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Abstract 

In recent decades, there has been an increasing interest in development of depth-sensing systems 

with a wide range of applications including autonomous driving cars, computer vision, motion-

detection and object recognition. One class of such depth-sensors is known as Time-of-Flight (ToF) 

LiDaR, which estimates the distance of an object by illuminating it with a laser beam, and 

measuring the time of flight of the reflected light. There are two methods with which LiDaR 

systems generate a full 3D image of a scene. Most systems used today are Scanning LiDaRs.  These 

devices illuminate a scene sequentially and mostly use mechanical motion to move the beam.  The 

Flash architecture removes the need for beam motion by illuminating an entire scene at once.  

This thesis explores the design space for a Flash LiDaR detector.  Starting with the Poisson process, 

we derive the probability of photon detections as a function of time. The distribution, which 

includes the contributions of background and laser light sources, can best be described as a mixture 

exponential distribution that is used to build multi-exposure histograms under different conditions. 

Using the aforementioned procedure, we developed a simulator to analyze measurement 

uncertainty as a function of parameters such as photon flux, SNR, number of exposures, and object 

distance. An exponential weighting function which scales the histogram is then shown to improve 

recovery of distant objects. Finally, we provide an overview of the Flash LiDaR ICs and the issues 

associated with such designs comprising collisions, detection-rate, and timing accuracy. As photon 

detections are inherently asynchronous events, we use a classical circuit technique, self-resetting 

logic, to eliminate collisions and reliably increase the detection rates.  We also use array-

partitioning techniques to scale the design to large-scale arrays while maintaining high-

performance and reliability. The Time-to-Digital Converter (TDC) circuits which timestamp 

photon arrivals use digitally-assisted free-running oscillators to decrease complexity, precluding 

the need to distribute high-frequency clocks or replica biasing. As a result, the design uses a single 

low-frequency external clock-source (<500MHz) which simplifies clock routing and reduces clock-

distribution timing uncertainty.  



 

v 

 

 

 

 

Acknowledgements 

First and foremost, I would like to thank my adviser, Professor Mark Horowitz for his mentorship, 

encouragement and for challenging me to dig deep. I am also grateful to him for his help in writing 

the thesis! 

I would like to thank Pietro Caragiulo, Bojan Markovic and Byong Lim for assisting me in 

designing the Flash LiDaR IC. 

I also want to take this opportunity to let my friends know how much I appreciate their company, 

advice and their help in difficult times: Mahroo Safai, Alfred Yeung, Luca Ravezzi, Ghavam 

Ghavami Shahidi, and Amy Fritz – thank you. 

Finally, I am grateful to my brother, Mahmoud Partovi, my sister, Roshanak Partovi, and her family 

Sheena, Darya, and Mike O’Dowd for their caring support from afar. Last but not least, I am 

infinitely indebted to my Mum and Dad who instilled in me the desire to learn and to never stop 

learning. Without them I won’t be here. 

  



 

vi 

 

 

 

 

Table of Contents 

Abstract iv 

Acknowledgements .......................................................................................................................... v 

 Introduction .............................................................................................................. 1 

1.1 Depth Measurement Uncertainty in ToF LiDaR .............................................................. 2 

1.2 Circuit and Architectural Techniques for High Performance Flash LiDaR ..................... 2 

 Background .............................................................................................................. 4 

2.1 Time-of-Flight LiDaR Imaging ....................................................................................... 4 

2.2 Single Photon Avalanche Photodetector .......................................................................... 6 

2.2.1 Operation .................................................................................................................. 7 

2.2.2 Active Quenching and Recharge .............................................................................. 8 

2.2.3 Key SPAD Metrics................................................................................................. 10 

2.3 Environmental and LiDaR System Parameters .............................................................. 11 

2.3.1 Received Optical Photons ...................................................................................... 11 

2.3.2 Signal to Noise Ratio ............................................................................................. 13 

2.3.3 Outdoor Example ................................................................................................... 14 

2.3.4 Pulse Shape, Pulse Period and Frame Rate ............................................................ 16 

2.4 Detection Algorithm ...................................................................................................... 17 

2.5 Summary ........................................................................................................................ 18 

 Statistics of Object Recovery in Presence of Noise ............................................... 20 

3.1 Photon Statistics ............................................................................................................. 20 

3.2 Methodology for Object Recovery ................................................................................ 25 

3.2.1 Histogram Construction Algorithm........................................................................ 25 

3.2.2 Matched Filter ........................................................................................................ 27 



 

vii 

 

 

3.2.3 Number of Exposures and Object Recovery .......................................................... 29 

3.3 Statistics of Depth Uncertainty ...................................................................................... 30 

3.3.1 Depth Error as a Function of SNR and the Number of Exposures ......................... 31 

3.3.2 Depth Error Histograms ......................................................................................... 33 

3.3.3 Depth Error vs. N .................................................................................................. 35 

3.4 Long-range Object-recovery .......................................................................................... 36 

3.4.1 Time Gating ........................................................................................................... 37 

3.4.2 An Improved Object Recovery Algorithm ............................................................. 40 

3.5 Maintaining High SNR – When is Scanning Better than Flash ..................................... 42 

3.6 Summary ........................................................................................................................ 43 

 Mathematical Derivation of Depth Uncertainty ..................................................... 45 

4.1 Defining Bin Slips.......................................................................................................... 45 

4.1.1 Near-end Bin-slips ................................................................................................. 47 

4.1.2 Far-end Bin-slips .................................................................................................... 49 

4.1.3 Relation between the Near-end and Far-end Bin-slips .......................................... 49 

4.2 Computing Bin Slip Probabilities .................................................................................. 49 

4.2.1 The Multinomial Distribution ................................................................................ 50 

4.2.2 Calculating the Probability for a Single Bin-slip ................................................... 51 

4.2.3 General Expression for the Near and Far-end Bin-Slip Probabilities .................... 52 

4.2.4 The Gaussian Approximation for Depth Error....................................................... 55 

4.3 False Detection Statistics ............................................................................................... 59 

4.4 Summary ........................................................................................................................ 62 

 Image Sensor .......................................................................................................... 63 

5.1 Self-resetting Logic and Signal Naming Convention .................................................... 66 

5.2 The Pixel ........................................................................................................................ 67 

5.3 The Pixel Column .......................................................................................................... 70 

5.3.1 Self-strobed Latch .................................................................................................. 76 



 

viii 

 

 

5.3.2 Column Metastability Signature ............................................................................ 79 

5.4 The TDC ........................................................................................................................ 79 

5.4.1 Sampler Metastability and Arbitration ................................................................... 85 

5.4.2 TDC Dead Time and Metastability Signatures ...................................................... 86 

5.5 The FIFO ........................................................................................................................ 88 

5.6 Imager Peripheral Circuits ............................................................................................. 94 

5.7 Scaling to Larger Arrays ................................................................................................ 94 

5.8 Summary ........................................................................................................................ 99 

Conclusion 100 

Appendix: First Photon Postulate and the Probability of Avalanche ........................................... 102 

References 104 

 

  



 

ix 

 

 

List of Figures 

Figure 2.1: Simplified Block Diagram of a ToF LiDaR System ..................................................... 5 

Figure 2.2: SPAD Circuit, its IV Characteristics, and Operating Waveforms ................................. 8 

Figure 2.3: Active Quench and Recharge Circuit ............................................................................ 9 

Figure 2.4: Direct and Diffuse Solar Spectral Irradiance ............................................................... 15 

Figure 3.1: PMF (top) and CDF (bottom) Plots for the Poisson Process with different arrival 

probabilities in a time bin .............................................................................................................. 21 

Figure 3.2: Flux of Photons Incident on a Pixel During an Exposure.  This consists of the ambient 

background flux which is on during the whole exposure, and the reflected laser light.  The total 

exposure time is set by the distance range that is of interest. ........................................................ 22 

Figure 3.3: Mixture Exponential Distribution................................................................................ 24 

Figure 3.4: Construction Algorithm ............................................................................................... 26 

Figure 3.5: Discretization of the Exposure-time into Fine-timing Bins ......................................... 27 

Figure 3.6: Constructed Histogram ................................................................................................ 27 

Figure 3.7: Matched-filtering with Ideal (a) and Histogrammed (b) Inputs .................................. 28 

Figure 3.8: Histogram and Matched-filter Output – SNR = 1, NExp = 10K and 20K ...................... 30 

Figure 3.9: Depth Error at High SNRs as a Function of NEXP * L ................................................. 31 

Figure 3.10: Distance Error vs. SNR and NEXP * L ....................................................................... 32 

Figure 3.11: Quantization Error as a Limiting Case of Depth Error .............................................. 33 

Figure 3.12: Depth Error vs. NExp for a Fixed SNR of 3 ................................................................. 34 

Figure 3.13: Depth Error vs. the SNR for a Fixed NExp of 20K ...................................................... 34 

Figure 3.14: Depth Error vs. N for a fixed SNR = 3 at a Distance of 10m .................................... 35 

Figure 3.15: Depth Error vs. N for a fixed SNR = 3 at a Distance of 20m .................................... 36 

Figure 3.16: Time-gated Noise-filtering ........................................................................................ 38 

Figure 3.17: Ungated Histogram – DMin = 0m, DObj = 50m ............................................................ 39 

Figure 3.18: Gated Histogram – DMin = 40m, DObj = 50m .............................................................. 39 

Figure 3.19: Ungated Long Range Object Recovery without and with the application of an 

Exponential Filter .......................................................................................................................... 40 

Figure 3.20: Depth Error Histograms without and with the Exponential Filter ............................. 41 

Figure 4.1: Differentiation of Fine Bins......................................................................................... 45 

Figure 4.2: Simulated and Theoretical Histograms for Depth Error .............................................. 54 

Figure 4.3: Simulated and Theoretical Curves of Depth Error for Various SNRs ......................... 54 

Figure 4.4: Simulated vs. Upper bound Histograms for Depth Error ............................................ 57 



 

x 

 

 

Figure 4.5: Upper bound Approximation to Depth Error .............................................................. 58 

Figure 4.6: Break-up of Exposure Time into TL-sized Bins .......................................................... 58 

Figure 4.7: False-detection Probability vs. NExp for DMax = 20m ................................................... 61 

Figure 5.1: The Image Sensor Block Diagram .............................................................................. 64 

Figure 5.2: Example Diagram of Self-resetting Logic ................................................................... 66 

Figure 5.3: Pixel Event-detection Circuit ...................................................................................... 68 

Figure 5.4: Pixel Layout ................................................................................................................ 70 

Figure 5.5: Simplified Schematic of the Pixel-column .................................................................. 71 

Figure 5.6: Timing Diagram for Column Response to a Photonic Event.  The numbers correspond 

to the labeled nodes shown in Figure 5.5. ...................................................................................... 72 

Figure 5.7: Layout of  8 Pixels in Column with Blow-up Showing NAND gate .......................... 73 

Figure 5.8: Column Response to a Single Photonic Event ............................................................ 74 

Figure 5.9: Distinguishable Events – Both Events Are Detectable ............................................... 75 

Figure 5.10: Indistinguishable Events – Only First Event is Detectable ....................................... 76 

Figure 5.11: The Self-strobed Latch .............................................................................................. 77 

Figure 5.12: Indistinguishable Events with Address Corruption – First Event is Detectable ........ 78 

Figure 5.13: Simplified TDC Block Diagram ................................................................................ 80 

Figure 5.14: TS_MR Signal – the TDC Domain Event_MR ......................................................... 81 

Figure 5.15: Coarse-count Synchronization to TS_MR Clock Domain ........................................ 82 

Figure 5.16: Layout of the TDC..................................................................................................... 83 

Figure 5.17: Fine-sampler with Metastability Resolution Circuit ................................................. 84 

Figure 5.18: Waveforms for Metastability Resolution Circuit ...................................................... 85 

Figure 5.19: TDC Readiness and Arbitration ................................................................................ 87 

Figure 5.20: The FIFO Block Diagram .......................................................................................... 89 

Figure 5.21: SRAM Layout. The Inset includes 2 SRAM Cells .................................................... 90 

Figure 5.22: FIFO Write Timing Diagram ..................................................................................... 91 

Figure 5.23: FIFO Read Timing Diagram ..................................................................................... 92 

Figure 5.24: FIFO Layout .............................................................................................................. 93 

Figure 5.25: Segmented Column Architecture............................................................................... 95 

Figure 5.26: Intra-column Arbitration Circuit ............................................................................... 97 

Figure 5.27: Intra-column Arbitration and Data Transfer Logic ................................................... 98 

Figure 5.28: Data transfer Waveforms ........................................................................................... 99 

 



 

xi 

 

 

List of Tables 

Table 1: Fine-bin Nomenclature and Example .............................................................................. 46 

Table 2: NExp and SNR for False-detection Probabilities of 0.1, 0.01 and 0.001 ........................... 62 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

xii 

 

 

 

 

 

 

 

 

 



 

1 

 

 

 Introduction 

In recent decades, there has been an increasing interest in design and development of depth-sensing 

systems with a wide range of applications including autonomous driving cars, computer vision, 

motion-detection and object recognition. Depth-sensing techniques can be divided in two 

categories: i) those that measure depth using multi-camera stereo-vision based on image disparity 

[1], and ii) those that use the Time-of-Flight (ToF) data from either sound or electromagnetic 

waves, to measure distance based on the round-trip delay from emission to detection. While stereo 

vision technology only needs conventional cameras, their depth resolution decreases with distance, 

and depends on the physical distance between the cameras. Compared to stereo vision, ToF systems 

have the advantage that the size of the system is independent of the depth range and they provide a 

depth accuracy that slowly degrades with distance. 

One class of ToF depth-sensors is known as LiDaR [2] - an acronym for Light Imaging, Detection 

and Ranging which estimates the distance of an object by illuminating it with a light-source, for 

example a laser beam, and detecting the reflected light. In comparison to Sound Navigation and 

Ranging (Sonar)
1
[3] which transmits and detects sound waves, and Radio Detection and Ranging 

(Radar)[4] which uses radio waves, LiDaR provides superior spatial accuracy, potentially in the 

millimeter range over a wide range of target materials, and distances from centimeters to 

kilometers. The capacity of LiDaR to successfully form an image of a scene is adversely affected 

by background illumination, poor object-reflectivity, and the presence of obscurants in the 

atmosphere. To ameliorate this shortcoming, range-detection systems sometime use LIDAR along 

with secondary sensors such as Radar, cameras or ultrasonic sensors. 

There are two methods with which LiDaR systems generate a full 3D image of a scene [5]. Most 

systems used today are Scanning LiDaR.  These devices illuminate a scene sequentially, block by 

block. Blocks can be as small as a single point (point scan) or can comprise row of pixels as in line 

scanning. These systems mostly use mechanical motion to move the beam, but some teams are 

working on methods to steer the beam electrically.  The Flash architecture removes the need for 

beam motion by illuminating the entire scene of interest all at once. Chapter 2 gives more 

background about these LiDaR systems. 

 

1
 Sonar has a short detection range and poor noise performance when transmission medium is air. 
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This thesis explores the design space of a Flash LiDaR detector.  To accomplish this goal, we first 

analyze the accuracy of depth measurements based on the ToF technique subject to various 

environmental and system parameters. Next, we present a Flash LiDaR IC and propose circuit and 

architectural techniques that address the issues associated with such systems to enable the design 

of a high-performance high-reliability 3D image sensor.    

1.1 Depth Measurement Uncertainty in ToF LiDaR 

The uncertainty in depth measurement depends on a number of system and environmental factors, 

of which the power of the Laser source (signal) and the background illumination (noise) are two 

key parameters. Other factors include the object distance, reflectivity, and optical and electrical 

efficiency of the system. 

Starting with the Poisson process to describe the statistical nature of light, Chapter 3 derives the 

probability of photon detections (Pav) as function of time. The distribution, which includes the 

contributions of both light sources, can best be described by a mixture exponential distribution. As 

each exposure can at most produce a single detection per pixel, a multi-exposure histogram must 

be constructed to recover object position. When convolved with a filter matched to the signal source 

the distance of an object can be estimated. Using the aforementioned procedure, the chapter 

analyzes measurement uncertainty as a function of parameters such as SNR, number of exposures, 

and object distance. Time-gating is then shown to improve depth estimation for distant objects. 

While time-gating precludes visibility of near objects, an improved recovery technique which 

includes time-domain exponential filtering of data has the ability of exposing a whole distant scene 

without compromising long-range recovery accuracy. 

Finally, in Chapter 4, based on the multinomial distribution, we present a mathematical formulation 

for depth uncertainty of a recovered object, as well as conditions leading to false-detections. To 

gain insight into conditions affecting the uncertainty in depth measurement, a Gaussian 

approximation to the multinomial distribution is derived. 

1.2 Circuit and Architectural Techniques for High Performance Flash 

LiDaR 

In Chapter 5, we first provide an overview of the Flash LiDaR ICs and the issues associated with 

such designs comprising collisions, detection-rate, and timing accuracy. As photon detections are 

inherently asynchronous events, we use a classical circuit technique, self-resetting logic, to 
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eliminate collisions and reliably increase the detection rates.  We also use array-partitioning 

techniques to scale to large-scale arrays while maintaining high-performance and reliability.  

This design uses per-column Time-to-Digital Converter (TDC) circuits to timestamp photon 

arrivals.  TDCs employ digitally-assisted free-running oscillators to decrease complexity, 

precluding the need to distribute high-frequency clocks or build precision clock-generators. As a 

result, the IC uses a single low-frequency external clock-source (<500MHz) which simplifies clock 

routing and reduces clock-distribution timing uncertainty. 
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 Background 

In this chapter we provide an overview of LiDaR imaging.  Many of these systems use Time 

Correlated Single Photon Counting, as well as the Single Photon Avalanche photodetector (SPAD), 

so we explain how both of these techniques work. The chapter concludes with an outline of the 

environmental and system parameters that affect the performance of LiDaR systems. Chapter 3 and 

Chapter 4 employ the insights gained in this chapter to address the LiDaR depth estimation 

accuracy in the presence of background noise, and to direct the design of a LiDaR image sensor 

described in Chapter 5. 

2.1 Time-of-Flight LiDaR Imaging 

Time-of-Flight LiDaR imaging estimates distance of an object, or depth of a scene, by measuring 

the time of arrival of object-reflected light with respect to a reference time. ToF LiDaR uses one of 

two techniques to measure distance [6, 7]. The first, which is called the direct method is based on 

the time difference between an emitted pulse, and its corresponding received pulse. In the second, 

the indirect method uses the phase difference between an outgoing sinusoidal light wave and its 

respective incoming wave to measure distance. While both direct and indirect ToF techniques 

provide high spatial accuracy, the former is better suited in applications, such as autonomous 

driving cars, where high-speed environment sensing is required [8].  

Figure 2.1 illustrates a simplified block diagram of a direct ToF LiDaR system. As shown, a light 

pulse periodically illuminates a scene. When each pulse is launched a timer is started. This timer 

stops the instant that the reflected light reaches each pixel so the recorded delay corresponds to the 

round-trip time from the light-source to the object and from the object to the image sensor. Using 

this delay and the speed of light (C), the object distance can be calculated: 

𝐷𝑂𝑏𝑗 =
1

2
𝐶 ∗ 𝑇𝑜𝐹 
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Figure 2.1: Simplified Block Diagram of a ToF LiDaR System 

As seen in Figure 2.1, the LiDaR system contains many components [9]. A controller manages the 

system operation, and sets the laser power to maximize the signal to noise ratio while observing 

eye safety limits. In addition, the controller ensures that the laser driver and the image-sensor work 

synchronously. Light pulses reflected from a scene, are collected by a receiver lens and projected 

unto the image sensor. As we will see later, to maintain a good signal-to-noise ratio, the optical 

setup includes a narrowband optical filter to suppress the background illumination spectra to within 

a narrow band around the wavelength of the laser source. The image sensor, over which the scene 

of interest is projected, comprises an array of photo sensitive pixels, timers to record the arrival 

time of detected photons and storage to record the spatio-temporal information of detected photons 

for later processing. Finally, a post-processor receives the data from the sensor and reconstructs a 

3D image of the scene with pixel locations providing the spatial 2D image, and ToF data supplying 

the 3rd dimension. 

ToF image sensors generally operate at photon flux levels so it is unlikely that multiple photons 

impinge a pixel during the very short (100ns) exposure times. In fact, only a fraction of the pixels 

in the imager will detect a photon during each exposure. As a result, many direct ToF systems use 

Time Correlated Single Photon Counting (TCSPC) [10] that is predicated on the detection of a 

single photon per pixel per exposure whose arrival time is measured from the launch of the initiating 

laser pulse.  
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Consequently, to construct a 3D image of the scene, a large number of exposures are required. 

TCSPC operates on the collected ToF data from multiple exposures to recover a scene. Temporal 

readings for each pixel are sorted into timing bins to produce a histogram spanning the minimum 

and maximum travel-times corresponding to the shortest and the longest depths of interest. The 

histogram, along with an object recovery algorithm is used to estimate the depth of a scene. For a 

desired depth resolution, the number of exposures depends on system and environmental 

parameters such as object-distance, efficiency of optics, the laser optical power and background 

noise. Chapter 3 derives this dependence. 

As stated earlier, there are two methods with which LiDaR systems generate a full 3D image of a 

scene. The Flash architecture illuminates an entire scene of interest all at once. On the other hand, 

Scanning LiDaR illuminates a scene sequentially, block by block. As can be expected, Scanning 

LiDaR almost always includes mechanical components such as rotating, or vibrating mirrors to 

capture parts of the image one at a time. It should be noted that since scanning a scene block by 

block produces additive delays in succession, objects with significant motion in comparison to the 

scanning speed undergo the undesirable artifact of motion-blur. In Section 3.13, we discuss the 

trade-offs between Flash and Scanning LiDaR systems.  

