
FIXTURE: A TOOL FOR AUTOMATED MODELING

OF MIXED-SIGNAL SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Daniel Stanley

September 2023

© 2023 by Daniel Stanley. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.
http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: https://purl.stanford.edu/qg678dn6395

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
https://purl.stanford.edu/qg678dn6395

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Boris Murmann

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Priyanka Raina

Approved for the Stanford University Committee on Graduate Studies.

Stacey F. Bent, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format.

iii

Abstract

Functional modeling of analog circuits is an important step in the verification of today’s mixed-signal

Systems-On-Chip, and it will only become more important as analog-digital interaction becomes

more common. The Verilog functional models must be written by a skilled engineer, but there

is significant repeated code between models for similar circuits. Some tools have been created

to automate this repeated work including the DaVE toolset which uses a library of templates to

organize analysis and modeling strategies for different types of analog circuit, automating the entire

spice-to-Verilog flow for many circuits. This thesis seeks to extend the functionality of the DaVE

toolset and create a new open-source analog circuit analysis tool called Fixture. Fixture is able to

characterize a wider variety of user circuits than DaVE, and users can combine these new analysis

templates with the existing model templates in DaVE to automate the flow from spice netlist to

Verilog functional model.

The features we added with Fixture were motivated by our attempts to model real-world circuits

using DaVE and the issues we encountered with certain user circuits. Rather than make individual

fixes for each circuit we worked to generalize the fixes so they could apply to a wide variety of user

circuits and a wide variety of circuit types across the template library. This led to improvements

with modeling nonlinear circuits, managing model complexity, and debugging user inputs, among

many others. In addition to making user-facing improvements, we also gave Fixture a modular

design so that any user can contribute to the open-source repository with new templates and tests.

This thesis will walk through the features of Fixture and explain both how and why Fixture

operates the way it does, covering many aspects of the tool. We make the process of template creation

easier for engineers by organizing templates into tests. For each test, the engineer only needs to write

the details specific to that test while Fixture automates general tasks like choosing sample points,

performing regression, and plotting results. We use the fault library to allow templates to have a

single testbench for both spice and Verilog circuits. Additionally, this allows Fixture to augment

handwritten testbenches to add stimuli for additional inputs that modify circuit behavior, change

the domain for an input or output signal, or convert a testbench for a single-ended circuit into one

for a differential circuit. After collecting data, Fixture automatically solves a nonlinear optimization

problem to fit coefficients in an equation provided by the template writer. The template writer can

iv

also supply multiple equations to give the user freedom in the tradeoff between accuracy and speed in

the final model. In addition, the owner of the circuit being modeled has precise control over the way

various inputs affect parameters of the equation, including the ability to specify arbitrary nonlinear

relationships with their own coefficients to be fit to the data. Fixture intelligently chooses sample

points to use in circuit simulation to accurately fit these coefficients while reducing simulation time.

Finally, Fixture uses these same sample points to produce plots of various circuit parameters to

allow engineers to quickly verify circuit performance or debug any issues. These improvements over

previous automated modeling tools have allowed us to create models for real-world circuits that

could previously only be modeled by hand. We hope that as new engineers use the tool, the library

will become more robust and more useful.

Fixture can be found at https://github.com/standanley/fixture.

v

https://github.com/standanley/fixture

Acknowledgements

First and foremost I would like to thank my advisor, Mark Horowitz, for the PhD experience you

have given me. I appreciate the amount of time you invest in each of your students, and thanks for

helping me with everything from career advice to tiny bugs in my code. I really enjoyed working

with you.

Thank you to the other students in the circuits group - Sung-Jin, Steven, Zach, Can, Sunil, Luke

- you were my best way of getting unstuck, and I learned a ton from chatting with all of you about

our various projects or just EE in general. Also thank you to Byong for essentially handing off your

project to me; I’m grateful to have had such a solid base to build from. To the rest of Mark’s group,

thank you for group lunch feedback, fun on the group trips, making dinner and playing video games

together, ski trips, and everything else.

Thank you to my friends - on the West Coast, the East Coast, and virtual - for board games,

D&D, playing in the snow, art nights, and lots more. The pandemic made a huge mess of things,

and I’m grateful to Teresa, Jacob, and Lucy for figuring out how to make some good out of it and

for keeping me moving on my PhD at the same time. Thank you especially to my girlfriend Lucy

for always staying supportive and keeping me motivated, I couldn’t have done it without you.

Finally, thank you to my parents for everything you’ve done to help me get here. I’m grateful

that you’ve given me nothing but support throughout this whole journey, and I truly wouldn’t be

here without your help.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

2 Prior Work 4

2.1 Analog / Mixed-Signal Simulation . 4

2.2 Scientific Analog . 5

2.2.1 xmodel . 5

2.2.2 modelzen . 6

2.2.3 glister . 7

2.3 Other Spice Model Verification Techniques . 7

2.4 DaVE Tools . 9

2.4.1 DaVE: A Template Library . 9

2.4.2 A DaVE Template . 10

2.4.3 The DaVE Environment . 14

2.4.4 An Evolving Library . 16

3 A Motivating Circuit 19

3.1 The Challenging Circuit . 19

3.1.1 User input . 20

3.1.2 Choosing Sample Points . 22

3.1.3 Simulation . 23

3.1.4 Model fitting . 23

3.2 Guiding Principles . 25

3.2.1 Provide Reasonable Defaults, but Advanced Options 25

3.2.2 Follow a Process that is Familiar to Engineers 26

3.2.3 Make Data User-Accessible . 27

vii

4 A Template Library 28

4.1 Structure of a Fixture Template . 28

4.2 Parameter Equations . 31

4.3 Optional Input Types . 34

4.3.1 Pinned Values . 34

4.3.2 Analog . 34

4.3.3 Quantized Analog . 35

4.3.4 True digital . 37

4.3.5 Load Specification . 37

4.3.6 Challenges with Process / Temperature variation 38

4.4 Updating Equations with Optional Inputs . 39

4.4.1 Equation Hierarchy . 39

4.4.2 User Configuration: Optional Input Dependence 41

4.5 Extending a Template with Vectored Inputs and Outputs 43

4.6 Extending a Template with Custom Domain Changes 46

4.6.1 Linear Transformations . 47

4.6.2 Time-Based Transformations . 48

4.7 Using the Template . 50

5 Testbench Generation 51

5.1 Choosing Input Points . 51

5.1.1 Latin Hypercube Sampling and Orthogonal Sampling 52

5.1.2 Scaling Input Samples . 52

5.1.3 Custom Input Constraints . 54

5.2 The Testbench Description Language fault . 55

5.2.1 Testbenches Written in Python . 56

5.2.2 Domain Translation . 57

5.3 Templatized Testbenches . 62

5.3.1 Writing a Templatized Testbench . 62

5.3.2 Vectoring a Testbench . 63

5.3.3 Optional Input Timing . 65

6 Model Fitting 66

6.1 Regression . 66

6.1.1 A Challenging Example . 66

6.1.2 Challenges with Nonlinear Fitting . 67

6.1.3 An Unsuitable Sampling Approach . 69

6.1.4 Fixture’s Improved Approach . 72

viii

6.1.5 Additional Nonlinear Fitting Techniques . 74

6.2 Plotting . 76

6.2.1 Fixed Optional Input Plots . 76

6.2.2 Parameter vs. Optional Input . 79

6.2.3 Final Model . 81

6.2.4 Contour Plots . 81

6.3 Additional Outputs from Fixture . 83

6.4 Fixture Checkpoints . 86

6.5 Preliminary Model Generation . 86

7 Conclusion 88

ix

List of Figures

2.1 Phase Blender Explanation . 11

2.2 Phase Blender Smooth Relationship . 12

2.3 Dave Environment . 15

2.4 Phase Blender Glitching Behavior . 18

2.5 Phase Blender Wrapping . 18

3.1 Challenging TIA . 20

4.1 Template Structure . 29

4.2 Amplifier Nonlinearity Comparison . 33

4.3 Example Wrapper for Circuit with Dynamic Loading and Process Variation 38

4.4 Vectoring Dynamic Response Ambiguity . 45

4.5 Custom Domain Translation . 47

4.6 DragonPHY Sample-and-Hold Timing . 49

5.1 Input Sample Distribution . 53

5.2 Histograms Showing Issues with Independent Bit Sampling 54

5.3 Time Domain Read . 61

6.1 Basic Linear Model Scatterplot . 70

6.2 Estimating Parameter from Incomplete Data . 71

6.3 Fixture’s Sampling Strategy . 73

6.4 Fixed Optional Input Plots . 77

6.5 Fixed Optional Input Plots - Debugging Example . 78

6.6 Parameters vs. Optional Inputs: radj . 79

6.7 Parameters vs. Optional Inputs: vdd . 80

6.8 Reciprocal Init Trick Debug . 81

6.9 Final Model Plots . 82

6.10 Final Model Plots vs. Optional Inputs . 83

6.11 Contour Plots - Successful Example . 84

x

6.12 Contour Plots - Debugging Example . 85

xi

Chapter 1

Introduction

For decades, device engineers have been shrinking transistors for improved speed and low-power

performance. This has worked wonders for digital circuits, resulting in the incredible computing

power we have today. Unfortunately, the benefits that digital circuits get from this scaling do not

always apply to analog circuits as well. In fact, optimizations made by device engineers to benefit

digital circuits can have detrimental effects when used in analog designs [1]. If we want improved

digital circuits we cannot leave analog behind: more processing power will come with a need for

faster wired and wireless communications, both of which depend on improved analog performance.

Even fully-digital chips always include some analog components for power management and for

communicating data on and off chip. We need some way to apply transistor scaling improvements

to analog circuits.

Besides relying on improved analog devices directly, there are several ways we can use improved

digital devices to compensate for the limited performance of analog circuits [2, 3]. First, we can

simply use more sophisticated digital algorithms to compensate for limited analog performance [4–6].

For example, in a high-speed link receiver the analog Continuous-Time Linear Equalizer (CTLE)

or even the sampling phase adjustment can be eliminated and replaced with digital processing [7].

Second, we can improve analog circuit performance through the use of digital trim bits [8]. Imperfec-

tions in analog circuits due to process variation can be detected and corrected as part of a calibration

routine. For example, the linearity of a time-interleaved Analog-to-Digital Converter (ADC) can be

improved by measuring and correcting the offset in each individual channel. By estimating the

offset statistically over many measurements and applying the correction in the analog domain, the

correction can have sub-Least-Significant-Bit (LSB) precision, which is better than what is possible

with digital post-processing alone [9].

Methods that measure an imperfection and apply a fix to the analog circuitry, rather than

simply making a numerical correction in the digital domain, can achieve better performance at the

cost of greater coupling between the analog and digital blocks. This greater coupling leads to more

1

CHAPTER 1. INTRODUCTION 2

effort in design and verification, and a higher likelihood of mistakes in the circuit [10, 11]. To make

matters worse, this complexity often comes in the form of a feedback loop between analog and digital

circuitry, meaning that the design process is often split between an analog and a digital circuit design

team. The interface between analog and digital blocks is at high risk for design mistakes because it

relies on communication between different engineers on different teams who work at different levels

of design abstractions to agree on a specification [12]. Verifying the interface through simulation

is also challenging because digital calibration and adaptation loops can take many cycles to verify,

but analog circuits take significant computation to simulate each cycle. Chip design teams address

this challenge through a combination of block-level testing, interface specifications, mixed-signal

simulations, and tests using functional models of the analog circuits.

Functional modeling presents an interesting opportunity because it opens the door to system-

level testing while creating new challenges in the verification of the functional model itself. The idea

behind functional modeling is to write a Verilog1 module which has the same behavior as an analog

block. This model can then be used in place of the spice representation of that block for simulation,

turning a mixed-signal simulation into a fully-digital simulation. With carefully-written analog

models, these fully-digital simulations are significantly faster than their mixed-signal counterparts.

This allows engineers to simulate the hundred thousand or more cycles necessary to validate the

feedback loops between analog and digital components. In extreme cases, the models can even be

optimized for an FPGA in order to run the trillions of cycles necessary for Bit Error Rate (BER)

testing [13]. Besides simulating more cycles, functional models also allow engineers to simulate more

blocks at once, enabling an entire SoC to be simulated at once [14].

Engineering teams have settled on functional model creation as a necessary piece of modern

SoC verification, but the creation of functional models is still a challenging and specialized process.

Knowledge of analog circuit behavior and digital simulation techniques are both necessary to create

a good model, making it relatively difficult to find engineers suited for the task. These engineers

must work with the analog design team to understand the important nonidealities of the circuit

being modeled and ensure that the correct behaviors are represented in the model. They must also

work with the digital verification team to understand the different testbenches the model will be

used in to strike the right balance of speed and performance of the model. While this makes it

challenging to write a new functional model from scratch, it is fortunate that many of the models

being written overlap significantly with previous models. Designs that are updates to a previous

generation or ports to a new process node are often similar enough to a previous model that the

only changes are updates to coefficients or bus widths. We believe that this combination of a

highly specialized engineer doing largely repetitive work gives ample motivation and opportunity to

automate functional model generation.

Ideally, we desire a tool that takes a spice model as input and produces a fast and accurate

1Throughout this thesis, “Verilog” will be used to refer to both Verilog and SystemVerilog.

CHAPTER 1. INTRODUCTION 3

Verilog functional model as output. Of course, this is already a challenging problem for a human

engineer, and an automated tool that works in all situations is out of reach for now. Still, many teams

have already created automated tools that tackle this problem in specific contexts [15] (focusing on a

subset of circuits), or focus on certain subproblems [16–19] (verifying existing functional models, help

engineer to hand-write models), or address the same problem in a slightly different way [20] (using a

custom non-Verilog simulator). Each of these approaches has its own advantages and disadvantages

which we will discuss in Chapter 2. The world of digital design tools is more mature than that of

analog tools [21], but we believe that the complexity of analog design should not prevent us from

having equally capable tools for analog and mixed signal design.

This thesis describes my work in taking an existing approach to automated functional modeling,

the DaVE ecosystem, and making significant changes and improvements resulting in the tool Fixture.

Section 2.4 describes the state of the DaVE ecosystem at the start of the Fixture project, which

includes an explanation of the template-library approach that both DaVE and Fixture take to

modeling. Chapter 3 gives an example of a circuit that DaVE could not model well, serving as

motivation new functionality in Fixture. The next three chapters describe Fixture itself, discussing

in detail the solutions to the challenging problems presented in Chapter 3. Chapter 4 focuses on

the template library system. It describes the work that a template writer needs to do to add a

new circuit type to the Fixture library, as well as the steps the tool can perform automatically to

extend a template to match a particular user’s instance of a circuit. Chapter 5 explains how Fixture

generates a testbench, including the choice of sample points, compilation to different simulators, and

the hand-writing and automatic extension of templatized testbenches. Next, Chapter 6 describes the

model-fitting process. This chapter explains the many challenges and solutions encountered when

replacing DaVE’s existing linear model fitting to nonlinear models, with a special focus on how to

help the user understand and debug this more complicated process. Finally, Chapter 7 concludes

the thesis and offers some insight into future research directions.

Chapter 2

Prior Work

Engineers have tackled the problem of mixed-signal modeling with many different approaches. The

work in this thesis, Fixture, has the capability to automatically characterize a wide variety of circuits.

This characterization is mainly used to produce functional models, but can also be used to verify

existing functional models. In order to give points of comparison for each of these features, this

section will discuss tools that can model specific circuit types, model multiple circuit types, verify

that existing testbenches cover all the circuit behaviors, and verify that existing functional models

match the circuit. Additionally, we will describe prior work on the DaVE set of tools since Fixture

takes the same approach to circuit modeling and ultimately fits in as another tool in the DaVE

ecosystem.

2.1 Analog / Mixed-Signal Simulation

Before discussing various approaches to analog functional modeling, we will first discuss Analog

/ Mixed-Signal (AMS) simulation as a baseline. The main advantage of AMS simulators is that

they allow for designers to directly use the circuit descriptions they already have in the analog and

digital domains, eliminating any additional modeling work and any mistakes that could arise during

that work. Unfortunately, AMS simulation is often not fast enough to handle large system-level or

long-running testbenches.

Because many circuit design teams already use Cadence Spectre [22] for circuit simulation, Ca-

dence Spectre AMS is a popular mixed-signal simulator [23]. It combines two existing commercial

tools, inheriting the benefits of highly-tested and well-known simulators on both the analog and

digital sides. There is significant benefit in using an AMS simulator that is compatible with the

technology models and simulator settings already being used by the analog design team, and this

makes it hard for many teams to switch to any other AMS simulator.

An alternative to Cadence Spectre AMS is SystemC AMS. SystemC AMS offers more flexibility

4

CHAPTER 2. PRIOR WORK 5

in the implementation of analog blocks, including control over the way timed signals are abstracted

to reduce events [24, 25]. Additionally, SystemC AMS is transparent about the way the internal

circuit solver runs. In some cases this can allow users to change their circuit representation to

optimize simulation speed without changing the results. One user was able to optimize their model

of a resistive crossbar array based on the specific matrix operations being done by the SystemC AMS

simulator, reducing simulation time by 93% compared to Cadence Spectre [26]. In Section 2.3 we

also see SystemC AMS models used as an analog representation language for model comparison.

Other mixed-signal simulators exist with different capabilities. For example, FIDELDO [20] is a

simulator that significantly predates both Cadence Spectre AMS and SystemC AMS. It is notable

because, in addition to high-level digital descriptions and spice-level analog descriptions, it allows

for functional analog descriptions in the Laplace-domain and z-domain. Laplace domain modeling

will be discussed in the next section in the context of a more modern tool, xmodel [27].

2.2 Scientific Analog

Scientific Analog is a company with its own set of tools for automated functional model genera-

tion. xmodel provides a library of SystemVerilog building blocks that model circuit behavior in the

Laplace domain [27]. modelzen can automatically convert spice netlists to xmodel [28]. Finally,

glister provides a graphical interface to the previous two tools for engineers working in Cadence

Virtuoso [29].

2.2.1 xmodel

xmodel is organized as a library of individual building blocks that can be used to construct ana-

log circuit models, but each block takes a Laplace-domain approach to modeling an input-output

relationship. Every signal in xmodel is represented using a datatype called XREAL. Rather than

representing a single voltage, as is normally the case for SystemVerilog’s real type, each XREAL

variable holds a set of Laplace coefficients. Those coefficients correspond to the following waveform

as a function of time: ∑
i

ci · tmi−1e−aitu(t) (2.1)

The same waveform can be represented in the Laplace domain as a function of s:

∑
i

bi
(s + ai)mi

(2.2)

Notice that the number of coefficients needed to represent this variable depends on i; indeed, the

SystemVerilog implementation of this datatype links to a C variable whose size can vary.

The advantage of using this datatype is that it can represent the behavior of a linear circuit with

CHAPTER 2. PRIOR WORK 6

a single set of coefficients. In other words, as long as the input is not changing and the circuit is

linear, the coefficients do not need to be recalculated. Additionally, cascading multiple linear circuits

will always result in an output waveform that is well-represented by this datatype. Even in circuits

with a strong non-linear element, this type of analysis can be beneficial. For example, many high-

speed links use a Decision Feedback Equalizer (DFE) receiver, which is made up of a pre-emphasis

filter, channel, linear equalizer, sampler, and DFE filter. Of these, every block is well-modeled as

linear and time-invariant (LTI) except the sampler. Luckily, the output of the sampler only needs

to be updated once per clock cycle so the number of coefficient updates that xmodel needs to do is

small. As a result the entire system can be modeled with a small, constant number of events per

clock cycle, resulting in fast simulation times [30].

The drawback of xmodel is apparent when the circuit being modeled is not linear. In the case

of the sampler we are able to make an optimization based on the limited output update rate, but

in general xmodel uses a piecewise-linear approximation of the circuit’s transfer function. In this

case, an event must occur to update the coefficients each time the circuit crosses from one linear

piece to another. Additionally, the tool needs to determine when these crossings will occur, which

requires additional computation. When the number of piecewise linear sections is small, xmodel

can still out-perform time-domain representations such as those in a traditional spice simulator or

other functional models [31]. This approach, however, does not scale as the number of piecewise

linear sections increases, which is required if the circuit is strongly nonlinear or even if it is weakly

nonlinear but the required accuracy is high.

It is worth noting that there are other ways to extend the Laplace representation to nonlinear

circuits besides breaking the behavior into linear pieces. The creators of xmodel have also pub-

lished results on using a Volterra Series approximation of weakly nonlinear circuits, and have found

improved performance in some cases [32].

2.2.2 modelzen

modelzen is able to automatically build xmodel models of a user circuit by analyzing the netlist and

running simulations. The first step is to break the user’s circuit into chunks that can be modeled

independently. Because of the event-based nature of digital simulation, functional models are always

feed-forward, so any portion of a circuit with continuous-time feedback cannot be split into multiple

blocks. The wire driving a transistor gate can typically be treated as strictly feed-forward, so

modelzen uses these connections as the breaks between independently-modeled chunks. The tool

automatically inspects the circuit netlist to find these breaks and group the remaining channel-

connected components [33]. Component parameters are automatically parsed from the spice netlist

and inserted into the appropriate xmodel blocks. The behavior of each component can also be

determined through simulation and modeled as piecewise-linear in the Laplace domain using xmodel

primitives. During the hand-modeling of a large DRAM array, modelzen was able to handle the

CHAPTER 2. PRIOR WORK 7

model creation for the 9-transistor bit-line sense amplifiers [34].

Although modelzen can save significant engineering effort by creating models automatically, it is

limited in the types of circuits it can model well. Unlike modelzen, an engineer who is familiar with

a particular analog circuit can consider the larger context of how each channel-connected component

behaves and make intelligent decisions about how to appropriately simplify, combine, or eliminate

them in the model. As a result, an engineer can manually use xmodel primitives to describe the

high-level behavior of a circuit and create more efficient models than modelzen for some circuits. We

will discuss in Section 2.4 how DaVE, and ultimately our tool Fixture, aim to codify the strategies

used by engineers for specific circuit types to automatically apply them to future circuits.

2.2.3 glister

Finally, glister is a graphical interface to both xmodel and modelzen. Although it does not add

functionality in terms of circuit modeling, it makes it easier for users to create models and interpret

results. Automated generation tools are only useful if users are able to take advantage of them, so

the importance of a good user interface should not be underestimated.

2.3 Other Spice Model Verification Techniques

Although this thesis focuses mainly on functional model generation, there are other techniques for

verifying spice model correctness. In this section we will consider examples of spice testbench cover-

age metrics, comparison between spice model and high-level functional description, and comparison

between spice and behavioral models. Although the approach is very different, these tools and our

tool Fixture are ultimately trying to achieve the same goal: to verify the correctness of the user’s

circuit. This means that the issues addressed by these tools are likely issues that Fixture needs to

address as well. For example, some tools aim to verify that existing testbenches exercise all im-

portant circuit behavior; we will also need to check whether Fixture’s testbenches achieve this goal

(Sections 2.4.2, 5.1). Other tools check whether an existing functional model matches the circuit;

we should also have a strategy for analyzing Fixture’s produced models (Section 5.2). In short, we

can use this previous work to be better critics of our own work and ensure we are not ignoring any

aspects of the problem.

With or without functional modeling, analog design engineers are expected to write testbenches

for the analog blocks they create. In the world of software development there are code-coverage

metrics to ensure that hand-written tests are accurately covering all aspects of the program being

tested, but no standard exists for doing something similar for analog circuit tests. Several coverage

metrics for analog circuit testbenches have been proposed to fill this gap. Sanyal et al. [16] propose a

technique for measuring coverage by checking the range of values reached by each signal in an analog

testbench, with special consideration for analog-specific features such as signal slope and glitches.

CHAPTER 2. PRIOR WORK 8

The authors then extend this concept to include cross-coverage, meaning that the testbenches can

be required to exercise combinations of two different metrics simultaneously [17]. This is useful for

finding behaviors that only occur when multiple signals are at their extreme value simultaneously.

We apply a similar concept in our tool Fixture to generate sample points that cover all circuit

behaviors (Section 5.1).

Fürtig et al. propose a similar coverage metric [18], applying a numerical measure to the per-

centage of the state space covered. For small circuits, however, these authors are also able to apply

a different approach: the set of states covered over time from an initial starting set of states can be

computed using a hybrid automaton. This same technique is used and explained by Lee et al. [35].

In short, the space of all possible states for a nonlinear analog circuit is discretized, and a set of

states is defined as a set of discrete states and limits on continuous variables within those states. A

transient simulation can then be run on sets of states simultaneously by using a linearized model of

each discrete state to determine the dynamics. This is reminiscent of formal verification methods

for digital circuits which can reason about sets of states simultaneously [36]. The main challenges

for applying these concepts to analog designs are the accuracy and the computation time; generally

accuracy is increased at the cost of more computation time by discretizing into smaller pieces. So

far, this has limited the strategy to small designs with around a dozen state variables. Additionally,

this strategy is only useful when the set of reachable states is bounded or converges to a stable

point after some time. This makes it useful, for example, for testing the startup behavior of a bias

generator or the settling behavior of a dynamic amplifier with a fixed input but prevents it from

being used to verify circuits with changing output such as an oscillator.

Next, we will consider several tools doing model comparison. These tools start with a spice model

of a circuit and a pre-written functional model of the same circuit, and check whether the behavior

of the two is equivalent. One way to approach this problem is direct waveform comparison. Both

models are simulated with the same input stimulus, and their outputs are recorded and compared.

Most often, the output waveforms are in the voltage-vs.-time domain and deviation between the

waveforms is quantified as a difference in voltage and/or time. It is up to the engineer to determine

whether a particular amount of deviation is within an acceptable range or not. Cadence amsDmv

has support for this type of waveform comparison, plus additional features like glitch detection and

glitch removal [37]. In many cases, it is better to consider circuit inputs and outputs in a domain

other than the voltage-vs.-time domain (see Section 2.4.2 for further discussion and examples). For

example, Coskun et al. [15] created a model checker than only applies to linear filters, and as a result

is able to work in the Laplace domain. Their tool compares the transfer function of a spice netlist

to a functional model written in SystemC AMS.

Finally, the idea of model checking in alternative domains is extended to cover many circuits by

Singh et al. [38]. In their work, the domain of each input and output of a circuit is specified, and

possible domains include frequency, phase, and charge. The tool automatically generates random

CHAPTER 2. PRIOR WORK 9

testbenches working in the specified domains and runs them on both the spice and functional models.

The outputs are compared in the proper domain to see if they match within a specified error

tolerance. Additionally, the tool can automatically search the input space to find the worst-case

deviation between the two models. This approach is very similar to the model-checking strategies

of DaVE (Section 2.4) and Fixture. The difference is that DaVE and Fixture model the collected

results with a set of parameters first, and then compare the parameters. Both DaVE and Fixture

have other capabilities as well, and DaVE will be discussed in the next section.

