
A SYSTEMATIC FRAMEWORK TO ANALYZE THE DESIGN SPACE OF DNN

ACCELERATORS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Xuan Yang

October 2019

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/hm348kr8421

© 2019 by Xuan Yang. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/hm348kr8421

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Kayvon Fatahalian

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christos Kozyrakis

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Deep neural networks (DNNs) have been widely used to solve many modern machine intelligence

problems. However, their outstanding accuracy comes at the cost of high computation complexity

which limits their speed on conventional CPUs. This di�culty has encouraged researchers to create

e�cient DNN accelerators. Interestingly these designs use a variety of approaches, and have not

converged over time. While each design states the advantages of its approach, without a compre-

hensive understanding of the global space, it is di�cult to understand which design choices really

matter. To address this issue, this thesis shows how the space of DNN hardware accelerators can be

represented as scheduling choices, including computation orders, storage orders, etc.

Di↵erent DNN micro-architectures and mappings represent specific choices of loop order and

hardware parallelism for computing the seven nested loops of DNNs. This observation enables one

to create a formal taxonomy of all existing dense DNN accelerators, and systematically analyze the

design space, including dataflow choice. The loop transformations needed to create these hardware

variants can be precisely and concisely represented by Halides scheduling language.

By modifying the Halide compiler to generate hardware, we create a system that can fairly

compare these prior DNN accelerators, and show that many di↵erent dataflows yield similar energy

e�ciency with good performance. As long as properly choosing the memory sizes to accommodate

the e�cient blocking strategy, it can ensure that most data references stay on-chip with good locality

and the function units have high resource utilization. Thus, the hardware dataflow choices become

less critical, but how resources are allocated, especially in the memory system, has a large impact

on energy and performance. By optimizing hardware resource allocation while keeping throughput

constant, we achieve up to 4.2⇥ energy improvement for Convolutional Neural Networks (CNNs),

1.6⇥ and 1.8⇥ improvement for Long Short-Term Memories (LSTMs) and multi-layer perceptrons

(MLPs), respectively.

iv

Acknowledgments

In my life time, I have received help from many people. It is their help that provides me a positive

attitude towards life and world. Among all these people, the help from some are particularly mean-

ingful to me, and I wish to express my sincere appreciation to those who have guided and supported

my during my Ph.D study.

First of all, I would like to think my advisor Mark Horowitz, who o↵ers me the opportunity to

perform research study in such a wonderful group, even when I am an amateur computer architec-

ture researcher. Throughout all these years, in addition to being enlightened by his deep vision in

the computer architecture field, he has also become the role model to my life. Mark has continu-

ously provided me patient guidance in developing the insights in research problems, as well as the

opportunities and supports in exploring my true research interests. His broad knowledge of many

other research fields and deep understandings of humanities and society, have constantly impressed

me and motivated me to stay curious and studious in my future life.

Many thanks to Christos Kozyrakis, Kayvon Fatahalian, Priyanka Raina and Boris Murmann for

serving on my defense committee, and providing advice and guidance for this work in addition to my

defense. Without the wonderful suggestions from them, it would have been di�cult for this thesis to

be completed and clearly presented. I would also like to thank Kayvon, Jonathan Ragan-Kelley and

Andrew Adams, whose profound thinking of the hardware acceleration for both image processing

and DNNs, and expertise in Halide have helped me in many aspects for this work. Additionally,

I would like to thank Christos and Kayvon for the significant time they invested that helped me

improve the quality of this dissertation.

Also I would like to express my appreciation to all the members of Stanford VLSI research

group. Particularly, I would like to thank Ofer Shacham and Steve Richardson, who were always

helpful and kind mentors in the group, and gives me many useful suggestions. I would also like to

express my special thanks to my coauthors of this work, Jing Pu, Mingyu Gao, Je↵ Setter, Qiaoyi

Liu, Ankita Nayak, Steven Bell, Heonjae Ha, who have helped on the development of the Halide

hardware generation framework, test and measurement on the FPGA and ASIC targets. Without

their contributions, much of the research presented here would not have existed. I would also like

to thank Byong Chan Lim, from whom I learned the knowledge about mixed-signal and SRAM

v

designs. Hertfelt thanks extend to Suyao, Kahye, Nikhil, Alex and the rest of group members, who

were brothers and sisters to me in this amazing community.

Indeed all will not be possible without the unconditional love and support from my family. It is

their encouragement that paves the path for me to pursue my life goal and makes the person who I

am today. Words cannot express the feelings I have for them.

Finally, I would like to thank my husband Yuming Kuang, who graduated from Stanford as

well. For years during our Ph.D studies, we share our thoughts and insights on all kinds of matters,

provide shoulders for each other, and solve the di�culties in life together. I am extremely grateful

to him for being my source of strength and inspiration for these unforgettable years.

vi

Contents

Abstract iv

Acknowledgments v

1 Introduction 1

1.1 Thesis Outline . 2

2 Background 5

2.1 DNN Algorithms . 6

2.2 DNN Accelerators . 10

2.3 High-Level Synthesis . 12

2.4 DSL Systems . 14

2.4.1 Image Processing DSL Systems . 14

2.4.2 DNN DSL Systems . 16

2.5 Halide Language . 20

2.5.1 Halide Algorithms . 20

2.5.2 Halide Schedules . 22

2.6 Summary . 24

3 The Design Space of DNN 25

3.1 DNN Accelerators . 26

3.1.1 DNN Accelerator Architectures . 27

3.1.2 DNN Schedules . 27

3.2 Previous DNN Scheduling Taxonomy . 31

3.2.1 Stationary-Based Dataflow . 31

3.2.2 Loop Nest-Based Schedule . 39

3.2.3 Data-Centric Dataflow . 39

3.3 Design Space Overview . 40

3.4 A Formal Loop-based Dataflow Taxonomy . 44

vii

4 DSL System Design for DNN 50

4.1 Halide Schedules for DNN Accelerators . 51

4.2 Extended Halide IR . 57

4.3 Compiler Implementation . 62

4.4 Hardware Generation . 64

4.4.1 Double Bu↵er . 64

4.4.2 Systolic Array . 70

4.5 Summary . 76

5 Optimizer and Results 77

5.1 Energy and Performance Models . 78

5.1.1 Performance Analytical Model . 79

5.1.2 Energy Analytical Model . 81

5.1.3 Analytical Model Validation . 85

5.2 Optimization Flow . 85

5.2.1 Optimizer Structure . 86

5.2.2 Optimizer Input and Output . 89

5.3 Results . 91

5.3.1 Impact of Dataflow and Loop Blocking . 92

5.3.2 Impact of Hardware Resource Allocation . 96

5.4 An E�cient Optimizer . 100

6 Conclusion 102

Bibliography 104

viii

List of Tables

2.1 Computation (measured in number of multiply and accumulate operations) and mem-

ory consumption breakdown of state-of-the-art networks (each pixel and coe�cient is

16 bits). 9

3.1 The dimensions of each data block (set D), and loops reuse the data block (set V) . 31

3.2 Common dataflows from [13] expressed using spatially unrolled loops. 47

3.3 Categorization of prior DNN accelerators using our dataflow taxonomy. Dataflows

are represented as [U |V,W |Z, ...], where element at position i indicates the unrolled

loops at memory level i. 47

4.1 Halide scheduling primitives that control each dimension of the 3D design space. . . 51

5.1 The dimensions of each data block (set D), and loops reuse the data block (set V) . 79

5.2 Energy per 16-bit access with various register file (RF) and SRAM sizes, and for a

MAC operation, one hop communication cost and a DRAM access. 83

5.3 ASIC designs for model validation. 84

ix

List of Figures

2.1 An example of CNN structure. Layers are connected as a linear pipeline. 8

2.2 An example of LSTM structure. The LSTM cell looks at input X
t

and outputs h
t

. A

loop allows information to be passed from one timestep t of the network to the next

timestep t+ 1, equivalent to the unrolled network. 9

2.3 A line bu↵er (the blue box) captures the active working set for a stencil kernel using

minimum storage. 15

2.4 A double bu↵er uses two banks to hide data fetch latency. 17

3.1 DNN accelerator architecture consisting of tiles of PE array and a memory hierarchy. 28

3.2 Two Weight-Stationary (WS) dataflow implementations. WS1 unrolls input and out-

put channel dimensions (c, k), WS2 unrolls filter width and height dimensions (f
x

,

f
y

). Yellow, purple and green blocks represent the data blocks for input, weight and

output respectively. Indexing to the data block is the same as Algorithm 1, for exam-

ple, input[b][c][y][x] refers to the ifmap pixel at batch b, channel c, row y and column

x. Empty index can be either a scalar index or a vector of indices within the valid

range. 32

3.3 Two Output-Stationary (OS) dataflow implementations. OS1 unrolls feature map

width and height dimensions (x, y), OS2 unrolls batch and output channel dimensions

(b, k. Yellow, purple and green blocks represent the data blocks for input, weight and

output respectively. Indexing to the data block is the same as Algorithm 1, for

example, input[b][c][y][x] refers to the ifmap pixel at batch b, channel c, row y and

column x. Empty index can be either a scalar index or a vector of indices within the

valid range. 34

x

3.4 The Non-Local-Reuse (NLR) dataflow implementation. It unrolls input and output

channel dimensions (c, k). Yellow, purple and green blocks represent the data blocks

for input, weight and output respectively. Indexing to the data block is the same as

Algorithm 1, for example, input[b][c][y][x] refers to the ifmap pixel at batch b, channel

c, row y and column x. Empty index can be either a scalar index or a vector of indices

within the valid range. 36

3.5 The Row Stationary (RS) dataflow implementation. It unrolls filter height and ifmap

height dimensions (f
y

, y). Yellow, purple and green blocks represent the data blocks

for input, weight and output respectively. Indexing to the data block is the same as

Algorithm 1, for example, input[b][c][y][x] refers to the ifmap pixel at batch b, channel

c, row y and column x. Empty index can be either a scalar index or a vector of indices

within the valid range. 37

3.6 3D design space for DNN accelerators. The positions of labels or vectors on each axis

only represent di↵erent choices without specific information about ordering or distance. 43

3.7 Computation resource utilization can be improved by replication. 46

3.8 Unroll two loops C and K onto a 1D array with dataflow CK. Outputs are commu-

nicated between adjacent PEs, while inputs are communicated across groups. 48

4.1 The initial design fetched the data as one large block from memory. After the split

and reorder, the data is broken into 4 smaller tiles. Next a local bu↵er for one tile is

allocated, and finally a 4 PE systolic array is implemented to process the data. . . . 54

4.2 Di↵erent PE array micro-architectures generated from Halide scheduling primitives. 56

4.3 Block diagram of DNN accelerator design using stencil stream interface. 60

4.4 Compiler flow. Blue blocks are new, green blocks are existing Halide compilation passes. 63

4.5 Double bu↵er with two banks to hide data communication latency. 65

4.6 Block diagram of the double bu↵er design. 66

4.7 Timing graph of a double bu↵er design. 68

4.8 Block diagram of the systolic array design. Ifmap pixels are transferred from first

column to last column, weights are stored and reused inside each PE, partial sums

are accumulated vertically from the top row to the bottom row. A diagonal shape of

FIFOs are added around the PE array to add appropriate delays for data coming in

and out of the systolic array. 73

4.9 Block diagram of the PE architecture design. 75

5.1 Data reuse with inter-PE communication. Ifmaps and Ofmaps are transferred once

and 3 times on the inter-PE communication buses. 82

xi

5.2 Analytical model validation. Left: energy breakdown comparison between actual

synthesized designs and the analytical model. Right: energy breakdown comparison

between reported Eyeriss model and our model. 84

5.3 The schedule optimizer flow. The optimizer reports optimal schedule with its energy

and performance. Orange hexagons are inputs and outputs of the framework. Sched-

ule Generator generates schedule candidates and send to analysis engine for energy

and performance evaluation. 87

5.4 The optimizer flow. The optimizer jointly optimizes memory system and schedule,

and reports the optimal design with the achieved energy and performance. Orange

hexagons are inputs and outputs of the framework. Memory Configuration Gener-

ator generates configuration candidates and send to schedule optimizer for energy

evaluation. 88

5.5 Design space of dataflow for AlexNet CONV3 and GoogLeNet 4C3R layers. Y-asix

is the energy consumed to execute the entire batch. Di↵erent dataflows are shown

horizontally, with only the most common choices labeled for clarity. All dataflows use

replication and the optimal loop blocking schemes. Di↵erent colors represent di↵erent

hardware resource allocations, and the energy cost is to complete the batch. 93

5.6 PE array utilization for the energy-optimal dataflow choices on AlexNet CONV3 layer

with and without replication, and GoogleNet 4C3R layer with replication. 94

5.7 Design space of loop blocking for AlexNet CONV3 using dataflow C |K with 512B

RF per PE. 95

5.8 Energy breakdown of the optimal dataflows with di↵erent hardware configurations.

2D and global refer to the best blue and red points in Figure 5.5. 2D-32 and 1D

change the PE array to 32⇥32, and 1D with 256 PEs respectively. 96

5.9 Memory hierarchy exploration with dataflow C |K. Di↵erent RF sizes per PE are

shown horizontally. Lines with di↵erent colors correspond to di↵erent SRAM bu↵er

sizes. 97

5.10 Energy breakdown comparison between 512B and 64B RF sizes with the same dataflow.

Using a 64B RF reduces the overall energy significantly. 98

5.11 Overall energy e�ciency improvement by adding another level of register file into the

memory hierarchy. This improvement is calculated by dividing the overall energy of

using two levels of RF by the optimal energy of using single level of RF. Bars that

exceed 1.0 indicate energy improvements. 99

5.12 The optimal memory resource allocation and the corresponding total energy when

varying PE array size. 100

5.13 Overall energy e�ciency improvement by using the auto-optimizer. 101

xii

Chapter 1

Introduction

Deep neural networks (DNNs) have recently displaced classical image processing and machine learn-

ing methods due to their state-of-the-art accuracy on many tasks, particularly in recognition, local-

ization, and detection [42]. However, their outstanding accuracy comes at the cost of high computa-

tion complexity and large memory footprint. Recent DNN models can require 30k-600k operations

per pixel, and up to 100s of MBytes for weight storage, which makes DNNs a challenging workload

for general-purpose processors to meet both energy e�ciency and performance requirements.

DNN algorithms generally have high locality and large amounts of parallelism, making it fertile

area for specialized hardware acceleration. Thus, as the number of applications for DNNs grows, so

have proposals for DNN accelerators. NeuFlow created a 2D systolic array for convolutional neural

networks (CNNs) [27], where each processing element (PE) can communicate with its neighbors. The

DianNao family were built around customized inner-product units [12, 16], utilizing a single level of

memory. Eyeriss highlighted the importance of on-chip dataflow on energy e�ciency and proposed a

row-stationary heuristic [13, 15]. And Google’s TPU used a simple yet e�cient systolic dataflow on a

large 2D processing array [48]. In addition to these ASIC accelerator designs, many accelerators have

been built targeting FPGA systems. Zhang et al. [99] adopted loop blocking technique to optimize

data reuse and explored various tile sizes to minimize o↵-chip bandwidth. To further reduce the

o↵-chip communication on the FPGA systems, Alwani et al. [8] fused the computation of multiple

layers, thereby eliminating writing the intermediate data back to main memory. These are just a

few of the recent publications on DNN acceleration.

Despite of the high e�ciency and throughput achieved by these specialized accelerators, their

development required significant design e↵ort and the knowledge of DNN algorithms and architec-

tures. To improve the productivity of DNN accelerator design, previous researchers have created

a number of domain specific language (DSL) systems, that can compile high-level algorithmic de-

scriptions to hardware designs by incorporating domain knowledge. Ca↵eine [100] generates FPGA

designs from high-level network descriptions by integrating the hardware compilation flow with

1

CHAPTER 1. INTRODUCTION 2

Ca↵e. To improve its energy e�ciency and performance, the accelerators are constructed from the

hand-optimized parametrized design libraries. Similarity, VTA [60], a hardware generation system

incorporated in TVM [11], designs another configurable architecture template for DNNs, which can

be programmed by their proposed ISA.

Interestingly, even after considerable research e↵ort, the resulting DNN accelerator architectures

remain quite diverse. Some of the di↵erences can be explained by researchers focusing on di↵erent

parts of the total problem (hardware architecture, memory system design, or application scheduling)

but it is unlikely that this explains the current diversity of solutions. To help understand the space

of DNN accelerators and the current situation better, we create a systematic taxonomy of the

complete design space, and a framework for generating the hardware implementation of designs in

this taxonomy. This framework allows us to resolve the conflicting published reports of di↵erent

“optimal” parameters and make it possible to fairly compare di↵erent design points. We also build

an optimization framework by creating simple analytical models for energy and performance, which

allow us to explore this large design space.

1.1 Thesis Outline

In order to create e�cient accelerators, it is necessary to understand the algorithm. Chapter 2 starts

by expressing DNN algorithms using seven nested loops. Next, it introduces the existing accelerators,

with their di↵erent approaches used to improve energy e�ciency and performance. With the large

number of DNN accelerators being built, previous researchers also developed hardware generation

frameworks based on high-level synthesis (HLS) or domain-specific language (DSL) to improve the

design productivity of creating DNN accelerators. We adopt one particular DSL among them,

Halide, to build our DSL system, as it decouples the functionality specification of the application

(the algorithm) from how it is mapped to the underlying architecture (the schedule), and provides

compact and concise scheduling primitives.

Build on the work presented in Chapter 2, we break the enormous design choices into three

sets of parameters — dataflow, loop blocking, and resource allocation. From the perspective, we

construct a three-dimensional logical representation of the design space to enable a systematical and

comprehensive analysis. We show the dimensions can be nicely and concisely expressed as how they

transform (block, reorder, and parallelize) the loop nest using the loop transformation based formal

taxonomy we propose.

This loop transformation based taxonomy naturally aligns with the concept of Halide schedul-

ing language. In Chapter 4, we demonstrates that the loop transformations we use to specify

the micro-architecture and dataflow choices of a DNN accelerator are almost a subset of the loop

transformations and memory allocation primitives provided by Halide’s scheduling language [74].

Therefore, we extend Halide, enabling it to create hardware accelerators with any possible DNN

CHAPTER 1. INTRODUCTION 3

dataflow and storage hierarchy, to allow us fairly compare various design choices in the 3D design

space. Chapter 4 then introduces the parameterized architectural templates we designed for this

system, and the implementation of the new compiler for generating e�cient hardware.

To speedup the exploration of the design space, we build an optimization framework by employing

simple analytical models for energy and performance. Chapter 5 begins by describing these models,

and then validates them against synthesized designs. It then describes the flow of the optimization

framework that utilizes exhaustive search to investigate the impact of each parameters in the space

to determine the optimal schedule and hardware resource allocation.

Given the diversity of research solutions, our results using the optimization framework show that,

with proper loop blocking, the specific dataflow used in the design does not have a significant impact

on either energy e�ciency or overall throughput. For energy e�ciency, there is enough locality in

most convolutional layers in DNNs so as long as they are properly blocked, most data references occur

locally. Thus many schedules work well. On the other hand, for the layers that do not have enough

data reuse to exploit, e.g., fully-connected layers that are not batched together, the overall energy

e�ciency is dominated by o↵-chip main memory accesses, thus the on-chip dataflow still does not

have a large impact. From a performance perspective, it may first appear that dataflow choices can

lead to significant utilization di↵erences of the computation resource. However, with the technique

of replication, which will be discussed in Section 3.4, many dataflows can achieve reasonable resource

utilization.

In fact, energy e�ciency is more tightly tied to the design of the hierarchical memory system and

how each level in this hierarchy is sized. Every operation such as a multiply-add (MAC) involves

multiple register file (RF) accesses. Since the cost of each RF fetch is proportional to the RF size,

it is most e�cient to adopt a relatively small RF. The hierarchy depth also matters, since the size

ratio between the adjacent memory levels needs to be in a certain range to balance the total energy

cost of accessing data at each level in the memory hierarchy. Using these insights, we created an

e�cient optimizer for these types of Halide programs, which achieves up to 4.2⇥, 1.6⇥, and 1.8⇥
energy improvement over the Eyeriss accelerator for various CNNs, LSTMs, and MLPs respectively.

This thesis makes the following contributions:

• Introduces a systematic approach to precisely and concisely describe the design space of DNN

accelerators as schedules of loop transformations.

• Shows that both the micro-architectures and dataflow mappings for existing DNN accelerators

can be expressed as schedules of a Halide program, and extends the Halide schedule language

and the Halide compiler to produce di↵erent hardware designs in the space of dense DNN

accelerators.

• Demonstrates that many dataflow patterns achieve similar energy e�ciency and performance,

as long as proper loop blocking schemes are chosen to extensively reuse data, and replication

techniques are used to fully utilize hardware processing resources.

CHAPTER 1. INTRODUCTION 4

• Discovers that the choice of micro-architecture and memory size is more important than the

choice of dataflow, and that optimizing the memory hierarchy achieves 1.8⇥ to 4.2⇥ energy

improvements for CNNs, LSTMs, and MLPs.

Chapter 2

Background

Deep Neural Networks (DNNs) have emerged as a popular solution for computer intelligence prob-

lems, with their superior capability to tackle tasks ranging from object recognition and detection

to natural language processing. Such unprecedented accuracy, however, comes at the cost of high

computational complexity and large memory footprint, which poses both energy e�ciency and per-

formance challenges to the underlying hardware.

To meet the demands for energy e�ciency and performance, significant e↵orts have been devoted

to the development of specialized accelerators for DNNs. Even highly-parallel machines can be

utilized to fulfil the throughput requirement, with the massive data involved in DNN computation,

it is still di�cult to reduce energy consumption, especially memory energy, as data movement can

be more expensive than computation. After first reviewing the basic DNN computation, Section 2.2

reviews the hardware acceleration approaches by previous researchers during the last decade, focusing

on work that develop memory systems or study algorithm schedules. These groups investigated the

memory organization and which loops to parallel to optimize locality. Section 2.2 also discussed the

e↵orts to provide flexible accelerators for a wide range of networks, among them, FPGA systems have

been commonly employed. Section 2.3 introduces high-level synthesis (HLS) that can generate FPGA

implementations from high-level algorithmic descriptions. However, to create e�cient accelerators

with HLS, the knowledge of algorithm and hardware architecture is still indispensable.

To eliminate the need to understand the underlying architecture requires embedding this knowl-

edge into the hardware generation tool flow. Such knowledge can be automatically extracted if the

input application domain is su�ciently restricted. Section 2.4 starts by describing the computation

and memory access patterns of image processing and the line-bu↵ered template for capturing locality.

Then it discusses prior domain specific language (DSL) systems that generate e�cient FPGA accel-

erators leveraging this template. Since DNNs di↵er on the computation characteristics, Section 2.4

also presents another template used for DNNs — a double-bu↵ered template, and reviews previous

DSL systems that generate DNN accelerators based on this template from high-level languages.

5

CHAPTER 2. BACKGROUND 6

Algorithm 1 CONV layer: simple seven nested loops.

for b = 0 to B � 1 do
for k = 0 to K � 1 do
for c = 0 to C � 1 do
for y = 0 to Y � 1 do
for x = 0 to X � 1 do
for f

y

= 0 to F
Y

� 1 do
for f

x

= 0 to F
X

� 1 do
O[b][k][y][x] += I[b][c][y+f

y

][x+f
x

]
⇥W[k][c][f

y

][f
x

]

Noticing the computation commonality between image processing and DNNs, we use an exist-

ing image processing language, Halide, to describe our DNN applications. With the capability of

decoupling schedules from algorithms, and the compact schedule primitives, the extended Halide

system allows us to explore the choices of memory systems and schedules to generate e�cient DNN

accelerators.

2.1 DNN Algorithms

Advances in training deep, multi-layer networks have led to a resurgence of their use in many problem

domains [42, 83, 89, 39]. In computer vision, deep neural networks (DNNs), such as convolutional

neural networks (CNNs), multiple layer perceptrons (MLPs), long short term memories (LSTMs),

have recently displaced classical image processing and machine learning methods for state-of-the-art

performance on many tasks, particularly in recognition, localization, and natural language process-

ing.

Counter to the classical, freely-connected model commonly associated with the neural network

metaphor, deep neural networks are characterized by a highly restricted structure in which the

network is organized into a pipeline or DAG of “layers,” and most layers are defined to perform

a non-linear transformations on their inputs. In vision problems, these layers can be thought of

as producing and consuming images, with their neurons organized into a regular 3D grid of pixels

(with image dimensions x and y, and c for color channels). From this perspective, a DNN can

be more clearly thought of as a specialized class of image processing pipelines, rather than as

a biological neural model. The most widely used operations in this pipeline—convolution, local

response normalization, pooling, and fully connected layers—correspond to the di↵erent “layers”

used in the network.