LiDaR owes its spatial accuracy to the small Laser beam divergence, as well as a highly sensitive 

photo-detector that can detect the arrival of a single photon.  This device, known as the Single 

Photon Avalanche Diode, or SPAD, has almost infinite photoelectric conversion gain with timing 

accuracies in the 10s of picoseconds range [11].  The next section describes its operation. 

2.2 Single Photon Avalanche Photodetector 

Given that during a normal acquisition of a LiDaR system, each pixel receives a small, generally 

zero or one photon, it is important to use a detector that can capture this photon, and precisely time 

its arrival. A Single Photon Avalanche Diode (SPAD), is an excellent detector for this type of 

application. It is a binary light detector, each time a SPAD detects a photon, the photon generates 

a very large current surge, which rapidly changes the voltage across the diode and is easily detected. 

The detector then becomes inactive for a period of time until the voltage recovers to the starting 

state. At that point, the SPAD is active again, ready to detect the next photon. 

This digital behavior is accomplished by biasing a light sensitive P/N junction diode above its 

breakdown voltage; this is sometimes called Geiger Mode. At this excess bias, any carrier in the 

depletion region of the junction will be accelerated by the electrical field in that region so fast that 

when it scatters, it will generate additional carriers. These carriers are again accelerated causing 
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even more carriers to be generated.  This positive feedback loop is what causes the device to 

“breakdown.” At this bias point, the electric field across the junction is of such magnitude that a 

single photon that generates an electron-hole pair will trigger avalanche multiplication to create a 

large breakdown current surge across the diode. The next section describes the peripheral circuitry 

needed to prevent this breakdown current from destroying the diode. As they are responsive to 

single photons, SPADs are suitable in applications where the incoming photon flux is low. Notice 

that when biased past avalanche, any carrier in the depletion region will cause the diode to 

avalanche, including carriers randomly generated from thermal energy (thermal noise).  Since these 

carriers also trigger the detector, the detector will occasionally fire when no light is present.  This 

is analogous to dark current in a normal photodetector. 

Although SPAD arrays, fabricated in exotic technologies such as InGaAs, have been utilized for 

decades [12], it is only recently that silicon-based SPADs were shown to provide acceptable 

performance levels for detection efficiency and dark noise [13, 14]. The viability of SPAD 

photosensors in standard CMOS processes, has allowed the integration of high-density SPAD 

arrays along with back-end electronics to implement a 3D image sensor on a single chip. 

2.2.1 Operation 

Figure 2.2 includes a simplified SPAD circuit, its IV characteristics, and operating waveforms. If 

a SPAD is impinged on by a photon, it may enter avalanche break-down, in which case, initially, a 

current of appreciable size flows through the diode, elevating its anode voltage VAnode. In response, 

the output voltage of the circuit, VOut, transitions to a logical “1”. 

VSPAD is set to be some over voltage, VEx, above the diode’s breakdown voltage, VBD. VEx must be 

smallter than the voltage swing on VAnode, so that once triggered the voltage across the diode reduces 

from its over-biased voltage, VBD + VEx, to below VBD, quenching its current and protecting the 

detection diode. The reduction of voltage across the SPAD renders it unresponsive to subsequent 

arrivals of photons for a period called dead time until the Anode voltage is discharged to ground 

by way of the Anode resistor, RRCH. Once VAnode falls below the trip-point of the Schmitt Trigger, 

the circuit output, VOut returns to ground - its quiescent state. 
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Rearming the SPAD, in the simplest form, is accomplished passively by RRCH, whose value must 

be large - typically, in the 100s of Ks - to reduce the initial current surge during an avalanche to 

avoid self-heating and increased dark noise, and to minimize the after-pulsing probability
2
 [15]. 

 

Figure 2.2: SPAD Circuit, its IV Characteristics, and Operating Waveforms 

In order to shorten the dead-time and yet control after-pulsing, Active Quench and Recharge (AQR) 

circuits [16, 17] can be used in place of the resistive element.  

2.2.2 Active Quenching and Recharge 

To provide this better control, an AQR circuit, upon detection of an avalanche, actively drives the 

voltage across the diode a known voltage below the breakdown voltage, substantially reducing the 

 

2
 A small percentage of avalanche-generated carriers are trapped in deep levels within the junction and then 

released with significant delay after the primary impact. This can trigger the SPAD again. To avoid this 

phenomenon, called after-pulsing, an impinged SPAD cannot be immediately re-armed.  
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field. After a pre-determined hold-off time, this circuit relatively rapidly returns the voltage across 

the diode is returned to its armed, over-biased condition. 

Figure 2.3 provides an example AQR circuit. In its quiescent state, Vanode is held at ground by the 

weak transistor, MKeep, while MP1 and MN are both off (VQnch = 1, VRCH = 0). The current of MKeep 

needs to be only large enough to deal with transistor leakage currents.  This means VOut = 0. On a 

photon initiated avalanche, VAnode rapidly rises from the avalanche current forcing VQnch to 

transition low. This, in turn, de-activates the keeper transistor, MKeep, and turns MP1 on. As a result, 

MP1 drives the Anode to VDD which reduces the SPAD voltage, moving it further out of the 

avalanche regime. At the same time the circuit output switches to a logical “1” indicating detection 

of a photonic event. Note that during this time VTime is still low, which enables MP1 to drive VAnode 

high through MP2. This starts the quench time of the detector. 

 

Figure 2.3: Active Quench and Recharge Circuit 

This period ends when the output of a timer, shown as an adjustable RC delay
3
 in the figure, VTime, 

transitions. This RC delay is triggered when VQnch transitions.  The RC delay controls the circuit 

dead time, and is adjusted to minimize the dead time while maintaining an acceptable low after-

pulsing probability. After this delay, VTime falls below the trip point of its succeeding inverter, VRCH 

 

3
 The RC delay circuit can be replaced with other delay elements such as a chain of variable starved inverters. 
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transitions high, discharging the Anode to ground and resetting the output to a logical “0”. At this 

point, the recharge process is complete; the SPAD returns to its quiescent state and is again 

responsive to new photonic events. 

2.2.3 Key SPAD Metrics 

A number of SPAD characteristics are critical when used in a LiDaR system.  So far, we have 

talked about how the capture of a photon generates a digital output.  Since we are extracting the 

arrival time of the photon, the most critical parameter of this circuit is the timing uncertainty of the 

SPAD.  This is called SPAD timing jitter: 

Timing Jitter, that is the uncertainty in timing from photon arrival to the onset of 

avalanche, or the photo-electric conversion time, is primarily due to avalanche buildup 

statistics, the impingement position, and lateral propagation of the avalanche current. 

Timing jitter is dependent on technology, SPAD design, and the excess bias. Presently, in 

standard CMOS processes, timing jitter in the range of 10s of picoseconds have been 

reported [18]. 

The next parameter represents the effects of noise in this circuit, which, as mentioned earlier caused 

output pulses not triggered by light:   

Dark Count Rate (DCR) is a measure of non-photon related avalanches and can be thought 

of as the internal noise associated with the SPAD. It is caused by trap-assisted thermal 

generation of carriers and tunneling in the depletion region [19]. The rate increases with 

the SPAD excess bias; it can be reduced by lowering the operating temperature.  

The remaining parameters deal with how effective the SPAD is in converting photons to carriers 

that can cause an avalanche.  The first is the probability that a photon striking the SPAD detector 

causes carrier generation in the avalanche region: 

Photon Detection Probability (PDP) also known as Photon Detection Efficiency (PDE), is 

the likelihood that a photon impinging a SPAD will cause an avalanche. It is strongly 

dependent on technology, the photon energy, and the operating excess bias. In the near 

infrared range, the PDP of silicon SPADs is in the single percentage range, while it 

increases to as high as 30% in the visible spectrum [20]. 

The probability of generating an avalanche is even less than this, since the SPAD only covers a 

fraction of the pixel area: 
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Fill Factor (FF) is the ratio of the photosensitive area of an array of SPADs to its total 

area. Generally, it is determined by pixel-to-pixel separation required to suppress cross-

talk. In some special cases, the in-pixel back-end electronics dictates the fill factor. 

The remaining parameter is from optical noise – photons that are caught by the wrong detector: 

Optical Cross-talk alludes to the spurious avalanche of a SPAD caused by an avalanche 

in a neighboring SPAD. When a SPAD is triggered into avalanche, it can generate 

secondary photon emissions by hot-carrier relaxation. These photons can be absorbed by a 

nearby SPAD and cause it to be triggered [21]. 

In summary, it can be seen that, in addition to process technology and SPAD engineering, the 

predominant parameters affecting the SPAD performance are the wavelength (energy) of the light 

source, and the excess bias voltage in the Geiger mode. 

2.3 Environmental and LiDaR System Parameters 

Since a LiDaR system time stamps each incoming photon (and some thermally generated carriers), 

the system performance strongly depends on the arrival rate of incoming photons, and whether 

those photons were generated by our laser illumination pulse, or from “stray” light sources that our 

system doesn’t control. To compute the photons flux rate per pixel, the next section derives the 

relationship between scene illumination, object distance, and the number of photons collected by 

the receiver lens.  This relationship makes clear that the ratio of the laser vs. background 

illumination intensity is a critical factor in LiDaR systems.  Section 2.3.2 describes the factors, eye 

safety and solar illumination, that determine this ratio.  After describing the detection algorithm in 

Section 2.3.5, the chapter concludes by outlining the sources of jitter in a LiDaR system. 

2.3.1 Received Optical Photons 

We can analyze a LiDaR like a normal camera to determine the intensity of the light reaching each 

pixel.  In LiDaR, two light sources illuminate the object: the laser and the background illumination, 

and in this analysis, we will be interested in keeping track of the photons received from each source. 

The main difference with a normal camera is that the exposure time is short enough that the Poisson 

statistics of the light is very important in our case, so in this work, photon flux, λ, is defined as the 

number of photons per units of time impinging a unit of sensor area, or a pixel.  We will break this 
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total flux into L, return photons from the laser that are our desired signal, and N,
4
 return photons 

from the background illumination that act as a source of noise in our system. 

We will assume that the object that we are going to measure is Lambertian, so the illumination 

striking the object is scattered in all directions.  Of all the light power that is scattered back from a 

point PP, the lens will only receive: 

𝑃𝑅𝑒𝑐 =
𝐴𝐿𝑒𝑛𝑠

𝜋𝐷𝑂𝑏𝑗
2 𝑃𝑃

5       

where ALens is the area of the lens aperture, and DObj is the distance of the object of interest from the 

lens.   

The power that is scattered back is proportional to the incident illumination times the reflectance 

of the object (at the wavelength of interest). This allows us to compute the total light power that 

will strike a pixel in the imager as: 

𝑃𝑅𝑒𝑐 = 𝜂𝑆𝑦𝑠𝜌
𝐴𝐿𝑒𝑛𝑠

𝜋𝐷𝑂𝑏𝑗
2 𝑃𝑇                                (2.1) 

which is a variant of the LiDaR equation [22, 23, 24]. In this equation, PT is the total light power 

that is striking the object, in the field of view (FoV) of a pixel,  is object reflectivity, and  Sys is 

system efficiency (which is usually close to 1).   

As can be expected, the received power, PRec, is proportional to the illumination power and ALens 

(2.1), and inversely scales with the square of object distance.  To convert this to photon flux rate, 

we need to divide the power by the energy of each photon, EPh = hc/Ph.  Finally, as was mentioned 

in the prior section, not all photons that strike the pixel will cause the SPAD to fire, so we scale the 

photon flux by the fill factor (FF) and photon detection probability (PDP) to get rate of SPAD 

events: 

 

4
 We will add the thermally generated dark current into this photon rate.  In the cases we explore the rate of 

thermal noise is small compared to background photon detection. 

5 If scattering is near Lambertian, light is reflected into  steradians and the lens only captures a solid angle 

of 
𝐴𝐿𝑒𝑛𝑠

𝑅2  steradians. 
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λ = 𝜂𝑆𝑦𝑠𝜌
𝐴𝐿𝑒𝑛𝑠

𝜋𝐷𝑂𝑏𝑗
2

𝑃𝑇

𝐸𝑃ℎ
𝐹𝐹 ∗ 𝑃𝐷𝑃         (2.2) 

If there is no ambient light, all the light striking the object comes from the LiDaR’s laser source.  

Assuming that the laser is focused to illuminate only the FoV of the entire imager, 𝑃𝑇 =
𝑃𝐿

𝑁𝑃𝑖𝑥
, where 

𝑃𝐿is the laser power, and 𝑁𝑃𝑖𝑥 is the number of pixels in the imager.  This gives the SPAD event 

rate of the signal we want to detect: 

λ𝐿 = 𝜂𝑆𝑦𝑠𝜌
𝐴𝐿𝑒𝑛𝑠

𝜋𝐷𝑂𝑏𝑗
2

𝑃𝐿

𝐸𝑃ℎ∗𝑁𝑃𝑖𝑥
𝐹𝐹 ∗ 𝑃𝐷𝑃          (2.3) 

2.3.2 Signal to Noise Ratio 

Unfortunately, in most situations the object has some ambient illumination that adds additional 

photons to our detector, in addition to the thermal noise of the detector. The relationship between 

these incoming noise photons and the ambient illumination is nearly the same as Eq.        (2.3), with 

one important difference: as the object moves farther away, the area in the FoV of a pixel increases 

quadratically with distance.  This means if the ambient light has a constant irradiance (power per 

unit area), the incident power per pixel increases as 𝐷𝑂𝑏𝑗
2 , which makes the noise photon rate 

independent of distance.   

If we define IBG as the power per unit area of the background illumination, and 𝐹𝑜𝑉𝑉|𝑃𝑖𝑥, the angular 

vertical field of view for a pixel in radians, and 𝐹𝑜𝑉𝐿|𝑃𝑖𝑥, the angular lateral FoV, then the 

background power received by a pixel is: 

𝑃𝐵𝐺 = 𝜂𝑆𝑦𝑠

𝜌

𝜋
𝐴𝐿𝑒𝑛𝑠𝐼𝐵𝐺(𝐹𝑜𝑉𝑉|𝑃𝑖𝑥𝐹𝑜𝑉𝐿|𝑃𝑖𝑥) 

Letting 𝐹𝑜𝑉𝑃𝑖𝑥 = 𝐹𝑜𝑉𝑉|𝑃𝑖𝑥 = 𝐹𝑜𝑉𝐿|𝑃𝑖𝑥, the background flux density per pixel becomes: 

𝜆𝑁 = 𝜂𝑆𝑦𝑠𝜌
𝐴𝐿𝑒𝑛𝑠𝐼𝐵𝐺𝐹𝑜𝑉𝑃𝑖𝑥

2

𝜋𝐸𝑃ℎ
𝐹𝐹 ∗ 𝑃𝐷𝑃        (2.4) 

Now that we have both the desired photon flux, the signal, and the noise photon flux, we can 

combine Equations        (2.3) and (2.4), and generate the signal to noise ratio:
6
  

 

6
 In this formula, and for the rest of the thesis, we will assume that the dark current rate is much less than the 

arrival rate photons from background illumination. 
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𝑆𝑁𝑅 =
𝜆𝐿

𝜆𝑁
=

𝑃𝐿

𝐼𝐵𝐺∗𝐷𝑂𝑏𝑗
2 ∗𝐹𝑜𝑉𝑆𝑒𝑛𝑠𝑜𝑟

2         (2.5) 

where 𝐹𝑜𝑉𝑆𝑒𝑛𝑠𝑜𝑟
2 = 𝑁𝑃𝑖𝑥𝐹𝑜𝑉𝑃𝑖𝑥

2  is the field of view of the entire sensor. This makes sense, since 

the SNR is just the power ratio between the laser illumination (𝑃𝐿) and the power of the background 

illumination (on the area being imaged),  𝐼𝐵𝐺 ∗ 𝐷𝑂𝑏𝑗
2 ∗ 𝐹𝑜𝑉𝑆𝑒𝑛𝑠𝑜𝑟

2 . To maximize the SNR, we want 

to make the laser power as large as possible, and the background illuminance as small as possible. 

Since background illumination generally has a wide wavelength spectrum, most LiDaR systems 

have a narrow bandpass filter in the optical path to block most of the energy of this light.  Put 

differently, the received light is band-pass filtered to a few nanometers around the laser wavelength.  

This means that we are interested in the power of the ambient illumination only in this narrow band 

of wavelengths. More formally, IBG is the filtered background irradiance, and is related to the 

spectral irradiance, I|BG @  = Ph by: 

𝐼𝐵𝐺 = 𝐼𝜆𝑃ℎ|𝐵𝐺𝐵𝑊𝑂𝑝𝑡 

where, BWOpt is the bandwidth of the optical filter.  

The achievable signal to noise ratio is limited by the maximum power of the illumination laser, 

which is constrained by eye safety concerns. LiDAR products must conform to the eye-safety 

restrictions as set by Standard 60825 of the International Electrotechnical Commission (IEC) [25]. 

These safety restrictions limit both the energy of each short laser pulse and the average power of 

the pulse train.  These safety limits have a strong dependence on the wavelength of light that is 

used, with the power growing as the light moves to longer (more infrared) wavelengths. 

Unfortunately, the PDP of a silicon detector falls at longer wavelengths, going to zero at about one 

micron.  As a result, balancing eye safety, and sensor photon detection efficiency, LiDaR systems 

with silicon detectors operate at wavelengths in the near-infrared (NIR) range.  

2.3.3 Outdoor Example 

To provide a concrete example, we will choose a laser wavelength of 905nm.
7
  At this wavelength, 

using the Standard 60825 data, the average power of a laser that will be operating continuously is 

around 3mW/cm2 of lens opening, and the peak energy allowed for a pulse with a pulse width of 1-

10ns is 2J/cm2 of lens opening. This means that the peak power can be as large as 2KW/cm2 if one 

 

7
 Wavelength of choice for LiDaR products for example, the Velodyne Puck. 
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could create a 1ns laser pulse.  However if this pulse power is used, we would need to wait 0.7ms 

before starting the next pulse to stay below the average power limit of 3mW/cm2.  

 

Figure 2.4: Direct and Diffuse Solar Spectral Irradiance
8
 

To estimate the noise photon flux, we will assume a worst-case situation: that the LiDaR system 

operates outdoors, where the background illumination is generated from the Sun. Figure 2.4 

includes the Spectral Irradiances for direct and diffuse sunlight: light that has been scattered by 

particles in the atmosphere such as clouds or reflections from ground.
9
  For 905nm, the direct 

illumination is around 0.56 W/(m2 nm), so the total power through a 4nm bandpass filter would be 

2.24W/m2 in direct sunlight. If we assume the lens of the detector has a the FoV of 22.5o x 22.5o, 

the FoV that the detector can see is around  (
𝜋

8
)

2
𝐷𝑂𝑏𝑗

2 , so the total ambient light energy would be 

0.33W/m2× 𝐷𝑂𝑏𝑗
2 . For a SNR of 1, objects that are 20m away require a laser power of 131W. 

If the sensor contains 64 x 64 pixels, the FoV of each pixel is, 𝐹𝑜𝑉𝑃𝑖𝑥 = 3𝑚𝑅𝑎𝑑.  For this example, 

we will assume the system efficiency, 𝜂𝑆𝑦𝑠 = 1, the system uses a 1cm2 lens area, and that the 

object reflectivity is, 𝜌 = 0.2. We will also use our estimated values for photon detection 

probability and fill factor for the detector we describe later in this thesis: PDP = 0.02, FF = 0.4.  

Plugging these values into Eq. (2.4) and using the energy of a 905nm photon of 2.2*10-19J gives: 

 

8 Courtesy of pvlighthouse.com 

9 Direct and Diffuse reflections from a 70 tilted sun-facing surface. 
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𝜆𝑁 = 0.2
10−4𝑚2 ∗ 2.24

𝑊
𝑚2 0.0032

𝜋 2.2 10−19 𝐽
0.4 ∗ 0.02 = 4.6𝑃ℎ/𝑠 

This data means that even in this “bright” environment, only a few photons will strike a pixel each 

microsecond.  

If the scene is not in direct sun light and is diffusely illuminated, the background illumination drops 

by over 10x to IBG = 0.18W/m2 (𝜆𝑁 = 0.38𝑃ℎ/𝑠) . To achieve a SNR = 1 at a distance of DMax = 

20m, the laser power is now 11W.   

2.3.4 Pulse Shape, Pulse Period and Frame Rate 

Peak power requirements, the pulse width, and eye safety constraints determine the maximum pulse 

rate of the laser. In these systems, shorter pulse times work better, but it is hard to rapidly turn on 

and off a 100W laser.  Faster pulses are possible, but they use mode-locked lasers, which are bulkier 

and more expensive [26]. Some available drive circuits have minimum pulse widths of around 4ns 

[27], which is the value we use in this thesis. Compliance with eye safety limits dictates a pulse 

period of 
𝑃𝐿∗4∗10−9

0.003
 for this pulse width. For a 𝑃𝐿 of 11W, the period between pulses is 14.7s.  

The overall frame rate for Flash LiDaR is set by the required time between pulses for eye safety, 

times the number of pulse exposures required to estimate distance with sufficient precision. If we 

define TLSL as the shortest laser launch period in compliance with eye safety limits, and NExp as the 

number of exposures required to capture a scene at once with adequate resolution, we can define 

the frame rate of a Flash LiDaR system as: 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝐹𝑙𝑎𝑠ℎ = [𝑁𝐸𝑥𝑝𝑇𝐿𝑆𝐿]−1           (2.6) 

The number of exposures itself is determined by the desired standard deviation of depth error (Err) 

while considering other factors such as the laser optical power; that is: 

𝑁𝐸𝑥𝑝 = 𝑓(𝑃𝐿 , 𝜎𝐸𝑟𝑟) 

Scanning LiDaR, additionally includes a timing overhead (TOv) associated with the mechanical 

movement of mirrors from one parallel slice to the next, which is typically in the 100s of 

microseconds to the millisecond range [28]. There are other overhead latencies, common to both 

architectures, which correspond to data storage and post processing of the spatio-temporal data, 

whose contribution can be minimized with parallelism and are left out for simplicity. 