2.4 DaVE Tools

The Big-Digital, little-analog Verification Environment (DaVE) tools follow a template library ap-

proach to automatically model analog blocks [39, 40]. We will discuss DaVE in detail both as a

review of prior work and because the creation of Fixture was motivated by DaVE tools. We will

explain how DaVE works (Section 2.4), present some of the challenges that DaVE could not handle

(Chapter 3), and then describe how Fixture overcomes those challenges (Chapters 4, 5, 6).

2.4.1 DaVE: A Template Library

When comparing automated modeling frameworks we find it helpful to place them on a spectrum

from general to specific. General frameworks use one approach to model many different circuits,

while specific frameworks use a different approach for each circuit. We can use this lens to evaluate

a template-based modeling framework and discuss the advantages and disadvantages of DaVE.

One can imagine a tool that uses a single modeling strategy for every type of circuit. For example,

the tool could use a Finite Impulse Response (FIR) filter and simply adjust the parameters of the

filter to match the behavior of the given circuit. The biggest benefit of this one-size-fits-all approach

is that the tool creator can spend a relatively small amount of time on the tool itself compared

to the number of useful circuit models it can produce. In other words, extending one model to

many different circuits saves a lot of engineering effort. At the same time, it makes using this

modeling strategy harder for each user. While our FIR model can be made more accurate by

reducing the timestep, and can even handle nonlinear circuits by dynamically adjusting the filter

coefficients based on the circuit state, it puts the burden on the user to figure out how and when to

adjust these parameters appropriately. These models also have a fixed trade-off between accuracy

and performance which might not match the modeling goal. This limited approach to modeling also

means there will always be circuits or specific circuit behaviors that the tool cannot model efficiently

or cannot model at all. How would an FIR filter be used to model an output glitch that only appears

when the relative timing of two inputs is in a certain range (for example, the phase blender glitching

behavior in Figure 2.4)? The most general modeling strategy, using one approach for every circuit,

saves a lot of engineering effort but is ultimately limited in the number of circuits it can model well.

CHAPTER 2. PRIOR WORK 10

On the other end of the spectrum, one can imagine specifically hand-modeling every circuit

individually rather than building an automated tool. In this case every possible circuit is well-

modeled, or at least modeled as well as the state of the art. Although this approach covers every

circuit, and can employ any trick or strategy to create the best model, it saves no engineering effort

through the use of automation.

DaVE uses a template library to try to capture the benefits of both the general and specific

modeling approaches in one framework. DaVE includes a collection of templates where each template

has instructions specific to modeling one type of circuit. For example, there is one template for all

amplifiers, another for all sample-and-hold circuits, and another for all phase blenders. Then, the

tool has the ability to modify and extend those templates to match the user’s specific instance of a

circuit. Extensions might include the addition of a bias current or calibration inputs. The extensions

allow each template to apply to a variety of user circuits [41].

The goal is to have a large library of basic templates and to combine it with a long list of

extensions that can be made to any template. Unfortunately these two goals are sometimes at odds,

since it can be difficult to write an extension that works with a wide variety of circuit templates

and difficult to write a circuit template that is compatible with every possible extension. DaVE

addresses this problem by choosing a central abstraction that every template must conform to. This

way the tool creator can write extensions that are compatible with the central abstraction without

having to consider every template in the library. The downside to this approach is that it provides

a constraint on the template design which may make it more difficult to write templates for certain

types of circuit. In choosing the central abstraction there is some tradeoff between giving flexibility

to the model writer and giving flexibility to the extensions. The specifics of the central abstraction

used by DaVE will be discussed in the next section.

2.4.2 A DaVE Template

Although templates contain circuit-specific details, the ability to extend a template to handle dif-

ferent user circuits is a universal strategy that the tool can apply to any template. This need for

universal modifications restricts the templates to have specific properties that the tool can modify in

a universal way. With DaVE, each template must follow a specific format: the inputs and outputs

are transformed into a space where they follow a linear, or piecewise linear, relationship. We will call

this relationship the “central relationship” of a circuit. For a differential amplifier, this means the

positive and negative input voltages are transformed into a differential and common-mode voltage,

and the template works in the differential / common mode space. As another example, we will

consider a phase blender circuit (Figure 2.1). For a phase blender, signals are transformed from the

voltage vs. time domain to the phase domain. Before this transformation the output is a digital

signal, so the output value changes abruptly at each edge. After the transformation the output

surface is smooth, as demonstrated in Figure 2.2. This notion of transforming each circuit to its

CHAPTER 2. PRIOR WORK 11

AB C D E FG

phase_in_a

phase_in_b

ctrl_in

phase_out

time

Figure 2.1: Diagram of phase blender operation. A phase blender takes two input clocks with
different phases (phase in a and phase in b) and produces an output clock (phase out) whose
phase is somewhere in between. Phase blenders typically have an additional input (ctrl in) to
adjust the exact position of the output phase. In this example, when ctrl in is low we can see that
the output phase is closer to the phase of phase in a than phase in b (referring to the labels on
the time axis, B is closer to A than to C). When the value of ctrl in increases (D), the output
edge moves later (F is closer to G than to E). Typically the output edge will occur at a time in
between the two input edges, but there can also be delays due to buffers that move the output edge
a constant amount of time later.

inherently “analog” domain works well with a template library: each template can correspond to a

different domain transformation.

The fact that the central relationship is smooth in the proper domain not only makes modeling

easier, but also allows DaVE to effectively capture circuit behavior through simulation. Because

simulation time is finite it is impossible to test every possible stimulus for a continuous-value analog

input. This means the functional model will sometimes have to guess an output for an input that

DaVE has never simulated before. If we make the assumption that the circuit response is smooth,

predicting the output for a never-before-seen input can be done by interpolating between nearby

known input-output pairs. In other words, a non-smooth response may have spikes or discontinuities

that would not be visible to the modeler unless the corresponding inputs were sampled directly; we

rely on the smoothness assumption to guarantee that our model is not missing any behaviors. We

consider this assumption to be the definition of an analog circuit: if the response is not smooth,

then the circuit is not analog and DaVE makes no claim that it is able to model the circuit. In

practice, essentially all real-world analog circuits conform to this smoothness assumption and could

be modeled by DaVE with the proper template [42, 43].

Because of the smoothness assumption DaVE is able to characterize circuits with simulation

results only, which has the additional benefit that DaVE never needs to consider the implemen-

tation of the circuit. By ignoring the implementation, DaVE is able to use one template for all

implementations of a particular type of circuit. For example, amplifiers can be implemented with

a single transistor, or in a cascode configuration, or as multiple gain stages in feedback, but the

CHAPTER 2. PRIOR WORK 12

in_p
has
e_d
elay

0.00
0.05

0.10
0.15

0.20
0.25

0.30
therm

om
eter_code 0.0

2.5
5.0

7.5
10.0

12.5
15.0

o
u
t_d
e
la
y

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(a)

in_phase_delay
0.000.05 0.10 0.15 0.20 0.25 0.30

thermom
eter_cod

e0.02.55.07.510.0
12.515.0

o
u
t_
d
e
la
y

0.10

0.15

0.20

0.25

0.30

0.35

0.40

(b)

Figure 2.2: Two different view of the same simulated input-output pairs from a phase blender. (a)
Note that the in phase delay and out phase delay axes are in the phase domain, which allows
the response to be smooth. (b) Although the response is smooth, it is not linear: the results do not
lie on a flat plane. Although this may present a challenge for modeling the phase blender, it does
not affect our ability to capture the entire response with a finite number of sample points.

same testbench can characterize all of these. Additionally, the same testbench stimulus can be used

to exercise a functional model of the circuit to verify that it has the same behavior as the original

circuit.

DaVE is able to extend each circuit template by adding additional inputs to the circuit and

allowing them to modify the central relationship [44]. The inputs that go through domain trans-

formations and through the central relationship as described in the previous paragraph are called

“required” inputs. Any additional inputs that modify the relationship are called “optional” inputs.

For example, for a phase blender circuit the “required” inputs are the A and B input clocks to blend

between (Figure 2.1). Every phase blender will have these two inputs, and they need to go through

a transformation from the voltage vs. time domain to the phase domain. Although most blenders

also have a control input to adjust the location of the output phase, it is possible to build a phase

blender without one, so this is considered an “optional” input.

To better understand how DaVE handles optional inputs, Equation 2.3 shows the relationship for

a basic amplifier with input in, output out, and no optional inputs. The DC model for this circuit

has two parameters, A and B, which correspond to the slope (gain) and intercept (offset). When

the tool has data for many input-output pairs, it is easy to use linear regression to find least-squares

best-fit values for A and B.

out = A · in + B (2.3)

When optional inputs are added to the circuit, for example a current bias, ibias, each of these

CHAPTER 2. PRIOR WORK 13

parameters is replaced by a regressable function of the optional input:

A = c1 + c3 · ibias (2.4a)

B = c2 + c4 · ibias (2.4b)

out = A · in + B (2.4c)

In this case the we assumed that each parameter is linear with respect to ibias. The function

does not have to be linear, however. Any function is acceptable as long as the coefficients can be

found using linear regression, which is why we call the class of acceptable functions “regressable.”

In other words, the output must be linear with respect to the coefficients, even if it is not linear

with respect to the optional inputs. Here is a nonlinear example:

A = c1 + c3 · ibias + c5 · ibias2 (2.5a)

B = c2 + c4 · ibias + c6 · ibias2 (2.5b)

out = A · in + B (2.5c)

We can substitute these expressions for A and B back into our original equation to find the

circuit output as a function of the input and ibias:

out = (c1 + c3 · ibias + c5 · ibias2) · in + (c2 + c4 · ibias + c6 · ibias2) (2.6)

By multiplying through the parentheses in Equation 2.6, we can see that the entire right hand

side is regressable and all six coefficients can be found with one application of linear regression. This

is how DaVE is able to model circuits with arbitrary optional inputs affecting the behavior of the

circuit.

DaVE splits optional inputs into three types: analog optional inputs, quantized analog optional

inputs, and true digital optional inputs. In Equation 2.6 above, ibias would be considered an analog

optional input because it has a value that can vary continuously. Next, we can add a quantized analog

optional input, adj[1:0]. This optional input is physically quantized such that each bit of the input

is a zero or one, but it still behaves like an analog input because the effect of each bit adds linearly

with the effects of the other optional inputs. As a result, each bit of the bus gets its own term in

the expression:

CHAPTER 2. PRIOR WORK 14

A = c1 + c3 · ibias + c5 · ibias2 + c7 · adj[1] + c9 · adj[0] (2.7a)

B = c2 + c4 · ibias + c6 · ibias2 + c8 · adj[1] + c10 · adj[0] (2.7b)

out = A · in + B (2.7c)

Finally, we can add a true digital optional input. A true digital optional input completely changes

the behavior of the circuit, so we use a separate copy of the equation with independent coefficients

for each possible value of the true digital input. Here we add the mode optional input, and we see

how it essentially doubles the existing expression with one copy corresponding to each possible value

of mode:

A = c1 + c3 · ibias + c5 · ibias2 + c7 · adj[1] + c9 · adj[0] (2.8a)

B = c2 + c4 · ibias + c6 · ibias2 + c8 · adj[1] + c10 · adj[0] (2.8b)

C = c11 + c13 · ibias + c15 · ibias2 + c17 · adj[1] + c19 · adj[0] (2.8c)

D = c12 + c14 · ibias + c16 · ibias2 + c18 · adj[1] + c20 · adj[0] (2.8d)

out =

{
A · in + B, mode = 0

C · in + D, mode = 1
(2.8e)

With these three types of optional inputs, DaVE is able to extend a template’s description of

a circuit to match the pinout of the user’s circuit, and allow the user circuit’s pins to affect the

behavior of the modeled circuit in a realistic way. Fixture implements similar optional input types,

which will be discussed in Section 4.3.

2.4.3 The DaVE Environment

The original DaVE tool is divided into three sub-tools: mProbo, mGenero, and mLingua. We will

summarize these tools, and propose that our new tool, Fixture, should be considered a part of the

DaVE environment. Figure 2.3 provides a visualization of the different tools within DaVE.

mProbo

mProbo is the portion of DaVE that deals with circuit characterization. mProbo begins with a user’s

description of the inputs and outputs of their model, and modifies the template equations according

to the user’s optional inputs as shown in the previous section. In order to collect the input-output

pairs needed to fit a model, mProbo produces a testbench to be run on an external simulator,

Cadence’s Spectre AMS. The tool selects inputs to run such that each point is pseudo-randomly

CHAPTER 2. PRIOR WORK 15

Template Library

Amplifier
Analysis

Amplifier
Model

Sampler
Analysis

Sampler
Model

Oscillator
Analysis

Oscillator
Model

Blender
Analysis

Blender
Model

Cap DAC
Analysis

Cap DAC
Model

Amplifier
Analysis

Amplifier
Model

Sampler
Analysis

Sampler
Model

Blender
Analysis

Blender
ModelOscillator

Analysis

Oscillator
Model

Cap DAC
Analysis

Cap DAC
Model

Verilog
Model

mGenero

Fixture

User
config

Extracted
parameters

User
spice/Verilog

model

User
spice/Verilog

model

mProbo

User
config

Extracted
parameters

mLingua

Figure 2.3: The different tools in the DaVE environment. The template library initially had pairs
of templates, which were intended for use with mProbo (analysis templates) and mGenero (model
templates). The mGenero model templates were written using the mLingua library. Fixture offers a
replacement for mProbo, and correspondingly will need its own replacement templates in the library.

placed within the input space. With the smoothness assumption mentioned in the previous section,

this allows for the entire input space to be characterized. The testbench itself is implemented in

Verilog, and Spectre AMS is used to simulate either the spice or Verilog version of a circuit. Finally,

mProbo extracts output points from the testbench results, converts them to the domain used for

this circuit’s central relationship, and uses linear regression to fit the parameters for this particular

user circuit’s central relationship.

mGenero

The use of a common form for the central relationship, either linear or piecewise-linear in each coef-

ficient, is not only useful for extending parameter-fitting functionality but also for extending model

generation functionality. mGenero is the portion of DaVE that can insert extracted parameters

(usually found by mProbo) into templatized Verilog models. The templatized Verilog functional

models are hand-written and mostly handle the domain conversion between the circuit’s physical

inputs and outputs and the domain where the tool can apply the central relationship. mGenero

then fills in the details of the central relationship, including the effects of the user circuit’s optional

inputs.

CHAPTER 2. PRIOR WORK 16

mLingua

The final piece of DaVE is mLingua. This is a library of Verilog primitives that are extremely useful

for real number modeling of analog circuits for CPU simulation. mLingua uses an event-driven

piecewise-linear representation of time-varying signals. The timestep is dynamically adjusted to

keep the error within a user-specified tolerance. mLingua is not just useful for DaVE tools; it can

also be used to build models by hand or with other automated tools [19, 45] .

Other DaVE Capabilities

The main intended use of DaVE is automated model generation, but this functionality is built out

of smaller steps that can also be useful in other ways. For example, mProbo can perform model

comparison in addition to model generation. The exact same testbench that analyzed a spice circuit

can be used to analyze an existing Verilog functional model instead, resulting in a set of parameters

that describe the behavior of the Verilog functional model. Then, the sets of parameters can be

compared between the spice model and the Verilog model to see whether they agree within an

acceptable margin of error. This process can be performed on the Verilog produced by DaVE, or

on a Verilog model produced externally. Through a chain of two steps, verifying that the model

matches the spice circuit and verifying that the model works in a system-level testbench, the user

can be confident that the spice circuit will perform correctly in a system-level context.

The model generation portion of DaVE can also be used on its own to generate a preliminary

model of a circuit before the spice circuit has been written. Fixture extends this functionality

by using a portion of the circuit analysis workflow to extract a model from a circuit specification

(Section 6.5).

We hope that engineers continue to add new tools to the DaVE environment to add new capabili-

ties to the library. In the next section, we will discuss how users can add circuit-specific functionality

by contributing to the template library.

2.4.4 An Evolving Library

Why do we go through the effort of writing a Verilog functional model if we already have a spice-level

model? As discussed in Section 2.1, the main reason is speed. Modern spice simulators are incredibly

well optimized [46], so simply recreating the functionality of a spice model in Verilog will not gain

us any performance. The key to writing a good model is to not simulate the behaviors that are not

observed. To start, this means not calculating the voltages of internal circuit nodes if the model

writer can accurately compute the output without them. If the circuit is an amplifier, there is no

need to compute the currents and voltages of all its internal transistors; it only needs to accurately

model the circuit’s input / output relationship. The complexity of the model depends on how the

circuit will be used. For example, if the amplifier is linear over the intended input range, then the

CHAPTER 2. PRIOR WORK 17

model can safely ignore the saturation behavior as long as it verifies (through Verilog assertions)

that it is only presented with inputs in the intended range.

In summary, creating a good model can involve many simplifications without affecting the ac-

curacy of the computed output, and a library with many options that can be enabled or disabled

in each template will be more likely to create the circuit model the user is looking for. For this

reason, DaVE allows and encourages users to contribute new templates or improvements to existing

templates. Creating a template will always take more work than creating a single functional model,

but DaVE hopes that users will recognize the long-term benefit of creating and sharing templates.

When considering how much time is saved by reusing an existing model it is important to

remember the accumulated bug fixes and improvements that come with a well-tested piece of code.

In the case of analog circuit modeling, the model-writer must contend with their own bugs in the

analysis and modeling and also any mistakes that need to be uncovered in the original circuit and the

surrounding testbench. A template can help with the former by being bug-free itself, and can also

help with the latter by including the non-obvious circuit behaviors that analog or digital designers

are likely to get wrong.

Consider the model of a phase blender. It seems like an easy candidate to model as a linear

relationship plus domain converters. If the spice version of the phase blender is implemented and

used correctly, this simple model will work perfectly well. However, if the digital control is mis-timed

and causes glitches in the actual circuit, the simple model may not capture this behavior properly

(Figure 2.4). This can hide bugs in the real circuit, leading to much bigger issues down the line. A

properly-designed template would be aware of this glitching behavior and detect or include it in the

model, even if the user had never considered it.

The ability to add circuit-specific tweaks to the existing library is helpful for circuit analysis

as well as circuit modeling. Occasionally, there are circuit parameters that are easy to model but

difficult to extract from testbench results. In these cases, there may be a more clever testbench

setup that should be saved as part of the template. For example, a phase blender may or may not

have significant output delay due to a buffer, but the periodic nature of the output makes it difficult

to distinguish which input edge corresponds to which output edge. To determine the output delay,

it is easiest to make a testbench where the input clock shuts off after some time, making it clear

which edge corresponds to which (Figure 2.5).

In summary, the reusability in a template library is not only useful because it saves effort in

writing the model, but also because it allows non-obvious improvements in a model to be saved and

shared.

CHAPTER 2. PRIOR WORK 18

ABCDE

phase_in_a

phase_in_b

ctrl_in

phase_out

time

Figure 2.4: Diagram of phase blender glitching behavior. When the ctrl in input is low, the
phase out edge is early, and when the control is high it is late. When the control switches sometime
in the range of possible output times (referring to the labels on the time axis, when C occurs in the
range between A and E) it is possible to observe early and late edges in the same cycle (edges occur
at both B and D). In most cases the fix is not a change to the phase blender itself, but a change
to the driving circuitry to prevent this case from occurring. It is the job of the analog functional
model to mimic this glitch or raise an error flag when it occurs to alert the circuit designers of the
issue in the driving circuitry.

phase_in_a

phase_in_b

ctrl_in

Circuit #1
phase_out

Circuit #2
phase_out

time

(a)

time

phase_in_a

phase_in_b

ctrl_in

Circuit #1
phase_out

Circuit #2
phase_out

(b)

Figure 2.5: Each plot shows two different phase blender circuits responding to the same input stimuli.
In Circuit #1, the input edges propagate to the output almost immediately. In Circuit #2 there
is a delay equivalent to one period of the input clocks. Looking only at Figure (a), this difference
is impossible to detect. In Figure (b), however, the input stimulus has been changed to turn off
the input clocks after a certain number of cycles. With this stimulus is it clear that the Circuit #2
output is delayed by one period with respect to Circuit #1. A phase blender analysis testbench can
make use of this strategy to easily determine which input edges correspond to which output edges
for an arbitrary user’s circuit.

Chapter 3

A Motivating Circuit

This thesis focuses on the development of the tool Fixture. Fixture is based heavily on DaVE tools,

but extends the functionality of DaVE to handle more complex circuits. In this section we will

assume some familiarity with DaVE tools as described in Section 2.4, including the “optional” vs.

“required” input terminology. To discuss the improvements added by Fixture we will first describe

a challenging circuit to model, then show where DaVE falls short in characterizing the challenging

circuit, and finally turn these shortcomings into guiding principles for the design of Fixture.

For many of the challenges in this section the solution would be obvious if we were hand-writing

the model for this specific circuit, but the difficulty is to generalize that solution so it extends to as

many user circuits as possible and to have the tool apply the solution automatically to reduce the

guidance needed from the user. Additionally, creating an accurate and efficient circuit model is not

the only difficulty when designing an automated modeling tool. The user-friendliness of the tool’s

interface, the ease with which new users understand its operation, and the ability of users to debug

model issues are all important features of the tool as well.

3.1 The Challenging Circuit

While working with the existing DaVE tools, we discovered several circuits that were difficult or

impossible to model with the existing system. To motivate the need for Fixture we will combine the

most challenging aspects from those circuits into a single amplifier and explore the issues associated

with modeling that amplifier.

The example amplifier is a differential Transimpedance Amplifier (TIA) with several digital and

analog trim inputs as shown in Figure 3.1. The implementation is a high-gain differential voltage

amplifier with resistive and capacitive feedback. The resistive feedback is implemented with a

bank of binary-weighted parallel resistors, controlled by digital input radj[5:0]. The capacitive

feedback is implemented with a bank of binary-weighted parallel capacitors, controlled by digital

19

CHAPTER 3. A MOTIVATING CIRCUIT 20

radj[0] 1kΩ

radj[1] 2kΩ

radj[5] 32kΩ

cadj[0] 1pF

cadj[1] 2pF

cadj[5] 32pF

radj

cadj

cadj

radj

+ -

- +

v_outn

v_outp

cadj[5:0]

radj[5:0]

vdd

i_inp

i_inn

cadj implementation

radj implementation

Figure 3.1: Challenging TIA circuit. In addition to the circulating current input and differential
current output, the TIA has three other inputs that modify the behavior. radj[5:0] controls
the adjustable feedback resistors, which set the gain. cadj[5:0] controls the adjustable feedback
capacitors, which, along with the resistors, set the dynamic response. vdd is the supply voltage,
which adjusts the common mode output level as well as other circuit parameters.

input cadj[5:0]. Notice that while the implementation of the capacitor and resistor look similar,

the behavior is different because the components combine in parallel in different ways. For the

capacitor the effective capacitance is proportional to the binary number defined by the bits. For the

resistor, however, the effective resistance is inversely proportional to the value of the bits interpreted

as a binary number in reverse order. This reciprocal relationship between binary value and resistance

will lead to challenges with modeling this circuit. In DaVE and Fixture models are pin-accurate,

so we include the supply voltage input vdd as well. In this particular circuit the behavior is also

sensitive to the supply voltage, so that effect will be included in the model.

3.1.1 User input

The first step in automated model generation is collecting information from the user about the

circuit to be modeled. Already, we encounter difficulties with the way information is communicated

to the tool.

In order to report results in a domain familiar to the user, Fixture needs to know that the

user wants to work in the differential / common-mode space for this differential circuit. The first

challenge when modeling the TIA is its use of “circulating current” in the the user’s definition of

gain. In a typical voltage-to-voltage differential amplifier, gain is defined as:

CHAPTER 3. A MOTIVATING CIRCUIT 21

gainfrom differential input =
vout,pos − vout,neg

vin,pos − vin,neg
(3.1)

However, a different definition is sometimes used when the input current is viewed as a single

current signal passing into the positive input and out of the negative input. In this case, the numerical

value of the input is considered the value of this current, rather than the difference between positive

and negative sides. With the circulating input current the gain equation becomes:

gainfrom circulating current =
(vout,pos − vout,neg)/2

iin,pos − iin,neg
(3.2)

These competing definitions for differential gain present a problem. The tool will keep its defi-

nition consistent between analysis and modeling so the produced Verilog model will always behave

correctly, but the reported value for differential gain would be off by a factor of two if the wrong

definition is used. Since the modeling engineer likely knows what gain to expect this would lead to

confusion and a search for the bug even though the produced model is functionally correct. The

challenge in solving this problem is to produce a good system of user input so that the choice of

definition is clear without being overly verbose. Fixture allows users to specify one signal as a linear

combination of others with any coefficients, and the format for doing so is discussed in Section 5.2.2.

A second challenge with the tool’s user input is the specification of loading effects. To properly

characterize an analog block the tool needs to run its simulation with a realistic load on the circuit,

which will depend on the context where the model will be used. First we will distinguish between

“static” and “dynamic” loads: static loads do not change over the course of the circuit’s operation,

for example a Resistive/Inductive/Capacitive (RLC) network with fixed component values. Dynamic

loads change over the course of a circuit’s operation; this is most commonly the result of the following

block changing its mode of operation.

There are many ways one could specify a static load to the simulator: capacitance, the wire load

model used by Liberty files [47], s-parameters, etc. The situation is even more difficult for dynamic

loads. In DaVE, loads are handled differently by different templates. In Fixture, we would like to

take a more unified approach. We allow the user to specify the load in spice so the user has total

freedom over how the load is defined, and can even dynamically adjust the load based on additional

inputs into the model (Section 4.3.5). Rather than create our own system for load specification, we

allow users to specify the load in a language they are already familiar with.

A user circuit can have numerous optional inputs, and when each optional input affects each

circuit parameter this leads to a very large number of coefficients describing the model. Most of the

time, however, the analog designer intends for many of the coefficients to be zero because the optional

inputs are designed to change one parameter with minimal side effects. To keep their model small

and efficient the user may want to leave out these small coefficients, or to see whether small side-

effects affect system behavior they may want to leave them in. Besides the challenge of producing

CHAPTER 3. A MOTIVATING CIRCUIT 22

the best model, there is a tradeoff in the design of the tool between the simplicity of automatically

modeling every effect and the flexibility of letting the user decide which effects to model. In DaVE

all these effects were included in every model, but Fixture handles this issue by modeling the effects

by default and allowing the user to specifically request otherwise (Section 4.4.2).

3.1.2 Choosing Sample Points

The TIA has many inputs to adjust its behavior and account for PVT variations. The generated

testbench must exercise each of these inputs to ensure they have the correct effect in the model.

