequently more than one entry in the data array or tensor are

accessed simultaneously. Thus the available memory bandwidth significantly impacts the latency

of each operation that is scheduled. In our scheduler, we assume that our abstract unified buffers

possess sufficient bandwidth to accommodate high-throughput data reads. The problem of supplying

the needed bandwidth falls to the buffer mapping stage of the compiler pipeline. If the hardware

units don’t have sufficient bandwidth, it uses memory banking Section 5.2 to increase the effective

storage element bandwidth.

These high bandwidth requests can originate from the same pipeline stages or from those

that are isomorphic in the dependency graph. The first scenario is relatively straightforward to

understand. For instance, considering the Blur kernel in Figure 4.5 and the memory implemented

with dual port SRAM macro, which load four pixels from the brighten buffer to create the blurred

output. Without the above assumption, data loads sequentially from the single memory read port.

However, leveraging the flexible interconnect and abundant distributed on-chip buffers on the CGRA,

data could be duplicated into four different memory banks to support concurrent read from the

memory. Often, other optimizations which are described in Section 5.1 greatly reduce the number

memory banks required. The scheduler is aware of these low level architecture optimizations, so

that this high bandwidth memory operation only occupies a single resource entry in the resource

reservation table shown in Figure 4.5.

A more complex example involve parallel memory access from multiple operations as occurs in

the DNN convolution example shown in Figure 4.3. In particular, as depicted in Figure 4.6, the
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Unified Buffer Abstraction 
After Scheduling

Iteration Domain

Schedule
Access Map

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦
𝑥, 𝑦, 𝑡 → [4096𝑡 + 64𝑦 + 𝑥]

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦
𝑥, 𝑦, 𝑡 → [4096(𝑡 + 1) + 64𝑦 + 𝑥]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥 + 1, 𝑦
𝑥, 𝑦, 𝑡 → [4096(𝑡 + 1) + 64𝑦 + 𝑥]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦 + 1
𝑥, 𝑦, 𝑡 → [4096(𝑡 + 1) + 64𝑦 + 𝑥]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦, 𝑡 → [4096(𝑡 + 1) + 64𝑦 + 𝑥]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

Figure 4.9: The unified buffer brighten with schedule.

resource reservation table indicate that both pipeline stage Conv0 and Conv1 reserve both the read

and write port of unified buffer output for accumulating the partial result. A naive approach would

not allow the concurrent issuance of these two pipeline stages. The resulting schedule, is shown

in Figure 4.11, forces the Conv1 stage to be scheduled before Conv2.This schedule results in the

minimum II equals to the total latency of two convolution stages and the draining of the output

data.

However, as shown in Figure 4.10, which is the dependency graph of CNN pipeline after topo-

logical sort, pipeline stage CONV0 and CONV1 don’t consume or produce each other’s outputs. As

a result, those statements can be schedule at the same timestamp as long as we can create mem-

ory with higher bandwidth2 to service these kernel in parallel. However, reading and writing from

non-isomorphic pipeline stages will require extra bandwidth that cannot be addressed by banking.

For instance, the output memory must have two different writing phases, InitO phase is to initialize

the output value; the CONV0, CONV1 phase will write the updated output values into the same

memory. These two operations require two unique write port for that storage element. As a result,

after taking the memory banking into consideration, the schedule reservation table in Figure 4.12

indicates the optimized minimum II equals to the total latency of one convolution computation and

the output data draining. Notice that the loading and draining of output could be further overlapped

if we use a memory have two input ports and two output ports memory.

2Known as memory banking in computer architecture
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Init O Load wLoad I

Conv_0

Drain O

Conv_1

Figure 4.10: Topological Sort Result of the Convolution Layer Loop Nest in Figure 4.3.

outputinput weight

Rd.   Wr Rd.   Wr Rd.   Wr

Conv_0

Memory Compute

Load w

Conv0

Init O

Drain O

Load I

Conv1

Conv_1

0 0 0 0 0

1 1 1 1 1

Min(ΙΙ)

Figure 4.11: Schedule Reservation Table for Multi-Channel Convolution Layer.

4.3.3 Resource Sharing

During the procedure of loop pipelining, there is a significant challenge to balance the consumption of

compute resource while optimizing for both latency and throughput. To achieve maximum through-

put, it seems logical to allocate dedicate hardware for each operation in the loop nest. However,

this approach can lead to situations where the design exceeds the available computation resources,

or where certain hardware is under-utilized due to imbalances in workload across different pipeline

stages. Thus, our compiler provides the user the ability to indicate when hardware resources should

be shared, which can help reduce the overall hardware required for a pipeline and, in some cases,

improve hardware utilization.

The loop nest in Figure 4.13 illustrates a simple gaussian pyramid application. These multi-scale

data structures are often used in image processing applications. The pipeline starts with loading the
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outputinput weight

Rd.   Wr Rd.   Wr Rd.   Wr

Conv_0

Memory Compute

Conv_1

0 0 0 0 01 1 1 1 1Min(ΙΙ)

Figure 4.12: Schedule Reservation Table for Multi-Channel Convolution Layer with memory band-
width optimization.

input onto CGRA memory tile, followed by three 2x2 average kernels that perform down sampling.

Notably, the latency of each kernel are decreasing four times as we progress through the pipeline, as

the image being down sampled by 2 both horizontally and vertically. Assigning dedicated compute

hardware for each pyramid kernel, as is shown in Figure 4.14, results in a modulo schedule which

indicates that the overall pipeline latency is dominate by data transfer, and the pyramid computation

hardware is under utilized. In order to improve the hardware utilization and minimize the resource

consumption, the three consecutive Gaussian pyramid kernel can share the same hardware, given

that they employ the same arithmetic operations. As depicted in Figure 4.15, the modulo schedule

after resource sharing remains unchanged in terms of the latency and throughput, while reducing

the number of pyramid compute unit required from three, Figure 4.14, to one.

4.3.4 Optimizations: Loop Perfection and Flatten

Facilitating effective loop pipelining is critical while constructing a schedule using an HLS-style

scheduler. A conventional HLS loop scheduler uses for loops as boundaries of pipelining[16]. Nested

and imperfect loops contain multiple such boundaries, giving rise to the occurrence of redundant

pipeline flush stages at the end of each loop [89, 70].

The same rationale applies to our coarse-grained pipeline. To mitigate the additional latency

introduced by pipeline flushes, the buffer extraction stage incorporates loop perfection and loop

flattening before applying the iterative modulo schedule, as described in the previous section. Loop

perfection condenses all coarse pipeline stages within the innermost for loop with if guards. Mean-

while loop flattening consolidates all loops above the coarse-grained pipeline into one single, merged

loop. For instance, as is depicted in Figure 4.16a, there is a pipeline flush overhead with each itera-

tion of outer loop x. This example shows the simplest example, where each coarse grained pipeline

stage is a single operation, in practice, this could be more complex, involving multi-level nested
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1 //Outer tiling loop

2 for t in [0:16]

3 //load input

4 for y in [0:64]:

5 for x in [0:64]:

6 input(x, y) = GLB_I(x,y)

7

8 //pyramid 1

9 for y in [0:64]:

10 for x in [0:64]:

11 p1(x, y) = [input(2x,2y) + input(2x+1, 2y)

12 + input(2x, 2y+1) + input(2x+1, 2y+1)]/4

13

14 //pyramid 2

15 for y in [0:32]:

16 for x in [0:32]:

17 p2(x, y) = [p1(2x, 2y) + p1(2x+1, 2y)

18 + p1(2x, 2y+1) + p2(2x+1, 2y+1) ]/4

19

20 //pyramid 3

21 for y in [0:16]:

22 for x in [0:16]:

23 p3(x, y) = [p2(2x, 2y) + p2(2x+1, 2y)

24 + p2(2x, 2y+1) + p2(2x+1, 2y+1) ]/4

Figure 4.13: Loop nest for 3 Level Gaussian Pyramid

P2input P1 P3

Compute

In

P1

Cycle 0

4096

P2 P3

P2input P1 P3

Compute

In

P1
Cycle 0

4096

P2 P3

Figure 4.14: Modulo Reservation Table for Gaussian Pyramid Application in Figure 4.13. The
Memory Part is left out. The left diagram depicts the schedule reservation table, while the right
diagram depict the modulo reservation table with the coarse grained II = 4096.
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input P_shared

Compute

In

P1
Cycle 0

4096

P2P3

Figure 4.15: Modulo Reservation Table for Gaussian Pyramid Application with all pyramid kernels
shared the same compute kernel.

1 for x in [0:32]:

2 out[x] = 0;

3 for dx in [0:5]:

4 out[x] += filter[dx] * mem[x+dx];

5 DRAM.store(out, x);

(a) Original loop nest before loop perfection.

1 for x in [0:32]:

2 for dx in [0:5]:

3 if (dx == 0)

4 out[x] = 0;

5 out[x] += filter[dx] * mem[x+dx];

6 if (dx == 4)

7 DRAM.store(out, x);

(b) Loop nest after loop perfection.

1 for x_flatten in [0:160]:

2

3 //Reconstruct the original loop iteratiors

4 x = x_flatten / 5;

5 dx = x_flatten % 5;

6

7 //Computation logic

8 if (dx == 0)

9 out[x] = 0;

10 out[x] += filter[dx] * mem[x+dx];

11 if (dx == 4)

12 DRAM.store(out, x);

(c) Loop nest after loop flatten.

Figure 4.16: Example for a 1D convolution loop nest applying HLS scheduling optimizations, in-
cluding loop perfection and loop flatten.
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Algorithm 1: Loop Pipeline Algorithm

1 Function LoopPipeline(prg, cst):
2 prg ← RunOpt(prg, {LoopPerfection, LoopFlatten})
3 (V,E)← BuildDependencyGraph(prg)
4 rrt← BuildResourceReservationTable(prg, cst)
5 ▷ rrt records all resource subscription and correponding latency
6 II ← GetPipelineII(rrt)
7 mrt← InitModuloReservationTable(rrt, II)
8 ▷ mrt records the schedule information
9 for kernel ∈ TopoSort(V,E) do

10 est← FindEarliestStart(kernel, (V,E),mrt.rrt)
11 ModuloIterativeSchedule(kernel, est,mrt, rrt)

12 end
13 return CalculateSched(mrt)
14 ▷ return the cycle accurate schedule from Modulo Reservation Table

loop. To establish a fully pipelined loop with a single level, both the initialization and the DRAM

store operation was pushed into the inner most dx loop with an if guard as shown in Figure 4.16b.

Finally, Figure 4.16c demonstrates the loop structure after loop flattening, where all operations are

emcompassed within a single-level loop. It is important to mention that the original loop itera-

tions are reconstructed using floor-divide and modulo operators. By combining loop perfection and

loop flattening, our scheduler can generate a fully pipelined schedule with minimum pipeline flush

overhead.

4.3.5 Putting it All Together

The Loop Pipeline Algorithm, illustrated in Algorithm 1, encapsulates a function that optimizes

schedule, which takes the loop-level intermediate representations (prg) and hardware constraints

(cst). This algorithm plays a pivotal role in reducing latency and improving resource utilization for

scheduling an application on push memory backend.

Initially, the loop perfection and flatten optimization, described in Section 4.3.4 is applied on

the loopnest’s intermediate representation. Subsequently, a dependency graph (V,E), introduced

in Section 4.2.3, is constructed based on the application’s producer-consumer relations. Along with

hardware constraint information, the data dependency graph is further employed to generate a

resource reservation table (rrt). This table records resource requirements and corresponding laten-

cies based on the hardware constraints, forming a critical auxiliary data structure in the following

scheduling phases. A key step involves the determination of the coarse grained loop initiation inter-

val (II) through analysis of the resource reservation table (rrt), followed by the initialization of the

modulo reservation table (mrt). This table captures essential scheduling information, orchestrating

the subsequent iterative modulo scheduling procedures.
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The scheduling phase iterates through the coarse grained pipeline stages (kernel) of the program

in topologically sorted order. For each stage, the algorithm identifies the earliest start time (est)

based on dependencies and resource availability. Leveraging this information, the Modulo Iterative

Scheduling determines the delay of each kernel, introduced in the Section 4.3.1, utilizing the estab-

lished schedules in the modulo reservation table (mrt) and resource reservation table (rrt). Finally

the schedule information in modulo reservation table(mrt) generates a cycle-accurate schedule via

the CalculateSched() function, providing an optimized schedule for the application (prg).

Overall, the Loop Pipeline Algorithm serves as an important component in the unified buffer

extraction process, which takes hardware constraints into consideration. It utilizes iterative mod-

ulo scheduling techniques, creating schedule which optimizes resource utilization in push memory

accelerators.

4.4 Loop Fusion

While loop pipeline algorithm reduces the interval between consecutive loop iterations, it does not

change the relative order between operations. To further reduce the computation latency and the

intermediate memory capacity, loop fusion can be applied between producer consumer loop nests,

which essentially brings the consumer closer to the producer in the same iteration.

Leveraging previous work proposed by Huff et al.[38], the fusion procedure combines loop nests

in an application into a single loop nest using a static data flow style constraint problem. It sets

the relative II (IIr) and delay of each operation to minimize dependence distances while ensuring

uniformity. To be specific, a global schedule is constructed with the constraint that the start of a

statement must happen after the latest end time among all of its producer statements. The end

time of a statement is calculated using the start time, the latency of memory loads, the latency of

memory store, and the latency of its computation. This is demonstrated in the following equations,

where the start and end time of a operation is defined in Equation 4.6 and Equation 4.7:

Start(stmt) > End(prod) ∀prod ∈ stmt′s producers (4.14)

The fusion is done incrementally, starting from the outermost loop level to an inner loop level

specified by the user, which is called loop fusion level. The loop fusion level determines the granularity

of interleaving the pipeline stages. Once fusion is finished, we use the loop pipeline algorithm

described previously to form a cycle-accurate schedule for the inner imperfect loop nest, which

sets the II and delay of all loops and operations under fused loop level. Since the fused loop nest is

pipelined at the imperfect loop level, a lower level means finer interleaving granularity, which reduces

the pipeline warm up latency as well as reduce the intermediate storage requirements. Therefore,

the default fuse loop level is set to the innermost loop.

For the brighten and blur example we have been using, the original loop nest without fusion
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optimization, shown in Figure 4.17a, will start the blur kernel after the 64× 64 block is brightened,

requiring a brighten buffer size of 4096 entries, and a latency of 4096 to obtain the first blurred pixel

out of this image pipeline. By setting fusion at the y loop nest, shown in the Figure 4.17b, the

polyhedral fusion analysis will set delay = 1 and IIr = 1 for the y loop in blur kernel. Therefore, the

blur kernel can be initiated right after the second row of the brighten kernel is processed, reducing the

latency to only 128 cycles. Similarly, only an intermediate buffer size of 128 is required. Furthermore,

if the loop is fused at the innermost level x, the polyhedral analysis will set the delay = 1 and IIr = 1

for the x loop, resulting in the fused loop shown in Figure 4.17c. This loop allows the blur kernel

start executed as soon as the computation of blur kernel on the second pixel of the second row,

which further reduces the latency to 65 cycles and require only a buffer with 1 row of size 64 and one

pixel. The updated schedule will assigned to the corresponding port in unified buffer, as depicted in

Figure 4.18.