• A convolutional layer (CONV) corresponds to a filter bank. In the standard case of 3D input

CHAPTER 2. BACKGROUND 7

and output, a convolutional layer computation is summarized as:

O[b][k][x][y] =

C�1X

c=0

F

Y

�1X

f

y

=0

F

X

�1X

f

x

=0

I[b][c][x+f
x

][y+f
y

]⇥W[k][c][f
x

][f
y

]

and also shown in Algorithm 1 as seven levels of nested loops. The nested loops generate output

feature maps (fmaps) O, which have K channels of X⇥Y images, by processing the input

fmaps I of C channels. The fmap data are processed in batches (B) to increase parallelism and

data reuse. W contains the weights as K shift-invariant 3D stencil filters (one for each output

channel) with size C⇥F
X

⇥F
Y

. Typically the dimensions of the kernels are much smaller than

the image dimensions. By summarizing this computation as such nested loops, we can also

express other layers or non-batched operations, by setting certain loop bounds to 1.

• A local response normalization (LRN) layer normalizes (scales) the value of each input by the

sum of squared values in its neighborhood.

• A pooling layer performs a windowed reduction using some aggregation function (most com-

monly, max), decimating the input. This maps a C⇥X⇥Y input to a C⇥X 0⇥Y 0 output,

using a 2D stencil window of some size over the input within which the aggregation function

is applied to produce a single output. Pooling and LRN layers have no learned parameters

(weights).

• Finally, a fully connected layer (FC) is what is most commonly thought of within the neural

network metaphor: an M to N mapping where all M inputs drive all N outputs, with unique

weights for every input/output pair. This corresponds to an M⇥N matrix-vector multiplica-

tion, and with M⇥N unique weights has far more weight data relative to the size of the layer

inputs and outputs (O(input ⇥ output)) than a convolutional layer. The computation of a FC

layer can also be thought of as 1 ⇥ 1 CONV layer, which can be expressed using the same

nested loops in Algorithm 1 with only C, K, and B loops, while other loops bounds are all 1.

These layers are normally connected as a linear pipeline to compose a CNN, as the example

demonstrated in Figure 2.1. The output of each layer may be fed through a nonlinear activation

function, such as a rectified linear unit (ReLU), then serve as the input to the next downstream

layer. The CONV layers, which often appear at the beginning of the pipeline, are used to learn

features from the input images. These extracted features are passed to the following FC layers to

perform classification or prediction.

Most of the computational work in real CNNs, and most of the intermediate fmap data band-

width, is in the convolutional layers. Meanwhile, the fully-connected layers, most commonly used

in MLPs, LSTMs or at the end of a CNN pipeline, perform more work and load more parameters

CHAPTER 2. BACKGROUND 8

...
...

...

CONV + ReLU Pooling CONV + ReLU Pooling FC+ReLU FC

Figure 2.1: An example of CNN structure. Layers are connected as a linear pipeline.

per input or output. The nonlinear activation functions are typically local point-wise arithmetic

operations which can be easily computed, they only have a small influence on computation cost and

do not a↵ect communication or locality at all.

During this decade, most widely used CNNs for vision applications range from the order of

ten layers to hundreds. The AlexNet architecture [52] has five CONV layers with window sizes of

11⇥11, 5⇥5 and 3⇥3 interleaved with several local response normalization layers, pooling layers, and

followed by two fully-connected layers. The VGGNet architecture [83] comprises several di↵erent

network substructures, each composed of many CONV layers with 3⇥3 filter windows, interleaved

with pooling layers, and followed by two FC layers. GoogLeNet [89] is constructed by repeating

Inception module spatially and interleaving them with pooling layers, where each inception module

is a combination of 1⇥1, 3⇥3, 5⇥5 CONV layers and pooling layers, with their outputs concatenated

into a single output vector forming the input of the next stage.

To reduce the computation requirements and memory footprint, recent CNNs tend to avoid using

FC layers, instead stacking more CONV layers to build deeper pipelines, i.e. ResNet [39], or design

more e�cient CONV layer variations. One of those examples—MobileNet [44] proposes depthwise

separable convolution layer, which decomposes a single standard CONV layer into a depthwise

convolution and a pointwise convolution, where the former one performs 2D convolution operation

for each fmap with no accumulation at the end, the latter one is essentially a 1⇥ 1 convolution. We

focus our evaluation on these newer networks, as well as the suite of applications demonstrated on

recently published CNN hardware [12, 16]. Table 2.1 shows the computation and memory breakdown

for AlexNet, VGGNet, GoogleNet and MobileNet architecture. From the table we can see that

CONV layers are the most computationally intensive layer while FC layers, if adopted, consume the

most memory.

Looking beyond vision domain, natural language processing is another fertile area for DNNs,

particularly MLPs and LSTMs. MLPs is a stack of FC layers, each followed by nonlinear activation

function [77]. The FC layer size ranges from to 102 to 107. LSTMs [43] is DAGs of LSTM units with

CHAPTER 2. BACKGROUND 9

LSTM
Cell

Xt

ht

LSTM
Cell

X0

h0

LSTM
Cell

X1

h1

LSTM
Cell

X2

h2

LSTM
Cell

Xt

ht

=

...

LSTM Unrolled LSTM

Figure 2.2: An example of LSTM structure. The LSTM cell looks at input X
t

and outputs h
t

. A
loop allows information to be passed from one timestep t of the network to the next timestep t+ 1,
equivalent to the unrolled network.

feedback connections, as presented in Figure 2.2. Each unit is commonly composed of a cell, an input

gate, an output gate and a forget gate. The cell memorizes information over arbitrary timestamps,

and the gates collaborate to regulate the information flow throughout the cell. Each gate performs

a matrix-vector multiplication in non-batched case, or matrix-matrix multiplication in batched case,

which can be regarded as FC layers due to the same computation performed (The batched one is

obviously more energy and throughput e�cient when latency allows). Therefore, during the inference

phase, the feedback connection doesn’t a↵ect the characteristics of the computation, the required

computation of LSTMs is essentially equivalent to MLPs, except the state matrices are shared by the

LSTM units across di↵erent time steps. Such neural network with feedback loops were developed to

improve the capability of utilizing the information from many steps back, and processing arbitrary

long sequences for classifying or making predictions.

MACs⇥109 Mem (MB)
AlexNet Convs 1.9 2
VGGNet16 Convs 15.2 59
GoogleNet Convs 1.5 23
MobileNet Convs 0.6 3
AlexNet FCs 0.058 234
VGGNet16 FCs 0.124 495
GoogleNet FCs 0.001 4
MobileNet FCs 0.001 1

Table 2.1: Computation (measured in number of multiply and accumulate operations) and memory
consumption breakdown of state-of-the-art networks (each pixel and coe�cient is 16 bits).

CHAPTER 2. BACKGROUND 10

Even though modern DNNs include various layer types such as pooling, normalization, and

element-wise operations, we focus on CONV and FC layers in this work since they dominate the

computation and memory bandwidth.

2.2 DNN Accelerators

The superior accuracy of DNNs for many tasks, and the high computation complexity of the com-

putation, has led to an increasing interest in providing acceleration of the DNN computation. While

often independent research e↵orts converge to a few common approaches, this does not seem to be

the case for DNN acceleration. These approaches di↵er on the way of organizing memory hierarchy,

the schedule of the algorithm, and the hardware micro-architecture.

Early attempts for accelerating NNs can be traced back to 90s (Intel ETANN [2]), which were

designed for accelerating shallow neural nets. The blossoming of DNN-based applications opened the

floodgate of the DNN accelerator research, including Neuflow [27], Diannao [12], etc. Overtime, the

hardware accelerations for DNNs tend to develop more complex memory systems to optimize locality.

The NeuFlow architecture started with a 2D systolic array for CNNs, where each processing element

(PE) communicated only with its neighbors, and data were streamed to and from DRAM [27]. To

improve locality, its successor TeraDeep used a fixed loop-blocking strategy for CONV layers [31].

The DianNao family were built around customized inner-product units. The first generation used

a single level of small bu↵ers [12], while in a later iteration the original unit was surrounded by a

large eDRAM that stored the complete data sets [16]. Another version specially built for embedded

systems further extended to a 2D PE mesh that supported optimized inter-PE data propagation [26].

To further alleviate memory energy issues, another widely studied approach is near-data processing,

which moves accelerator closer to DRAM. Neurocube combined spatial PE arrays with 3D-stacked

DRAM to reduce the main memory access cost [50], QUEST designed an log-quantized datapath

with stacked SRAMs [91], Schuiki et al. designed a near-memory accelerator along with RISC-V

cores to perform both training and inference [79].

Another set of prior research focused on the schedule of the DNN algorithm, particularly which

loops to parallelize, which is also called the hardware dataflow. With customized hardware using a

spatial architecture, more recently, Eyeriss highlighted the importance of such on-chip dataflow for

energy e�ciency, and proposed using a row-stationary dataflow as a heuristic solution to maximize

the data reuse of all types of data blocks [13]. Its follow-up work proposed to use a replication

technique to further improve the throughput by increasing the computation resource utilization [15].

FlexFlow leveraged the complementary e↵ects of di↵erent dataflow styles and mixed them on the

same PE array to improve resource utilization [57]. Other prior work has also implemented architec-

tures that are flexible to support multiple di↵erent dataflow types [54, 92, 20]. MAERI designed a

configurable interconnection network within the accelerator to allow mapping DNNs using di↵erent

CHAPTER 2. BACKGROUND 11

dataflow types [54]. Wei et al. created an automated compilation framework to generate an e�cient

systolic array mapped on FPGA, based on their proposed analytical model for performance and

resource utilization of di↵erent dataflows [92]. Its follow-up work, PolySA, leverages the polyhedral

model to fully explore the dataflow space [20]. Tangram investigates the dataflow optimizations for

coarse-grain parallelism, and proposes bu↵er sharing dataflow to eliminate excessive data duplication

in the on-chip bu↵ers for tiled NN accelerators [30].

Some groups extended this work to jointly study near-data processing with schedules/dataflows

on the spatial PE arrays [29, 9]. Tetris [29] takes advantage of the high throughput and low

energy characteristics of 3D memory to simplify dataflow scheduling for NN computations in near-

data processing systems. NeuroStream proposed a flexible tiling mechanism along with a scalable

computation paradigm to improve the overall resource utilization and throughput [9].

As MLPs, RNNs/LSTMs, GANs and other networks with potentially even higher compute com-

plexity become pervasive in vision, sequence modeling and other fields, the hardware acceleration

of these algorithms has drawn attentions from researchers. What makes their hardware accelera-

tion more di�cult is the complex network structures, for instance, LSTMs, Generative Adversarial

Networks (GANs) etc. contain recursion and branches, thus are more similar to DAGs, instead of

linear pipeline of layers. Google’s TPU used a simple systolic dataflow on a large 2D array of PEs,

which could also be used for MLPs and LSTMs in addition to CNNs, and adopted roofline model

to improve the server latency [48].

Another common approach to create accelerators supporting a wide range of networks is to

utilize FPGA systems. To accelerate CNNs, Zhang et al. [99] adopted the Roofline model to explore

loop blocking, but considered only two levels of memory and only minimized o↵-chip bandwidth

rather than total memory energy. Alwani et al. [8] fused the computation of di↵erent NN layers,

and Li et al. [56] mapped the entire CNN onto an FPGA in a pipelined manner, both to reduce

intermediate data writeback. Shen et al. [81, 82] optimized FPGA resource utilization by using a

heterogeneous design. Sharma et al. [80] provided hand-optimized templates for generating dataflow

architectures. Other previous attempts [33, 103, 66] utilized FPGAs to improve the energy e�ciency

of RNNs/LSTM accelerators, compared with CPU/GPU. DeltaRNN [28] implemented an RNN

delta network update approach to reduce memory access with negligible accuracy loss on FPGA

system. In terms of GANs, Song et al. proposed to reorganize dataflows to improve the data reuse

for non-standard convolutional layers in GANs [85]. Similarly, FlexiGAN [96] and GANAX [97]

utilized an architecture template that combines SIMD and MIMD models to alleviate the resource

under-utilization issues for those non-standard convolutional layers.

Prior researchers also investigated various software-hardware codesign approaches for optimizing

these accelerators. Some work focused on cooptmizing the algorithms with the hardware accelera-

tors. The algorithm optimizations include but are not limited to reducing the model precision by

quantization, compressing the model size using pruning, weight sharing, etc., designing compact

CHAPTER 2. BACKGROUND 12

network architecture, and transforming the computation into other e�cient forms. While general

processors usually support 8-, 16- and 32-b operations, the precision of activation and weights can

be reduced to the range between 4 and 9 b for AlexNet across di↵erent layers with negligible impact

on accuracy [49, 59]. Other work quantize the networks more aggressively into binary networks, such

as [21, 22, 75]. Prior work that utilized quantization technique to reduce the precision of networks

improve the performance and energy e�ciency of both computation and memory [59, 65, 104, 24].

To further reduce the data movements and computation, some designs have explored DNN sparsity

and proposed specialized dataflow schedules [38, 6, 102, 68, 98]. Another group of designs have trans-

formed DNN processing into the frequency domain to reduce computations [101, 51] or log space to

reduce computation cost [37, 58, 105]. Furthermore, other attempts have investigated and designed

hardware-friendly neural network architectures to reduce network parameters and/or computation,

including SqueezeNet [46], MobileNet [44].

2.3 High-Level Synthesis

In this large exploration of DNN accelerators, many researchers have devoted significant e↵orts on

developing tools to reduce the design e↵ort needed to create these DNN or other accelerators. One

of the most promising approaches was High-level synthesis (HLS). Similar to designing e�cient DNN

accelerators, the major focus of these tools is determining the right schedule, particularly the data

orchestration among the memory hierarchy, since memory system is the most critical component of

DNN accelerator, as mentioned in Section 2.2.

HLS translates an algorithmic description written in untimed high-level languages like C/Sys-

temC/Java, into a fully timed register-transfer level (RTL) implementation. In such a way, it can

decouple the high level specification of the program from the low level design choices, including

register allocation, clock-level timing, and pipelining. Many people hoped that this would enable

application experts to create hardware, but as we will explain later in this section, this is not the case.

This decoupling does raise the hardware design to the abstraction level, facilitating and accelerating

the system-level exploration for architectural design space exploration. An additional advantage is

that, the C-based behaviour simulations of HLS designs takes much less time than cycle-accurate

simulation in HDL, which accelerates system level validation.

A HLS compiler first translates the high level description into a formal representation, with

certain code optimizations including dead-code elimination, constant folding, loop transformation

and so on. Then using user constraints on either performance, chip area or both, it performs

hardware allocation, which determines the type and the number of hardware resources that the

machine will use. Next, HLS schedules all operations required in the C specification into cycles

onto the hardware and computes the number of cycles required. Depending on the user constraints,

operations can be scheduled in several di↵erent ways: within one cycle, over multiple cycles, chained

CHAPTER 2. BACKGROUND 13

or executed in parallel. After scheduling phase, a binding step is executed to map each variable that

holds values across cycles to a storage unit. Variables with non-overlapping or mutually exclusive

lifetimes can use the the same storage units. Lastly, all decisions made in the previous tasks are

applied to generate a synthesizable RTL design [23].

Starting from the late 80’s, many HLS tools have been proposed and built. These tools were

motivated by the very successful introduction and widely usage of the hardware description lan-

guages Verilog/VHDL. In the early 80s, SA-C translates single-assignment C into non-recursive

data flow graphs to generate VHDL designs for image processing applications [25, 64]. ROCCC

compiler focuses on the data path generation and optimizes the on-chip storage into “smart bu↵ers”

to capture the data reuse inside loop structures for high computational density applications [34].

AutoPilot/xPilot leverages the specific system platform information to optimize logic, interconnects,

and generate e�cient RTL code from C/ C++/SystemC descriptions for better performance and

power [35, 19]. LegUp and Warp explore the hardware software codesign using application profiling

to detect the critical kernels, and dynamically and transparently compiling programs into a hetero-

geneous system with FPGA and a processor. On the commercial side, available HLS tools provided

by FPGA and EDA vendors include but are not limited to Vivado HLS [94], Catapult HLS [32],

MaxCompiler [90] and Altera OpenCL [7].

Although the adoption of HLS significantly reduces FPGA development complexity and cycles

by raising up the hardware design level, creating e�cient FPGA design using HLS requires C-

code built for hardware synthesis, which is quite di↵erent from developing high performance C

applications. HLS facilitates resource allocation, state machine generation, stage pipeline and many

tasks, thus makes it easy to explore schedules. However, in order to schedule programs e�ciently, it

is usually crucial to block the algorithm properly, and map the programs data to carefully partitioned

memories to optimize data locality. Properly blocked data enables the machine to exploit locality

and parallelism: smaller data blocks can fit in smaller and cheaper memories, enabling most data

to be served there with smaller cost. Such e�cient data blocking and program mapping requires

understanding and analysis of the memory access pattern and the underlying hardware features,

which we will demonstrate more in Section 3. This issue can become more challenging when multi-

level memory hierarchy is utilized to further optimize locality and performance.

This knowledge is also indispensable for HLS programmers to build e�cient hardware, for in-

stance, instantiating the proper local memory structures to optimally capture locality based on the

memory access pattern of di↵erent applications. To create these systems, it requires completely

distinguished C code from traditional C code that that runs application on general processors.

Therefore, generating high performance HLS code requires knowledge of both algorithm and archi-

tecture. So when applied well, it can make hardware designs more e�cient, releasing application

experts from the burden of creating hardware.

Another major drawback of HLS is the lack of readability and portability. When architecture is

CHAPTER 2. BACKGROUND 14

mixed with the algorithm knowledge, designs can produce high performance implementations, but

like highly tuned C-code, it is generally di�cult to understand. It is often hard to take this code

and modify it. These limitations are due to the fact that scheduling optimizations are blended with

the functionalities within HLS code. These issues add to some of the limitations of current HLS

tools. Also we have found HLS tools sometimes lack robustness when analyzing and compiling loop

nests with complex schedules. We will provide some examples and more details in the next section

to present the issues when creating DNN accelerators using HLS.

To free the designer from knowing about architectural issues requires making the tool incorporate

this knowledge. One common approach to accomplish this goal is to restrict the application domain,

thus limiting the knowledge that the tool needs to operate. This domain restriction makes it possible

to analyze the schedule and mapping for an program to achieve optimal locality and parallelism,

when compiling onto hardware. The benefit of domain knowledge, together with the motivation to

improve robustness, readability and portability upon HLS, have led to strong interests in developing

DSL systems.

2.4 DSL Systems

When focused on one specific domain, the tool can contain the proper microarchitectural templates

and use them to automatically and e�ciently generate high performance implementations from a

domain specific language. With knowing application characteristics, a DSL compiler can organize

the memory structures, and block the algorithms accordingly to map onto the optimized data storage

for better locality. For example, image processing kernels generates each output pixel using a window

of input pixels, and the window moves in raster-scan order. With such a compute pattern, a line-

bu↵ered pipeline is commonly utilized by image processing DSL systems to capture the data reuse

across overlapped windows. For DNN systems that move blocks of data between units, double bu↵ers

are commonly employed to overlap data communication between computation units of the next data

block with the ongoing computation of the current block. The next two sections will introduce DSL

systems for these application areas, and describe the memory organizations in more detail.

2.4.1 Image Processing DSL Systems

Image processing applications have extreme locality and parallelism making them fertile area for

hardware acceleration, and DSL systems for generating them. To minimize the number of DRAM

accesses, image processing algorithms are typically expressed as deep pipelines, or more generally,

directed acyclic graphs (DAGs) of computation kernels, where each kernel takes one or more images

as input, and produces an intermediate output image which is feed to another kernel. Initially it

might seem that the deep pipelines would require a large amount of memory for all the intermediate

images. To minimize this storage, the system takes advantage of the fact that pixels generally flow

CHAPTER 2. BACKGROUND 15

finput output

Active Working Set

Figure 2.3: A line bu↵er (the blue box) captures the active working set for a stencil kernel using
minimum storage.

through this pipeline in raster-scan order. In addition, most kernels in the DAGs are stencil kernels,

e.g., blurring, sharpening, etc., which calculate each output pixel from a local stencil window of

input pixels. With stencil kernels, all the data required to generate an output pixel can fit within a

small memory block, thus the storage for the intermediate images can be folded, reducing it to a few

lines of the image. For instance, given a 3 ⇥ 3 convolution kernel, if the input pixel rate from the

producer kernel equals the output pixel rate, the minimum working set of the intermediate image

is only two rows of pixels, as shown in Figure 2.3. These optimized storage units that capture the

minimum required working sets are called line bu↵ers.

A Line bu↵er is commonly placed between kernels in image processing pipelines, since it can

maximize data reuse and minimize memory communication. With pixels continuously calculated, a

line bu↵er can reuse the pixel from one stencil window to the next with minimal memory accesses.

This memory structure also ensures all the intermediate images are bu↵ered locally within a smaller

and cheaper memories, and the global data fetching and write-back only occur once at the beginning

and end of the pipeline respectively. Therefore, most custom hardware for image processing appli-

cations use line bu↵er pipeline as the microarchitectural template. This template separates kernel

stages by line bu↵ers and computes all kernel stages concurrently within the pipeline.

Of course it is possible to create line bu↵er and pipelines using HLS [72, 71], and these results

indeed show that implementing a line bu↵er targeting a FPGA (using HLS) is more complex than

targeting a CPU (using C language), as the hardware line bu↵er implementation requires explicit

management of storage allocation and data transfer. Specifically, a software program for CPU can

automatically exploit data reuse of adjacent stencils by caches and the register files of processors,

CHAPTER 2. BACKGROUND 16

thus only needs to organize the loop nests to minimize data reuse distance. A HLS line bu↵er

implementation has to explicitly allocate the storage for stencil window, and carefully manage the

data movement within and throughout the stencil structure.

To reduce the complexity of creating proper microarchitecture using HLS, many researchers have

created DSL systems for image processing hardware generation. Those DSL systems leverage the

microarchitectural knowledge of the domain to generate e�cient implementation from high-level

algorithmic specification. Specifically, Darkroom [40, 78], HIPAcc [76] and PolyMage [18] DSLs

systems take image processing algorithms coded in a DSL, compile and map them onto FPGA

or ASIC, using a line bu↵er pipeline microarchitectural template. To improve overall throughput,

PolyMage splits images into tiles, and perform coarse-grain parallelism by processing each tile in

parallel. Recent HIPAcc followup work [67] further performs fine-grain parallelism by vectorizing

the whole pipeline and processing vectors of pixels. Both HIPAcc and PolyMage emit HLS code,

and leverage Vivado HLS [94] to translate HLS code to RTL implementation.

The aforementioned systems all use line bu↵er pipeline to improve energy e�ciency for image

processing applications, with the ability to scale the design as a whole with coarse-grain parallelism

to suit for a larger FPGA to achieve higher throughput. However, with di↵erent program sizes, it is

crucial to support adjusting the throughput rate of each pipeline stage individually to achieve energy

savings. Rigel [41] and HalideToHardware [71, 72] are the examples of variable-rate DSL systems that

utilize a multi-rate line bu↵er pipeline to provide such flexibility. They allow developers to set the

throughput rate to be greater or less than one pixel/cycle, which are realized by vectorization or time

multiplexing respectively. Rigel embeds the rate setting into the high level program, by providing a

set of multi-rate modules for explicit instantiation. HalideToHardware takes advantage of Halide’s

decoupling of schedule from algorithm, and uses the high-level schedule primitives to set the data

throughput. After specifying the throughput using the primitives, the HalideToHardware compiler

automatically lowers the high-level program into multi-rate pipeline mappings. This system makes

exploring hardware design choices, particularly data throughout, easy by changing the program’s

schedule. Thus, like the CPU and GPU code it generates, generating optimized hardware doesn’t

need to change the algorithm code, it is done through the schedule. To leverage this benefit, we

also use Halide as the high-level language for our DSL system, and extend the HalideToHardware

system to support DNN applications in addition to the image processing domain.

2.4.2 DNN DSL Systems

Similar to imaging pipelines, DNNs are also composed as DAGs of multiple layers, and have greatly

benefited from hardware acceleration, but require di↵erent memory structures to exploit their in-

trinsic parallelism and data locality.

Although prior attempts have made great studies in automatic accelerator generation in the image

processing domain, the detailed computation and data reuse patterns of image stencil kernels and

CHAPTER 2. BACKGROUND 17

finput output

Bank B

Bank A

Figure 2.4: A double bu↵er uses two banks to hide data fetch latency.

DNN layers are significant di↵erent. A di↵erent optimal memory structure is needed to optimize

locality. Unlike image processing, which utilizes a line bu↵er to capture the stencil reuse with

minimum capacity, DNN layers may not have stencil reuse, such as FC and 1 ⇥ 1 CONV layers.

Even for convolution layers which have this reuse, the large number of input and output channels

associated with each kernel, changes the memory optimization problem. The large amount and

large reuse of this data generally means one should build a multi-level memory hierarchy, and block

the application to use it. Since we know exactly what data we will need to process next, highest

e�ciency is obtained by fetching the next data block while computing the results from the current

data. Double bu↵ers are frequently used to achieve such goal in DNN acceleration [99]. As depicted

in Figure 2.4, it uses two banks that work in a ping-pong fashion, where one bank serves data for

the current computation while the other bank is written with the next data block. Using such

optimized storage units, the data communication latency can be hided under computation cycles, as

long as there is su�cient computation to perform, which is usually the case for DNN applications.