Although the existing DaVE tools are designed to do this, we found some problems when modeling

the adjustable resistance and capacitance of the TIA.

The TIA is designed with an adjustable resistance and an adjustable capacitance in the feedback

path. The resistance directly sets the gain; however, some resistor values will correspond to gains

above what the circuit designer intended. Ideally, the simulation should never drive inputs in a way

not intended by the circuit designer. For the user to communicate the range of acceptable values,

however, the tool needs to know both the decimal values of the intended limits and know how to

convert the individual bits to that decimal representation. In our challenging circuit the bits should

be interpreted as a binary number, but other encodings such as a thermometer code are also common.

In DaVE, the tool had no awareness of the encoding of buses because every bus was modeled the

same way, and this means there is no way to specify input ranges. Even when the full range of

input values is acceptable, not knowing the encoding can still lead to issues; for example, choosing a

random value for each input bit is very unlikely to choose extreme values for a thermometer-coded

bus. In Fixture, we have the user specify the encoding in order to correctly distribute input samples,

use the proper range of input values, and produce plots with user-interpretable axes (Section 4.3.3).

The product of the resistance and capacitance sets the time constant for the TIA’s dynamic

response. Generally, the intention is to set desired gain with the resistor value, then choose the

corresponding capacitance to hold the time constant at its nominal value. The wide range of desired

gains means that both the resistance and the capacitance need to be able to span a large range of

values. Even though the analog designer only intends a small range of time constants to be used,

the design means that a user of the circuit can select a wide range of time constants by choosing

unintended input combinations. The range of intended capacitance values for a given resistance

value is somewhat difficult to specify because it is a nonlinear function of the resistance value.

Unfortunately, simulating and modeling unintended combinations of resistance and capacitance can

lead to several issues: if the capacitance is too small the closed-loop time constant could be set by

the open-loop amp, which should never happen during normal operation; if the capacitance is too

large the simulation could take too long to settle, either reading unsettled output values or wasting

computation time on a long-running simulation. For these reasons, the existing DaVE approach of

sweeping the entire input space is inadequate for testing the TIA. Fixture addresses this challenge by

CHAPTER 3. A MOTIVATING CIRCUIT 23

allowing the user to specify an acceptable relationship between the chosen resistance and capacitance

values (Section 5.1.3).

3.1.3 Simulation

One of the key attractions of DaVE and Fixture is that they are open-source. They do, however,

interact with simulators that may not be open-source or freely available. In order to compare spice

circuits to their Verilog models the tool needs to run the same testbench on both versions of the

circuit; DaVE tools solved this issue by using an AMS simulator, Spectre AMS. Compared to spice

simulators and Verilog simulators individually, however, AMS simulators are more complex and there

are fewer simulators available. The limitations of always using an AMS simulator were especially

apparent when we worked with the open-source Sky-130 PDK, as Spectre-compatible models were

not available at the time. As a result, we were not able to use DaVE circuit characterization at

all for that project. When making models by hand it is possible, though time-consuming, to write

separate spice and Verilog testbenches and choose compatible simulators for each when no AMS

simulator is available. Fixture is able to achieve that same flexibility by using the fault library to

compile testbenches to either spice or Verilog format (Section 5.2).

3.1.4 Model fitting

After collecting data for circuit behavior at a variety of optional input operating points DaVE and

Fixture attempt to find expressions to model each of the parameters in terms of the optional inputs.

The DaVE tools model each parameter as a linear or piecewise linear function of the input pin

values. If a particular parameter is not being modeled to the required level of precision, the usual

approach is to switch to a piecewise linear model and increase the number of pieces until the desired

precision is met. DaVE can also add terms which are polynomial functions of one or more inputs,

which can behave like a Taylor Series to theoretically match any desired curve. Although these

approaches have a lot of expressive power, we still had issues when trying to model the TIA. We

will describe the issues with modeling the gain and time constant, as well as the effect these issues

had on the overall debugging experience.

The gain of the TIA is set directly by the feedback resistor. This resistor is implemented as a

bank of binary-weighted resistors arranged in parallel, each of which is connected or disconnected

based on a digital control bit (Figure 3.1). It is straightforward to come up with the following

expression for the gain:

gain =
1∑

radj[i] · 1
Ri

(3.3)

Where radj[i] is the state of the ith digital control input, and Ri is the value of the ith resistor

in the bank. When the resistor values are known, this expression is easy to understand and easy

CHAPTER 3. A MOTIVATING CIRCUIT 24

to implement in nonsynthesizeable Verilog. While a piecewise linear function of the control inputs

might reach the desired level of accuracy with four or eight pieces, such a model would not be as

understandable or as accurate as the simple nonlinear expression in Equation 3.3. For this reason,

the nonlinear model is preferable to model designers. One of the main improvements Fixture makes

over DaVE is the ability to model effects using arbitrary nonlinear expressions.

Further issues with the existing modeling options are clear when trying to model the RC time

constant of the TIA. We will ignore for a moment the difficulty of modeling the resistor in the

previous paragraph, and assume that a linear model is still within the user’s desired error tolerance.

In this case, the 6-bit resistance can be modeled with 7 parameters (one coefficient for each input

bit plus an offset), and the capacitance can be modeled with another 7 parameters. The time

constant for the TIA is simply the product of these two values, and can therefore be modeled with

14 parameters. In DaVE, however, this product-of-sums is not an allowable model because the 14

parameters cannot be fit using linear regression. The only way to model the product of these two

values is to consider a coefficient for each cross-term between the two input buses. We illustrate

this concept with 2-bit versions of the resistor and capacitor inputs, using vi for the resistor input

vector, wi for the capacitor input vector, and ci for the coefficients. In Equation 3.4a we show the

desired relationship, and in Equation 3.4b we show the equivalent representation in DaVE:

RC = (c1 · v0 + c2 · v1 + c3)(c4 · w0 + c5 · w1 + c6) (3.4a)

RC = c1 · v0 · w0 + c2 · v0 · w1 + c3 · v0 · +c4 · v1 · w0 + ... (3.4b)

Unfortunately, the cross-term version of the expression (Equation 3.4b) has on the order of N2

terms for N -bit buses. For our 6-bit resistance and capacitance banks the expression balloons to 49

terms, and the resulting 49-parameter model is much more general and therefore requires more data

to find a reasonable fit. This is not a viable way to model the time constant. In Fixture, we can use

the arbitrary expression modeling (Section 4.4.2) to use the product-of-sums form of the expression

(Equation 3.4a).

Finally, we come to an issue with debugging the tool’s model fitting. Over the course of trying to

model the TIA, the linear regression would often fail to find coefficients that resulted in an accurate

model. The root cause of the issues were the shortcomings of the linear and piecewise linear models

described above. But at first this root cause was not obvious, and the linear regression results did

not offer any information to help find the issue. Ideally, in the situation where the tool is able

to accurately model the vdd effects but not the radj effects, one would hope that the resulting

model would contain the correct coefficients for vdd and the best possible coefficients for radj.

Unfortunately, the tool does not have the information it needs in order to do that. Recall that to

get good coverage of the circuit’s behaviour with minimal simulation, the tool sweeps all the inputs

simultaneously. The tool has no way to separate changes in the output due to vdd from changes due

CHAPTER 3. A MOTIVATING CIRCUIT 25

to radj. Therefore, it cannot find the ideal coefficients for vdd because they are obscured by the

“noise” of radj effects that cannot be modeled with the given form of the modeling expression. The

effect on the user is that they receive a model that doesn’t meet the error tolerance, and receive no

guidance on which input has a nonlinear effect that is causing the model to fail. Fixture addresses

this issue by picking inputs points in such a way that the effects of different optional inputs can be

separated (Section 6.1.4). Additionally, Fixture produces plots that allow the user to see the effects

of individual optional inputs and judge their models separately (Section 6.2.2).

3.2 Guiding Principles

Throughout this thesis, we will address each of the issues outlined in this chapter and build Fixture

so that it can correctly handle these challenging cases. Rather than implement one-time fixes for

each issue, we try to categorize the challenges and come up with general principles that would have

prevented them in the first place. With this approach, we hope to catch future issues before they

arise.

3.2.1 Provide Reasonable Defaults, but Advanced Options

The first principle is to have reasonable defaults, but advanced options for the various features of

the tool. After modeling several challenging circuits it is clear that there are many reasons the

tool may not be able to produce a quality model without additional information from the user.

Unknown test environments, non-standard circuit configurations, and speed-vs-accuracy tradeoffs

all necessitate help from the engineer. However, asking for the engineer about all these factors

explicitly is unnecessary in the majority of cases, and this extra work at the start can make it

difficult for new users to adopt the tool. We aim for the middle ground, where the tool has default

settings that work most of the time, but advanced abilities that can be utilized when needed.

There are a few difficulties with providing default options. The first is that a middle ground

can be difficult to achieve because different users may have different opinions on what the default

should be. Second, users may not know that a solution to their problem already exists in the tool if

that solution is hidden away as an “advanced” option. Fixture can mitigate these first two issues to

some extent by providing a library of examples. This helps us estimate which options are the most

common and also provides new users with examples of each feature being used. The biggest issue,

however, is the danger of defaulting to an option that produces incorrect output. For example, if the

tool silently defaults to a differential input when the user assumed a circulating current input, then

it can be difficult for the user to figure out why the reported gain is half what they expected. For

each option we must be sure to either make the user’s choice clear, or produce output that clearly

demonstrates what the tool defaulted to.

This guiding principle works well with the idea of an evolving template library. As templates

CHAPTER 3. A MOTIVATING CIRCUIT 26

gain new features the writers can simply add them to a growing list of advanced features that users

have access to. In some cases, such as a test that can catch easy-to-miss bugs in an analog design,

the writer of the new feature may also want enable it as a default. This can be more challenging,

as they must be aware of the effect this has on existing uses of the template in terms of run time,

correctness of output for a variety of circuits, and clarity to the user on what the new default is

doing.

3.2.2 Follow a Process that is Familiar to Engineers

The next guiding principle is to follow a process that is familiar to human engineers. Many engineers

already build functional models by hand, and have established a process for doing so. We found that

it is generally best to follow this existing process as closely as possible. In some cases this makes the

tool easier to write; for example, we let the user attach a load to their circuit inside of spice rather

than create our own format for specifying the load. In other cases this makes the tool more difficult

to write; for example, we compile testbenches to both spice and Verilog rather than using an AMS

simulator to reuse the same testbench for all models.

One reason to follow familiar approaches to modeling is that new users can learn the tool with less

effort. This makes it easier to get more people using and contributing to the tool, and also reduces the

number of mistakes made due to misunderstanding of the tool’s process. Additionally, the modeling

processes used by engineers are already the result of trial-and-error and debugging, so following

these processes can avoid unforeseen issues. In other words, trying to deviate from the usual process

can cause more issues than it solves. For example, while the tool can use linear regression to fit the

effects of many optional inputs at once, a human model designer usually simulates the effects of one

optional input at a time. Originally the tool was able to reduce the amount of simulation by never

sweeping optional inputs individually, but we found that changing the tool to perform individual

sweeps in addition to simultaneous sweeps provides several benefits at once. First, it provides much-

needed debugging information to the user when the specified modeling expressions cannot model

the circuit behavior. Second, that same change helps produce more accurate parameter-vs-input

plots (Section 6.2.2). Finally, it also aids the nonlinear optimizer in finding the right coefficient fits

(Section 6.1.4). By following this guiding principle we make sure to leverage the progress that has

already been made in the field of analog modeling.

The biggest roadblock to following this guiding principle is that it is not always obvious how

to generalize existing approaches. For example, an engineer modeling our motivating circuit may

decide that the best way to model the gain is to assume it is proportional to the inverse of the radj

bus value. But how should the tool automatically determine the order of bits in the bus? How does

that strategy generalize to a different circuit that uses a bias current to adjust gain values? What if

the resistor values are not perfectly binary weighted? Answering these types of questions is possible,

but it takes a lot of trial-and-error with many real-world circuit examples.

CHAPTER 3. A MOTIVATING CIRCUIT 27

3.2.3 Make Data User-Accessible

There are some circumstances where the tool is dealing with a large amount of data or data in a

format that is difficult to interpret. When everything goes smoothly the user may simply accept the

final output and never consider these esoteric internal steps. But if the user wants greater trust in the

output or needs to debug an issue with the final model then they may want to follow and understand

each step individually. For this reason, our final guiding principle is to make any data in the tool as

easy as possible to observe and interpret. At a minimum, this means exporting the results of each

step (chosen input points, compiled testbench, raw testbench results, processed testbench results,

fitted model coefficients) to an easily-processed format so the user can do their own analysis. When

possible, the tool should also present the data in a more human-interpretable format such as a plot.

For example, in the case where the TIA is only intended to use certain combinations of resistance

and capacitance settings, a plot of the input combinations being simulated would quickly show a user

whether the inputs are being sampled correctly or not. When fitting model parameters, a plot of

collected data vs. modeled outputs can quickly give the user an idea of whether the model is within

error tolerance, and suggest whether the error is random or systematic. In general, improvements

to user-readability may be extra effort to implement in the tool, but save time on the user’s end

because they can more easily follow what the tool is doing.

Chapter 4

A Template Library

In Section 2.4 we discussed what a template library is, and why we decided to build our own. In

this section we will dive in to the specifics of how templates are implemented in Fixture. Designing

a good template structure requires a balance between giving the template writer freedom and con-

straining the template writer to a structure so that the tool can extend the template automatically.

Giving the template writer more structure can also be helpful if it can guide a new writer through

template creation. In Section 4.1 we will describe the particular structure and constraints we chose

for templates in Fixture. In the remaining sections we will describe the many ways Fixture can

automatically extend templates, all of which rely on the specified structure.

4.1 Structure of a Fixture Template

Writing a template for a new type of circuit is not a simple task. Besides determining which analog

effects need to be modeled, the template writer needs to provide testbench, analysis, and modeling

instructions for each effect. Fixture helps the template writer with this large task by breaking it

into smaller pieces and by handling as much of the work as possible automatically. This section will

walk though each of the pieces the template writer needs to implement and describe its purpose.

We will use a simplified amplifier template as a recurring example throughout this section; please

refer to Figure 4.1 for a visual representation of this template.

The first way of breaking the template into smaller pieces is organizing the important circuit

behaviors into tests. A template can have any number of tests. Each test has a different set of circuit

parameters it can extract, and each test can run independently of the others. The core feature of a

test is its simulation testbench, so the main reason to separate two circuit behaviors into different

tests is because the template writer wants to use different input stimuli to analyze those behaviors.

For the simplified amplifier template we break the simulation into a DC Test, for measuring the

DC transfer function, and a Dynamic Test, for measuring the poles and zeros of the amplifier. The

28

CHAPTER 4. A TEMPLATE LIBRARY 29

Amplifier Analysis Template

DC Test
Extracted params: gain, offset,

amplitude, gain_clamped

Testbench

Analysis

Parameter Definition

out = gain*in + offset
out = amplitude*tanh(gain_clamped*in)

poke(in, dc_in)
delay(settling_time)
read(out)

out = reads[0]
return out

Input Sample Space

dc_in: (in.min, in.max)

Dynamic Test
Extracted params: pole1, pole2,

zero1

Testbench

Analysis

p1 = pole1
p2 = pole2
z1 = zero1

poke(in, step_start)
delay(settling_time)
poke(in, step_end)
read_wave(out, settling_time)

out_wave = reads[0]
p1, p2, z1 = analyze_response(out_wave)
return p1, p2, z1

Input Sample Space

step_size: (in.range/2, in.range)
step_start: (in.min, in.max-step_size)

Parameter Definition

Figure 4.1: Simplified version of the amplifier template, showing organization into two tests (DC
Test, Dynamic Test) and the four sections within each test (Parameter Definition, Testbench, Input
Sample Space, Analysis).

output of a test is a set of coefficients; the exact set of coefficients and their meaning is a combination

of the way the test writer decides to describe the behavior and the optional inputs specified by the

user.

The user can decide which tests they want to run depending on which circuit behaviors they need

to model and how much simulation time they are able to dedicate. The reason we allow users to

select which analyses to do at the test level, rather than the parameter level, is because simulation

is the most computationally expensive part of the process. We are essentially allowing the user to

decide which simulations to run, and tests are always designed to extract as many parameters as

possible from that simulation. Unless the user specifically disables some tests, Fixture runs all tests

by default to give the user the most information possible about their circuit and let them see which

parameters are useful for their particular circuit. This follows our guiding principle of defaulting to

a reasonable option, but allowing the user to tweak the functionality with advanced options.

Once the template writer has decided how to break the analysis into individual tests, they must

implement each test. Since the high-level procedure for extracting parameters is the same each

time, Fixture handles much of the work automatically and only exposes the test-dependent parts

to the template writer. The parts the template writer needs to implement are broken into four

separate sections. We will walk through the four sections using the simplified amplifier template as

an example (refer to Figure 4.1).

CHAPTER 4. A TEMPLATE LIBRARY 30

Parameter Definition

The first step in creating a test is to define the parameters that will be extracted. A parameter is

defined by the way it relates inputs and outputs of the circuit. The template writer simply needs to

write these relationships as equations, following some rules discussed in Section 4.2. Looking at the

Parameter Definition section of the DC Test in Figure 4.1 we can see two equations, which define

a total of four parameters. The first equation corresponds to a linear model of the amplifier, and

that linear model is uses the parameters gain and offset. The second equation corresponds to

a nonlinear version of the amplifier which clamps the output with a tanh function. It defines the

parameters amplitude and gain clamped.1 Note that although the test extracts all four parameters

every time, a Verilog model would not use all four of these parameters; it would choose which ones

to use depending on how it wants to model the amplifier circuit.

Besides the parameter names, the DC Test equations also use the names in and out, which refer

to the values of the corresponding pins of the amplifier template. The Dynamic Test, however, does

not use these values directly and instead uses values derived from those pins. Specifically, pole1,

pole2, and zero1 are calculated based on the out waveform. The Analysis section will describe the

process for defining these derived values. We refer to the direct template pin values and derived

values together as “measured values” to differentiate them from the parameters in the parameter

definition equations.

Testbench

The Testbench piece of a test describes the input stimuli to apply to the circuit and the outputs to

read in order to collect one measured datapoint. Fixture will repeat this short testbench many times,

possibly while varying other circuit-specific inputs, in order to collect many measured datapoints.

In the amplifier DC Test the Testbench simply applies an input voltage, waits for the amplifier to

settle, and reads the output. In the Dynamic Test, the Testbench sets the input to a beginning

step value, then applies the step and reads the entire waveform of the output as it is settling. This

section only defines the testbench, and it is not compiled and run until later, so any post-processing

of the results needs to wait until the Analysis section. The Testbench piece of the test is described

in much more detail in Section 5.3.

Input Sample Space

When writing the Testbench, the template writer may find that they need a random number or a

number that varies between different datapoints being collected. In the amplifier template, the DC

Test needs to choose the input DC level to apply to the input. The Dynamic Test needs to choose

both the step size and the start value for the input step it applies. Rather than use a pseudorandom

1To model a single-ended amplifier the nonlinear equation would also need an offset parameter, but it is omitted
here for brevity.

CHAPTER 4. A TEMPLATE LIBRARY 31

function in the Testbench, Fixture has the template writer declare these variables in the Input

Sample Space section. Later, when running the Testbench section, Fixture will pass sampled values

for these variables into the Testbench. This allows Fixture to guarantee certain properties about the

randomness that can improve the coverage of possible circuit behaviors (discussed in Section 5.1).

When the template writer is declaring these variables they have access to properties of the user

amplifier, such as the maximum and minimum values to apply to the amplifier input, and they use

these to tailor the limits of the variables.

Analysis

The final piece of the test is the Analysis section. In this section the template writer receives raw

values2 from the simulation and transforms them into measured data to be used in the parameter

definition equations. In many cases no processing needs to be done at all. This is the case for

the amplifier DC Test because the parameter equations simply use the raw value of the amplifier’s

input and output pins. In the case of the Dynamic Test, however, the parameter equations use the

values of pole and zero locations, which are not directly measured by the transient simulation. In

the Testbench section the template writer measured the waveform of the output step response, so

that is the information received in the Analysis section, and the template writer needs to extract

the pole and zero locations. The Analysis section is written in Python, so the template writer is

encouraged to use existing libraries and share common functions between templates.

4.2 Parameter Equations

In Section 4.1 we introduced parameter equations in the Parameter Definition section of a test. In

this section we will describe the rules surrounding parameter definition, which ensure that Fixture is

able to extend these equations to take optional inputs into account. Although these rules add some

structure to the way the template writer can model a circuit, we try to allow as much freedom as

possible in the definition of the parameter equations. We find that the rules surrounding parameter

equations rarely limit the template writer, and more often it is the rules surrounding Testbench

writing (Section 5.3) that are more challenging to deal with.

There is significant variation in the way parameters are used to describe circuits. The simplest

is a function containing parameters that directly calculates circuit output as a function of circuit

input.

out = gain · in + offset (4.1)

Equation 4.1 shows a very simple relationship with two parameters, gain and offset. This

2By the time the simulation values arrive in the Analysis section, they may have already gone through one stage of
processing to transform from the physical domain to a custom domain defined by the user, as discussed in Section 4.6.

CHAPTER 4. A TEMPLATE LIBRARY 32

relationship might be used for a linear, single-ended amplifier. Every parameter equation shares

this format with a single output on the left and a function of parameters and measured data on the

right. The left hand side and the measured data can be raw circuit inputs and outputs, and can also

be pre-processed functions of inputs and outputs (pre-processing happens in the Analysis section of

the template). This format was chosen so that the same equation can be used directly in a Verilog

model to calculate outputs, and also so that Fixture can produce plots with the left hand side as

the dependent axis. It is worth noting that the Verilog model is not required to use these parameter

equations directly. Fixture will simply extract values for the parameters, and models can use those

values however they need to.

It is important to note that parameter equations never have time dependence themselves (such

as a Laplace-domain transfer function might). If the template writer wants to describe a time

dependence they must describe it using parameters representing delays, pole/zero locations, or

other timing information. The amplifier Dynamic Test uses poles and zeros to describe the dynamic

response of the amplifier, and defines three parameters with the following equations:

p1 meas = pole1 (4.2a)

p2 meas = pole2 (4.2b)

z1 meas = zero1 (4.2c)

Equations 4.2a-c each map a measured pole/zero frequency (on the left hand side) to a parameter

representing that frequency (on the right hand side). The parameters in these equations are intended

to be used in addition to something like Equation 4.1 to describe both the DC and dynamic behavior

of the amplifier. Although these equations are just identity functions, recall that the left hand side

represents many measured datapoints while the right hand side is a single parameter value fit to

those datapoints. Additionally, this equation is only a starting point and can be transformed and

expanded to match the needs of the user circuit (Sections 4.4 and 4.5).

So far, all the equations we have discussed in this section have been linear in the data and pa-

rameters. There is no requirement that the equation is linear; only that the equation is smooth

(continuous) with respect to the data and parameters. The tool does not enforce or detect whether

the equations are smooth, but encourages template designers to make them that way because Fix-

ture assumes that circuit behavior varies smoothly between measured datapoints. As discussed in

Section 2.4.2, if the template designer is observing a discontinuous curve they are likely considering

the problem in the wrong domain. In Equation 4.1 we gave a parameter equation for a linear am-

plifier; now we will consider two nonlinear alternatives. The resulting transfer functions are plotted

in Figure 4.2.

CHAPTER 4. A TEMPLATE LIBRARY 33

1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.5

1.0

0.5

0.0

0.5

1.0

1.5
y = x
y = clamp(x, -1, 1)
y = tanh(x)

Figure 4.2: Comparison between three possible nonlinear differential amplifier models, which can be
achieved with Equations 4.1, 4.3, and 4.4 respectively. The user can choose between these models
depending on their speed and accuracy needs.

out =

v min, gain · in + offset < v min

v max, gain · in + offset > v max

gain · in + offset, otherwise

(4.3)

In Equation 4.3 we clamp the linear output voltage from Equation 4.1 between maximum and

minimum values v max and v min. This is useful if the amplifier saturates at maximum and minimum

voltages. Notice that the output remains continuous at the breaks between pieces for all possible

values of the parameters. Notice also that several of the parameters appear multiple times in the

right hand side of the equation; they are still assigned a single value which is used each time they

appear in the equation. In some amplifiers the saturation is more gradual, and the user may not be

satisfied with the sharp corners of the piecewise model. In that case, the template could fit a tanh

curve to the amplifier’s DC response.

out =
v max − v min

2
· tanh

(
2 · gain

v max − v min
· (in − in offset)

)
+

v max + v min

2
(4.4)

Equation 4.4 uses a tanh function to model the gradual saturation of an amplifier’s output.

Although this model may be more accurate, it is also more computationally expensive than the

linear or piecewise linear models. Users may prefer to use one model over the others depending on

the situation, so if the template contains all three, Fixture will fit all the options and allow the user

or model writer to choose which parameters to utilize based on the fitting error of each equation.

CHAPTER 4. A TEMPLATE LIBRARY 34

4.3 Optional Input Types

Optional inputs, as described in Section 2.4.2, are the main way that Fixture is able to extend

templates to fit different user circuits. In this section we will discuss the different types of optional

inputs and explain exactly which circuits can and cannot be described using them.

4.3.1 Pinned Values

The models produced by Fixture are mostly pin-accurate to the original circuit, with exceptions for

dynamic loading (Section 4.3.5) and non-electrical inputs (Section 4.3.6). This means that inputs

are still included in the model even when they do not affect the behavior of the circuit, and even

when they are expected not to change over the course of the simulation. In Fixture we refer to these

fixed-value inputs as Pinned Optional Inputs. A common example is a supply voltage input vdd,

when the user is not interested in modeling supply voltage variation. In this case the Verilog model

will still have a vdd input, and there will be an assertion checking that the testbench applies the

correct voltage within a certain percentage variation, but it will have no other effect on the model’s

behavior. We believe that including these inputs can prevent miscommunication between the model

designer and the model consumer [10]. For example, if an analog designer changes the intended

value for vdd, they must update the Fixture configuration to get the expected simulation results,

and Fixture will automatically update the assertion on the value of vdd, which forces the testbench

writer to make that update as well.

4.3.2 Analog

Most voltages or currents that affect the behavior of a circuit are considered Analog Optional Inputs.

Common examples are adjustable supply voltages and adjustable bias currents. To be a valid Analog

Optional Input, the input must meet two conditions: the circuit’s output must change as a smooth

function of the input, and the effects of multiple optional outputs must mostly combine linearly.