Regarding the initiation interval (II) and delay for outer loops above the fusion level, we will

follow a standard High-level Synthesis (HLS) loop scheduler [93]. This HLS scheduler implements a

simple rule that sets the II equal to the total latency of one inner loop iteration, thereby propagating

the II to the outer level loop. This approach ensures that the outer loop executes with the same

cadence of the fused inner loop, and avoids any unnecessary pipeline stalls or bubbles if the outer

loop’s II was set too high. By adhering to this standard HLS loop scheduler, we can optimize the

performance of the fused loop nest and ensure efficient execution across all loop levels.

4.4.1 Loop Alignment

In the previous section, we mentioned that loop fusion algorithm can set the relative II and delay

and bring the consumer to producer as close as possible. However, loop fusion will not be legal

when it changes the execution order of dependent operations[17]. Moreover, loop fusion also can

greatly increase the complexity of the addressing logic and schedule leading to increased hardware

complexity and degraded performance. For the resulting fused loop to yield a more efficient hardware

solution the producer and consumer should access the data in the same order and the loops to be

fused should have the compatible iteration space. Thus, the decision to apply loop fusion or not

strongly depends on the dependency between producer and consumer operations. This dependency

determines the level at which the producer loop should fuse with the consumer loop. We use the

following algorithm shown in Algorithm 2 to determine whether to fuse loops:
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1 //Outer tiling loop

2 for t in [0:16]

3 //Brighten

4 for y in [0:64]:

5 for x in [0:64]:

6 brighten(x, y) = 2*input(x,y)

7

8 //Blur

9 for y in [0:63]:

10 for x in [0:63]:

11 blur(x, y) = [brighten(x, y)

12 + brighten(x+1, y)

13 + brighten(x , y+1)

14 + brighten(x+1, y+1) ]/4

(a) Loop nest for brighten blur pipeline

1 //Outer tiling loop after fusion

2 for t in [0:16]:

3 for y in [0:64]:

4 //Brighten

5 for x in [0:64]:

6 brighten(x, y) = input(x,y)

7

8 //Blur

9 if (y>=1)

10 for x in [0:63]:

11 blur(x, y-1) = [brighten(x, y-1)

12 + brighten(x+1 , y-1)

13 + brighten(x, y)

14 + brighten(x+1 , y) ]/4

(b) Loop nest for brighten blur pipeline after loop fu-
sion at the y loop nest.

1 //Outer tiling loop after fusion

2 for t in [0:16]:

3 for y in [0:64]:

4 for x in [0:64]:

5

6 //Brighten

7 brighten(x, y) = input(x,y)

8

9 //Blur

10 if (y >=1 && x>=1)

11 blur(x-1, y-1) = [brighten(x-1, y-1)

12 + brighten(x , y-1)

13 + brighten(x-1, y)

14 + brighten(x , y) ]/4

(c) Loop nest for brighten blur pipeline after loop fu-
sion at the x loop nest.

Figure 4.17: Loop nest before and after loop fusion optimization. The interleaving of brighten kernel
and blur kernel changes. We assume buffers for input, brighten and blur are allocated at root
level and data could be reused between iterations.
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Unified Buffer Abstraction 
After Loop Fusion

Iteration Domain

Schedule
Access Map

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦
𝑥, 𝑦, 𝑡 → [4096𝑡 + 64𝑦 + 𝑥]

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦
𝑥, 𝑦, 𝑡 → [4096𝑡 + 64(𝑦 + 1) + (𝑥 + 1)]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥 + 1, 𝑦
𝑥, 𝑦, 𝑡 → [4096𝑡 + 64(𝑦 + 1) + (𝑥 + 1)]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥, 𝑦 + 1
𝑥, 𝑦, 𝑡 → [4096𝑡 + 64(𝑦 + 1) + (𝑥 + 1)]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦, 𝑡 → 𝑏𝑟𝑖𝑔ℎ𝑡𝑒𝑛 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦, 𝑡 → [4096𝑡 + 64(𝑦 + 1) + (𝑥 + 1)]

𝑥, 𝑦, 𝑡 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

Figure 4.18: The unified buffer brighten after loop fusion.

Algorithm 2: Loop Alignment Algorithm

1 raw deps = ExtractReadAfterWriteDependencyMap();

2 loop map = {};
3 for (prod, cons) ∈ raw deps do

4 for lpp ∈ prod.loopnest() do

5 lpc ← FindBestMatchingConsumerDimension(lpp, cons);

6 loop map[lpp] = lpc;

7 if InjectiveMapInOrder(loop map) then

8 PadLoopLevel(prod, cons);

9 LoopFusion(prod, cons);

10 end

11 end

12 end

1. Extract the read-after-write dependency map from the producer iteration domain to consumers

for all relevant pairs of loops in the application’s loop nest.

2. For each pair of producer and consumer, iterate through all the producer iteration dimensions

and identify the best matching consumer iteration dimension, based on the tripcount and

stride in access pattern.

3. Create an injective map that associates the producer’s iteration level with the corresponding

consumer’s iteration level. If the mapping’s range preserves the same loop order as its domain,
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indicating alignment between the iterations of these producer-consumer pairs, And it means

that these two loop can be fused.

4. If one loop level does not match any level of the other loop nest, pad the corresponding loop

level in the other loop nest with a single iteration loop so that the two loop nests have the

same depth and can be fused by loop fusion algorithm introduced in [38].

Figure 4.19 shows several examples to illustrate how the loop alignment finds corresponding

consumer and producer loop iterators. The round nodes represent loop node in the loop nest abstract

syntax tree, while the dash arrows indicate the corresponding relation between consumer producer

loop nodes. Figure 4.19a shows the simplest example. Both the producer and consumer operations

access the data in unified buffer buf in the same row major order. The operation dependency map

has two constraints yc = yp−1 and xc = xp−1, which identifies the corresponding consumer iterator

for producer iterator yp and xp are yc and xc, respectively. If we alter the data access pattern in

consumer loop from row major order to column major order, which is shown in Figure 4.19b, the

data dependency map constraints will change into yc = xp − 1 and xc = yp − 1, accordingly. This

constraints indicates that iterator yc consumes data along the direction where iterator xp produced.

Therefore the loop alignment result is flipped. Inner consumer loop xc matches with the outer

producer loop yp and loop yc matches with producer loop xp. Noticed that the range of the map

between producer loop iterators and consumer loop iterators is reordered from their original loop

order. This loop nest is difficult to fuse and our algorithm won’t fuse these loops.

Conventionally, loop fusion algorithms require loops to be fused with the same dimension in

their iteration domains. However, in practical scenarios, consumer loops often possess a higher

dimensionality compared to producer loops. This is especially common in image processing and

machine learning applications where data reuse plays a significant role. Our loop alignment algorithm

is capable of accommodating loops with different iteration space dimensions. To make the iteration

space compatible, a dummy iteration dimension will be padded. Figure 4.19c depicted a loop nest

that reuse data in buf for multiple output channels in dimension c. According to the dependency

map, the channel dimension c is irrelevant to the producer loop iterator xp. We pad the producer

loop with a loop with single iteration on top of the loop xp so that it can pair with the consumer

loop iterator c in the fused loop nest.

In some access patterns, there will be multiple loop iterators in the consumer loop to access

the same dimension that the producer iterator writes to. For instance, Figure 4.19d illustrates

a sliding window access pattern with stride two on the 1D data sequence. The dependency map

constraint 2× xc + r = xp specifies that both the iterator xc and r are dependent on the producer

loop iterator xp. In order to determine which consumer loop level xp should be fused with, we

utilized a straightforward rule that the consumer loop having the most similar data space range to

the producer loop will be selected for the fusion. In Figure 4.19d, the data space range of xc loop

is 2× 31 = 62, whereas the range of loop r is only 3. Thus, we pair the producer loop, xp, with the
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for (y_p, 0, 64)
for (x_p, 0, 64)
op1: write buf[y_p, x_p]

for (y_c, 0, 63)
for (x_c, 0, 63)
op2: read buf[y_c+1, x_c+1]

Access map:
op1[y_p, x_p] -> buf[y_p, x_p]
op2[y_c, x_c] -> buf[y_c+1, x_c+c]

Dependency map:
op1[y_p, x_p] -> op2[y_c, x_c]: y_c=y_p-1, x_c=x_p-1

y_p

x_p

y_c

x_c

(a) loop align 0

for (y_p, 0, 64)
for (x_p, 0, 64)
op1: write buf[y_p, x_p]

for (y_c, 0, 63)
for (x_c, 0, 63)
op2: read buf[x_c+1, y_c+1]

Access map:
op1[y_p, x_p] -> buf[y_p, x_p]
op2[y_c, x_c] -> buf[x_c+1, y_c+c]

Dependency map:
op1[y_p, x_p] -> op2[y_c, x_c]: y_c=x_p-1, x_c=y_p-1

y_p

x_p

y_c

x_c

(b) Loop align 1.

for (x_p, 0, 64) 
op1: write buf[x_p]

for (c, 0, 8)
for (x_c, 0, 64)
op2: read buf[x_c]

Access map:
op1[x_p] -> buf[x_p]
op2[c, x_c] -> buf[x_c]

Dependency map:
op1[x_p] -> op2[c, x_c]: x_c = x_p

x_p c

x_c

pad

(c) Loop align 2.

for (x_p, 0, 64) 
op1: write buf[x_p]

for (x_c, 0, 31)
for (r, 0, 3)
op2: read buf[2*x_c + r]

Access map:
op1[x_p] -> buf[x_p]
op2[x_c, r] -> buf[2*x_c + r]

Dependency map:
op1[x_p] -> op2[x_c, r]: 2*x_c + r = x_p

x_p x_c

rpad

(d) Loop align 3.

Figure 4.19: Loop alignment examples.
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For (t, 0, 64)
For (x, 0, 64) <-Fusion_level()
d0(x) = max(in(2x,t), in(2x+1,t));

For (x, 0, 32) <-Fusion_level()
d1(x) = max(d0(2x), d0(2x+1));

For (x, 0, 16) <-Fusion_level()
d2(x) = max(d1(2x), d0(2x+1));

For (x, 0, 8) <-Fusion_level()
out(x) = max(d2(2x), d2(2x+1));

For (t, 0, 64)
For (x, 0, 64) <-Fusion_level()
d0(x) = max(in(2x), in(2x+1));

if (x%2 == 0)
d1(x) = max(d0(2x), do(2x+1));

if (x%4 == 0)
d2(x) = max(d1(2x), d1(2x+1));

if (x%8 == 0)
out(x) = max(d2(2x), d2(2x+1));

For (t, 0, 64)
For (xo, 0, 8) <-Fusion_level()
For (xi, 0, 8) <-strip-mined loop
d0(8xo+xi) = max(…);

For (xo, 0, 8)
For (xi, 0, 4) 
d1(4xo+xi) = max(…);

For (xo, 0, 8)
For (xi, 0, 2) 
d2(2ox+xi) = max(…);

For (x, 0, 8)
out(x) = max(…);

For (t, 0, 64)
For (xo, 0, 8) <-Fusion_level()
For (xi, 0, 8) 
d0(8xo+xi) = max(…);

For (xi, 0, 4) 
d1(4xo+xi) = max(…);

For (xi, 0, 2) 
d2(2ox+xi) = max(…);

out(x) = max(…);

Fuse 
Directly

Loop Strip-mining
Rate Matching

Fuse

Relative 
Rate q:

1

2

4

8

Strip-mining 
Factor

8

4

2

1

Figure 4.20: During loop fusion, the scheduling algorithm will check the relative rate of each sub-
kernel to be fused, if they share the same hardware resource, it will apply an automatic loop strip-
mining algorithm to match the data processing rate in every coarse grain iteration, removing the
pipeline stall and improving the computation utilization.

consumer loop, xc, and insert an additional loop iterator into the producer loop’s innermost level to

align it with the window dimension r for fusion.

4.4.2 Optimization: Loop Stripmining to Increase Compute Utilization

After fusion is done, the operation subloops will be placed under the target fused level. It worth

noting that not all the compute units will be executed in every outer loop, due to the data dependency

and different data consuming rate among various pipeline stages. It’s common that kernels will be

guarded by an if condition after fusion as is shown in Figure 4.17. That will result in a low compute

utilization ratio. For instance, consider an application depicted in Figure 4.20 which contains three

consecutive stride-two max pooling kernels along a 1D data sequence. If the loops are fused at the

innermost level, the resulting pipeline will cause the later stages in the pipeline to fire less frequently.
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While this schedule is acceptable if each kernel is associated with a dedicated compute hardware,

as the pipeline throughput is bounded by the hardware used most frequently, the first max pooling

kernel, a more efficient hardware mapping strategy is to share the hardware between all compute

kernel. This approach can significantly reduce the hardware resource consumption as discussed in

Section 4.3.3. However, if the operations share the hardware resource, this fused schedule will cause

the hardware unit to stall, since the second, third and last stage will execute only once for every two

four, and eight time the first down sample kernel proceed, respectively.

However the loop fusion algorithm can analyze data dependency and determine the relative ini-

tiation interval of each pipeline stage. We leverage this relative II information to strip-mine the

fusing loop and ensure that the data processing rate matches in every coarse-grained iteration. This

optimization can eliminate the pipeline stalls and enhance the hardware utilization when multiple

kernels share the same hardware resource. Specifically, the loop fusion process will produce a initia-

tion interval IIi for each loop i under the fusion level. This information indicates that the consumer

loop c will increment
IIp
IIc

(4.15)

steps for every iteration of producer loop p. To achieve a balanced data processing rate across all

the pipeline stages, we can increase workload for a loop l by factor of

∀i∈subloopLCM(IIi)

IIl
(4.16)

where ∀i∈subloopLCM(IIi) represents the least common multiple of all the kernel’s relative rate.

This factor is the bound of the inner level of the strip-mining. For example, in the cases shown in

Figure 4.20, where the relative rate of different down sample kernels are 1, 2, 4, 8. We can strip-mine

the fusion level by 8, 4, 2, 1 respectively. Finally, we obtain a pipelined loop without stalls after

fusion, which is demonstrated in the bottom right corner of the Figure 4.20.

4.5 Summary

The unified buffer abstraction decoupled the frontend of the compiler, responsible for analyzing

data movement, dependency, and optimizing schedules, from the backend, which is specific to hard-

ware implementation. With this clean separation, the compiler only needs a smaller number of

parameters, which represent the latency of the compute and memory units, to schedule the compute

operations. This separation also streamlines the compilation process and facilitates the optimization

of cycle-accurate schedules. These schedules, derived from high-level scheduling primitives and com-

pact physical characteristics of the memory implementation, provide valuable insights and accurate

latency estimations. The next chapter dives into the buffer mapping stage, where we focus on gener-

ating valid hardware mappings that align with the schedules derived during unified buffer extraction.
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It will also explore how the unified buffer abstraction enables energy and area optimizations of the

underlying hardware.



Chapter 5

Buffer Mapping

With scheduling finished, all operations have been assigned to non-stalled clock cycles and the

bandwidth of each memory is known. The next task of the compiler is to map the abstract unified

buffers into implementations built out of the available physical primitives. This mapping produces

the configuration bitstream for each physical unified buffer used in the design. In principle, the

unified buffers can be mapped directly to physical unified buffers on the target accelerator. In

practice, however, this is rarely possible for the following reasons:

• Limited buffer bandwidth. The physical unified buffers on the accelerator may not have

sufficient bandwidth. For example, the target CGRA [8] only has a single four-word-wide

SRAM in each physical unified buffer, as described in Section 6.1.3, meaning that each buffer

can only support up to four memory operations per cycle. However, the unified buffer from

our brighten blur example needs to perform five memory operations per cycle, and many access

pattern in common image processing applications need even larger bandwidth.