We define the frame rate for the Scanning architecture as: 
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𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝑆𝑐𝑎𝑛 = [𝑁𝑆𝑙𝑖𝑐𝑒(𝑁𝐸𝑥𝑝𝑇𝐿𝑆𝐿) + (𝑁𝑆𝑙𝑖𝑐𝑒 − 1)𝑇𝑂𝑣)]−1     (2.7) 

Where NSlice is the number of slices comprising the scene that are sequentially exposed.  

2.4 Detection Algorithm 

There are a number of object detection algorithms that have been proposed for ToF sensors. They 

include Maximum Likelihood Estimation, Markov Chain algorithm [29] and Linear Cross 

Correlation [30]. The most widely used algorithm is cross correlation, which measures the response 

through a matched filter.  While a matched filter is optimal for Gaussian noise, it is not optimal for 

Poisson noise.  For these situations a log-matched filter [31] is optimal if there is no background 

illumination.  In this work we assume a rectangular light pulse, so all the methods are the same – 

to sum up the photons that arrive during the time of the laser pulse. 

The first two algorithms attempt to improve object detection in situations where a single pixel gets 

input from more than one surface position.  Thus, they aim to detect several surface reflections in 

a pixel. Wallace, in  “Detecting and Characterizing Returns in a Pulsed Ladar,” [32] uses two steps, 

first to find initial estimates of the position and amplitude of the returns, and second to apply the 

Poisson-maximum likelihood estimation to find the peak parameters. Hernandez-Marin in 

“Multilayered 3D LiDAR Image Construction,” [33] addresses LiDaR data processing using 

Bayesian approach that incorporates spatial constraints through a Markov Random Field. 

Using cross correlation is the most commonly used detection method. This approach applies a 

“matched filter” [34] to the histogram data to maximize the signal to noise ratio in the detected 

signal.  The matched filtering is formed by taking the cross correlation of the continuous laser pulse 

energy with the discrete-time, binned, histogram of the scene. The cross correlation is equivalent 

to convolving the measured response with the matched filter version of the input signal.
10

 Ideally, 

the peak of the filtered histogram is now the time of flight delay for the light to reach the object 

and return. The next chapter will describe how we modified this filter to work better with data from 

SPAD detectors. 

 

10 Convolution is equivalent to cross correlation of two signals when the kernel (laser pulse) is symmetric, 

and the matched filter of a real input is just the input.  



 

18 

 

 

While the detection algorithm returns its best estimate of the position of the object, errors in that 

estimate arise from three primary sources: 

1. Noise: Background photons will broaden the peak of the filtered histogram and will cause 

uncertainty in the measured results, especially at low SNR levels.  Chapter 3 gives simulated 

results of this effect, and Chapter 4 derives the statistics of this uncertainty. 

2. Photon Quantization: Given the expected number of captured signal photons in each timing bin 

is small, photon quantization (often called photon shot noise [35] can also limit the accuracy 

of the estimated time.  This noise exists even when the background flux rate is very small. Thus 

the accuracy decreases when the total number of photons captured during each time bin is very 

small 

3. Time Quantization: Compared to the other two noise sources, background illumination and 

shot noise, the ultimate accuracy will be limited by time quantization caused by the finite width 

of the time bins. 

In the case of first noise source, if large, or in a situation where an object doesn’t exist within the 

detection range, the detected peak will correspond to a noise peak, and is uncorrelated to object 

distance.  To reduce such failures, the output of the filtered histogram must exceed a threshold.  

Chapter 3 will describe how we set this threshold. 

In addition to the fundamental noise that is present in the detection algorithm, there are a number 

of other system noise sources that can affect accuracy.  These errors arise from timing jitter in the 

components generating the laser pulse, jitter associated with detecting a photon (dominated by the 

SPAD jitter) and the jitter in the clock that is driving the SPAD imager. Typically, these can be 

driven to be small enough not to limit performance, but need to be considered during system design.  

2.5 Summary 

In this Chapter, we presented the principles governing LiDaR imaging and the Time Correlated 

Single Photon Counting (TCSPC) as a method to estimate distance of objects.  These systems 

require a highly-sensitive, low-jitter, photon detector, which is usually accomplished using Single 

Photon Avalanche Diodes, or SPADs as the photodetector of choice.  These devices need some 

supporting circuits that can use passive RC components, but adding active devices yields a design 

that is easier to control.   

After introducing the basic system, we showed that the signal to noise ratio was simply the ratio of 

the irradiance caused by the pulsed laser illuminator, to intensity of the background irradiance, 



 

19 

 

 

which is why shorter laser pulses create better results. Even with high illumination levels, an 

average pixel will not detect a photon during each pulse; this means that creating a timing estimate 

with good fidelity requires accumulating the results from a large number of laser pulses.  The next 

chapters look into this relationship in more depth.  
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 Statistics of Object Recovery in Presence of Noise 

In this chapter, we will derive the probability distribution for photon detections caused by the light 

originating from the laser source and the background illumination as a function of time. The 

probability of a SPAD detection is a little different from the base Poisson statistics of light, since a 

SPAD only detects the first photon that impinges on it.
11

 This effect causes the effective sensitivity 

to decay exponentially with time constant dependent on the background illumination.  Using these 

statistics, we then create a simulator and use it to explore how the accuracy of object distance 

detection depends on system parameters such as laser and background flux levels, as well as 

exposure time.  From this information we develop an improved detection algorithm. 

3.1 Photon Statistics 

 As mentioned in Chapter 2, only a fraction of the photons incident on a SPAD pixel could start an 

avalanche. This fraction must strike a photo sensitive region (FF), and cause an avalanche (PDP). 

We lumped these factors into an effective arrival rate of photons that could cause an avalanche, and 

called that   The actual number of arrivals in a given time-interval, t, is random in nature with 

an average number given by λ.t.
 12

 The process governing the number of photon arrivals is a 

Poisson Distribution with the following Probability Mass Function (PMF): 

𝑃(𝑃ℎ = 𝑘) =
(𝜆. ∆𝑡)𝑘 . 𝑒−𝜆.∆𝑡

𝑘!
 

Having a mean and standard deviation given by 𝜇 =  𝜆. ∆𝑡 and 𝜎 = √𝜆. ∆𝑡. [36]   

For LiDaR applications, the detector uses fine grained timing bins (usually measured in tens of 

picoseconds) to get good range accuracy.  Thus, at reasonable light intensities  t for each time 

bin will be very small, and the expected probability that one photon arrives in this time slice is 

approximately  t. Figure 3.1 includes the PMF and the Cumulative Distribution (CDF) Functions 

for the Poisson Process for 3 different mean photon arrivals.  

 

11
 The time for the SPAD to recharge is generally longer than the acquisition time, so each SPAD 

will only fire once during each acquisition 

12
 We will continue to use detectable photon rates, so the λ’s take FF and PDP into account. 
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Figure 3.1: PMF (top) and CDF (bottom) Plots for the Poisson Process with different arrival 

probabilities in a time bin 

The SPAD firing statistics are slightly different from the raw detectable photon rate. The First 

Photon Postulate (Appendix A) states that, once the first photon in a stream is detected, i.e. it 

triggers an avalanche, subsequent photon arrivals on the SPAD are ignored (since the SPAD is 

inactive while it recovers).  Thus, for a detectable photon to be detected, it has to be the first photon 

that hits that SPAD during the observation time.  This means that for a SPAD to fire during a time 

window two conditions are necessary: a detectable photon arrives in this time window, and there 

must have been no detectable photons during the entire time prior to this time window. For a 

uniform detectable photon arrival rate of , and a small time window of t, which is located t from 

the start of acquisition, 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒) = 𝜆 ∆𝑡 𝑒−𝜆.𝑡       (3.1) 

where 𝜆 ∆𝑡 is the probability that a detectable photon arrived in this time bin, and the exponential 

is just the probability that no photons arrived during the prior time.  
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Figure 3.2: Flux of Photons Incident on a Pixel During an Exposure.  This consists of the ambient 

background flux which is on during the whole exposure, and the reflected laser light.  The total 

exposure time is set by the distance range that is of interest. 

In our application the arrival rate of photons on a pixel is the sum of two arrival rates, one constant, 

and the other a short pulse as shown in Figure 3.2. The ambient illumination is constant during the 

detection window and gives rise to a detectable photon rate of . When the reflection of the laser 

pulse returns, the flux increases to S = ( + L). In the following, we will show that a Mixture 

Exponential Distribution best describes avalanche statistics in this case. Once the laser pulse is 

launched, and the image sensor is enabled, the pixel array is immediately exposed to background 

illumination for a time, tS, before the return of the reflected laser pulse (TL). The arrival of the laser 

pulse increases the photon flux from λN to λS for the duration of the laser pulse after which time the 

flux drops back to λN for the remaining exposure time. The following analysis is based on the “first-

photon postulate”, which states that avalanche may occur at times T ≥ tAv if and only if it didn’t 

occur prior to tAv. The probability of avalanche in these three time-intervals is calculated as follows. 

1. Avalanche before the return of the laser pulse (near-end), derived by integrating Eq. 3.1: 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑡 ≦ 𝑡𝑆) = 1 − 𝑒−𝜆𝑁𝑡 

2. Avalanche during the time of the pulse from the laser-source: 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑡𝑆 < 𝑡 ≦ 𝑡𝑆 + 𝑇𝐿) = 𝑒−𝜆𝑁𝑡𝑆(1 − 𝑒−𝜆𝑆(𝑡−𝑡𝑆)) 

3. Avalanche after the end of the laser pulse (far-end): 
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𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑡𝑠 + 𝑇𝐿 < 𝑡 ≦ 𝑇𝐸𝑥𝑝) = 𝑒−(𝜆𝑁𝑡𝑆+𝜆𝑆𝑇𝐿

 

)(1 − 𝑒−𝜆𝑁(𝑡−𝑡𝑆−𝑇𝐿

 

)) 

Let us define the CDF of avalanche as a function of time: 𝐹𝐴𝑣(𝑡) = 𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑇 ≦ 𝑡): 

𝐹𝐴𝑣(𝑡) =           

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑇 ≦ 𝑡)                                                                          𝑓𝑜𝑟: 𝑡 ≦ 𝑡𝑆   

𝐹𝐴𝑣(𝑡𝑆) +  𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑡𝑆 < 𝑇 ≦ 𝑡)                                            𝑓𝑜𝑟: 𝑡𝑆 < 𝑡 ≦ 𝑡𝑆 + 𝑇𝐿  

𝐹𝐴𝑣(𝑡𝑆 + 𝑇𝐿) + 𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑡𝑆 + 𝑇𝐿 < 𝑇 ≦ 𝑡 )                        𝑓𝑜𝑟: 𝑡 > 𝑡𝑆 + 𝑇𝐿   

 

Consequently, the CDF of the Mixture Exponential Distribution comprises: 

𝑭𝑨𝒗(𝒕) =            (3.2) 

  𝟏 − 𝒆−𝝀𝑵𝒕                                                              𝒕 ≦ 𝒕𝒔   

  𝟏 − [𝒆(𝝀𝑺−𝝀𝑵)𝒕𝒔]𝒆−𝝀𝑺𝒕                              𝒕𝑺 < 𝒕 ≦ 𝒕𝑺 + 𝑻𝑳   

  𝟏 − [𝒆(𝝀𝑵−𝝀𝑺)𝑻𝑳)]𝒆−𝝀𝑵𝒕                                     𝒕 > 𝒕𝑺 + 𝑻𝑳   

 

FAv(t) in Equation (3.2) is indeed a valid CDF, since it is a non-negative, monotonic, non-decreasing 

function of time, and 𝐹𝐴𝑣(𝑡) → 1, as t → . Finally, by differentiating the CDF, the PDF for the 

Mixture Exponential Distribution is derived: 

𝒇𝑨𝒗(𝒕) =            (3.3) 

𝝀𝑵𝒆−𝝀𝑵𝒕                                                                   𝒕 ≦ 𝒕𝑺  
 

𝝀𝑺[𝒆(𝝀𝑺−𝝀𝑵)𝒕𝑺]𝒆−𝝀𝑺𝒕                                   𝒕𝑺 < 𝒕 ≦ 𝒕𝑺 + 𝑻𝑳   

𝝀𝑵[𝒆(𝝀𝑵−𝝀𝑺)𝑻𝑳)]𝒆−𝝀𝑵𝒕                                         𝒕 > 𝒕𝑺 + 𝑻𝑳  
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Figure 3.3: Mixture Exponential Distribution 

 

Given the signal and background flux levels, the distribution can be used to determine the 

occurrence likelihood of an avalanche in a given time period. Figure 3.3 depicts the PDF and CDF 

of the distribution for a maximum coverage distance of 20m (TExp = 134ns) with an object placed 

10m (tS = 67ns) away from the sensor. In this figure we assume the background illumination 

generates an incident flux of N = 1Ph/µs to a pixel, and a 4ns wide (TL = 4ns) laser-pulse incident 

unto the scene providing a signal flux of L = 3Ph/µs to each pixel. Given the flux levels and the 

exposure time, the figure shows a total probability of Avalanche of 0.14 for each exposure, and 

only 11% of these detections occur during the laser pulse. 

If the probability of avalanche is small, the exponentials in Eq. (3.4) will be close to 1, so 𝒇𝑨𝒗(𝒕) 

can be approximated as: 
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𝒇𝑨𝒗|𝑨𝒑𝒑(𝒕) =             (3.4) 

𝝀𝑵                                                                           𝒕 ≦ 𝒕𝒔    

𝝀𝑺(𝟏 − 𝝀𝑵𝒕𝑺) ≈  𝝀𝑺                                            𝒕𝑺 < 𝒕 ≦ 𝒕𝑺 + 𝑻𝑳    

𝝀𝑵(𝟏 − 𝝀𝑵𝒕𝑺 − 𝝀𝑺𝑻𝑳)  ≈   𝝀𝑵                   𝒕𝑺 + 𝑻𝑳 < 𝒕 ≦ 𝑻𝑴𝒂𝒙    

𝟎                                                                           𝒕 > 𝑻𝑴𝒂𝒙
13

    

which is a standard Poisson process with a time dependent arrival rate. While as Figure 3.3 shows 

the avalanche probability is often small, the derivations in this thesis use the Mixture Exponential 

Distribution, unless otherwise stated. 

3.2 Methodology for Object Recovery 

Since the probability of receiving a photon during an acquisition is small, to determine object 

position takes many acquisitions. To evaluate different object recovery approaches, we created a 

simulator of our SPAD imager. For each acquisition, the simulator randomly assigns the photon 

arrival times consistent with the user-set background flux rate and laser flux rate.  The laser flux is 

controlled by setting the SNR of the resulting signal.  The statistics are generated using the mixture 

exponential distribution that was derived in the prior section.  The photons that arrive during the 

acquisition time are then stored in a histogram with the timing bin-size set by the resolution of the 

proposed imager.   

To determine an object’s distance, we first collect a number of acquisitions, (NExp), and then pass 

the histogram through a matched filter object detection algorithm, which provides the desired 

distance estimate.  Each of these tasks is described in more detail in the following sub-sections.  

3.2.1 Histogram Construction Algorithm 

A simple way to generate sample points for any probability distribution is to select a random 

number uniformly between 0 and 1, and map that number through the inverse CDF of the 

distributions. This produces samples with the same probability as the underlying distribution [37].   

More specifically, after we pick a number between 0 and 1,  if that number is larger than the 

maximum value of the CDF calculated for the total exposure window (a in Figure 3.4), that sample 

 

13
 𝑇𝐸𝑥𝑝 ≦ 𝑇𝑀𝑎𝑥 and ∫ 𝑓𝐴𝑣|𝐴𝑝𝑝(𝑡)𝑑𝑡 

𝑇𝑀𝑎𝑥

0
= 1 
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doesn’t cause an avalanche and is discarded. Otherwise using the inverse map of the CDF, we 

compute its arrival time and increment the photon count in that bin.  The arrival time determines 

whether the photon is a noise photon, (c in Figure 3.4) or a signal photon (b in Figure 3.4). This 

process is repeated Nexp times to create the final histogram, as shown schematically in Figure 3.5. 

 

  

Figure 3.4: Construction Algorithm 

Using this approach, we created a histogram for a single frame comprising 20,000 exposures, NExp 

= 20K, N = 1Ph/µs, SNR = 1, and fine-bins of 100ps (1.5cm) width, which is illustrated in Figure 

3.6.  With 20K exposures, each 100ps bin will collect 2s of light, so the expected number of 

photons in the noise bins is around 2 and is around 4 in the signal bins. The figure shows that given 

these parameters, noise and object bins occupy 0, 1, 2, 3…, 8 but no greater than 9 photons in this 

example.  These results make sense, since from Poisson statistics with an average arrival rate of 4 

photons in a signal time bin, the probability of getting 10 in a bin is 0.5%.  This means that there is 

only a 20% chance that one of the 40 time-bins will have 10 photons in it. For the noise bins with 

an average arrival rate of 2 photons in a time bin, the probability of getting 10 photons is 4x10-5.  

This means that the chance that one of the ~1300 noise bins has ten photons is around 5%.  
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Figure 3.5: Discretization of the Exposure-time into Fine-timing Bins 

 

Figure 3.6: Constructed Histogram 

3.2.2 Matched Filter 

In order to recover an object buried in background noise, we employed the widely-used matched-

filter followed by a peak-detection algorithm [38], where the histogram is convolved with the 

rectangular laser pulse, which in this thesis is a flat-top pulse of TL= 4ns wide.  This is accomplished 

by cross-correlating the histogram data with the laser pulse.  
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Figure 3.7: Matched-filtering with Ideal (a) and Histogrammed (b) Inputs 

 

As a point of reference, Figure 3.7 (a) shows an ideal laser pulse, and the convolution with itself
14

 

, with background illumination present throughout the exposure time. The filter output is an 

isosceles triangle whose base is raised by background noise. The vertex of the triangle; that is the 

maximum of the filter output, is coincident with the end of the laser pulse; tS + TL as in Figure 3.2.
15

 

Therefore, subtracting TL from the time at which the vertex occurs will produce tS, and consequently 

the distance of the object.  Figure 3.7 (b) shows an example of simulated photon counts for an 

object at 10m away from the sensor, and the output of the matched filter. In this example, the object 

is recoverable, i.e. the maximum filter output nearly coincides with the time of flight of the laser-

pulse reflected from the object; the distance error is measured to be -1cm.  

 

14
 For real, symmetric functions, convolution and cross-correlation provide equivalent results.  

15
 Using convolution not cross-correlation can yield a time shift depending on where t = 0 is labeled 

for the pulse.  In these figures, t = 0 was assumed to be the beginning of the pulse, which means 

the peak occurs at the end, and not at the pulse position.  This shift could have been avoided by 

labeling the middle of the pulse as the point where t = 0. 
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In reality, the histogram, which comprises counts of events in bins associated with the object and 

noise photons, includes only a sparse model of the reflected pulse. Nonetheless, for any SNR and 

an adequate number of exposures, the distance of an object can be determined to within some error.  

The next section estimates the required number of exposures. 

3.2.3 Number of Exposures and Object Recovery 

The number of exposures per frame, NExp, the duration of each exposure, TExp, SNR (and N), all 

affect the error in estimation of object distance.  The relationship can be estimated using Poisson 

statistics; Chapter 4 gives a more complete derivation with the mixture exponential distribution. 

If we assume that the laser pulse fully encompasses a pixel, then each output of the matched filter 

is the number of photons that were detected in a time period the length of the laser pulse (TL). There 

are roughly, TExp/TL independent coarse timing bins of this length during an exposure.  Thus, we 

can use Poisson statistics to find the distributions of photons in a coarse “noise” bin and in the 

coarse “signal” bin. From these statistics we want to find two numbers: the threshold we should 

use to determine whether the number of photons in a region indicates that a true object has been 

detected; and given this threshold the probability that true objects are detected.  These probabilities 

can be adjusted by changing NExp. 

The desired false positive detection rate, FPDR, is the probability that received noise is detected as 

an object. This rate sets the threshold count used by the system. Given that there are TExp/TL noise 

bins in each experiment, to achieve our overall error rate, the required probability for a single bin 

to exceed this threshold is 
𝐹𝑃𝐷𝑅∗𝑇𝐿

𝑇𝐸𝑥𝑝
. The threshold, Nthres, is just the number where 

𝑃(𝜆𝑁𝑜𝑖𝑠𝑒𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑖𝑛 , 𝑘 ≥ 𝑁𝑡ℎ𝑟𝑒𝑠) ≤
𝐹𝑃𝐷𝑅∗𝑇𝐿

𝑇𝐸𝑥𝑝
 . For the example in Figure 3.8 (NExp = 20K, N = 

1Ph/µs), the expected arrival into a noise coarse bin of 4ns is 80 photons, and the number of coarse 

bins is 34 (20m).  Thus for a 1% FPDR, the probability per bin is 0.03%, yielding an 𝑁𝑡ℎ𝑟𝑒𝑠 = 112. 

For 10K exposures, the number of photons per bin drops to 40, yielding an 𝑁𝑡ℎ𝑟𝑒𝑠 = 63. 

Given Nthres, we need to calculate the probability that true objects are not detected, which gives the 

false negative detection rate, FNDR, (percentage of true objects not detected) of the system.  This 

is just 𝑃(𝜆𝑆𝑖𝑔𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛𝐵𝑖𝑛 , 𝑘 ≤ 𝑁𝑡ℎ𝑟𝑒𝑠). With 20K laser samples, the FNDR is extremely small 

(0.004%).  For 10K samples, FNDR jumps to almost 3%.  If this is not acceptable, one needs to 

accumulate more laser pulses.  This situation is illustrated in Figure 3.8. In the 1st case, for the lower 

NExp = 10K, the peak of the matched-filter occurs in a noise bin, and not when the signal occurs.  