The first condition, that circuit output changes as a smooth function of the optional input, is the

hallmark of an analog circuit, and matches the smoothness assumption from Section 2.4.2. To

understand the second condition, and why we only require linear addition only for “most” optional

inputs, we need to consider how parameters are modeled with respect to optional inputs. We looked

at one example already during the discussion of DaVE (Equation 2.8), but this time we will take a

more general approach. Consider a single parameter being affected by multiple optional inputs, for

example a gain that is affected by both vdd and ibias inputs.

g = gnominal + f(vdd) + g(ibias) (4.5)

Although we allow f and g to be nonlinear functions of the optional inputs, they must affect the

CHAPTER 4. A TEMPLATE LIBRARY 35

gain in an additive manner. This allows us to consider the effects of vdd and ibias independently;

changing vdd from a value of a to a value of b will always increase the gain by f(b)−f(a), regardless

of the value of ibias. This separability is helpful for data collection and parameter fitting (discussed

further in Section 6.1.4). Additionally, this follows our guiding principle to follow the process already

used by engineers, since human engineers will start by considering the effect of each optional input

individually first. In cases where the effects of two inputs do not add linearly, we do allow an

additional “cross-term” effect3:

g = gnominal + f(vdd) + g(ibias) + h(vdd, ibias) (4.6)

Typically this combined function h(vdd, ibias) is more difficult to characterize: if f and g took

on the order of N input-output measurements to characterize, h will take on the order of N2.

This is why we require most optional inputs to have linearly independent effects; a few combined

functions will be okay to model but interaction between three or more inputs may quickly require

more data than we can feasibly simulate. In this sense Fixture does not require that optional inputs

have effects that add linearly, but it cannot guarantee to handle circuits if they do not follow that

convention. Fitting with our guiding principle of reasonable defaults but advanced options, Fixture

will not include any cross terms by default but does not stop users from explicitly including them in

a model. More information about how the user specifies these dependencies is given in Section 4.4.

4.3.3 Quantized Analog

Quantized Analog Inputs were also used in DaVE, but one update we make from DaVE’s approach

is that we require the user to specify the type of bus. In Fixture we rely on the bus type to compute

input samples (Section 5.1.2) and compute axes for debugging (Section 6.2.2). Additionally, only

some types of buses have the property that each bit effects the circuit behavior independently (we

will see that Signed Magnitude buses do not have this property), so the bus type is needed to

properly choose a parameter’s default dependence on the bus. Although specifying the bus type is

a little bit of extra work for the user, we believe it is worth it in order to follow the process used

by engineers already, which is one of our guiding principles. This is a case where we decided not

to provide a smart default because both binary and thermometer codes are both commonly used,

and more importantly because the bitwise-coefficient model works for many bus types, preventing

Fixture from automatically detecting a mis-labling with a poor fit.

Quantized Analog Optional Inputs have similar behavior to Analog Optional Inputs, but the

physical circuit inputs are binary-valued. Examples are any inputs that use a binary-encoded or

thermometer-encoded bus, which is becoming more common as more analog circuits rely on digital

trim bits [2]. The requirement that the output changes as a smooth function of the input is relaxed for

3Because h is an arbitrary equation we could fold the effects of f and g into it, but we leave them separate to
match the intent of circuit designers who treat the cross term as an error on top of intended individual behaviors.

CHAPTER 4. A TEMPLATE LIBRARY 36

quantized analog inputs because the inputs themselves do not vary smoothly; each one is quantized

to two possible values. The second requirement, that effects of multiple inputs add linearly, does

apply to quantized analog inputs. Depending on the type of bus, the linear independence might

apply on a bit-by-bit basis, or it might only apply to the effect of a bus as a whole. We will discuss

the different bus types individually.

Binary, Thermometer, and Segmented

Binary coded buses are probably the most common type of quantized analog input. Each input bit

acts like one bit of a binary number, so the total effect of the input is proportional to the binary

number encoded by the bits of the bus. Thermometer codes are similar, except the weight for

each bit is the same, so the effect of the bus is proportional to how many bits are one. Segmented

encodings are a mix between binary and thermometer, with some bits being binary-weighted and

others (usually the high-order bits) having equal weight. The weights for the bits in a segmented

bus might be [8, 8, 8, 4, 2, 1].

These three bus types are similar because in each one the effects of individual bits add linearly

with each other. Because of this, each bit could be sampled and modeled as an independent Optional

Input. However, in cases where these models do not apply perfectly it can be easier to see the

imperfections if the sampling strategy is tailored to the type of bus. Specifically, we want to be sure

to simulate extreme circuit behaviors as much as mid-range behaviors, and this does not happen

when choosing the bits of a thermometer-coded bus independently (Section 5.1.2). Additionally, we

use the bus type information to present plots where axes correspond to the decimal values of the

input buses, just as the user would expect (Section 6.2.2).

Signed Magnitude

Buses using a signed magnitude encoding scheme are also considered quantized analog. Although

they are not as common as binary or thermometer, they are sometimes used, for example, to set a

current and then steer it to the positive or negative side depending on the sign bit. Unlike binary

encoding the effect of each bit in a signed magnitude encoded bus does not add linearly with the

others. In other words, the value assigned to a particular bit pattern is not just a weighted sum of

the bits that are high. One way to fix this for a signed magnitude bus is to use a weighted sum of

bits and cross terms between the sign bit and each of the other bits - this is functionally equivalent to

having separate weighted-sum models for the positive and negative cases. With Fixture we decided

not to take this approach. Instead, Fixture allows parameters to be a function of the value of the

bus as a whole, and uses a nonlinear function of the bits:

bus value = (2 · bits[isign] − 1) ·
∑

wi · bits[i] (4.7)

CHAPTER 4. A TEMPLATE LIBRARY 37

Even though it is not linear with respect to each bit, we still consider this a valid optional input as

long as the effect of the bus as a whole adds linearly with other optional inputs.

Custom Functions

While working on Fixture we did not come across any digital encoding schemes for circuit inputs

besides the ones we have already covered in this section. The strategy used for the signed magnitude

encoding, however, is easily adaptable to any encoding scheme, so Fixture allows the user to define

a custom encoding if necessary. The process for this is the same as the process for defining arbitrary

Optional Input expressions, and will be covered in Section 4.4.2.

4.3.4 True digital

True Digital Optional Inputs are handled the same way in Fixture as they are in DaVE: the circuit

is re-characterized for each possible digital mode. The only difference is that Fixture allows the user

to specify a subset of 2N possible modes for N True Digital inputs, and specify those as the only

allowable modes. Fixture will only characterize this subset, and will add assertions to the Verilog

models to ensure that only this subset is used in the system. This change can save significant

simulation time in cases where there are a large number of True Digital inputs, but the user already

knows exactly how they will be set when the system uses the circuit as intended.

4.3.5 Load Specification

In Section 3.1.1 we briefly discussed the challenge of load specification. Recall that in Fixture,

circuits should always be analyzed under the same load they will have in practice. The library

used by Fixture to manage simulations, fault (Section 5.2), has the ability to specify a capacitive

load value to be added to each output for simulation. For many circuits, this will not be sufficient

because the circuit needs a different load on each output, or needs a resistive load, or needs the load

to change during operation. For this reason, Fixture does not rely on fault to set loading effects and

instead has the user specify loads in spice directly.

In some cases the user can avoid modeling complicated loads by breaking the analog circuit into

larger pieces. For example, an amplifier followed by a filter could be represented by a single dynamic

amplifier model, and then the loading effects on the amplifier stage are inherently captured in that

model and do not need to be explicitly characterized. This strategy only works if Fixture has a

template that can represent the combined blocks.

If the user does want to model a block with a complex load, they must instantiate it in the spice

file that will be passed to Fixture. The best way to do this is to create a wrapper for the circuit

that includes the load, and have Fixture characterize the wrapper. In some sense this is exactly

what we want to model in Verilog: because each model produced by Fixture is feed-forward, its

CHAPTER 4. A TEMPLATE LIBRARY 38

Stage 2

Stage 1 to be Modeled

vdd

rn_process_variation
rp_process_variation

inp

inn

ibias

stage2_settings

outn
outp

Stage 1 Circuit

vdd

inp

inn

ibias

outn
outp

Figure 4.3: Example of a differential amplifier circuit with modifications to allow modeling of loading
effects and process variation.

output corresponds to the output of the circuit under load, regardless of what is actually observing

the outputs of the Verilog model. Instantiating the load in spice avoids the need for Fixture to have

any extra complexity to define and instantiate loads itself. It is up to the user to pick a spice load

model that balances accuracy, simulation time, and engineering effort. In many cases rather than

determine a model of the load presented by the following circuit the user can simply instantiate

the following circuit (or its first stage). This takes little effort and provides the most realistic load

possible.

This method works well for static loads, but what about cases where the load might vary due

to process variation, or even vary during the operation of the circuit (for example, if the following

stage is a filter with adjustable passive components [48])? In these cases, the user is encouraged to

model these effects in the wrapper like static effects, but give the wrapper additional inputs such as

the bias current for the following circuit or a voltage that controls a variable capacitor as a proxy for

process variation. Then, Fixture can use its existing functionality for handling optional inputs to

characterize the circuit with respect to these additional inputs. An example of a wrapper including

an adjustable following stage as well as process variation adjustment discussed in the next section

is given in Figure 4.3.

4.3.6 Challenges with Process / Temperature variation

One benefit of the speed of analog functional models is the ability to run many tests over variations in

process and temperature. Users can utilize Fixture as part of a system for characterizing their circuit

with respect to process variation and efficiently determining its effect on system-level performance.

To model process variation the user has two options. One is to simply use a Monte Carlo

extraction to produce multiple spice models, and then run Fixture separately on each one. The

CHAPTER 4. A TEMPLATE LIBRARY 39

resulting sets of extracted parameters give a a good way of measuring the sensitivity of different

circuit behaviors to these Monte Carlo variations. The user can then calculate the variance of each

parameter across these sets use this information to quickly build a large number of functional models

with realistic variation, without needing to run a spice simulation for each one.

The second option for modeling process variation is to manually edit the spice model to add

additional inputs that effectively control the values of important circuit components. Much like the

strategy for dynamic loads in the previous section, this would allow Fixture to treat process variation

as an optional input and model the circuit with respect to that variation. An example modeling the

variation of two resistors is show in Figure 4.3. This strategy not only allows the user to produce

functional models with realistic behavioral variation, but also shows the user the exact effect each

component’s variation has on each circuit parameter. This can help the analog circuit designer make

informed decisions about how to improve the circuit’s stability with respect to process variation.

Currently, fault, the library used by Fixture for testbench generation (Section 5.2), has no mecha-

nism to adjust temperature mid-simulation since this is not a feature supported by many simulators.

The only way to characterize with respect to temperature in Fixture is to run circuit characteriza-

tion multiple times with different simulator arguments to change the temperature each run. This

results in several models each corresponding to a different temperature, and the user can look at the

parameters of each model to determine the circuit’s variation due to temperature.

In the future we hope to have more automatic support for process variation built into Fixture. In

the meantime users can create their own scripts to organize multiple runs of Fixture and produce the

models they need for their use cases. Monte Carlo simulation is often a computational bottleneck

and we believe that the functional models created with Fixture could be a solution.

4.4 Updating Equations with Optional Inputs

When the user defines optional inputs in the user configuration file, Fixture needs some way of

allowing the modeled behavior to depend on these optional inputs. Since the modeled behavior

is described by the parameter equations (Section 4.2), Fixture will modify those equations to take

the optional inputs into account. In this section we will discuss the process Fixture uses to modify

the parameter equations, and also the control the user has over how optional inputs affect circuit

behavior.

4.4.1 Equation Hierarchy

Fixture’s general approach is to replace each parameter in the equation by an expression involving

the optional inputs. Since this can lead to more complex equations, when the modified equation is

presented to the user, it is formatted as a hierarchy. This format allows pieces of the equation to

be named and makes it easier for users to interpret the equation when there are a large number of

CHAPTER 4. A TEMPLATE LIBRARY 40

optional inputs.

To illustrate all the ways Fixture can extend an equation, we will consider a relatively complicated

example extending a saturating amplifier template with two optional inputs: vdd and r adj[5:0].

out = amplitude · f
(

gain

amplitude
· in

)
(4.8a)

f(x) = tanh(x) (4.8b)

amplitude = amplitude nom + amplitude vdd + amplitude radj (4.8c)

amplitude nom = A (4.8d)

amplitude vdd = B1 · ˜vdd + B2 · ˜vdd
2

(4.8e)

˜vdd = vdd − vdd nom (4.8f)

amplitude radj = g(radj) − g(radj nom) (4.8g)

g(radj) =
1

C6 +
∑5

i=0 Ci · radj[i]
(4.8h)

gain = gain nom + gain vdd + gain radj (4.8i)

gain nom = D (4.8j)

gain vdd = E1 · ˜vdd + E2 · ˜vdd
2

(4.8k)

˜vdd = vdd − vdd nom (4.8l)

gain radj = h(radj) − h(radj nom) (4.8m)

h(radj) =
1

F6 +
∑5

i=0 Fi · radj[i]
(4.8n)

The first two equations, 4.8a-b, are written by the template writer. They are a function from in

to out in terms of two parameters, amplitude and gain. They use a nonlinear function f , which

is scaled by the gain and amplitude parameters, to model a saturating amplifier. In this case f

is defined to be a tanh funciton, but it could be any function with slope 1 near the origin and

saturation at ±1.

The next block of equations, 4.8c-h, model the amplitude parameter as a function of the optional

inputs. These equations are created by Fixture based on the settings in the user configuration file

(see Section 4.4.2). Equation 4.8c defines the amplitude parameter as a sum of three influences:

the nominal value, and additional effects due to the two optional inputs. It is important that the

optional input effects are zero when the optional inputs are at their nominal values, and we can see

how that is accomplished by looking at the definitions of those effects.

We can see that equation 4.8e is defined in terms of ˜vdd, which is the deviation of vdd from its

CHAPTER 4. A TEMPLATE LIBRARY 41

nominal value. When vdd is at its nominal value then ˜vdd = 0, and it is clear that amplitude vdd = 0

as well. This centering around the nominal value of vdd allows the coefficients A and B1 to have

values with a more clear interpretation.4 In general, Fixture will require all optional input effects

to be zero when the optional inputs are at their nominal value. This makes it easy to separate

different optional effects from each other and from the parameter’s nominal value, which makes

coefficients user-interpretable and easier to fit using regression (regression will be discussed in detail

in Section 6.1).

We will skip over Equation 4.8g for a moment, and focus first on the definition of g(radj) in

Equation 4.8h. This equation is nonlinear with respect to the coefficients for each bit of radj. It is

a good model for the total resistance of a bank of resistors connected in parallel, which we introduced

to model our motivating circuit in Equation 3.3.

Now we return to Equation 4.8g to see how Fixture guarantees that amplitude radj is zero when

radj is at its nominal value. We cannot follow the same approach as Equation 4.8e, which worked

in terms of deviation from nominal vdd, because talking about deviation from nominal radj does

not make sense when radj is treated in a bitwise fashion. When Fixture cannot center the optional

input value directly, it falls back to the more general method of centering the entire effect of that

optional input by subtracting one constant. In this case, the value of that constant is g(radj nom).

Although it was not shown in this example, optional effects can also be functions of multiple

optional inputs at once. In this case, it is still required that the value of the optional effect is zero

when all optional inputs are at their nominal values.

In summary, Fixture models circuit behavior using a hierarchy of equations. At the top are

equations created by the template writer that model an output in terms of an input and some

parameters. Fixture can automatically create additional equations that model the parameters in

terms of optional inputs. The equation modeling a parameter is always a sum of a constant nominal

parameter value and optional input effects. The optional effects are always equal to zero when the

optional inputs are at their nominal values.

4.4.2 User Configuration: Optional Input Dependence

Now that we have seen how optional input effects are used to define circuit behavior, we will dis-

cuss how Fixture creates the optional input effect equations. In general, Fixture will assume each

parameter has a linear dependence unless the user specifies otherwise. In the user configuration,

the user has the ability to define which parameters depend on which inputs and specify arbitrary

dependence equations.

4To understand why centering affects A and B1 but not B2, imagine the result of expanding the expression
A + B1(vdd − 3.0) + B2(vdd − 3.0)2. With centering, the constant term A is simply the value of the amplitude at
nominal vdd, but without centering the constant term becomes A− 3.0 ·B1 + 9.0 ·B2, which does not correspond to
any physical circuit parameter. Similarly, with centering the linear term B1 is the sensitivity of the amplitude to vdd

at nominal vdd, but the non-centered linear term B1 − 6 ·B2 is not meaningful. The square term, B2, is not affected
by centering.

CHAPTER 4. A TEMPLATE LIBRARY 42

As an example, we will consider a linear differential amplifier model, which has 6 parameters.

First, we will show the information in the user configuration file:

optional_input_dependence:

gain_dc: []

gain_cc: ['c0*vdd + c1*vdd**2']

offset_c has no entry , so it will use the default

gain_cd: []

gain_dd: [vdd , '1/(radj + c0)']

offset_d: []

Next, we will show the set of equations that result from the template equations and this user

configuration. We will not show the full hierarchy of equations here; instead we will make all the

necessary substitutions to condense each parameter into one equation:

out cm =gain dc · in diff + gain cc · in cm + offset c (4.9a)

out diff =gain dd · in diff + gain cd · in cm + offset d (4.9b)

gain dc =A (4.9c)

gain cc =B + C · (vdd − vdd nom) + D · (vdd − vdd nom)2 (4.9d)

offset c =E + F · (vdd − vdd nom)

+

5∑
i=0

Gi · radj[i] −
5∑

i=0

Gi · radj nom[i]

+

5∑
i=0

Hi · cadj[i] −
5∑

i=0

Hi · cadj nom[i]

(4.9e)

gain cd =I (4.9f)

gain dd =J + K · (vdd − vdd nom)

+
1

L +
∑5

i=0 Mi · radj[i]
− 1

L +
∑5

i=0 Mi · radj nom[i]

(4.9g)

offset d =N (4.9h)

We will walk through each of the lines in the user configuration to see its effect on the equations.

• gain dc: This parameter is the gain from differential input to common mode output, and

for a symmetrical amplifier its value should be zero. The user has listed its optional input

dependencies as an empty list, so it has no dependencies. The corresponding line in the

equations lists a constant to represent the nominal value, A.

CHAPTER 4. A TEMPLATE LIBRARY 43

• gain cc: This is the common mode gain. Here the user has specified an arbitrary expression

as a string, which is quadratic in vdd. The tool will recognize that it can replace vdd with its

deviation from nominal in order to center the expression and ensure that it is zero when vdd

is at its nominal value.

• offset c: This is the common mode offset. Since the user did not specify how this parameter

depends on optional inputs, the tool will model it as linear with respect to each optional input.

Again it recognizes that vdd can be centered. For the two buses, it subtracts out the proper

constant to make the value zero when the bus is nominal; the constant is a function of the

bus’s nominal value and the coefficients for each bit.

• gain cd: This case is similar to gain dc.

• gain dd: This is the differential gain, which we know from Section 3.1.4 has a reciprocal

relationship with the bits radj. The user has specified a default dependence on vdd as well as

a custom expression for radj. Notice that where the user has simply written ‘radj’ as part

of the expression in the configuration, Fixture has substituted in a weighted sum of the bits,

which is the default linear model for a bus.

• offset d: This case is similar to gain dc.

The user’s custom expressions are parsed using the Sympy library which includes a large number

of built-in functions including trigonometric functions, piecewise functions, and more [49]. The

heirarchy of Sympy expressions can then be combined together and evaluated using numpy [50] for

efficient evaluation when doing parameter fitting.

Keeping with our guiding principle of smart defaults but advanced options, we expect that the

default linear case will be suitable for most circuits, but allow the user to specify any function. In

most cases linear dependencies are a good first pass and the user can then modify the dependencies

to remove them or make them more sophisticated as needed.

4.5 Extending a Template with Vectored Inputs and Outputs

Besides adding optional inputs, the other way the user can change the physical pinout of the template

is with vectoring. Vectoring takes a required input or output and splits it into multiple physical

pins. By far the most common usage is to take a single-ended circuit and turn it into a differential

circuit. Vectoring is also useful, for example, to add a calibration version of an input. Note that

a calibration input often cannot be added as an optional input because it doesn’t just affect the

behavior of the main input; it completely replaces the main input in certain operating modes.

In this section we will discuss how Fixture vectors the parameter equations, and in Section 5.3.2

we will discuss how Fixture vectors the testbench. The process of vectoring a parameter equation

CHAPTER 4. A TEMPLATE LIBRARY 44

can be broken into two steps. The first is determining which measured data will be vectored, and

the second is vectoring the equations themselves.

When determining which measured data should be vectored, it is important to remember that

some of the inputs to a parameter equation are not the circuit’s physical inputs and outputs directly,

but rather processed versions of those inputs and outputs. The user only reports which physical

inputs and outputs have been vectored, and it is up to the template writer to know how those will

affect the processed inputs and outputs. Consider the linear amplifier equation:

out = gain · in + offset (4.10)

It is clear that the term in should be vectored when the physical input is vectored, and the term

out should be vectored when the physical output is vectored. But the approach is not as clear when

the terms in the parameter equation do not correspond directly to the physical inputs and outputs.

Consider the equation for a pole location in a dynamic amplifier:

p1 measured = p1 (4.11)

Here, p1 measured is a processed output, meaning the values were calculated in the Analysis

section of the testbench. The testbench writer knows that this value was obtained by processing

a waveform of the output of the amplifier, but from the tool’s perspective the Analysis code is a

black box and it cannot tell which circuit pins were used in the creation of p1 measured. Because

of this, the tool cannot automatically determine that p1 measured should be vectored exactly when

the amplifier output is measured. Rather than have the tool inspect the Analysis code to try to

determine the origin of p1 measured, we simply ask the template writer to report which processed

outputs are functions of which circuit pins for the purpose of vectoring.

Another way to illustrate the need for template writers to tell Fixture which processed outputs

correspond to which circuit pins is to look at a case where the template writer could have chosen two

different implementations. In our dynamic amplifier example the template writer could have chosen

to place the filter before the amplification rather than after. Doing so would require a different

pole/zero extraction strategy in the case of a differential amplifier, so there are two different, but

both reasonable, ways of implementing this template. In the case without any vectoring and a linear

amplifier, the behavior of these two versions is identical, so Fixture will not be able to determine

automatically which version was chosen. The different versions are illustrated in Figure 4.4.

The tool decides which parameter equation inputs and outputs to vector based on which physical

pins are being vectored and the template writer’s specification of which inputs and outputs depend

on which physical pins. Then, when the simulation is done and the processed inputs and outputs are

produced, the tool checks that the vectored processed inputs and outputs match the ones the tem-

plate writer specified. More information about how the processed inputs and outputs are produced

CHAPTER 4. A TEMPLATE LIBRARY 45

amp

amp amp

amp

amp

amp

Vector input only Vector output only Vector input and output

amp

amp

No vectoring

Version A:
filters at input

Version B:
filters at output

Figure 4.4: When vectoring an amplifier model with dynamic behavior, the decision whether to
vector the filter depends on whether the filter comes before or after the static amplification. In
Version A the filter comes before the amplification, so the vectoring of the filter is linked to the
vectoring of the input. In Version B it comes after, and its vectoring is linked to the output. In the
case where neither or where both input and output are vectored, versions A and B have the same
expressive power as long as the filter and amp are linear.5 It is up to the template designer whether
to implement Version A or B, but in the middle two columns their choice determines whether the
filter needs to be vectored, so they need to explicitly tell Fixture whether the filter is linked to the
input or the output.

is given in Section 5.3.

The second step of vectoring the parameter equations is updating the equations themselves. We

can begin with a simple example. We will take a linear amplifier equation with gain and offset, and

vector the input:

out = gain · in + offset (4.12a)

out = gain0 · in0 + gain1 · in1 + offset (4.12b)

The user requested that the physical input be vectored into two pieces, and the tool knows

that this vectors the measured data for in into the components [in0, in1]. We see that in our

resulting equation, the gain parameter has also become vectored. In cases where the vectored

input is multiplied by a parameter, Fixture will vector the parameter as it does in Equation 4.12.

Fixture extends this strategy to cases where the coefficient is not direclty multiplied by the input by

searching for a coefficient that can be distributed next to the input. This is the case for Equation 4.4,

a nonlinear amplifier model using tanh to model gain compression. That equation is reproduced

here, along with a vectored version:

5For the two-input, two-output case we can see that these models are equivalent by representing each filter with
an s-domain transfer function and the amplification with a 2x2 matrix. We can place the two transfer functions on
the diagonal of a 2x2 diagonal matrix X, and represent linear amplification in the 2x2 matrix Y . If Version A applies
XY , Version B can equivalently apply Y (Y −1XY). When Y is singular, the pseudoinverse can be used instead.

CHAPTER 4. A TEMPLATE LIBRARY 46

out =
v max− v min

2
· tanh

(
2 · gain

v max− v min
· (in− in offset)

)
+

v max + v min

2

(4.13a)

out =
v max− v min

2
· tanh

(
2

v max− v min
· (gain0 · in0 + gain1 · in1 − gain times in offset)

)
+

v max + v min

2

(4.13b)

Although there is no parameter multiplied by in directly, the tool sees that it is possible to

distribute gain inside the parenthesis so that it is directly multiplied with in. As a result Fixture

also needs to convert the in offset parameter into gain times in offset. Most of the time we

find that this produces the named parameters the user is expecting. Unfortunately, some equations

have a form such that Fixture cannot find a coefficient to multiply into the vectored input:

out = A · in2 + B · in + C (4.14a)

out = A · (α · in1 + β · in2)2 + (B1 · in1 + B2 · in2) + C (4.14b)

The B term is able to vector its parameter as in the previous examples, but the A term cannot

do this because the input is squared. Instead, Fixture uses its fallback strategy of replacing the

vectored input with a linear combination of its components. Another way to understand this is that

Fixture is projecting the 2-dimensional input space into 1 dimension along an axis defined by α

and β so that it can use the expression which was originally defined over 1 dimension. Fixture will

also constrain α and β such that the sum of their magnitudes is 1 to remove an unnecessary scaling

factor.

4.6 Extending a Template with Custom Domain Changes

Custom domain changes allow us to support a wide variety of user circuits while keeping the template

library small. Functionally, the custom domain change is a translation from one domain to another

at the physical pinout level (Figure 4.5). If the user circuit has an input in a special domain, they

can create a proxy signal which is defined as some function of the physical input. Then, when the

template needs to use the value of that proxy input it can apply the custom function to find the

value it needs.