• High capacity. The cycle-accurate scheduler reduces storage requirements by bringing the

consumer closer to the producer, but unified buffers may still need more space than what is

available in any one physical unified buffer.

• Wide fetch width. The accesses in the loop nest may have a narrower bitwidth compare to

the available bitwidth in the physical unified buffers. This necessitates additional transforma-

tions to convert individual words into wider ones for storage in the memory. Similarly, data

serialization is required for loading data from this memory.

This chapter describes the method we use to bridge the gap between software defined unified

buffer and its implementation in physical hardware. The next section explores the optimizations

employed by our compiler to reduce the necessary memory bandwidth. If the resulting bandwidth

still exceeds the capability of the physical buffers, Section 5.2 describes how we utilize multiple

53
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memories to create implementation with more physical ports, a technique known as banking. To

address memory capacity issues, Section 5.3 introduces how we chain multiple physical banks

to create a memory buffer with higher capacity. Next, Section 5.5 shows how we approach the

configuration of wide-word memories, to convert their multi-word access into more effective ports, by

framing it as a vectorization problem. To address the physical limitations of the underlying hardware,

the compiler takes input from a file that specifies constraints for buffer mapping. This file includes

details such as input and output port numbers, crucial for banking. Additionally, the specified

capacity is employed to guide the memory tile chaining. Furthermore, the file incorporates sub-block

information related to memory construction to guide the vectorization process. After introducing

all the lowering processes in buffer mapping, we introduce the compiler output after the buffer

mapping stage, the unified buffer implementation. This output serves as the input for the subsequent

code generation phase, where hardware configurations corresponding to this implementation will be

generated.

5.1 Port Reduction Optimization

Our compiler uses two strategies for servicing high bandwidth accesses: port reduction opti-

mization and banking. Port reduction optimization reduces the required memory bandwidth,

while banking partitions the unified buffer into separate physical hardware resources to provide

enough bandwidth to meet the targeted throughput.

The port reduction optimization aims to identify opportunities for reusing data within the mem-

ory access pattern. When data fetched by one port is subsequently required by another, we employ

temporary storage, a delay buffer, and a forwarding mechanism to eliminate the costly memory

refetch by the other port. The following section outlines how we identify these reuse patterns using

information obtained from the unified buffer extraction through dependence distance analysis. Ports

which have a fixed dependency distance relationship can be replaced by delay buffers, and depend-

ing on dependence distance, these buffers are implemented as shift registers, or as a memory. After

performing the port reduction optimization pass, an unified buffer is generated with the elimination

of the shared output port and the implementation of delay buffers between pairs of input and output

ports(in-to-out), or between pairs of output ports(out-to-out).

5.1.1 Dependence Distance Analysis

In compiler terminology, dependence distance is the distance between two program’s elements that

have a dependency relationship, measured by the number of other code elements between them.

To determine if some of the unified buffer ports can be simplified, it’s necessary to determine the

dependence distance between each read and write port. To measure the distance, we need time

difference between the read and write operations of the same address in the data space of the unified
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Port ID 0 1 2 3 4

Operation Brighten Blur

Wr/Rd Wr Rd

Schedule (x,y)→[x+64y] (x,y)→[65+x+64y]

Access
Map

(x,y)→[x,y] (x,y)→[x,y] (x,y)→[x+1,y] (x,y)→[x,y+1] (x,y)→[x+1,y+1]

t2addr [x+64y]→[x,y] [65+x+64y]
→[x,y]

[65+x+64y]
→ [x+1, y]

[65+x+64y]
→ [x, y+1]

[65+x +64y] →
[x+1, y+1]

Table 5.1: Time to address map for all ports in the unified buffer shown in Figure 3.2. The write
operation schedule expression is twrite = x + 64y and for the read operation, the expression is
tread = 65 + x + 64y. Since the read and write operation access the same data address space. In
order to derive the dependency distance between read write we use address x and y to substitute t
in the expression.

buffer.

Fortunately, the unified buffer abstraction provides all the information needed for this analysis.

Specifically, the schedule maps the iteration domain of the operations to the executed timestamp,

while the access map projects the operations from the same domain to the corresponding address

in the data space. By applying the access map to the range of the inverse of schedule map, we can

establish a relationship between cycle-accurate time and the address accessed by every port. The

integer set transformation can be represent by following formulation:

twrite2tread[pi, po] = t2addr[pi].Apply(Inv(t2addr[po])) (5.1)

Let access map[p] and sched[p] be the access map and schedule of port p respectively, Then, we

can calculate the map from cycle-accurate time to the address of that port t2addr[p] by using the

following transformation.

t2addr[p] = Inv(sched[p]).Apply(access map[p]) (5.2)

Where, Inv(m) is the function to obtain an inverse of a map m, and m1.Apply(m2) represents

the transformation that apply map m2 on the range of map m1. Table 5.1 demonstrate the t2addr

map for all ports in the unified buffer abstraction in Figure 3.2.

Then, for each pair of input and output ports in the unified buffer, we apply the time to address



CHAPTER 5. BUFFER MAPPING 56

Port Pair / [Wr, Rd] twrite2tread tdiff

[0, 1] [x+64y]→[65+x+64y] { 65}

[0, 2] [x+64y]→[65+(x-1)+64y] { 64}

[0, 3] [x+64y]→[65+x+64(y-1)] { 1 }

[0, 4] [x+64y]→[65+(x-1)+64(y-1)] { 0 }

Table 5.2: The map from time-to-read to time-to-write, which calculated from Table 5.1. The set
of dependence distance is calculated by substracting the RHS of the map from the LHS of the map.
As we can see from the table all read ports in unified buffer Figure 3.2 has constant dependence
distance from its write port.

map of the read port po, to the inverse map of the write port pi to obtain a map between the

time-to-read and the time-to-write the similar address, as is shown in Equation 5.1.

By applying the Delta(m) operator1 , we can get the time difference between the same data

accessed by pair of read write ports.

tdiff [pi, po] = Delta(twrite2tread[pi., po]) (5.3)

If the time difference set contains only a constant integer, it means every data will be read

only once by that read port and the time difference between each data write and read will be

a constant value. Therefore, the buffer between this read and write port can be optimized as a

channel forwarding data with constant delay. This memory is conceptually a shift register.

After the dependence distance analysis, our compiler creates a data structure which saves all

pairs of input output ports that can be optimized into delay memory with their constant dependence

distance. As for illustration, the dependence distance map for the unified buffer listed in Figure 3.2

is shown in Table 5.2. This data structure will be used in the next step to create the delay memory

implementation.

5.1.2 Create Shift Register Implementation

Now that dependency analysis has identified all the ports in a system that access data with a constant

time delay, we can simply create a buffer for each pair of input and output ports that have a constant

dependence distance, as identified in the analysis in Section 5.1.1. The delay of each buffer can be

set to the corresponding time difference recorded in the data structure in Table 5.2. However,

this simple approach, may result in significant waste of hardware resource due to duplication of

1This function returns a set containing the differences between range elements (right value of the map) and
corresponding domain elements(left value of the map) in the input.
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Port	ID:	0
𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [64𝑦 + 𝑥]

𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}
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1

0

Port	ID:	1

Port	ID:	2

Port	ID:	3

Port	ID:	4

(a) Naive delay buffer implementation

𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}
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Port	ID:	0
𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
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𝑥, 𝑦 → [64𝑦 + 𝑥]
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Port	ID:	3

Port	ID:	4

(b) Merging channels transmitting identical data into a delay buffer chain.

Port	ID:	0
𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [64𝑦 + 𝑥]

𝑥, 𝑦 → brighten 𝑥, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 62 ∧ 0 ≤ 𝑦 ≤ 62}

𝑥, 𝑦 → brighten 𝑥 + 1, 𝑦 + 1
𝑥, 𝑦 → [65 + 64𝑦 + 𝑥]
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Port	ID:	2

Port	ID:	3
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(c) Group the read port by the dependence distance, which creating a tree structure.

Figure 5.1: Different Shift Register Optimization Implementations
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data across multiple channels, as shown in Figure 5.1a. To avoid this issue, channels transmitting

identical data can be merged into a delay buffer chain with read ports connected to the middle of the

chain. This allows data to be read with a specified delay without duplicating it or creating hardware

redundancy. The buffer implementation after delay buffer merging is shown in Figure 5.1b, where

all four channels are merged into one chain that serves the read ports from this unified buffer.

In order to implement the delay buffer chain on a coarse-grained reconfigurable array(CGRA),

the set of delay buffers in the chain will be mapped onto two distinct distinct memory resources

available on the CGRA routing network, memory tiles and shift registers. To facilitate this

mapping process, a straightforward rule is utilized to determine the appropriate memory resource

to be assigned to each delay buffer in the chain. Specifically, the decision is based on the cycle

delay between consecutive delay buffers. When the delay exceeds a predetermined threshold, the

corresponding delay buffer is assigned to a memory tile. Conversely, if the delay falls below this

threshold, the delay buffer is assigned to a chain of shift registers. In practice, the threshold is set

to 20.2 For the example shown in Figure 5.1b, the buffer with delay equal to one will be map to a

single shift register, and the delay buffer with delay of 63 cycle will be mapped to a memory tile.

5.1.3 CGRA Routing Optimization

Our compiler performs another backend-specific optimization to accommodate the physical layout of

resource on the CGRA. As the shift registers are located within the routing network and memories

are positioned in middle of them, implementing a chain of memories and shift registers can result

in some long routing paths, such as the connection wired with port 3 and port 4 in Figure 5.1b. To

alleviate routing congestion, it’s necessary to improve the locality of resources for realizing the shift

register. Instead of creating a delay buffer chain, a more efficient implementation for reconfigurable

architecture, such as a CGRA, involves a tree structure as is depicted in Figure 5.1c. Paths with

significant variance in dependence distance can diverge early in the tree style implementation. To

create this tree structure, a compiler pass will separate the input-output port pair into different

groups based on the variance of the dependence distance. The compiler pass first sorts all port pairs

by their dependency distance and then assigns them to previously created groups or creates new ones

as necessary. If the variance in dependence distance between a given port pair and the previously

grouped port pairs is greater than the threshold used to differentiate between shift register chains

and memory tiles, then a new group is created to ensure the segregation of ports with memory

connections between them into distinct groups.

In the example shown in Figure 5.1c, the sorted dependency distance are {port1 : 0, port2 :

1, port3 : 64, port4 : 65} respectively. According to the grouping rule, they will be separated into

two groups {port1, port2}, {port3, port4}. Finally each group will be merged as a chain of memory

2This threshold is set arbitrarily. For our examples the shift registers are delays of small integers, while the
memories generally are much larger. 20 fits nicely in this gap
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and shift register independently as we described in Section 5.1.2.

5.1.4 Output Port Sharing

While the preceding optimizations have focused on enhancing buffer implementation between input

and output ports with the same access pattern, output port sharing is another optimization tech-

nique that aims to optimize data reuse between different output ports, regardless of how the input

port behaves. Output port sharing involves sharing the output ports of a buffer between multiple

consumers, such as computation units or data transfer to another memory hierarchy level. This

technique is useful in scenarios where the same data needs to be processed by multiple engines,

such as in deep learning multi-channel convolution or matrix multiply. Therefore, this technique

reduces the number of ports required for read operations and results in improved energy efficiency

by reducing the number of memory fetch operations required.

To determine the output ports which can be shared, we perform the same dependence distance

analysis mentioned in Section 5.1.1 between all pairs of output ports that cannot be optimized as shift

register outputs. If these pairs of output ports have constant dependence distance, we utilize shift

registers to transfer data from one memory fetch to all consumer ports that use it. Additionally,

we incorporate this information into the out-to-out delay data structure after implementing port

sharing optimization.

5.2 Memory Banking

After shift register optimization, the remaining ports must be serviced from a physical memory

with a limited number of read and write ports. The effective number of ports can be increased by

dividing the memory into multiple physical partitions so the system can access multiple memory

locations simultaneously, a technique called banking. This increased memory bandwidth can fulfill

the throughput requirement in the schedule we created in Chapter 4. In a banked memory system,

each bank is accessed through a separate memory channel or port. The number of banks in the system

depends on the memory architecture and the pattern of simultaneous memory access. Each bank has

its own address range, and the system uses the bank number to determine which bank to access. Our

compiler uses a simplified version of an optimal banking algorithm for stencil computations [21]to

find legal banking schemes for the remaining ports. The basic idea is described next.

5.2.1 Banking Methodology

Cyclic banking is one of the technique used in memory optimization to maximize memory band-

width by reducing memory bank conflicts. It involves dividing the memory into multiple banks and

configuring them to allow accesses to occur in parallel. Consider the scenario of executing a vector
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Figure 5.2: Cyclic banking partitions data in four different banks and sustains the bandwidth
requirement for four parallel compute engines.

and scalar multiplication as an example. The schedule specifies the simultaneous computation of

four multiplications in parallel. To meet the throughput requirement and supply data to the parallel

compute unit efficiently, the memory must support parallel access for four consecutive data elements.

As a result, the memory system adopts a cyclic partition strategy to store successive data elements

in alternating banks. This strategy effectively reduces potential access bottlenecks, as illustrated in

Figure 5.2, where each of the four distinct colors represents a different memory bank. Next we will

introduce the algorithm that deduce this partition scheme from the information extracted in unified

buffer.

Generally speaking, a memory banking procedure will create a transformation f(x⃗) from original

address vector x⃗ in the data space to the bank ID as well as another function g(x⃗) which transforms

the original address to offset inside each bank. The bank ID determines which partition each memory

operation will fetch from, and the inner bank offset will determine the address within each partition.

The cyclic bank mapping function is a key component in memory banking optimization. This

function can be represented mathematically as

f(x⃗) = (α⃗ · x⃗) mod N

where α is a mapping vector and N is the number of banks. From geometry perspective, α⃗ · x⃗
represents a sequence of hyperplanes in the high dimensional data space. And the function f(x)

assign the data points on hyperplane to different memory banks. The goal of this function is to

avoid access conflicts between any two parallel memory references, which is achieved by verifying

that f(x⃗p) ̸= f(x⃗q) for every pair of parallel accesses x⃗p and x⃗q. To accomplish this, a polyhedral
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analysis technique known as the polytope emptiness test is used. In order to find the optimal

banking, prior work [84] have used an integer linear programming solver to determine the mapping

vector α⃗, ensuring that there are no bank access conflicts while minimizing the number of banks

required, N . This process usually use exhaustive enumerating the possible candidate and could be

time-consuming[85].

To optimize memory banking, a more recent study [22] proposed a graph-based approach that

extracts the optimal banking strategy by coloring an graph data structure. This algorithm primarily

focused on data partitioning for overlapping stencils with data reuse across different memory ports.

However, the port reduction optimization already captures data reuse through the introduction of

shift registers. Consequently, the graph-based approach becomes redundant. Hence we created a

simplified alternative to derive the banking function f(x) which is heuristic-based and has proved

to be highly effective in optimizing memory banking.