This peak is greater than the threshold, so a false object is reported. In the 2nd case, for NExp = 20K, 
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the matched-filter produces an output which succeeds in recovering the object position with a small 

estimated error of -1cm. 

 

Figure 3.8: Histogram and Matched-filter Output – SNR = 1, NExp = 10K and 20K 

 

3.3 Statistics of Depth Uncertainty 

Section 2.4 introduced the three main sources of depth uncertainty in our system: background 

photon shot noise, shot noise of the signal photons, and time quantization. This section uses our 

simulator with the correct photon statistics to explore these effects, providing data and insight on 

how noise parameters affect measurement accuracy.  Since photon arrival is stochastic, we create 

runs of around 1,000 measurements, with each measurement using NExp laser acquisitions. From 

each data run we extract estimates for mean and standard deviation of depth error.
16

 Unless 

otherwise noted, these runs all use a background illumination flux, N, of 1Ph/s. We first look at 

 

16
 Throughout this thesis, spatial error and depth error are interchangeably used. 
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the situations where uncertainty is dominated by the signal photons, and then explore situations 

with lower SNR. 

3.3.1 Depth Error as a Function of SNR and the Number of Exposures 

 

Figure 3.9: Depth Error at High SNRs as a Function of NEXP * L 

When few background photons arrive, the uncertainty should be limited by the total number of 

signal photons collected which is clearly shown in Figure 3.9.  This figure plots the depth 

uncertainty as a function of the aggregate laser photon arrival rate. In this plot, as the laser photon 

flux increases (higher SNR since N is fixed) we decrease the number of exposures, to keep the 

aggregate laser photon arrival rate constant. At high SNR, the different SNR, and thus different 

number of exposures, curves have nearly the same depth error.  This means that the depth 

uncertainty is set solely by the number of photons collected; the effect of the SNR and number of 

exposures only matter because they affect the total number of photons.  At lower SNR ratios, the 

shot noise of the background illumination becomes more significant and causes the depth error to 

increase.
17

   

 

17
 Interestingly the larger depth uncertainty in the SNR = 5 curve, comes from noise photons 

increasing the shot noise.  Since 20% more photons (noise photons) are detected during the signal 

period, this increases the shot noise variance by 20 percent without increasing the signal. Thus, the 

resulting depth error is larger as shown in the plot. 
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The expected number of photons in each fine time bin is the aggregate photon rate times the width 

of the time bin. With our 100ps fine time bins, at NEXP * L of 20K/s, the effective number of 

photons into each signal fine bin is 2 when the laser light is reflected, and the average number of 

photons collected during the laser pulse is 80.  Given these numbers it is not surprising that at these 

low number of photons per bin, the depth uncertainty starts to increase. As can be seen in Figure 

3.9, when the total number of collected photons is large (> 3 in each timing bin, 30k/s), the 

uncertainty asymptotes to the quantization noise.  In this figure, the distance was set to correspond 

to the boundary between two time bins, which gives a sigma of slightly larger than 0.75cm, which 

is the sigma for two 100ps time bins as will be shown in the next section.  

 

Figure 3.10: Distance Error vs. SNR and NEXP * L 

Figure 3.10 explores the relationship between SNR and depth error. As the SNR decreases, the shot 

noise of the background photons adds to the noise of the laser photons and adds depth uncertainty. 

Since the variance of shot noise is proportional to the expected number of photons detected, at an 

SNR = 3, the variance will be 33% larger than at high SNR. At low SNR, the variation from the 

shot-noise of the background photons significantly increases the depth uncertainty. Low SNR signal 

require significantly larger number of signal photons to be received to achieve the same depth 

accuracy. To get the same distance accuracy of 1.5cm from an SNR = 1.5 signal requires around 2 

times as many laser photons as a SNR = 3 signal.  So, for a fixed background illumination, this will 

require 4 times the number of exposures (since each exposure provides half the signal photons).  

Chapter 4 analyzes this error dependence in more detail. 
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Also, a reduction in the number of exposures per frame causes a rapid deterioration in depth-error 

since this greatly decreases the number of signal photons detected. This both directly affects the 

measured distance accuracy, and also increases the probability of a false detection: either missing 

the object, or classifying noise as an object, presenting themselves as outliers. The outliers do not 

represent the error associated with a recovered object, but rather comprise failed detections, 

unrelated to object-position. Shown in Figure 3.10, the outlier breakaway line  was constructed 

based on the method in Section 3.2.3 where for each SNR, the required aggregate photon arrival 

rate, NEXP* L, was calculated such that FPDR = FNDR = 0.1%.  

With increasing number of exposures, depth error asymptotically approaches a lower limit dictated 

by quantization error.  For the worst-case distances where the object is located between two bins, 

this leads to  a standard deviation equal to ½ the size of a fine-bin, as shown in Figure 3.11. It 

should be clear that for an efficient recovery of a scene, the number of exposures must not exceed 

that needed to achieve the quantization-limited depth error. 

𝜎𝑄𝐸 = √
(−𝜇)2

2
+
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2
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𝜇

2
−

𝜇
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2

= 𝜇 =  
𝐵𝑖𝑛 𝑆𝑖𝑧𝑒
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Figure 3.11: Quantization Error as a Limiting Case of Depth Error 

3.3.2 Depth Error Histograms 

The transition through different noise mechanisms is better visualized by plotting histograms of 

returned depth estimates. Figure 3.12 illustrates the histograms of depth error for SNR = 3 for an 

object at 20m away, built from runs where the exposures per frame is varied from 5K to 20K, which 

correspond to an average arrival of between 1.5 and 6 photons into each fine time bin.  With 4.5 - 

6 photons expected into each bin, and the bins aligned to the desired time, the distribution is set 
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almost completely in the two adjacent time bins, with few other returned values.  At this SNR, even 

an average of 3 photons per bin (NEXP = 10K) still leads to a slight increase in depth uncertainty, 

which increases rapidly as the number falls to 1.5. 

 

Figure 3.12: Depth Error vs. NExp for a Fixed SNR of 3  

 

 

  

Figure 3.13: Depth Error vs. the SNR for a Fixed NExp of 20K 
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If we assume that the background flux and laser power are fixed, then as the objects get farther 

away, the SNR of the returning signals decreases.  At a fixed NExp, as Figure 3.13 shows, this causes 

the measurement uncertainty to increase rapidly.  This figure assumes a fixed N of 1Ph/s. As the 

SNR decreases the number of signal photons fall. Even with 20K samples, at SNR = 1 there are only 

on average 2 laser photons in each fine time bin during the laser pulse, in addition to the average 

of 2 photons in every bin from noise.  This small number of signal photons, combined with the 

large number of noise photons, is why the uncertainty grows. 

3.3.3 Depth Error vs. N 

Our analysis up to now has focused on how the depth uncertainty depends on the number of laser 

and background photons received.  The results from this analysis don’t depend on the actual photon 

flux rates (as long as NExp is adjusted to capture the same number of photons). However, as Figure 

3.14 shows, because of the first photon principle, the flux rate does affect depth resolution. The 

figure plots depth uncertainty as the background flux, N changes from 1 to 6 Ph/s for a fixed SNR 

of 3. Even for a short distance of 10m as the background flux rates increase, the depth error 

increases, since the effective sensitivity of the SPAD decreases, which reduces the effective photon 

flux that is captured by the SPAD.   

 

Figure 3.14: Depth Error vs. N for a fixed SNR = 3 at a Distance of 10m 

This effect gets worse as the distance increases. Figure 3.15 provides the same plot, but now for an 

object that is 20m away. With double the distance, for the 133ns it takes for light to return, the 
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probability that a noise photon hasn’t already hit the SPAD decreases (See Eq. (3.2)).  For N = 6 

Ph/s it is  𝑒−𝜆𝑁𝑡𝑆 = 𝑒−6∗0.133 =  0.45, which means that less than half of the signal photons we 

should detect will be detected.  This means that our SNR = 3 signal is really more like SNR = 1.3, 

and the actual flux of signal photons received is also only 45% of the listed value.  For N = 4 Ph/s, 

the probability is 𝑒−4∗0.133 =  0.59 which is still problematic. Both the lower effective SNR and 

flux rate cause the noise to start increasing more rapidly. In our data, these conditions led to a 

number of outliers, which is the reason errors go off scale.  

 

 

Figure 3.15: Depth Error vs. N for a fixed SNR = 3 at a Distance of 20m 

If the background flux is small enough that for the distances of interest the decrease in sensitivity 

is small, then the system described in the previous sections can be used.  However, this data shows 

that if N ∗ 𝑡𝑆 is not very small, then additional methods will be needed to accurately measure distant 

objects. 

3.4 Long-range Object-recovery  

Since each SPAD only detects the first received photon, prior illumination desensitizes each pixel 

over time. Thus, the distance of an object from the sensor deteriorates the probability of detection 

in 2 ways: 

1. Photon-flux falls off with square of object-distance as given by Equation        (2.3). 
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2. The probability that an object causes Avalanche is affected by the length of time of exposure 

before the object is illuminated. It exponentially falls off with distance ( = N
-1) as derived 

from Equation (3.2):  

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒, 𝑂𝑏𝑗𝑒𝑐𝑡) = 𝑒−𝜆𝑁𝑡𝑆(1 − 𝑒−𝜆𝑆𝑇𝐿), where tS = 2DObj / C. 

The next section provides two methods that improve the depth accuracy of distant objects.  

We can better our estimates of distant objects by mitigating the effect of the prior photon arrival. 

The next section achieves this goal by gating the sensor, activating the SPADs only during certain 

regions of time.  This has dual benefit: it decreases the number of noise bins, and improves the 

SPAD sensitivity during the reflected laser signal.  The downside of gating is that multiple 

acquisitions are now needed to cover the entire range. Section 3.4.2 introduces a method that avoids 

the need for multiple runs by providing a simple filter which reverses the decreasing sensitivity, 

and yields a better single pass detection algorithm.   

3.4.1 Time Gating 

Time-gating is a technique used to improve the acquisition of distant objects by blocking a large 

portion of background illumination from triggering the sensor pixels. Another benefit of time-

gating is that it minimizes the effect of obscurants, such as fog, rain, or smoke, in the atmosphere 

present between the object and the sensor. More specifically, time-gating delays the exposure of 

the image-sensor by some time, TTG, after the launch of a laser pulse. With this method, only objects 

with round-trip delay of tS ≥ tTG can be imaged, and background illumination, as well as nearby 

images (t  tTG) are blocked from interference in detecting the distant objects.  

To demonstrate the noise-filtering property of time-delayed exposure, we consider two scenarios. 

We place an object 50m away from the sensor. The background and object-reflected flux-levels 

reaching the sensor are N = 1 Ph/µs and L = 1 Ph/s respectively.  

Figure 3.16 includes the two scenarios. In the 1st case, the exposure time begins with the launch of 

the laser pulse (DMin = 0). Background illumination prior to the reflections from the object 

effectively degrades the reflected flux to 1.4Ph/s, down by roughly 30%. In the 2nd case, exposure 

is delayed by TTG = 266ns (DMin = 40m), filtering out background illumination, as well as objects 
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closer than 40m, from reaching the sensor. In this configuration, the effective flux decreases only 

to 1.9Ph/s, a reduction of a mere 5%.  

The Ungated Histogram of Figure 3.17 shows a wide range of measurement errors concentrated 

near the beginning of exposure with an exponential fall-off preceding the peak associated with the 

object-reflected pulse (yellow bar in the figure). In this case, around 20% of frames (each 

comprising 20,000 exposures) fail to detect the object correctly (either false positive or false 

negative detections).   

In contrast, the Time-gated Histogram of Figure 3.18 includes the error-spread for the same object 

where the exposure is time-delayed by TTG = 266ns (DMin = 40m). In this case, there are no outliers 

present and depth error has a standard deviation of 2.88cm. This reduction in measurement failures 

is due increasing the effective signal photon arrival rate, and greatly reducing the number of “noise” 

time bins.  Instead of covering from 0-333ns (50m round-trip time), we only need to measure for 

67ns.  This reduction in noise bins reduces the false positive error rate. 

 

 

 

Figure 3.16: Time-gated Noise-filtering 
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Figure 3.17: Ungated Histogram – DMin = 0m, DObj = 50m 

 

 

  

Figure 3.18: Gated Histogram – DMin = 40m, DObj = 50m 

While time-gating clearly works, it leaves the nearer distances unexposed. Therefore, to get an 

imprint of the whole scene, separate acquisitions for different distances of a scene are required. In 

our case, to cover the whole scene, additional exposures are necessary to recover objects up to 40m. 
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The SNR for these objects is no less than: (50/40)2 = 1.56. If the remaining 40 meters of depth was 

exposed all at once, it would take 18K acquisitions to achieve a depth uncertainty of 1.78cm. 

 

Figure 3.19: Ungated Long Range Object Recovery without and with the application of an 

Exponential Filter 

3.4.2 An Improved Object Recovery Algorithm 

To avoid the overhead of time gating, it is desirable if one could construct an improved object 

recovery algorithm which can expose a deep scene all at once and recover distant objects with good 

accuracy. Figure 3.17 provides a clue to the problem and how to fix it.  In that figure it is clear that 

the outlier (false positive detections) are more prevalent at shorter times and their frequency decays 

with time.  This makes sense given decreasing effective “sensitivity” of the SPAD with time.  To 

correct for this effect, we can multiply the histogram by an increasing exponential weighting 

function, 𝒆+𝝀𝑵𝒕, which gives more weight to photons that arrive later, since they are less likely to 
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be detected.  Of course this increased gain given to later photons also increases its shot-noise, so it 

is not as good as time gating, but does significantly improve detection accuracy.  

Figure 3.19 show this effect. Part (a) of the figure shows the ungated histogram and the matched 

filter output for a 60m scene, where an early noise peak is larger than the signal from the 50m 

object.  Multiplying this Histogram with our exponential prefilter allows that same object is 

detected correctly, as shown in Figure 3.19 (b). In comparison to (a), the Histogram is multiplied 

by the weighting function, where its effect can be seen in flattening of the matched filter output and 

the correct recovery of the object at 50m to within 5.5cm. 

 

Figure 3.20: Depth Error Histograms without and with the Exponential Filter 

To assess the statistical improvement in depth error, we produced depth-error histograms for 1000 

runs for an object 50m away at an SNR = 1. The number of exposures, NExp, per run was 20K. Figure 

3.20 illustrates the results. There are only 4 (false positive) outliers using the improved algorithm 

when compared to roughly 200 for the unfiltered histogram.   

While this method requires the background photon rate, this is data is easily estimated from the 

histogram, by dividing the total number of photons received by the total time period.  Since this 

total includes the laser photons, it will overestimate the rate, but this error will be large only when 

the SNR is very large; for these cases, the filtering operation will not affect the results.  At high 

SNR, there are very few noise photons to worry about. 
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3.5 Maintaining High SNR – When is Scanning Better than Flash 

The prior sections have pointed out a number of issues that arise when the SNR of the optical signal 

is small (< 3): the detector needs to receive many more laser photons to have the same distance 

accuracy, and even when one is willing to have more distance uncertainty, at low SNR more 

captured photons are needed to avoid outliers.  Both problems get worse with distance. Since eye 

safety limits the average power that any laser can emit, when the required number of captured 

photons increases, the amount of time needed to do acquisitions must also increase.  Given these 

issues, it seems clear that one wants to build LiDaR systems so their minimum SNR is above 3, to 

minimize the required acquisition times. 

This desire for high SNR can be constrained by laser power: it might not be possible to find a laser 

strong enough to illuminate the entire field of view and achieve the desired SNR.  In these cases, it 

makes sense to decrease the field of view of the laser illuminator, increasing the signal power in 

one region, and then scan the regions over the full field of view.  Most commercial outdoor LiDaR 

systems take exactly this approach [39, 40] and scan a single pixel sensor and laser illuminator over 

the entire field of view. 

Having an Aerial sensor provides an alternative approach.  Here we leave the field of view of the 

sensor fixed, and simply scan the illumination over the sensor. To understand when partial 

illumination is beneficial we can look at the Frame Rate metric of Equations (2.6) and (2.7), which 

is a measure of how fast the LiDaR system can update its distance estimates: 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝐹𝑙𝑎𝑠ℎ = [𝑁𝐸𝑥𝑝|𝐹𝑙𝑎𝑠ℎ𝑇𝐿𝑆𝐿]−1 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝑆𝑐𝑎𝑛 = [𝑁𝑆𝑙𝑖𝑐𝑒(𝑁𝐸𝑥𝑝|𝑆𝑐𝑎𝑛𝑇𝐿𝑆𝐿) + (𝑁𝑆𝑙𝑖𝑐𝑒 − 1) 𝑇𝑂𝑣|𝑆𝑐𝑎𝑛)]−1 

Where 𝑇𝐿𝑆𝐿 is the time between laser pulses, and given eye safety constraints is proportional to the 

laser power, and 𝑁𝐸𝑥𝑝|𝐹𝑙𝑎𝑠ℎ is the number of exposures needed when the whole field of view is 

illuminated at once.  Since we will assume the same laser power, 𝑇𝐿𝑆𝐿 is the same for the scanning 

system, and it needs 𝑁𝐸𝑥𝑝|𝑆𝑐𝑎𝑛 exposures.  We also assume there is some time overhead,  𝑇𝑂𝑣|𝑆𝑐𝑎𝑛 

to move the beam to a new location. Since the scanning system is illuminating 1/𝑁𝑆𝑙𝑖𝑐𝑒 of the image, 

we will assume its SNR is 𝑁𝑆𝑙𝑖𝑐𝑒 times higher than for the flash system. 

If the flash system is running at high SNR, then 𝑁𝐸𝑥𝑝|𝐹𝑙𝑎𝑠ℎ =  𝑁𝑆𝑙𝑖𝑐𝑒 ∗ 𝑁𝐸𝑥𝑝|𝑆𝑐𝑎𝑛 since both 

systems need the same number of laser photons to be collected for each pixel, and the illumination 

in the scanning system is 𝑁𝑆𝑙𝑖𝑐𝑒 times larger.  Of course, this means that the first terms in both 

equations are the same and the scanning system is both slower and more complex, since it needs to 



 

43 

 

 

scan.  The more interesting case occurs when the SNR of the flash system drops below 3, and the 

number of exposures start to rise. From Figure 3.10, relative to the SNR = 3 case, the required 

number of laser photons increases by 15% for SNR = 2, and doubles for SNR = 1. This additional 

required acquisition time will often be larger than the scanning overhead.  This condition is 

formalized in the following: 

𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝑆𝑐𝑎𝑛 ≶ 𝐹𝑟𝑎𝑚𝑒 𝑅𝑎𝑡𝑒𝐹𝑙𝑎𝑠ℎ 

[𝑁𝑆𝑙𝑖𝑐𝑒(𝑁𝐸𝑥𝑝|𝑆𝑐𝑎𝑛𝑇𝐿𝑆𝐿) + (𝑁𝑆𝑙𝑖𝑐𝑒 − 1)𝑇𝑂𝑣|𝑆𝑐𝑎𝑛)]−1 ≶ [𝑁𝐸𝑥𝑝|𝐹𝑙𝑎𝑠ℎ𝑇𝐿𝑆𝐿]−1 

To illustrate, let’s assume that there are 2 identical 48 x 64 image sensors. The first sensor operates 

in the scanning mode where the four 12x64 slices are illuminated sequentially (NSlice = 4). The 

second sensor operates in the flash mode, where the entire array (48 x 64 pixels) is illuminated at 

once. Let’s assume that for the flash sensor the SNR = 1, which makes SNR = 4 for the scanning 

case.  

From Figure 3.10, for a target accuracy of Err = 1.5cm:
18

 

𝑁𝐸𝑥𝑝|𝑆𝑐𝑎𝑛 = 5.5𝑘 

𝑁𝐸𝑥𝑝|𝐹𝑙𝑎𝑠ℎ = 42𝑘 

And the above inequality is evaluated as: 

(22𝑘 ∗ 𝑇𝐿𝑆𝐿 + 3𝑇𝑂𝑣|𝑆𝑐𝑎𝑛)−1 ≶ (42𝑘 ∗ 𝑇𝐿𝑆𝐿)−1 

𝑇𝑂𝑣|𝑆𝑐𝑎𝑛 ≷ 6.7𝑘 ∗ 𝑇𝐿𝑆𝐿 

This basically says that if the total scanning overhead is less than the total time used to form an 

image, the scanning system will be faster.  Since the flash system has a low SNR overhead of 100%, 

this is exactly the expected result. 

3.6 Summary 

We started this chapter by covering the statistical nature of light which follows the Poisson 

distribution. Based on the SPAD first photon postulate, we arrived at the Exponential distribution 

 

18
 This 8x increase in acquisitions can be broken down into a 4x increase to received number of laser photons 

(SNR = 4 vs SNR = 1) and roughly a factor of 2 needed to get the same depth uncertainty between an SNR 4 

signal and an SNR1 signal. 
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which describes the probability of detected photons over time. We then derived a Mixture 

Exponential distribution to include the influence of background noise on photon detection. As each 

exposure causes at most a single detected photon, a large number of exposures are required to 

capture a scene. We constructed a simulator matching these photon statistics which creates 

histograms comprising multiple exposures defining a single frame. We then built multi-frame 

histograms of depth error, Err, and analyzed the influence of background illumination, N, SNR 

and the number of exposures, NExp, on the depth accuracy of a recovered object. These results 

showed that at high SNRs (higher than 3) we need around 3 photons in each fine time bin to 

maximize performance, and that number nearly doubles as the SNR drops to 1. For a fixed 

background illumination, this means at high SNR, the number of exposures is inversely proportional 

to SNR, but grows rapidly as SNR approaches 1. Even when tight distance accuracy isn’t needed, 

the number of exposures can’t be reduced too far to avoid problems with false detections.  More 

distant objects make these issues worse, since SPADs only detect the first photon they encounter. 