The translations are handled by Fixture, and the template writer will not interact with any data

until it has gone through this translation. We intend for contributors to be able to create their own

custom domain changes if needed. Like template writing, creating a new type of custom domain

change would require some knowledge of python and the tool’s internal systems, so we provide some

pre-written custom domain changes that can be easily instantiated by the user. We organize these

CHAPTER 4. A TEMPLATE LIBRARY 47

Templatized
Circuit

Domain
Translator

my_in
(physical input)

proxy_in
(template input)

proxy_out
(template output)

Domain
Translator

my_out
(physical input)

Figure 4.5: If the user circuit communicates inputs and outputs in a special domain, these inputs
and outputs need to be translated to work with the template. The user can create proxy signals in
the template’s expected domain, and specify the domain translations needed to go between physical
signals and their corresponding proxy signals.

pre-made domain changes into two classes: linear transformations, and time-based transformations.

4.6.1 Linear Transformations

Linear transformations allow for one signal to be a linear combination of other signals. This trans-

formation is used often to convert between a positive / negative domain and a differential / common

mode domain. At the input, a proxy signal is created to represent the differential input and is

specified as the difference between two physical inputs. Then, a second proxy input is created to

represent the common mode input and specified as the average of the two physical inputs. The user

can specify any non-singular linear transformation, so less-common definitions of differential input,

such as the circulating current discussed in the motivating circuit (Section 3.1.1), are also possible.

A multi-wire link with more complicated modes than just differential and common mode can also be

represented with these translations as long as the modes are linear functions of the physical inputs.

Here is a verbose example of how the user can specify a transformation of circuit inputs from

the positive / negative space to the differential / common mode space:

proxy_signals:

indiff:

style: linear_combination_in

components: [inp , inn]

coefficients: [1.0, -1.0]

incm:

style: linear_combination_in

components: [inp , inn]

coefficients: [0.5, 0.5]

input_vector:

style: vector

components: [indiff , incm]

CHAPTER 4. A TEMPLATE LIBRARY 48

template_pins:

input: input_vector

From the template’s point of view, the differential and common mode proxy inputs are the only

inputs, and the template designer does not interact with the positive and negative physical inputs

at all (refer again to Figure 4.5). When creating testbench stimulus the template writer works in

the differential / common mode domain only, and Fixture automatically translates that stimulus to

the positive / negative physical domain before creating the fault testbench (See section 5.2 for more

information about fault testbenches).

4.6.2 Time-Based Transformations

If the template expects a particular output to be in the voltage domain but the user specifies that it

should be interpreted in the time domain, Fixture will use time-domain reads to do the conversion

automatically. For example, when working with the DragonPHY project [51, 52] we had a sample-

and-hold circuit that gave its output as a pulse-width rather than a voltage (Figure 4.6). In the user

configuration file we can define the output pulse as a function of the physical output voltage:

proxy_signals:

output_pulse:

style: pulse_width

reference: output

Now we can use the name output pulse to refer to the width of the pulse elsewhere in the user

configuration. When mapping template inputs to user circuit inputs we can map this pulse width

to the sample-and-hold template’s output:

template_pins:

sampler_input: input

sampler_clk: clk

sampler_output: output_pulse

It is important to note when the read occurs relative to the time of the pulse. The template writer

expects to be reading a voltage, and will wait a user-specified amount of time after the sample-and-

hold takes its sample before reading. In the pulse-width circuit, the pulse begins immediately after

the clock edge, so the read does not take place until after the pulse has finished. For this reason, the

default way a pulse width is read by Fixture is to look backwards in time from when the get value

function is called. More information about how the proxy signal is implemented and about how the

pulse width is extracted from the waveform is given in Section 5.3.3.

CHAPTER 4. A TEMPLATE LIBRARY 49

Sample instant 1

low voltage high voltage

Sample instant 2

clk_in

signal_in

Typical
sample-and-hold:

sample_out

DragonPHY
sample-and-hold:

sample_out

0.0ns 0.5ns 1.0ns 1.5ns 2.0ns

short pulse long pulse

Figure 4.6: Comparison between a typical sample-and-hold output and the pulse width output from
the DragonPHY project’s sample-and-hold. In a typical circuit the output tracks the input signal
when the clock is high (0.0-0.5ns), then holds the value at the instant the clock falls (samples at 0.5ns
and holds from 0.5ns to 1.0ns). In Fixture’s sample-and-hold template, the held value is measured
at the time marked by the star (just before 1.0ns) to allow the held value time to settle before
measurement. In the case of the DragonPHY sampler, the output is digital. Shortly after the clock
falls there is a pulse on the output with a pulse width proportional to the sampled voltage. The
time that the Fixture template measures the output, marked with a star, is after the pulse finishes
so the template must search backwards to find the pulse.

CHAPTER 4. A TEMPLATE LIBRARY 50

4.7 Using the Template

Throughout this chapter we have described what the template is and the many ways it can be modi-

fied. At its core, the template has equations describing the circuit to be modeled and instructions for

how to create a corresponding testbench. These have both been extended according to the specific

needs of the user’s circuit, including optional inputs and custom domain transformations. In the

next chapter we will focus on the details of how the testbench instructions become an actual spice

or Verilog testbench, with the goal of providing data for model fitting in Chapter 6.

Chapter 5

Testbench Generation

Generating a good testbench is an essential part of characterizing a circuit. The template library

is an excellent way to capture and reuse good strategies that are circuit-specific. The ultimate goal

of Fixture is to ensure that any circuit effect an analog designer can think of can be measured

automatically with the proper template. If the analog designer knows about a circuit behavior then

they can probably write a spice testbench that causes the behavior to occur, and Fixture just needs to

make sure it’s possible to include that testbench in the template. The challenge is that Fixture then

has to extend that testbench to match the user’s specific circuit including optional inputs, vectored

inputs, user-specified domain transformations, and user circuits modeled in spice or Verilog. To

accomplish this Fixture relies on the testbench generation library fault and some guidelines for how

the template writer should write the testbench. In this chapter we will discuss how Fixture chooses

sample points to ensure good coverage of the circuit’s input space, the testbench generation library

fault including the features we added specifically to support Fixture, and the process a template

writer must follow to write the testbench section of the template.

5.1 Choosing Input Points

In this section, we will discuss part of the strategy used to choose pseudo-random inputs for circuit

characterization. Inputs are carefully chosen to fully exercise the space of circuit behaviors, make

model fitting easy, and produce useful plots for the user. Here we will only discuss the first point,

exercising the input space, and save discussion of model fitting and plotting for Section 6.1.4. The

goal of this section is to describe a random sampling primitive: choosing a fixed number of sample

points over the space spanned by a set of input signals. This primitive will then be used by the

model fitting code to choose the full set of input points.

51

CHAPTER 5. TESTBENCH GENERATION 52

5.1.1 Latin Hypercube Sampling and Orthogonal Sampling

The reason Fixture uses random input points rather than, for example, evenly spaced input points

is to avoid aliasing with other effects. Most commonly, issues occur when a particular input has

multiple batches of samples, because if each batch is chosen the same way then samples are duplicated

between the different batches. Duplicated samples give less information about the circuit’s behavior

per simulation time, so they should be avoided if possible. For example, if Fixture is choosing 100

sample points for the differential and common mode inputs, it is not optimal to choose 10 values

for the common mode, and then at each of those common mode points choose the same batch of 10

differential inputs. Although this is 100 different sample points, it only includes 10 unique values

for the common mode and 10 for the differential, which does not gather as much information as

possible. It is also possible that a circuit’s response is periodic with respect to an analog input, and

in that case sampling evenly-spaced points could alias with the periodic response and mask some

circuit behavior.

Using pseudorandom samples avoids these negative effects; however, choosing input points uni-

formly at random does not guarantee even coverage of the input space. Latin Hypercube Sampling

(LHS) and Orthogonal Sampling are two techniques used to constrain a set of random samples

to guarantee certain coverage properties. These techniques are widely used for Monte-Carlo sam-

pling [53, 54]. We will briefly discuss the guarantees made by these techniques for N sample points

spanning M input axes. Figure 5.1 gives visual examples for 30 sample points over 2 input axes.

LHS guarantees that if an axis is broken into N equal pieces, each piece will contain exactly one

sample. This property holds independently for each of the M axes. Orthogonal Sampling, as used

by Fixture, breaks each axis into K = ⌊N1/M⌋ equal pieces. We can then define KM subspaces by

choosing one piece from each axis, and we guarantee that each of these subspaces contains at least

one sample point.

In the context of circuit analysis, we can immediately see the positive effect of each of these

techniques. Imagine a circuit with inputs A and B, where A affects the output significantly and

B has very little effect. LHS guarantees that the sample points are well-distributed to capture the

effects of A on the output. Next, imagine a circuit with inputs C and D, with a single output that

increases as C increases and also increases as D increases. Orthogonal sampling guarantees that

there are some samples where both A and B are both high, nearing the highest possible value of the

output, and some samples where A and B are both low, nearing the lowest possible output.

5.1.2 Scaling Input Samples

Section 5.1 explained how Fixture creates pseudorandom samples along an axis. Before those can be

applied to inputs they must be scaled to the proper range. For most analog inputs this is extremely

simple: from the user configuration the tool knows the maximum and minimum allowable value for

each input, so the samples are scaled linearly to fit in that range. For quantized analog inputs, the

CHAPTER 5. TESTBENCH GENERATION 53

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 5.1: 30 sample points chosen across two input dimensions using Latin Hypercube Sampling
and Orthogonal Sampling. This one set of sample points satisfies both constraints simultaneously.
LHS guarantees exactly one sample in each row and column of the 30x30 grid. Orthogonal sampling
guarantees at least one sample in each cell of the larger 5x5 grid.

process is similar. We ask the user to provide information about the style of the binary bus, for

example whether it is binary-coded or thermometer-coded (Section 4.3.3), so we are able to convert

between input codes and decimal numbers. To convert the pseudorandom sample to a decimal input

we simply scale it to the decimal range and round to the nearest whole number, taking care with

the endpoints to ensure that they have the same probability of occurring as every other value.

There are other reasonable ways to sample quantized analog inputs that are not used by Fixture.

DaVE, for example, relies on the fact that the effect of each bit adds linearly with the effect of each

other bit. The random sampling therefore ensures that each bit is equally likely to be sampled as a

zero or a one, without considering the decimal value of the bus. We will call Fixture’s approach the

decimal method, and DaVE’s approach the binary method. In the case of a thermometer code, we

prefer the decimal method for two reasons. The first is that the binary method is unlikely to produce

inputs where all the bits are simultaneously zero or simultaneously one. This means that the extreme

values of the input are rarely exercised, which can hide nonlinear behavior in the circuit (Figure 5.2).

The second issue with the binary approach is that it often produces combinations of input bits that

would never be produced by the digital circuitry driving the user circuit in practice. Specifically,

most digital circuitry that creates thermometer codes will always place the ones in the low-order

or the high-order positions. In other words, a value of 4 in an 8-bit bus usually reads “00001111”

or “11110000”, but never reads something like “00101101”. We would like the inputs produced by

Fixture to match the inputs the user circuit would see in practice, and by asking the user for the

necessary information about bus the decimal method produces inputs that meet that requirement.

It is important to note that the decimal method used by Fixture also has some drawbacks. It does

not guarantee that each bit receives an equal number of zeros and ones, as the binary method can

CHAPTER 5. TESTBENCH GENERATION 54

0 20 40 60
Decimal Value

0

2

4

6

8
C
o
u
n
t

Bit Weights: [32, 16, 8, 4, 2, 1]

0 10 20 30
Decimal Value

0.0

2.5

5.0

7.5

10.0

12.5

C
o
u
n
t

Bit Weights: [8, 8, 8, 4, 2, 1]

0 2 4 6
Decimal Value

0

20

40

60

C
o
u
n
t

Bit Weights: [1, 1, 1, 1, 1, 1]

(a)

0 2 4 6
Decimal Value

0

5

10

15

20

25

30

C
o
u
n
t

Bit Weights: [1, 1, 1, 1, 1, 1]

0 20 40 60
Decimal Value

0

1

2

3

4

C
o
u
n
t

Bit Weights: [32, 16, 8, 4, 2, 1]

0 10 20 30
Decimal Value

0

2

4

6

C
o
u
n
t

Bit Weights: [8, 8, 8, 4, 2, 1]

(b)

Figure 5.2: Histograms showing how many times each decimal value is chosen out of 200 samples.
(a) Using the binary sampling strategy, where each bit is sampled independently. On the left, the
binary weighted bus has samples randomly distributed, which may miss a few possible bus values.
In the middle, the thermometer-coded bus is sampled very poorly because the extreme values are
very unlikely. On the right, the segmented bus is somewhere in between. (b) The same histograms,
but using the decimal sampling strategy. In this case, Latin Hypercube Sampling1ensures that each
decimal value is chosen the same number of times, plus or minus one. These flat histograms offer
much better coverage of all circuit behaviors than the ones in Figure a.

easily guarantee. In practice, the decimal method will produce a random mix of zeros and ones for

each bit which is sufficient with the sample sizes used by Fixture.

5.1.3 Custom Input Constraints

In Section 3.1.2, we described a user circuit with two optional inputs whose values need to obey

a certain relationship. Specifically, the radj and cadj buses always need to be chosen such that

the time constant set by the feedback resistor and capacitor is within a certain range. It is not

acceptable to sample them each independently because that would create some disallowed input

pairs. In order to generate input stimuli for this circuit we need to break our usual convention of

treating each optional input as a separate input dimension. To allow the user to do this we created

custom input constraints.

Normally when specifying input stimuli in the user configuration, the user maps each input to

an allowable range. In the case when two optional inputs need to be sampled together, the user can

instead map a tuple of inputs to a dictionary with more information about the allowable samples.

1Fixture uses both LHS and Orthogonal Sampling when choosing the decimal values, but because these plots only
have one dimension (the bus value) Orthogonal Sampling has no effect.

CHAPTER 5. TESTBENCH GENERATION 55

The dictionary contains the range for each individual input dimension, and also a constraint function

that every sample must obey. In the motivating circuit example we had an adjustable resistance and

adjustable capacitance, and their product had to stay within a certain range. We can accomplish

this by creating a constraint function that calculates their product and returns True only if it is

within the acceptable range:

stimulus_generation:

indiff: (-3e-6, 3e-6)

incm: (-1e-6, 1e-6)

vdd: (2.7, 3.0, 3.1)

(cadj , radj):

cadj: (0, 63)

radj: (0, 63)

filter_fun: `1000 < cadj*radj < 2000'

We can see that indiff, incm, and vdd specify their ranges with tuples (vdd also includes a nominal

value as the middle of three tuple entries). cadj and radj instead use the constraint dictionary.

Functionally, Fixture uses rejection sampling to create these constrained samples. It simply

generates a random sample within the available ranges for each of the input dimensions and will

throw that sample away if it does not follow the constraint. In most cases, the computational

overhead of generating and then discarding most samples is negligible compared to the simulation

and model fitting done by Fixture.

A different approach to solve this problem is to ask the user to provide a function to map the full

space of sample points to the space of acceptable sample points. This method has a computational

advantage in the case where the size of the acceptable space is a very small fraction of the total

space. Depending on how the user writes the mapping function it could also allow these inputs to

follow the orthogonal sampling constraints with respect to the other input dimensions. However, we

found the mapping functions to be more difficult to write than the filter functions, and therefore did

not take this approach.

5.2 The Testbench Description Language fault

An essential part of Fixture is the ability to compile testbenches that have been customized to the

user’s specific circuit. To accomplish this, Fixture utilizes a tool called fault [55]. Additionally, we

would like to be able to characterize both spice circuits and existing Verilog functional models with

the same template; fault allows us to use a single testbench to exercise both of these model types.

In this section we will discuss the advantages of using fault, as well as the features that we added to

fault specifically to support Fixture.

CHAPTER 5. TESTBENCH GENERATION 56

5.2.1 Testbenches Written in Python

The main advantage of fault is the ability to write testbenches in Python and then compile them to

spice or Verilog. This is great for Fixture because we need to tailor the testbench to match the user’s

specific instance of a circuit, and the flexibility of python allows us to do that. Fixture’s approach

to is to have the template writer create a short testbench to collect one datapoint in fault, and then

automatically create a full testbench from that information. More information on how the template

writer creates the single-datapoint testbench is given in Section 5.3.1.

The fact that fault testbenches are written directly in python makes it easy for Fixture to use

advanced python features and existing libraries to prepare the testbench [56]. For example, Fixture

needs to interact with the filesystem to read the user configuration file that gives information about

the user’s specific circuit. Additionally, Fixture can use existing python libraries to parse the user’s

spice or Verilog circuit and check that the pinout matches what the user specified in the configuration

file. Any amount of pre-processing that Fixture needs to do is easy to integrate with the testbench

because they are both part of the same python program.

Within the testbench description itself, the testbench writer can continue to rely on python

features, including some amount of flow control. For example, when writing the sample-and-hold

template, there was a need to structure the ramp input differently depending on the specifics of the

sample point being simulated. For the input slope test, Fixture randomly chooses an input slope

between a large positive and large negative value. Because the slopes are typically steep, Fixture

ramps the input from the minimum to the maximum possible voltage (or vice versa for negative

slopes) to give the circuit as much time as possible to settle during the ramp. Occasionally, however,

the randomly-chosen slope will be very close to zero and in those cases it would take too long to ramp

all the way from the minimum to the maximum possible input value. In this case the template writer

needs to limit the ramp start and stop points based on a maximum time rather than maximum and

minimum input voltages. Luckily, it is easy to detect and handle these small-slope cases separately

using python’s flow control. With fault, the tool can wait until testbench compile time, when it

already has information about the user’s circuit and the random samples, to choose which branch

of the flow control to take.

Because the template writer’s testbench only describes the measurement of one datapoint, Fixture

has to iterate that short testbench many times with different random values and different settings

for any optional inputs. With fault, instantiating another copy of the single-datapoint testbench is

as easy as making another call to the function that defines it. Optional input values can be set by

Fixture before that call is made, and any information the template writer needs can be passed as

arguments to that call.

Although some of the features described in this section are already available in existing spice

and Verilog simulators, spice and Verilog have different syntax and so it is convenient to use fault

to write just one testbench that can be compiled to a variety of simulators. Additionally, different

CHAPTER 5. TESTBENCH GENERATION 57

simulators for the same language sometimes have different compatibility with various spice models or

nonsynthesizeable Verilog features like Direct Programming Interface (DPI) calls. DaVE’s solution

to this issue was to use a single mixed-signal simulator, Cadence’s Spectre AMS, for everything.

As mentioned earlier, this solution is not ideal, however, because that software is proprietary and

not all circuit models are compatible with it. Luckily, with fault switching simulators is as easy as

updating the list of simulator command-line arguments, which allowed us to use ngspice [57] with

Skywater-130 open-source PDK design, since it was the only simulator where these models worked

well.

5.2.2 Domain Translation

As we saw in Section 2.4.2, it is common for engineers to think about their circuits in domains other

than the physical domain. In order to facilitate the writing of testbenches for these circuits we allow

template writers to interact with the circuit in the domain they prefer and then Fixture handles

translation to the physical domain automatically. In this section we will discuss three different

classes of transformations that the tool can do automatically.

Linear Transformations

The simplest type of domain translation is a linear transformation at the inputs or outputs of

a circuit. Fixture ensures that the input and output ports, as well as variables holding values

corresponding to those ports, are of the correct types so that when the testbench writer makes

calls to the “poke” and “get value” functions to set and read port values Fixture will compile the

testbench with physical values in the correct domain. This feature is especially useful since the

template writer needs to write a testbench without knowing whether a port is physically one signal

or a pair of differential signals. With this setup, they can use the exact same line of code to interact

with the user’s circuit whether the variables refer to a single value or a vector of values.

Here is an example of an extremely simple testbench function and the corresponding analysis

function. The exact same functions can be used to characterize a single-ended or differential ampli-

fier. The difference is that in the differential case, the values of the variables are all vectors in the

differential / common-mode space.

def testbench(self , samples):

set up variables

input_port = self.ports['input ']

output_port = self.ports['output ']

delay = self.test_options['delay ']

input_sample = samples['input ']

CHAPTER 5. TESTBENCH GENERATION 58

define testbench

fault.poke(input_port , input_sample)

fault.delay(delay)

out = fault.get_value(output_port)

return {'out': out}

def analysis(self , results):

out_value = results['out'].value

return {'out': out_value}

Example variable values for a single -ended amplifier

input_port = dut.input

output_port = dut.output

input_sample = 0.8

output_value = 1.1

Example variable values for a differential amplifier

input_port = [dut.input_diff , dut.input_cm]

output_port = [dut.output_diff , dut.output_cm]

input_sample = [0.8, 0.2]

output_value = [1.1, 0.21]

To implement this, we took advantage of dynamic typing in python. We changed the poke

function to detect when the input port and value are vectored, do the appropriate linear transfor-

mation, and poke the individual ports. Note that the user provides the linear transformation from

the physical space to the conceptual space, so Fixture actually applies the inverse transform on

the inputs. Then, after the testbench has been run but before the analysis method we read the

values of each individual port and apply the appropriate linear transformation, placing the results

in results['out'].value. We believe it would be difficult to provide a similarly simple experience

to the testbench writer in Verilog or spice directly.

Writing Time-Based Signals

When designing circuit testbenches it is common to work with signals that are defined in the time

domain. For example, the phase blender we considered in Section 2.4.2 has two inputs which are

clocks at a specific frequency and relative phase. Additionally, a sample-and-hold circuit has one, or

sometimes multiple, clocks that need to run to control the sampling. While it was always possible

to exercise these inputs in fault by scheduling each edge in order, we added new functionality to

fault to manage these time-based signals automatically.

CHAPTER 5. TESTBENCH GENERATION 59

The new fault background poke feature allows the testbench writer to poke an input with a time-

based value such that the effect does not happen immediately, but happens on a schedule defined by

the type of background poke. Currently there are four types: clock, sine, ramp, and future. Clock

simply defines a digital clock with a user-specified frequency and phase, and will continue to drive

that clock until the node is driven to a different value. Sine is very similar, driving a sine wave with

a user-defined frequency, amplitude, offset, phase, and error tolerance. In transient spice sims inputs

are piecewise-linear, and in Verilog they are piecewise-constant, so we approximate the sine wave by

scheduling many changes according to the error-tolerance set by template writer. The ramp type

is used to define a slowly ramping input, and accepts a slope, stopping point, and error tolerance.

Finally, the future type allows the user to schedule a list of arbitrary input changes to happen in

the future. This is used in the sample-and-hold template to schedule clock inputs with specific jitter

characteristics.

To implement this functionality, we created a pool of background poke objects that exists while

fault is compiling the testbench. When the user makes a new background poke it gets added to

the pool, and when a user pokes the same input again it gets removed from the pool. Any time a

delay happens fault checks the pool for edges that should occur during that delay, using a heap to

efficiently organize the upcoming event queue [58].

Reading Time-Based Signals

Like we did for writing time-based signals, we also extended fault to be able to read time-based

signals. For example, we may need to read the frequency of the output clock from a voltage-

controlled oscillator. Before our changes, fault had no way to do this besides reading the output

voltage at high frequency and noting when the output changed. With the new strategy, fault can

directly read the output waveform for the exact time of the edges.

Our domain read function allows the user to read several different types of time-based signal.

Currently, the supported types of signals are edge, frequency, pulse width, and block. By default,

each of these functions looks backwards from the specified time to find the most recent edges needed

to define the requested value. Edge is the simplest, and returns the time that an edge occurred

within the window specified by the user. Frequency measures the frequency of an output clock

based on the time between two consecutive rising edges. Pulse width is similar, finding the time

between a rising edge and the following falling edge. Block simply returns a portion of the waveform

over a user-specified interval, allowing the user to do their own post-processing.

One challenge with the implementation of these functions is that reading the output waveform

must be done differently for spice and Verilog. Both waveforms can be read as [time, voltage]

pairs, but spice results are interpreted as piecewise-linear while Verilog results are interpreted as

piecewise-constant. In order to implement each of these functions without duplicating code, we

wrote an edge-finding primitive for spice and Verilog and then built each function out of calls to the

CHAPTER 5. TESTBENCH GENERATION 60

edge-finding primitive (Figure 5.3).

The edge-finding primitive takes as input a starting time, a direction to search, whether to find

a rising or falling edge, and a voltage level to slice at. It operates by looking at the waveform at the

specified time, and then stepping through each [time, voltage] pair in the specified direction until the

waveform crosses the slicing level in the specified rising or falling direction.2 For a Verilog waveform

the time of an edge is simply the time of the datapoint that caused the voltage to cross the slicing

level. For a spice waveform, the tool considers the datapoints on either side of the crossing and uses

them to determine the exact time the slicing level was crossed.

The different read styles (except for the block read) can each be implemented with one or more

calls to this edge-finding primitive. Additionally, the template writer can use it to build different

kinds of reads outside the ones provided automatically. For example, if the template writer wants

to know the rise time of a particular edge they can do two calls to the edge-finding primitive with

the slice level set to 10% and 90% and then take the difference of the results.

In addition to the spice and Verilog versions of the edge-finding primitive, we implemented a

third version for mLingua signals. As discussed in Section 2.4.3, mLingua is a Verilog library, but

rather than express signals as piecewise-constant it uses an explicit piecewise-linear representation.

Each datapoint is a [time, voltage, slope] tuple. Implementing the edge-finding primitive with this

information is straightforward, and after implementing this one function the different read types are

all available for use with mLingua.

In addition to being used by the template writer, the domain read functions can also be used by

the end user. Recall that in Section 4.6.2 we saw an example of a sample-and-hold circuit with a

pulse-width output. The user was able to define a proxy signal for the width of the pulse and tell

the template to treat that as the sampler output:

proxy_signals:

output_pulse:

style: pulse_width

reference: output

template_pins:

sampler_input: input

sampler_clk: clk

sampler_output: output_pulse

Inside the sample-and-hold template, the code that reads the output from the sample-and-hold

circuit uses fault ’s get value function to read the output:

2For spice results, the tool needs to be careful about its starting point: in general it needs to look back at the last
datapoint before the start time, but should be careful not to include crossings before the start time. For example, a
crossing may happen at 0.5ns during the linear piece defined by endpoints at 0ns and 1ns. If the start time is 0.25ns,
the tool needs to look backwards to the 0ns datapoint to find the crossing at 0.5ns. If the start time is 0.75ns the tool
will still look backwards and find the 0.5ns crossing, but needs to discard it because it is before the start time.

CHAPTER 5. TESTBENCH GENERATION 61

v_slice

time

vo
lta

ge

clk
out

Spice Result

v_slice

time

vo
lta

ge

clk
out

Verilog Result

A B

A B

C D E

C

Figure 5.3: Measurement of a pulse width using the edge-finding primitive. For both the spice
and Verilog results, the primitive finds the times of the rising and falling edges at A and B, and
their difference is the pulse width. The template writer can use the primitive to find additional
information about the pulse, for example, the time that the pulse occurs relative to the clock edge
is A − C. In the spice result, the template writer can also measure the rise time of the edge by
changing the slice level and finding the 10% and 90% crossing times D and E.