Therefore, similar to previous DNN accelerators [99, 13], we also adopt double bu↵er pipeline as our

architectural template for DNN hardware generation.

CHAPTER 2. BACKGROUND 18

1 alloc A[16]

2 alloc C[1]

3

4 for m = 0 to 16

5 // Fetch and buffer one row of A for reuse across loop n

6 for k = 0 to 16

7 fetch A at [m, k], store in A[k]

8 for n = 0 to 16

9 // Compute an output element by dot product

10 for k = 0 to 16

11 C[0] += A[k] * B[k, n]

12 write back C[0] to C at [m, n] // Write back a complete output C element

Listing 2.1: Pseudo-code of matrix multiplication between two 16⇥ 16 matrices for CPU. CPU

target allocate local bu↵ers to optimize the locality for A and C matrices.

Despite of being popular for mapping DNNs onto FPGAs, using HLS for DNN hardware gen-

eration again requires the designer to have hardware design expertise to manually create the right

memory structure and manage the data access. Also as mentioned in Section 2.3, HLS programming

su↵ers from poor readability, portability and robustness. Listing 2.1 and 2.2 present the distinction

between the pseudo-code of a matrix-multiplication, targeting at CPU and FPGA. Though both

pieces of the code allocate local bu↵ers to optimize the data locality, the FPGA code is more com-

plex, as its local bu↵er structure is implemented as a double bu↵er, and the code has to explicitly

manage the data assignment and communication. In Listing 2.1, each iteration of loop m computes

one row of output C matrix by reusing each row of A matrix across all iterations of loop n, thus

a local bu↵er is allocated to avoid the data refetching. Note the CPU code assumes that the data

prefetching and reuse will be automatically exploited by caches and register files of the processors,

but this assumption doesn’t hold for FPGA target, thus explicit double bu↵er management is neces-

sary. As shown in Listing 2.2, the FPGA implementation creates two banks for bu↵ering A matrix

(Line 1), and adopts the software pipelining technique to manually perform data prefetching to hide

the data transfer latency under the computation (line 5 to 29).

After adding the complicated and explicit local memory management for generating e�cient

hardware, design space exploration becomes harder, since evaluating each choice likely requires

di↵erent memory patterns, and significant HLS code change. It is ine�cient and challenging using

HLS to analyze the entire design space, especially for large problems. For the matrix multiplication

example demonstrated in Listing 2.1 and 2.2, the space contains a large number of design points

that break the matrices into smaller ones in various ways and bu↵er them accordingly to optimize

the locality. As the spaces grow exponentially with the dimensions and sizes of the problems, the

design space for DNNs can be even larger, and we will provide more detailed analysis about this in

Chapter 3.

CHAPTER 2. BACKGROUND 19

1 alloc A[2][16] // Allocate two banks for double buffering

2 alloc C[1]

3 init flag = 0 // Initiate iteration flag for counting the bank index

4

5 // Filling phase: prefetch the first row of A, store in bank A[0]

6 for k = 0 to 16

7 prefetch A at [0, k], store in A[0][k]

8

9 // Steady phase: use double buffers to hide data fetching of each new row

10 for m = 0 to 15

11 // Fetch and buffer one row of A for reuse across loop n

12 for k = 0 to 16

13 // The newly fetched row of A is stored in the other bank A[1-flag]

14 fetch A at [m, k], store in A[1-flag][k]

15 for n = 0 to 16

16 // Compute an output element by dot product

17 for k = 0 to 16

18 // Consume the row of A stored in the current bank A[flag]

19 C[0] += A[flag][k] * B[k, n]

20 write back C[0] to C at [m, n] // Write back a complete output C element

21 // Update iteration flag, so that flag will be set to 1 if it is 0, and vice versa

22 flag = 1 - flag

23

24 // Draining phase: compute the last row use the last row stored in bank A[1]

25 for n = 0 to 16

26 // Compute an output element by dot product

27 for k = 0 to 16

28 C[0] += A[1][k] * B[k, n]

29 write back C[0] to C at [15, n] // Write back a complete output C element

Listing 2.2: Pseudo-code of matrix multiplication between two 16⇥ 16 matrices for FPGA. In

addition to allocating local bu↵ers to optimize locality for A and C matrices, the FPGA target

also allocate a double bu↵er for A using two banks. To manage the two banks to work in the

ping-pong fashion to hide the data fetching latency, FPGA target explicitly performs software

pipelining to prefetch the next block of data while consuming the current block.

Similar to image processing acceleration, to automate the implementation of optimal microar-

chitectures and schedules, prior work created DSLs for DNNs. For instance, Ca↵eine [100] and

DNNWeaver [80] can directly compile high-level network descriptions to a FPGA target by inte-

grating with Ca↵e [47]. To achieve good performance, both of them develop hand-optimized design

templates and utilize those parametrized templates as libraries when generating DNN accelerators.

Similarly, VTA [60] is another programmable deep learning architecture template, integrated with

TVM [11] (a deep learning compilation stack) to support divergent hardware backends. To provide

the flexibility for diverse and evolving models, VTA proposes a two-level ISA and uses a just-in-

time (JIT) compiler, along with a parametrized architecture. HeteroCL [55], another framework

CHAPTER 2. BACKGROUND 20

extended from TVM, consists of a Python-based domain-specific language (DSL) and a compila-

tion flow targeting at FPGA. Inspired from Halide [74], it also provides a programming abstraction

that decouples algorithm specification from hardware mapping choices, to achieve high performance.

T2S-tensor [86], directly build on Halide, also leverages the decoupling feature to generate e�cient

systolic array implementations for dense tensor kernels on spatial architectures, such as FPGAs and

CGRAs. Since Halide provides the benefits of decoupling algorithm from schedule, we employ and

extend Halide as our DSL system for compiling DNNs onto hardware.

2.5 Halide Language

Halide [74] is a domain-specific language (DSL), that originally targeted at generating high-performance

image processing implementations with readability, portability and modularity. The key idea in

Halide is to split the computation to be performed (the algorithm) from the decisions about storage

and the order in which it is done (the schedule).

Due to the decoupling between algorithm and schedule, the Halide compiler can translate the

high-level, architecture-independent specification, defined in Halide algorithm, to low-level high-

performance machine code for di↵erent machines and architectures, with proper schedules. In other

words, with the same algorithm code, the schedules can be tuned (manually by programmer or

automatically by auto-scheduler [61]) to significantly improve the performance, based on the char-

acteristics of underlying machine. This improvement is not limited to the general backends such as

CPU and GPU that are originally supported by Halide system. Pu et al. [72] also extend the system

to describe and map image processing applications onto a CPU/FPGA heterogeneous systems, by

taking advantages of the portability of Halide algorithms, and the compact scheduling language to

organize the computation [72].

Even though Halide is originally designed for image processing, it is generally applicable to dense

loop-structured computation including linear algebra and DNNs. This is because both matrices and

feature maps can be regarded and stored as images, and the schedules of the computation essentially

perform loop transformations. As a result, Halide provides a compact and elegant language to rep-

resent loop transformations. These transformations along with commands that create intermediate

storage enables us to extend Halide further to generate hardware accelerators for DNNs in addition

to image processors. The rest of this section presents more information about the Halide language

and its programming model.

2.5.1 Halide Algorithms

Halide represents the computation algorithm in pure functional form. In a DNN algorithm, fmaps

in a layer can be represented as Halide functions, defined over an infinite domain, which maps pixel

coordinates to their values. Halide functions can be simple expressions, or reductions over a bounded

CHAPTER 2. BACKGROUND 21

domain. Reductions are particularly useful for expressing stencil computation in image processing

and DNNs, as it can express iterative or recursive computations. They are typically composed of

an initial definition and an update reduction function. The initial definition initializes each point

in the function domain. While the reduction function redefines the value at each point by using

update expressions, which can contain references to the same function. Unlike a pure function, such

as the initial definition, reduction is not applied over an infinite domain, but rather a bounded one.

This bounded domain that defines the order in which the reduction function is applied, is called

reduction domain. The following example shows the Halide algorithm for a CONV layer with

3⇥5⇥5 filter size.

1 // To perform a 5 x 5 convolution with 3 channels

2 // RDom(xMin, xExt, yMin, yExt, kMin, kExt)

3 RDom r(-2, 5, -2, 5, 0, 3);

4 output(x, y, k) = 0;

5 output(x, y, k) += input(x + r.x, y + r.y, r.z)

6 * w(r.x + 2, r.y + 2, r.z, k);

The RDom keyword defines a multi-dimensional reduction domain, over which an iterative com-

putation such as a summation is performed. A RDom is defined by the minimum position and extent

in each of its dimensions. In the CONV layer example, the RDom covers the width and height of

the filters and the number of input fmaps, over which the accumulation will iterate. The initial

definition (line 4) uses a simple assignment to initialize each point in the output domain. Then the

CONV filtering is performed using summation to update the value of output (line 5).

For reduction functions, the dimensions of the reduction domain can only be reordered or parallel

if the update function is associative. As a practical simplification for applications such as image

processing and DNNs, Halide model restricts the bounding region to be axis-aligned, so that the

regions can be defined and analyzed using simple interval analysis. This facilitates the bound analysis

and compiler inference of the storage for each function and loop with any expression constructed in

Halide language.

As mentioned in Section 2.1, DNNs are organized as a pipeline or a DAG of layers. To build

such pipeline or DAG, functions can be composed into graphs, in which the function definitions can

refer to other previously defined function values. For instance, a two stage CNN can be expressed

as a chain of four functions:

CHAPTER 2. BACKGROUND 22

1 // To perform a 5 x 5 convolution with 3 channels

2 // RDom(xMin, xExt, yMin, yExt, kMin, kExt)

3 RDom r1(-2, 5, -2, 5, 0, 3);

4 conv1(x, y, k) += input(x + r1.x, y + r1.y, r1.z)

5 * w1(r1.x + 2, r1.y + 2, r1.z, k);

6 relu1(x, y, k) = select(conv1(x, y, k) < 0, 0, con1(x, y, k));

7

8 // To perform a 3 x 3 convolution with 64 channels

9 // RDom(xMin, xExt, yMin, yExt, kMin, kExt)

10 RDom r2(-1, 3, -1, 3, 0, 64);

11 conv2(x, y, k) += relu1(x + r2.x, y + r2.y, r2.z)

12 * w2(r2.x + 1, r2.y + 1, r2.z, k);

13 relu2(x, y, k) = select(conv2(x, y, k) < 0, 0, conv2(x, y, k));

Function conv1 and relu1 compose the first CONV layer, which performs 5⇥ 5 convolution to

process 3 input feature maps (ifmaps) and generate 64 output feature maps (ofmaps). These 64

ofmaps serve as the inputs to the second CONV layer, composed of conv2 and relu2. Reference

to function conv1 are used in the definition of function relu1, so does function relu1 and func-

tion conv2, indicating the data dependency between adjacent two functions. Note, the region of

each function to be computed is not given by the program, but instead derived from the compiler

automatically from the realization bound of the output of the pipeline. Specifically, the compiler

can analyze the computation pattern and dependency of each function, and determine the required

region of the intermediate functions based on the final output size. For this example, if the ofmap

relu2 is set to 256⇥256, the required size of 256⇥256, 258⇥258 and 258⇥258 for function conv2,

relu1 and conv1 will be computed by the compiler, respectively.

2.5.2 Halide Schedules

While the algorithm defines the functionality of the computation, it does not specify the ordering

of parallel operations or data accesses. Generally, the number of possible execution orders of an

image processing or DNN are numerous. Luckily, these algorithms can mostly be abstracted as

graphs of functions over regular grids, leading to the optimal organization of computation on parallel

machines being a regular structure. Therefore, leveraging this characteristic, Halide formulates this

huge scheduling space, and proposes a scheduling language to specify the computation order and

storage organization. Specifically, Halide schedules, which consist of scheduling primitives applied

to various stages of the pipelines, addresses two issues:

• At what granularity to compute and store each function, and at what granularity to interleave

this computation with other functions.

• In what order the domain of a function should be traversed for evaluation.

The Domain Order Halide scheduling model defines the traversal order in the required region

CHAPTER 2. BACKGROUND 23

of each function’s domain. This order is named as domain order, which essentially use a traditional

set of loop transformations, such as tiling, vectorization and unrolling. Because Halide’s model of

function is data parallel by construction, dimensions can be interleaved in any order, and traversed

sequentially or in parallel using the loop transformations. In the language, these transformations

can be specified using the following scheduling primitives.

• Each dimension can be traversed sequentially (by default) or in parallel (f.parallel(x)).

• Constant-size dimensions can be unrolled (f.unroll(x)) or vectorized (f.vectorized(x)).

• Dimensions can be reordered, for instance, f.reorder(y, x) moves the loop over y inside the

loop x.

• Dimensions can be split, for instance, f.split(x, xo, xi, factor) split dimension x by a

factor, creating an outer dimension xo and an inner dimension xi. The original reference is

replaced by xo⇥ factor + xi.

• Combining loop splitting and reordering is loop tiling, which is a useful technique to ex-

ploit memory locality. Halide provides a syntactic suger f.tile(x, y, xo, yo, xi, yi,

xfactor, yfactor) to conveniently perform loop tiling, which splits x by a factor of xfactor

and split y by a factor of yfactor, then transposes the inner dimension of y with the outer

dimension x to traverse over tiles.

• Two dimensions can be merged into a new dimension by fusing loops (f.fuse(x, y)).

By performing loop transformations on the dimensions of a function using above primitives, its

domain can be traversed in any regular order, providing the opportunity to optimize locality and

performance.

The Call Schedule Beyond specifying the order of evaluation within the domain of each func-

tion, a Halide schedule can also specify at which granularity the computation and storage of stages

are interleaved within a pipeline. These choices are named the call schedule, while each function’s

call schedule is defined as the loop level of its callers where it is computed and stored for reuse. The

two most commonly used schedule primitives are:

• f.compute at(g, d) specifies the function f to be realized at each iteration of the loop over

domain d of the function g. The region of f to be evaluated each time can be automatically

inferred from Halide compiler based on the geometry of domain d and the data dependency

between f and g, no programmer specification is needed.

• f.store at(g, d) specifies the memory to be allocated at each iteration of the loop over

domain d of the function g for storing and reusing values of the function f. The size of the

allocation required each time can be automatically derived from Halide compiler in a similar

way.

CHAPTER 2. BACKGROUND 24

Together, the domain order and call schedule provide the capability to schedule stencil pipelines

on rectangular grids. They allow the locality of a stencil pipeline to be optimized, using the loop

transformations defined within the domain with the inter-stage interleaving schedules. However, to

further exploit locality for applications that involve massive data and have extreme locality, a single

level of bu↵er constructed from the function itself is insu�cient. Therefore, Halide also provides

another schedule primitive in to instantiate additional pieces of storage. Specifically, f.in() creates

and returns a new identity function that wraps f, thereby replacing all calls to function f with the

calls to the wrapper. Using this primitive, together with compute at, enables moving a subset region

of a function into a smaller local bu↵er, thus substituting the accesses to the original function storage

with cheaper ones to the local bu↵er.

2.6 Summary

With DNN applications becoming pervasive in the last decade, the solutions for accelerating DNNs

exploded. Many researchers have studied micro-architecture, schedule and software-hardware code-

sign for DNN acceleration. Due to the high computation complexity and large parallelism of DNNs,

spatial architecture such as a systolic array has been widely adopted by prior work. The spatial

architecture is commonly incorporated with double bu↵ers to provide low data fetching latency and

high performance. With memory energy from all levels in the memory hierarchy constantly domi-

nating the overall system energy, prior researchers also investigated di↵erent approaches to optimize

locality and energy e�ciency. This includes how to e�ciently schedule DNNs onto the hardware,

particularly the data movement inside spatial array and across memory hierarchy.

When mapping functions onto the hardware, there exists a large number of scheduling choices

to schedule the seven nested loops that express each CONV and FC layer, including loop tiling,

unrolling, reordering, etc.. Composing various choices of tiling, and all possible granularities of

store and compute, it leads to an enormous scheduling space. Fortunately, Halide provides su�cient

primitives to express all these scheduling choices, thereby nicely and compactly describing the huge

schedule space.

Searching for the optimal choice in this huge space is di�cult, particularly with each choice

making its trade-o↵ between parallelism, locality and redundant computation. To facilitate searching

for the most e�cient mapping on hardware for DNNs, we leverage Halide language to build our

DSL system. The Halide’s scheduling language, built on top of the loop transformation concepts,

provides a perfect model to describe the optimizations and cover the scheduling space for developers

when mapping image processing onto CPUs and GPUs. The next chapter will propose using the

loop transformation concepts to precisely and comprehensively describe the design space for CNNs.

Inspired by these concepts, Chapter 4 will demonstrate how we can extend the scheduling model for

expressing the hardware mapping and scheduling space for CNNs.

Chapter 3

The Design Space of DNN

Papers describing the DNN accelerators discussed in Section 2.2 have shown energy and performance

improvements over general-purpose baselines, and explored how the parameters they experimented

with a↵ect performance and e�ciency. Unfortunately, without an understanding of the global design

space, each paper explores a di↵erent part of the space—perhaps coupling together independent

parameters— so this approach leads to conflicting reports on the “optimal” parameters.

To avoid this problem, and help developers better understand the impact of each parameter, a

systematical analysis of the space of all possible dense DNN accelerators is necessary. We start by

looking at the subspace that have been explored by prior works. Section 3.1 reviews and summarizes

the architecture templates and schedule strategies commonly used by previous DNN accelerators.

With the spatial architecture commonly utilized, optimizing the schedules becomes crucial, par-

ticularly finding the proper loops to parallel, also named dataflow. Section 3.2 introduces previous

e↵orts on systematically describing the schedule choices, including stationary-based, loop next-based

approaches, etc.. These proposed taxonomies can facilitate the classification of existing DNN accel-

erators, and exploration of schedule choices.

Since all accelerators compute the same results, the di↵erences among accelerators must be in

the resources available to compute the result, and the way the computation is scheduled to use

these resources. However, prior taxonomies usually purely focused on the schedule and mapping of

the algorithms, and coupled schedule choices with the architecture design choices. To individually

investigate each parameter and comprehensively analyze the space, in Section 3.3 we consider a

3D design space for DNN accelerators. To precisely represent the dataflow choices in the space,

Section 3.2 proposes a formal taxonomy based on the spatial loop unrolling, as it perfectly aligns

with the Halide schedule primitives.

25

CHAPTER 3. THE DESIGN SPACE OF DNN 26

3.1 DNN Accelerators

The computational complexity of DNN algorithms and the demand for high energy e�ciency has lead

to a surge in research on hardware accelerators. The computational model of DNNs are essentially

DAGs of layers, with CONV and FC layers dominating the computation workload. The majority

of the computation of those layers are sets of multiply-and-accumulate (MAC) operations, which

can be easily parallelized. To improve the overall throughput, highly-parallel compute paradigms

are widely exploited. The CPUs or GPUs are temporal architectures, since they execute instruction

sequentially in time, whose parallelism can be improved by vectorization (SIMD), multi-threading

(SIMT), etc. These machines feature great flexibility, but depend on a centralized control unit

(instruction unit) to orchestrate the data movement among all Processing Elements (PEs). In other

words, PEs don’t have the capability to independently fetch data from the memory hierachy or other

PEs. To overcome the control and communication overhead posed by this centralized control unit in

the temporal architecture, spatial architectures has drawn a great attention from previous researchers

as better alternatives for accelerating DNNs [13, 48, 99, 29]. They replace the single control unit with

a dedicated control logic along with local bu↵ers inside each PE. Such configuration enables both

parallel processing and dataflow processing, which relay data from one PE to another to connect

PEs as processing chains.

Spatial architectures are widely employed for both ASIC and FPGA platforms. For instance,

Diannao designed a Neural Functional Unit (NFU), which utilizes a set of multipliers followed by

a reduction tree to perform dot product in vectorized fashion [12]. With such NPU, their spatial

architecture is able to optimize the computation energy e�ciency and performance, however due to

the inappropriate memory hierarchy configuration, the overall energy in this system is significantly

dominated by the memory energy. This was an early result which indicated that optimizing memory

energy is usually more critical than optimizing computation energy for DNN workloads. The reason

is simple: performing one MAC operation requires three operand reads and one output write. Each

access to the main memory is more expensive than computing one MAC operation. Therefore

Diannao’s follow-up work DaDiannao [16] allocated a large on-chip eDRAM, attempting to bu↵er

all weights on-chip to alleviate the memory energy issue by reducing the o↵-chip memory fetches.

While given the DNN statistics in Table 2.1 in Section 2.1, the required on-chip bu↵er size only

to store all the weights is already on the order of Megabytes to hundreds of Megabytes, leading to

expensive and slow data fetches from these bu↵ers as well.

To optimize the memory energy, it is crucial to properly design the hardware architecture, partic-

ularly the memory hierarchy, and carefully orchestrate the data movements among di↵erent memory

levels. Some other researchers have studied co-optimizing algorithms with hardware to reduce the

model sizes, including pruning the models into sparse networks [38], or designing more hardware-

friendly networks such as squeezenet [46] and mobilenet [44] as mentioned in Chapter 2. This work,

focuses on the scheduling/mapping and architecture design for existing dense networks, so the next

CHAPTER 3. THE DESIGN SPACE OF DNN 27

section discusses more details about previous proposed DNN architecture for these applications.

3.1.1 DNN Accelerator Architectures

Despite of the wide range of existing accelerators introduced in Section 2.2, we can summarize the

architecture adopted by most previous accelerators as a parametrized template, as shown in Fig-

ure 3.1. The template is composed of compute tiles and a memory system, while each computation

tile is a PE array (Figure 3.1(a)), which can be configured as either a reduction tree (Figure 3.1(c))

or a systolic array (Figure 3.1(b)). Some examples that use the reduction tree templates are Dian-

nao [12], Zhang et al. [99], MAERI [54] and so on. The first two utilizes reduction trees to compute a

dot product by breaking down the computation into a set of smaller dot-product that fit on the tile.

The last one directly performs 2D convolutions accumulating the output using the reduction tree.

The systolic array template can be employed to describe ShiDiannao [26], TPU [48], Eyeriss v2 [14]

etc.. A Systolic array approach is more commonly utilized for accelerating DNNs, as it provides

good parallelism and e�ciently exploits data reuse by serving data from neighbor PEs rather than

from more expensive SRAM bu↵er or DRAM.

The memory system in the template consists of DRAM, a multi-level shared memories, tile bu↵ers

and local register files. The multiple levels of shared memories are shared by and serve data to all

compute tiles to reduce the expensive access to DRAM. Inside each compute tile are tile bu↵ers that

can be accessed by all PEs inside the tile. Each PE also has its own private register file to bu↵er a

small subset data for reuse. Apart from DRAM, the rest memory hierarchy is all double-bu↵ered.

While the PEs are operating on the data in one bu↵er, the data for the next iteration is being loaded

to the next bu↵er, as was introduced in Section 2.4.2.

This template is su�ciently comprehensive to describe the architectures of most previous ac-

celerators. Take Eyeriss [13] as one example. The compute core of Eyeriss is one compute tile of

a 14 ⇥ 14 2D PE array. Its memory system can be precisely expressed as 512B local register file

per PE, 128KB tile bu↵er and DRAM. No shared bu↵ers are allocated since just one compute tile

is instantiated; this situation can be configured by setting the number of shared bu↵ers as zero.

A tiled architecture such as Tangram [30], has a 8MB shared memory, which is shared among all

16⇥ 16 compute tiles. Each compute tile containing a 8⇥ 8 PE array, with a 64 B register file per

PE and a 32 kB tile bu↵er. Other previous proposed accelerators including TPU [48], SCNN [68],

Zhang et al. [99], etc. can be concisely described by this template as well, but the details will be

omitted here. The next section we will discuss how to e�ciently schedule and map DNNs on this

architecture template to maximize performance and minimize the energy cost.

3.1.2 DNN Schedules

How the DNN is mapped and scheduled on our hardware a↵ects the utilization rate of the compu-

tation resource, which directly sets the hardware performance. It also sets our ability to carefully

CHAPTER 3. THE DESIGN SPACE OF DNN 28

Accelerator

off-chip DRAM

Shared
Buffers

Double Buffer

Double Buffer

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

Tile

PE
Array

Tile

Tile
Buffers

(a) Architecture overview.

PE
Array

Tile

Tile
Buffers

Double Buffer

(b) Systolic array.

PE
Array

+ +
+

Tile

Tile
Buffers

Double Buffer

(c) Reduction tree.

Figure 3.1: DNN accelerator architecture consisting of tiles of PE array and a memory hierarchy.

CHAPTER 3. THE DESIGN SPACE OF DNN 29

organize the data movements in the multi-level memory hierarchy to exploit data locality, by moving

as many accesses possible to smaller memory. This optimization improves operand bandwidth, and

reduces the energy cost of fetching the data.