The heuristic based method computes a vector of cyclic partition factors (f0, f1, ...fn) for n

dimensional data array. This vector indicates that the corresponding dimension i of the data array

will be cyclically partitioned into fi banks. The high dimensional bank ID will be calculated by the

function:

f(x⃗) = (x0 mod f0 , x1 mod f1 , ..., xn mod fn) (5.4)

which is an elementwise mod operation. The inner bank offset function will be an elementwise floor

division by the cyclic partition factors,

g(x⃗) = (⌊x0/f0⌋, ⌊x1/f1⌋, ..., ⌊xn/fn⌋) (5.5)

Our problem now is to efficiently determine the cyclic partition factors. Our heuristic first groups

the ports that have overlapping schedules, meaning that they access the buffer at the same time.

For every group of ports with high bandwidth requirements, we initially fully partition the address

space into different banks for dimensions where all ports have constant indexing, by setting the cyclic

partition factor as the dimension size. This step captures the case where the ports access different

data sets. Then, we iterate over the other dimensions in the data space and compute the greatest

common divisor (GCD) of non-zero strides in the affine expression of the access map between all

ports in the group. We set the cyclic partition factor for that dimension to the computed GCD.

This step captures the type of partitioning possible when each bank is supplying a different element

in a vector.

For example Figure 5.3 depicts a loop nest in the convolutional neural network(CNN) layer

where the kernel loads the four-dimensional weight from global buffer onto the on-chip memory

tile from line 5 to line 10, and the convolution kernel from line 13 to 21 consumes the weight

respectively. The computation is completed in parallel along the input channel c dimension, while

two computation engines are executed simultaneously to produce two partial result in the output.
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1 //Outer tiling loop

2 for t in [0:16]

3 //Load of input and initialization of output is ignored for simplicity

4

5 //load weight from GLB to CGRA Memory

6 for ky in [0:3]:

7 for kx in [0:3]:

8 for k in [0:4]:

9 for c in [0:4]:

10 weight_mem(c, k, kx, ky) = weight_glb(c, k, kx, ky, t);

11

12 //3x3 Convolution layer with 4 input channels and 4 output channels

13 for ky in [0:3]:

14 for kx in [0:3]:

15 for y in [0:28]:

16 for x in [0:28]:

17 for k in [0:2]:

18 output_mem(2k, x, y) =

19 CONV_0(input_mem(0:4,x,y), weight_mem(0:4, 2k, kx, ky), output_mem(0, x, y));

20 output_mem(2k+1, x, y) =

21 CONV_1(input_mem(0:4,x,y), weight_mem(0:4, 2k+1, kx, ky), output_mem(1, x, y);

22

23 //Drain of the output value is ignored for simplicity

Figure 5.3: Loop nest for the a multi channel 3x3 convolution DNN layer. It has 4 input channels and
4 output channels. The computation is fully unrolled (parallel) along the input channel dimension c.
The output channel dimension k is unrolled by two and the 3x3 kernel dimension is done sequentially.
The kernel of loading input feature map, initializing and draining of the output feature map is
ignored. We will focus on the data access pattern on the weight unified buffer.
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This parallel computation engine design results in two streams of four channels of weight being

loaded into the compute unit. This leads to 8 read ports in the weight unified buffer to achieve the

desired throughput. The access pattern for those eight ports

0 : (k, x, y, kx, ky)→ weight(0, 2k, kx, ky) (5.6)

1 : (k, x, y, kx, ky)→ weight(1, 2k, kx, ky) (5.7)

2 : (k, x, y, kx, ky)→ weight(2, 2k, kx, ky) (5.8)

3 : (k, x, y, kx, ky)→ weight(3, 2k, kx, ky) (5.9)

4 : (k, x, y, kx, ky)→ weight(0, 2k + 1, kx, ky) (5.10)

5 : (k, x, y, kx, ky)→ weight(1, 2k + 1, kx, ky) (5.11)

6 : (k, x, y, kx, ky)→ weight(2, 2k + 1, kx, ky) (5.12)

7 : (k, x, y, kx, ky)→ weight(3, 2k + 1, kx, ky) (5.13)

and the scheduler will assign the same timestamp for all these eight port according to the schedule

algorithm in Chapter 4. When we apply the heuristic-based approach to find the partition factors

of the weight unified buffer we find the innermost (first-from-left) dimension across all ports has

constant indexing. This allows us to fully partition this dimension choosing a f0 = 4. As for the

second dimension, the access expressions are 2k and 2k + 1, where the greatest common divisor of

strides from input iterators is 2. Consequently, we set the partition factor for this dimension to 2.

Similarly, the partition factor for the remaining dimensions are set to 1, which indicates no partition.

Finally, the resulting cyclic partition factor vector of the weight unified buffer is [4, 2, 1, 1]. Applying

the bank id function f(x⃗) in Equation 5.4 and inner bank offset function g(x⃗) in Equation 5.5, we

can get the following bank ID and inner bank offset tuple maps for each port.

0 : (k, x, y, kx, ky)→ {(0, 0), (kx, ky)} (5.14)

1 : (k, x, y, kx, ky)→ {(1, 0), (kx, ky)} (5.15)

2 : (k, x, y, kx, ky)→ {(2, 0), (kx, ky)} (5.16)

3 : (k, x, y, kx, ky)→ {(3, 0), (kx, ky)} (5.17)

4 : (k, x, y, kx, ky)→ {(0, 1), (kx, ky)} (5.18)

5 : (k, x, y, kx, ky)→ {(1, 1), (kx, ky)} (5.19)

6 : (k, x, y, kx, ky)→ {(2, 1), (kx, ky)} (5.20)

7 : (k, x, y, kx, ky)→ {(3, 1), (kx, ky)} (5.21)

Once the cyclic partition factor has been computed, the compiler proceeds to the next step,

which involves verifying if there are any parallel memory accesses that share the same bank ID. In
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the event that such a partition conflict is detected, our heuristic cyclic banking approach fails, and

the compiler falls back to exhaustively banking the memories by fully duplicating the entire buffer

between each pair of input and output port that have overlapping data access. Our CGRA backend

favors duplication of data over the solver-based method because the latter requires a switching

network to send the correct data from the corresponding bank to the compute operand, leading to

complex switching network logic.

5.2.2 Bank Implementation

The bank implementation data structure is a crucial element in the buffer mapping process that

bridges the gap between the bandwidth-unlimited unified buffer and the bandwidth constrained

physical implementation of unified buffers building blocks. The bank implementation data structure

is essentially a set of constrained unified buffers that represent the behavior of each bank. The

reason why this data structure is constrained is that each bank has a fixed number of input and

output ports, and a fixed capacity limitation. Moreover, a partitioned data space is assigned to each

bank to help dissect the corresponding access pattern and schedule from the unified buffer port to

the port on the physical bank implementation.

Additionally, each bank in the bank implementation data structure has a connection relation with

the unified buffer ports, which includes information on shift register delay and output port sharing,

as discussed in Section 5.1. This connection relation will later be transformed into a interconnect

logic during the code generation phase. These connections are flexible, with one input port being

able to write data to multiple banks, and one bank able to receive data from multiple unified buffer

input ports. Similarly, one read port can receive data from multiple banks, and one bank can also

be read by multiple read ports.

5.2.3 Bank Merging

In order to achieve high bandwidth in parallel computation and improve energy efficiency, the

physical implementation of the memory can have more than one input/output port. Specifically,

our physical unified buffer, described in Section 6.1.2, has two input and two output ports. To

build a general compiler that can target any number of I/O ports on the physical implementation,

we implement a bank merging pass.

The bank merging pass optimizes the physical resource utilization by iteratively seeking oppor-

tunities for merging banks. Initially, a bank with single read port and single write port is created

when creating the bank implementation in Section 5.2.2. Then, the pass analyzes the access patterns

and tries to merge multiple banks if they have the same access data space partition. By merging

banks, we can reduce the number of physical resources required for implementation.

The bank merging pass uses a collateral file that identifies the number of input and output port

for the physical memory tiles that are available in the target hardware. If the physical memory is
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more capable, meaning that the physical memory implementation has more port than the abstract

banks have, the compiler will perform bank merging iteratively until the requested number of ports

is utilized.

5.3 Memory Chaining

To map unified buffers with higher capacity than any one physical buffer, buffer mapping chains

several buffers into a single logical buffer. Each memory tile on the CGRA is assigned a unique

ID. Our compiler statically analyzes the access map of the unified buffer and partitions the access

map’s range into pieces implemented by multiple chained physical buffers. The following equations

transform a logical address a in the access map into a tile ID and a physical address in the memory

tile, using the capacity C of the memory tile:

ID(a) = floor(a/C) PhysicalAddress(a) = a mod C (5.22)

Subsequently, for each chained memory instance bearing a unique tile ID, the partitioning of the

iteration domain can be deduced. Leveraging the schedule of the original unified buffer before the

optimization of chaining, the compiler generates schedules for each memory partition accordingly.

5.4 Memory Hierarchy

It’s common for our target hardware accelerators to have a memory hierarchy to optimize its energy

and performance. Our unified buffer abstraction provides the flexibility to represent arbitrarily levels

of memory hierarchy with any desired topological interconnect network connectivity. Within this

abstraction, memory is conceptualized as an array of data accessed through compute or data move

operations. To illustrate, creating a two-level memory hierarchy involves copying from a unified

buffer with a large capacity to a smaller unified buffer. On our CGRA, we refer to the large, outer

memory as the global buffer, while the smaller ones are called memory tiles. The global buffer

uses ready-valid signaling to connect to the processor’s memory system, and will stall the execution

engine if a block of data has not been loaded before the time it needs to be pushed to the memory

tiles.

To further improve energy efficiency, we have introduced an additional level of memory hierarchy,

consisting of a register file near each processing element in our next generation CGRA. Our unified

buffer supports this improvement by enabling the creation of extra copy operations into an separate

data array, facilitating seamless integration of the register file into the memory hierarchy.

From an application lowering perspective, our unified buffer abstraction remains agnostic to

the memory hierarchy level until the mapping stage. Utilizing the data accessing and schedule
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information, the capacity can be static analyzed after the banking and memory partition passes.

The compiler can automatically select which hierarchical level the buffer will map to. If the user

wants storage to be placed at a specific level in the memory hierarchy, our scheduling language allows

them to specify this as well. This memory hierarchy level information is then carried downstream

through the compiler lowering passes until the buffer mapping phase. Finally, the compiler will

generate the correct configuration for each physical memory primitive based on the memory hierarchy

information.

5.5 Vectorization

Single-port memory offers advantages in terms of high area density and low energy consumption

per bit-fetch, making it a favorable choice for on-chip memory implementations. As illustrated in

Figure 5.4, we can employ a single-port wide-fetch SRAM to simulate a multi-port memory. In this

setup, a Serial-In-Parallel-Out (SIPO) buffer is used to aggregate individual data words into a wide

word, while a Parallel-In-Serial-Out (PISO) buffer serializes the wide word into data that can be

read by functional units. Since multiple data words are written/read during each SRAM access,

these SRAM operations don’t need to happen every cycle. If the fetch width is N, the wide port

utilization decreases to 1/N. Through the interleaving of load and store operations on the single-port

SRAM’s interface, it becomes possible to emulate the functionality of a multi-port memory. In our

target Coarse-Grained Reconfigurable Architecture (CGRA), we leverage this micro-architectural

optimization to construct a memory tile with two inputs ports and two output ports using a 4-wide

SRAM. In our design the SIPO buffer is referred to as the aggregator (AGG), and the PISO buffer

is known as the transpose buffer (TB). Section 6.1.3 describes the design of this memory in more

detail.

To support the use of physical buffers with wide-fetch SRAMs, we added a compiler pass, which

is similar to vectorization, in the buffer mapping stage. This pass ensures that the access patterns

of the buffers can be broken into sub-sequences with the same length as the SRAM fetch width as

shown in Figure 5.5. At each input port of the buffer, this sub-sequence is assembled serially by

the aggregator (AGG). Once the aggregator is full, the multi-word sub-sequence is written to the

SRAM in parallel. When the transpose buffer (TB) at an output port is empty, it receives a wide

sub-sequence from the SRAM, which it then can send data out serially on the output port.

We can think of the introduction of the AGG-to-SRAM, and SRAM-to-TB transaction as strip-

mining the innermost loops of the original program and adding wide fetch-width loads and stores

as shown in Figure 5.5. Stripmining essentially split the innermost loop into two, creating the inner

sub-loop body which will be parallelized for SRAM write and read. It worth mentioning that read

operation may re-access the same data, so the compiler needs to determine the loop level (not always

the innermost loop) to stripmine depend on the specific access pattern. Section 5.5.2 decribes this
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Single-port
Wide-fetch
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Figure 5.4: A simplified diagram of how to use single port wide fetch SRAM with serial-to-
parallel(SIPO), parallel-to-serial(PISO) to imitate a multi-port memroy.

issue in more detail. The compiler generates the parallel memory access operations at the SRAM

ports and records them in the abstract unified buffer. It also adjusts the schedules of aggregator-

SRAM and SRAM-transpose buffer transactions to minimize the storage requirement in AGG and

TB while respecting data dependencies and hardware resource limitations.

There are three transformations in the vectorization. Each transformation is associate with one

of the unified buffer properties.

1. Iteration Domain: The consecutive memory access operation will be batched into single

vectorized operation, which is as known as strip mining the iteration space.

2. Address Range: The range of access map need to be aligned with wide fetch word in the wide

fetch SRAM. If it’s not aligned, we need to pad extra access along the vectorized dimension

to make sure all required data are loaded from or stored into the SRAM.

3. Schedule: A heuristic based schedule recipe will derive the SRAM access schedule from the

schedule on the interface of the unified buffer, making sure that data in aggregator can be

writtened into SRAM before it is overwritten and SRAM data can be written into TB before

it’s read from the output consumer.