CHAPTER 5. TESTBENCH GENERATION 62

out = fault_tester.get_value(sampler_output)

Based on the user configuration, Fixture has automatically set the sampler output to have the

correct type to be read as a pulse width, so the get value works correctly without any changes to

the template.

5.3 Templatized Testbenches

The core of Fixture’s analysis template is the templatized testbench. This testbench is a small slice

of a typical analysis testbench which will be extended, repeated, and translated by Fixture into

the final testbench run by the simulator. This section focuses on the code written by the template

writer, with the goal of making clear what testbenches are and are not possible with Fixture.

5.3.1 Writing a Templatized Testbench

Recall that a template is built from a collection of tests, and each test typically focuses on one

aspect of the circuit. The testbench described in this section is one piece of a test, describing how

to run a simulation to collect information on a particular aspect of the circuit (recall Figure 4.1).

The testbench writer has almost complete freedom to write any fault program in order to exercise

the circuit. In this section we will first discuss the inputs that the template writer has to work with,

and then discuss the limitations that the template writer should keep in mind when writing the

testbench.

The testbench writer is provided with references to all the required template pins. This means

that they have full freedom to set and read those pins, but have no access to the optional inputs

(Exceptions to this are discussed in Section 5.3.3).

The testbench writer can also request and is provided with any pseudorandom numbers needed

for the testbench. One example is the size of a step when measuring an amplifier step response.

We discourage the template writer from using a random number generator in their code because we

want to follow the random constraints described in Section 5.1.

Finally, the template writer can use additional information about the circuit provided by the user.

We allow the template writer to request an arbitrary python dictionary from the user (specified in

the user configuration file) with any additional information needed to run the testbench. We call

this dictionary the “test options” dictionary. For an amplifier, the test options dictionary simply

contains a value for the approximate settling time of the amplifier. While it is possible to write a

testbench to figure this out automatically, we take the simpler route of requesting this information

from the user. In the future we may add additional tests to the template to determine this settling

time automatically. For some tests the test options data can be significantly more complicated.

In the sample-and-hold template the testbench writer needs to know how to drive the clock. For

some user circuits this is as simple as knowing the clock frequency, but other user circuits may

CHAPTER 5. TESTBENCH GENERATION 63

have multiple input clocks that are meant to follow a precise timing schedule. To address this the

sample-and-hold template defines a format with which the user can pass the timing schedule in as a

dictionary. This dictionary can also include limits on timing jitter between different clocks, which is

treated as an optional input. With test option dictionaries, we encourage template writers to follow

our guiding principle of providing reasonable defaults but advanced options - for example, the user

should be allowed to enter only a frequency with no timing schedule if they only have one clock.

The first important limitation that the template writer needs to contend with is simulation speed.

The short testbench section will be run many times, for some user circuits hundreds of times, with

the optional inputs set to different values. This means template writers should keep the testbench

section as short as possible without compromising the quality of the collected data.

The second limitation is the template writer’s limited knowledge of what happens before and

after the testbench. Fixture will compile many copies of the testbench together end-to-end before

giving them to the simulator, and optional inputs are adjusted in the instant between these copies.

The testbench writer should therefore keep in mind that just before the testbench starts could be

the very beginning of the simulation, or it could be just after optional inputs (including true digital

operating modes) were changed. The testbench writer is encouraged to assume that a significant

change was just made before the testbench started and wait an amount of time appropriate to the

circuit and the test before taking any measurements. For many tests this is not an issue, for example

in the amplifier’s DC test the testbench can apply the new input immediately because the testbench

will wait for the output to settle before taking a measurement anyway. In other cases, such as the

oscillator template, it is smart to wait a few cycles to allow the state of the circuit to settle before

measuring. In general, modeling the timing of optional input effects is difficult, and is a limitation

of Fixture. Section 5.3.3 discusses one strategy that template writers can use to measure the timing

of optional effects in specific cases.

5.3.2 Vectoring a Testbench

Just as Fixture can automatically vector Parameter Equations (Section 4.5) it can also automatically

vector the other sections of a template: the Testbench, Input Sample Space, and Analysis sections.

The most challenging of these is the testbench, and this section will discuss some of the limitations

when it comes to automated vectoring that arise because of the testbench section.

The easiest section to vector is the Input Sample Space. When a template writer specifies a

particular input to be sampled it can be tied to a required input or output, in which case Fixture

knows to vector those samples. To vector a sample, Fixture simply adds more dimensions to the

sample space corresponding to the additional inputs and uses the same random constraints we have

already discussed in Section 5.1.

The Analysis section of the test is also relatively easy to vector. This section turns raw measure-

ments from the testbench into values that can be used in the parameter definitions (Section 4.1).

CHAPTER 5. TESTBENCH GENERATION 64

When the raw values are vectored, we can simply run the Analysis section multiple times, passing

in the raw values for each component of the vector and collecting the processed values accordingly.

The most difficult section to automatically vector is the Testbench. When a user decides to

vector a required input, Fixture takes advantage of python’s dynamic typing to change the input

object that gets passed into the testbench accordingly, as we saw in Section 5.2.2. To make this

work, Fixture needs to change the objects that the template writer interacts with, specifically the

required input pins and the sampled input values. From the user configuration, Fixture can tell which

required input pins have been vectored, and can easily replace the template writer’s references to

those with references to the appropriate vector of physical pins. For the input values, Fixture can

again easily replace single values with vectors from the Input Sample Space section. While these

changes work nicely with the fault functions, the template writer may choose to interact with these

vectored objects in other ways. Most commonly, the template writer may do some algebra with the

sampled values before passing them to a poke function. In the sample-and-hold template, when the

template writer wants to apply an input ramp with a particular slope they may add the sampled

ramp start voltage to the sampled ramp step size to find the ramp end voltage. For simple algebra

like this we can use the numpy library [50] to make basic algebraic operations apply element-wise

to the vectors, without the template writer needing to adjust their syntax.

So far Fixture has been able to automatically vector everything we have discussed, but that

is not always the case. Because the template writer is allowed to write arbitrary python in the

testbench, there can always be situations where one can write a testbench that works correctly for

a single input, but not a vectored input. For example, in Section 5.2.1 we discussed flow control

based on sampled inputs, with the example of a sample-and-hold template that limits its ramp by

voltage or by time depending on the magnitude of the sampled slope. Any flow control or variable

delay that is a function of a sampled input will fail to be automatically vectored by Fixture because

it is not clear how to allow the testbench to diverge for different components of a vector. If the

testbench writer knows what should be done for their particular case they are encouraged to have the

Testbench explicitly detect vectored inputs, outputs, or samples and handle those cases accordingly.

We can consider the automatically-vectored testbenches to be the smart default, and the ability of

a testbench writer to manually specify complicated cases the advanced option.

There are some automated vectoring strategies that might be able to handle a larger variety of

testbenches than Fixture’s current strategy. For example, Fixture could call the testbench function

individually for each vector component, then apply each resulting set of stimuli to the circuit simul-

taneously. Unfortunately, this alternate method still fails when the testbench includes a timing delay

that is different for different components of the vector. Because we believe there will always be cases

that require explicit intervention from the template writer we did not spend a significant amount

of effort teaching Fixture to automatically vector as many cases as possible. For now certain tests

may be unavailable to user-vectored circuits, but hopefully in tests where vectoring makes sense the

CHAPTER 5. TESTBENCH GENERATION 65

library will eventually be improved to include a vectoring-compatible version.

5.3.3 Optional Input Timing

In most cases, we keep the details of optional inputs hidden from the template writer because the

template should be written in such a way that it works for any set of optional inputs, including

no optional inputs. There are some situations, however, where a particular test will only apply to

user circuits with optional inputs. In these situations Fixture allows the test writer to request a

particular optional input from the user, and then the test writer can treat it as they would treat a

required input for that particular test.

We encountered such an situation when working with the DragonPHY project [51]. DragonPHY

has a phase interpolator which can produce an output clock with any phase relative to an input

clock. This block is implemented using a number of phase blenders which each handle a small slice

of the 2π total output phase. Each individual phase blender has its output phase fine-tuned by a

optional input signal. Because all the phase blenders together cover every possible output phase it

is guaranteed that one can have its output edge at the same time as an optional input edge. This

can lead to the glitching behavior shown in Figure 2.4. While creating models using Fixture we

discovered that this glitch did occur in DragonPHY, and we were able to address the issue before

tape-out.

To detect and model this glitching behavior in Fixture, we use a test in the phase blender template

which sweeps the relative phase between the input clock edges and phase adjustment input edges

while checking for a glitch. Of course, this test only applies to phase blender circuits which have a

phase adjustment input, which is not present in every phase blender. The only way to have both a

basic test for a phase blender with no adjustment input and a glitch test that measures timing of

the adjustment input is to give the template writer access to optional inputs.

The way we accomplish this in Fixture is to rely on the test option dictionary described in

Section 5.3.1. The user can use the dictionary to pass in the name of an optional input that

corresponds to the adjustment input. With that name, the template writer can access the object

corresponding to that optional input, and treat it the same as an additional required input. This gives

the template writer the freedom to implement any fault testbench interacting with any of a circuit’s

inputs. The disadvantage is that the specific test accessing an optional input will be unavailable to

user circuits without that input, so template writers should only use this functionality when it is

necessary and allow Fixture’s built-in optional input handling capabilities to model optional input

effects as much as possible.

Chapter 6

Model Fitting

Once Fixture has decided on a model to use and collected simulation data for the user’s circuit,

it must fit model coefficients to the measured data. This can be challenging to get right because

the model can be any function defined by the template writer or end user, and fitting the model

coefficients becomes a nonlinear optimization problem. Fixture must also provide useful debugging

information in cases where the model is not a good fit for the measured data. This chapter will

explain the challenges with model fitting and Fixture’s solution, as well as discuss the many plots

and other outputs Fixture provides for debugging.

6.1 Regression

Fixture’s ability to model arbitrary nonlinear circuit behaviors, both in the template and in the

response to optional inputs, opens the door for the user to specify complex modeling equations.

This complexity is good because it allows Fixture to handle a variety of user circuits, but it also

introduces challenges for model fitting and debugging. This section will describe the approach

Fixture takes to fit coefficients in arbitrary nonlinear equations and help the user debug when it

cannot find a set of coefficients to make the specified equation match measured behavior.

6.1.1 A Challenging Example

To illustrate Fixture’s approach to regression we will use a challenging example equation which

contains nonlinearity in both the template equation and the user’s requested dependence on optional

inputs. A differential amplifier’s output is modeled with a gain and saturating amplitude, and each

of those two parameters is a function of radj and vdd optional inputs. This example is the same one

used to illustrate dependence on optional inputs in Section 4.4.2, and we will reproduce Equation 4.8

here for reference:

66

CHAPTER 6. MODEL FITTING 67

out = amplitude · f
(

gain

amplitude
· in

)
(6.1a)

f(x) = tanh(x) (6.1b)

amplitude = amplitude nom + amplitude vdd + amplitude radj (6.1c)

amplitude nom = A (6.1d)

amplitude vdd = B1 · ˜vdd + B2 · ˜vdd
2

(6.1e)

˜vdd = vdd − vdd nom (6.1f)

amplitude radj = g(radj) − g(radj nom) (6.1g)

g(radj) =
1

C6 +
∑5

i=0 Ci · radj[i]
(6.1h)

gain = gain nom + gain vdd + gain radj (6.1i)

gain nom = D (6.1j)

gain vdd = E1 · ˜vdd + E2 · ˜vdd
2

(6.1k)

˜vdd = vdd − vdd nom (6.1l)

gain radj = h(radj) − h(radj nom) (6.1m)

h(radj) =
1

F6 +
∑5

i=0 Fi · radj[i]
(6.1n)

If we begin with Equation 6.1a and recursively apply all the definitions in 6.1b-n, we end up

with one large equation that computes out as a function of the inputs in, vdd, radj[5:0], and the

coefficients A, B1-2, C0-8, D, E1-2, and F0-8. Fixture’s goal is to use measured data for in, vdd,

radj[5:0], and out to find best-fit values for the coefficients that minimize the mean-square error

between the measured and predicted out. Throughout the rest of Section 6.1 we will discuss why

this problem is challenging and strategies for overcoming that challenge.

6.1.2 Challenges with Nonlinear Fitting

When the output is a linear function of all the coefficients the coefficients can be extracted using

linear regression. In cases where the equation is nonlinear we must replace the linear regression with

a nonlinear optimization routine. For the purposes of this discussion, a nonlinear optimizer is solving

a minimization problem. It is given a function that computes an error as a function of coefficient

values, and it searches for coefficient values to minimize the error. In Fixture, the coefficients are

the circuit parameters, and the error is the mean square error (MSE) of the model predictions over

CHAPTER 6. MODEL FITTING 68

all the datapoints that were simulated.

In Fixture we used the scipy.optimize package [59] to minimize error using either the Broy-

den–Fletcher–Goldfarb–Shanno algorithm (BFGS) or the Nelder-Mead algorithm, and in both cases

ran into the same three issues: the speed of the optimizer, the quality of results from the optimizer,

and the ability to debug the results.

Issue: Optimizer Speed

Compared to the computational load of circuit simulation, we would expect the computation for

model fitting to be small. The model is intended to be a replacement for a spice circuit, so by

necessity it should be relatively easy to compute. The issue is that a nonlinear optimizer relies only

on repeated evaluation of the function to tune the coefficients, and there can be a large number of

coefficients to tune.

Let us consider an example circuit: a nonlinear amplifier with two 6-bit buses that affect its

behavior. If the user does not specify which buses affect which behavior, Fixture will assume all

can affect all, which is a reasonable first pass if a circuit designer wants to give the tool full freedom

to find nonidealities that were not intended. The nonlinear Parameter Expression might have four

parameters: gain, out max, out min, and in offset. But each parameter has to capture a nominal

value and the effect of 12 different input bits, for a total of 13 coefficients per parameter, or N = 52

parameters for the optimizer to tune. A high number of optimizer parameters has three issues. The

first is that it takes a lot of input data points to reliably capture the effect of each parameter, so each

computation of the error function is finding the MSE over many, typically at least 2N , applications

of the circuit model. The second is that many nonlinear optimizers rely on a numerical computation

of the gradient at each step, and this takes on the order of N computations of the error function.

Finally, a large N means that the optimizer is searching a high-dimensional space for the minimum,

and we should expect more steps for it to converge to an answer. All these effects combine in such a

way that the time it takes for the optimizer to converge grows quickly as a function of the number

of circuit parameters and can quickly become problematic.

Issue: Optimizer Result Quality

It is well known that nonlinear optimization is a challenging problem, and the optimizers we are

using are not guaranteed to converge to the global minimum. We found that in models with a

large number of parameters, the optimizer rarely converged to an acceptable solution unless it was

given an initial guess that was reasonably close to the expected solution. One reason this is so

challenging for the optimizers is that the optimal values of the parameters often differ by orders of

magnitude. For example, one parameter may represent an offset voltage on the order of millivolts,

while another represents a current-to-voltage gain on the order of volts per microamp. Converted to

standard units, these values differ by 109. Fixture could partially address this problem by using its

CHAPTER 6. MODEL FITTING 69

knowledge of the circuit type to guess common values as starting points for the optimizer. Rather

than investigate this path, we base our initial guesses on the collected data directly, using a strategy

described in Section 6.1.4.

Issue: Debugging Ability

Even if the nonlinear optimizer always ran instantly and always found the global minimum, there

would still be an issue with this approach. In the case where the model does not fit the circuit

behavior no matter the coefficients, for example because the user specified a linear relationship for

an effect that is really nonlinear, the debugging is very difficult. The issue is most apparent when

the output is affected by two optional inputs, where one is properly modeled and one is improperly

modeled. In these cases it can be difficult to tell that the properly-modeled input is correct because

of the error contributed by the incorrect portions of the model. In addition, when there is little data

to fit to the optimizer may move the correctly-modeled portion away from its optimal coefficients

in order to make up for shortcomings from the incorrectly-modeled portion. In the next section we

will present an example of an incorrect model and the challenges associated with debugging it.

6.1.3 An Unsuitable Sampling Approach

When choosing which points to simulate in order to collect data to fit model coefficients, there is

a tradeoff between minimizing simulation time and maximizing information to help with fitting.

Before Fixture, the existing DaVE tools focused on minimizing simulation time. To fit a model

with N coefficients, DaVE simulated on the order of N points according to the random constraints

described in Section 5.1. In this section, we will attempt to debug a bad fit with this old approach

to demonstrate why a better approach is necessary.

For demonstration, we will attempt to model our motivating circuit’s output using a linear model.

Recall that the gain of the motivating circuit is inversely proportional to the value of the radj bus.

The model we will attempt to fit for the gain and offset is simply a linear function of vdd and each

bit of the radj bus:

out diff =

(
A + B · vdd +

7∑
i=0

Ci · radj[i]

)
· in diff

+

(
D + E · vdd +

7∑
i=0

Fi · radj[i]

) (6.2)

Note that for clarity we omit the differential output’s dependence on the common-mode input,

which is typically small. The plots in this section were produced with the full equation, including

that effect.

CHAPTER 6. MODEL FITTING 70

0.008 0.006 0.004 0.002 0.000 0.002 0.004 0.006
Simulated Output Voltage

0.006

0.004

0.002

0.000

0.002

0.004

M
od

el
ed

 O
ut

pu
t V

ol
ta

ge

Simulated vs. Modeled Amp Output

Figure 6.1: The results of applying the model in Equation 6.2. If the model were a perfect fit then all
the points would lie along the dotted line where modeled output equals simulated output. Instead,
we see significant deviation from the dotted line. This is what we expect, since we used a linear
model but we know the resistor behavior is nonlinear.

Because Equation 6.2 is linear with respect to each coefficient we can find the optimal fit using

linear regression. Doing this, we find the 20 best-fit numeric values for the coefficients A through

F7. We visualize how well this model matches the circuit’s behavior in Figure 6.1, and we see that

it is not perfect because it cannot capture the nonlinear behavior of the feedback resistor.

If the user does not know why the model fits poorly, what steps could they take to debug this

model? One reasonable approach is to attempt to visualize the effect of individual optional inputs

on individual parameters. Using only the data from Figure 6.1 and the best-fit coefficients from

Equation 6.2, we can estimate these individual effects. The idea is to rearrange the equation to put

the desired quantity on the left hand side. For example, if the user is interested in the effect of the

radj input on the gain, we can rearrange the equation as follows:

A +

7∑
i=0

Ci · radj[i] =
out diff − (D + E · vdd +

∑7
i=0 Fi · radj[i])

in diff
−B · vdd (6.3)

The left hand side of Equation 6.3 represents the nominal gain plus the effect of the radj bus.

We can check our fit by evaluating the left hand side of the equation with the best-fit values of A

and Ci to see what the model predicts for the gain and compare it to the right hand side using our

measured inputs, outputs, and our best-fit parameters. With a good fit, parameters E and B would

remove the effect of vdd variation from the right hand side. Performing this process for both radj

and vdd, we can come up with the plots in Figure 6.2

Considering the measured points in Figure 6.2a the reciprocal relationship between radj and

gain is visible, but there is also a lot of noise in the plot. While the user may correctly deduce from

CHAPTER 6. MODEL FITTING 71

10 20 30 40 50 60
radj decimal value

0

500

1000

1500

2000

2500

3000

3500

es
tim

at
ed

 g
ai

n

Estimated gain vs. radj with vdd effect removed

Measured, with vdd effect removed
Modeled, not including vdd effect

(a)

2.70 2.75 2.80 2.85 2.90 2.95 3.00 3.05 3.10
vdd

0

500

1000

1500

2000

2500

3000

3500

es
tim

at
ed

 g
ai

n

Estimated gain vs. vdd with radj effect removed

Measured, with radj effect removed
Modeled, not including radj effect

(b)

Figure 6.2: Linear model of the motivating circuit, showing both the measured data with the best
estimate of the gain with other optional effects removed, and also the corresponding linear model
predictions for gain. Note that the removal of vdd effects in (a) and removal of radj effects in (b)
are problematic because they depend on an imperfect model, leading to “noise” in the measured
datapoints that is not a property of the real circuit. For that reason, Fixture does not produce these
plots and instead replaces them with the plots in Figure 6.6.

this plot that the linear dependence on radj is not sufficient, they may also be confused by the noise

and outliers. Considering Figure 6.2b, the user may assume that the model for gain with respect

to vdd is bad, or that there is an additional unmodeled effect causing the gain to vary significantly

over multiple datapoints. In reality, the only issue with the model is gain’s dependence on radj, and

shows up in the gain vs. vdd plot because of the way we used the bad model to try to remove the

effects of radj from the measured data. In addition, the way that gain is calculated in Equation 6.3

involves division by in, and for a differential amplifier in is allowed to be nearly or exactly zero.

This effectively amplifies small errors in the model, leading to the outliers in Figure 6.2.

Our conclusion is that this method of removing the effects of individual optional inputs from

data where all optional inputs were varied simultaneously is only effective if the fit is good, and

that is a situation where this breakdown isn’t needed. For situations where the fit is poor, this

approach doesn’t help isolate the problem. When the fit is poor, in order to properly separate the

effects of different optional inputs we would need to already know what the effect of each input is.

Fixture sidesteps this issue by collecting data in a way that keeps these effects separate from the

start. Fixture’s approach, including the plots it produces, will be described in the next section.

CHAPTER 6. MODEL FITTING 72

6.1.4 Fixture’s Improved Approach

To overcome the difficulty of fitting and debugging arbitrary nonlinear models, we turned to our

guiding principle and considered how engineers typically fit models to observed circuit behavior. The

key is to consider the effects of inputs one at a time, and then combine these individual effects for

the final model. To do so we will need to collect datapoints differently, testing specific combinations

of inputs that let us find the coefficients individually or in small groups. This helps the nonlin-

ear optimizer because it can fit subsets of the coefficients without considering the entire modeling

equation at once. This change also helps with debugging since issues with modeling one input no

longer affect the modeling related to another input. It also helps with plotting since plots typically

only have one independent axis, and with this change we simulate circuit effects with respect to one

changing input at a time.

There are two keys to Fixture’s approach. The first is to sweep one optional input at a time

while holding the others at their nominal value. The second is, during the sweep of an optional input

opt, to hold opt at a particular value temporarily while sweeping the required inputs. The number

of sample points needed in each sweep depends on the number of coefficients being fit; empirically,

3 times the number of coefficients that need to be fit with the data works well. Each time we choose

a set of random values we are doing so according to the constraints described in Section 5.1.

To illustrate this strategy we will describe the sampling for the challenging example from Sec-

tion 6.1.1. We will refer to the variables N1-4 for the number of points in various sweeps, and their

meanings are summarized in the table below.1 Finally, Figure 6.3 shows a shortened list of sample

points chosen according to this strategy, and the parameters extracted from each sweep.

Name Value Swept Input Coefficients to fit

N1 6 in gain and amplitude

N2 9 vdd a parameter’s nominal value and its dependence on

vdd and vdd2

N3 24 radj a parameter’s nominal value, plus 6 bit weights and

an offset for the nonlinear function of the bus

N4 60 all inputs all 20 coefficients in Equation 6.1

At a high level, Fixture’s sampling is broken into two phases: the optional input sweeps and the

simultaneous sweep. In the first phase we do an individual sweep for each optional input. During

the sweep for a particular optional input we move that optional input as well as all the required

inputs. Then for the second phase we move all optional and required inputs for each sample.

For our example circuit, we begin by sweeping vdd while holding radj at its nominal value. We

choose N2 random values for vdd, and for each one of those values choose N1 random values for

1Equation 6.1 is simplified because it leaves out dependence on the common mode input. When characterizing the
motivating circuit, Fixture vectors in according to the rules in Section 4.5, adding additional coefficients and changing
the values depending on in to N1=9 and N4=90.

CHAPTER 6. MODEL FITTING 73

out (mV)in (uA)radjvdd (V)
54.124.6162.84

87.696.2162.84

-83.6-69.0162.84

93.158.7162.97

-101.5-82.6162.97
42.617.3162.97

-96.2-54.7133.00

36.913.7133.00

90.947.3133.00

-14.2-7.4213.00
-68.0-42.2213.00

64.038.7213.00

18.314.3373.00

55.147.1373.00

-85.1-89.3373.00

-10.6-9.5413.00
63.764.4413.00

-64.8-65.9413.00

-12.0-5.1153.00

-96.0-95.0333.01

-85.0-67.5112.82
-20.6-14.6342.84

78.299.3372.87

40.734.0302.95

-53.0-32.9243.09

48.255.7462.91
-80.0-75.7232.89

-58.9-52.7282.85

-42.9-40.5423.04

49.919.0133.06

60.377.9502.93
96.560.3193.07

27.728.4452.96

amplitude = amplitude_nom + amplitude_radj
amplitude_nom = 0.107
amplitude_radj = f(radj) - f(radj_nom)
f(r) = 1/(0.32*r[0] + 0.23*r[1] + 0.03*r[2]

- 0.03*r[3] + 0.16*r[4] - 0.03*r[5] + 0.16)

gain = gain_nom + gain_radj
gain_nom = 2658
gain_radj = g(radj) - g(radj_nom)
g(r) = 1e5/(64*r[0] + 39*r[1] + 22*r[2]

+ 12*r[3] + 6.2*r[4] + 3.1*r[5] - 1.3)

vdd = 2.84

vdd = 2.97

radj = 13

S
w

ee
p

vd
d,

N

om
in

al
 r

ad
j

N
om

in
al

 v
dd

,
S

w
ee

p
ra

dj

S
im

ul
ta

ne
ou

s
S

w
ee

p

radj = 21

radj = 37

radj = 41

amplitude = 0.084
gain = 2613

amplitude = 0.122
gain = 2671

amplitude = 0.109
gain = 3293

amplitude = 0.106
gain = 1595

amplitude = 0.105
gain = 1204

amplitude = 0.106
gain = 952

amplitude = amplitude_nom + amplitude_vdd
amplitude_nom = 0.109
amplitude_vdd = 0.194*vdd + 0.291*vdd^2
vdd = vdd - vdd_nom

gain = gain_nom + gain_vdd
gain_nom = 2646
gain_vdd = 377*vdd + 968*vdd^2
vdd = vdd - vdd_nom

~
~ ~

~
~~

out = amplitude * tanh(gain/amplitude * in)

amplitude = amplitude_nom + amplitude_vdd + amplitude_radj
amplitude_nom = 0.108
amplitude_vdd = 0.193*vdd + 0.299*vdd^2
vdd = vdd - vdd_nom
amplitude_radj = f(radj) - f(radj_nom)
f(r) = 1/(0.33*r[0] + 0.24*r[1] + 0.03*r[2]

- 0.03*r[3] + 0.18*r[4] - 0.03*r[5] + 9.26)

gain = gain_nom + gain_vdd + gain_radj
gain_nom = 2654
gain_vdd = 319*vdd + 787*vdd^2
vdd = vdd - vdd_nom
gain_radj = g(radj) - g(radj_nom)
g(r) = 1e5/(64*r[0] + 39*r[1] + 22*r[2]

+ 12*r[3] + 6.2*r[4] + 3.0*r[5] - 1.4)

~ ~
~

~
~

~

Figure 6.3: Example data collected for a differential amplifier circuit with two optional inputs, vdd
and radj, to illustrate the way Fixture chooses input sample points. In this figure the total number
of sample points has been reduced for easier illustration, and the best-fit values were extracted from
a simulation using a larger number of points. In the “Sweep vdd” section 2 values have been chosen
for vdd, and for each value there is a 3-datapoint sweep of in. This allows Fixture to extract the gain
and amplitude separately for each value of vdd and then combine them to find the amplitude and
gain in terms of vdd. In the simultaneous sweep section, Fixture fits one large equation including
all the coefficients, rather than fitting in pieces. The results from the individual sweep sections are
used for plots, debugging, and finding an initial guess for parameter values; only the results from
the simultaneous sweep are used in the functional model.