This effect gets worse as N increases.  

Based on the insights gained from these analyses, we studied time-gating as a technique to improve 

the recovery of distant objects. While time-gating precludes visibility of near objects, an improved 

recovery technique which includes time-domain exponential filtering of data has the ability of 

exposing a whole (deep) scene without compromising long-range recovery accuracy. 

Finally, we explored how illumination scanning can be used to reduce the extra acquisitions needed 

in low SNR situations.  By only partially illuminating a scene, it is possible to increase L, and move 

to a higher SNR operation point.  Moving from SNR = 1 to SNR > 3 reduces total number of laser 

photons that the sensor needs to collect by 2 times, which, in an environment where the average 

laser power is constrained reduces the acquisition time by 2 times as well. 
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 Mathematical Derivation of Depth Uncertainty 

Chapter 3 used Poisson statistical models to explain the more accurate simulations of the depth 

error for a LiDaR system.  While this model could explain many of the simulation results, it didn’t 

account for the underlying mixed-exponential nature of the photon arrivals.  Thus, we needed to 

add corrections for distant objects, or observations that occurred with high background flux. This 

chapter develops a mathematical model for depth error based on Multinomial Distribution which 

includes all the effects of SPAD photon statistics. The model serves to ratify the observations made 

from simulations in Chapter 3, including false-detections statistics. 

To gain insight into conditions affecting the uncertainty in depth measurement, we approximate the 

Multinomial model with an upper bound Gaussian Distribution. This formulation sheds light into 

the relation between depth uncertainty, SNR and NExp, as well as, laser and background flux rates 

and distance of the object. 

4.1 Defining Bin Slips  

As we showed in Chapter 3, there is, in general, some depth-error associated with object recovery. 

In this section we will express this error in terms of fine bin slips, which represent the number of 

fine timing bins the peak of the matched filter output is shifted from the correct position. The 

recovered object may have bin-slips to the left, to right or no slips at all. 

𝑃(𝐿𝑒𝑓𝑡𝑆𝑙𝑖𝑝) + 𝑃(𝑅𝑖𝑔ℎ𝑡𝑆𝑙𝑖𝑝) + 𝑃(𝑁𝑜𝑆𝑙𝑖𝑝) = 1 

 

Figure 4.1: Differentiation of Fine Bins 
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Table 1: Fine-bin Nomenclature and Example  

Bin Photon-counts 

Fine Bins Bin 

Number 

Photon 

Count 

Near-end Noise Bins (Left) 

NBL3 #NL3 = 4 

NBL2 #NL2 = 1 

NBL1 #NL1 = 2 

Far-end Object Bins (Right) 

OBR3 #OR3 = 3 

OBR2 #OR2 = 2 

OBR1 #OR1 = 2 

Far-end Noise Bins (Right) 

NBR1 #NR1 = 1 

NBR2 #NR2 = 2 

Near-end Object Bins (Left) 

OBL1 #OL1 = 1 

OBL2 #OL2 = 3 

 

Before we can define the statistics of a bin slip, we first define terminology that we will use in this 

chapter. Figure 4.1 is a more detailed variant of Figure 3.5 where fine bins are differentiated as in 

the following: 

1. Object Bins, fine time bins which capture the reflected laser light, are grouped by the proximity 

to the Left, OBLi, and to the Right, OBRj, of the reflected pulse 

2. Noise Bins to the Left (near-end) of the object are marked as NBLk, where k has a descending 

order moving towards the object 
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3. Noise Bins to the Right (far-end) of the object are marked as NBRl, where l has an ascending 

order moving away from the object. 

The Depth error associated with a detected object, measured in the number of bin-slips, is 

predicated on the relative count of photons in noise and the corresponding object bins: 

▪ the near-end noise bins in comparison to the far-end object bins, and 

▪ the far-end noise bins versus the near-end object bins. 

Let the number of photons in a left noise bin, NBLm, and in a right noise bin, NBRn, be #NLm and 

#NRn, respectively; further, let the number of photons in left and right object bins, OBLp and OBRq, 

be #OLp. and #ORq. Table 1 summarizes the nomenclature, as well as the per-bin photon-counts for 

the example of Figure 4.1. 

4.1.1 Near-end Bin-slips 

Since we are using the peak of the matched filter to indicate the location of the pulse,  we can 

determine the probability of a shift to the left, by looking at when the photon count in NBLs close 

to the pulse are larger than the OBRs at the end of the pulse.  For the pulse peak to appear k bins to 

the left of its actual position, two conditions must be met.  First, the value of the filter must be 

higher at position k than at  

k - 1, k - 2 … 0, otherwise it would not be the peak.  Similarly, its value must be higher than the 

value at k + 1, k + 2, … for the same reason.  Since the matched filter is just integration, we can 

compute these probabilities by looking at the difference of photon count between signal and noise 

bins.  

More formally, let ∆Li be the photon count in a left noise-bin (NBL) less the count in the associated 

right object-bin (OBR): 

∆𝐿𝑖 = #𝑁𝐿𝑖 − #𝑂𝑅𝑖 

To meet the first condition, we need to make sure the filter value at k, is higher than k - 1, ∆𝐿𝑘 > 0, 

and higher than k - 2, (∆𝐿𝑘+∆𝐿𝑘−1 > 0), etc: 

𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘)) = 

𝑃[(∆𝐿𝑘 >  0) ∧ (∆𝐿𝑘+∆𝐿𝑘−1 > 0) ∧ … ∧ (∑ ∆𝐿𝑖 >𝑘
𝑖=2 0) ∧ (∑ ∆𝐿𝑖 >𝑘

𝑖=1 0)]            (4.1) 

For example, for the first 3 bin-slips to the left the following relations must hold: 

1. if ∆L1 > 0; there will be at least 1 bin-slip to the left 
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2. if (∆L2 > 0 and ∆L2 + ∆L1 > 0) there will be at least 2 bin-slips to the left 

3. if (∆L3 > 0 and ∆L3 + ∆L2 > 0 and ∆L3 + ∆L2 + ∆L1 > 0) there will be at least 3 bin-slips to the 

left. 

Given this probability, we can compute the probability that there are exactly k bin-slips to the left 

by ensuring that the bins farther to the left don’t have a higher peak: 

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 =  𝑘)

= 𝑃 ((𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘))

∧  ((𝐹𝑖𝑙𝑡𝑒𝑟(𝑘 + 1) < 𝐹𝑖𝑙𝑡𝑒𝑟(𝑘))   ∨  ((𝐹𝑖𝑙𝑡𝑒𝑟(𝑘 + 2) < 𝐹𝑖𝑙𝑡𝑒𝑟(𝑘))  ∨ … )) 

= 𝑃 ((𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘))  ∧  ((∆𝐿𝑘+1 ≤ 0)  ∨  (∆𝐿𝑘+1 + ∆𝐿𝑘+2) ≤ 0) ∨ … )) 

For all cases that we care about, all the terms in the probability that the peak isn’t farther than k, 

are going to be close to 1, and can be accurately approximated by its first term, 𝑃(∆𝐿𝑘+1 ≤ 0).
19

  

The resulting formula is: 

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 =  𝑘) = 𝑃 ((𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘)) ∧ (∆𝐿𝑘+1 ≤ 0))                 (4.2) 

If our experiment is done with a larger number of trials, so the distribution of photons in each bin 

are essentially independent, we can factor Eq. (4.) into two probabilities: 

𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘)) and 𝑃(∆𝐿𝑘+1 ≤ 0) 

Notice that the probability, 𝑃(∆𝐿𝑘+1 ≤ 0), is just 1 − 𝑃(∆𝐿𝑘+1 > 0). Also, if the bins are 

independent they have the same statistics,  𝑃(∆𝐿𝑘+1 > 0) = 𝑃(∆𝐿1 > 0). This means that the last 

term is always: 

 

19
 To see this consider that the probability of any ∆𝐿𝑘 being positive is small, since the expected arrival rate 

in object bins is higher than noise bins. The first term has already removed all the cases where ∆𝐿𝑘+1 is 

positive, so the second term only removes cases where ∆𝐿𝑘+1 is negative, and  (∆𝐿𝑘+1 + ∆𝐿𝑘+2) is still 

positive.  This means that ∆𝐿𝑘+2 must be larger than a positive value (−∆𝐿𝑘+1) rather than zero, which is an 

even smaller correction. 
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                                            𝑃(∆𝐿𝑘+1 ≤ 0) = 1 − 𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(1)  > 𝐹𝑖𝑙𝑡𝑒𝑟(0))                (4.3) 

4.1.2 Far-end Bin-slips 

In the same manner as the near-end bin-slips, an equation for the probability of slips to the right 

can be formulated. Defining the photon count in a noise-bin to the right less the count in the 

associated object-bin to the left to be: 

∆𝑅𝑖 = #𝑁𝑅𝑖 − #𝑂𝐿𝑖 

Then: 

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 =  𝑘) = 𝑃[(𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘)) ∧ (∆𝑅𝑘+1 ≤ 0)]                 (4.4) 

 

4.1.3 Relation between the Near-end and Far-end Bin-slips 

The single-trial probabilities for a photon landing in a noise or an object bin can be calculated by 

using flux-levels reaching the sensor as in Equation (3.4). Given the width of a fine-bin, TFB: 

𝑝𝑁𝐿 =  𝜆𝑁(1 − 𝜆𝑁𝑡𝑆). 𝑇𝐹𝐵                               (𝑛𝑒𝑎𝑟 − 𝑒𝑛𝑑) 

𝑝𝑂𝑏 = 𝜆𝑆(1 − 𝜆𝑁𝑡𝑆)𝑇𝐹𝐵                                   (𝑜𝑏𝑗𝑒𝑐𝑡) 

𝑝𝑁𝑅 = 𝜆𝑁(1 − 𝜆𝑁𝑡𝑆 − 𝜆𝑆𝑇𝐿)𝑇𝐹𝐵                    (𝑓𝑎𝑟 − 𝑒𝑛𝑑) 

where the noise rates are computed for the noise bins close to the laser pulse,  and we assume that 

the laser pulse duration is short enough that we don’t need to compute the single-trial probabilities 

for two signal bins, one for the left side of the pulse and a different one on the right side of the 

pulse. This assumption also means that, the near-end and far-end single-trial noise probabilities are 

nearly the same: 

𝑝𝑁𝑅 ≅ 𝑝𝑁𝐿 =  𝜆𝑁(1 − 𝜆𝑁𝑡𝑆). 𝑇𝐹𝐵                                        (4.5) 

With this approximation, we can write: 

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 =  𝑘) ≅ 𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 =  𝑘)  

4.2 Computing Bin Slip Probabilities 

Given the SNR, background flux, and number of exposures, the above equations enable us to 

compute the bin slip probabilities, and estimate the expected depth uncertainty for each 

measurement condition. The next section reviews the properties of a multinomial distribution. Then 
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we compute the probability of a single bin slip, before extending it to multiple bin slips. Since this 

exact formulation is complex, we next look at using a Gaussian model to estimate these numbers. 

4.2.1 The Multinomial Distribution 

Bin-slip probabilities are best modeled by the Multinomial Distribution, which is the generalization 

of the Binomial Distribution, the latter being a discrete distribution used to calculate the probability 

of the number of occurrences, x1, x2, of two random variables, X1, X2, with single-trial probabilities 

of p1 and p2, for n independent trials: 

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2) =
𝑛!

𝑥1! 𝑥2!
𝑝1

𝑥1𝑝2
𝑥2 

Where: 

𝑝1 + 𝑝2 = 1, and 

𝑥1 + 𝑥2 = 𝑛 

The mean and standard deviation for X1 and X2 are given as: 

𝜇1 = 𝑛. 𝑝1 

𝜇2 = 𝑛. 𝑝2 

𝜎1 = 𝜎2 = √𝑛. 𝑝1. 𝑝2 

When the number of trials is large, and p1 is small; that is, the expected value of  𝑋1 is modest, bin 

statistics become independent of each other, and the Binomial Distribution can by approximated 

by the Poisson Distribution, where the expected photon count, t, is just 𝜇1 = 𝑛. 𝑝1.  

In the more general case of Multinomial Distribution [41] the probability mass function has the 

form: 

𝑃(𝑋1 = 𝑥1, 𝑋2 = 𝑥2, 𝑋3 = 𝑥3, … , 𝑋𝑘 = 𝑥𝑘) =
𝑛!

𝑥1! 𝑥2! 𝑥3! … 𝑥𝑘!
𝑝1

𝑥1𝑝2
𝑥2𝑝3

𝑥3 … 𝑝𝑘
𝑥𝑘 

Where: 

∑ 𝑝𝑖

𝑘

𝑖=1
= 1 

∑ 𝑥𝑖

𝑘

𝑖=1
= 𝑛 

The mean and standard deviation for Xi is given by: 
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𝜇𝑖 = 𝑛. 𝑝𝑖              (4.6) 

𝜎𝑖 = √𝑛. 𝑝𝑖(1 − 𝑝𝑖)                         (4.7) 

The random variables described by the Multinomial Distribution are correlated with the covariance 

of: 

𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) = −𝑛. 𝑝𝑖 . 𝑝𝑗 

Again, in the limit of a large number of trials, if all but one of the 𝑝𝑖 are small, this distribution can 

be approximated by a Poisson distribution.  Notice that the covariance scales as −𝑛. 𝑝𝑖 . 𝑝𝑗, which 

means in this approximation (n goes to infinity, and 𝑛. 𝑝𝑖 ⟶ 𝜆𝑡), the covariance goes to zero, and 

the processes become independent.  The joint distribution is just the product of the Poisson 

distribution for each variable. 

 

4.2.2 Calculating the Probability for a Single Bin-slip 

Using Equation (4.5) we assign pN to single-trial probabilities of the near, pNL, and far-end noise 

bin, pNR: 

𝑝𝑁 = 𝑝𝑁𝐿 ≅ 𝑝𝑁𝑅 

In addition, we represent the number of photons in (near and far) noise and (near and far) object 

bins by #Ni and #Oi: 

#𝑁𝑖 = #𝑁𝐿𝑖 = #𝑁𝑅𝑖  

#𝑂𝑖 = #𝑂𝐿𝑖 = #𝑂𝑅𝑖  

∆𝑖= ∆𝐿𝑖 = ∆𝑅𝑖 = #𝑁𝑖 − #𝑂𝑖  

Based on these generalized variables, pN, #Ni, #Oi, ∆i, the probability of a single bin-slip to the left 

or the right can be calculated. In this case, the multinomial distribution comprises 3 variables of 

#N1, #O1 and #None, where None is the event that a photon lands in neither the noise bin nor in the 

object bin of interest. Thus: 

#𝑁𝑜𝑛𝑒 = 𝑁𝐸𝑥𝑝 − (#𝑁1 + #𝑂1) 

With the following single-trial probability: 

𝑝𝑁𝑜𝑛𝑒 = 1 − (𝑝𝑁 + 𝑝𝑂𝐵) 
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Therefore, the probability that one bin-slip to the left or right yields a filter output that is higher 

than the correct position is the summation of probabilities for all possible values of #N1 and #O1, 

where the count in the noise bin is higher than the signal bin (#O1 < #N1):  

𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(1) > 𝐹𝑖𝑙𝑡𝑒𝑟(0)) = ∑ ∑
𝑁𝐸𝑥𝑝!

#𝑁1! #𝑂1! #𝑁𝑜𝑛𝑒!
𝑝𝑁

#𝑁1𝑝𝑂𝑏
#𝑂1𝑝𝑁𝑜𝑛𝑒

#𝑁𝑜𝑛𝑒

#𝑁1−1

#𝑂1=0

#𝒏

#𝑁1=1

 

where we set the upper limit on the number of photons in a noise bin, #n, to be  𝜇𝑁 + 6𝜎𝑁.  To 

extend this to find the probability that there is exactly 1 bin-slip to the left or the right, we need to 

multiply by the probability that ∆2≤ 0.  Again assume a large number of trials so we can use Eq. 

4.3 we get: 

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 =  1) = 𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 = 1)

= 𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(1) > 𝐹𝑖𝑙𝑡𝑒𝑟(0)) ∗ [1 − 𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(1) > 𝐹𝑖𝑙𝑡𝑒𝑟(0))]

=  𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(1) > 𝐹𝑖𝑙𝑡𝑒𝑟(0)) − 𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(1) > 𝐹𝑖𝑙𝑡𝑒𝑟(0))
2
 

4.2.3 General Expression for the Near and Far-end Bin-Slip Probabilities 

The multinomial expression for any number of bin-slips is derived as follows.  

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 ≥ 𝑘) = 𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 ≥ 𝑘)

= 𝑃[(#𝑁𝑘 > #𝑂𝑘  ) ∧ (#𝑁𝑘 + #𝑁𝑘−1 > #𝑂𝑘+ #𝑂𝑘−1)

∧ (#𝑁𝑘 + #𝑁𝑘−1 + #𝑁𝑘−2 > #𝑂𝑘+#𝑂𝑘−1+#𝑂𝑘−2) … … ] 

(4.8) 

Let: 

#𝑆𝑢𝑚𝑛 = (#𝑁1 + #𝑁2 + ⋯ + #𝑁𝑘 + #𝑁𝑘+1) 

#𝑆𝑢𝑚𝑜 = (#𝑂1 + #𝑂2 + ⋯ + #𝑂𝑘 + #𝑂𝑘+1) 

#𝑁𝑜𝑛𝑒 = (𝑁𝐸𝑥𝑝 − 𝑆𝑢𝑚𝑜 − 𝑆𝑢𝑚𝑛) 

The probability that Filter(k) > Filter(j < k) is 

𝑃(𝐹𝑖𝑙𝑡𝑒𝑟(𝑘) > 𝐹𝑖𝑙𝑡𝑒𝑟(𝑗 < 𝑘)) = 

∑ ∑ ∑ ∑ … …
#𝑜(𝑘−1)

#𝑂(𝑘−1)=0
∑ ∑ {

𝑵𝑬𝒙𝒑!

(#𝑁1! … #𝑁𝑘+1!)(#𝑂1! … #𝑂𝑘+1!)𝑁𝑜𝑛𝑒!
𝑝𝑁

#𝑆𝑢𝑚𝑛𝑝𝑂𝑏
#𝑆𝑢𝑚𝑜𝑝𝑁𝑜𝑛𝑒

#𝑁𝑜𝑛𝑒}
#𝑜1

#𝑂1=0

#𝑛

#𝑁1=0

#𝑛

#𝑁(𝑘−1)=0

#𝑜𝑘

#𝑂𝑘=0

#𝑛

#𝑁𝑘=0
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(4.9) 

The summation upper limits are set to ensure that the inequalities in Eq. (4.8) hold.
20

 To get the 

bin-slip probability, we take the result from Eq. (4.9) and multiply it by 1 – P(Filter(1) > Filter(0)), 

leading to the following expression for the probability for any number of bin-slips: 

𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 = 𝑘) = 𝑃(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 = 𝑘)                     

= (1 − ∑ ∑
𝑁𝐸𝑥𝑝!

#𝑁1! #𝑂1! #𝑁𝑜1!
𝑝𝑁

#𝑁1𝑝𝑂𝑏
#𝑂1𝑝𝑁𝑜1

#𝑁𝑜1

#𝑁1−1

#𝑂1=0

#𝒏

#𝑁1=0

) 

(∑ ∑ ∑ ∑ … …
#𝑜(𝑘−1)

#𝑂(𝑘−1)=0
∑ ∑ {

𝑵𝑬𝒙𝒑!

(#𝑁1! … #𝑁𝑘+1!)(#𝑂1! … #𝑂𝑘+1!)𝑁𝑜𝑛𝑒!
𝑝𝑁

#𝑆𝑢𝑚𝑛𝑝𝑂𝑏
#𝑆𝑢𝑚𝑜𝑝𝑁𝑜𝑛𝑒

#𝑁𝑜𝑛𝑒}
#𝑜1

#𝑂1=0

#𝑛

#𝑁1=0

#𝑛

#𝑁(𝑘−1)=0

#𝑜𝑘

#𝑂𝑘=0

#𝑛

#𝑁𝑘=0
) 

(4.10) 

Where #𝑁𝑜1 and 𝑝𝑁𝑜1
represent the number and probability of None events for the one bin slip case. 

Equation (4.10) was used to calculate slip probabilities to construct histograms based on SNR and 

Err. Figure 4.2 illustrates how the mathematical formulation of depth error compares to the 

simulated counterpart for SNR = 3, and two exposures with NExp = 5K and 10K. As can be seen, the 

theoretical derivation produces results that agree with simulations to within 5%. 

Figure 4.3 plots the depth error of our simulated results (Figure 3.10) versus this theoretical model. 

Note that at lower signal flux rates, the theoretical curves increase not as rapidly as the simulated 

plots indicating the increasing presence of outliers. 

 

 

20  

#𝑛 = 𝜇𝑁𝐿 + 6𝜎𝑁𝐿 

#𝑜𝑘 = #𝑁𝑘 − 1 

#𝑜(𝑘 − 1) = {#𝑁𝑘 + #𝑁(𝑘−1)} − #𝑂𝑘 − 1 

#𝑜(𝑘 − 2) = {#𝑁𝑘 + #𝑁(𝑘−1)+#𝑁(𝑘−2)} − {#𝑂𝑘+#𝑂(𝑘−1)} − 1 

. 

. 

. 

#𝑜1 = {#𝑁𝑘 + #𝑁(𝑘−1)+#𝑁(𝑘−2) + … + #𝑁1} − {#𝑂𝑘+#𝑂(𝑘−1)+#𝑂(𝑘−2) + ⋯ +#𝑂2} − 1 
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Figure 4.2: Simulated and Theoretical Histograms for Depth Error 

 

Figure 4.3: Simulated and Theoretical Curves of Depth Error for Various SNRs 
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4.2.4 The Gaussian Approximation for Depth Error 

Having derived the bin-slip probability, we now look to see if we can approximate this expression 

to help derive algebraic expressions for distance errors. We do this by first creating an upper bound 

for the bin-slip probabilities, and then fit a Gaussian Distribution to the resulting statistics. 