5.5.1 Vectorization for Memory Write

Vectorization for a memory write operation is straightforward. Data is filled into the aggregator

sequentially and a wide word will be written to the SRAM once it is ready. To created the vectorized

operation, the original loop nest will be stripmined by the factor of fetch width and only one
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𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦 → MEM 𝑥, 𝑦
𝑥, 𝑦 → [64𝑦 + 𝑥]

𝑥, 𝑦 	 	0 ≤ 𝑥 ≤ 63 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥, 𝑦 → MEM 𝑥, 𝑦
𝑥, 𝑦 → [64 + 64𝑦 + 𝑥]

MEM

𝑥𝑜, 𝑦 	 	0 ≤ 𝑥𝑜 ≤ 15 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥𝑜, 𝑦 → MEM 4𝑥𝑜, 𝑦 ,MEM 4𝑥𝑜 + 1, 𝑦 ,

MEM 4𝑥𝑜 + 2, 𝑦 ,MEM 4𝑥𝑜 + 3, 𝑦
𝑥𝑜, 𝑦 → [4 + 64𝑦 + 4𝑥𝑜]

𝑥𝑜, 𝑦 	 	0 ≤ 𝑥𝑜 ≤ 15 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥𝑜, 𝑦 → MEM 4𝑥𝑜, 𝑦 ,MEM 4𝑥𝑜 + 1, 𝑦 ,

MEM 4𝑥𝑜 + 2, 𝑦 ,MEM 4𝑥𝑜 + 3, 𝑦
	 𝑥𝑜, 𝑦 → [63 + 64𝑦 + 4𝑥𝑜]

𝑥𝑖, 𝑥𝑜, 𝑦 	 	0 ≤ 𝑥𝑖 ≤ 3 ∧ 0 ≤ 𝑥𝑜 ≤ 15 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥𝑖, 𝑥𝑜, 𝑦 → MEM 4𝑥𝑜 + 𝑥𝑖, 𝑦
𝑥𝑖, 𝑥𝑜, 𝑦 → [64𝑦 + 4𝑥𝑜 + 𝑥𝑖]

𝑥𝑖, 𝑥𝑜, 𝑦 	 	0 ≤ 𝑥𝑖 ≤ 3 ∧ 0 ≤ 𝑥𝑜 ≤ 15 ∧ 0 ≤ 𝑦 ≤ 63}
𝑥𝑖, 𝑥𝑜, 𝑦 → MEM 4𝑥𝑜 + 𝑥𝑖, 𝑦
𝑥𝑖, 𝑥𝑜, 𝑦 → [64 + 64𝑦 + 4𝑥𝑜 + 𝑥𝑖]

Vectorization

AGG

SRAM

TB

Figure 5.5: Unified buffer abstraction before and after vectorization. The innermost dimension x
is strip-mined into xi, and xo. The unified buffer MEM is the memory in the brighten-then-blur
application after introducing a shift register (Figure 5.1c).

operation will be preserved. The first step in the vectorization algorithm involves determining

the dimension in the iteration domain which will be stripmined, based on the innermost storage

dimension. Essentially, we identify the iteration domain dimension that is related to the innermost

storage dimension. As an example, Figure 5.5 shows a unified buffer where MEM adds a 64 cycle delay

between input and output streams. It has a two-dimensional iteration domain with index variables

x and y and a two-dimensional address space. In this circumstance, iteration dimension x will be

stripmined. The following transformation strip-mines x:

(x, y)→ (x%fw, ⌊x/fw⌋, y)

where fw is the fetch width of the wide-fetch SRAM. This transformation creates a third iteration

domain dimension for data aggregation in AGG and data serialization in TB.

Next, the compiler applies the following transformation on the ports of the wide-fetch SRAM to

batch serial writes and reads into a vectorized wide word operation on the interface of the SRAM.

(x, y)→ (⌊x/fw⌋, y)

The above transformation is applied on the iteration domain, we also need to transform the address

range of each operation, so that each vectorized fetch can be aligned with the wide-fetch SRAM

word. The transformation is expressed in the following equation:

MEM(a, b)→ SRAM(⌊a/fw⌋, b). (5.23)

However, it’s possible that the address expression is quasi-affine. For instance, the address map

is (x, y) → MEM(x + 1, y) where x ∈ [0, 64) and the fetchwidth is 4, after applying the above
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Single Fetch Word

Wide Fetch Word (Vectorized)

No Extra Padding

Padding one extra fetch

Figure 5.6: Illustration of the memory address transformation from single word address to wide
word address. The upper case shows a trivial case that the boundary of the address is aligned with
the wide fetch word, so that there is no extra padding. The bottom case shows the original address
is skewed with wide fetch word and we need to pad one extra wide-word fetch at the end in order
to cover all the needed data.

transformation, the SRAM access map becomes

(x, y)→ {SRAM(⌊(4x + 1)/4⌋, y),

SRAM(⌊(4x + 2)/4⌋, y),

SRAM(⌊(4x + 3)/4⌋, y),

SRAM(⌊(4x + 4)/4⌋, y) where x ∈ [0, 16)}

Which can be further simplified into

(x, y)→ {SRAM(x, y) , SRAM(x + 1, y)} where x ∈ [0, 16)

This address map indicate that each vectorized wide SRAM fetch stretches across the boundary

of wide SRAM word. In order to make it fit the affine controller we built in Physical unified buffer,

we need align the address with the wide fetch SRAM word and pad one extra access on the end

of the strip-mined iteration x. As is shown in Figure 5.6, this transformation makes sure that all

required data is loaded from or stored into the SRAM. After this transformation applied, the SRAM

access map for above example becomes

(x, y)→ {SRAM(x, y)} where x ∈ [0, 17)

5.5.2 Vectorization for Memory Read

The process of vectorizing memory reads follows a similar approach to that used for vectorizing

memory writes, but in a mirrored fashion. However, we want to minimize the read of SRAM, and

reuse data from the more efficient transpose buffer as much as possible. In order to figure out what

data will reside in the transpose buffer, we we introduce the concept of data reuse distance, which is

defined as the size of newly written data between re-accesses to the same data. This parameter plays
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an important role in determining how the memory read is vectorized. If it’s smaller than the capacity

of the TB, the read operations will not propagate to the wide-fetch SRAM read since data can be

reused within the TB. In general, we stripmining the innermost dimension and combine a number of

read operation into a vectorized read from the wide fetch SRAM. However, after the reuse analysis,

if the read within that loop iteration dimension can be handled by the TB, we will stripmining the

next level of iteration, and the inner dimension will disappear in the iteration domain of SRAM

read. On the contrary, if the reuse distance identifies that re-accessed data are too far apart to be

reused, the newly written TB data will overwrite the old data, forcing data to be refetched from the

SRAM to maintain the correctness of application.

Leveraging the power of polyhedral analysis and cycle accurate schedule proposed in Section 4.2,

we can accurately measure the time difference between two iteration domain points that access the

same address. If the size of the newly written data during that period of time is smaller than the

usable capacity of the transpose buffer (TB):

Usable Capacity = TB Capacity− Fetch Width

the data will not be overwritten when we fetch it the next time. Considering the need to prefetch one

word from SRAM-to-TB before it’s read, we subtract the SRAM fetch width from the TB capacity.

To filter out all data reaccess for SRAM read, the compiler needs to figure out the innermost

dimension that exist in SRAM read iteration domain. The reuse analysis is done at the granularity

of different iteration dimension levels. To represent the fact that data will be reused from TB rather

than refetched from SRAM, all of the SRAM read iterations within that dimension will be dropped

out in the access pattern transformation.

To demonstrate this optimization, let’s assume we have a 1D sliding window access pattern where

the row size is 32 and the window size is 5, we could access the window dimension in the inner most

loop (example A in Figure 5.7) or reorder the loop to scan across the whole row and compute a

partial sum (example B in Figure 5.7).

In example A, the access map is as shown in Equation 5.24 after the unified buffer is extracted.

Read(dx, x)→ {MEM(x + dx)} where x ∈ [0, 32), dx ∈ [0, 5) (5.24)

From the reuse analysis, we know iteration Read(dx, x) and iteration Read(dx − 1, x + 1) access

the same address. Accordingly, the data are refetch with a reuse distance of 4. When stripmining

the iteration domain for SRAM-to-TB data transfer, the innermost iterator dx is projected out.

Consequently, the stripmined dimension for vectorization is the x dimension on line 4 from Figure 5.7,

which is the second innermost dimension. The vectorized access map after stripmining is shown in

Equation 5.25. However, as is shown in Equation 5.26 the innermost iteration dimension dx is

retained on the TB read side due to data is reused in transpose buffer.
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1 //Example A:

2 //Iteration Domain: {(dx, x) : 0<=x<32, 0<=dx<5}

3 //Access Map: { (dx, x)->Mem(dx+x) }

4 for x in [0:32]: //dimension to be stripmined

5 for dx in [0:5]:

6 load(Mem(dx+x))

7

8

9

10 //Example B:

11 //Iteration Domain: {(x, dx) : 0<=x<32, 0<=dx<5}

12 //Access Map: { (x, dx)->Mem(dx+x) }

13 for dx in [0:5]:

14 for x in [0:32]: //dimension to be stripmined

15 load(Mem(dx+x))

Figure 5.7: Pseudo loop nest for a unified buffer that is read to conduct 1D convolution (sliding
window)

Stripmining

Readvec(⌊
x

4
⌋)→{MEM(4⌊x

4
⌋+ x%4)} (5.25)

Readseq(dx, x%4, ⌊x
4
⌋)→{MEM(4⌊x

4
⌋+ x%4 + dx)} (5.26)

Subsequently, the address transformation presented in Equation 5.23 is applied on the right-

hand-side of the access map. Illustrated in Equation 5.27 this create the address for SRAM with

wide word width. Given the narrow word width of the transpose buffer, the write access map for the

transpose buffer after vectorization shown in Equation 5.28 has wide address with a four-wide word

configuration in the context of our CGRA single port memory, as detailed in Section 6.1.3. And

these data words will be read from transpose buffer in single word granularity with sliding window

patterns as is depicted in Equation 5.29.

Address transformation

Readvec(⌊
x

4
⌋)→{SRAM(⌊x

4
⌋)} (5.27)

Writevec(⌊
x

4
⌋)→{TB(4⌊x

4
⌋,TB(4⌊x

4
⌋+ 1),

TB(4⌊x
4
⌋+ 2),TB(4⌊x

4
⌋+ 3)} (5.28)

Readseq(dx, x%4, ⌊x
4
⌋)→{TB(4⌊x

4
⌋+ x%4 + dx)} (5.29)

In order to better illustrate the access map after vectorization, we will use xo to be ⌊x4 ⌋ and xi

for x%4:
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Variable Substitution

Readvec(xo)→{SRAM(xo))} (5.30)

Writevec(xo)→{TB(4xo),TB(4xo + 1),

TB(4xo + 2),TB(4xo + 3))} (5.31)

Readseq(dx, xi, xo)→{TB(4xo + xi + dx))} (5.32)

On the other hand, the read loop nest in example B in Figure 5.7 traverses through the entire

row to generate a partial sum, leading to a larger reuse distance of 31. When creating a vectorized

read operation from SRAM and stripmining the iteration space, it is apparent that the same data

from different iterations within dimension dx cannot be reused from transpose buffer and thus are

refetched from SRAM. So the dx is also stripmined into dxo and dxi by factor of 4. This situation is

recorded in the transformation illustrated in Equation 5.34 and Equation 5.35, where the innermost

dimension x is retained within the iteration domain.

Read(x, dx)→{MEM(x + dx)} where x ∈ [0, 32), dx ∈ [0, 5) (5.33)

Stripmining

Readvec(xi, xo, dxi, dxo)→{MEM(4xo + xi + 4dxo + dxi)} (5.34)

Readseq(xi, xo, dxi, dxo)→{MEM(4xo + xi + 4dxo + dxi)} (5.35)

Furthermore, we need to create the transpose buffer write access map. We could have just copied

the SRAM read access map. However, TB is operated as a circular buffer, where we push newly

write data to the largest address. When we refetch the data from SRAM to TB, the TB address

of the same SRAM data changes. The address is a function of the loop iteration. To generate

unique address whiling writing data to the transpose buffer, we need to delinearize it from affine

address expression to high dimensional expression. This high dimensional address expression will be

converted back to 1D with different stride in the linearization step introduced in Section 5.6. For

instance, if we have a sliding window expression x + dx, the following transformation is applied

{(x + dx)→ (x, dx)}

The outcome of this transformation is exemplified in Equation 5.37, which presents the result access

map.
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Address transformation

Readvec(xo, dxi, dxo)→ {SRAM(xo + dxo)} (5.36)

Writevec(xo, dxi, dxo → {TB(4xo, dxo),TB(4xo + 1, dxo),

TB(4xo + 2, dxo),TB(4xo + 3, dxo)} (5.37)

Readseq(xi, xo, dxi, dxo)→{TB(4xo + xi + dxi, dxo)} (5.38)

The access pattern after variable substitution is shown in Equation 5.39, Equation 5.40 and

Equation 5.41. It is important to note that apart from stripmining the innermost loop iteration x

into xo and xi during the vectorization pass, we also stripmine the outer loop dx into dxo and dxi.

Because dx has the address stride within a wide fetch word, the inner loop dxi still remain preserved

in the access map’s inner most address expression without decoupling into a separate dimension, as

is shown in Equation 5.41

Variable Substitution

Readvec(xo, dxi, dxo)→ {SRAM(xo + dxo))} (5.39)

Writevec(xo, dxi, dxo)→ {TB(4xo, dxo)),TB(4xo + 1, dxo)),

TB(4xo + 2, dxo)),TB(4xo + 3, dxo))} (5.40)

Readseq(xi, xo, dxi, dxo)→{TB(4xo + xi + dxi, dxo))} (5.41)

Notice that the expression in Equation 5.37 and Equation 5.29 does not specify the iteration

domain bounds. As evident from Figure 5.8, due to the sliding window access pattern, only the

iteration dx = 0 and dx = 4 loop has the data access block aligned with the wide fetch memory.

To emcompass all the data that is required for computation, an additional wide fetch needs to be

padded at the end of the row. Moreover, considering our hardware is built upon affine controllers,

uniformity of the access pattern across all dx iterations is crucial. Thus, even though the fetch is

redundant, an extra wide fetch must be appended to the inner loop iterations dx = 0 and dx = 4 in

order to achieve this uniform access pattern.

5.5.3 Scheduling for SRAM Fetch

Before vectorization, the unified buffer only specifies the schedules on its exterior ports. Given the

introduction of two vectorized operations inside the physical implementation’s micro-architecture,

the last step of vectorization pass schedules the aggregator-to-SRAM and SRAM-to-transpose buffer

transactions.
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Single Fetch Word

Wide Fetch Word (Vectorized)

.....

.....

dx=0
dxi=0, dxo=0

dx=1
dxi=1, dxo=0

.....

...

dx=4
dxi=0, dxo=1

..... dx=5
dxi=1, dxo=1

Redundant Fetch

Figure 5.8: The data access pattern from the example B loop nest in Figure 5.7. Horizontally, it
shows the access in the innermost x loops. Vertically, it illustrates the iterations among different
dx loops. Because of the sliding window access pattern is not aligned with the wide fetch word, we
need to pad one extra wide fetch to cover all the data that is going to be read.

The address map vectorization process in previous sections derives the iteration domain trans-

formation. Those transformations are then applied to the domain of the schedule to create the

correct vectorized access interval(cycle stride). Due to the fact that multiple memory operations

will share the single wide SRAM port, we need to schedule the newly created SRAM operations to

avoid resource conflict. The final step is figuring the offset of the schedule, which is the absolute

start time. To be specific, we prioritize the SRAM write operation, which writes the sub-sequence

to SRAM once the aggregator is full. Then it adjusts the schedule offset of SRAM read to minimize

the storage requirement in transpose buffer. The schedule of SRAM read and write must respect

SRAM port constraints and all data dependencies.

The wide fetch memory also introduces additional latency cycles. To compensate for the schedule

changes, we introduce cycle padding in the innermost dimension of the schedule interval, aligning it

with the fetch width multiplier. This padding was done in the II calculation during the scheduling

stage described in Section 4.3. Additionally, for a memory that cannot be implemented as wire,

we set the minimum latency between data write and read on the interface to twice of the fetch-

width. This rationale originates from the presumption of sequential data propagation through the

aggregator and transpose buffer, with round trip latency encompassing the period during which two
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wide words are written to SRAM. These transforms, and the physical implementation constraints

are essential to create a correct global schedule in the buffer extraction stage in Chapter 4 and are

done during that step.