CHAPTER 6. MODEL FITTING 74

in. Considering just one set of N1 points where in has been swept but both optional inputs are

frozen, we can apply our nonlinear optimizer with Equation 6.1a to estimate values for the gain

and amplitude. We repeat this process N2 times to get N2 different estimates for amplitude and

gain, each corresponding to a different value of vdd. Finally, we can take these N2 estimates of the

amplitude and apply the nonlinear optimizer with Equations 6.1c-h. Because radj is at its nominal

value, we know 6.1g is zero and can drop the corresponding terms from the equation. This reduces

the number of coefficients the optimizer needs to fit to just three: A, B1, and B2. To complete the

sweep of vdd we repeat the fitting process for the gain to estimate D, E1, and E2. In total, we have

measured N1 ·N2 points so far.

Next, this entire process is repeated for radj. This produces estimates for A, C0-6, D, and F0-6.

Notice that we have two estimates for A and two for D. This will be resolved in the final step, when

we use the simultaneous sweep. In this step we have measured an additional N1 · N3 points, for a

total of N1 ·N2 + N1 ·N3 so far.

In all the datapoints we have sampled up to this point we have swept only one optional input

at a time, while leaving the other at its nominal value. In general this does not fully exercise the

circuit. For example, the maximum output voltage may only be achieved when both amplitude and

gain are at their highest values, which may occur only at the extreme values of vdd and radj. In

many circuits nonlinear effects are most significant when voltages are at their most extreme values,

so it is important to sweep all inputs simultaneously. In our last phase we do exactly that, choosing

N4 datapoints where all optional and required inputs are swept simultaneously according to the

constraints in Section 5.1. We must use the nonlinear optimizer to fit these points using the entire

set of equations together. The way to get a good result from the optimizer is to give it an initial

guess that is close to the maximum value; we can use our individual fits from the previous phases to

get this initial guess. For coefficients A and D we take the average of their two estimates. In total,

we take N1 ·N2 + N1 ·N3 + N4 sample points throughout this whole process.

In summary, we split the task of fitting a nonlinear equation into smaller pieces. This follows

our guiding principle of approaching the problem the way engineers already do. Analog designers

consider the effects of optional inputs one at a time, so we have Fixture do the same thing. Only

once we have some understanding of how the inputs affect circuit behavior individually do we try

exercising them together, and we use our results from individual fits to help with our combined fit.

6.1.5 Additional Nonlinear Fitting Techniques

The approach described in the previous section works well for fitting the simultaneous sweep, but in

practice the nonlinear optimizer sometimes fails to converge for the small individual fits. We have

found several strategies to help with this issue.

CHAPTER 6. MODEL FITTING 75

Basin Hopping

The first improvement is to use a nonlinear optimizer with a basin hopping technique. In short,

when the optimizer finds a local minimum it will try perturbing the inputs randomly to hopefully

“hop” into a different location with a different local minimum. This improvement was the easiest

to implement because we were able to use an existing basin hopping implementation in the scipy

library. The disadvantage is that this technique takes longer to run than a traditional optimizer

because it is running repeatedly in different basins.

Sharing Fitting Results

Considering the example sampling pattern in Section 6.1.4, we make B calls to the nonlinear opti-

mizer to find amplitude and gain as we sweep vdd. Although those values change as vdd changes,

the variation is small compared to the total space the optimizer could be searching. For this reason,

Fixture uses the result of the previous fit as the starting point for the next fit, and even goes through

the list of B fits twice so that improvements in the solution the first time around can be propagated

to all the fits in the second time around. This method works well along with basin hopping, because

it essentially gives the optimizer many more opportunities to randomly hop into a good basin, and

then share that good result with the other fits.

Fit Tricks

For some equations we know a specific fitting technique that works much better than the nonlinear

optimizer. The most important example of this is an equation that is linear with respect to each

of its coefficients. In that case we can use linear regression to find the optimal coefficient values

very efficiently. How does Fixture know when it can apply linear regression? We created a library

of “Fit Tricks,” each of which includes a method to recognize algebraic expressions it can fit and a

method to perform fitting. The entries in the library inspect the Abstract Syntax Tree (AST) of the

equation being fit and apply their technique if the AST matches a specific form.

Init Tricks

The “Init Tricks” are very similar to the Fit Tricks except that they only give an estimate of the

final fit. This is then used as a starting point for the nonlinear optimizer.

One example of an Init Trick is the reciprocal trick. It matches expressions of the form:

measured data =
1

flinear(c0, ...)
+ g(c1, ...) (6.4)

It applies the approximation:

CHAPTER 6. MODEL FITTING 76

1

measured data
≈ flinear(c0, ...) (6.5)

It then uses linear regression to estimate the coefficients of the linear function. These are not

perfect since it has neglected the effects of g(c1, ...), but it serves as a good starting point for the

nonlinear optimizer. This technique works extremely well for the effect of radj on gain in our

example, Equation 6.1m.

Accepting Help

In cases where none of the above methods work, Fixture can rely on the user to provide an initial

guess. We try to avoid this method because it is extra work for the user, but it should not lead to

any errors because Fixture is only using it as an initial guess and will still fit to the actual data.

6.2 Plotting

Each time Fixture is run it produces many plots automatically using the Matplotlib library [60].

Fixture’s approach is to ensure that no matter what question the user has about the model there

will be a plot already produced to answer that question. In this section we will walk through the

different plots that are produced and discuss why they can be more helpful than text-based results

alone.

6.2.1 Fixed Optional Input Plots

In Section 6.1.4 we described a particular order in which Fixture chooses sample points and runs

regression on a subset of the modeling equations. Fixture produces plots of these intermediate fitting

results to help the user understand circuit behavior and debug any issues. Figure 6.4 shows four of

these plots for a well-fitting, nonlinear model.

These individual plots, with the optional inputs frozen for each sweep of the inputs, are the first

step Fixture takes when looking for optional model coefficients. If the final model is not as accurate

as the user had hoped, it is often useful to come back to this first step to see whether the error is

with the circuit itself or with the model.

In all the plots in this section we have used the differential input as the independent axis.

Although Fixture does sweep the optional inputs one at a time, it always sweeps the template

inputs - in this case differential input and common mode input - together. So all the measured and

modeled data in this section is with respect to both differential and common mode data, but the

common mode is not visible. In Fixture, plots are produced with respect to all axes, so the same

plots are available with respect to common mode input as well, but they are not as useful because

CHAPTER 6. MODEL FITTING 77

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

0.000100

indiff

0.10

0.05

0.00

0.05

0.10

ou
t1

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out1_outdiff for various radj
radj=11
radj=13
radj=17
radj=18
radj=21
radj=24
radj=25
radj=29
radj=32
radj=35
radj=35
radj=38
radj=40
radj=45
radj=47
radj=48

(a)

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

indiff

0.10

0.05

0.00

0.05

0.10

ou
t1

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out1_outdiff, worst fit at radj=11
Measured
Predicted

(b)

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

0.000100

indiff

0.10

0.05

0.00

0.05

0.10

ou
t1

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out1_outdiff for various vdd
vdd=2.812
vdd=2.855
vdd=2.92
vdd=2.958
vdd=3.003
vdd=3.07

(c)

8 6 4 2 0 2 4 6 8
indiff 1e 5

0.075

0.050

0.025

0.000

0.025

0.050

0.075

ou
t1

_o
ut

di
ff_

co
m

bi
ne

r
Fitting out1_outdiff, worst fit at vdd=2.855

Measured
Predicted

(d)

Figure 6.4: (a) Many individual fits of differential output vs. differential input, each with a different
value of the radj optional input. Immediately the user can see the range of gains in the linear
region near the origin as well as the saturating behavior at the extremes. Additionally, because the
dotted lines (model predictions) match well with the stars (measured data), the user knows that the
model from input to output is good. (b) Fixture automatically selects the case from plot a with the
worst mean-square error and plots it individually so the user can see it clearly. In this case the fit
is good. (c) Similar to the first plot, but for sweeping vdd. We can see that the gain is not affected
significantly by vdd, but the amplitude is. Note that there are fewer curves in this plot than in the
radj version because there are fewer coefficients to fit with respect to vdd in the next step. (d) We
see that the worst fit with respect to vdd is still accurate.

CHAPTER 6. MODEL FITTING 78

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

0.000100

indiff

0.15

0.10

0.05

0.00

0.05

0.10

ou
t0

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out0_outdiff for various radj
radj=11
radj=13
radj=17
radj=18
radj=21
radj=24
radj=25
radj=29
radj=32
radj=35
radj=35
radj=38
radj=40
radj=45
radj=47
radj=48

(a)

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

indiff

0.15

0.10

0.05

0.00

0.05

0.10

ou
t0

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out0_outdiff, worst fit at radj=11
Measured
Predicted

(b)

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

0.000100

indiff

0.15

0.10

0.05

0.00

0.05

0.10

0.15

ou
t0

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out0_outdiff for various vdd
vdd=2.812
vdd=2.855
vdd=2.92
vdd=2.958
vdd=3.003
vdd=3.07

(c)

0.000075
0.000050

0.000025
0.000000

0.000025
0.000050

0.000075
0.000100

indiff

0.10

0.05

0.00

0.05

0.10

0.15

ou
t0

_o
ut

di
ff_

co
m

bi
ne

r

Fitting out0_outdiff, worst fit at vdd=3.07
Measured
Predicted

(d)

Figure 6.5: These figures show the same data as Figures 6.4a-d, except that the nonlinear model
(Equation 6.1a) has been replaced by a linear one. The poor fits are apparent in figures (a) and (c),
but the large number of overlapping plots makes them difficult to debug. The utility of plots (b) and
(d) is clear, as they allow the user to see the linear shape of the prediction against the saturating,
nonlinear shape of the measured data. Note that the predicted output does not appear perfectly
linear in these plots because it is also a function of the common-mode input, which varies between
test points.

CHAPTER 6. MODEL FITTING 79

10 15 20 25 30 35 40 45 50
radj

1000

1500

2000

2500

3000

3500

ga
in

1_
ou

t1
_o

ut
di

ff_
in

di
ff

gain1_out1_outdiff_indiff_<1_over_(radj+c0)>_individualfit vs. radj
Measured
Predicted

(a)

2.80 2.85 2.90 2.95 3.00 3.05 3.10
vdd

2500

2520

2540

2560

2580

2600

2620

2640

2660

ga
in

1_
ou

t1
_o

ut
di

ff_
in

di
ff

gain1_out1_outdiff_indiff_<c1*vdd + c2*vdd**2>_individualfit vs. vdd
Measured
Predicted

(b)

Figure 6.6: (a) gain vs. radj. This relationship is the motivation for the reciprocal relationship for
radj. The fit is essentially perfect, modeling both the curved relationship and the sharp steps due to
poor switch sizing in the design of the feedback resistor. (b) gain vs. vdd. We see that the predicted
curve broadly matches the trend of the data, but the fit is not perfect. In this case it is not clear
what the source of the error is, however, considering the scale of the vertical axis on both of these
plots the error is very small compared to the range of possible gain values.

the effect of differential input on differential output is much stronger. We will see in Section 6.2.4

how Fixture uses contour plots to visualize two independent axes at once.

The hidden common mode input dependence is apparent in Figures 6.5b,d. Although the model

is linear, the predicted data does not follow a perfectly straight line. This is because the model

includes some erroneous effect of common mode input on differential output. The effect appears

because the model cannot accurately express the output with the differential input alone, and there

are few enough datapoints that the model begins to overfit using common mode input as well. This

effect can be reduced by simulating more datapoints; however, in this specific instance it is already

clear that the user should pick a different model if they are interested in a more accurate fit.

6.2.2 Parameter vs. Optional Input

The next step in Fixture’s fitting of model coefficients is to fit each individual parameter with respect

to each optional effect. Fixture will produce a debugging plot for each of these fits. Each datapoint

in these plots is a result from one fit from the previous section. See Figure 6.6 for plots of gain vs.

optional inputs.

Because Fixture does not have an estimate of what errors are important to the user, it always

scales its plots to show as much data as possible. This means that axes for two different datasets may

be scaled differently even though they represent the same quantity. Indeed, in Figure 6.6 the plot

with respect to vdd is scaled up significantly, so errors that are likely insignificant seem large. Still,

for users interested in the highest possible accuracy this error may be significant, so it is important

CHAPTER 6. MODEL FITTING 80

10 15 20 25 30 35 40 45 50
radj

0.105

0.106

0.107

0.108

0.109

0.110

0.111

0.112

am
pl

itu
de

1_
ou

t1
_o

ut
di

ff

amplitude1_out1_outdiff_<1_over_(radj+c0)>_individualfit vs. radj
Measured
Predicted

(a)

2.80 2.85 2.90 2.95 3.00 3.05 3.10
vdd

0.09

0.10

0.11

0.12

0.13

am
pl

itu
de

1_
ou

t1
_o

ut
di

ff

amplitude1_out1_outdiff_<c1*vdd + c2*vdd**2>_individualfit vs. vdd
Measured
Predicted

(b)

Figure 6.7: (a) amplitude vs. radj. The fit is not perfect; looking at the vertical axis the variation of
amplitude is small but probably not negligible. It is up to the user to decide whether this reciprocal
model is good enough for their purposes, or whether they should use a different optional input
dependence for this relationship. (b) amplitude vs. vdd. The quadratic model fits the data nicely.

that Fixture shows it.

If the user is interested in tracking down the source of an error in a parameter sweep plot like

Figure 6.6, one place to start is the plots shown in the previous section, Section 6.2.1. In those plots,

the user can see the source of each of the datapoints in the parameter sweep plots. For example, the

measured point in Figure 6.6b that is higher than the predicted curve corresponds to the vdd = 2.968

curve in Figure 6.4c, and since that curve is not exceptional we can say the point is not an outlier

because it is the result of a bad fit. In this case, the errors are small enough that they are likely at

the limit of simulator accuracy. If the user wants to investigate further they can refer to the raw

data, which will be discussed in Section 6.4.

In Figure 6.7a we have a fit that at first glance appears imperfect, and in Figure 6.7b a fit that

is nearly perfect. Comparing the axes between the two plots, we see that the scale of the y-axis in

the first plot is much smaller. In fact, the entire range of amplitude values as radj is swept is less

than 10% of the amplitude, and the largest error is well under 1%. This is an example of a plot

that is likely much more useful than its corresponding mean-square error value alone. While the

mean-square error would tell the user that the fit is good, it would not indicate that the total effect

of radj is small, which is important because the user may decide that a linear or even constant

model for amplitude vs. radj is sufficient. In Figure 6.7b, seeing the figure rather than just the

mean-square error gives the user an intuitive sense of how much the quadratic term helped the fit,

and how much the error would suffer if the quadratic term were removed.

Finally, in Figure 6.8 we see an example of a nonlinear optimizer debug plot. For this specific

effect, Fixture used the Reciprocal Init Trick (Section 6.1.5) to find the initial point to start the

nonlinear optimization. To help with debugging, Fixture plots the estimated fit after the Init Trick

CHAPTER 6. MODEL FITTING 81

10 15 20 25 30 35 40 45 50
radj

1000

1500

2000

2500

3000

3500

ga
in

1_
ou

t1
_o

ut
di

ff_
in

di
ff

Initial Minimizer Guess for
gain1_out1_outdiff_indiff_<1_over_(radj+c0)>_individualfit vs. radj

Measured
Predicted

Figure 6.8: Result of using the Reciprocal Init Trick on the gain vs. radj data. This initial fit was
used as the starting point for a nonlinear optimization that produced Figure 6.6a. That figure is
nearly identical to this one because the Init Trick found a good fit and there was not much left for
the optimizer to do.

but before the nonlinear optimization. In this case the fit was already nearly perfect after the Init

Trick. This is because, in the language of Equation 6.4, the g(c1, ...) term is nearly zero for the gain

vs. radj relationship.

6.2.3 Final Model

After Fixture finishes estimating each of the model coefficients one optional input at a time, it uses

those estimates as the starting point for the final nonlinear optimization with all the inputs swept

simultaneously. Fixture then uses the final model to produce several more plots so that the user can

determine whether the final model is appropriate for their use case. In these plots, the most useful

visualization is to see the residual error between the modeled and measured output plotted against

various inputs. If the model is poor with respect to one input, that should show up as a trend in

the corresponding plot. Figure 6.9 shows the measured and predicted values as well as their residual

error against the template inputs. Figure 6.10 shows the final model against optional inputs.

6.2.4 Contour Plots

Fixture uses contour plots to display data with two independent axes simultaneously. It can take

some practice to read contour plots effectively, but in many cases they are worth studying because

they contain more information than the scatter plots we have seen so far. There are a few rules that

apply to all the contour plots produced by Fixture:

• Solid lines and colors correspond to measured data.

• If the plot has predicted data, predictions will be displayed with dashed lines only. If the

predictions are perfect then the dashed lines cannot be seen because they fall directly on top

CHAPTER 6. MODEL FITTING 82

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

0.000100

indiff

0.10

0.05

0.00

0.05

0.10

ou
t1

_o
ut

di
ff

out1_outdiff vs. indiff
Measured
Predicted

(a)

0.000100
0.000075

0.000050
0.000025

0.000000
0.000025

0.000050
0.000075

0.000100

indiff

0.002

0.001

0.000

0.001

0.002

ou
t1

_o
ut

di
ff

Re
sid

ua
l

out1_outdiff Residual Error vs. indiff

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
incm 1e 6

0.10

0.05

0.00

0.05

0.10

ou
t1

_o
ut

di
ff

out1_outdiff vs. incm
Measured
Predicted

(c)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
incm 1e 6

0.002

0.001

0.000

0.001

0.002
ou

t1
_o

ut
di

ff
Re

sid
ua

l

out1_outdiff Residual Error vs. incm

(d)

Figure 6.9: (a) differential output vs. differential input. Two datapoints collected with the same
differential input can have a different differential output because the optional inputs are also being
varied randomly. The close matching of the measured and predicted points means that this is a good
model even when all the inputs are varied simultaneously. (b) Residual error for the differential
output vs. differential input plot. This makes it easier to see the magnitude of the error and
see whether there is any trend to indicate a systematic error. (c) differential output vs. common
mode input. This plot is the least useful of the four since the common mode input does not affect
the differential output very much. (d) Residual error for differential output vs. common mode
input. This plot is useful for checking whether there is some small unmodeled effect of common
mode input. In this case there is no significant trend, so the small errors are probably not due to
unmodeled common mode effects.

CHAPTER 6. MODEL FITTING 83

10 15 20 25 30 35 40 45 50
radj

0.002

0.001

0.000

0.001

0.002

ou
t1

_o
ut

di
ff

Re
sid

ua
l

out1_outdiff Residual Error vs. radj

(a)

2.80 2.85 2.90 2.95 3.00 3.05 3.10
vdd

0.002

0.001

0.000

0.001

0.002

ou
t1

_o
ut

di
ff

Re
sid

ua
l

out1_outdiff Residual Error vs. vdd

(b)

Figure 6.10: (a) differential output residual error vs. radj. Like Figure 6.9, the datapoints were
collected while varying all the input simultaneously, and in this plot they are organized by the radj
input to check for a systematic source of error. (b) differential output residual error vs. vdd. In
this plot we do see a vague trend with error being worse further away from the nominal vdd value
of 3.0. The maximum relative error of this model is less than 3%, but if the user is interested in a
more accurate model this figure suggests looking at vdd effects first.

of the solid lines from the measured data.

• Blue “X”s correspond to datapoints. The smooth contours are made by interpolating between

datapoints, but sometimes it is helpful to know where the measurements exist and where the

displayed value is only an interpolation.

Figure 6.11 shows a few contour plots with the same example circuit we have been using. Because

we have a good fit for this example circuit the residual error plots are not interesting. Let us consider

the same circuit, but we will adjust the input range so that the saturation behavior is only significant

when both radj and indiff are at their extreme values. Then, if we attempt to use a linear model, we

might expect to see error appear only in specific corners of the contour plot. Looking at Figure 6.12,

we actually see error all along the edge corresponding to high gain because the coefficient fit has

sacrificed accuracy for small differential input in order to not overshoot too much for large differential

input. Contour plots have a significant advantage over scatter plots when trying to visualize data

with two important independent axes, such as the differential input and radj optional input in this

example.

6.3 Additional Outputs from Fixture

In addition to plots, Fixture also gives a human-readable version of the model and several other

debugging outputs. The user can also request the model in a format that can be read by mGenero

to produce a functional model.

CHAPTER 6. MODEL FITTING 84

7.5 5.0 2.5 0.0 2.5 5.0 7.5
indiff 1e 5

15

20

25

30

35

40

45

ra
dj

out1_outdiff

0.12

0.09

0.06

0.03

0.00

0.03

0.06

0.09

0.12

(a)

7.5 5.0 2.5 0.0 2.5 5.0 7.5
indiff 1e 5

15

20

25

30

35

40

45

ra
dj

out1_outdiff Residual Error

0.0012

0.0008

0.0004

0.0000

0.0004

0.0008

0.0012

0.0016

0.0020

(b)

7.5 5.0 2.5 0.0 2.5 5.0 7.5
indiff 1e 5

2.85

2.90

2.95

3.00

3.05

vd
d

out1_outdiff

0.12

0.08

0.04

0.00

0.04

0.08

0.12

0.16

(c)

7.5 5.0 2.5 0.0 2.5 5.0 7.5
indiff 1e 5

2.85

2.90

2.95

3.00

3.05

vd
d

out1_outdiff Residual Error

0.0012

0.0009

0.0006

0.0003

0.0000

0.0003

0.0006

0.0009

0.0012

(d)

Figure 6.11: Contour plots showing the differential output or the residual error from modeling the
differential output against various inputs. In this case the model fit is good, and the plots do not
show any systematic trend in the error. For (a) and (b), the independent axes are the differential
input and radj, so Fixture uses the data from the sweep of radj. (c) and (d) use the data from the
sweep of vdd. Notice that the location of the measurements (“X”’s) fall into six horizontal lines;
these correspond to the six values in the sweep of vdd seen in Figure 6.4c.

CHAPTER 6. MODEL FITTING 85

7.5 5.0 2.5 0.0 2.5 5.0 7.5
indiff 1e 5

15

20

25

30

35

40

45

ra
dj

out0_outdiff

0.12

0.09

0.06

0.03

0.00

0.03

0.06

0.09

0.12

(a)

7.5 5.0 2.5 0.0 2.5 5.0 7.5
indiff 1e 5

15

20

25

30

35

40

45

ra
dj

out0_outdiff Residual Error

0.040

0.032

0.024

0.016

0.008

0.000

0.008

0.016

0.024

0.032

(b)

Figure 6.12: Contour plots for a non-saturating model of a saturating amplifier. The error in the
model is difficult to visualize with only one independent axis, but is clear in these contour plots
if the user takes the time to understand them. (a) The dotted lines represent the differential out
model. At the bottom of the plot low radj causes high gain which causes saturation, but the model
is not able to capture that saturation and diverges from the measured values. (b) The error very
clearly has larger magnitude at low values of radj.

Input Samples

As explained in Section 6.1.4, Fixture’s method of choosing input points is fairly complicated. Once

it has chosen all the input points over all sweeps, it dumps those points in a csv file so that the

user can inspect and debug with them. For ease of interpretation and in case the user wants to

create plots in an external program, Fixture reports columns for each individual bit of a bus as

well as the decimal interpretation of that bus according to the format the user specified in the user

configuration file. In addition to a column for each input, the file also has columns to specify which

optional input is being swept at that point (if any) and the index of the point in the sweep.

Testbench Input and Output

After fault compiles the testbench to the appropriate format, it saves that to file and calls the

simulator to operate on that file. This means that both the file for the testbench in spice or Verilog

and the raw testbench results are available in the filesystem for the user to inspect.

Extracted Data

After the simulation finishes, Fixture extracts data from the testbench results using the Template’s

analysis methods. If there is a bug with the way Fixture is interpreting testbench results, this would

be one way the user could see the issue before it propagates to the final model. Additionally, if the

user wants to use an external program to make any additional plots not already provided by Fixture

they can use this file to do so.

CHAPTER 6. MODEL FITTING 86

The Final Model

Once Fixture has found the best-fit coefficients it will report the final model to the user. Because the

model can be relatively large for a circuit with many optional inputs, Fixture lists it in a hierarchical

format like Equation 6.1. The best-fit values for each coefficient are listed in a separate table. In

this format, it is easy for the user answer any specific questions they might have about the model.

Even if they are not familiar with the names of parameters used by Fixture they can easily see the

definitions by looking at the top equations in the hierarchy.

In addition, if the final model is compatible with the mGenero library the user can request that

the model be exported in an mGenero-compatible format for automatic model generation. If there

is any translation necessary between the Fixture template’s name for a parameter and mGenero’s

name for an equivalent parameter, that translation can also be supplied in an mGenero configuration

file alongside the user configuration file.

6.4 Fixture Checkpoints

In addition to their use for debugging, Fixture can also use the intermediate outputs described in

Section 6.3 to restart from the middle of its operation. Specifically, we split the operation of Fixture

into four phases: choose inputs, run sim, run analysis, and run regression.

The checkpoint feature is primarily useful if the user makes a change to the user configuration file,

but does not want to re-run the simulation if it is not necessary. This commonly happens because

the user wants to change one of the optional input dependencies to try modeling their circuit in a

different way.

The user can also use the checkpoint feature to customize the way Fixture runs. For example, if

the user knows there is a particularly problematic combination of optional inputs they can manually

add sample points to the table of input samples to exercise that problem area of the circuit. All

the user has to do is add rows to the table and Fixture will take care of adjusting the testbench,

analyzing results, and plotting models automatically.