ASIC accelerators have used a number of e�cient scheduling approaches, Diannao adopted a

simple schedule which transforms CONV layers into a set of dot products. This ordering allowed

accumulating partial sums locally, new inputs and weights to be fetched every iteration, resulting

in no data reuse of these variables. Like many other groups, a later design from this same group

replaced the expensive data broadcasting from SRAM bu↵ers or DRAM by using a systolic array

architecture. ShiDiannao [26] again optimized for output reuse, now by breaking down the ofmap

into multiple small tiles and laying out a ofmap tile onto the 2D PE array. Scheduling in this

way, each PE accumulates one ofmap pixel, while inputs are transferred and reused among PEs in

systolic fashion. Many di↵erent schedules can be used on a systolic array. The TPU transformed

CONV layers into General Matrix Multiplication (GEMMs) flowing both ifmaps and ofmaps across

the array, to optimize the weight reuse inside PEs, as well as the input and output reuse among

neighbor PEs. Eyeriss proposed a novel dataflow choice, named as Row Stationary. It breaks CONV

layers down into 1D convolution primitives and spatially lays out 2D convolution onto the PE array,

by mapping a 1D primitive to each PE. Leveraging Row Stationary’s capability of optimizing all

types of data reuse, the architecture of Tangram [30] comprises multiple compute tiles, where each

implements a Row Stationary dataflow. Among compute tiles, the data communication is optimized

by exploring e�cient ways to partition data within each layer and across layers.

FPGA accelerators followed similar types of schedules. Zhang et al. [99] also transformed the

computation of CONV layers into GEMMs, and instantiated a set of MACs to compute the dot

product. They also explored di↵erent loop orderings and tilings around the dot product to optimize

resource utilization and o↵-chip bandwidth. Shen et al. [81, 82] further improved the resource

utilization by jointly optimize the mapping of multiple layers on multiple instantiated compute tiles.

Many other works also optimized the schedules and mappings of DNNs, which will be discussed in

Section 3.2

Despite of the large amount of e↵orts devoted by previous researchers to determine the optimal

schedules and mappings, this task has not been fully solved. Three factors make the problem di�cult

to solve: large schedule space, correlated data reuse to exploit, workload and platform variation.

Large schedule space: The number of schedule choices is enormous. As mentioned in Sec-

tion 2.1, CONV and FC layers can all be presented as 7 nested loops as presented in Algorithm 1.

Scheduling this loop nest can be regarded as performing loop transformations, including loop reorder-

ing, splitting, paralleling, etc. These transformation techniques can help to optimize data locality

and performance, which will be discussed in more details in Section 3.3. Using loop splitting, we

can partition each single loop into a outer and an inner loop. For example, splitting loop x results

in two new loops xo, xi. xo scan across tiles from 0 to X
o

, xi iterate inside the tile from 0 to X
i

,

CHAPTER 3. THE DESIGN SPACE OF DNN 30

and X
o

⇥X
i

= X. Repeating the splitting process creates more loops which iterate over the same

original dimension. Thus the number of choices of loop splitting is numerous, since each loop split

has many choices of the tile size (X
i

) and each original loop can be split multiple times.

Additionally, when considers on loop reordering, the schedule space becomes even larger. Just

considering loop reordering without loop splitting, gives 7! = 5040, which is the number of all

possible loop orders of a 7 nested loops. When loop splitting is considered to better use a two-level

or three-level memory hierarchy, each loop maybe split once or twice, the total count can go up to

(7!)2 ⇡ 2.5⇥ 107 (each loop split once) to (7!)3 ⇡ 1.3⇥ 1011 (each loop split twice). Since loops are

split to block for each level of the memory hierarchy, the loop order with a n-level memory hierarchy

has (7!)n options in total. The number of loop orders goes exponentially with levels in the memory

hierarchy.

In this large scheduling space, an accelerator designer has additional choices to make : which

loops to unroll and execute in parallel on the hardware. For instance, choosing two loops from the

seven nested loops to be spatially mapped onto the vertical and horizontal dimensions of 2D array

makes
�7
2

�
= 21 options. As a result, considering di↵erent choices of paralleling loops further enlarges

the schedule space.

In summary, combining all the loop transformation options yields a huge schedule space for a

single CONV or FC layer.Considering ways to schedule multiple layers concurrently will further

expand this space. Without an understanding of the full design space, it is di�cult to figure out

the optimal schedules and key scheduling factors. Therefore, it is useful and necessary to have a

systematic way to construct the design space for thorough analysis and rapid exploration. This

framework is presented in the next section.

Correlated data reuse: The large amount of data and high data reuse requires careful schedul-

ing to maximize data locality. There are trade-o↵s when optimizing the data reuse for ifmaps,

ofmaps, and filters. As presented in Table 3.1, the dimensions of ifmaps are X, Y (image dimen-

sions), C (input channels) and B (images in a batch), to maximize the reuse of ifmaps, ideally we

want to hold the ifmaps in the bu↵er as input stationary and iterate over loops f
x

, f
y

, k, since each

ifmap pixel is reused by all the coe�cients in the filter window, and across all filters. However, this

schedule results in filter weights streaming through every cycle with no reuse. To fully maximize the

reuse of filters weights, instead the filters are kept stationary in the bu↵er while iterating over loops

x, y, b. Due to such trade-o↵s, optimizing for only one data type reuse is unlikely to be optimal.

Instead, finding the optimal schedule demands carefully balancing the reuse among di↵erent data

types.

Workload and platform variation: The optimal schedules depend on the input layer shapes

and the underlying processing hardware. DNN models may have distinct layer configurations, as

optimized for a diversity of working scenarios. Even within the same network, layers at di↵erent

stages are designed and optimized to extract features of varying types and at varying scales, this

CHAPTER 3. THE DESIGN SPACE OF DNN 31

Table 3.1: The dimensions of each data block (set D), and loops reuse the data block (set V)

Data Dimensions(D) Loops with reuse(V)

ifmap X, Y , C, B f
x

, f
y

, k
ofmap X, Y , K, B f

x

, f
y

, c
weight F

X

, F
Y

, C, K x, y, b

gives rise to many possible CONV/FC layer shapes. Similarly, targeting at di↵erent purpose (energy

e�ciency, throughput or latency, etc.) and applications (heavy or light workload, image or sequence

models), gives rise to significant di↵erent platforms and architectures. To achieve high e�ciency, the

schedule must be optimized individually for distinct layers and platforms. This requires either gen-

erating a large number of binary objectives for di↵erent schedules, or reschedule the input algorithm

rapidly by Just-In-Time (JIT) compilation.

3.2 Previous DNN Scheduling Taxonomy

Given the importance of finding optimal schedules and mappings of DNNs, previous researchers

attempted to systematically describe the schedule space by proposing di↵erent types of taxonomies.

These e↵orts can be broken into three main classes: stationary-based [13], loop nest-based [57] and

data-centric [53]. Specifically, stationary-based dataflow taxonomy categorizes each schedule by the

type of the data block that is kept stationary inside the local register file (RF) for reuse. Mapping-

based taxonomy represents each schedule by directly describing the spatial and temporal mapping

of each dimension of data. Loop transformation-based taxonomy simply use the transformed loop

arrangement to describe schedule. We will discuss each in the following sections in more details.

3.2.1 Stationary-Based Dataflow

Eyeriss highlighted the importance of on-chip dataflow on energy e�ciency and proposes a stationary-

based taxonomy to group a variety of prior accelerators based on the type of the data that remains

stationary inside the local RF of PEs. As a result, previous accelerators are classified as Weight

Stationary (WS), Output-Stationary (OS), Row-Stationary (RS) and Non-Local-Reuse (NLR) [13].

SCNN further adopted and extended this taxonomy, and proposed an Input-Stationary (IS) station-

ary accelerator [68].

Weight-Stationary (WS) Dataflow: The filter weights are held stationary in each PE’s

RF. By mapping all operations that use the same weight coe�cient onto the same PE for pro-

cessing sequentially, this datalfow maximizes weight reuse, thereby minimizing the memory energy

consumption of fetching weights.

Figure 3.2 presents the data movement of two WS dataflow implementations. For the WS

CHAPTER 3. THE DESIGN SPACE OF DNN 32

PE(0,0) PE(0,1) PE(0,2)

PE(1,0) PE(1,1) PE(1,2)

PE(2,0) PE(2,1) PE(2,2)

I[][1][][]

I[][2][][]

I[][0][][] c = 0

c = 1

c = 2

O[][0][][] O[][1][][] O[][2][][]

k = 0 k = 1 k = 2

multiplier
adder

input[b][c][y][x]

weight[k][c][fy][fx]

output[b][k][y][x]

X
+

X +

X +

X + X +

X +

X + X +

X +

X +

W[0][0][][] W[1][1][][] W[2][0][][]

W[0][2][][]

W[0][1][][] W[1][1][][]

W[1][2][][]

W[2][1][][]

W[2][2][][]

(a) WS1 dataflow.

fx = 0 fx=1 fx=2

fy = 0

fy = 1

fy = 2

multiplier
adder

input[b][c][y][x]

weight[k][c][fy][fx]

output[b][k][y][x]

X
+

+

+

+

+

+

+

+

W[][][0][0] W[][][0][1] W[][][0][2]

W[][][2][0]

W[][][1][0] W[][][1][1]

W[][][2][1]

W[][][1][2]

W[][][2][2]

I[][][0][0]
X

I[][][0][1] I[][][0][2]
XX

I[][][1][0] I[][][1][1] I[][][1][2]

I[][][2][0] I[][][2][1] I[][][2][2]

X X X

X X X

... ...
O[][][][]

(b) WS2 dataflow.

Figure 3.2: Two Weight-Stationary (WS) dataflow implementations. WS1 unrolls input and output
channel dimensions (c, k), WS2 unrolls filter width and height dimensions (f

x

, f
y

). Yellow, purple
and green blocks represent the data blocks for input, weight and output respectively. Indexing to
the data block is the same as Algorithm 1, for example, input[b][c][y][x] refers to the ifmap pixel at
batch b, channel c, row y and column x. Empty index can be either a scalar index or a vector of
indices within the valid range.

CHAPTER 3. THE DESIGN SPACE OF DNN 33

dataflow in Figure 3.2(a), which we name WS1, each weight stays in the RF of each PE, weights

from di↵erent filters are stored inside PEs at di↵erent columns, while weights at di↵erent channels

are distributed at di↵erent rows. Accordingly, the ifmap pixels are broadcasted along the horizontal

direction to PEs at the same row, with each channel of the ifmap send to the appropriate row. The

computed partial sums (psums) are then spatially accumulated vertically across the PEs at the same

column. This specific WS dataflow can be regarded as unrolling and spatially mapping input and

output channel dimensions (loop c and k) on the 2D PE array.

Variants of WS1 implementation have been commonly used in previous accelerators, as it is

generally flexible to support both CONV and FC layers. Beside, the number of input and output

channels of most layers are su�ciently large to maximally utilize computation resource after un-

rolling. In addition to optimally reuse weight, WS1 dataflow also spatially reuse inputs and outputs.

TPU is a systolic version of WS1 dataflow implementation as in Figure 3.2(a), where each PE keeps

a unique pair of filter and channel for weight reuse. But instead of broadcasting the ifmap pixels to

PEs vertically, each PE relays ifmap pixels to the next PE in a pipelined fashion [48], same for partial

sums. Some other systolic array accelerators employing this WS dataflow includes Ca↵eine [100, 92].

Figure 3.2(b) demonstrates another common WS dataflow implementation, which we will call

WS2. F
X

⇥ F
Y

weights from the same filter and channel are laid out to a array of F
X

⇥ F
Y

PEs,

and stay stationary inside PEs’ RF. Each iteration, a new set of F
X

⇥ F
Y

ifmap pixels are fetched

and distributed to be multiplied with the corresponding weights, and accumulates to one output.

Essentially it performs a 2D convolution every cycle by unrolling and spatially mapping filter width

and height dimensions (loop f
x

and f
y

).

Qiu et al. [73] and Song et al. [85] are two examples of WS2 dataflow accelerators. For both of

them, a window of selected ifmap pixels are read from line bu↵er and send to the convolver, which

are PEs of multipliers followed by an adder tree, to compute the convolution result one data per

cycle in a map-reduce fashion. Additionally, Song et al. [85] adopted the WS2 dataflow to accelerate

the weight update stages in GANs. To skip the halos (zeros) in the data block, they extended

WS to Zero-Free-Weight-Stationary (ZFWS) dataflow that rearranges the data mapping meanwhile

keeping weight stationary. Specifically, weights with even indices are grouped together and mapped

as neighbors, so do the odd weights. Even though WS2 dataflow can also reuse the partial sums

inside the reduction tree, this approach su↵ers from inflexibility, as layers in DNNs can have di↵erent

filter window sizes. Mapping a large convolution operation onto a small convolver requires additional

control logic and more complex schedules, while mapping a small convolution onto a large convolver

simply results in low utilization.

Output-Stationary (OS) Dataflow: The partial sums (psums) are held stationary in each

PE’s RF to accumulate locally. By mapping all operations that accumulate to the same output onto

the same PE for processing sequentially, this dataflow maximizes output reuse, thereby minimizing

the memory energy consumption of fetching psums.

CHAPTER 3. THE DESIGN SPACE OF DNN 34

PE(0,0) PE(0,1) PE(0,2)

PE(1,0) PE(1,1) PE(1,2)

PE(2,0) PE(2,1) PE(2,2)

W[][][][]
x = 0 x = 1 x = 2

I[][][0][]

I[][][1][]

I[][][2][]

y = 0

y = 1

y = 2

multiplier
adder

input[b][c][y][x]

weight[k][c][fy][fx]

output[b][k][y][x]

X
+

X +

X +

X + X +

X +

X + X +

X +

X +

O[][][0][0] O[][][0][1] O[][][0][2]

O[][][2][0]

O[][][1][0] O[][][1][1]

O[][][2][1]

O[][][1][2]

O[][][2][2]

(a) OS1 dataflow.

PE(0,0) PE(0,1) PE(0,2)

PE(1,0) PE(1,1) PE(1,2)

PE(2,0) PE(2,1) PE(2,2)

k = 0 k = 1 k = 2

I[0][][][]

I[1][][][]

I[2][][][]

b = 0

b = 1

b = 2

multiplier
adder

input[b][c][y][x]

weight[k][c][fy][fx]

output[b][k][y][x]

X
+

X +

X +

X + X +

X +

X + X +

X +

X +

O[0][0][][] O[0][1][][] O[0][2][][]

O[2][0][][]

O[1][0][][] O[1][1][][]

O[2][1][][]

O[1][2][][]

O[2][2][][]

W[0][][][] W[1][][][] W[2][][][]

(b) OS2 dataflow.

Figure 3.3: Two Output-Stationary (OS) dataflow implementations. OS1 unrolls feature map width
and height dimensions (x, y), OS2 unrolls batch and output channel dimensions (b, k. Yellow, purple
and green blocks represent the data blocks for input, weight and output respectively. Indexing to
the data block is the same as Algorithm 1, for example, input[b][c][y][x] refers to the ifmap pixel at
batch b, channel c, row y and column x. Empty index can be either a scalar index or a vector of
indices within the valid range.

CHAPTER 3. THE DESIGN SPACE OF DNN 35

Figure 3.3 shows the data movement of two typical OS dataflow implementations. For the first

OS dataflow (OS1) shown in Figure 3.3(a), a region of ofmaps are mapped to the PE array and held

stationary in the local RF for reuse. Each cycle a new weight coe�cient is broadcasted to all PEs,

while the required inputs at the corresponding ifmap locations are distributed. This dataflow can

be achieved by unrolling and spatially mapping feature map width and height dimensions (loop x

and y).

As long as ofmaps are su�ciently large, OS1 can achieve reasonable utilization. Since weights are

broadcasted to all PEs, OS1 benefits from weight spatial reuse as well. Besides, as each ifmap pixels

contributes to multiple outputs, by carefully arranging the ifmap pixels movement, input locality

can also be optimized. For example, ShiDiannao [26] designed an interconnect inside 2D array to

shift inputs left-right and bottom-up for spatially reusing the same inputs across multiple outputs.

Peemem et al. [70] manually managed input data storage inside multiple memory banks to transpose

input data block for better reuse and higher memory bandwidth.

Another common approach to implement OS dataflow (OS2) is illustrated in Figure 3.3(b). It

essentially transforms both CONV layers and FC layers into general matrix multiplication (GEMM)

C = A ⇥ B, then adopts one of the common schedules for GEMM [69]. Specifically, a new column

of A is broadcasted horizontally, and a new row of B is broadcasted vertically at each cycle. After

K 0 cycles, where K 0 corresponds to the inner dimension of the matrix multiplication, each PE

accomplishes a dot product between a row of A and a column of B, and accumulates one output of

C. This approach is essentially unrolling batch and output channel dimensions (loop b and k).

Since both CONV and FC layers have dimension b and k, OS2 dataflow can be adopted to map

both CONV and FC layers. Besides output reuse, OS2 also spatially reuse inputs and weights. For

example, Gupta et al. [36] implemented a systolic array employing this dataflow. To better exploit

the spatial reuse of inputs and weights, the systolic realization replaces the broadcast communication

with access to neighbor PE’s RF. Despite the additional reuse, one drawback of OS2 approach is its

restriction of the batch size or latency. When low latency is required which takes a small batch size,

it potentially lacks su�cient parallelism and leads to low utilization and energy e�ciency.

Input-Stationary (IS) Dataflow: Each ifmap pixel is held stationary inside one PE as

it is multiplied by all of the filter weights needed to make all of its contributions to a volume of

K ⇥ F
X

⇥ F
Y

ofmaps. By mapping all operations that utilizes the same input onto the same PE

for processing sequentially, this dataflow maximizes input reuse, thereby minimizing the memory

energy consumption of fetching ifmaps.

IS dataflow is the opposite of OS dataflow, a region of ifmaps are mapped to PEs and kept

stationary, while moving the psum among the PEs. It is adopted by SCNN [68] for accelerating

sparse networks, due to their intention to bu↵er all the compressed fmaps onchip. This objective

requires a relatively large input bu↵er, whose access is expensive and slow. To amortize this energy

cost, inputs are registered inside PEs, substituting the more expensive accesses to the larger bu↵er

CHAPTER 3. THE DESIGN SPACE OF DNN 36

c=1

multiplier
adder

input[b][c][y][x]

weight[k][c][fy][fx]

output[b][k][y][x]

X
+

+

+

+

+

+

+

+

W[0][0][][]

X

I[][0][][] X

X

X
... n-1

O[][0][][]

X

X

X

X

O[][n][][]

...
...

W[0][1][][]

W[0][2][][]

W[0][3][][]

W[n][0][][]

W[n][1][][]

W[n][2][][]

W[n][3][][]

I[][1][][]

I[][2][][]

I[][3][][]

c=3

c=3

c=4

k=1

k=n

Figure 3.4: The Non-Local-Reuse (NLR) dataflow implementation. It unrolls input and output
channel dimensions (c, k). Yellow, purple and green blocks represent the data blocks for input,
weight and output respectively. Indexing to the data block is the same as Algorithm 1, for example,
input[b][c][y][x] refers to the ifmap pixel at batch b, channel c, row y and column x. Empty index
can be either a scalar index or a vector of indices within the valid range.

with the cheaper accesses to registers, while paying a cost to stream the weights to the PE array.

Note SCNN utilized a tiled architecture, at the tile level, each tile of ifmaps are kept stationary

inside the compute tile as well.

Non-Local-Reuse (NLR) Dataflow: The NLR dataflow does not exploit data reuse at the

RF level, but captures the ifmap reuse and accumulates psum using iter-PE communication.

As depicted in Figure 3.4, PE array is divided into groups of PEs, PEs within the same group

read ifmap pixels and filter weights from di↵erent input channels, and accumulates one psum locally

inside the group. Di↵erent PE groups share the same sets of ifmap pixels but compute with di↵erent

filter weights from the same input channel. The architecture is essentially a parallel collection of

reduction trees. Within each reduction tree, the input channel dimension (loop c) is unrolled, while

output channel dimension (loop k) is spatially mapped across trees.

It maybe surprising to notice that the loop spatial mapping of NLR is the same as the one of

WS1, but NLR dataflow doesn’t have a RF inside PEs, thus it is less e�cient. It can’t to exploit

input spatial reuse and weight temporal reuse, and only takes advantage of accumulating psums

locally using ALU datapaths. Similar to WS1, NLR also preserves good flexibility, variants of the

NLR dataflow appear in Diannao [12], Zhang et al. [99], Alwani [8], Chakradhar et al. [10], Shen et

al. [81, 82], Suda et al. [87], etc.. In Diannao, registers are allocated following each PE array column

to bu↵er the psums, which further exploits psum temporal reuse. Zhang et al. [99] explored loop

tiling choices to maximize the FPGA on-chip resource and o↵-chip bandwidth utilization, on top of

using NLR dataflow. Shen et al. [81, 82] further investigated how to improve the resource utilization

and throughput by implementing a tiled architecture, and orchestrate the data mappings among

CHAPTER 3. THE DESIGN SPACE OF DNN 37

PE(0,0) PE(0,1) PE(0,2)

PE(1,0) PE(1,1) PE(1,2)

PE(2,0) PE(2,1) PE(2,2)

y = 0 y = 1 y = 2

W[][][0][]

W[][][1][]

W[][][2][]

fy = 0

fy = 1

fy = 2

multiplier
adder

input[b][c][y][x]

weight[k][c][fy][fx]

output[b][k][y][x]

X
+

X +

X +

X + X +

X +

X + X +

X +

X +

I[][][0][]

O[][][0][] O[][][1][] O[][][2][]

I[][][1][]

I[][][2][] I[][][3][] I[][][4][]

Figure 3.5: The Row Stationary (RS) dataflow implementation. It unrolls filter height and ifmap
height dimensions (f

y

, y). Yellow, purple and green blocks represent the data blocks for input,
weight and output respectively. Indexing to the data block is the same as Algorithm 1, for example,
input[b][c][y][x] refers to the ifmap pixel at batch b, channel c, row y and column x. Empty index
can be either a scalar index or a vector of indices within the valid range.

tiles. Alwani [8] proposed to fuse and map multiple layers together onchip, thereby eliminating

o↵-chip memory communication for writing back intermediate data between layers.

Row-Statioinary (RS) Dataflow: The RS dataflow divides the MACs into 1D convolution

primitives. Each primitive operates on one filter row and one ifmap row to generate one row of psums,

thus termed as row primitive. By mapping each row primitive onto the same PE for processing in a

sliding window order, the computation of each row pair stays stationary in the PE, which exploits

the reuse of for all data types combined.

As shown in Figure 3.5, RS dataflow assigns 1D primitives from the same ifmap channel on the PE

array to perform a 2D convolution. This mapping capture ifmap, ofmap and filter reuse opportunities

at the RF level and across primitives in the NoC. With each PE processing the row primitive in the

sliding window order, the filter row and ifmap row are reused temporally inside RF. Besides, each

filter row and ifmap row are also spatially reused horizontally and diagonally respectively, while

each psum row is vertically accumulated. The mapping can be treated as unrolling filter height and

ifmap height dimensions (loop f
y

and y).

One simple way to map a RS dataflow on the hardware is to lay out a 2D convolution from the

same fmap channel on the PE array. However, frequently there are cases that the 2D convolution

is doesn’t match the size of the PE array. When the size of the PE array is large, the pattern

in Figure 3.5 can be spatially duplicated across the PE array for various 2D convolutions. This

technique, named replication, increases the utilization of computation resource, but requires more

complex interconnects to further exploits data reuse among the PEs. On the other hand, when

the size of PE array is small, the original row primitives have to be temporally folded into multiple

CHAPTER 3. THE DESIGN SPACE OF DNN 38

processing phases. This technique, named as folding, serializes the computation and time-multiplexes

the hardware for reuse. Both replication and folding can be adopted for other dataflows as well to

improve the utilization or reuse.

Since Eyeriss [13] demonstrated the above benefits of RS dataflow, some of the recent accelerators

are also designed using this mapping. Tetris leverages RS dataflow to map NNs onto systems that

combines 3D memory with PE arrays. By taking advantage of the high bandwidth and low access

energy of 3D memory, it was able to rebalance the NN accelerator design, using more area for PEs

and less area for on-chip SRAM bu↵ers [29]. Tangram studied e�cient ways to utilize on-chip bu↵ers

and optimize intra-layer and inter-layer reuses of DNNs on tiled architecture that supports coarse

grain parallelism, with employing RS dataflow inside each tile [30]. Similarly, Hyper also optimized

schedules across multiple accelerator to improve both intra-layer and inter-layer parallelism for both

inference and training, while using RS dataflow for each accelerator unit [84]. In addition to mapping

CNNs, FlexiGAN extended the original RS dataflow to apply to the mappings of GANs as well. The

extended RS dataflow can skip halos in transposed convolution stages by data reorganization that

groups and maps even rows and odd rows separately [96].