Finally, in the compiler we explicitly break a wide fetch unified buffer into its three components:

aggregator (AGG), SRAM, and transpose buffer (TB). Each component is a also a unified buffer

and is represented by its iteration domain, access patterns and schedules, for the of each physical

buffer. This expansion requires the compiler to generate the access map and schedule for the agg-

to-SRAM and SRAM-to-TB transactions as shown in Figure 5.5. This information will be used in

the compiler’s code generation phase to configure the address generation and scheduling hardware

as depicted in Figure 6.4b.

5.6 Address Linearization

The access pattern in the unified buffer abstraction supports an arbitrary number of data dimensions,

but a physical buffer uses a linear SRAM and requires the N-dimensional addresses to be converted

to a single dimension. To achieve this, an inner product is applied between each N-dimensional

address a⃗ and an offset vector o⃗ that encodes the memory layout. Each element, oi, within the offset

vector represent the extent of separation in linear space when dimension ai increments by 1. The

following transformation effectively convert multidimensional address space to a single dimension:

Mem(a0, a1, ..., aN−1)→Mem((Σiai · oi) mod c)

The factor c is the live capacity of the buffer. It must be less than or equal to the memory capacity.

This modulo factor indicate the buffer will operated in circular fashion and guarantees the live data

will not be overwritten.

Consider the memory in Figure 5.5 as an example. The data size is 64× 64. Polyhedral analysis

identifies that there are a maximum of 64 live pixels, since it’s a single row line buffer and the data

will never be reused after the next row is written. Address linearization infers that a circular buffer

can be implemented, so the compiler calculates the inner product of (x, y) and the offset vector

(1, 64) mod 64 = (1, 0), which results in the linear address x× 1 + y × 0 = x.

An additional instance is the transpose buffer access pattern after vectorization, as illustrated

in Equation 5.38. The reuse analysis has already figured out the reuse distance of 31 surpasses the

transpose buffer size of 8, necessitating a data refetch from SRAM. Consequently, the live capacity

of this unified buffer is set to 8. It’s important to mention that the offset of second dimension is 36

rather than 32 because of the presence an extra wide fetch from SRAM. As a result, the compiler

calculates the linearization of address (4xo+xi+dxi, dxo) with the offset vector (1, 36) mod 8 = (1, 4),

which results in the linear address (xi, xo, dxi, dxo)→ {4xo + 4dxo + xi + dxi}.
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5.7 Unified Buffer Implementation

Upon completing all buffer mapping optimizations described in this chapter, the next step is taking

all the data created in the optimization pass and converting the unified buffer into a data structure

known as the unified buffer implementation. This data structure consists of a set of sub-blocks

that closely resemble the characteristics of physical memory and can be directly mapped to the

physical hardware in an one-to-one manner. Notably, each individual block is also embedded as a

unified buffer or an ensemble of unified buffers for wide fetch memory, combined with supplementary

meta-data tailored to code generation requirements.

In addition to the set of sub-unified-buffer-blocks, the unified buffer implementation incorporates

a collection of logic ports, maintaining the same interface as the original unified buffer during the

lowering process. The relationship between these logic ports and the ports of the banks is respon-

sible for capturing interconnect information between the memory units and compute units on the

reconfigurable accelerators. This connection information also contains details about port sharing,

which can be further optimized using shift registers. These shift registers are derived from the port

reduction optimization discussed in Section 5.1.

The resulting unified buffer implementation, serving as a comprehensive data structure, will

then be utilized as input for backend code generation. It contains all the necessary scheduling and

address information which guided the code generation process in the backend for configuring diverse

hardware implementations.



Chapter 6

Backend Portablity

In order to achieve the goal of backend-specific code generation for various controllers, it is essential

to utilize the unified buffer abstraction that captures enough information to optimize schedule at

behavioral level, which can then be tailored to specific backends by providing hardware characteristic

information. In previous optimization passes, the buffer mapping process required limited informa-

tion about the physical SRAM macro which was passed up to the compiler. The abstract unified

buffer was then broken down into multiple sub-components, namely the unified buffer implemen-

tations, which could be mapped one-to-one onto physical implementations. The next step in this

process is to generate configurations for each memory given a specific memory tile implementations.

In order to enable the hardware designer to explore a vast design space to find an efficient

implementations, the compiler should allow complete flexibility in the memory hardware design,

which makes the compiler mapping job much more difficult. It is essential that the compiler targets

various backends without compromising the functionality of the supported applications. Therefore,

this chapter will explain how the backend of the compiler enables portability of the unified buffer.

The design space we explore includes:

• SRAM Macro: On-chip memory predominantly utilizes SRAM, where the SRAM Macro

exhibits diverse physical characteristics. Notably, these characteristics encompass variations

in the number of ports, fetch width, and depth (referred to as capacity). In order to sup-

port different physical memory implementation, our compiler incorporates the SRAM Macro

characteristic as physical constraint and passed this information to the buffer mapping stage,

described in the Chapter 5. Subsequently, the abstract unified buffer was then broken down

into multiple sub-component, included in the unified buffer implementation, each of which can

be seamlessly correlated with individual physical implementations and a code generation pass

will be executed to create the runtime configurations.

77
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• Controller Specialization : Involves deciding whether and how to create specialized con-

trollers on the target architecture. If there is no dedicated controller available on the hardware,

the compiler must synthesize the hardware logic using existing reconfigurable resources such

as processing elements (PEs) on CGRAs or look-up tables (LUTs) on FPGAs. If the block

contains a dedicated controller, the compiler must incorporate a specialized code generation

process to create programs or configurations that run efficiently on that specific hardware.

This enables the optimization of resource density for the particular domain of access pattern,

resulting in improved energy and area efficiency.

• Timing Constraints : At present, domain-specific accelerators can be divided into two

categories based on their timing constraints. The first type of system uses static timing,

where all memories are synchronized by a global clock that counts the cycle after starting

the application. The second type of system employs a dynamic micro-architecture, which

leverages a ready-valid handshake mechanism between different on-chip buffers and compute

kernels. In Section 6.2, we will introduce a memory implementation, Buffet, which uses

ready-valid timing protocol. Generating code for Buffet demonstrates that while our compiler

proposes a cycle-accurate schedule, it extracts sufficient information to support both static

timing and ready-valid timing protocol on the reconfigurable accelerators.

6.1 Physical Unified Buffer (PUB)

To demonstrate the backend portability of unified buffer abstraction, we leverage a flexible physi-

cal buffer hardware generator to create a number of different hardware implementations of unified

buffers, each with increasing efficiency. In this section we explore buffers which are statically sched-

uled.

6.1.1 Dual-Port SRAM

The simplest hardware implementation of a unified buffer wraps a dual-port SRAM with logic that

computes the addresses and sequences of read/write enables for the iteration domain at each port

(Figure 6.1). Since all implementations have a finite size, the design also contains logic for chaining

multiple physical buffers into a larger buffer.

To implement a näıve physical buffer, we place three modules at the input and output ports of the

memory. These modules are IterationDomain (ID), AddressGenerator (AG), and ScheduleGenerator

(SG). They provide implementations of the corresponding components on the ports of the unified

buffer abstraction. The IterationDomain module implements counters corresponding to for loops,

while the AddressGenerator and ScheduleGenerator modules implement mapping logic from an

IterationDomain module to an address and a read/write enable for the associated memory port.
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Figure 6.1: A common physical buffer implementation with a dual-port SRAM. Two IterationDo-
main (ID) modules each drive an AddressGenerator (AG) and a ScheduleGenerator (SG) to orches-
trate writes to and reads from the memory. The output has a multiplexer for memory chaining.

6.1.2 Controller Specialization

The AG and SG modules can be described as affine functions of the iteration domain. For instance a

two-dimensional affine function (sx∗x+sy∗y+offset). A straightforward hardware implementation of

this two-dimensional affine function would use the design with two multipliers and adders combined

with two counters shown in Figure 6.2a. For the experiment that using a CGRA without dedicated

controller, we logic synthesize this implementation using processing element on our CGRA.

To improve the area and energy efficiency, we can replace the multipliers with adders by realizing

that the incoming x and y values come from counters, so each multiplier output can be generated by

a simple recurrence relation: out(i+1) = out(i)+d, where delta d is the amount the multiplier output

increases with each update. Furthermore, we can reduce the required hardware to a single adder by

realizing that at any update, only one loop variable is incrementing (and many may be reset). This

means we can precompute how much the affine function should change when each loop increments,

and we can express the affine function A(x, y) as a state transition from iteration i to iteration

i+1. This turns into the recurrence relation A(x, y)i+1 = A(x, y)i + (incy? dy : incx? dx : 0), where

A(x, y)0 = offset, incy, incx are booleans that indicate whether to increment, and dx, dy are

increment deltas. With this transformation, the whole function can be implemented with one adder

as shown in Figure 6.2b. Figure 6.3 shows an example of the relation between the strides, ranges,

and deltas for a simple downsample-by-2 traversal of an 8×8 image. Since we only need the delta for

one loop variable at a time, we only require a single adder and a register along with a multiplexer

to increment the running address by the delta of the outermost loop variable that is incremented.

6.1.3 Wide-Fetch, Single-Port SRAM

While dual-port SRAMs are often used for an FPGA or an ASIC, they are not the most efficient

push memories for two reasons: first, dual-port SRAMs can be more than two times larger than

their single-port counterparts for the same storage capacity while consuming 40% more energy per
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Figure 6.2: Area optimizations in the affine function hardware for address and schedule generation
with a two-dimensional iteration domain. (a) An implementation that uses the value of the counters
in the iteration domain. (b) An implementation that embeds the address delta between loop levels.

access [61]. Second, energy per accessed byte is often lower if more data is fetched from an SRAM on

each cycle [80]. Thus, in custom-designed memories, wide-fetch single-port memories are typically

used to emulate multiple ports to improve energy per access.

To emulate simultaneous reads and writes with a single-port SRAM, we create a physical buffer

that consists of three buffers, as shown in Figure 6.4. One of the buffers is a large SRAM, while

two small buffers are placed on either side of the SRAM. The smaller buffers are implemented using

registers/register files, and contain eight to sixteen words (2-4 fetch blocks) when a four-word fetch

SRAM is used. The small buffer between the input port and the SRAM (aggregator: AGG) serves

as a serial-to-parallel converter and the buffer between the SRAM and the output port (transpose

buffer: TB) serves as a transpose buffer for small blocks (4×4 for our design) and a parallel-to-serial

converter. To maximize the utility of this buffer, we gave it two input and two output ports, the

maximum a four wide SRAM could support, and implemented logic to support port sharing. We

instantiated an ID and AG at the select line of a multiplexer that chooses which port accesses the

SRAM at any given time. Figure 6.4a shows a block diagram of the physical implementation of a

push memory with two input ports and two output ports.

The performance of this memory depends on how much of the data in the wide fetch can be used.
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Figure 6.3: An example of a simple downsample-by-2 iteration pattern over an 8×8 image. The
relationship between the strides and deltas for a two-level loop nest are shown.

The design can maintain maximum performance in the common case, when the inner stride is one.

The TB also allows this structure to transpose a matrix at full rate, if it is fetched in 4×4 blocks.1

To make the best use of this wide access memory requires the access patterns to be vectorized to

automatically decouple the access pattern into sub-sequences and map them onto the controllers

shown in Figure 6.4. This is performed in the vectorization pass described in the buffer mapping

stage (Section 5.5). Of course, the bandwidth per port decreases when the access stride increases.

Since either the input or the output can always be streamed sequentially with inner stride = 1,2 in

the worst case, the memory supports a throughput of 4 words every 5 cycles. For example, there is

1 write and 4 reads needed for 4 words.

6.2 Buffet

Buffet is an on-chip memory paradigm that employs a buffer implementation idiom with explicit

decoupled data orchestration (EDDO) to enable efficient on-chip memory access, particularly in deep

learning applications. It’s important to underscore that Buffet is not a compiler abstraction, but

rather a hardware primitive that can be utilized as a substitution for other on-chip memory, such

as cache, scratch pad or FIFO. Therefore, Buffet can direct substitute the physical unified buffer as

described in Section 6.1, and is an example of a buffer which uses ready/valid and not static timing.

The Buffet architecture comprises a buffet controller and a collection of physical memory banks,

both of which are hardware primitives that can be statically allocated and used as a local scratchpad

1For a transpose, the SRAM is fetched in column order, where each fetch returns a short row of 4 elements. This
access pattern fetches 4 stacked rows from the memory. The output port then reads the first element of each row,
outputting the first column, and then the 3 other columns, before the next set of rows are fetched. When this inner
loop completes, you have written the first four columns into the destination memory, and the outer SRAM loop moves
to the next set of four columns.

2If the write address is not consecutive, we can always apply a linear transformation on the data layout to create
a pattern that access the data contiguously.
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Figure 6.4: Diagram of a PUB with a wide-fetch single-port SRAM, aggregator (AGG), and trans-
pose buffer (TB). Sets of ID/AG/SG controllers control the input and output of each sub-component.



CHAPTER 6. BACKEND PORTABLITY 83

by multiple compute units. The buffet controller provides data staging and synchronization mecha-

nism, facilitating decoupled write, read and update. These primitives contribute to efficient on-chip

data reuse.

Figure 6.5 shows the operations supported by buffets. Producer hardware units can fill data

into the SRAM macro encapsulated in a buffet. Fill operation essentially performs sequential write,

appending data to the existing live data block. Consumer hardware can read or update any live data

in the buffet. Furthermore, a shrink operation can be invoked to advance the live window, thereby

releasing space for future fill operations. read, update and shrink operations are associate with

a address to identify the location of the data, as is illustrated in bottom right of the Figure 6.5. It

worth noting that buffet rely on an external hardware to generate address.

One notable feature of the Buffet architecture is its utilization of dependency checking mecha-

nism, which synchronize the producer and consumer operations. The fill operation operates within

a distinct control thread and remains decoupled from the other three operations. This design allows

the controller to stall any read or update operation that violates a read-after-write dependency,

as well as any fill operation when the memory is full. To support dynamism in the application

it adopts a ready-valid interface for both the address and data path as is depicted in Figure 6.5.

Specifically, the same address generator which designed for our physical unified buffer (described in

the Section 6.1) is employed in the Buffet backend for a fair comparison in the evaluation.
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Figure 6.5: Buffet storage idiom, utilizing ready-valid timing protocol
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Table 6.1: The characteristics of our PUB memory primitive and alternative memory implementa-
tions. Our compiler, using the unified buffer abstraction, supports more memory implementations
as compared to FPGA compilers and other accelerator compilers.

Memory
Backend

PUB
DP-SRAM

+AG
DP-SRAMs

+ PEs
Ready-valid

(Buffet)
BRAM
+ LUTs

SRAM Macro SP DP DP DP DP
Build-in AG Yes Yes No No No
Control Protocol Static Static Static Ready-valid Static
Accerlerator Architecture CGRA CGRA CGRA ASIC FPGA

6.3 Code Generation for Various Hardware Backend

The unified buffer abstraction provides our compiler with the ability to map to a wide range of

physical memory implementations, as demonstrated in Table 6.1. Importantly, this is possible

because the unified buffer abstraction captures sufficient information regarding the data movement

behavior, and because the frontend optimizations are either generic or could be configured using

only a small amount of characteristic information for the specific backend. By maintaining all of the

data movement and scheduling information together, our backend can efficiently select the essential

data that it needs to configure or generate the target hardware.