6.5 Preliminary Model Generation

One final way the user can use the checkpoint system is to generate a preliminary model for a circuit

before the spice model has been developed. During the development of an SoC, it is common to have

analog and digital teams working on their portions of the SoC simultaneously. When the digital

team is developing hardware that interacts with analog blocks it is extremely helpful for them to

have a digital model to test with, even if the analog implementation is still a work in progress.

Within the DaVE ecosystem it is possible to use a templatized Verilog funcitonal model to

generate a preliminary model based on a hand-written set of parameters. In many cases, however,

CHAPTER 6. MODEL FITTING 87

the specification that analog and digital teams work from is not a list of parameter, such as gain’s

sensitivity to the bits of an adjustment input, but rather a table of adjustment input values and

corresponding gain values. With Fixture, we can insert this hand-written spec table in place of

extracted testbench results, and run model fitting, plotting, and model generation as normal. This

way, engineers get a visualization of how the few datapoints in the table were extended to the entire

input range, as well as the Verilog functional model that digital engineers can use to develop their

hardware.

There are some additional challenges that arise because a spec table typically lists parameter

values rather than inputs and outputs, and because it usually has a relatively small amount of data

to extrapolate from. The first issue is easily solved by adding new parameter definition equations

to the template. It is straightforward to add an additional Test to an existing template with these

equations since the other sections of the Test can be left blank.

Next, we have the problem of limited input data. Typically, this is only an issue when the

number of coefficients in the model is close to or greater than the number of sample points in the

spec table. The time this is most likely to happen is with digital adjustment buses. Fixture typically

assigns one coefficient to each bit in a bus, which can easily be more than the number of example

[bit vector, parameter value] pairs in the spec table. We solve this issue by introducing new styles of

digital buses called forced binary and forced thermometer. Like the digital bus styles described

in Section 6, this is a datatype that the user can assign to an input bus in the user configuration

file. The difference is that during model fitting, the default dependency on this input will not be

linear with respect to each bit, but rather linear with respect to the digital value of the bus. Instead

of adding N coefficients for each N -bit bus, this strategy adds just 1 coefficient per bus.

For teams that already use Verilog functional modeling as part of their existing workflow, and

are wary about switching to the DaVE environment without evidence that the models are accurate

enough for their verification needs, preliminary models can be a good place to start. Having an

inaccurate preliminary model is relatively low-impact because the mistake will be caught when the

team moves to the final Verilog functional model. Still, using a preliminary model makes for a good

trial run of models from the DaVE environment since the team will likely work with them for an

extended period of time, and can easily compare their performance to the hand-written models of

the same circuits. We hope that the ability to do preliminary model generation encourages more

teams to try Fixture and the DaVE environment.

Chapter 7

Conclusion

Automating analog model generation is a challenging task. Early in this work, it seemed like

the best solution for modeling many circuits was to treat them as an amplifier with the proper

domain conversions. Unfortunately, as we focused on modeling more circuit nonidealities it became

clear that this was not a sustainable solution. Taking the example of a phase blender, an ideal

model is essentially an amplifier with its inputs and outputs converted to the phase domain. But

the nonidealities (glitching behavior), specifics of the input space (variability between input clock

phases), and difficulties in analysis (aliasing between phase blenders with a 2π difference in output

delay) are all difficult to translate to the amplifier template. Rather than create amplifier template

full of phase-blender-specific cases, we decided that it was best to create a dedicated template. This

reinforced the conclusions of previous work on DaVE, and led to the structure of the Fixture library

today. With this in mind, we still believe that the vast majority of analog circuits can be modeled

with relatively few (perhaps a few dozen) templates. Additionally, templates for similar circuit types

can still share code for blocks like domain converters, allowing good organization of circuit types

while sharing as many modeling strategies as possible.

Although the limited number of analog circuit types allows us to reuse existing models and

modeling strategies to some extent, there is a huge variety to the small quirks and additions analog

designers can add to their circuits that prevents them from matching a standardized template. Much

of this thesis can be summarized as finding ways to model these quirks, then generalize them as much

as possible, and finally teach the tool to apply them to any circuit type. Examples of this include the

many types of optional input, the ability to vector required inputs, domain translation for required

and optional inputs, and the ability to accept arbitrary nonlinear optional input expressions from

the user. We believe that this variety of ways to modify the templates should cover a majority of

user circuits, but it is difficult to predict what circuits the tool may encounter in the future.

It takes many example circuits before one can be confident that a template can handle an

unknown user circuit. In our library so far, the amplifier template has seen the most test cases and

88

CHAPTER 7. CONCLUSION 89

we are confident that it can be useful to new users. Although the other templates may still need

further improvement to handle all user circuits, we believe the existing templates will work for most

cases. Additionally, our modular library approach - with individual templates, and individual tests

within the template - allows us to add necessary functionality to the library piece by piece.

Because the library is open-source and modular, we hope that some engineers are able to add

new templates and tests to fit their needs. Fixture has made template creation easier in some ways

than hand-writing a new circuit characterization script by automating tasks like random sampling,

measurement of optional input effects, and nonlinear parameter fitting. Still, it takes a skilled

engineer to write a template because Fixture cannot automate tasks like determining the right

domain for a model, ensuring that all important nonidealities are modeled, and keeping simulation

time in mind. In general, if an engineer could not do the circuit analysis by hand, they could not

make a new template for Fixture. In addition, even if the engineer could make the model by hand

they still need some Fixture-specific knowledge about how to organize the template and test before

they can contribute to the library. Still, we hope that if enough engineers become familiar with the

existing templates then they will be motivated to make any new circuit models they need in the

same environment.

There are still many ways Fixture itself can be improved. The tool would benefit from the ability

to automatically manage Monte Carlo variations of spice and functional models. In addition, a more

unified approach to timing the effects of optional inputs would make it easier to implement more

tests like the phase blender glitching behavior test in the future. We hope that in the future new

developers will see the value in the project and continue to add features.

Most of all, we hope that users find Fixture useful. We believe that the DaVE ecosystem is

better than ever with the addition of Fixture, and engineers should take advantage of this resource

to improve their functional modeling workflow. When a community begins using the tools can we

find and eliminate bugs, gain confidence in the existing model library, and expand the functionality

for future users.

Bibliography

[1] H.V. Deshpande, Baohong Cheng, and J.C.S. Woo. “Channel engineering for analog device

design in deep submicron CMOS technology for system on chip applications”. In: IEEE Trans-

actions on Electron Devices 49.9 (2002), pp. 1558–1565. doi: 10.1109/TED.2002.801435.

[2] Boris Murmann. “Digitally Assisted Analog Circuits; Fifth IEEE Dallas Circuits and Systems

Workshop”. In: 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and

Software. 2006, pp. 23–30. doi: 10.1109/DCAS.2006.321026.

[3] Xin Li, Chandramouli Kashyap, and Chris J. Myers. “Guest Editors’ Introduction Challenges

and Opportunities in Analog/Mixed-Signal CAD”. In: IEEE Design & Test 33.5 (2016), pp. 5–

6. doi: 10.1109/MDAT.2016.2594182.

[4] A.N. Karanicolas, H.S. Lee, and K.L. Bacrania. “A 15 b 1 Ms/s digitally self-calibrated pipeline

ADC”. In: 1993 IEEE International Solid-State Circuits Conference Digest of Technical Pa-

pers. 1993, pp. 60–61. doi: 10.1109/ISSCC.1993.280084.

[5] B. Murmann and B.E. Boser. “A 12-bit 75-MS/s pipelined ADC using open-loop residue

amplification”. In: IEEE Journal of Solid-State Circuits 38.12 (2003), pp. 2040–2050. doi:

10.1109/JSSC.2003.819167.

[6] E. Iroaga and B. Murmann. “A 12b, 75MS/s Pipelined ADC Using Incomplete Settling”. In:

2006 Symposium on VLSI Circuits, 2006. Digest of Technical Papers. 2006, pp. 222–223. doi:

10.1109/VLSIC.2006.1705390.

[7] Hisakatsu Yamaguchi et al. “A 5Gb/s transceiver with an ADC-based feedforward CDR and

CMA adaptive equalizer in 65nm CMOS”. In: 2010 IEEE International Solid-State Circuits

Conference - (ISSCC). 2010, pp. 168–169. doi: 10.1109/ISSCC.2010.5434001.

[8] C.R. Grace, P.J. Hurst, and S.H. Lewis. “A 12 b 80 MS/s pipelined ADC with bootstrapped

digital calibration”. In: 2004 IEEE International Solid-State Circuits Conference (IEEE Cat.

No.04CH37519). 2004, 460–539 Vol.1. doi: 10.1109/ISSCC.2004.1332793.

[9] Yangjin Oh and B. Murmann. “System embedded ADC calibration for OFDM receivers”. In:

IEEE Transactions on Circuits and Systems I: Regular Papers 53.8 (2006), pp. 1693–1703.

doi: 10.1109/TCSI.2006.879063.

90

https://doi.org/10.1109/TED.2002.801435
https://doi.org/10.1109/DCAS.2006.321026
https://doi.org/10.1109/MDAT.2016.2594182
https://doi.org/10.1109/ISSCC.1993.280084
https://doi.org/10.1109/JSSC.2003.819167
https://doi.org/10.1109/VLSIC.2006.1705390
https://doi.org/10.1109/ISSCC.2010.5434001
https://doi.org/10.1109/ISSCC.2004.1332793
https://doi.org/10.1109/TCSI.2006.879063

BIBLIOGRAPHY 91

[10] Ken Kundert and Henry Chang. “Model-based functional verification”. In: Design Automation

Conference. 2010, pp. 421–424. doi: 10.1145/1837274.1837380.

[11] Henry Chang and Ken Kundert. “Verification of Complex Analog and RF IC Designs”. In:

Proceedings of the IEEE 95.3 (2007), pp. 622–639. doi: 10.1109/JPROC.2006.889384.

[12] William F. Ellersick. “How to Prevent a Sick ASIC”. In: 2022 IEEE High Performance Extreme

Computing Conference (HPEC). 2022, pp. 1–6. doi: 10.1109/HPEC55821.2022.9926305.

[13] Steven Herbst. “An Open-Source Framework for FPGA Emulation of Analog/Mixed-Singal

Integrated Circuit Designs”. PhD thesis. Stanford Univesity, 2021.

[14] Byong Chan Lim et al. “Digital Analog Design: Enabling Mixed-Signal System Validation”.

In: IEEE Design & Test 32.1 (2015), pp. 44–52. doi: 10.1109/MDAT.2014.2361718.

[15] Kemal Çağlar Coşkun, Muhammad Hassan, and Rolf Drechsler. “Equivalence Checking of

System-Level and SPICE-Level Models of Linear Analog Filters”. In: 2022 25th International

Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS). 2022,

pp. 160–165. doi: 10.1109/DDECS54261.2022.9770142.

[16] Sayandeep Sanyal et al. “CoveRT: A Coverage Reporting Tool for Analog Mixed-Signal De-

signs”. In: 2020 33rd International Conference on VLSI Design and 2020 19th International

Conference on Embedded Systems (VLSID). 2020, pp. 119–124. doi: 10.1109/VLSID49098.

2020.00038.

[17] Sayandeep Sanyal et al. “The Notion of Cross Coverage in AMS Design Verification”. In: 2020

25th Asia and South Pacific Design Automation Conference (ASP-DAC). 2020, pp. 217–222.

doi: 10.1109/ASP-DAC47756.2020.9045131.

[18] Andreas Fürtig et al. “Novel metrics for Analog Mixed-Signal coverage”. In: 2017 IEEE

20th International Symposium on Design and Diagnostics of Electronic Circuits & Systems

(DDECS). 2017, pp. 97–102. doi: 10.1109/DDECS.2017.7934589.

[19] Sabrina Liao and Mark Horowitz. “A Verilog piecewise-linear analog behavior model for mixed-

signal validation”. In: Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

2013, pp. 1–5. doi: 10.1109/CICC.2013.6658461.

[20] H. El Tahawy, A. Chianale, and B. Hennion. “Functional verification of analog blocks in FI-

DELDO: a unified mixed-mode simulation environment”. In: 1989 IEEE International Sym-

posium on Circuits and Systems (ISCAS). 1989, 2012–2015 vol.3. doi: 10.1109/ISCAS.1989.

100767.

[21] Wen Chen et al. “Challenges and Trends in Modern SoC Design Verification”. In: IEEE Design

& Test 34.5 (2017), pp. 7–22. doi: 10.1109/MDAT.2017.2735383.

https://doi.org/10.1145/1837274.1837380
https://doi.org/10.1109/JPROC.2006.889384
https://doi.org/10.1109/HPEC55821.2022.9926305
https://doi.org/10.1109/MDAT.2014.2361718
https://doi.org/10.1109/DDECS54261.2022.9770142
https://doi.org/10.1109/VLSID49098.2020.00038
https://doi.org/10.1109/VLSID49098.2020.00038
https://doi.org/10.1109/ASP-DAC47756.2020.9045131
https://doi.org/10.1109/DDECS.2017.7934589
https://doi.org/10.1109/CICC.2013.6658461
https://doi.org/10.1109/ISCAS.1989.100767
https://doi.org/10.1109/ISCAS.1989.100767
https://doi.org/10.1109/MDAT.2017.2735383

BIBLIOGRAPHY 92

[22] Bin Wan and Xingang Wang. “Overview of commercially-available analog/RF simulation en-

gines and design environment”. In: 2014 12th IEEE International Conference on Solid-State

and Integrated Circuit Technology (ICSICT). 2014, pp. 1–4. doi: 10.1109/ICSICT.2014.

7021256.

[23] Cadence Design Systems, Inc. Spectre AMS Designer: Flexible mixed-signal simulation for

SoCs. url: https://www.cadence.com/en_US/home/tools/custom- ic- analog- rf-

design/circuit-simulation/spectre-ams-designer.html.

[24] Accellera Systems Initiative. SystemC Analog/Mixed-Signal Extensions. url: https://systemc.

org/overview/systemc-ams//.

[25] Martin Barnasconi. “SystemC AMS Extensions: Solving the Need for Speed”. In: (Jan. 2010).

[26] T. Rizzi et al. “Comparative Analysis and Optimization of the SystemC-AMS Analog Simula-

tion Efficiency of Resistive Crossbar Arrays”. In: 2021 XXXVI Conference on Design of Cir-

cuits and Integrated Systems (DCIS). 2021, pp. 1–6. doi: 10.1109/DCIS53048.2021.9666193.

[27] Scientific Analog, Inc. xmodel: Empower SystemVerilog with Event-Driven Analog Models. url:

https://www.scianalog.com/xmodel/.

[28] Scientific Analog, Inc. modelzen: Auto-Extract Analog Models from Circuits. url: https :

//www.scianalog.com/modelzen/.

[29] Scientific Analog, Inc. glister: Model Circuits in Schematics without Writing Codes. url:

https://www.scianalog.com/glister/.

[30] Ji-Eun Jang et al. “True event-driven simulation of analog/mixed-signal behaviors in Sys-

temVerilog: A decision-feedback equalizing (DFE) receiver example”. In: Proceedings of the

IEEE 2012 Custom Integrated Circuits Conference. 2012, pp. 1–4. doi: 10.1109/CICC.2012.

6330558.

[31] Yoontaek Lee, Jeongyeol Kwon, and Jaeha Kim. “Power Loss Analysis of Switched-mode

Converter Circuits in XMODEL”. In: International Technical Conference on Circuits/Systems,

Computers and Communications. 2016, pp. 609–612. doi: 10.34385/proc.61.5174.

[32] Ji-Eun Jang, Si-Jung Yang, and Jaeha Kim. “Event-driven simulation of Volterra series models

in SystemVerilog”. In: Proceedings of the IEEE 2013 Custom Integrated Circuits Conference.

2013, pp. 1–4. doi: 10.1109/CICC.2013.6658460.

[33] Lei Yang and C.-J.R. Shi. “FROSTY: a fast hierarchy extractor for industrial CMOS cir-

cuits”. In: ICCAD-2003. International Conference on Computer Aided Design (IEEE Cat.

No.03CH37486). 2003, pp. 741–746. doi: 10.1109/ICCAD.2003.159759.

[34] Seyoung Kim and Jaeha Kim. “An Equivalent Modeling Approach for High-Density DRAM

Array System-Level Design-Space Exploration in SystemVerilog”. In: Apr. 2021.

https://doi.org/10.1109/ICSICT.2014.7021256
https://doi.org/10.1109/ICSICT.2014.7021256
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-ams-designer.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation/spectre-ams-designer.html
https://systemc.org/overview/systemc-ams//
https://systemc.org/overview/systemc-ams//
https://doi.org/10.1109/DCIS53048.2021.9666193
https://www.scianalog.com/xmodel/
https://www.scianalog.com/modelzen/
https://www.scianalog.com/modelzen/
https://www.scianalog.com/glister/
https://doi.org/10.1109/CICC.2012.6330558
https://doi.org/10.1109/CICC.2012.6330558
https://doi.org/10.34385/proc.61.5174
https://doi.org/10.1109/CICC.2013.6658460
https://doi.org/10.1109/ICCAD.2003.159759

BIBLIOGRAPHY 93

[35] Hyun-Sek Lukas Lee et al. “Automated generation of hybrid system models for reachability

analysis of nonlinear analog circuits”. In: The 20th Asia and South Pacific Design Automation

Conference. 2015, pp. 725–730. doi: 10.1109/ASPDAC.2015.7059096.

[36] J.R. Burch et al. “Sequential circuit verification using symbolic model checking”. In: 27th

ACM/IEEE Design Automation Conference. 1990, pp. 46–51. doi: 10 . 1109 / DAC . 1990 .

114827.

[37] Cadence Design Systems, Inc. AMS Design and Model Validation User Guide IC6.1.8. url:

http://support.cadence.com.

[38] Amandeep Singh and Peng Li. “On behavioral model equivalence checking for large analog/mixed

signal systems”. In: 2010 IEEE/ACM International Conference on Computer-Aided Design

(ICCAD). 2010, pp. 55–61. doi: 10.1109/ICCAD.2010.5651402.

[39] Byong Chan Lim. StanfordVLSI: DaVE. url: https://github.com/StanfordVLSI/DaVE.

[40] Byong Chan Lim. “Model Validation of Mixed-Signal Systems”. PhD thesis. Stanford Uni-

vesity, 2012.

[41] Byong Chan Lim and Mark Horowitz. “An Analog Model Template Library: Simplifying Chip-

Level, Mixed-Signal Design Verification”. In: IEEE Transactions on Very Large Scale Integra-

tion (VLSI) Systems 27.1 (2019), pp. 193–204. doi: 10.1109/TVLSI.2018.2873387.

[42] Mark Horowitz et al. “Fortifying analog models with equivalence checking and coverage analy-

sis”. In: Design Automation Conference. 2010, pp. 425–430. doi: 10.1145/1837274.1837381.

[43] Jaeha Kim, Kevin D. Jones, and Mark A. Horowitz. “Variable domain transformation for

linear PAC analysis of mixed-signal systems”. In: 2007 IEEE/ACM International Conference

on Computer-Aided Design. 2007, pp. 887–894. doi: 10.1109/ICCAD.2007.4397376.

[44] Byong Chan Lim, Jaeha Kim, and Mark A. Horowitz. “An efficient test vector generation for

checking analog/mixed-signal functional models”. In: Design Automation Conference. 2010,

pp. 767–772.

[45] Byong Chan Lim and Mark Horowitz. “Error Control and Limit Cycle Elimination in Event-

Driven Piecewise Linear Analog Functional Models”. In: IEEE Transactions on Circuits and

Systems I: Regular Papers 63.1 (2016), pp. 23–33. doi: 10.1109/TCSI.2015.2512699.

[46] Micha l Rewieński. “A Perspective on Fast-SPICE Simulation Technology”. In: Simulation and

Verification of Electronic and Biological Systems. Ed. by Peng Li, Lúıs Miguel Silveira, and

Peter Feldmann. Dordrecht: Springer Netherlands, 2011, pp. 23–42. isbn: 978-94-007-0149-6.

doi: 10.1007/978-94-007-0149-6_2. url: https://doi.org/10.1007/978-94-007-0149-

6_2.

[47] Liberty User Guides and Reference Manual Suite Version 2017.06. Synopsys, Inc. 2017.

https://doi.org/10.1109/ASPDAC.2015.7059096
https://doi.org/10.1109/DAC.1990.114827
https://doi.org/10.1109/DAC.1990.114827
http://support.cadence.com
https://doi.org/10.1109/ICCAD.2010.5651402
https://github.com/StanfordVLSI/DaVE
https://doi.org/10.1109/TVLSI.2018.2873387
https://doi.org/10.1145/1837274.1837381
https://doi.org/10.1109/ICCAD.2007.4397376
https://doi.org/10.1109/TCSI.2015.2512699
https://doi.org/10.1007/978-94-007-0149-6_2
https://doi.org/10.1007/978-94-007-0149-6_2
https://doi.org/10.1007/978-94-007-0149-6_2

BIBLIOGRAPHY 94

[48] Quan Hu, Lijuan Yang, and Fengyi Huang. “A 100–170MHz fully-differential Sallen-Key 6th-

order low-pass filter for wideband wireless communication”. In: 2016 International Conference

on Integrated Circuits and Microsystems (ICICM). 2016, pp. 324–328. doi: 10.1109/ICAM.

2016.7813617.

[49] Aaron Meurer et al. “SymPy: symbolic computing in Python”. In: PeerJ Computer Science 3

(Jan. 2017), e103. issn: 2376-5992. doi: 10.7717/peerj-cs.103. url: https://doi.org/

10.7717/peerj-cs.103.

[50] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825 (Sept. 2020),

pp. 357–362. issn: 1476-4687. doi: 10.1038/s41586-020-2649-2. url: https://doi.org/

10.1038/s41586-020-2649-2.

[51] Sung-Jin Kim et al. “Open-Source Synthesizable Analog Blocks for High-Speed Link De-

signs: 20-GS/s 5b ENOB Analog-to-Digital Converter and 5-GHz Phase Interpolator”. In:

2020 IEEE Symposium on VLSI Circuits. 2020, pp. 1–2. doi: 10.1109/VLSICircuits18222.

2020.9162800.

[52] Sung-Jin Kim et al. “20-GS/s 8-bit Analog-to-Digital Converter and 5-GHz Phase Interpolator

for Open-Source Synthesizable High-Speed Link Applications”. In: IEEE Solid-State Circuits

Letters 3 (2020), pp. 518–521. doi: 10.1109/LSSC.2020.3037823.

[53] M. D. McKay, R. J. Beckman, and W. J. Conover. “Comparison of Three Methods for Selecting

Values of Input Variables in the Analysis of Output from a Computer Code”. In: Technometrics

21.2 (1979), pp. 239–245. doi: 10.1080/00401706.1979.10489755. eprint: https://doi.

org/10.1080/00401706.1979.10489755. url: https://doi.org/10.1080/00401706.1979.

10489755.

[54] Krzysztof Choromanski et al. “Unifying Orthogonal Monte Carlo Methods”. In: Proceedings

of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and

Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. PMLR, Sept. 2019,

pp. 1203–1212. url: https://proceedings.mlr.press/v97/choromanski19a.html.

[55] Lenny Truong et al. fault: A Python Embedded Domain-Specific Language For Metaprogram-

ming Portable Hardware Verification Components. 2020. arXiv: 2006.11669 [cs.SE].

[56] Rick Bahr et al. “Creating an Agile Hardware Design Flow”. In: 2020 57th ACM/IEEE Design

Automation Conference (DAC). 2020, pp. 1–6. doi: 10.1109/DAC18072.2020.9218553.

[57] ngspice Developers. ngspice: Mixed Mode - Mixed Level Circuit Simulator. url: https://

ngspice.sourceforge.io/index.html.

[58] Aleksandar Donev, Salvatore Torquato, and Frank H. Stillinger. “Neighbor list collision-driven

molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details”. In:

Journal of Computational Physics 202.2 (2005), pp. 737–764. issn: 0021-9991.

https://doi.org/10.1109/ICAM.2016.7813617
https://doi.org/10.1109/ICAM.2016.7813617
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/VLSICircuits18222.2020.9162800
https://doi.org/10.1109/VLSICircuits18222.2020.9162800
https://doi.org/10.1109/LSSC.2020.3037823
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://doi.org/10.1080/00401706.1979.10489755
https://proceedings.mlr.press/v97/choromanski19a.html
https://arxiv.org/abs/2006.11669
https://doi.org/10.1109/DAC18072.2020.9218553
https://ngspice.sourceforge.io/index.html
https://ngspice.sourceforge.io/index.html

BIBLIOGRAPHY 95

[59] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python”.

In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

[60] J. D. Hunter. “Matplotlib: A 2D graphics environment”. In: Computing in Science & Engi-

neering 9.3 (2007), pp. 90–95. doi: 10.1109/MCSE.2007.55.

https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1109/MCSE.2007.55

	Abstract
	Acknowledgements
	Introduction
	Prior Work
	Analog / Mixed-Signal Simulation
	Scientific Analog
	xmodel
	modelzen
	glister

	Other Spice Model Verification Techniques
	DaVE Tools
	DaVE: A Template Library
	A DaVE Template
	The DaVE Environment
	An Evolving Library

	A Motivating Circuit
	The Challenging Circuit
	User input
	Choosing Sample Points
	Simulation
	Model fitting

	Guiding Principles
	Provide Reasonable Defaults, but Advanced Options
	Follow a Process that is Familiar to Engineers
	Make Data User-Accessible

	A Template Library
	Structure of a Fixture Template
	Parameter Equations
	Optional Input Types
	Pinned Values
	Analog
	Quantized Analog
	True digital
	Load Specification
	Challenges with Process / Temperature variation

	Updating Equations with Optional Inputs
	Equation Hierarchy
	User Configuration: Optional Input Dependence

	Extending a Template with Vectored Inputs and Outputs
	Extending a Template with Custom Domain Changes
	Linear Transformations
	Time-Based Transformations

	Using the Template

	Testbench Generation
	Choosing Input Points
	Latin Hypercube Sampling and Orthogonal Sampling
	Scaling Input Samples
	Custom Input Constraints

	The Testbench Description Language fault
	Testbenches Written in Python
	Domain Translation

	Templatized Testbenches
	Writing a Templatized Testbench
	Vectoring a Testbench
	Optional Input Timing

	Model Fitting
	Regression
	A Challenging Example
	Challenges with Nonlinear Fitting
	An Unsuitable Sampling Approach
	Fixture's Improved Approach
	Additional Nonlinear Fitting Techniques

	Plotting
	Fixed Optional Input Plots
	Parameter vs. Optional Input
	Final Model
	Contour Plots

	Additional Outputs from Fixture
	Fixture Checkpoints
	Preliminary Model Generation

	Conclusion