In summary, stationary-based dataflow provides a systematical way to categorize various accel-

erators based on their characteristics of data mapping. Such approach highlights the importance

of data movement through the memory hierarchy, especially local RF inside PEs. By comparing

accelerators using di↵erent dataflows within this taxonomy, it also demonstrates dataflows that can

optimize the reuse for all data types combined such as RS, are generally more energy e�cient than

other dataflows.

However, this taxonomy has some limitations. First, the schedule choices are blended with the

architecture design choices during the classification. More precisely, the categorization of some

dataflows are not purely based on the schedule choices, i.e. loop unrolling, but also depends on

the existence of RF inside PEs. For example, TPU [48] and Diannao [12] spatially map the same

dimensions onto the spatial architecture, but belong to WS and NLR respectively.

Second, the stationary-based taxonomy lacks fine-grain classification. As previously introduced,

spatially unrolling di↵erent dimensions can generate the same dataflow, even they may have di↵erent

data movement patterns, flexibility, limitations, etc.. For instance, unrolling c and k loops can

generate one WS dataflow, meanwhile unrolling f
x

and f
y

also keeps weight stationary, this case for

other dataflows such as OS.

As a result, it doesn’t provide comprehensive and precise representation of the space. It can’t

describe flows that merge stationary like a hybrid weight and an output stationary pattern is di�cult

to represent. Finally it omits critical information like replication and splitting.

CHAPTER 3. THE DESIGN SPACE OF DNN 39

3.2.2 Loop Nest-Based Schedule

Using a loop nest-based representation is one way to remove the ambiguity of stationary metrics;

we used it in the previous section. It has been used to describe some prior accelerators. Loop nest

syntax matches the nature of imperative programming language — leveraging loop order and bounds

to guide the program execution, and requiring almost no translations from the imperative program

to loop nest notation. After applying the loop transformation techniques to the program, including

loop blocking (loop tiling, reodering) and unrolling, we can infer potential data reuse opportunities

from the resulted loop nests.

For example, Diannao [12] used a 12-nested-loop to express the schedule of CONV layers on their

architecture. Zhang et al. [99] adopted a 4-nested loop to represent the external data communication,

and another 6-nested loop with explicit loop unrolling to describe the on-chip data mapping and

computation.

FlexFlow [57] proposed a taxonomy based on the parallel data dimension. It defined three types

of parallelism: feature map parallelism (FP) that unrolls feature map related loops c and/or k,

neuron parallelism (NP) that unrolls loop x and/or y, and synapse parallelism (SP) that unrolls

loop f
x

and/or f
y

. Based on the types of parallelism exploited, the schedules are categorized

as seven di↵erent combinations, including Single Feature map, Single Neuron, Multiple Synapses

(SFSNNMS), Multiple Feature map, Single Neuron, Multiple Synapses (MFSNNMS) and so on. This

parallelism nest-based taxonomy features moderately good readability, but lacks precise description

about how each data dimension is mapped onto the PE array, since unrolling loop c and k both

leads to feature map parallelism.

Compared with Stationary-based taxonomy, loop nest-based taxonomy is less well developed.

The existing ones only study a subset of the schedule space, or only provide a coarse grain clas-

sification. To preform a comprehensive and systematic analysis, we adopt the similar concept of

expressing schedules by loop nests, and propose our loop-next based taxonomy to describe the space

in Section 3.3.

3.2.3 Data-Centric Dataflow

Masetro [53] proposed a data-centric dataflow representation to explicitly describe data schedule,

tiling and mapping on PEs. This is di↵erent from loop nest-based dataflow, where loop order,

parallelism and tiling implicitly guide data movement and organization across multiple levels of

memory hierarchy to influence data reuse. The data-centric dataflow representation is based on

three directives: spatial map, temporal map and cluster — the first two encapsulate loop tiling and

data mapping over time and space, the last one arranges the granularity of the mapping over space.

Similar to loop nest based notations, the data-centric directives are processed from innermost

to outer ones. Instead of using loop unroll primitives, the cluster directive Cluster(size) allows

the user to describe a mapping over multi-dimensional PE array with clustering of PEs. The base

CHAPTER 3. THE DESIGN SPACE OF DNN 40

clusters are simply the PEs in the array. size determines the number of sub-clusters bundled at

the level cluster is specified. Using the directive multiple times constructs superclusters, which

becomes a unit dimension for outer directives.

The temporal map directive TemporalMap(size, offset) dim is used to schedule loop tiling

and mapping over time. It maps the same set of data in the dimension to all the sub-clusters, with

size determining the number of elements mapped in a data dimension dim (loop tiling), and offset

specifying how the mapping move to all of the sub-clusters in the next iteration (loop tile iteration

rule over time). For example, TemporalMap(3, 1) X maps three elements in X dimension in each

iteration, and shifts by one in the next iteration, thus the mapped x over time is (0, 1, 2), (1, 2, 3)

and so on.

The spatial map directive SpatialMap(size, offset) dim is used to schedule loop tiling and

mapping over space. It maps di↵erent sets of data in a dimension to all sub-clusters, with size

determining the number of data mapped in a dimension dim (loop tiling), and offset specifying

how the mapping move to the next cluster (loop tile iteration rule over space). For example,

SpatialMap(3, 1) Y maps three elements in Y dimension on each cluster (PE in the case), and

shifts by one in the next cluster (PE). Specifically, the mapped y index on each PE is: PE0(0, 1, 2),

PE1(1, 2, 3) and so on.

Using these three directives, the stationary-based dataflows can be represented in the data-centric

representation. For example, the RS dataflow can be represented as below:

TemporalMap(1, 1)k ! TemporalMap(1, 1)c ! SpatialMap(F
X

, 1)y ! Cluster(F
Y

) !
TemporalMap(F

X

, 1)x ! TemporalMap(F
Y

, F
Y

)f
y

! TemporalMap(F
X

, F
X

)f
x

The key advantage of a data-centric dataflow is facilitating the analysis of data reuse, bu↵er size

and access, and thereby easing performance and energy e�ciency analysis for better productivity in

design space exploration. This is the natural space of the data-centric representation, which explicitly

precisely states how each dimension of the data maps and iterates over time and PEs. It also achieves

fine-grain classification, for example, distinguishing di↵erent WS dataflows by SpatialMap directives,

and can represent any hybrid dataflows.

However, this representation is di�cult for people to create or read and understand. It could be

viewed as intermediate representation (IR) of dataflows extracted from loop-nest notations, which

we present in next section.

3.3 Design Space Overview

With our formal loop blocking approach to characterize DNN accelerator, we can now cleanly par-

tition its design space along 3 axis: hardware dataflow [13, 53], loop blocking [95] and hardware

resource allocations. To obtain more insightful understanding of the design space, we therefore con-

sider a corresponding three-dimensional design space for DNNs, as shown in Figure 3.6. We will

CHAPTER 3. THE DESIGN SPACE OF DNN 41

later use design space to fairly compare di↵erent accelerators.

Dataflow: DNN accelerators often exploit parallelism to improve performance, by using multiple

processing elements (PEs) simultaneously. Essentially it executes one or more loops in Algorithm 1

in parallel through spatial loop unrolling. The data access and communication patterns across the

multiple PEs are determined by the dataflow scheme [13], which we characterize by which loops are

unrolled as described in the previous section. Typically, the dataflow is carefully orchestrated so

that data accesses to more expensive memories, including the storage in other PEs and the large

shared bu↵ers, can be minimized. Note, the dataflow terminology we defined here only specifies

data spatial mapping across PEs, does not include loop blocking (tiling, reordering) choices, which

is separated as another orthogonal dimension for independent analysis.

Resource Allocation: Hardware resource allocations, such as the dimensions of the PE array

and the size of each level in the memory hierarchy, are also essential to the performance and e�ciency

of the accelerator. They determine the computation throughput, the location of the data, and the

energy cost and latency for each memory access. For example, since the energy cost and latency

of each data access grow with memory size, an e�cient design needs to carefully size each memory

level to optimally balance bu↵er being large enough to hold su�cient data for high locality, while

being as small as possible to minimize fetch energy.

To concisely and comprehensively describe hardware resource allocation, the representation

is mainly based on the following configurations — MemoryLevels(integer), MemorySize(vector),

BankSize(vector), SpatialSize(vector), CommunicationMode(vector). They describe the total num-

ber of levels in the memory hierarchy (including DRAM level), the memory size (Bytes) at each level,

the bank size (Bytes) of each memory, the number of parallel compute units that can be spatially

mapped on, and how data are transferred among the PE arrays, for example, broadcasting or systolic

fashion. Except for MemoryLevel, which is a scalar value, the rest are all vectors, with elements

at position i indicating the memory size, dimensions of parallel units and communication mode at

memory level i (0  i < MemoryLevel).

Take Eyeriss [13] and Tangram [30] as examples, Eyeriss is composed of a 14 ⇥ 14 broadcast

PE array, a 512B RF inside each PE, a 128KB tile bu↵er and DRAM, its architecture designs can

be expressed as Listing 3.1. Since Tangram comprises 16 ⇥ 16 tiles of 8 ⇥ 8 PE arrays, there are

4 memory levels in total — 64B local RF per PE, 32KB bu↵er per tile, 8MB shared bu↵er and

DRAM, as presented in Listing 3.2. Note, the bank sizes in Listing 3.2 are not the ones used in

those designs, dummy numbers are used for this example.

1 MemoryLevels: 3 # number of memory levels

2 MemorySize: [512, 131072, Inf] # size of [RF, tile buffer, DRAM]

3 BankSize: [512, 8192, Inf] # bank size of each memory (optional)

4 SpatialSize: [[16, 16], 1, 1] # 14 x 14 2D array

5 CommunicationMode: [broadcast, None, None] # broadcast bus

Listing 3.1: Resource allocation description for Eyeriss

CHAPTER 3. THE DESIGN SPACE OF DNN 42

1 MemoryLevels: 4 # number of memory levels

2 MemorySize: [64, 32768, 8388608, Inf] # size of [RF, tile buffer, shared buffer,

3 # DRAM]

4 BankSize: [512, 4096, 16384, Inf] # bank size of each memory (optional)

5 SpatialSize: [[8, 8], [16, 16], 1, 1] # 8 x 8 PEs, 16 x 16 tiles

6 CommunicationMode: [systolic, systolic, None] # systolic array

Listing 3.2: Resource allocation description for Tangram

Figure 3.6, used a simplified representation of this data, which gives the total number of MAC

units N , and the memory size S
i

at each level i, represented as a vector (N,S1, S2, . . .). The full

resource representation is used for detailed analysis and space exploration, which will be discussed

in Section 5.1.

Loop Blocking: Most DNN layers have high computation intensity, but, like GEMM, the large

data sizes require the computation to be properly blocked for e�cient execution. What makes the

blocking hard is the fact that all the data fetched — input, weight and output are reused multiple

times. In a convolutional layer, output pixels at di↵erent fmap postions share the same filter;

di↵erent filters share the same input image; and overlapping windows share ifmap pixels. So any

blocking scheme will cause some data to be refetched.

Assuming a multi-level memory hierarchy (e.g., register files, on-chip SRAM, and o↵-chip DRAM),

we want to schedule the computation to maximize the data reuse in the near, smaller memories to

lower overall energy cost. However, to reduce the energy cost of the local memory, the local memory

size need to remain small. With limited local storage, the data is often kicked out before exhausting

reuse, leading to fetching data from higher-cost memory. Thus, it is of great importance to choose

proper data block sizes to balance the trade-o↵ between data reuse and energy cost for access data.

Since all the data fetched— inputs, outputs, and weights—can be potentially reused, an optimal

schedule must choose the best data reuse opportunities that optimizes the overall locality. We will

use the techniques of loop splitting and reordering, which together we refer to as loop blocking [95],

to transform the nested loops in Algorithm 1 to optimize the di↵erent data access/reuse patterns

for each memory level.

Note, in our design space definition, loop blocking is separated from the dataflow terminology,

while our dataflow dimension only covers the loop unrolling choices with given blocked loops. This

definition decoupling is one of the major di↵erences from other prior works [13, 53, 68]. It allows

us to break the cross-product of the two factors, and independently investigate the impact of each

one. Leveraging the space shape along each individual dimension, the large space exploration can

be better understood and potentially accelerated.

Using these three factors enables us to create a design space that is comprehensive and systematic,

enabling us to project existing DNN accelerators in Figure 3.6. We do not explicitly show the loop

blocking schemes for each architecture in this figure, since most prior work did not report their

loop blocking strategy, or simply exhaustively searched for an ad-hoc optimized scheme. This figure

CHAPTER 3. THE DESIGN SPACE OF DNN 43

Figure 3.6: 3D design space for DNN accelerators. The positions of labels or vectors on each axis
only represent di↵erent choices without specific information about ordering or distance.

CHAPTER 3. THE DESIGN SPACE OF DNN 44

clearly shows the wide design space current accelerators occupy. The next chapter will show how the

modified scheduling primitives in Halide cover not just loop blocking, but also resource allocation

and dataflow. This system makes it easy to fairly compare di↵erent accelerator design decisions.

3.4 A Formal Loop-based Dataflow Taxonomy

To create a formal dataflow taxonomy based on loops, we first describe the basic blocking notation

that we will use, and then show how the dataflow of an accelerator can also be represented by loop

operations. The computation being performed by a convolutional layer can be easily expressed as

a 7 layer loop nest as shown in Algorithm 1. Since there are no dependencies in this computation

except along the reduction dimension, the loops in the algorithm can be done in various orders. We

will represent a particular implementation order by creating a vector of string that indicates the

loop order from innermost to outer. Thus [f
x

, f
y

, x, y, c, k, b] presents the computation order shown

in Algorithm 1. We create another vector to represent the bound of each of the loop variables so it

represents the number of iterations done at each loop level, [F
X

, F
Y

, X, Y, C,K,B].

Given this initial loop nest, blocking can be thought of as simply splitting a number of loops,

and then exchanging the order in which these split loops are executed. In our notation, when the x

loop is split, x0 represents the inner part of the X loop and the loop bound for x0, X0, represents

the range of the data computed in this loop. x1 represents the outer loop and X1 again represents

the range of data computed in this loop. In this case, with X = X0 ⇥X1, the loop bound remains

the same, and the original loop variable x can be represented as x1 ⇥ X1 + x0. In other words,

every time the loop variable x1 increments by one, the iteration in x dimension increments by X0.

Multi-level blocking occurs when a single loop is split multiple times, and is easy represented in our

notation extending X1 to X
n

, with X =
Q

n�1
i=0 X

i

.

We use multi-level blocking to create a loop representation that we can map to a 3-level memory

hierarchy. As shown in Listing 2, each of the seven loops in Algorithm 1 is split twice to generate

three new loops (except filter window dimension f
x

and f
y

for simplicity). In this way, the large data

blocks I, O, W are tiled into smaller blocks to store at the near, smaller memory levels for e�cient

fetch and reuse. To indicate the di↵erent memory levels, we extend our blocking notion by adding

a dimension which indicates the memory level. Thus the loop nests in Listing 2 are represented as

a 2D vector, the loop order vector is [[f
x

, f
y

, x0, y0, c0, k0, b0], [x1, y1, c1, k1, b1], [x2, y2, c2, k2, b2]], the

blocking size vector is [[F
X

, F
Y

, X0, Y0, C0,K0, B0], [X1, Y1, C1,K1, B1], [X2, Y2, C2,K2, B2]]. The

1D vectors at position i indicate the loop order and bounds at memory level i. If certain loops are

not tiled at the level i, then the the value for those loop bounds in blocking size vector at position

i will be set as 1. The loop order in Listing 2 can be modified to present other blocking schemes.

This corresponds to exchanging certain element positions in loop order vectors.

Using the loop order vector and blocking size vector, we can systematically explore the loop

CHAPTER 3. THE DESIGN SPACE OF DNN 45

Algorithm 2 CONV layer: Loop blocking for 3-level memory hierarchy.

==================== {memory level 2} ======================
I[B2 ⇥B1 ⇥B0][C2 ⇥ C1 ⇥ C0][Y2 ⇥ Y1 ⇥ Y0 + F

Y

][X2 ⇥X1 ⇥X0 + F
X

]
O[B2 ⇥B1 ⇥B0][K2 ⇥K1 ⇥K0][Y2 ⇥ Y1 ⇥ Y0][X2 ⇥X1 ⇥X0]
W[K2 ⇥K1 ⇥K0][C2 ⇥ C1 ⇥ C0][FY

][F
X

]
for b2 = 0 to B2 � 1 do
for k2 = 0 to K2 � 1 do
for c2 = 0 to C2 � 1 do
for y2 = 0 to Y2 � 1 do

for x2 = 0 to X2 � 1 do
============== {memory level 1} ==============
I1[B1 ⇥B0][C1 ⇥ C0][Y1 ⇥ Y0 + F

Y

][X1 ⇥X0 + F
X

]
O1[B1 ⇥B0][K1 ⇥K0][Y1 ⇥ Y0][X1 ⇥X0]
W1[K1 ⇥K0][C1 ⇥ C0][FY

][F
X

]
for b1 = 0 to B1 � 1 do
for k1 = 0 to K1 � 1 do

for c1 = 0 to C1 � 1 do
for y1 = 0 to Y1 � 1 do
for x1 = 0 to X1 � 1 do
======== {memory level 0} ========
I0[B0][C0][Y0 + F

Y

][X0 + F
X

]
O0[B0][K0][Y0][X0]
W0[K0][C0][FY

][F
X

]
for b0 = 0 to B0 � 1 do
for k0 = 0 to K0 � 1 do
for c0 = 0 to C0 � 1 do
for y0 = 0 to Y0 � 1 do
for x0 = 0 to X0 � 1 do

for f
y

= 0 to F
Y

� 1 do
for f

x

= 0 to F
X

� 1 do
O0[b0][k0][y0][x0] += I0[b0][c0][y0+f

y

][x0+f
x

]
⇥W0[k0][c0][fy][fx]

blocking space to find the optimal loop order and tiling size that minimize memory energy by serving

most of the data from small memories and minimizing the amount of data that these memories need

to fetch from larger, higher energy memories in the memory hierarchy.

Besides loop reordering and tiling, another commonly used loop transformation technique is

loop unrolling. Noticing the connection between dataflow and spatial loop unrolling, we represent

the dataflow of an accelerator through the mapping of particular loops to the parallel computation

structures. In other words, the data communication pattern is determined by which loops are

spatially unrolled in hardware, and which are not. For example, if the x and y loops are unrolled

onto the 2D array, then each PE produces a single output pixel. This output stationary pattern

implies that input pixels will be reused across neighbor PEs as they contribute to multiple output

pixels in a convolution, and the filter weights shared by all output pixels must be transferred to all

CHAPTER 3. THE DESIGN SPACE OF DNN 46

C1
C2
C3

under-utilized

(a) No replication.

C1
C2
C3
C1
C2
C3
C1
C2
C3
C1
C2
C3
C1
C2
C3

X1

X2

X3

X4

X5

(b) With replication.

Figure 3.7: Computation resource utilization can be improved by replication.

PEs. If we instead unroll the F
X

and F
Y

loops, we obtain a weight stationary pattern, where the

weights stay and are reused within the same PEs, but the inputs and outputs are spatially broadcast

or accumulated.

To concisely represent dataflows using spatial loop unrolling schemes on 2D PE arrays, we use

the syntax U | V , where U and V denote the loops unrolled across the vertical and horizontal

dimensions, respectively. Table 3.2 shows several common dataflows expressed as unrolled loops

and the corresponding terminology in prior work. This framework makes it clear that, given L-level

(non-trivial) nested loops in the algorithm and d spatial dimensions in the accelerator, there are
�
L

d

�

possible dataflow choices. For a 2D array, the number of dataflow types is
�7
2

�
= 21 for a CONV

layer, and
�3
2

�
= 3 for a fully-connected layer.

However, the above considered dataflows, which unroll a single loop at each spatial dimension,

can potentially result in under-utilizing computation resources. For instance, as illustrated in Fig-

ure 3.7(a), when unrolling a loop C with size of 3 on the vertical dimension of a 16⇥16 PE array,

only 3 of the 16 rows of PEs are utilized, leaving the remaining PEs idle. To overcome this is-

sue, in addition to unrolling loop C, another loop such as X is also unrolled by a factor of 5, as

shown in Figure 3.7(b), improving the utilization ratio from 3/16 to 15/16. Therefore, it is of great

importance to support unrolling multiple loops onto one spatial dimension. As mentioned earlier,

this improvement is called replication [13, 14], which processes multiple small loops in parallel to

increase resource utilization. Our loop-based taxonomy can also nicely and consistently express it

using U | VW or UW | V , depending on the replicated dimension. When replication is supported,

the number of dataflow choices increases to
�7
x

�
for a CONV layer mapping to a 2D array, where

CHAPTER 3. THE DESIGN SPACE OF DNN 47

Table 3.2: Common dataflows from [13] expressed using spatially unrolled loops.

Dataflow Representation

Output stationary x |y
Weight stationary f

x

|f
y

Row stationary f
y

|y
Weight stationary c |k

Table 3.3: Categorization of prior DNN accelerators using our dataflow taxonomy. Dataflows are
represented as [U |V,W |Z, ...], where element at position i indicates the unrolled loops at memory
level i.

Dataflows Previous design

[x | y] [26, 85, 70]
[x | y, x | y] [68]
[x | k] [80]
[b | k] [36]
[f

x

| f
y

] [73, 85]
[c | k] [12, 48, 99, 8, 81, 82, 87, 92, 10]
[f

y

| y] [13, 15, 29, 30]
[f

x

| x] [56]

x >= 2, thus dataflow design space becomes even larger.

Note that with replication (i.e., mapping multiple loops onto the same physical dimension), the

data communication pattern is no longer uniform: intra-loop data can be communicated among

nearest-neighbor PEs, inter-loop data have to be sent to multiple hops away with higher communi-

cation cost. Syntactically, we represent this by ordering the loops mapped to the same dimension,

where the PEs generated by unrolled loops to the left have shorter communication distances than the

loops on the right. Figure 3.8 shows an example of unrolling both C and K loops onto a 1D array.

The eight PEs have been divided into two groups, each working on a output channel K
i

. Within

each group, di↵erent PEs process di↵erent input channels C
i

. The outputs are only communicated

among the nearest PEs, while the inputs have to transfer from one group to the other with a cost

four times of nearest neighbor communication.

Replication can improve the resource utilization. However, layers with di↵erent configurations

(for example, filter window sizes, fmap sizes) may require di↵erent optimal replication. Thus flexible

or re-configurable interconnect is necessary to support mapping multiple layers on the same compute

array. Eyeriss V2 [14] proposed a hierarchical mesh interconnect that can operate at di↵erent modes

to support a wide range of cases, including high bandwidth, high reuse and so on. MAERI [54]

designed a programmable interconnect that can support various DNN layer partitions and mappings

by properly configuring the switches in the tree structure. On the other side, the reconfigurability

CHAPTER 3. THE DESIGN SPACE OF DNN 48

C0 C1 C2 C3 C0 C1 C2 C3
O0 O0 O0 O1 O1 O1

I0
I1

I2
I3

K0 K1

Figure 3.8: Unroll two loops C andK onto a 1D array with dataflow CK. Outputs are communicated
between adjacent PEs, while inputs are communicated across groups.

and flexibility of FPGA and CGRA make them good candidate to map the widely varying layers

e�ciently.

Next we introduce how our taxonomy is capable of expressing dataflows with multi-level paral-

lelism. With tiled architecture such as Tangram [30] SCNN [68], the dataflow choices need to be

made both inside the tile and across compute tiles. In this case, the dataflow choice is formed by hi-

erarchically unrolling loops at corresponding memory levels. We represent the hierarchical dataflow

as [U |V,W |Z, ...], where element at position i indicates the unrolled loops at memory level i. For

example, given a tiled architecture with 3-level memory hierarchy as shown in Algorithm 2, assuming

memory level 0 (RF) is local to each PE, and memory level 1 (bu↵er) is shared by PEs within one

tile, but private to each tile, then spatial loop unrolling choices are explored at both memory level

0 and 1. If c0 and k0 loops are unrolled within each compute tile to keep weight stationary, while

fmap are split to fmap tiles to map onto di↵erent compute tiles by unrolling x1 and y1 loops, the

dataflow choice is expressed as [c | k, x | y].
Advantages: The loop-based approach builds upon the ideas of [13] stationary characteristics,

and provides a more precise definition of each dataflow while expanding the range of flows that

can be described. This benefits can be illustrated from Table 3.3, which categorizes existing DNN

accelerators based on this taxonomy. For example, Diannao [12], TPU [48] and Zhang et al. [99]

can all be represented as c | k. Eyeriss, Tetris and other RS accelerators are expressed as f
y

| y.
ShiDiannao [26] and Song et al. [85] are categorized as x | y. For architecture with both fine-

grain and coarse-grain parallelism like SCNN [68], the hierarchical dataflow choice is presented as

[x | y, x | y]. From Table 3.3 demonstrates this taxonomy can precisely express a wide range

of prior accelerators. Due to the nature of loop-based taxonomy, the representation can be easily

scaled to express spatial mappings on high-dimensional array, or compute substrate with multi-level

parallelism.