Figure 6.6 sketches the compilation process, denoting the classes of hardware our system can

target. Our compiler first transforms the arrays in the loopnest describe in Halide IR into unified

buffers with schedule optimizations described in Section 4.2. These steps schedule all operations on

the buffers’ interface, creating the addressing and scheduling information. To ensure the scheduler

optimally exploits the resource for memory access, it’s necessary to convey the count of logical port

to the scheduler. This indicates the number of parallel access can that can be executed. Moreover,

due to the increasing complexity of the single port wide fetch memory, the latency and fetch width

information also need to pass up to scheduler to guarantee the validity of the schedule.

Subsequently, the compiler employs mapping optimization including port reduction optimization,

chaining and banking described in Chapter 6 to get the optimized unified buffer implementation. As

for buffer mapping stage, the SRAM macro specification, including capacity, word width and number

of port is provided. This information is utilized within this stage to guide the compiler break the

abstract unified buffer into implementations that satisfied the physical constraints. Specifically, if it

is specified to use the PUB with wide fetch SRAM Macro, the vectorization pass will be invoked in

this process.

The final stage involves the buffer mapping code generation. This step is bifurcated into two

different backends: one for generating configurations for CGRAs and one for targeting FPGAs.

For FPGA based implementations, leveraging the code generator introduced in [38], the unified

buffer implementation is converted into C-loops which are then fed into an FPGA HLS(High Level
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Figure 6.6: Compilation process targeting different memory backends.This diagram shows the com-
piler process for different hardware targets. All applications start with Halide which is extracted and
mapped using the Unified Buffer Abstraction. From here, the usage of FPGAs, address generators,
SRAM Macro, and control protocol determines which backend mapping to use. These options in-
clude BRAMs+LUTs, Ready-Valid Buffets, DP-SRAMs + PE, DP-SRAMs + AG, and our physical
unified buffer(PUB) implemented by single port SRAM with address generators.

Synthesis) tool to logic synthesize the design using resource on FPGA fabric including block RAMs

and lookup table (BRAMs + LUTs). For CGRA targets, a different branch of action is taken.

The memories are connected to the hardware compute kernels through the port connection relation

extracted in the unified buffer implementation data structure described in Section 5.7, forming an

application graph which is then mapped onto the CGRA.

Our compiler encounters a divergence point in the CGRA backend based on whether controllers

are pre-built into physical buffers. If the buffers do not contain controllers, the compiler will logic

synthesize the controllers, followed the logic in Figure 6.2a. For a n-dimensional affine expression,

this controller design will utilize n counter, n multiplier and n − 1 adder, where the number of

dimension is tailored for the specific stream pattern each buffer requires. These controllers are then

added to the non-memory part of the application graph that is mapped into PEs on a CGRA. This
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part of the compilation covers machines that have simple dual-ported memories as physical buffers,

DP-SRAM+PE, as well as more complex memories like Buffets shown at the bottom right of

Figure 6.6.

A Buffet [67] is a more sophisticated buffer implementation that monitors data dependencies

between the read and write ports, and supports a ready-valid interface. The schedule established

during the buffer extraction phase is static and cycle accurate, which means all memories are syn-

chronized by a global clock that count the number of unstalled cycles after starting the application.

When mapping to ready-valid timing protocol, our compiler eliminates the schedule generator and

drops the cycle-level scheduling information between write and read operations. Instead, it uses this

information to ensure that write to read, and read (to free) to write dependencies are maintained.

Thus, the global schedule is turned into a local schedule, which controls the delay and rate of read

operation relative to the write operation, instead of using a global cycle count. Given the inherent

dependency checking between write and read operations3 in Buffet, the schedule could be further

simplified by separate read and write into decoupled threads. Only the relative sequencing within

each thread (between read and update) is preserved, as the address generator will issue those op-

erations in order. To generate the free command, the mapper leverages the cycle accurate schedule,

to determine the iteration domain point (loop level) which indicates that the last read operation in

the coarse grained tile has completed. And that iteration domain event will trigger the send of the

free signal to the Buffet.

Since Buffets use a ready/valid timing protocol, in our evaluation section we needed to create a

ready/valid CGRA. This required that all the PEs and interconnect in the CGRA support ready-

valid ports. Specifically, supporting broadcast logic and shift register within a ready-valid system

involves data orchestration and propagation for multiple destinations. Adding this support to our

CGRA were the major changes needed to support buffets.

If the controllers are built into the physical buffers, the compiler configures the embedded con-

trollers to implement the stream access patterns on all of its ports. It will extract a range and a

stride parameter per dimension of the affine expression. Furthermore, a offset will be extracted

to indicate either the starting address or the earliest clock cycle that the operation is executed. This

path is taken for the physical buffers described in Section 6.1, DP-SRAM+AG and PUB, which

are the left bottom branches of Figure 6.6.

3write corresponding to fill operation in Buffet, while read encompasses both read without update and read

with update,



Chapter 7

Evaluations

This chapter evaluates some of the benefits of using the unified buffer abstraction throughout the

compilation process. The next section describes the evaluation methodology used to generate the

results presented in this chapter. Using this method, Section 7.2 compares different unified buffer

implementations, and demonstrates the performance gains possible by having a clean interface be-

tween the compiler and hardware. This clean interface also makes it possible to improve application

performance through better compiler code scheduling/optimization, as shown in Section 7.3. Fi-

nally, Section 7.4 demonstrates the advantage of CGRAs over FPGA solutions, which can only be

achieved with if the compiler uses a higher level model for streaming memories.

7.1 Evaluation Methodology

To evaluate our compiler, we use it to compile the applications listed in Table 7.1 to CGRAs, and

compare the resulting performance to a Zynq UltraScale+ 7EV FPGA. The applications span stencil

operations in image processing and tensor operations in deep neural networks as found in previous

Halide scheduling papers [2, 60]. To generate an FPGA bitstream, our compiler transforms the

buffers in each Halide application into unified buffers and applies all optimizations. We build upon

the work by [38] to generate synthesizable C code that we feed into Vitis HLS. Our system generates

identical synthesizable C as Huff et al., which compares favorably to other competitive DSL-FPGA

systems [38]. The HLS output is fed into Xilinx’s Vivado system that synthesizes, places, and routes

the resulting design at 200 MHz. We use Vivado [87] to report resource consumption, energy use,

and performance.

Our CGRA, shown in Figure 7.2, resembles an island-style FPGA, with LUTs replaced by pro-

cessing element (PE) tiles with 16 bit integer/floating-point ALUs, and BRAMs replaced by mem-

ory (MEM) tiles with different unified buffer implementations, including our optimized PUBs. The

CGRA is embedded in a full system-on-chip (SoC). As is illustrated in Figure 7.1, the CGRA directly

87
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Table 7.1: Halide applications used in the evaluation section. All stencil applications utilize a 64x64
input image size. The ResNet conv-layer operates on a 28x28 image size with the same input/output
channel size IC=OC=16. The MobileNet layer processes a 28x28 image with 4 depthwise channels
and 3 pointwise channels. The GEMM kernel multiplies two 64x64 matrices. The SR-CNN begins
with a 30x30 input image and performs a 1x1 convolution with IC=64 and OC=8. Subsequently,
a 3x3 convolution follows with IC=OC=8. The final layer consists of a 1x1 convolution with IC=8
and OC=64.

Application Type Description

gaussian stencil 3× 3 convolutional blur
harris stencil Corner detector using gradient kernels and non-maximal suppression
upsample stencil Up sampling by repeating pixels
unsharp stencil Mask to sharpen the image
camera stencil Camera pipeline with demosaicking, image correction, and tone scaling
gpyr stencil Gaussian pyramid with four levels of down sampling
laplacian stencil Laplacian pyramid with three levels
resnet DNN ResNet layer using multi-channel convolution
mobilenet DNN MobileNet layer using separable, multi-channel convolution
gemm DNN General matrix multiplication
SR-CNN DNN A three-layer convolutional neural network specialized for super reso-

lution

connects to a large multi-banked, double-buffered memory called the global buffer. The global buffer

has 16 banks; each bank is 256 kB and connects to a different section of the top edge of the CGRA.

The data tiles required by the CGRA are first brought into the global buffer and then streamed

into the CGRA. This allows computation on the current tile in the CGRA to be overlapped with

the movement of the next tile into the global buffer. The global buffer provides deterministic access

latency to the CGRA and hides the non-deterministic latency of the main memory.

Applications are written in Halide, and scheduling primitives are used to define tiling and buffer

allocation. Additionally, a physical hardware constraints file is provided to the compiler as collateral,

facilitating backend identification. Following the creation of a Halide application, all further steps

happen automatically without manual annotation or interventions. When targeting the CGRA, our

compiler outputs a logical description of the design that is fed into custom mapping, placement, and

routing tools designed for this CGRA. To generate power and area numbers, we created a complete

Verilog design of the CGRA and used Cadence Genus and Innovus tools to synthesize, place, and

route the MEMs and PEs of the CGRA in a 16nm technology at 900 MHz. Power numbers are

extracted from gate-level simulations.
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Figure 7.1: SoC consisting of the CGRA and the global buffer.

7.2 Hardware Optimization Case Study

We leverage our flexible backend to compare different approaches for physical buffer design on a

CGRA. There are two major ways to build on-chip storage [68]: you can either use reconfigurable

compute units to do both computation and address generation [3][57] (DP-SRAM + PEs and buffet)

or you can include address generators in the memory components [44][69] (DP-SRAM + AG and

PUB). Comparing the second row with the third row of Table 7.2 shows that even for a simple appli-

cation, it is more efficient to use embedded address generators than to use the processing elements

(PEs) on the target platform. Adding this logic to a dual-port 2048 × 16 bit SRAM (Figure 6.1)

reduces the total unified buffer area by 46% and energy by 25% compared to implementing the

addressing and control on PEs. We achieve further improvements by replacing the dual-port (DP)

SRAMs with single-port (SP) SRAMs. The area of the dual-port 2048 × 16-bit SRAM is around

2.5× larger than a single-port 512× 64-bit SRAM with the same capacity. Thus, as the fourth row

of Table 7.2 shows, even with the extra aggregation and transpose logic, using a wider single-port

SRAM results in a buffer that is 18% smaller and consumes 31% lower energy than the best dual-

ported version. The advantages of adopting a single-port SRAM are further demonstrated by the

power outcomes illustrated in Figure 7.3. Across all benchmark applications, the memory with a

single port wide-fetch width (PUB) exhibits better power performance compared to the dual-port

counterpart with a single-fetch width. From the breakdown of power, the reduced energy per access

associated with the single-port SRAM configuration lead to energy efficiency for the whole memory

tile.
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One-fourth of the tiles are MEMs and the rest are PEs. The memory tile contains the optimized
PUB described in Section 6.1.3 depicted in Figure 6.4b.

7.2.1 Comparison with Buffet

We synthesize a buffet implementation with the same dual-port 2048 × 16-bit SRAM macro. The

SRAM area proportion is lower than what is reported by [67] due to the added interconnect needed

for CGRA reconfiguration. Although the buffet controller takes a smaller proportion of area, its

function is only equivalent to the schedule generator in our PUB controllers, and does not contain

the address generation capability. Even if we ignore the missing address generator, our PUB memory

is smaller and more area efficient. Using more complex controllers and single ported memories seems

to be the best strategy for building physical buffers.

The advantage of the PUB implementation is even larger than Table 7.2 indicates. Our PUB’s

four-word-wide fetch allows it to support two input ports and two output ports, which double the

peak read/write bandwidth compared to the dual-port memories. As shown in Table 7.3’s left two

columns, PUB requires fewer physical buffers for all applications besides resnet.

As for the energy per access, our non-optimized dual-port memory consumes less energy per-

fetch compared with a Buffet. Although the Buffet energy we report does not include the address

generation logic, the more optimized PUB is 35% more energy efficient. This energy saving results

from the wide fetch SRAM bundling multiple reads or writes into one access, which amortizes the

memory and controller energy over multiple memory access.

1Since a buffet does not have an address generator in its design, the area and energy shown in the table do not
include address generation.
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Table 7.2: Total memory area and energy for a 3 × 3 convolution using different implementations
of the physical on-chip storage. Both area and energy decrease as we specialize the physical buffer.
Total area and energy include control logic and address generation except for buffet.

References MEM
Area

(µm2)

SRAM
Area (%)

MEM Energy
(pJ / access)

SRAM
Energy

(%)

Buffet1 [67] 14.3k 86 3.9 84

DP SRAM + PEs [3][57] 31.1k 40 4.8 70

DP SRAM + AG [44][69] 16.7k 74 3.6 92

4 Wide SP SRAM +AGG
+TB +AGs

Ours 13.7k 42 2.5 61

While using wide-fetch memories has many benefits, it also has some costs. It requires the

generated schedules to be padded to align with the fetch width. Table 7.4 shows the RTL simulation

latency data using the same halide schedule. Comparing our PUB latency with other single fetch

width variants illustrates that this padding usually does not affect the latency, but can have a modest

effect if the size of some of the data blocks is small, as it is in resnet. In this case, the convolution

neural networks have complicated memory access pattern where we need to pad on the edge to make

it aligned with our memory fetch width.

Table 7.3: Memory usage comparison between different physical memory implementations(smaller
is better).

# of memories PUB (ours) DP+AG Buffet

upsample 1 2 2
gaussian 1 2 6
harris 5 11 23
resnet 80 80 80

Table 7.4: RTL simulation latency comparison between different physical memory implementa-
tions(smaller is better)

Latency (cycles) PUB (ours) DP+AG Buffet

upsample 16399 16383 16401
gaussian 4095 4095 4100
harris 4095 4095 4139
resnet 9807 8739 8751
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Figure 7.3: Power consumption compared between DP-SRAM +AG and PUB among different
applications.

7.2.2 Full Application Area Evaluation

Finally, we map nine applications to three CGRA architectures with different physical buffer im-

plementations and evaluate their total area. To map to the memory backend without address

controllers, we generate the controllers using PEs based on the number of dimensions in the unified

buffer schedule. In our unoptimized version (1), we make no modifications to the PEs. In the op-

timized version (2), an operator for a counter is added to the PE; this change saves 67% area. As

shown in Figure 7.4, using dedicated address generation (AG) logic in the dual-port memory tile

lets PEs be used exclusively for computation. Breakdown of the PE count is shown in Table 7.5.

Note that these area savings occur while the throughput stays the same. Furthermore, using a wide,

single-port SRAM with more external ports saves silicon area, while expanding functionality. Both

of these properties lead to an average 2.2× less total area needed to implement the same application

as compared to DP + optimized PEs. From the breakdown in Figure 7.4, SRAM macro area reduces

3.3 times, and memory controller area reduces 4.5 times, while PE area remains the same. The area

savings are even greater in deep learning applications, which are memory intensive.

This case study shows the importance of building physical buffers with efficient and customized

controllers that can extract the most performance out of each memory macro. Performing these

optimizations yielded a physical memory implementation that is half the area and energy of the

original design. Of course these optimizations are only possible when one has a flexible compiler

with backend portability. This combination empowers hardware designers to navigate the design

space of memory physical implementations, providing the freedom to explore various configurations

and strategies. This approach ensures that memory designs are optimized to meet the specific
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unmodified PEs for address generation, (2) a DP SRAM with PEs optimized for address generation,
(3) a DP SRAM with optimized address generator (AG), and (4) our final PUB with a single-port
SRAM with fetch width of 4, aggregator (AGG), and transpose buffer (TB) each with their AGs.

requirements of diverse applications, thus enhancing overall system efficiency.