To form the upper bound, we first approximate 𝑷(𝑺𝒍𝒊𝒑𝒔 𝒕𝒐 𝒕𝒉𝒆 𝑳𝒆𝒇𝒕 =  𝒌) to be P(Filter(k)) and 

higher than all previous filter outputs, ignoring the times when the shift is even larger, since that 

happens a small percentage of the time.  We further simplify the equation by realizing that since 

the values of terms in (4.1) decrease in successive order; that is: 

[𝑃(∆𝐿𝑘 > 0)] > [𝑃(∆𝐿𝑘 + ∆𝐿𝑘−1 > 0)] > [𝑃(∆𝐿𝑘 + ∆𝐿𝑘−1 + ∆𝐿𝑘−2 > 0)] > ⋯ > [𝑃(∑ ∆𝐿𝑖 >

𝑘

𝑖=1

0)] 

a simple upperbound for probability, PUB, of bin-slips to the left can be obtained by just computing 

whether P(Filter(k) > 0). This gives: 

𝑃𝑈𝐵(𝑆𝑙𝑖𝑝𝑠 𝐿 =  𝑘) =  𝑃(∑ ∆𝐿𝑖 >𝑘
𝑖=1 0);          𝑃𝑈𝐵(𝑆𝑙𝑖𝑝𝑠 𝑅 =  𝑘) =  𝑃(∑ ∆𝑅𝑖 >𝑘

𝑖=1 0)               (4.11) 

Notice that summations ∑ ∆𝐿𝑖
𝑘
𝑖=1  and ∑ ∆𝑅𝑖

𝑘
𝑖=1  can be thought of as comparing the photon counts 

in bins k times as wide as the unit fine-bin. This means that random variables (∑ #𝑵𝒊) 𝒌
𝒊=𝟏  and 

(∑ #𝑶𝒊)
𝒌
𝒊=𝟏  are multinomially distributed

21
, each having the following single trial probabilities: 

𝑝𝑁(𝑘) = 𝒌. 𝜆𝑁(1 − 𝜆𝑁𝑡𝑆)𝑇𝐹𝐵  

𝑝𝑂𝑏(𝑘) = 𝒌. 𝜆𝑆(1 − 𝜆𝑁𝑡𝑆)𝑇𝐹𝐵 

With mean and standard deviations derived based on (4.6) and (4.7): 

𝜇𝑁(𝑘) = 𝑁𝐸𝑥𝑝 . 𝑝𝑁(𝑘) 

𝜎𝑁(𝑘) ≅ √𝑁𝐸𝑥𝑝 . 𝑝𝑁(𝑘) 

𝜇𝑂𝑏(𝑘) = 𝑁𝐸𝑥𝑝 . 𝑝𝑂𝑏(𝑘) 

𝜎𝑂𝑏(𝑘) ≅ √𝑁𝐸𝑥𝑝 . 𝑝𝑂𝑏(𝑘) 

 

21
 On condition that 𝑝𝑖 , 𝑝𝑗  ≪ 1, the covariance between the random variable, 𝑋𝑖 and  𝑋𝑗 is much smaller 

than their variance, i.e., 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗) ≪  𝜎𝑖,𝑗
2 , and thus, they may be assumed independent for analytical 

simplicity. 
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The slip probability depends on the difference between variables (∑ #𝑵𝒊) 𝒌
𝒊=𝟏  and (∑ #𝑶𝒊)

𝒌
𝒊=𝟏 . 

Since the difference of Poisson distributions don’t have nice formula, to make computing this 

simpler, we will assume that they are Normally distributed, which allows the mean and variance 

to be added and subtracted. We create a new random variable ∆𝒌 : 

∆𝒌 = (∑ #𝑁𝑖) − (∑ #𝑂𝑖)

𝑘

𝑖=1

𝑘

𝑖=1

 

With mean and standard deviation calculated as: 

𝜇𝑘 = 𝜇𝑁(𝑘) − 𝜇𝑂𝑏(𝑘) ≅ 𝑘 ⋅ 𝑇𝐹𝐵𝑁𝐸𝑥𝑝(1 − 𝜆𝑁𝑡𝑆)(𝜆𝑁 − 𝜆𝑆) =  −#𝐿𝑝 ⋅ 𝑘 

𝜎𝑘
2 = 𝜎𝑁(𝑘)2+𝜎𝑂𝑏(𝑘)2 ≅ 𝑘. 𝑇𝐹𝐵𝑁𝐸𝑥𝑝(1 − 𝜆𝑁𝑡𝑆)(𝜆𝑁 + 𝜆𝑆) = (#𝐿𝑝 + 2 ⋅ #𝑁𝑝) ⋅ 𝑘 

where #𝐿𝑝 and #𝑁𝑝 are the expected number of laser and noise photons in a time bin aggregated 

over the run. Thus,  𝜇𝑘 is the negative of the expected value of laser photons in a bin k times as 

large as TFB and 𝜎𝑘
2 is the variance in the differences between the signal (noise + laser) and noise 

bins, so it is the expected value of twice the noise plus the laser photons in a bin k times as large as 

TFB. 

The Gaussian PDF for 𝒌 has the form: 

𝑓𝒌(𝛿𝑘, 𝑘) =
1

√2𝜋𝜎𝑘
2

𝑒
−

(𝛿𝑘−μ𝑘)2

2𝜎𝑘
2

 

Therefore, using (4.11): 

𝑃𝑈𝐵(𝑆𝑙𝑖𝑝𝑠 𝐿 =  𝑘) = 𝑃𝑈𝐵(𝑆𝑙𝑖𝑝𝑠 𝑅 =  𝑘) =  𝑃(𝒌 > 0) =  𝟏 − 𝐹𝒌(𝟎, 𝑘) = 1 − ∫ 𝑓𝑘(𝛿𝑘, 𝑘)𝑑(𝛿𝑘)
𝟎

−∞

 

 

Finally, the probability of bin-slips in terms of the Standard Gaussian Distribution is given by:  

𝑃𝑈𝐵(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝐿𝑒𝑓𝑡 =  𝑘) = 𝑃𝑈𝐵(𝑆𝑙𝑖𝑝𝑠 𝑡𝑜 𝑡ℎ𝑒 𝑅𝑖𝑔ℎ𝑡 =  𝑘) = 1 − 𝑍 (𝑘′ ≤ −
𝜇𝑘

𝜎𝑘
) = 

= 𝑍 (𝑘′ > −
𝜇𝑘

𝜎𝑘
)     (4.12) 

Where: 

− 
𝜇𝑘

𝜎𝑘
= √

𝑘.𝑇𝐹𝐵𝑁𝐸𝑥𝑝∗(1−𝜆𝑁𝑡𝑆)

𝜆𝑁 +𝜆𝑆
(𝜆𝑆−𝜆𝑁) = √𝑆𝑁𝑅

𝑘.𝝀𝑳𝑇𝐹𝐵𝑁𝐸𝑥𝑝∗(1−𝜆𝑁𝑡𝑆)

𝑆𝑁𝑅+2
= √

𝑆𝑁𝑅

𝑆𝑁𝑅+2
⋅ #𝐿𝑝 ⋅ 𝑘            

(4.13) 
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Equation (4.13) confirms our insight into how various parameters affect depth-error: 

▪ The key parameters are SNR and the expected number of laser photons in each timing bin 

▪ As long as the SNR is above 3-4, further increases in SNR has small effect 

1. Moving from SNR=3, to SNR=1, increases #𝐿𝑝 by 1.8x 

2. Moving from SNR=5, to SNR=3, increases #𝐿𝑝 by 1.2x 

▪ The larger the number of bin slips (k), the lower is its probability 

▪ Since #𝐿𝑝 depends on the noise level (𝑁𝐸𝑥𝑝 ⋅ 𝑇𝐹𝐵(1 − 𝜆𝑁𝑡𝑆) ⋅ 𝜆𝐿) the value of the noise level 

matters 

▪ The farther the object (tS), the larger the noise shielding and the higher is the slip probability 

▪ For a given error-spread, 𝜎𝐸𝑟𝑟, the quantity 
𝜇𝑘

𝜎𝑘
 is constant. If we also assume that the noise 

flux, 𝜆𝑁, is constant, since  𝜆𝐿 = 𝑆𝑁𝑅 ⋅ 𝜆𝑁 , then: 

1. For small values of SNR,   𝑁𝐸𝑥𝑝 ∝ 1
𝑆𝑁𝑅2⁄ , to shrink #𝐿𝑝 by SNR. 

2. For larger values of SNR,   𝑁𝐸𝑥𝑝 ∝ 1
𝑆𝑁𝑅⁄ ,  to keep #𝐿𝑝 constant. 

 

Figure 4.4: Simulated vs. Upper bound Histograms for Depth Error 
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Figure 4.5: Upper bound Approximation to Depth Error 

 

 

Figure 4.6: Break-up of Exposure Time into TL-sized Bins 

 

Equation (4.12) is used to calculate the upper-bound estimate of error-spread, the results for which 

are plotted in Figure 4.4 for SNR = 3, and two exposures with NExp = 5K and 10K. The error spread, 

Err, is predicted to be within 25%. Figure 4.5 plots the distance error of our simulated results 

(Figure 3.10) versus this upperbound approximation. Note that at lower signal flux rates, the 
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upperbound curves fall below the simulated plots indicating that the simulated errors were 

corrupted by the presence of outliers. 

4.3 False Detection Statistics 

In Chapter 3, using a Poisson model we created a threshold to allow us to set error rate for false 

positive detections which in turn determined the rate for false negative detections. Using the 

accurate bin slip statistics, derived previously, this section looks at the minimum possible error rate 

as a function of SNR and total number of laser photons collected. To generate this minimum, rather 

than setting a fixed threshold, we will compute the probability that a collection of noise bins 

exceeds the value of bins which contain the returning laser pulse creating an uncorrectable “outlier” 

event. The outliers do not represent the error associated with a recovered object, but rather comprise 

failed detections, unrelated to object-position. What is important is to determine the minimum 

number of captured laser photons, or equivalently exposures for which the probability of false 

detection is below a threshold, for example 1%. 

Let’s consider Figure 4.6 where the exposure time (TExp) is divided into coarse bins, TCB, equal in 

size to the laser pulse, TL, TCB = TL. Thus: 

▪ Total number of coarse bins: NB = Ceil(TExp/TL) 

▪ Number of noise Coarse: Bins: NNB = NB – 1 

▪ Object Coarse Bin: OB 

We assign #NCBi to the number of photons in the Noise Coarse Bin i, and #OCB to the number of 

photons in the Object Coarse Bin. A false detection occurs if the photon-count in the Object Bin is 

less than the count in any of the Noise Coarse-Bins, #NCBi; that is: 

𝑃(𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 𝑃[(#𝑂𝐶𝐵 < #𝑁𝐶𝐵1) ∨ (#𝑂𝐶𝐵 < #𝑁𝐶𝐵2) ∨ (#𝑂𝐶𝐵 < #𝑁𝐶𝐵3) … ] 

Or equivalently: 

𝑃(𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − 𝑃[(#𝑂𝐶𝐵 ≥ #𝑁𝐶𝐵1) ∧ (#𝑂𝐶𝐵 ≥ #𝑁𝐶𝐵2) ∧ (#𝑂𝐶𝐵 ≥ #𝑁𝐶𝐵3) … ] 
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          𝑃(𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − 𝑃[#𝑂𝐶𝐵 ≥ 𝑀𝑎𝑥(#𝑁𝐶𝐵𝑖)]       for 𝑖 = [1: 𝑁𝑁𝐵]      

(4.14) 

The number of photons in noise coarse-bins, #NCBI, are identically distributed, and if assumed to 

be independent,
22

 a simple formula for the distribution of Max(#NCBI) can be derived. Assigning 

#NCB to all #NCBI, we have: 

𝑃(𝑀𝑎𝑥 ≤ 𝑛) = [𝑃(#𝑁𝐶𝐵 ≤ 𝑛)]𝑁𝑁𝐵 

Therefore (4.14)) is rewritten as: 

𝑃(𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − [𝑃(#𝑁𝐶𝐵 ≤ #𝑂𝐶𝐵)]𝑁𝑁𝐵  

Random variables #NCB and #OCB are jointly multinomially-distributed: 

𝑃(#𝑁𝐶𝐵 = #𝑛, #𝑂𝐶𝐵 = #𝑜) =
𝑁𝐸𝑥𝑝!

#𝑛! #𝑜! #𝑛𝑜𝑛𝑒!
𝑝𝑁

#𝑛𝑝𝑂𝑏
#𝑜𝑝𝑛𝑜𝑛𝑒

#𝑛𝑜𝑛𝑒 

where: 

#𝑛𝑜𝑛𝑒 = 𝑁𝐸𝑥𝑝 − (#𝑛 + #𝑜) 

𝑝𝑛𝑜𝑛𝑒 = 1 − (𝑝𝑁𝐶𝐵 + 𝑝𝑂𝐶𝐵) 

And given Equation (3.4), the single trial probabilities of a photon landing in a noise coarse-bin, 

as well as that for the object bin are calculated: 

𝑝𝑁𝐶𝐵 = 𝜆𝑁(1 − 𝜆𝑁𝑡𝑆)𝑇𝐿  

𝑝𝑂𝐶𝐵 = 𝜆𝑆(1 − 𝜆𝑁𝑡𝑆)𝑇𝐿 

Consequently, the probability that the number of photons in a noise-bin is less than the number in 

the object bin, as well as, the general formulation for false-detections can be expressed as: 

𝑭#𝑵𝑪𝑩(#𝑂𝐶𝐵) = ∑ ∑
𝑁𝐸𝑥𝑝!

#𝑛! #𝑜! #𝑛𝑜𝑛𝑒!
𝑝𝑁𝐶𝐵

#𝑛 𝑝𝑂𝐶𝐵
#𝑜 𝑝𝑛𝑜𝑛𝑒

#𝑛𝑜𝑛𝑒

#𝑜

#𝑛=0

𝑵𝑬𝒙𝒑

#𝑜=0

 

𝑃(𝐹𝑎𝑙𝑠𝑒 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛) = 1 − [∑ ∑
𝑁𝐸𝑥𝑝!

#𝑛!#𝑜!#𝑛𝑜𝑛𝑒!
𝑝𝑁𝐶𝐵

#𝑛 𝑝𝑂𝐶𝐵
#𝑜 𝑝𝑛𝑜𝑛𝑒

#𝑛𝑜𝑛𝑒]#𝑜
#𝑛=0

𝑁𝑀𝑎𝑥
#𝑜=0

𝑁𝑁𝐵

 (4.15)
23

 

 

22 𝐶𝑜𝑣(#𝑁𝐶𝐵𝑖 , #𝑁𝐶𝐵𝑗) ≪ 𝜎#𝑁𝐶𝐵𝑖,𝑗

2   

23
 It should be noted that in the final step, NExp has been replaced by NMax for computational efficiency: 

𝑁𝐸𝑥𝑝  → 𝑁𝑀𝑎𝑥 = 𝜇𝑁 + 6𝜎𝑁 
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Figure 4.7 illustrates the probability of false detections as a function of the number of exposures 

for the familiar SNR values,  and 𝜆𝑁 = 1/𝜇𝑠. Figure is based on the maximum distance of interest 

at 20m (TExp = 133ns) and 33 noise bins (TL = 4ns). As false detections are to be rare, the relevant 

probabilities must be much smaller than 1. Using the data from Figure 4.7, Table 2 tabulates the 

number of exposures yielding error probabilities of 0.001, 0.01 and 0.1. Table also includes the 

depth uncertainty corresponding to these probabilities for SNR = 1 (For proper comparison, the 

influence of outliers on depth error is removed). Determination of NExp is based on the acceptable 

number of false detections and/or the allowable depth-error. For example, error for distant objects 

can be allowed to be larger when compared to those closer to the sensor, in which case, NExp is 

determined by the probability of false frames. On the other hand, near objects necessitate smaller 

distance error and thus NExp is calculated based on the required error tolerance. 

 

Figure 4.7: False-detection Probability vs. NExp for DMax = 20m 

 

P(False Detection) SNR NExp (x103) # Lp Err (cm) 

0.001 

1 19.5 1.95 2.9 

1.5 8.75 1.3  

2 5.25 1.1  
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3 2.75 .8  

0.01 

1 14.25 1.4 3.9 

1.5 6.35 0.95  

2 3.75 .75  

3 1.90 .57  

0.1 

1 9.0 0.9 5.4 

1.5 4.0 0.6  

2 2.25 0.45  

3 1.10 0.33  

Table 2: NExp and SNR for False-detection Probabilities of 0.1, 0.01 and 0.001 

4.4 Summary 

In this chapter presents, based on the multinomial distribution, a mathematical formulation for 

depth uncertainty of a recovered object, as well as conditions leading to false-detections. The 

formulation agrees with the simulated results to within 5%. To gain insight into conditions affecting 

the uncertainty in depth measurement, an upper bound Gaussian approximation to the multinomial 

distribution was derived. The upper bound formulation sheds light on the relation between SNR and 

NExp for a fixed error-spread, 𝜎𝐸𝑟𝑟, and can explain the observed dependency between depth 

uncertainty, SNR, and the expected number of photons in each timing bin. The accuracy of this 

estimation is to within 25% when compared to the simulated results. 
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 Image Sensor 

In this chapter we provide a detailed description of a scalable, all-digital, column-parallel, 64x48 

pixel ToF Flash image sensor. The image-sensor is implemented in TSMC’s 130nm HV, 1.5V 

technology with 6 metal layers. The nominal FO4 delay for this process is 60ps. The SPAD pitch 

is 50µm x 50µm. The sensor is organized in two independent 32 x 48-pixel arrays; the block 

diagram is shown in Figure 5.1. 
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Figure 5.1: The Image Sensor Block Diagram 

The design focuses on addressing some of the issues associated with designing a 3-D (A 2-D array 

of pixels, each pixel measuring the distance to the object) Flash ToF sensor, particularly how to get 

good pixel fill-factor, high column repetition rate and timing accuracy in a scalable design. In 

contrast to ToF image sensors where the TDC is incorporated within the pixel [42] which allows 

for a fully parallel operation, in order to improve fill-factor, this design uses a column parallel 

architecture [43, 44, 45, 46], where pixels on a column share common timing and address busses 

which propagate the spatiotemporal data of photonic events downstream to backend electronics on 

a per column basis. 
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The design of this imager is unique in many ways.  First its internal operation is fully asynchronous, 

using a type of self-resetting or post-charge logic [47, 48] to maximize performance and minimize 

circuit overhead.  The imager uses a single external clock source, around 500MHz, to control the 

IO data-transfer to a synchronous receiver. Unlike any other image sensor ICs, there are no analog 

components, nor any high-frequency global signals present in this design.  

The design contains 4 main circuit structures, plus the controller and IO and each will be described 

in more detail in this chapter.  The pixel circuits contain a SPAD and the active quench circuitry 

that we use to optimize its performance.  It also contains the circuitry required to drive a pixel 

column.  The pixel column aggregates information from a number of pixels, and delivers that 

information to the TDC, which needs to handle the fact that the photon arrivals are asynchronous, 

and might cause circuits to become metastable. Each column can unambiguously detect photonic 

events within a range of 20m with a sub-centimeter resolution. The column dead-time, or repetition 

period; that is, the minimum time between photonic events on a column that are distinguishable, 

and thus produce valid spatiotemporal information, is nominally 1ns effecting a column detection 

rate of approximately 1GHz. 

In the case that events violate this minimum time, the information for the first event is preserved, 

while that for the second event is discarded. In contrast, the design presented in [49] uses collision 

detection circuitry to identify and discard the corrupted data without the ability of preserving any 

useful information from temporally proximate events. 

The TDC timestamps the photon’s arrival on the column and employs an un-calibrated free-running 

ring-oscillator whose frequencies are measured by timestamping multiple assertions of the system 

clock. Since the TDC timestamps the arrival time on the column, the system is designed to calibrate 

out the delay between the SPAD firing and the information arriving at the bottom of the column. 

These timestamped events are then passed to an asynchronous FIFO which stores the 

spatiotemporal data for post processing. The writes to the FIFO are event driven; that is a FIFO is 

written only when an event is detected on its column. 

The design also includes some circuitry for I/O and testing, comprising a high-speed bus to 

communicate the image data to the host processor, and a command and control interface to 

configure the chip. 
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5.1 Self-resetting Logic and Signal Naming Convention 

This section briefly reviews the operation of self-resetting logic, as the design of the image sensor 

heavily uses this logic family. All self-resetting signals start from a reset value.  When triggered, 

they either assert, and momentarily change their value to their assertion value, or retain their reset 

value.  If they assert, after a short time period the gate will reset itself to its reset value which is 

why they are called self-resetting circuits. 

 

Figure 5.2: Example Diagram of Self-resetting Logic 

Since all signals are pulses, we use a naming convention that indicates the reset and active values. 

Signals with names appended by _MR (or _MF) are monotonically rising (or falling) during their 

active period where the active edge is rising (or falling) respectively. This defines the reset value 

of the signal; 0 for _MR and 1 for _MF, but not their logical sense, which is denoted by _T, matches 

the value, and _C matches the complement of the value. Thus monotonic differential signal-pairs 

(True and Complement) are assigned names appended with _TMR/_CMR or _TMF/_CMF. 
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Figure 5.2 shows an example self-resetting logic circuit. All self-resetting gates are monostable 

circuits: once triggered, their output is reset after some delay.  To ensure that the pulse is not too 

short, often, like illustrated in this figure, the reset is initiated by a signal that is generated by the 

evaluation of a downstream logic gate. In its quiescent state, monotonically rising signals, In_MR 

and Done_MR are both low, rendering the Ready_H node high. On the rising edge of In_MR, 

monotonically falling signal, TS_MF immediately discharges, and evaluates the subsequent logic 

block. As a result, Done_MR rises and grounds Ready_H which resets TS_MF. After some delay, 

Done_MR also resets to ground ending the self-resetting process. The circuit is ready to be 

triggered again only if In_MR has returned to ground charging Ready_H to VDD. From this 

vantage point this circuit is edge-triggered. 