This taxonomy also provides concise and fine-grain categorization, beyond covering the wide

range of existing accelerators. Table 3.2 shows several common dataflows in prior work expressed

CHAPTER 3. THE DESIGN SPACE OF DNN 49

using our taxonomy. As an example, C |K is a widely adopted dataflow (Figure 3.6, and [12, 48,

99, 8, 81, 82, 87, 92, 10]) due to its flexibility to also map matrix multiplications in MLPs and

LSTMs. Even though C | K also keeps the weight stationary in PEs, its data reuse pattern is

quite di↵erent from the weight-stationary dataflow F
X

|F
Y

introduced by [13]. Furthermore, more

complicated dataflows, such as a hybrid weight and output stationary pattern, are easy to represent

in our taxonomy, e.g., C |KX, demonstrating its completeness.

More importantly, the taxonomy decouples schedule from the underlying hardware configuration.

For example, the loop unrolling of NLR [12] and WS1 [48] dataflow are the same, the only distinction

is the local RF allocation. Noticing this, our taxonomy categorizes both NLR and WS1 as c | k,
decoupling the hardware from how it is scheduled and resources allocated. The decouplings between

schedule and architecture, and between loop blocking and unrolling, makes it possible to fairly

compare various designs, and obtain deeper and thorough understanding of the design space.

Through the loop-based dataflow taxonomy, dataflows and loop blocking schemes can now both

be expressed as transformations of the seven nested loops in Algorithm 1. There are many ap-

proaches for finding loop transformations that optimize some cost functions, and can be used to

help find optimal hardware. These include general approaches like Polyhedral analysis [62, 107]

and studies specific to DNNs [95]. Taking advantage of the loop-based taxonomy and vector-based

representation, we develop an optimizer to systematically search over the huge space for optimal

schedule with given or optimized memory systems to minimize energy e�ciency while maintaining

high throughput. More details about the optimizer will be provided in Section 5.1.

Chapter 4

DSL System Design for DNN

Despite of the enormous design choices for DNN accelerators, we have constructed an abstract space

to cover and express them, as introduced in Chapter 3. All the dimensions composing the design

space — resource allocation, dataflow and loop blocking choices — can be concisely and compre-

hensively expressed as loop transformations by the loop-based dataflow taxonomy. This loop-based

notation nicely aligns with the Halide scheduling language, which is also based on the loop trans-

formation concept to specify the ordering of operations and data references. As previous work has

successfully mapped the Halide scheduling primitives to hardware implementations [72], it provides a

way to project an abstract design space to actual hardware implementations. Hence, we also extend

Halide to generate DNN hardware accelerators in addition to generating code for CPUs and GPUs.

This tool raises the level of abstraction above current high-level synthesis (HLS), providing a DSL

system that can translate the high-level algorithmic descriptions to e�cient hardware designs with

the capability of exploring various design choices.

To fully support the design space described in Chapter 3, we made an extension to Halide, by

adding the systolic scheduling primitive, to specify a systolic array architecture. By leveraging Halide

compact scheduling language with the small extension, we can describe all hardware architectures

and software scheduling choices in the design space, and fairly compare various design choices.

Section 4.1 starts with introducing how the extended Halide scheduling primitives correspond to

each of the three design space dimensions. To translate the scheduled Halide program to to hardware

implementations, we extended the existing Halide compilation system. In Section 4.2, we present

the extended Halide IR that can be used by the Halide compiler to describe and optimize a DNN

accelerator. Next, we describe the compiler implementation that can generate HLS code from the

transformed IR by constructing accelerators from the architectural templates.

The common building blocks in our architecture templates include double bu↵ers and PE arrays,

the latter one can be configured as reduction tree or systolic array. To simply the code generation

in the Halide compiler, we create support libraries implementing double bu↵ers and systolic arrays,

50

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 51

Table 4.1: Halide scheduling primitives that control each dimension of the 3D design space.

Dimensions Scheduling primitives

Loop blocking split, reorder
Resource allocation in, compute at

Dataflow unroll, systolic

Overall scope accelerate

which can be used to create hardware instances. Based on the specification of the two modules,

Section 4.4 first describes their micro-architecture designs and defines the interface abstractions, and

then presents the HLS template implementations that can be configured by scheduled programs.

4.1 Halide Schedules for DNN Accelerators

Halide scheduling primitives can be used to control each of the three design space dimensions as

summarized in Table 4.1. Loop blocking dimension determines the data reuse opportunities by per-

forming loop splitting and reordering, which can be accomplished by split and reorder schedule

primitives. Resource allocation a↵ects the amount of data each bu↵er can hold and the access cost

in the memory hierarchy. Using primitive in combined with compute at enables programmers to

instantiate bu↵ers and manage the granularity of storage allocation. Based on the same underly-

ing data bu↵ering principles, these primitives can be leveraged to specify the organizations of the

memory systems for hardware generation. Lastly, in our loop-based dataflow taxonomy, dataflow

is represented by the spatial unrolled loops, thus schedule primitive unroll can be leveraged to

express dataflow dimension, in addition to control the computation throughput. We also add a

new primitive systolic as an extension for generating systolic array rather than a reduction tree

architecture.

Listing 4.1 shows an example Halide code for a CONV layer, which has a 5 ⇥ 5 convolution

window and 3 input channels. We use this example schedule to demonstrates how the primitives

in Table 4.1 can be adopted to specify the design choices (loop blocking, dataflow and resource

allocation) in the space for the written algorithm.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 52

1 // To perform a 5 x 5 convolution with 3 channels

2 // RDom(xMin, xExt, yMin, yExt, kMin, kExt)

3

4 Var xo, yo, xi, yi;

5 RDom r(-2, 5, -2, 5, 0, 3);

6

7 // Algorithm

8 output(x, y, k) = 0;

9 output(x, y, k) += input(x + r.x, y + r.y, r.z)

10 * w(r.x + 2, r.y + 2, r.z, k);

11

12 // Schedule

13 output.update()

14 .split(x, xo, xi, 8)

15 .split(y, yo, yi, 8)

16 .reorder(xi, yi, xo, yo)

17

18 input.in().compute_at(output, xo);

19 w.in().compute_at(output, xo);

20

21 output.accelerate({input, w});

22 output.update().unroll(xi, 4);

23 output.update().systolic({xi});

Listing 4.1: An example Halide algorithm and schedule code for a CONV layer.

The algorithm and schedule provide a user-facing language to construct hardware. Figure 4.1

pictorially shows this example schedule in detail; from left to right, we iteratively apply three sets

of scheduling primitives to achieve the final accelerator structure on the far right of Figure 4.1.

Listing 4.2 and Listing 4.3 presents the intermediate representation (IR) generated by Halide, cor-

responding to the second and third phase in Figure 4.1 respectively. Next, we explain in depth the

usage of each of these scheduling primitives.

1 //To generate output of size 16 x 16 x 64

2 for (k, 0, 64)

3 for (yo, 0, 2)

4 for (xo, 0, 2)

5 for (yi, 0, 8)

6 for (xi, 0, 8)

7 for (r.z, 0, 3)

8 for (r.y, -2, 5)

9 for (r.x, -2, 5)

10 output(xi, yi, 0) += input(xi + r.x, yi + r.y, r.z)

11 * w(r.x + 2, r.y + 2, r.z, 0)

Listing 4.2: Intermediate representation generated by Halide after using split and reorder,

corresponding to the second phase in Figure 4.1.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 53

1 //To generate output of size 16 x 16 x 64

2 for (k, 0, 64)

3 for (yo, 0, 2)

4 for (xo, 0, 2)

5

6 // Allocate local buffer for input.

7 alloc ibuf[8 + 5 - 2, 8 + 5 - 2, 3]

8 // Copy input to buffer.

9 ibuf[...] = input[...]

10

11 // Allocate local buffer for w.

12 alloc wbuf[5, 5, 3, 1]

13 // Copy w to buffer.

14 wbuf[...] = w[...]

15

16 for (yi, 0, 8)

17 for (xi, 0, 8)

18

19 for (r.z, 0, 3)

20 for (r.y, -2, 5)

21 for (r.x, -2, 5)

22 output(xi, yi, 0) += ibuf(xi + r.x, yi + r.y, r.z)

23 * wbuf(r.x + 2, r.y + 2, r.z, 0)

Listing 4.3: Intermediate representation generated by Halide after using in and compute at

combined with split and reorder, corresponding to the third phase in Figure 4.1.

Loop blocking: The existing Halide scheduling primitives are primarily designed for loop trans-

formation optimizations on general purpose processors, but the syntax and semantics also support

loop blocking on accelerators thanks to the same underlying principles. Lines 13–16 of Listing 4.1

use split to break the x and y loops into two levels, where the inner loops (xi and yi) have 8

iterations. split can also be applied repeatedly to create more levels. reorder performs loop

interchange, setting the order of computation and data access. These two primitives can realize

di↵erent loop blocking schemes, splitting the data into multiple smaller subtiles (4 tiles of 8⇥8 in

this example) that are processed in a certain order (x then y). The first step in Figure 4.1 visually

shows the four tiles that are created due to the new loops (lines 3–4 and 16–17 in Listing 4.3).

Resource allocation of memory hierarchy: After splitting the data, we need to allocate

SRAM bu↵er resources so that each data subtile can be cached on-chip while being processed to

reduce the access cost. The existing primitive in is designed to create data copies that can be bu↵ered

at other locations in the hierarchy. compute at specifies the granularity of the realization of the

caller function. When used together they explicitly control the copy, assignment and movement of

data blocks. Combined with loop blocking techniques these commands enable one to create data tiles

that can fit in each level in the hierarchy. For CPUs and GPUs these commands reduce cache misses,

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 54

Main
memory

Main
memory

1
Buffer

Accelerator

split(x, xo, xi, 8)
split(y, yo, yi, 8)
reorder(xi, yi, xo, yo)

input

Main
memory

1 2
3 4

1
Buffer

Main
memory

accelerate({ input})
unroll(xi, 4)
systolic()

in()
compute_at(output, xo)

Processing
Element

Processing
Element

Processing
Element

1 2
3 4

1 2
3 4

PE PE PE PE

Figure 4.1: The initial design fetched the data as one large block from memory. After the split and
reorder, the data is broken into 4 smaller tiles. Next a local bu↵er for one tile is allocated, and
finally a 4 PE systolic array is implemented to process the data.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 55

while for generating specialized hardware, these primitives are used to specify the organization of

the memory system. The existing primitives in and compute at (lines 18–19 of Listing 4.1) together

introduce additional memory levels, and specify at which loop iteration to fetch which subtiles into

the bu↵ers (Figure 4.1). The compiler combines this information with loop sizes, and instantiates

the correct number of memory levels with appropriate size and data layout for each bu↵er. As

shown on lines 6–14 in Listing 4.3, by calling in and compute at together for both input and w,

two local bu↵ers are allocated within loop xo with the right size to store the input and weight

data respectively. By repeatedly calling in with compute at, additional memories in the hierarchy

can be created, such as a register file inside the inner loops to further optimize memory energy

consumption. This allows us to explore di↵erent resource allocation choices. For each memory level,

we use a double bu↵er design (Figure 3.1), which enables overlapping computation and data fetch,

by supplying data to PEs out of one bu↵er while performing loads/stores on the other.

Dataflow and PE array micro-architecture: While the previous two dimensions can be

covered using existing Halide primitives, expressing dataflow requires extensions to support the

complex on-chip data propagation patterns uniquely appearing in accelerators. First, like Pu et

al. [72], we overload the existing unroll primitive to specify spatial loop unrolling onto the PE

array. For the CPU/GPU target, unroll is used to eliminate the control overhead of the short

loops, and enable the optimizations of data sharing across loop iterations. Pu et al. [72] overloaded

this primitive to duplicate hardware resources for supporting variable rate pipelines and space-time

trade-o↵ explorations. Noticing the connections between dataflow and the e↵ects of unroll after

overloading, we use it to specify dataflow choices. As discussed in Section 3.4, given a 1D dataflow U

or 2D dataflow U |V , we spatially unroll the loops U and V on each physical dimension, respectively.

For example, in Figure 4.1, the loop xi is unrolled to execute in parallel on 4 PEs. To generate

multiple compute tiles, we can further spatially unroll outer loops W and Z to implement dataflow

U | V,W | Z. For the example in Figure 4.1, if additionally unroll k, multiple compute tiles are

created to produce di↵erent output channels simultaneously, with each convolving with a di↵erent

filter by the 4 PEs inside.

Second, we support various types of PE array micro-architectures. We introduce a new primitive,

systolic, which realizes a systolic PE array as shown in Figure 3.1(b), and allows direct inter-PE

data communication without always fetching data from higher-level data bu↵ers [13, 48]. Note, the

interpolation of systolic is di↵erent from the one of unroll. systolic specifies the type of the

micro-architecture, i.e. systolic array or reduction tree, and the physical mapping for the unrolled

dimensions, i.e. which loop is mapped vertically, but it is not responsible for spatially unrolling

the loops. This also implies systolic primitive should only be applied when unroll is used, since

systolic controls the communication mechanism among PEs, it is only valid when multiple PEs

exist. Besides, systolic is constrained to be applied when there exist data reuse along the unrolled

dimensions for the given computation.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 56

PE(0,0) PE(0,1) PE(0,2)

PE(1,0) PE(1,1) PE(1,2)

PE(2,0) PE(2,1) PE(2,2)

W0

W1

W2

O1 O2O0

FY = 0

FY = 1

FY = 2

Y = 0 Y = 1 Y = 2

unroll(r.y).unroll(y)
systolic({r.y}, {y})

(a) A systolic dataflow FY |Y , generated by unrolling
the output fmap height Y and filter weight height FY .

PE(0,0) PE(0,1) PE(0,2)

PE(1,0) PE(1,1) PE(1,2)

PE(2,0) PE(2,1) PE(2,2)

O1 O2O0
K = 0 K = 1 K = 2

unroll(r.z).unroll(k)
systolic({r.z}, {k})

I0

I1

I2

I = 0

I = 1

I = 2

(b) A systolic dataflow C |K, generated by unrolling
the input and output fmap dimensions C and K.

PE0 PE1 PE2 PE3
X

++

+

W0I0

unroll(r.z)

W1I1 W2I2 W3I3
C = 0 C = 1 C = 2 C = 3

X X X

multiplier
adder

buffer:
input

weight

output

X
+

(c) A reduction tree of dataflow C, generated by unrolling the input fmap dimension C.

Figure 4.2: Di↵erent PE array micro-architectures generated from Halide scheduling primitives.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 57

Next, we describe the e↵ect of systolic by showing the accelerator instances corresponding to

the presence and absence of this primitive respectively. Using systolic({U}, {V}) with unrolling

U and V loops specify the dataflow U | V , which maps each loop on a physical dimension of a 2D

PE array. To improve the resource utilization using replication, the replicated loops can be added

to the list. For instance, dataflow U | VW can be specified using systolic({U}, {V, W}). If only
one argument exist, such as systolic({U}), it generates a 1D PE array and maps the algorithm

using dataflow U .

By combining systolic with di↵erent unroll primitives, we can realize di↵erent dataflows on

the PE array. Figure 4.2(a) maps the F
Y

|Y dataflow used in Eyeriss [13], by unrolling the F
Y

and

Y loops. It transfers multiple rows of filter weights horizontally, and accumulates multiple rows of

output fmaps vertically. Alternatively, Figure 4.2(b) performs matrix multiplications using dataflow

C |K, which is used by a large group of designs including Google’s TPU [48].

Without applying systolic, the PEs are by default organized into reduction tree structures [12],

as shown in Figure 3.1(c). Figure 4.2(c) provides one example dataflow on a 1D reduction tree, which

unrolls the loop C to multiply input pixels from di↵erent input fmaps with their corresponding

weights, and accumulates the products into a single output pixel in an output fmap.

Using the two micro-architectures in Figure 3.1 as building blocks, we can generate a variety

of accelerator designs by composition. They can be described by applying unroll at di↵erent

loop levels, and calling systolic with passing in corresponding unrolled loops as arguments. For

instance, we can have a reduction tree of PEs acting as a node in a systolic array, or multi-level

reduction trees, e↵ectively supporting a wide range of designs including ARM ML processor [1]

and NVDLA [3]. Other PE array styles can also be implemented similarly by applying additional

primitives.

Accelerator scope: Finally, we introduce an additional primitive, accelerate, which defines

the scope of the hardware accelerator and the interface to the rest of the system, in a similar manner

to Pu et al. [72]. f.accelerate(inputs) specifies the accelerator scope as a part of DAGs that

takes a list of input functions (inputs) to produce function f.

4.2 Extended Halide IR

Given this concise and concrete expression for DNN accelerators using Halide schedules, we extended

the Halide system to generate hardware from these descriptions. As a result, di↵erent DNN acceler-

ator designs and mapping schemes can be realized by simply changing the Halide schedule associated

with the same Halide algorithm. We can also use it to easily recreate previously proposed designs

for a fair comparison (see Section 5.3).

The Halide compiler translates an algorithm with given schedule to an imperative intermediate

representation (IR) before code generation. An IR program represents the syntax tree, whose nodes

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 58

include memory allocations, algorithm expressions, control flows and so on. It is useful for compiler to

analyze the characteristics of the program, and apply optimizations, including common optimizations

(such as constant propagation) and domain specific optimizations (sliding window and storage folding

for creating software line bu↵er).

However, the Halide IR can not be directly used to generate hardware as the memory models

are di↵erent: software running on general purpose processors can leverage its cache to manage

the underlying data movement; hardware generation requires designing the memory structures and

manually managing the data movement in the hierarchy to optimally exploit data locality. To address

the issues of using Halide IR, Pu et al. [72] present a new IR, the dataflow IR, by extending the

existing Halide IR. It is used by the compiler for describing and optimizing the hardware accelerator

generated from the line bu↵er architecture template.

To allow generating DNN accelerators, we further extend the dataflow IR to support expressing

and optimizing an accelerator constructed from a double bu↵er architecture template. To avoid

confusion with the DNN dataflow described in Chapter 3, we call this new IR the extended IR

instead of the dataflow IR. Similar to the dataflow IR, the extended IR also uses stream interfaces

for data communication between pipeline stages, but we further extend it by adding two new intrinsic

functions for the double bu↵er and the systolic array modules as required by our DNN architecture

template.

When creating a new hardware memory structure, the memory interface is often required to be

su�ciently wide to provide high bandwidth matching the computation throughput. For instance, to

compute a 3⇥ 3 2D convolution at one pixel/cycle rate, the required interface width should be nine

pixels. Since in the existing Halide IR, load and store operations are defined at a pixel granularity,

Pu et al. [72] introduces a stencil stream, with two data types, stencil and stream, to express the

desired data width of the stream interface in the IR. We leverage the idea and the design of stencil

stream for developing the double bu↵er pipeline for DNN accelerators.

A stencil denotes a multi-dimensional array of elements, with supporting random access. It is

implemented as a fully-partitioned array, and synthesized to a set of registers, each storing a pixel. It

allows reading or writing multiple elements simultaneously within one clock cycle, thereby providing

high memory bandwidth. A stream is a streaming interface for transferring data in the FIFO order.

A stencil stream can pass a complete stencil each cycle, the implemented FIFOs are as wide as the

aggregated stencil width. We reuse the same IR as Pu et al [72] for stream operations.

• def stream(str, t, extent) declares a stream str of data type t. extent is a list of integers

expressing the extents of the stencil dimensions. If it is just a scalar stream, the extend is [1, 1]

.

• pop(var, str) reads stencil var from stream str.

• push(var, str) writes stencil var to stream str.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 59

In the extended IR, we also add two new intrinsic functions, double bu↵er and systolic array, to

facilitate code generation. In the IR, the input and output data of these two blocks are stream data

type, and other parameters to configure them are encoded as constant arguments for the functions.

Adding these intrinsic function abstractions reduces the complexity of code generation, since these

functions can be implemented in a support library: the code generation only needs to create the

instances constructed from the library.

• doublebuffer(write stream, read stream, write addr stream, read addr stream,

write bound, read bound, buffer size) specifies a double bu↵er with a constant size

buffer size for each of the two banks. Data from the current data block is send from one

bank to computation through stencil stream read stream, with the read address on the address

stream read addr stream determining the read location in that bank. Meanwhile, data in the

next data block is loaded to the other bank throughput stencil stream write stream, with

the write address on the address stream write addr stream determining the write location.

write bound and read bound sets the number of cycles to write and read double bu↵er.

• systolicarray(in stream, w stream, psum stream, out stream, [unrolled dim1,

unrolled dim2], [array size1, array size2]) specifies a systolic array that computes a

CONV layer or FC layer by taking a ifmap stencil stream in stream and a weight stencil

stream w stream to update partial sums from psum stream and generate ofmap stencil stream

out stream. unrolled dim1 and unrolled dim2 are a list of the loops that spatially unrolled

and mapped on to the two dimensions of systolic array respectively. The systolic array size is

array size1 ⇥ array size2, which must be constant integers.

Using the above double bu↵er and systolic array abstraction, we can construct a DNN acceler-

ator from the systolic architecture template in Figure 3.1(b). Figure 4.3 presents the version which

pipelines the stencil stream. In the memory hierarchy, we allocate double bu↵ers for ifmap, weight

and ofmap. The ifmap double bu↵er and weight double bu↵er use write streams to fetch stencils of

ifmap pixels and weight coe�cients in the next data block. At the same time, these double bu↵ers

transfer the stencils in the current data blocks to their read streams for systolic array to read

and compute. The systolic array generates output stencils of pixels and pushes to write stream,

which writes the data to ofmap double bu↵er. The address streams (write addr stream and

read addr stream) are used to determine the write and read location of the double bu↵ers.

Listing 4.4 presents a piece of extended IR program to describe the accelerator shown in Fig-

ure 4.3, mapping a CONV layer as an example. The generated output stencil stream is declared

first, followed by declaring the internal streams include the data stencil streams and address streams

for communication between double bu↵ers and systolic array. The input stencil streams that fetch

ifmaps and weights are not declared here as they are defined outside this scope, as are the write

address stream for ifmaps and weights and the read address stream for ofmaps. The tile (x,y,k) loop

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 60

Systolic
Array

Ifmap Stencil

Ifmap
Double Buffer

Weight
Double Buffer

Weight Stencil Ofmap Stencil

Ofmap
Double Buffer

read_stream
write_addr_stream
read_addr_stream

write_stream
Stencil Streams:

Figure 4.3: Block diagram of DNN accelerator design using stencil stream interface.

nests are the outer loops created by loop blocking. Using loop blocking, we break both the x- and

y- dimension into 4 regions respectively, and k-dimension into 8 regions. This divides the original

128⇥128⇥512 ofmap into tiles that are 32⇥32⇥64. Before calling each doublebuffer function, the

loop nests of the inner loops are utilized to calculate the address that are pushed to address streams,

as the read address is determined by the execution order of the current compute kernel. Since the

input channel dimension is not split in this example, we initialize the partial sum stencils to be 0,

and send the initialized stencil stream to the systolic array. The function calls doublebuffer and

systolicarray correspond to the double bu↵er and systolic array in the accelerator, respectively.

We assume the address on the address streams are just scalar values. The size of data stencil on the

stencil streams and the arguments used in the function calls can be derived by the Halide compiler

analysis, which we will introduce more in the next Section.

To create DNN accelerator designs from the reduction tree architecture template in 3.1(c), we

can replace the systolic array intrinsic function call in the IR program in Listing 4.4 with a unrolled

loop nests of the compute kernel.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 61

1 // Define generated stencil stream

2 def_stream(ofmap_stream, int, [])

3 // Define internal stencil streams for transferring data

4 def_stream(ifmap_stream, int, [])

5 def_stream(weight_stream, int, [])

6 def_stream(psum_stream, int, [])

7 def_stream(in_ofmap_stream, int, []

8 // Define address streams

9 def_stream(ifmap_rd_addr_stream, int, [1, 1])

10 def_stream(weight_rd_addr_stream, int, [1, 1])

11 def_stream(ofmap_wt_addr_stream, int, [1, 1])

12

13 // Loop iterate over different blocks

14 for (tile_y, 0, 4)

15 for (tile_x, 0, 4)

16 for (tile_k, 0, 8)

17 // Generate read address streams for ifmap double buffer

18 for (...)

19 push(ifmap_rd_addr, ifmap_rd_addr_stream)

20 // Instantiate double buffer for ifmap

21 double_buffer(in_ifmap_stream, ifmap_stream, ifmap_wt_addr_stream, ifmap_rd_addr_stream,

22 ifmap_write_bound, ifmap_read_bound, 34*34*32)

23 // Generate read address streams for weight double buffer

24 for (...)

25 push(weight_rd_addr, weight_rd_addr_stream)

26 // Instantiate double buffer for weight double buffer

27 double_buffer(in_weight_stream, weight_stream, weight_wt_addr_stream,

weight_rd_addr_stream,

28 weight_write_bound, weight_read_bound, 32*64*3*3)

29 // Initialize psum to 0

30 for (...)

31 push(0, psum_stream)

32 // Instantiate 4 X 4 systolic array by unrolling C and K dimensions

33 systolic_array(ifmap_stream, weight_stream, psum_stream, in_ofmap_stream, [[c], [k]], [4,

4])

34 // Generate write address streams for ofmap double buffer

35 for (...)