7.3 Evaluation of Compiler Optimizations

The goal for the unified buffer abstraction is to optimize the application mapping to a reconfigurable

architecture, which explores the maximum throughput that fully utilizes all resources. Meanwhile,

several automatic optimization passes are implemented in the flow to increase the computation

occupancy and reduce the memory consumption.

7.3.1 Computation Resource Aware Scheduling

During the buffer extraction stage, a resource aware scheduling algorithm is applied to help the

user to fully utilize the massive pool of hardware on an reconfigurable accelerator. As users, we

could leverage high level scheduling language, such as Halide, to generate the loop nest description

language introduced in Section 4.1. This allow us explore the trade-off between latency and resource

utilization. In our approach, we reinterpreted the loop nest intermediate representation (IR), where

loop unrolling takes on the role of executing different loop iterations in parallel, each assigned to

dedicated hardware resources. Figure 7.5 shows how system performance scales when we employ

loop unrolling and allocate dedicated compute hardware in parallel. Notably, the execution time

exhibits a linear decrease on the logarithmic scale, indicating that our designs are highly scalable in
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Figure 7.5: Execution time versus resource utilization tradeoff by using Halide’s scheduling. At high
unrolling factors, designs do not fit on the CGRA (384 PEs, 128 MEMs); this is indicated on the
charts by the red shaded regions.
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Table 7.5: The table compares the utilization of Processing Elements (PEs) across various memory
implementations. The first column indicates the additional PEs incorporated for address generation,
corresponding to implementation (1) in Figure 7.4. The second column denotes the count of extra
PEs when optimized specifically for address generation, corresponding to implementation (2) in
Figure 7.4. The third column shows the baseline number of PE used for computation contributing
to the blue bar in Figure 7.4

# of PE Extra PE for AGEN Extra PE for AGEN (opt) PE for computation

gaussian 156 19 19
harris 768 91 103
upsample 66 15 0
unsharp 612 72 101
camera 656 146 331
Laplacian 660 100 89
resnet 755 237 128
mobilenet 918 268 96
GEMM 508 353 223

terms of execution time when additional resources are utilized. Furthermore, optimizations in buffer

mapping stage, including shift register creation and banking, help create a buffer implementation that

satisfies the bandwidth require of the parallel computation unit. Combined with the resource aware

scheduling, the compiler flow ensures that both hardware and software elements work harmoniously

to achieve target system performance.

The number of MEMs used decreases at very high unroll factors (16 for gaussian Figure 7.5a

and harris Figure 7.5b) because our compiler replaces line buffers having fewer than 20 words with

register chains. Each design eventually fails to map to our target CGRA when it exceeds 384 PEs

or 128 MEMs. Specifically, designs that exceed available resources are shaded in red in Figure 7.5.

Based on this investigation, an application designer would use an unroll factor of 16 for gaussian, 3

for harris, 3 for unsharp, 8×8 for resnet, and 8×8 for gemm to fully utilize our target CGRA.

Table 7.6: PE usage comparison before and after compute sharing.

# of PE No-share Share

gpyr 16 6
SR-CNN 656 182

Aside from creating parallel hardware, our compiler is capable of sharing the same compute

hardware between different operations. This optimization reduces the resource utilization for the

certain computation pipeline, either with unbalance workload per stage or too large to fit onto a

single CGRA chip.

For instance, in Gaussian Pyramid’s processing, images are progressively downsampled as they

traverse deeper into the pipeline. Consequently, the compute intensity diminishes by a factor of
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Table 7.7: Mem usage comparison before and after compute sharing. The number in parenthesis
indicated the extra memory tile used as bank selection controller.

# of Memory No-share Share

gpyr 3 12 + (8)
SR-CNN 48 48 + (24)

four with each successive layer. A straightforward approach of assigning a dedicated compute unit

for each Gaussian kernel results in a significant reduction in temporal compute occupancy. As de-

picted in Table 7.6, sharing the same compute hardware across different Gaussian kernels reduces

the consumption of processing element (PE) resources. Moreover, sharing the same compute hard-

ware between unbalanced pipeline stages also improve the utilization of the hardware, as shown

in Figure 7.6a. Here it nearly doubles the compute occupancy, which is the proportion of time that

the PEs are utilized. However, it’s important to note that this approach introduces an increase

in latency, approximately by 40%, shown in Figure 7.6b, as the computations must be executed

sequentially. As for memory utilization comparison, shown in Table 7.7, we saw a slight increase

memory usage in the gaussian pyramid application. Because sharing the compute unit changes the

schedule and the intermediate storage unit cannot be implemented as line buffer. As a result, these

buffers were replaced by four memory banks feeding the 2x2 downsample kernel. Meanwhile there

are several memory tile added, which is used to select which memory tile the processing element

should access.

SR-CNN[18] is a multi-layer convolutional neural network proposed for image super resolution

task. It contains three convolutional layers followed by non-linear ReLu layers. However, a straight-

forward mapping of each convolution layer onto dedicated hardware would necessitate over 600

processing elements (PEs), as is depicted in the second row of Table 7.6, surpassing our CGRA’s

resource capacity, which is limited to 384 PEs. To effectively accommodate this DNN on our CGRA,

we leverage the compute sharing primitive and share the same convolutional layer compute hard-

ware across three different layers, executing them sequentially. This strategy substantially reduces

the PE consumption to under 200 while simultaneously improving the PE’s temporal occupancy by

40%. While this approach does lead to a twofold increase in latency and an increase in the number

of memories, we have successfully managed to address this concern by sequentially fusing all three

layers, thereby converting a previously seemingly impossible task into a feasible implementation on

our CGRA.

7.3.2 Memory Resource Aware Scheduling

Machine learning applications demand memory bandwidth to effectively feed the compute units and

maintain continuous computational throughput. The challenge lies in orchestrating the on-chip data
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Figure 7.6: Gaussian Pyramid PE temporal occupancy and latency change after enable compute
sharing.

movement to extract optimal performance. This section delves into our successful mapping of all

eight ResNet convolutional layers onto the CGRA. These layers exhibit variations in terms of input

channels, output channels, image dimensions, and strides. Each layer is properly blocked with 8 input

channels and 8 output channels computed in parallel. Our compiler then schedules the execution

of each layer using the schedule optimization describe in Section 4.2. As shown in Figure 7.8,

we compare three versions of the resource-aware schedules based on compute occupancy, which is

the proportion of time that the PEs are utilized. Compared to the sequential scheduling baseline,

adding the memory resource aware scheduling which enables double buffering, significantly increases

compute occupancy by overlapping data transfers with computation. Applying loop flattening and

loop perfection increases the compute occupancy an additional 10%. Notice that this optimization

is more effective for the early layers in the DNN where the feature maps have larger spatial sizes.

Tiling the width and height of the input feature maps creates an overhead from extra nested tiling

loops. The loop optimizations remove this overhead. While the 4-wide memories help with energy-

efficiency, we also see that they hold occupancy back by approximately 10% as compared to using a

quad-port RAM with single word fetch width. This is the memory implementation that can provide

optimal performance regardless of energy efficiency. As mentioned in the prior section, the wide

fetch PUB needs to wait for extra cycles while fetching useless data when the data does not align

properly in the wide-fetch memories.

In addition to maximizing compute performance, our memory resource-aware scheduler offers the

advantage of enabling hardware designers to comprehensively assess the impact of altering the phys-

ical memory implementations. This capability proves especially valuable when dealing with common

computational patterns, such as matrix multiplication, frequently encountered in machine learning
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Figure 7.7: SR-CNN PE temporal occupancy and latency change after enable compute sharing.

applications. Matrix multiplication involves a multiply and accumulation (MAC) operation, wherein

information from multiple input channels is combined into a single output channel, necessitating the

execution of four memory operations: initialization, update read, update write, and drain. The most

effective implementation will be to assign a dedicated port for each of these operations, leading to a

memory design with two read and two write ports. The compiler’s awareness of memory capabilities

empowers users to explore different hardware designs, including the possibility of mapping partial

sum accumulation onto a dual-port memory (with one read and one write port). However, this

approach introduces serialization of updates and data transfers, causing computational stalls. As

we can see from the Figure 7.9, altering from dual port memory to our PUB with two input and

two output port fully exploit the computation potential. It enhances the compute occupancy for the

ResNet layers, with an increase of approximate 50%, except for the first layer. The relative minor

change observed in the first layer is due to the 7× 7 convolution which is applied in this layer. This

convolution layer is more compute intensive than the subsequent layers. In this specific computation

pattern, the time spent on data loading is negligible compared to the time spent on computation.

7.3.3 Shift Register Optimization

Another optimization we perform is the shift register optimization to reduce memory port require-

ment, and further reduce memory resources usage. As described in Section 5.1, this optimization

involves replacing memories with a small dependency distance between read and write operations

or between two different read operations with small delay buffers or registers and wires. Table 7.8

presents a comparison of the number of memories replaced by this optimization in contrast to the

naive implementation, which relies on exhaustive banking to ensure sufficient bandwidth. In stencil
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Figure 7.8: Ablation study of the effectiveness of coarse-grained loop optimizations. For ResNet
layers, compute occupancy increases as double buffering (DB) and loop optimizations (LO) are
added. A quad-port memory leads to even higher compute occupancy with less energy efficiency.

Table 7.8: Shift register optimization replaces memory tiles with registers or wires.

Original
MEMs

MEMs after optimiza-
tion

Savings (%) Registers
added

gaussian 9 1 89% 6
harris 67 5 93% 30
unsharp 66 6 91% 40
camera 158 25 84% 26
resnet 136 81 40% 0

applications, registers are used to reuse adjacent pixels within stencil windows. In ResNet, data

from the same input channel is reused by compute for producing different output channels in par-

allel. Instead of duplicating input memories, this optimization instantiates a single memory and

broadcasts values, enhancing memory efficiency.

7.4 System Level Evaluation

The unified buffer abstraction lets us successfully compile a wide range of applications in Table 7.1

onto a CGRA. Having the same compiler generate code for both CGRA and FPGA enables us to

fairly measure the energy efficiency benefit of our CGRA architecture. Although we use the FPGA

code generated by our own compiler as the baseline, our FPGA backend is based on Huff’s work
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Figure 7.9: Compute occupancy for different memory backends. Blue bars indicate the schedule
with dual port memory(1 read 1 write) and red bars indicate the schedule with quad port memory(2
reads and 2 writes).

[38] which demonstrated state-of-the-art performance against the leading FPGA compilers [13].

Figure 7.10 shows the resulting energy/operation consumed. The more efficient physical unified

buffer implementation and optimized 16 bit logic mean that the CGRA is 3.5× more efficient than

the FPGA. Figure 7.11 shows the applications’ time per pixel on the CGRA, FPGA, and a CPU.

Time per pixel is the runtime divided by the total number of output values. Our CPU comparison

is an Intel Xeon 4214 with 16.5 MB cache with a 2.2 GHz base frequency. We use the same Halide

application code for each backend, then validate the output images against each other. The CGRA

is able to outperform the CPU, and dominates the FPGA with 4.7× faster runtimes due to its higher

clock frequency. With these comparisons, we see that the compiler optimizations coupled with an

efficient memory design lead to a competitive accelerator design.
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Chapter 8

Conclusion

The evolving landscape of computing architectures has underscored the increasing significance of

accelerators, especially those rely on push memories for optimizing efficiency and performance.

Compilers tailored for these hardware architectures have emerged as crucial tools in the pursuit

of efficient hardware realization. However these accelerators use push memories which explicitly

control all data movement, shifting the responsibility for efficiently managing data movement from

the hardware to both the compiler and programmers. This challenge grows when considering the

need to effectively utilize massive amount of hardware resources that reconfigurable architectures

contain. Previous efforts have often focused on a limited application domain or strongly associated

with a specific hardware backend, sometimes lacking the capability to generate code for practical

systems in a comprehensive manner. Inspired by the famous quote attributed to Butler Lampson,

all problems in computer science can be solved by another level of indirection, in this thesis, we have

introduced a novel abstraction for push memory, namely, the unified buffer, designed to support

the application compilation process to reconfigurable accelerators as well as facilitating physical

hardware design for reconfigurable architecture.

Through the evaluation of the unified buffer abstraction, this abstraction has proven to be versa-

tile, capable of capturing the access pattern in a broad spectrum of algorithms including both image

processing and machine learning. By introducing an intermediate representation, we successfully

decouple the software scheduling problem from the intricacies of hardware mapping. This approach

automates push memory scheduling optimization through a collection of compiler techniques, in-

cluding polyhedral analysis and software pipelining, effectively shielding users from the low-level

hardware details.

In terms of hardware mapping, our framework empowers the exploration of local reuse opportu-

nities and resource consumption reduction, thereby enabling the creation of highly efficient hardware

implementations on reconfigurable architecture. Moreover, the schedule created during the buffer

102
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extraction stage exhibits a level of generality, ensuring backend portability, offering support for var-

ious hardware backends such as CGRA, FPGA, and the accelerator push memory paradigm, Buffet.

Furthermore, this separation of software mapping flow from hardware backend extends support for

hardware implementation design space exploration, facilitating the creation of optimized Physical

Unified Buffers tailored to CGRA architectures.

With this baseline compiler infrastructure there are several research areas that would further

advance the field of compiler technology for reconfigurable accelerators. We currently leverage

Halide scheduling primitives to specify the tiling and storage binding for our schedule. All of this

information is determined by the experienced user of our system. Further research is needed to

automate these tiling and storage level decisions. For instance Interstellar[88] and Timeloop[65]

are already making strides in this direction, though they used a brute force search approach in

auto-scheduling the mapping of DNN application. There’s potential to extend this work to support

guided search or machine learning based algorithm for tiling and storage level optimizations as well

as supporting fusion would greatly improve the overall system.

While the cycle accurate static schedule adopted in our unified buffer abstraction provides enough

information, they can sometimes be overly constrained, particularly in scenarios where the system

exhibits greater dynamism, such as push memory systems with ready-valid interfaces. In such

systems, the absence of an absolute cycle count means that synchronization occurs in a coarser-

grained manner, with only the relative order between operations being significant. Future work can

focus on raising the schedule abstraction level. This could involve developing more generic schedule

abstraction or mechanisms to annotate dependencies on a higher-level representation, such as a tree

structure. By interleaving the granularity of dependencies, compilers can have more flexibility in

lowering schedules down to diverse hardware backends.

Currently, we only support compute resource sharing. Memory sharing between multiple UBs

poses challenges, particularly due to the PUB architectures on our CGRA using affine controller.

To address this, future work can explore ways to extend the concept of memory sharing using

piecewise affine controller designs. This extension would enable efficient utilization of shared memory

resources among multiple UBs, improving overall resource efficiency and performance on CGRA-

based accelerators.

As we look ahead to the post-Moore’s Law era[35], it is evident that domain-specific architectures

will dominate the computing landscape. To avoid the need for reinventing compilers for each new

domain specific architecture, a delicate balance in compiler development must be struck between

portability and efficiency. We introduced the unified buffer abstraction to address this compilation

challenge and validated its potential by developing a compiler capable of mapping image processing

and machine learning applications onto various accelerators. We hope this compiler abstraction not

only could be directly applied by other domain-specific architecture compilers but also offers insights

into scheduling and mapping applications onto push memory accelerators, paving the way for future
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advancements in the field.
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