5.2 The Pixel 

The pixel comprises a SPAD, the quench and recharge (AQR) and event-detection circuits. The 

goal of this circuit is to briefly drive the column with its row address each time the SPAD fires. 

This information should be on the column wires only long enough for the next stage to sense its 

value.  Once this occurs the circuit self-resets and stops driving the bus. 

Figure 5.3 illustrates the pixel circuit used in this design focusing on the event detection circuitry. 

The quench and recharge circuitry was shown in Figure 2.3 in Chapter 2.  The output of this circuit 

then feeds into a mux that drives the detection circuit in the light green which also is in each pixel 

cell; the five NAND gates together drive Event_MR; they are distributed in the column circuity, as 

explained in the next section, and are shown here to understand the pixel’s operation. The detection 

circuit receives the quench and recharge output of the activated ith pixel, SPADi_MR.
24

 In its reset-

state, SPADi_MR, and Event_MR are both low, forcing the state-node, Statei, high.  The five pairs 

of differential address lines, A[0-4]TMF and A[0-4]CMF have been precharged high, and are held 

at VDD by weak keeper devices since under these conditions, PU = 1, PDi = 0, and the address-

lines are not driven by the pixel circuits.  

 

24
 SPAD_MR signals may be bypassed to electronically control the pixel array for calibration and 

test purposes by way of the Cal (calibrate) signal. This is described in more detail in Section 5.4. 
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Figure 5.3: Pixel Event-detection Circuit 

The assertion of SPADi_MR, initiates the circuit operation. With Statei = 1, PDi immediately 

transitions high, driving the row address of this pixel onto the differential address lines, causing 

one line of each pair to fall. Gates looking at these lines (the NAND gates in Figure 5.3) detect this 

change and assert a monotonically-rising signal, Event_MR. This signal then starts the reset of this 

pixel driver by immediately grounding Statei, which turns off the pull down driver, and asserts PU 

which starts the precharge of the differential address lines.   
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Note that Event_MR drives the state nodes of all other pixels on the column low, disconnecting 

those pixels from the column; i.e., PDi → 0, i = [31:0] and asserting PU in all the cells. Thus after 

the driven address has been received, PU transitions low in all the cells, post-charging the address-

lines to VDD. Since all cells contribute to the post-charge, the size of the PMOS devices in each 

cell should be small. Once the columns are pulled to VDD, Event_MR transitions low, and PU de-

asserts (PU → 1) ending the post-charge operation, and again rendering the column responsive to 

new events. 

An important point is to be made here. At the end of the aforementioned process, when Event_MR 

→ 0, the state-nodes are weakly held at ground. To activate the event-detection circuit of a pixel, 

its associated SPADi_MR must be at ground first so as to set the state-node to 1 (green oval in the 

figure). This arrangement ensures that the detection circuit is only triggered by a 0 → 1 transition 

of the SPADi_MR signal. Even if another SPAD on the column fired during this period and is still 

asserted when Event_MR falls, that photon event would be dropped, rather than reported with 

erroneous timing. This feature preserves the precise timing of reported events.  

The event-detection circuit described here is monostable and belongs to the aforementioned digital 

circuits known as self-resetting logic. The circuit does not reset to its quiescent state until the 

succeeding stage has successfully transitioned. In this case, the event-detection circuit remains in 

its active state until the corresponding address lines have successfully discharged. This is contrast 

to the self-timed monostables used in a number of image sensors [50, 51] where the duration of the 

pulses is not directly related the detection circuit and the down-stream circuitry and thus requires 

delay-padding to avoid reliability problems. 

Figure 5.4 shows the layout of the Pixel cell including the SPAD, the AQR and the Event-detection 

circuit. The SPAD occupies the largest percent of the pixel area and is circular to avoid any field 

enhancement at corners.  While the area of the SPAD is large, occupying roughly 30% of the cell 

area (50 x 50), the fill factor of the resulting cell is still a modest 12.5%.  The main issue is the 

need for large spacing between the high voltage photodiode and the supporting circuitry, as well as 

spacing restriction to minimize cross-talk between neighboring pixels.  The differential address (in 

green) lines run vertically on the right-hand side of the SPAD then jog further to the right to run 

over the detection circuit, where the NMOS and PMOS address drivers are located. After passing 

over these drivers, they jog back to the left, to run between the next row of pixel cells.  
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Figure 5.4: Pixel Layout 

5.3 The Pixel Column 

Figure 5.5 illustrates the pixel column in conjunction with its interface to the TDC and address 

latches. Pixels in each column share 5 pairs of monotonically falling differential address lines, 

Ai_CMF/Ai_TMF, i = [4:0]. These address lines encode the spatial information of an activated 

pixel, where they are transmitted to 5 self-strobed latches, described in Section 5.3.1, which 

statically store the corresponding spatial address, Add[4:0], of the event until a new distinguishable 

event is detected.  
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Figure 5.5: Simplified Schematic of the Pixel-column 
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Figure 5.6: Timing Diagram for Column Response to a Photonic Event.  The numbers correspond 

to the labeled nodes shown in Figure 5.5. 

As discussed before, address lines also generate a monotonically rising signal, Event_MR which 

imbeds the timing information of the event. As this signal is an input to all the pixels, as well as to 

the TDC; it has a large fanout. To generate this signal with the smallest possible delay we short 

together the outputs of the 5 NAND gates that detect the evaluation of each address line.  Since all 

bits of the address are driven at the same time, this increases our drive strength by 5x with little 

penalty.  It does require that the timing of the address lines need to match well to prevent shorting 

gate outputs, but those delays match by layout symmetry.   

The reset sequence, described in the previous section, includes disabling the impinged pixel, as 

well as blocking the access of other pixels to the column address lines (Event_MR → 1, Statei  → 

0) to enable post-charging the address lines. On completion of column post-charge, Event_MR 

falls. A simplified timing diagram for the self-resetting operation of a pixel column from reception 

of a photonic event to de-assertion of Event_MR is included in Figure 5.6. 



 

73 

 

 

 

Figure 5.7: Layout of  8 Pixels in Column with Blow-up Showing NAND gate 

In addition to distributing the precharge circuits in each pixel, the NAND gates that generate 

Event_MR are also distributed, and each column of 8 pixels contains a set of the 5 NAND gates, 

as is shown in Figure 5.7. There is room for a NAND gate under each pixel’s AQR circuit. 

Distributing these NAND gates both saves area, and minimizes the added delay caused by the RC 

of the wires. 

 

NAND2 

NAND2 

NAND2 

NAND2 

NAND2 
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Figure 5.8: Column Response to a Single Photonic Event 

 

Figure 5.8 shows a simulation of the key column waveforms for a single photonic event, starting 

with the initiating SPAD_MR event. It takes around 500ps before the pixel begins to drive the 

address lines. About 100ps later one of each of the address line pairs has fallen to VDD/2. In 

response to the monotonic address lines falling, Event_MR is asserted 100ps later. At the same 

time, self-strobed latches convert the monotonic signals to their static form, Add [4:0]. These 

signals remain stable until a new event impinges the column. Assertion of Event_MR immediately 

begins the recharge of the address lines to their quiescent state. In turn, Event_MR de-asserts, 

ending the sequence, at which point the column is ready to process a new event.  The energy 

expended per column on detection and transfer of event data is 31pJ. 

While the column operation is not complex, the asynchronous nature of photon arrivals complicates 

the requirements and analysis of this circuit. One needs to analyze what happens when two photons 

arrive at different pixels on the same column at similar times. There are two times that we would 

like to extract.  The first is the minimum time between two photon arrivals that ensures that both 

pixels are cleanly detected.  If photons hit the column with this spacing or larger, both photons are 

detected with no errors. The second time is the minimum separation between photons that allows 

the first photon to be detected without corruption. Since this spacing is less than the first timing, it 

means that the second photon will not be detected.  

Reception of a photonic event by the ith pixel produces the AQR signal, SPADi_MR, whose rising 

edge activates an event-detection circuit. The delay from this edge to the assertion, subsequent de-
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assertion of Event_MR, and recharging of the node State to VDD defines the column dead time
25

,  

where new photonic events impinged on the corresponding column are undetectable, and sets the 

minimum separation between photon detections that can be cleanly detected.  

The post-extracted column dead-time in nominal PVT is measured to be ~980ps. That is, events 

with spacings greater than the dead-time are distinguishable and their spatiotemporal information 

can be correctly measured. As seen in Figure 5.9, two events at 1ns (> 980ps) apart separately 

discharge their respective address lines, producing their corresponding Event_MR and the latched 

pixel address.  

 

Figure 5.9: Distinguishable Events – Both Events Are Detectable 

On the other hand, events with spacing less than the dead-time are not distinguishable. In this case, 

the spatiotemporal information of the earlier event is correctly captured and the information for the 

2nd event is incorrect and discarded. Figure 5.10 shows such a scenario where the event spacing is 

960ps (<980ps) violating the dead time. With this condition, the column’s response to the 1st event 

is identical to that in the Figure 5.9, however, as the dead-time is violated, the second event is 

prevented from generating an Event_MR and a corresponding pixel address.  

 

25 The actual dead time is smaller by the delay through the input multiplexer that SPAD_MR flows through. 

What is essential is that the signal doesn’t enter the Event-detection circuit, until the State node has been 

restored, but since there is delay through the multiplexer, the actual photon event can happen slightly before 

the node State has been driven high. 
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Figure 5.10: Indistinguishable Events – Only First Event is Detectable 

 

It should be noted that the arrival of a second photonic event which starts driving the address lines 

prior to the assertion of Event_MR will corrupt the state of monotonic address lines, since it will 

start driving another address onto these lines.  As the lines are precharged high, this can cause both 

bitlines in a pair to fall.  A novel latching construct, the self-strobed latch, described in the next 

section, preserves the address of the 1st event, despite the corruption of the monotonic lines.  

5.3.1 Self-strobed Latch 

A cross-coupled NAND-pair circuit [52] can always be used to convert the differential 

monotonically falling signals of a dynamic structure to a static output signal, so long as the 

complementary nature of the inputs in the evaluation phase is guaranteed (Figure 5.11 a, transitions 

1 and 2). And, in the case of column address line pairs: 

Precharge phase: Ai_CMF = Ai_TMF = 1;  

Evaluation phase: Ai_CMF = ~Ai_TMF. 

However, if the complementary nature of the inputs in evaluation phase is not preserved, the 

conversion to a static signal will produce an erroneous output (Figure 5.11.a, transition 3). 

As was mentioned in the prior section, this condition can arise in our design because of the random 

arrival times of photons on columns of the pixel-arrays. If events are far apart in time, then the 

differential address-lines, Ai_CMF/Ai_TMF, i = [4:0], are truly complementary. On the other-hand, 

if two events impinge a column within a small time-window (from one pixel starting to drive the 
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address lines, to Event_MR → 1 and disabling the other pixels), both pixels can drive the lines and 

it is possible that both lines in a pair discharge; the differential address-pairs are no longer 

complementary. 

 

Figure 5.11: The Self-strobed Latch 

To address this problem, the self-strobed latch circuit shown in Figure 5.11.b, includes a second 

regenerative stage. When the address bit-lines are in pre-charge, its inputs (Ai_TMR, Ai_CMR) are 

low, rendering the outputs, LAi_TMF, Ai_CMF, high. This added latch captures which address line 

falls first, if they both transition low. Transition 4 in Figure 5.11.b shows the generic single event 

waveforms, while transition 5 comprises two closely spaced events. In this example, Ai_TMF falls 

first, forcing Ai_CMR to rise, grounding LAi_TMF while LAi_CMF continues to be high. At this 

point, the delayed discharge of Ai_CMF does not affect the state of the latch. Excepting the 
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condition where events occur at the same time
26

, the self-strobed latch described here, correctly 

resolves the address of the first of closely-spaced events on a column, rejects new events within the 

dead time, and prevents the corruption of the data. 

 

Figure 5.12: Indistinguishable Events with Address Corruption – First Event is Detectable 

Figure 5.12 (1) shows such a simulation of this condition, where in response to two closely-spaced 

events, both complementary address lines A0_CMF and A0_TMF fall with a time difference of 

approximately 50ps. In response, the latched address, Add[0] asserts. To determine the validity of 

this outcome, we compare it to the latched address of a single event. As seen from Figure 5.12 (2), 

in this case, the monotonic nature of address line is preserved, producing a latched address, Add[0], 

which also asserts. This result proves that the self-strobed latch succeeds in correctly determining 

the correct address of the first event, even though the corresponding monotonic address are 

corrupted. 

 

26
 Because of device mismatch, there is a low probability that events a few pico-seconds apart may produce 

erroneous spatiotemporal data. 
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5.3.2 Column Metastability Signature 

As one can expect, due to the random nature of photon arrival times, and the monostable nature of 

the circuits used, the image sensor can experience metastability. Though infrequent, it is important 

to investigate how metastability affects the operation of the sensor and the system. In the case of 

sensor columns, two timing conditions can lead to an indeterminant sensor state. The first is related 

to the closely spaced photon arrival that we just discussed.  If two photons arrive at exactly the 

same time, at least the differential lines of one bit of the address will fall at the same time.  This 

situation can cause our self-strobed latch to become meta-stable.  Since this latch output is only 

stored in a FIFO and doesn’t affect timing or control, it can’t cause any problems for the overall 

system. 

The more troubling case comes when the node State in Figure 5.3 goes meta-stable. This situation 

occurs when a photon arrives after Event_MR falls and before the value of the node State reaches 

VDD.  The keeper on this node will eventually drive the node to VDD or VSS, but it can stay in a 

meta-stable state for a while.  In this state, PD, the signal which drives the NMOS pulldown 

transistors can be partially on.  If they cause the address lines to fall, it will result in an event with 

bad timing.  If the sensor column address lines partially discharge but fail to assert Event_MR, no 

data is produced. In this case, address lines recharge to their quiescent state, either by the column 

keepers, or by the arrival of another event, and the sensor recovers. Thus neither of these cause 

more than a single photon event to be corrupted. 

5.4 The TDC 

Because ToF image sensors employ a large number of TDCs, nearly all TDC designs use replica-

biasing to lock a replica ring oscillator, RO, frequency to a precision system clock [53, 54, 55, 56]. 

A voltage or current reference is then routed to all the TDCs to set their frequencies. Due to long 

routs and device mismatch, it is difficult to precisely maintain the frequency of the TDCs.  

To avoid this complexity and source of errors, this design doesn’t lock the RO frequency to a 

reference source.  Instead it is measured using an electronic calibration circuit. The input to the 

Event-detection Circuit in each pixel is driven by a mux, which selects either the SPAD output, or 

a calibration input. This calibration input is used both to timestamp the start of each acquisition 

cycle, and to measure the frequency of each TDC ring. When the laser pulse is emitted, the 

calibration signal is used to trigger one row to fire.  This digitizes the count of each ring oscillator 

at the start of the measurement cycle, and is stored in the output FIFO. Reflected photons are then 
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timestamped with their ring oscillator count, and stored.  At the end of the acquisition, another 

calibrate signal is sent and stored.  Since the time between the start and end calibration pulses are 

known and timestamped by each of the 48 TDCs, the time difference between the 2 timestamped 

data determines the frequency of each RO. This information is then used to convert the ring 

oscillator counts into delay from the start of the laser pulse. 

 

Figure 5.13: Simplified TDC Block Diagram 
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The block diagram of the TDC is shown in Figure 5.13. It includes an arbiter circuit which manages 

the interface to the pixel-column. The arbiter is needed in case the cycle time of the TDC is longer 

than the column. It drops a new event that happens before the TDC can timestamp it, and, on 

condition that TDC is ready to receive a new event, generates a buffered version of Event_MR, 

TS_MR, which is transmitted to the TDC and timestamped (Figure 5.14). 

The TDC core comprises a free-running, un-gated, differential RO, a ring-counter, and flops that 

sample both the ring (the fine samplers) and the counter when an event occurs. To achieve better 

INL and reduce hardware costs, the number of the ring-oscillator stages is made as small as 

possible, while maintaining good operating margins for the ring-counter. The RO comprises 7 

differential stages with a 720ps period (post-extracted nominal) and generates 14 evenly spaced 

edges, E0-E13, with a resolution of approximately 50ps. The energy consumption of the TDC is 

11pJ per operation. 

 

 

Figure 5.14: TS_MR Signal – the TDC Domain Event_MR 
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A dynamic synchronous 9-bit ring-counter with outputs, Cnt0 - Cnt8, is clocked by E0 and 

continuously counts the number of trips around the RO. Counter outputs, are re-latched on the 

falling edge of E0, to produce the phase-delayed signals, Cnt0_F – Cnt8_F (  

Figure 5.15). The counter can unambiguously measure event-timings up to at least 128ns.  

The rising edge of TS_MR indicates the arrival of a new event to timestamp, and causes: 

▪ Seven differential samplers, which receive complementary RO signals of E0/E7, E1/E8, E2/E9, 

E3/E10, E4/E11, E5/E12, E6/E13 to be clocked by TS_MR and produce 14 fine position 

outputs, Pos0 – Pos13, of 7 zeros and 7 ones. 

▪ TS_MR also captures the ring-counter (and its phase-delayed) outputs, to produce flopped 

outputs Cnt0TS – Cnt8TS, and Cnt0TS_F – Cnt8TS_F. 

  

Figure 5.15: Coarse-count Synchronization to TS_MR Clock Domain 

The unique 1 → 0 transition of two consecutive sampler outputs, indicates the temporal position of 

TS_MR within a single oscillator-cycle. A thermometer to binary converter maps Pos0 – Pos13 to 

(Fine-Time Stamp signals, FTS0 - FTS3 to be stored in the FIFO. 
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Given that the counter outputs are sampled (by TS_MR) asynchronously with respect to the counter 

clock (E0), a problem can occur if TS_MR occurs around the E0 transition, since it can sample the 

counter outputs as they are changing giving an erroneous output.  To avoid this situation we sample 

both ring-counter outputs, Cnt0TS - Cnt8TS, and their phase-delayed variant, Cnt0TS_F – 

Cnt8TS_F and, given the position of 1 → 0 transition, mux out the stable value of the counter, 

generating Coarse-Time Stamp signals, CTS0 - CTS8, to be written in the FIFO, along with the 

associated fine-time stamps, FTS0 - FTS3. 

 

Figure 5.16: Layout of the TDC 

The value of the Pos3 and Pos10 outputs are used to control the mux as shown in Figure 5.15. If 

Pos3 = 1 (Pos10 = 0), when the sampling event occurred, the 1 → 0 transition must have occurred 

between E4 and E10 which means the transition occurred in the pink part of the cycle in the figure. 
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Since this is well after the counter transitioned, its values were stable, and the MUX control signal 

selects Cnt0TS – Cnt8TS.  

On the other hand, if Pos3 = 0 and Pos10 = 1, the 1 → 0 transition must have occurred between 

E11 and E3, which are the blue and green parts of the cycle, which includes the time the counter is 

changing, but doesn’t include the time the phase delay count changes. In this case, the MUX selects 

the phase-delayed signals, Cnt0TS_F – Cnt8TS_F, which  affords the greatest timing margin in 

sampling the counter value while it is stable. If the phase delayed counter data is used, we need to 

distinguish two different regions. If the TS_MR occurs after E11 and before E0, the blue region, 

the value of the phase shifted counter value is correct. If TS_MR occurs after E0, but before E4, 

the green region, the stable, phase shifted counter value is wrong, since it should have incremented.   

So, in this region we externally increment the counter value by 1.  

 

 

Figure 5.17: Fine-sampler with Metastability Resolution Circuit 
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Figure 5.18: Waveforms for Metastability Resolution Circuit 

The layout of the TDC is shown in Figure 5.16. The width of the cell is 50m since it needs to 

match the pixel pitch. At the top edge, which connects to the pixel column are the 5 self-strobed 

latches. The RO, samplers and encoder sit underneath the latches and are located above the 

counter. The lower edge which connects to the FIFO, carries the spatiotemporal wires to the FIFO 

to be written.  

5.4.1 Sampler Metastability and Arbitration 

The interface between the pixel column and the TDC includes an arbiter circuit which allows the 

transfer of a new event to the TDC only if the TDC has resolved the timing of an earlier event. 

Based on the timing relation of TS_MR to the inputs of the 7 samplers, E0/E7, E1/E8, …, E5/E12, 

E6/E13, samplers take disparate times to resolve. The correct timing of an event may only be 

determined once all samplers have valid outputs. As shown in Figure 5.17, a metastability 

resolution circuit, accompanies each of the fine-samplers. It works as follows. Prior to assertion of 

TS_MR, nodes CMF, TMF, and the monotonically falling signal, Res_MF are pre-charged to VDD. 
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On assertion of TS_MR, the differential voltage between E+ and E-, determines the time it takes for 

CMF and TMF to separate; one falling to ground, the other recovering back to VDD. In fact, 

Res_MF remains at VDD, for as long as |CMF - TMF| < VTN. Upon resolution of meta-stability, 

|CMF - TMF|  VTN, Res_MF discharges to ground, and Res_MR asserts.  