36 push(ofmap_wt_addr, ofmap_wt_addr_stream)

37 // Instantiate double buffer for output

38 double_buffer(in_ofmap_stream, ofmap_stream, ofmap_wt_addr_stream, ofmap_rd_addr_stream,

39 ofmap_write_bound, ofmap_read_bound, 32*32*64)

Listing 4.4: The extended IR program for a CONV layer

One issue of using the Halide IR to describe the DNN accelerator is the di�culty of reusing

hardware blocks. As a functional language, each function in the Halide algorithm is lowered to a

piece of IR program (similar to the IR shown in Listing 4.4), and each piece of IR program generates

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 62

dedicated hardware blocks. As a result, specifying a DNN algorithm in Halide by having one Halide

function for each layer leads to the ine�cient design that have dedicated hardware modules for each

individual layer. To avoid this area overhead and resource under-utilization, in our current design,

we only map one layer on the hardware each time. We also have experimented with parametrizing

the hardware blocks to support running multiple layers with di↵erent shapes. For instance, by

parametrizing the input Halide algorithm, certain parameters such as the loop bound of the outer

loops (tile y, tile x and tile k) in the generated IR program in Listing 4.4 becomes variables.

In hardware, there variables are generated as configurable registers, thereby allowing us to configure

the hardware at runtime. However, generating hardware from parametrized Halide algorithms still

requires the programmer to chose the set of parameters for reconfiguration, and also gives rise to

extra complexity for the compiler design, thus we leave it as a future work.

4.3 Compiler Implementation

Our Halide compiler design is built on top of Pu’s work [72], as presented in Figure 4.4. We add

an analysis pass to extract parameter for the architecture template, and transformation passes to

turn the code section marked for acceleration into the extended IR program suitable for High-Level

Synthesis (HLS). After various compiler optimizations, the dataflow IR is passed to Vivado HLS [94]

or Catapult HLS [32], which generate hardware designs targeted to FPGA and ASIC, respectively.
1

Architecture Parameter Extraction: Our compiler generates DNN accelerators by instan-

tiating and configuring architectural templates from a scheduled Halide program. The architectural

template as presented in Figure 3.1(b) and Figure 3.1(c) are PE array (systolic array or reduction

tree) with double bu↵ers, communicating through stencil stream interfaces. The architecture pa-

rameters to be extracted include the parameters of each stencil stream, each double bu↵er, and each

systolic array/reduction tree.

To extract the stencil sizes of each stencil stream in the template shown in Listing 4.4, we

leverages the bound inference analysis in the existing Halide compiler [74]. Since the stencil stream

interface is used to provide high bandwidth matching computation throughput, the stencil must

serve all the data required by the computation kernel (layer in DNNs) at each cycle. Therefore, we

can apply the bound inference analysis to compute the stencil size as the required data block sizes

at the granularity of the unrolled loop. For example, if we unroll the input channel loop (c) by 4,

and output channel loop (k) by 8. The stencil sizes of ifmap stencil stream and weight stencil stream

are [4] and [4, 8] respectively.

The double bu↵er size can also be extracted by bound inference analysis. Each bu↵er size is the

1The current compiler implementation is deprecated, more information about the current developing system can
be found in a follow-up work by Je↵ Setter and Qiaoyi Liu et al, submitted to ASPLOS 2020. The source is available
at https://github.com/StanfordAHA/Halide-to-Hardware

https://github.com/StanfordAHA/Halide-to-Hardware

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 63

Halide Algorithm & Schedule

Initial Lowering

Vivado IR
Transformation

HW Pipe. Extraction

Common Optimization

Vivado HLS Codegen Catapult HLS Codegen

FPGA Design ASIC Design

Catapult IR
Transformation

Halide IRHalide IR

Architecture
Parameters

Dataflow IR

Figure 4.4: Compiler flow. Blue blocks are new, green blocks are existing Halide compilation passes.

required data block size at the granularity of the bu↵er stored level. For the example in Listing 4.1,

both ifmap and weight double bu↵er are scheduled to be store at loop level xo, as in() is compute at

that loop. The write bound and read bound control the number of stencils write to and read from

the stencil streams respectively. The write count is the data block size, and the read count equals

to the total number of loop iterations in the compute kernel that read the double bu↵er. Both of

them can be calculated based on the tiled loop sizes in the IR.

The parameters of systolic array include the unrolled dimensions and array size. The first one

are just the unrolled loops in the scheduled program. The array size can be directly extracted

from the unrolled factors. If using a reduction tree architecture template, we can skip extracting

these parameters, as the generated IR program with unrolled loops already matches the HLS code

structure to generate the hardware for reduction tree.

IR Transformation: The Halide compiler lowers a scheduled algorithm to the IR program

with loop nests and storage allocations injected for each function. We add a new compilation pass to

transform the Halide IR into the extended IR, using the previously extracted architectural template

parameters. First, we insert doublebuffer intrinsic function calls before and after the computation

kernel to bu↵er the inputs and outputs of each stage (Line 21, 27, 38 in Listing 4.4). These function

calls replace the generated IR piece by in schedule primitive, which includes bu↵er allocations and

loop nests of copying data. To generate the address streams of the double bu↵ers, we also create the

loop nests that compute the address and push to streams before each doublebuffer call (i.e. Line

18-19 in Listing 4.4). The loop nests are constructed from the loop nests of the computation kernel

and the addresses of load or store operations to the original bu↵er. Finally, if the architecture is

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 64

scheduled as systolic array, we replace the computation loop nests with the systolicarray function

call (Line 33 in Listing 4.4).

Code Generation: We created two HLS code generators — a Vivado HLS code generator and

a Catapult HLS code generator, targeting FPGA and ASIC backends respectively, The HLS code

generator translates the accelerator portion of IR into HLS-synthesizable C++ code. It also inserts

HLS directives (pragmas) to enable HLS tools applying hardware-oriented optimizations including

loop pipelining and array partitioning. To reduce the complexity of the code generator, we developed

a HLS-synthesizable C++ template libraries implementing an abstract double bu↵er and systolic

array interfaces (Section 4.4). To create hardware instances, the code generator just emit function

calls to the corresponding library.

4.4 Hardware Generation

Our Halide compiler translates high-level Halide algorithms to hardware implementations based on

the architectural template in Section 3.1. The template consists of common building blocks including

double bu↵ers and systolic arrays, which are useful for improving throughput and optimizing energy

e�ciency for DNN applications. This section introduces the abstraction definition and e�cient

hardware implementations of these blocks.

4.4.1 Double Bu↵er

Double bu↵ers are the main on-chip memory in the DNN accelerator architecture. DNN algorithms

often have extremely high locality: ifmaps are reused by multiple filters and all coe�cients within a

filter window; ofmaps are updated by multiple input channels and all ifmap pixels within a window;

filters are reused by all pixels and batches. In the absence of bu↵ers, these feature map pixels and

weight coe�cients have to be refetched multiple times, causing redundant main memory references

and significant energy overhead. To overcome this issue, we can design a memory hierarchy, and

block the computation to maximize the locality. With static knowledge of the access pattern of the

algorithm, a double bu↵er allows fetching the next data block while computing on the current one.

Therefore, the data communication latency can be overlapped, and in most cases hidden, by the

computation.

Figure 4.5(a) presents a typical double bu↵er in a DNN algorithm. It is composed of two banks

— bank0 and bank1. The pixels in light blue denotes the elements currently stored inside the banks.

The pixel in green is the value from the next data block to be stored in bank 0, while the pixel

highlighted in dark blue is the one currently read from bank 1 for computation. As depicted in

this Figure, each bank is used to store a unique block of data, when bank 1 is serving data for the

current computation, pixels from the new block are continuously writing to bank0. As long as there

is su�cient computation to reuse the data in bank 1, the cycles for filling bank 0 with the next data

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 65

Bank 0

Bank 1

f

(a) A double bu↵er with single pixel input and output.

Bank 0

Bank 1

f

(b) A double bu↵er for 1⇥ 4 input and 2⇥ 2 output.

Figure 4.5: Double bu↵er with two banks to hide data communication latency.

block can be hided. When all the operations that use the block inside bank 1 have been performed,

the two banks switch, with new data block writing to bank 1, and computation reading data from

bank 0.

The model of a double bu↵er can be generalized for handling input and output of multiple

elements, as shown in Figure 4.5(b). This is useful to support applying unroll primitives to schedule

a function at a higher throughput rate. For example, if the kernel in Figure 4.5(a) is unrolled by

a factor of 2 in both x- and y- dimensions, the realized computation units will consume stencils of

2 ⇥ 2 pixels. Similarly, if the produced data of a upstream kernel is written to the double bu↵er,

when the upstream function is unrolled by a constant factor, the inputs to the double bu↵er are

stencils of elements.

Unlike a line bu↵er for image processing algorithm, where the pixels/stencils are streamed to

functional units in raster-scan order, the access patterns in double bu↵ers can be more complicated.

The addresses may not increase monotonically, instead it can traverse the data block inside the

bu↵er in a way that maximize the data reuse. For example, data can be scanned within a subblock

before moves to the next one, also known as Zigzag pattern. One of the cases that can also cause

non-consecutive access is performing layout transformation. For instance, when the double bu↵ers

are allocated between two kernels, with the downstream kernel using a di↵erent memory layout from

the upstream kernel, the double bu↵er has to shu✏e the data internally to serve the data with the

required sequence. Therefore, double bu↵er needs to be designed to support flexible access patterns

in addition to hiding communication latency and capturing locality.

Figure 4.6 presents the block diagram of a double bu↵er design for outputting 1⇥ 4 stencils and

inputting 1 ⇥ 4 stencils. The hardware is made up of two banks and a control unit. The control

unit manages the read and write operations alternating between the two banks. Each bank provides

su�cient storage to bu↵er a data block and exploit the data reuse, with the storage size being not

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 66

Write
Address

Read
Address

RAM Port 0

...
RAM Port N

RAM Port 0

...

RAM Port N

Input Stencil
Stream

Output Stencil
Stream

Bank 0

Bank 1

Address Stream

Control

Address Stream

Figure 4.6: Block diagram of the double bu↵er design.

less than the block size. When used for storing high-dimensional array of data, the array is flattened

into 1D.

To provide su�cient bandwidth for reading and storing data, it is instantiated using a RAM

with a wide access port (or sometimes a multi-port RAM), which can be implemented using BRAM

blocks in FPGA/CGRA or SRAM blocks in ASIC. The data width of the RAMs equals the aggregate

word width of all the pixels in the stencil, which allows a full stencil to be read or written into the

bu↵er within one cycle. For the example in Figure 4.6, each bank is a four-element-word wide. If

given the maximum port width of a BRAM or SRAM block port width, and the data width of each

banking data width, the required number of BRAM or SRAM blocks (N in the figure) should be

no less than data width/port width otherwise the downstream kernels may be stalled.

The interface to the bu↵er consists of two stencil streams for input and output data, and two

stencil streams for read and write addresses, as illustrated in Figure 4.6. The address streams are

provided to support flexible memory access patterns. The double bu↵er have three working modes:

only write a bank (write-only), only read a bank (read-only), and write and read corresponding

banks concurrently (write-read). Taking the last mode as an example, each cycle, a new input stencil

and write address is obtained from the input stencil stream and write address stream respectively

(assume not empty), then the input stencil is written to the location determined by the write

address. Meanwhile, a new stencil is read from the read bank from the location determined by the

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 67

read address fetched from the read address stream. The data stencil in the stencil stream can be

high-dimensional, whose size and dimension are the same as the ones of the stencils that stored in

the bu↵er. For simplicity, the address stream is just a stream of integers, since the address space

has been flattened into 1D. The control unit utilizes the counters and FSMs to control the mode

of the double bu↵ers, and the total number of write and read operations issued to the bu↵er. The

abstraction of a double bu↵er can be defined as a C++ class template, as presented in Listing 4.5.

1 template<typename T, int BUFFER_SIZE, int SIZE_1, int SIZE_2, ..., int SIZE_N>

2 class Doublebuffer{

3 // Allocate two banks for double buffer, each has size BUFFER_SIZE

4 stencil<T, SIZE_1, SIZE_2, ..., SIZE_N> bank0[BUFFER_SIZE];

5 stencil<T, SIZE_1, SIZE_2, ..., SIZE_N> bank1[BUFFER_SIZE];

6 bool read_bank0 = false;

7 int counter = 0;

8

9 // Top level function that switch banks at each iteration

10 void execute_buffer(stream<stencil<T, SIZE_1, SIZE_2, ..., SIZE_N>> &write_stream,

11 stream<stencil<T, SIZE_1, SIZE_2, ..., SIZE_N>> &read_stream,

12 stream<int> &write_addr,

13 stream<int> &read_addr,

14 int write_bound,

15 int read_bound);

16 }

Listing 4.5: Double bu↵er library implementation using HLS. It is instantiated and configured

by generated code from Halide.

The class template parameters are the bu↵er size (BUFFER SIZE), the stencil extent (SIZE i)

of the stencil stream at each of the N dimensions and the data type of pixels (T). The function

execute buffer takes an input and an output stencil stream (stream<stencil<...>> objects), an

read and an write address stream (stream<int> objects) and an read and an write operation count

(write bound and read bound) as arguments. These bounds are used to configures the number

of stencils we write to or read from the double bu↵ers. Similar to the template designed by Pu

et al. [72], the stencil class represents a multi-dimensional array of elements. A stream object

denotes a FIFO interface, supporting push and pop operations for the caller. Note, we constrain the

input and output stencil to be of the same size and dimension, so that the interface is still consistent

after bank switching.

Inside the bu↵er, we explicitly create two arrays as the two banks, each of size BUFFER SIZE. This

parameter is derived from the extended Halide compiler to be su�ciently large to bu↵er a scheduled

data block, as introduced in Section 4.3. Each element in the array is a N dimensional stencil

object with the same type and dimension as the ones in the stencil stream. The flag read bank0 is

utilized to determine the current bank to read. The counter counter takes track of the number of

data blocks that have been loaded to the double bu↵er, which is used to choose the working mode

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 68

Write Bank 0

Computation

Write Bank 1

Read Bank 0

Computation

Write Bank 0

Read Bank 1 ...

Computation

Write Bank 1

Read Bank 0

Computation

Read Bank 1

Filling Phase Draining PhaseStable Phase

iter = 0
count = 1

read_bank0 = true

iter = 1
count = 2

read_bank0 = false

iter = N - 2
count = N - 1

read_bank0 = true
... iter = N - 1

count = N
read_bank0 = false

count = 0
read_bank0 = false

Figure 4.7: Timing graph of a double bu↵er design.

of the double bu↵er. The flag and counter will be used later in Listing 4.6.

This template interface matches the definition of the doublebuffer function in the dataflow IR

(see Section 4.2). Thus, to instantiate a double bu↵er for each doublebuffer call in the IR, the

compiler just emits an instantiation of this class template and a call to the execute buffer function

template during code generation. This template interface is implemented in a HLS C++ template

library, which can be used to create instances of double bu↵ers by leveraging the C++ front-end

in the HLS tool. Due to the restricts of the C++ template, the maximum dimension N has to be

specified ahead-of-time. We use N = 4, which is su�cient for most of the data dimensions used in

DNN algorithms.

The control unit in Figure 4.6 is made up of FSMs that utilizes flags and loop counters to

manage the bank switching. Before introducing the mechanisms of the control logic, we first look at

the timing graph of data transfer and computation, using the example in Figure 4.7. At first, one

block of data is written to bank 0. Since we start to fill data into the pipeline, we name the current

phase as filling phase. Following the filling phase is the stable phase, during this period, at the first

iteration, the data block previously stored in bank 0 is send to the computation units for processing,

while the next block is transferred to bank 1. At the next iteration, the data block is bank 1 is

ready for computation, while data in bank 0 have already been fully used, thus the data in bank

0 is replaced with the new data block. For the rest iterations in the stable phase, it repeats this

process for data transfer and computation. In the end, the last data block is ready for computation

in bank 1, with no new data block coming, we drain the pipeline with reading bank 1, and we call

the last stage draining phase. Shown in this example, the computation takes longer cycles than data

transfer, thus no stalls or bubbles in the pipeline.

We implement this mechanisms in the function template as a member function of the

Doublebuffer class, which is presented in Listing 4.6. The function parameters are the same as the

ones of the class template, which are the data type, bu↵er size and the stencil extents. This function

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 69

is implemented as a HLS C++ function template, with taking the input and output stencil steams,

the read and write address streams and the number of stencils to write to and read from the bu↵er

as arguments.

1 template<typename T, int BUFFER_SIZE, int SIZE_1, int SIZE_2, ..., int SIZE_N>

2 void Doublebuffer<T, BUFFER_SIZE, SIZE_1, SIZE_2, ..., SIZE_N>::execute_buffer(

3 stream<stencil<T, SIZE_1, SIZE_2, ..., SIZE_N>> &write_stream,

4 stream<stencil<T, SIZE_1, SIZE_2, ..., SIZE_N>> &read_stream,

5 stream<int> &write_addr,

6 stream<int> &read_addr,

7 ...) {

8 if(read_bank0) {

9 // Read data from bank0 to read_stream using the address in the stream read_addr

10 // The number of elements to read is read_bound

11 read_bank(bank0, read_addr, read_stream, read_bound);

12 // Write data from the write_stream to bank1 using the address in the write_addr

13 // The number of elements to write is write_bound

14 write_bank(write_stream, write_addr, bank1, write_bound);

15 }else {

16 if(count != 0) {

17 // Read data from bank1 to read_stream using the address in the stream read_addr

18 read_bank(bank1, read_addr, read_stream, read_bound);

19 }

20 // Write data from the write_stream to bank0 using the address in the write_addr

21 write_bank(write_stream, write_addr, bank0, write_bound);

22 }

23 read_bank0 = 1 - read_bank0;

24 count++;

25 }

26 }

Listing 4.6: Double bu↵er function in HLS. It adopts software pipeline technique to switch the

read and write banks at each iteration.

The bank switching mechanism in realized by using software pipeline technique. This technique

skews the iterations of the pipeline, so that bank reading and writing operations can be performed

concurrently at each iteration. For example, as demonstrated in Figure 4.7, the bank writing oper-

ation starts before the first iteration (iter = 0), and finishes before the last iteration (iter = N � 1).

As a result, at iteration i, the data block i + 1 is written to one bank, while the data block i from

another bank is read to computation. To implement loop skewing, we start by realizing the filling

phase by setting the double bu↵er to the write-only mode. We check the value of counter to deter-

mine whether it is the filling phase of the pipeline. If so, we only call the write bank function during

that iteration, which fills one bank with the data from the input stencil stream input stream. Dur-

ing the stable phase, the execute buffer function is called at each loop iteration to concurrently

write data block i+1 by the write bank function and read data block i by the read bank function.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 70

The flag read bank0 is utilized to determine the bank indices that are passed to read bank and the

write bank functions, which alternates between 0 and 1 every iteration. At the last iteration, which

is the draining phase, the read bank function is called to copy the data from the last data block to

the output stencil stream output stream. Note, even though we also call the write bank function

at the last iteration, when designed properly it take no e↵ect: no elements are on the write stencil

stream write stream and reading from an empty stream is essentially a noop.

To realize the process in the timing graph in Figure 4.7, this execute buffer function is used

to switch banks, and is designed to be called every loop iteration in Figure 4.7. Note, the loop

iterators are implemented outside the execute buffer function, rather than inside. They are used

to create the read and write the address streams and data stencil streams passed to this function.

Thus the only control in the execute buffer function to switch read and write banks which is easy

to implement. Decoupling address generation from the double bu↵er also improves the flexibility of

the bu↵er, enabling it to support various access patterns.

4.4.2 Systolic Array

DNN algorithms have massive parallelism that can be exploited to improve throughput, specifically

the seven dimensions in Algorithm 1 can all be parallelized, as introduced in Section 3.1.2. To

better utilize the parallelism, we can design a computation template that utilizes su�cient PEs to

spatially unroll those dimensions. However, simply creating a sets of PEs on top of the memory

hierarchy doesn’t solve all the problems, as spatially mapping algorithms also result in the overhead

of data communication and/or data replication. For example, spatially unrolling the input channel

dimension (C) requires frequent data communication with memory to update the partial sums,

spatially unrolling the output channel dimension (K) demands either broadcasting the weights to

all PEs or storing a copy of weight block inside each PE. Thus, the computation template has to be

designed with the capability of exploiting parallelism and alleviating the energy cost caused by the

data communication and replication

A systolic array was initially proposed to e�ciently perform dense linear algebra computation.

Noticing the similarity of the computation pattern between DNN and linear algebra, it was widely

use in prior works as the computation architecture template for DNN accelerators. A systolic array

is a collection of PEs, usually containing MAC units, connected in a homogeneous network, typically

arranged in a 2D grid, as shown in Figure 3.1(b). The set of the PEs provides su�cient computation

resource to spatially unroll the algorithms, thereby exploiting parallelism and improving throughput.

The homogeneous mesh-based network allows data transferring among neighbor PEs, substituting

the expensive memory references with cheap and direct communication on the interconnects.

Figure 4.8 depicts an example of systolic design for DNN algorithms. It is made up of 4⇥ 4 PEs,

arranged in a 2D grid. Each PE contains one MAC with a local register file to perform computation.

The PEs are connected is a way that each PE can receive data from its adjacent PEs on the left-side

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 71

and above, and send data to its adjacent PEs on the right-side and below. There are many other

ways of designing the connections of the PEs, the interconnect in this figure is just one example. To

meet e�ciency and performance requirements, the network of systolic array needs to be redesigned

based on the computation pattern and the schedule of the computation, as was explored in Eyeriss

V2 [14] and Cong et la. [20].

In this example, we implement the dataflow C | K, unrolling input and output channel dimensions

vertically and horizontally, respectively. This schedule essentially transforms the computation of

CONV layer into a dense matrix multiplication, and spatially maps it onto the systolic array. As

illustrated in Figure 3.2(a) and Figure 4.2(b), weight coe�cients for di↵erent filters are distributed

in di↵erent columns, and the ones for di↵erent input channels are stored in di↵erent rows. Stencils of

ifmaps are sent to the first column of PEs, with the input pixel at stencil location i being transferred

to the first PE at row i. The input data is propagated from the left-most PEs to the right-most

PEs using systolic transfer, with each row transferring a di↵erent ifmaps channel. The partial sums

obtained from di↵erent input channels are accumulated vertically across the PEs. The partial sums

to be updated in the psum stencils are transferred to the first row, and the updated ones in output

stencils are sent out from the bottom row. The produced output stencils consist of outputs in

di↵erent output channels, computed by di↵erent columns with the corresponding filters. The output

at stencil location i is produced by the bottom PE in column i.

To realize the correct functionality with this schedule, the input and psum stencils need to arrive

at the right timing, and the data in the output stencils need to be received at the right timing as

well. For example, assume the weights have been preloaded into the corresponding PEs. To perform

the partial sum accumulation, at the first cycle, only PE(0,0) starts computation, multiplying the

input data from the first channel with the first filter. At the second cycle, the input pixel from

PE(0,0) can be propagated to PE(0,1), and the partial sum calculated by PE(0,0) is ready to be

transferred to PE(1,0) for accumulation, thus PE(0,1) and PE(1,0) also starts processing. At the

next cycle, PEs on the next diagonal line received the required data for computation and starts

working. Repeating this process, we observe the input stencils and psum stencils should come with

a diagonal wave-front. Specifically, the PEs in the first row or first column receive data with no

delays, the PEs at the second row or second column wait one additionally cycle to receive data, the

PEs at the third row or column have two cycle delays, and so on. Similarly, the bottom PE in the

second column sends out the output one cycle after the bottom PE in the first column, the one in

the third column have two cycle delays and so on.

Even if the input and output data from the same stencil needs to be read from or written to

memory simultaneously, due to the wave-front characteristic, they don’t arrive or come out from the

PE array at the same time. To overcome this issue, it is possible to build a FSM inside each PE to

control the data communication and start of operations. However, adding logic to the PE creates

redundant control logic. Instead, as shown in Figure 4.8, we create FIFOs around the PE arrays to

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 72

add the proper delays for incoming and outgoing data. With a diagonal shape of FIFOs, the input

and output data can be realigned within each stencil, so the memories only see unskewed data.

The interface to the systolic array are the three stencil streams for input, weight, and output

data, as presented in Figure 4.8. The stencil streams connect with the outside memory. The weights

can be preloaded from the weight stencil stream to the register file inside each PE before computation

starts. But in order to hide the weight transfer latency, we load the weights while fetching input

and partial sums. Once the required weights have been stored inside PEs for reuse, we stop popping

new weight stencils from the stencil stream. Once all the data has been loaded, on each cycle, a new

input stencil and psum stencil are obtained from the input stencil stream and psum stencil stream

and sent to the FIFOs. After certain number of cycles of computation to get the first output stencil

computed and passed through the output FIFOs, a new output is pushed to the output stencil

stream every cycle.