Simulation waveforms for two operating conditions are included in Figure 5.18. In the first case, 

due to the relation between the sampler clock (TS_MR) and the differential inputs, the sampler is 

far from metastability; nodes CMF and TMF resolve quickly and Res_MR asserts indicating that 

the sampler outputs POS+ and POS- are stable. In the second case, due to the relationship between 

the sampler clock (TS_MR) and the differential inputs, the sampler enters metastability; CMF and 

TMF both approach mid-supply level; after a while they do separate, one approaching ground, the 

other VDD, indicating that metastability is resolved, and as a result, Res_MR asserts. 27
 A 

comparison of the two cases shows a significant delay of the outputs and a greater push-out of the 

Res_MR signal under metastability conditions.  

These signals are used by the TDC arbiter, shown in Figure 5.19, to determine when the sample 

period is done and TS_MR should be reset. When Res_MR for all samplers asserts, Resolved_MR 

transitions high. The rising edge of this signal, grounds TS_MR, which places the samplers in pre-

charge, while holding their present data. In response, Resolved_MR, itself, transitions low, at which 

point, the TDC becomes responsive to new events from the associated column.  

5.4.2 TDC Dead Time and Metastability Signatures 

The latency of this pipe-stage; i.e., from assertion of Event_MR to de-assertion of Resolved_MR, 

determines the dead-time, or repetition period, of the TDC, which is roughly about 900ps (post-

extracted, nominal), on condition that the fine-samplers do not encounter metastability.  

The effective sensor column dead time or the repetition period is defined as the shortest time 

between two column events that are distinguishable and can be timestamped. It is determined by 

the larger of the dead times (DT) of the pixel column and the TDC; that is tDT = max{tDT|COL , 

tDT|TDC} in which case the effective column detection rate equals 1/tDT. In the case of this design, 

the pixel column dead time is 980ps while that for the TDC is 900ps, that is the effective dead time  

 

27
 These figures only simulate to Res_MR asserting, and don’t include the circuitry that uses this information 

to reset TS_MR. 
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Figure 5.19: TDC Readiness and Arbitration 
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is 980ps (detection rate ~ 1GHz) unless one of the TDC samplers enter metastability which will 

extend the dead time.  

While our Res_MR and mux selection of the counter output remove metastability issues in 

sampling the timing of the event, like all arbiters, it too can become metastable.  Like the column 

case, this occurs when Event_MR arrives just when the arbiter is getting ready to re-arm, when 

Resolved_MR has fallen.  

Event_MR and Resolved_MR both need to be low to drive the State node high. Once State is high, 

the arbiter is activated for new events. The problem situation occurs when the pixel column attempts 

to timestamp an event while the State node is transiting high, that is just after Resolved_MR fell 

(indicating the TDC is ready). As Event_MR transitions high, the drive pulling the State node to 

VDD turns off, leaving the voltage at a non-binary value. The keeper will eventually drive the 

voltage to a 0 or 1 value, but it might take some time to resolve.  Fortunately, while in the metastable 

state, TS_MR remains low, and only asserts if the keeper resolves the State value to 1.  Thus, in 

the unlikely case that metastability happens, its effect is to delay the launch of the TS_MR pulse, 

which only corrupts the timing of that event but doesn’t cause any systematic error. In particular, 

if TS_MR fires, it will always be a well-formed pulse, like the situation for the pixel drivers. 

5.5 The FIFO 

Each pixel-column has a dedicated FIFO, comprising eight 18-bit wide entries of 13 temporal and 

5 spatial data bits. The depth of the FIFO was set to handle the maximum expected number of 

detectable events impinged on a column during an exposure period, and can easily be changed in 

the design. Figure 5.20 shows a block diagream of the FIFO design which is mostly an array of 8 

x 18 SRAM cells for storage. The design of the FIFO was challenging, since we needed to fit the 

FIFO into the pixel pitch, and even with the densest standard SRAM cell, 18 cells wouldn’t fit in 

50m. In order to make this possible, 2 SRAM cells were laid out together as shown in Figure 5.21. 

By increasing the vertical height of the cell, we can put the widest part of the SRAM, the cross 

coupled NMOS and NMOS access devices on top of each other, which enables us to reduce the 

width of the cell.  While this cell is less dense overall, it allows the design to fit into the required 

column bit.  The increase in area is not a significant issue, since the number of registers in each 

FIFO is not that large.  Using this technique the effective SRAM width is 1.7m leaving 19.4m 

for the layout of the word line decoder and driver.  
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Figure 5.20: The FIFO Block Diagram 
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Figure 5.21: SRAM Layout. The Inset includes 2 SRAM Cells 

The next task is controlling the word-lines and bit-lines of the SRAM so the correct data is stored 

in each FIFO entry.  This control requires some care, since the timing of the event signal, TS_MR, 

and the spatiotemporal data is shifted in time, and the system both needs to be able to write new 

data into the FIFO, and read that data out of the FIFO. As TS_MR is the timing reference signal 

for writes, and RdCLK is the reference for reads, these signals are ORed together to create the 

FIFO_CLK. The word-line selection is controlled by a 9bit shift-register which stores a single 

“one” that indicates the current active entry in the FIFO.  During reset, FIFORst_L = 0, the flip-

flop not connected to a word-line (the 9th register) is set high, while all the others are set low, so 

after reset, no word-lines are active.
28

  

Each rising edge of FIFO_CLK advances the shift-register, so after the first TS_MR arrives, the 

first word-line is driven high.  It remains high until the next event occurs, which lowers the first 

word-line and raises the second. The critical edge on a write is the falling edge of the word-line 

since the bit-line values at the falling edge are stored in the cell.  To provide good hold margin, the 

spatiotemporal data from the TDC is latched when FIFO_CLK is high before being driven onto the 

bitlines, so it can only change when this clock is low. This works well since this data will take some 

 

28
 Using a shift register is smaller than using a counter and word-line decoder. 
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time to become valid to allow the flops sampling the values to settle (and because of meta-stability, 

settling may take some time).  In fact, it is not guaranteed to be valid until right before TS_MR 

falls.  Of course, this means that right after the clock arrives the wrong data will be driven into the 

FIFO which is ok, since the word-line will remain high, ensuring that finally the correct data is 

written into the cell.  This set of operations are shown in Figure 5.22. The write operation is enabled 

by WrEn_H.  

 

Figure 5.22: FIFO Write Timing Diagram 

 

After the data is captured it can be read out by disabling the write pathway, and asserting RdEn_H, 

as shown in Figure 5.23. Upon entering read mode, the bit-lines are all precharged.  Pulsing 

FIFORst_L resets the word-line pointers so no word-lines are asserted. Each subsequent assertion 

of RdCLK advances the FIFO pointer by one. During reads the shift register output is ANDed with 

FIFO_CLK before driving the word-line. So after the first RdCLK, the word-line to the first FIFO 

entry will pulse high, and the SRAM value will be driven onto the bit-lines.  It should be noted that 

while data of a selected row are read out on the positive phase of RdCLK, it must hold stable when 

the FIFO enters precharge on the negative phase of the clock. This is accomplished by using a 
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cross-coupled NAND structure which connects to the differential monotonically falling bit-lines as 

seen in the figure. The contents of the FIFOs are read out, entry by entry, in 8 cycles of RdCLK. 

 

Figure 5.23: FIFO Read Timing Diagram 

Unlike the other blocks of the imager, the FIFO does not use post-charge circuits, so it doesn’t 

generate any internal timing signals.  Instead it uses the FIFO_CLK as the only timing signal, and 

all operations are synchronous with this timing signal.  Thus, the FIFO doesn’t have any intrinsic 

metastability issues, and since it’s input clock will always be well-formed (no runt pulses) there are 

not special cases that need to be considered. 

Without additional circuity, testing the FIFOs would be a challenge – in the current design we don’t 

have direct control of the data that can be written into the SRAM.  To fix this issue, a test data 

generator was added to the design.  A small control circuit generates two values, B0 and B1 which 

are driven to all the bits.  The data generators for the even bits can select between their input and 

B0, while the odd bits can select between their input and B1. By controlling the values of B0 and 

B1 on each test cycle, all FIFOs can contemporaneously be written with one of 4 patterns, blank 

(all zero), opaque (all 1), checker-board and reverse checker-board in 8 cycles of a system-clock 

derived, bypass clock. The functionality of the FIFOs is subsequently verified by entering the FIFO 
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read operation to compare the read and write data for equivalence. The data generator also can be 

used to clear out the old FIFO data between acquisitions if desired. 

 

Figure 5.24: FIFO Layout 

Figure 5.24 shows the layout of the completed column FIFO. Using the x2 memory cell layout 

enables the complete design to fit in the 50m pixel pitch. The total height of the block is around 
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67m, which is only slightly larger than a pixel. Doubling the FIFO storage capacity would increase 

the area of the block by less than 50%.  

5.6 Imager Peripheral Circuits 

In addition to the FIFO data generator to facilitate testing of the imager, the chip contains a number 

of circuits outside of the imager core. To enable reading the event data, the read outputs of the 48 

FIFOs are multiplexed together onto a set of 18 high-speed output pins per each subarray. This 

allows the user to select either a single column to read, or to read out the entire chip. The 8 entries 

of the 48 FIFOs are contemporaneously read in 8 read clock cycles, producing 18 x 48bits of data 

per cycle. If the user is interested in all the data, it can be sequentially driven off-chip in 48 IO 

clock cycles per FIFO entry for a total of 384 clock cycles. The serialized data is accompanied by 

the IO clock for the source synchronous operation. 

We use a JTAG port to control the chip.  Apart from the required JTAG and high-speed output 

pins, a few other pins are used to control the operation of the part.  In addition to supply pads, VDD, 

VSS, and VSPAD, the sensor accepts a master clock (CLKSYS) which sets the I/O speed, and a voltage 

to control the SPAD quench time, VHOLD
29

, as inputs.  

 

5.7 Scaling to Larger Arrays 

While the circuits presented in this chapter enable a 48x64 imager, scaling to larger arrays poses a 

few challenges.  Increasing the number of pixels in the row direction is straightforward. Each 

column operates independently, so increasing in this direction doesn’t affect performance;
30

  the 

number of TDCs and FIFOs simply scale with the number of columns. Controller signal lines 

associated with electrical control of the pixel array and the FIFOs see bigger loads and require 

larger drivers. Increasing the number of pixels in the column direction is far more challenging. This  

 

29 The only legacy analog voltage level on the chip. It can be replaced with digital starved inverters. 

30
 The only challenge is in distributing the electronic calibration signal to all the cells in a row, but there are 

many methods to deal with this issue.  The simplest is to use a low resistance top level metal for this signal, 

and drive it from both sides of the array. 
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Figure 5.25: Segmented Column Architecture 
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is principally because of a linear increase in self-loading and the quadratic increase in the RC of 

the column address lines Ai_CMF/Ai_TMF. 

To enable scaling the number of rows in each column, columns are segmented into shorter sub-

columns, with a type of repeater between the segments. Figure 5.25 shows the arrangement of a 

64-pixel column in four sub-columns separated by the arbitration and transfer logic. An event in a 

sub-column can be transferred to the next sub-column if it arrives while that column is currently 

quiescent
31

 waiting for an event. This decision is made by using an arbiter like the one used in the 

TDC.  

The arbiter circuit, shown in Figure 5.26, has 4 states:   

1. So long as S(i+1)Event_MR is asserted, subcolumn (i+1) is busy; node Ready_H is driven to 

ground and the arbiter input signal S(i)Event_MR from the preceding sub-array is ignored. The 

monotonically falling output of the arbiter, Transfer_CMF, which enables data transfer is de-

asserted and held at VDD.  

2. Once S(i+1)Event_MR de-asserts, (i+1) sub-column (i+1)  enters its quiescent state.  

3. In the quiescent state, Ready_H is held at ground by a keeper, as long as S(i)Event_MR is high. 

If the latter is low, or tansitions low, Ready_H is high or transitions high. This arms the arbiter, 

making column (i+1) receptive to data from column (i).  

4. From this point on, an assertion of S(i)Event_MR grounds Transfer_CMF, which enables the 

transfer of spatiotemporal data from sub-column (i) to sub-column (i+1). 

The arbiter, in combination with the circuit in Figure 5.27 which shows the data-transfer logic 

between sub-columns (i) and (i+1) functions as the Event-detection Circuit in each pixel.  If the 

column is quiescent, and an event needs to be transmitted, the event information is driven onto the 

differential address lines. Figure 5.28 gives the timing diagram for data transfer from column (i) to 

column (i+1) when the latter is in the quiescent state. The SPAD firing in sub-column (i), drives 

the differential address lines, which in turn causes S(i)Event_MR to assert. If the arbiter is ready, 

this transitions flows through the arbiter and causes Transfer_CMF of sub-column (i+1) to be 

 

31
 A sub-column (m) is in the quiescent state when its dual-rail monotonic address lines, Am_CMF/Am_TMF, 

are held at VDD, and its timing signal, S(m)Event_MR is de-asserted. 
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driven to ground, enabling the NOR gates, through which the logical levels of A[5:0](i)_T/CMF are 

driven unto the sub-column (i+1) address lines, A[5:0](i+1)_T/CMF transferring the event 

information onto the next block of columns.  

 

 

Figure 5.26: Intra-column Arbitration Circuit 
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Figure 5.27: Intra-column Arbitration and Data Transfer Logic 

Driving the address lines initiates the assertion of S(i+1)Event_MR, which returns Transfer_CMF to 

VDD, and ends transfer of data. The two sub-columns, then independently, return to their quiescent 

states. Notice that in this architecture the cycle time of the overall system is set by the cycle time 

of a local sub-column section.  While the latency through the array increases for the pixels farther 

away from the TDCs, the throughput does not depend on the total numbers of rows in the design. 

Using this architecture should allow each column to maintain a photon capture rate of around 1G 

photons/sec, but requires a method to calibrate out the variable delay from the photon detection to 

the TDC where the event is timestamped.  Fortunately, our calibration hardware can easily provide 

the needed input.  Since the chip can activate any row to provide an electronic time reference, each 

row can be used to “start” a measurement, with the row closest to the TDC always used to end the 
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measurement.  The difference in counts between measurements for different rows can be used to 

“correct” the timing of SPAD arrivals for each row, removing the internal delay from the data. 

 

Figure 5.28: Data transfer Waveforms 

5.8 Summary 

In this chapter we presented the design and implementation of a scalable, all-digital, column-

parallel 64x48 pixel Flash image sensor with a 1GHz column detection rate. The IC does not use 

any analog circuitry or high-speed clocks. Using self-resetting circuits, the design seamlessly 

detects the arrival of photonic events, and with proper timing returns the column to its quiescent 

state, ready to accept a new event. A new event falling within the dead time of a first event is 

discarded while spatiotemporal information of the first event is preserved. The TDCs do not use 

replica-biasing to lock their ring-oscillator frequencies to a reference clock, instead, their 

frequencies are measured by timestamping precisely spaced pulses whose temporal information is 

used to determine the oscillation frequency. The design is scalable to larger arrays by dividing the 

sensor columns to shorter sub-columns and using arbitration to buffer and transfer the 

spatiotemporal information in a sub-column to a neighboring downstream sub-column if it is ready. 

In this manner large image sensor array can be constructed with performances comparable to 

smaller counterparts.  
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Conclusion 

We started the thesis by presenting the principles governing LiDaR imaging and the Time 

Correlated Single Photon Counting (TCSPC) as a method to estimate distance of objects.  These 

imaging systems require a highly-sensitive, low-jitter, photon detector, which is usually 

accomplished using Single Photon Avalanche Diodes, or SPADs as a photodetector.  SPADs need 

some supporting circuits that can use passive RC components, but adding active devices yields a 

design that is easier to control.   

After introducing the basic LiDaR system, we showed that the signal to noise ratio was simply the 

ratio of the irradiance caused by the pulsed laser illuminator, to intensity of the background 

irradiance. Even with high illumination levels, a SPAD will not detect a photon during each pulse; 

this means that creating a timing estimate with good fidelity requires accumulating the results from 

a large number acquisitions.   

In Chapter 3 we addressed the statistical nature of light which follows the Poisson distribution. 

Based on the SPAD first photon postulate, i.e., a SPAD may only fire once during an acquisition, 

we arrived at the Exponential distribution which describes the probability of detected photons over 

time. We then derived a Mixture Exponential distribution to include the influence of background 

illumination on photon detection. Since each exposure causes at most a single detected photon, a 

large number of exposures are required to capture a scene. We constructed a simulator matching 

these photon statistics which creates histograms comprising multiple exposures defining a single 

frame. We then built multi-frame histograms of depth error and analyzed the influence of 

background illumination, SNR and the number of exposures on the depth accuracy of a recovered 

object. These results showed that at high SNRs (higher than 3) we need around 3 photons in each 

fine time bin to maximize performance, and that number nearly doubles as the SNR drops to 1. For 

a fixed background illumination, this means at high SNR, the number of exposures is inversely 

proportional to SNR, but grows rapidly as SNR approaches 1. Even when tight distance accuracy 

isn’t needed, the number of exposures can’t be reduced too far to avoid problems with false 

detections.  More distant objects make these issues worse, since SPADs only detect the first photon 

they encounter. This effect gets worse as noise photon flux increases.  

Based on the insights gained from these analyses, we studied time-gating as a technique to improve 

the recovery of distant objects. While time-gating precludes visibility of near objects, an improved 

recovery technique which includes time-domain exponential filtering of data has the ability of 

exposing a whole distant scene without compromising long-range recovery accuracy. 
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Finally, we explored how illumination scanning can be used to reduce the extra acquisitions needed 

in low SNR situations.  By only partially illuminating a scene, it is possible to increase the laser 

photon flux, L, and move to a higher SNR operation point.  Moving from SNR = 1 to SNR > 3 

reduces total number of laser photons that the sensor needs to collect by 2 times, which, in an 

environment where the average laser power is constrained reduces the acquisition time by 2 times 

as well. 

In Chapter 4, based on the multinomial distribution, we presented a mathematical formulation for 

depth uncertainty, as well as conditions leading to false-detections. The formulation agrees with 

the simulated results to within 5%. To gain insight into conditions affecting the uncertainty in depth 

measurement, an upper bound Gaussian approximation to the multinomial distribution was derived. 

The upper bound formulation sheds light on the relation between SNR and NExp for a fixed error-

spread, 𝜎𝐸𝑟𝑟.The accuracy of this estimation is to within 25% when compared to the simulated 

results. 

Finally, in chapter 5 we presented the design and implementation of a scalable, all-digital, column-

parallel 64x48 pixel Flash imager with a 1GHz column detection rate. The IC does not use any 

analog circuitry or high-speed clocks. Using self-resetting circuits, the design seamlessly detects 

the arrival of photonic events, and with proper timing returns the column to its quiescent state, 

ready to accept a new event. A new event falling within the dead time of a first event is discarded 

while spatiotemporal information of the first event is preserved. The TDCs do not use replica-

biasing to lock their ring-oscillator frequencies to a reference clock, instead, their frequencies are 

measured by timestamping precisely spaced pulses whose temporal information is used to 

determine the oscillation frequency. The design is scalable to larger arrays by dividing the sensor 

columns to shorter sub-columns and using arbitration to buffer and transfer the spatiotemporal 

information in a sub-column to a neighboring downstream sub-column if it is ready. In this manner 

large image sensor array can be constructed with performances comparable to smaller counterparts. 
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Appendix: First Photon Postulate and the Probability of 

Avalanche 

As we have described previously, there is only a small probability that a photon impinging a SPAD 

would trigger an avalanche. With this in mind, The Postulate states that, once the first photon in a 

stream is detected; i.e. it triggers an avalanche, subsequent photon arrivals are ignored
32

. 

Given a photon flux, λ, and the SPAD PDP, one can determine the probability that a certain number 

of photons in a photon-stream triggers an avalanche. The conditional probability that one out of k 

photons is detected can be calculated as: 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒|𝑃ℎ = 𝑘) 

= 1. 𝑃𝐷𝑃 + (1 − 𝑃𝐷𝑃)𝑃𝐷𝑃 + (1 − 𝑃𝐷𝑃)(1 − 𝑃𝐷𝑃)𝑃𝐷𝑃 + ⋯ + (1 − 𝑃𝐷𝑃)(𝐾−1)𝑃𝐷𝑃 

= 𝑃𝐷𝑃. (1 + (1 − 𝑃𝐷𝑃) + (1 − 𝑃𝐷𝑃)2 + ⋯ + (1 − 𝑃𝐷𝑃)(𝐾−1)) = 1 − (1 − 𝑃𝐷𝑃)𝑘   

It can be seen that if the SPAD 𝑃𝐷𝑃 = 1, 𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒|𝑃ℎ = 𝑘) = 1, which means that for any 

number of photons impinging a pixel, avalanche will occur with the 1st photon in the stream.  

Using the underlying Poisson Distribution in concert with the above probability, we can derive the 

probability of avalanche for any number of photons in a stream: 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒) = ∑ 𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒|𝑃ℎ = 𝐾). 𝑃(𝑃ℎ = 𝑘)

∞

𝑘=1

= ∑(1 − (1 − 𝑃𝐷𝑃)𝑘)𝑃(𝑃ℎ = 𝑘)

∞

𝑘=1

 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒) = ∑(1 − (1 − 𝑃𝐷𝑃)𝑘)

∞

𝑘=1

(𝜆. ∆𝑡)𝑘 . 𝑒−𝜆.∆𝑡

𝑘!
 

Employing the Taylor series expansion for e
-λ.∆t

, we arrive at: 

𝑃(𝐴𝑣𝑎𝑙𝑎𝑛𝑐ℎ𝑒) = 1 − 𝑒−𝑃𝐷𝑃.𝜆.∆𝑡      

The above equation is the familiar CDF for the Exponential Distribution obtained from the 

underlying Poisson Distribution. Figure A. 1 includes the PDF and the CDF (Probability of 

Avalanche) for 3 flux levels from a single light source over time.  

 

32
 Recall that once a SPAD is triggered it becomes unresponsive to subsequent impinging photons.  
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Figure A. 1: Exponential PDF and CDF – P(Avalanche) 
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