The stream interfaces to the systolic array must be su�ciently wide to satisfy the bandwidth

required by the computation. Since the stencil sizes of input, psum, weight and output stencils

determine the width of the stream interface, they can be set based on the dimensions of the systolic

array to achieve high PE utilization. When a single ifmap pixel and weight is required by each PE,

the input stencil is stencil<T, ROW NUM>, with ROW NUM being the row count. The output stencil

is stencil<T, COL NUM>, with COL NUM being the column count. We constrain the psum stencil

and output stencil to be of the same dimension and size, as the output stencil is an update on

psum stencil. For our design, weight stencils are loaded row by row, from the top to the bottom

one, so weight stencil is stencil<T, COL NUM>. To support higher throughput rate with higher

required bandwidth by the computation, we can set the input, psum, weight and output stencils

as high-dimensional stencils. For example, the input stencil becomes stencil<T, SIZE 1, SIZE 2,

... SIZE N, ROW COUNT>. In this case, each transfer between adjacent PEs is a packed block of

elements, expressed as stencil<T, SIZE 1, SIZE 2, ... SIZE N.

The function template systolic array in Listing 4.7 takes an input, a weight, a psum and an

output stencil stream (stream<stencil<T, ...>> objects) as arguments. The parameters such as

ROW NUM and COL NUM can be derived from the unrolled factors by the extended Halide compiler.

Similar to double bu↵er template, this template interface is implemented as a HLS C++ template

library, which can be used to synthesize systolic arrays by a HLS tool. To provide the data to the

systolic array, we connect the output stencil streams of double bu↵ers to the input, weight and psum

stencil streams of the systolic array.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 73

Control

Input Stencil
Stream

Output Stencil
Stream

FIFOs

FIFOs

PEs

(0,0) (0,1) (0,2) (0,3)

(1,0) (1,1) (1,2) (1,3)

(2,0) (2,1) (2,2) (2,3)

(3,0) (3,1) (3,2) (3,3)

FIFOs

Psum Stencil
Stream

C=0

C=1

C=2

C=3

K=0 K=1 K=2 K=3

Figure 4.8: Block diagram of the systolic array design. Ifmap pixels are transferred from first column
to last column, weights are stored and reused inside each PE, partial sums are accumulated vertically
from the top row to the bottom row. A diagonal shape of FIFOs are added around the PE array to
add appropriate delays for data coming in and out of the systolic array.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 74

1 template<typename T, ROW_NUM, COL_NUM, ...>

2 void systolic_array(stream<stencil<T, ROW_NUM>> &input_stream,

3 stream<stencil<T, COL_NUM>> &weight_stream

4 stream<stencil<T, COL_NUM>> &psum_stream,

5 stream<stencil<T, COL_NUM>> &output_stream){

6

7 ProcessingElement<T, ... > PEs[ROW_NUM][COL_NUM];

8 //Input FIFOs to ensure the input data arrive at the right timing

9 FIFOs<stencil<T, ROW_NUM>> input_fifos;

10 //Psum FIFOs to ensure the partial sum data arrive at the right timing

11 FIFOs<stencil<T, COL_NUM>> psum_fifos;

12 //Output FIFOs to ensure the output data is send out at the right timing

13 FIFOs<stencil<T, COL_NUM>> output_fifos;

14 T row_reg[ROW_NUM][COL_NUM];

15 T col_reg[ROW_NUM][COL_NUM];

16

17 for(...)

18 ...

19 input_fifos.call(input_stream, row_reg);

20 psum_fifos.call(psum_stream, col_reg);

21 //Instantiate the PE array ARRAY_SIZE_1 x ARRAY_SIZE_2

22 #pragma hls_unroll

23 for(int j = 0; j < ROW_NUM; j++) { // Row

24 for(int i = 0; i < COL_NUM; i++) { // Col

25 PEs[j][i].call(row_reg[j][i], col_reg[j][i], row_reg[j][i+1], col_reg[j+1][i], w);

26 }

27 }

28 output_fifos.call(col_reg, output_stream);

29

30 }

Listing 4.7: An example of generated systolic array in HLS. It is used to instantiate and

configure systolic array by the generated code from Halide for systolic array architecture in

Figure 4.8.

Inside the systolic array, we create a 2D array of a ProcessingElement object, and FIFOs objects

for adding delays to adjust timing. Figure 4.9 illustrates the PE architecture. The green registers

are the row registers for propagating input stencils horizontally, the blue registers are the column

registers for accumulating partial sums vertically. Inside each PE, there is local storage, typically

register files for reusing data locally. The control unit, made up of FSMs and muxes, manages

the data communication and the operation of the execution unit.The execution units performs the

required computation, which is just one MAC unit in our design.

To build the homogeneous network in the systolic array, we register the inputs of each PE as

shown in Figure 4.9, and register the output of the entire array. This makes the cycle time equals

the computational delay of the PE plus the local communication delay. These registers give rise

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 75

Execution
Unit

Local
Storage

Input
Stencil

Control

Output Stencil

Input
Stencil

Column
Registers

Row
Registers

 Inter-PE
Connection

 Inside PE
Wires

Row
Registers

Psum Stencil

Column
Registers

Figure 4.9: Block diagram of the PE architecture design.

CHAPTER 4. DSL SYSTEM DESIGN FOR DNN 76

to the one cycle delay as data moves from PE to PE that is associated with systolic arrays. For

the example in Listing 4.7, PE(1, 1) receives input data from its input register (row reg[1][1]),

and drives this on its row outputs on the right hand side of the PE. On the next cycle, this data

is clocked into (row reg[1][2]). Similarly, to accumulate the output, PE(1,1) updates the psum

data that was loaded intocol reg[1][1], and drives the accumulated value on the outputs at the

bottom of the PE. On the next cycle this value is loaded intocol reg[2][1] for PE(2,1) to continue

accumulation. The current implementation connects every nearest-neighbor PE pair by the setting

the dependency between reg[j][i] and reg[j][i+1], and between reg[j][i] and reg[j+1][i]. By setting the

dependency between other register pairs, i.e. reg[j][i] and reg[j][i+2], it is possible to build other

interconnect implementations.

4.5 Summary

Leveraging Halide compact scheduling language, we can precisely describe the design choices in

the space as schedules of a program, and generate accelerators with any possible micro-architectures

and schedules. Our extended Halide system enables programmers to nicely describe DNN algorithms

and generate e�cient accelerator implementations based on the double bu↵er based architectural

templates. Leveraging the Halide compact scheduling language, it also allows us to concisely express

and fairly compare various design choices about the underlying hardware and schedules. The next

chapter will move on to create an analytical optimization framework that further accelerates the

design space exploration.

Chapter 5

Optimizer and Results

Developing e�cient hardware acceleration for DNNs is challenging, since the optimal micro-architec-

ture depends on the schedule, so it is critical to optimize them together. The Halide language al-

ready provides the ability to express di↵erent micro-architecture parameters like loop blocking and

dataflow. By extending Halide system as proposed in Chapter 4, accelerators with di↵erent param-

eters can be generated for energy e�ciency and performance comparison. Since running through

the full design evaluation pipeline, including RTL generation, synthesis, validation, place-and-route,

etc., can take take a day or more of computation, exploring the huge design space introduced in

Chapter 3 is di�cult. Therefore, it is necessary to develop a computationally simple performance

and cost model, and systematical approach that can e�ciently consider all trade-o↵s and constraints,

to fully analyze the entire space to determine the optimal one.

In this chapter, we first describe our computationally simple performance and energy modeling

in Section 5.1.1 and Section 5.1.2. Then we validate these model against prior work and synthesized

designs in Section 5.1.3. Employing these models, we propose a basic optimization framework in Sec-

tion 5.2 which uses exhaustive search to systematically study the design space. With user specifying

layer parameters and hardware configurations, it can analyze the impact of each dimension of the

3D design space individually, and can search for the optimal schedule and/or hardware resources.

By using the basic optimizer, Section 5.3 discusses the insights we obtained about the space. We

observe many dataflows achieve similar energy e�ciency, while optimizing hardware resource allo-

cation and loop blocking can significantly improve the energy e�ciency. Leveraging the heuristics,

we further create an e�cient optimizer in Section 5.3.2, as an improvement over the basic optimizer.

It prunes the huge space for faster exploration and optimization. Using the e�cient optimizer, we

jointly optimize the hardware resource and schedule for various networks for better energy e�ciency

or throughput.

77

CHAPTER 5. OPTIMIZER AND RESULTS 78

5.1 Energy and Performance Models

A systematic analysis and optimization framework requires a performance and energy cost model

that can e�ciently and accurately evaluate a given design candidate. Since both performance and

energy cost depend on how data are blocked and assigned at each level, we first look at data blocking

and assignment before introducing the performance and memory energy cost estimation.

1 // memory level 2

2 Alloc I[32][8][34][34] // ifmap buffer [B0*B1*B2][C0*C1*C2][(Y0*Y1*Y2+FY-1)][(X0*X1*X2+FX-1)]

3 Alloc O[32][32][32][32] // ofmap buffer [B0*B1*B2][K0*K1*K2][Y0*Y1*Y2][X0*X1*X2]

4 Alloc W[32][8][3][3] // weight buffer [K0*K1*K2][C0*C1*C2][FY][FX]

5 for (int b2 = 0; b2 < 32; b2++)

6 for (int k2 = 0; k2 < 8; k2++)

7 for (int c2 = 0; c2 < 4; c2++)

8 // memory level 1

9 Alloc I1[1][2][34][34] // ifmap buffer [B0*B1][C0*C1][(Y0*Y1+FY-1)][(X0*X1+FX-1)]

10 Alloc O1[1][4][32][32] // ofmap buffer [B0*B1][K0*K1][Y0*Y1][X0*X1]

11 Alloc W1[4][2][3][3] // weight buffer [K0*K1][C0*C1][FY][FX]

12 for (int y1 = 0; y1 < 2; y1++)

13 for (int x1 = 0; x1 < 2; x1++)

14 // memory level 0

15 Alloc I0[1][2][18][18] // ifmap buffer [B0][C0][(Y0+FY-1)][(X0+FX-1)]

16 Alloc O0[1][4][16][16] // ofmap buffer [B0][K0][Y0][X0]

17 Alloc W0[4][2][3][3] // weight buffer [K0][C0][FY][FX]

18 for (int k0 = 0; k0 < 4; k0++)

19 for (int c0 = 0; c0 < 2; c0++)

20 for (int y0 = 0; y0 < 16; y0++)

21 for (int x0 = 0; x0 < 16; x0++)

22 for (int fy = 0; fy < 3; fy++)

23 for (int fx = 0; fx < 3; fx++)

24 O0[b0][k0][y0][x0] += I0[b0][c0][y0+fy][x0+fx] * W0[k0][c0][fy][fx]

Listing 5.1: An example schedule with data blocking for a CONV layer.

Given an L-level hierarchy, we define level 0 is the level closest to processor, while level L � 1

is DRAM. Since access cost increases with increasing memory level, ifmap, ofmap and weights are

iteratively blocked, the blocks at level i are partitioned into subsets. A subset is temporarily stored

at level i � 1 for more e�cient reuse. Hence, the block size decreases from Level L � 1 to 0, as

demonstrated in Listing 5.1, which is an example of Algorithm 2 with one choice of tile sizes. This

example schedule partitions both ifmaps and ofmaps along the batch b dimension, each ifmap and

ofmap are also blocked along the channel dimension (c and k) to store 2 channels of ifmap and 4

channels of ofmap respectively inside bu↵ers at level 1. The weight coe�cients are also blocked into

smaller blocks along c and k dimensions. Next, it continues to split ifmaps and ofmaps inside the

bu↵er at level 1 into 4 tiles of size 18⇥ 18 and 16⇥ 16 within each channel plane, the subblocks of

ifmaps and ofmaps are stored at level 0. To make the memory system more flexible, we conservatively

CHAPTER 5. OPTIMIZER AND RESULTS 79

Table 5.1: The dimensions of each data block (set D), and loops reuse the data block (set V)

Data Dimensions(D) Loops with reuse(V)

ifmap X, Y , C, B f
x

, f
y

, k
ofmap X, Y , K, B f

x

, f
y

, c
weight F

X

, F
Y

, C, K x, y, b

assume the blocks at level i always include all content of the blocks at levels j (0  j < i). Frequently,

scratch pad is utilized as the storage for specialized accelerators, but if this policy is used in a cache,

we would call it an inclusive cache. Due to this policy, even the weight block is not partitioned at

level 1, the same block will be stored at both level 1 and level 0.

For each data type, given a schedule, the data block size s
i

can be directly calculated as the

product of the sizes of all dimensions that compose the stored data block. For the example, in the

schedule shown in Listing 5.1, the block size of ofmap at level 0 is calculated as B0⇥K0⇥Y0⇥X0 =

1⇥ 4⇥ 16⇥ 16. Since at level 1, ofmap is split into 2⇥ 2 subblocks, one of them is stored at level 0,

the ofmap block size at level 1 is B0 ⇥B1 ⇥K0 ⇥K1 ⇥ Y0 ⇥ Y1 ⇥X0 ⇥X1 = 1⇥ 4⇥ 16⇥ 2⇥ 16⇥ 2.

In summary, the ofmap block size at level i is the product of the tiled sizes of X, Y K and B

(O[
Q

i

j=0 Bj

][
Q

i

j=0 Kj

][
Q

i

j=0 Yj

][
Q

i

j=0 Xj

]). Similarly, F
X

, F
Y

, C andK composes the weight block,

thus we store weight block at level i to be W[
Q

i

j=0 Kj

][
Q

i

j=0 Cj

][F
Y

][F
X

]. We can adopt the same

approach to calculate the storage for ifmap at each level. Formally we can express the block size of

each type as:

s
i

=
Y

d2D

iY

j=0

d
j

(5.1)

Here d
j

, the loop bound at level j, is the number of subblocks in the dimension that composes

the data block. If level 0 is register file, d0 is the number of elements inside the register file in that

dimension. For the example in Listing 5.1, the bounds of loop x and y at level 1 are both 2, thereby

creating 4 tiles in total. Only the bounds of the dimensions that composes the data block (which

belongs to D) are taken into account. The composed dimensions for ifmap, ofmap and weight are

summarized in Table 5.1.

5.1.1 Performance Analytical Model

With the given hardware resource (compute units, memory sizes, maximum memory bandwidth) and

input layer configurations, based on the roofline model [93, 99, 48], performance is determined by

two factors — required bandwidth and computation resource utilization. Calculating the required

bandwidth is easy: with data blocks assigned into memories, the amount of data required to be

transferred between each adjacent levels is determined. Since we use a double bu↵er at each level,

CHAPTER 5. OPTIMIZER AND RESULTS 80

only the average bandwidth matters. Assume each data block is only evicted after being exhaustively

reused by the computation within all inner loops, the average required bandwidth is the summation

of the required bandwidth of each data block, which is estimated as the data block size divided by

the number of cycles that compute on this data block. To summarize, required bw
i

computes the

required bandwidth of each data block at level i as:

required bw
i

=
s
i

cycles
i

(5.2)

In this equation, s
i

is the data block size at level i, and cycles
i

is the number of cycles need to

compute the results from this data block before replacing it with the next one. This cycle count

is roughly the number of operations that reuse this data block divided by the actual number of

operations processed in parallel. The later one is also a↵ected by the bandwidths of the memories

at level i� 1 to level 0. With the dependency between cycles
i

and required bw
i�1, to estimate total

number of cycles cycles
L�1, we start from level 0 and recursively determine whether each level is

bandwidth limited till the last level.

At level 0, the data is normally available in register file to be referenced by multiply-and-

accumulate (MAC) units. Given a dataflow with constant unroll factors, the throughput T is

proportional to the MAC units utilization rate. We can compute cycles0 as the ratio between total

number of operations to perform and parallelism it achieves, which is the product of all unrolled

factors.

cycles0 =
#required opQ

uf2UF

uf
i

comp utilization =

Q
uf2UF

uf
i

#MAC
 1

(5.3)

Here UF is the set containing all unrolled loops, uf
i

is the unrolled factor of each loop, #MAC

is the total number of MAC units. When the total unrolled factor equals the total number of MAC

units, computation resource is fully utilized, thus the peak performance can be reached at this

level. If the total unrolled factor is smaller than the total number of MAC units, it su↵er from load

imbalance issue. We constrain the total unrolled factor to not exceed total number of MAC units

to prevent utilization rates larger than 1. After obtaining cycles0, together with s0 we can calculate

required bw1. By analyzing the provided memory bandwidth including memory port width and

count, we can determine whether cycles0 is limited by communication or computation, and use the

larger number as cycles0 to compute cycles1. This process is recursively repeated till level L� 1 to

evaluate overall performance.

CHAPTER 5. OPTIMIZER AND RESULTS 81

5.1.2 Energy Analytical Model

The total energy is composed of the compute and memory energies. The compute energy is the

product of the number of operations and the energy consumed by each operation. The first one

is only related to the input layer parameters, thus given the energy cost of a MAC unit, the total

compute energy is a constant. The only energy consumption that is dependent of schedules are

memory and communication energy. To quantify these energy costs in an L-level hierarchy, we

adopt a model similar to [13], which computes the memory energy at each level as the product of

the number of accesses to that level and per access energy cost. The total numbers of accesses are

a↵ected by data reuse RT
i

at di↵erent memory levels of the three data types. Communication costs

will be handled using a similar approach. This approach gives the total memory energy as:

E =
L�1X

i=0

#acc
i

⇥ e
i

where #acc
i

=
L�1Y

j=i

RTif

j

+
L�1Y

j=i

RTof

j

+
L�1Y

j=i

RTw

j

(5.4)

Here e
i

is the energy of accessing the ith level once. RTif

i

, RTof

i

and RTw

i

are the data reuse rates

of ifmap, ofmap and weight respectively. Data reuse RT
i

is defined as the number of times

the data are accessed by level i� 1 during its lifetime at level i. Take ifmap as an example,

if ifmaps can not be fully bu↵ered at level i� 1, each time applying a new filter requires refetching

blocks of ifmaps from level i to i � 1. With the schedule in Listing 5.1, there are 8 filters at level

2, thus ifmaps are read 8 times from level 2, RTif

2 = 8. At level 1, filters don’t switch, ifmaps are

simply streamed from the current level to level 0 with no reuse at this level, RTif

1 = 1. At level 0,

ifmaps are not only reused by di↵erent filters, but also by di↵erent window locations within a filter,

thus iterating over loops k, f
x

and f
y

all causes refetching ifmap pixels from level 0 to MAC units,

RTif

0 = 4⇥3⇥3. If a register file is used at level 0, this indicates ifmap data is accessed by 36 times

during its lifetime inside the register file. The total number of accesses #acc
i

is the summation of

ifmap, weight and ofmap accesses. Given a schedule, based on the definition of data reuse, RT
i

of

all data types for bu↵er at level i can be quantified as the product of the bounds of all loops at level

i that reuse the data block.

RT
i

=

(Q
v2V

v
i

, for ifmap and weight

2
Q

v2V

v
i

, for ofmap
(5.5)

The ofmap reuse rate is doubled because each partial sum update requires one read and one

write access. Here v
i

, the loop bounds at level i, is the number of loop iterations that reuse the data

blocks. In Listing 5.1, the bounds of loop k at level 2 is 8. Only the loops that reuses the data block

(which belongs to V in Table 5.1) are considered. The loops that can reuse ifmap, ofmap and weight

respectively are summarized in Table 5.1. To compute the reuse of ofmap at level i, we perform the

product of the bounds of f
x

, f
y

, c loops, the reuse to ofmap bu↵er Ii is F
X

F
Y

Q
L�1
j=i

c
j

. Note, for

CHAPTER 5. OPTIMIZER AND RESULTS 82

C0 C1 C2 C3

C0 C1 C2 C3

O0 O0 O0

O1 O1 O1

I0 I1 I2 I3

K0

K1

O0

O1

I0 I1 I2 I3

ifmap buffer

ofmap
buffer

O0

O1

Memory
Transfer

Inter-PE
Transfer

Figure 5.1: Data reuse with inter-PE communication. Ifmaps and Ofmaps are transferred once and
3 times on the inter-PE communication buses.

simplicity, we don’t tile f
x

f
y

loops. In a similar way, we compute the reuse for the weight bu↵er

Wi as
Q

L

j=i

x
j

Q
L

j=i

y
j

Q
L

j=i

b
j

.

We treat communication costs in a similar way. For the energy cost of communication we treat

memories inside neighbor PEs as an additional level in the hierarchy. Figure 5.1 illustrates one

example of the inter-PE communication of a systolic array. Two rows convolve with di↵erent filters

to produce two output channels simultaneously, with unrolling loop k by 2. Since ifmaps are reused

between the two rows, each ifmap pixel is first fetched from ifmap bu↵er, then transferred from the

first row to the second one once via the inter-PE communication bus. Meanwhile, with unrolling

loop c by 4, 4 columns of PEs reuse ofmaps. Every time to update an ofmap pixel in ofmap bu↵er,

besides the first time and last time to read and write ofmap bu↵er, the rest 4� 1 = 3 times of data

transfers are from the leftmost PE to the rightmost PE. Thus the total inter-PE communication can

CHAPTER 5. OPTIMIZER AND RESULTS 83

Table 5.2: Energy per 16-bit access with various register file (RF) and SRAM sizes, and for a MAC
operation, one hop communication cost and a DRAM access.

RF Size Energy (pJ)

16 B 0.03
32 B 0.06
64 B 0.12
128 B 0.24
256 B 0.48
512 B 0.96

MAC 0.075
Hop 0.035

SRAM Size Energy (pJ)

32 KB 6
64 KB 9
128 KB 13.5
256 KB 20.25
512 KB 30.375

DRAM 200

be determined by the number of accesses to the bu↵ers shared by the PEs, and the PE counts that

reuse the data. These two factors can be calculated based on the reuse rate and the unroll factors of

corresponding loops. To compute the data reuse of the inter-PE communication level, we leverage

the reuse rate RT
i+1:

RT
i

=

(
RT

i+1
Q

u2V \U

u
i

� 1, for ifmap and weight
1
2RTi+1

Q
u2V \U

u
i

� 1, for ofmap
(5.6)

Here u
i

is the unrolled factor of the loop that is unrolled and also reuses the data block (which

belongs to V). Note, the product is subtracted by 1 in the end is because the first data transfer is

from the shared bu↵er to the first PE, not on the inter-PE communication bus. Note, for the ofmap

pixel, the inner-PE communication is calculated with respect to the update counts in the global

bu↵er, thus we take 1
2RTi+1 instead of RT

i+1 for ofmap in Equation 5.6.

Cost Model: The energy cost e
i

in Equation 5.4 can be obtained from the input cost model. We

present out energy cost model in Table 5.2, which are employed to conduct experiments and generate

results. Nevertheless, our energy modeling works with di↵erent technology processes, and it is easy

to supply new cost models to study more advanced technologies. Also, many of our observations in

Section 5.3 are technology-independent.

We use CACTI 6.5 [63] to model SRAM arrays and tune its parameters to match the synthesized

memories instantiated from our 28 nm commercial memory library. For small arrays and register

files (RFs), we use the Cadence XtensaProcessor Generator [4] to extract energy numbers based on

our standard cell library. Table 5.2 shows the energy cost (pJ/ 16 bits) of accessing memories with

di↵erent size. Since the wire length of transferring data from a memory is roughly the side length

of the memory, which is about the square root of the memory area, and the memory area grows

linearly with the memory capacity, we can interpolate Table 5.2 to obtain more energy cost numbers

of memories with di↵erent sizes. Note that our energy ratios between memories and MAC are larger

CHAPTER 5. OPTIMIZER AND RESULTS 84

Figure 5.2: Analytical model validation. Left: energy breakdown comparison between actual syn-
thesized designs and the analytical model. Right: energy breakdown comparison between reported
Eyeriss model and our model.

Table 5.3: ASIC designs for model validation.

Name Dataflow PE Array RF SRAM

OS4 X 1D, 4 32B 32KB
OS8 X 1D, 8 64B 64KB
WS16 C |K 2D, 4⇥4 64B 32KB

than those reported in Eyeriss [13]. There are several reasons: we use a 28 nm technology instead

of 65 nm; our memory is highly banked with higher energy cost; and our MAC units consume lower

energy as their activity factors are relatively low with data stationary patterns.

For the inter-PE level, we use the hop energy in the table as the communication cost for fetching

the data from any neighbor PE, in other words, cost for travelling one hop. This communication

cost is estimated as the energy on the wires that connect the two neighbor PEs plus the energy

consumed by the registers and muxes that are used for systolic data transfer. Ideally, the wire

energy should be estimated as proportional to the wire length that is measured from the mid-point

of one PE to the mid-point of the next connected PE. Using this estimation, with larger register file

or more MACs allocated inside the PE, the wire length grows with the PE area size, so does the

communication cost. However, for the design we explored, it is not a major factor, which we will

demonstrate in Section 5.3. Hence, we use a average approximation of the communication cost per

hop as presented in Table 5.2. Nevertheless, we do distinguish the cost for di↵erent communication

distances (Figure 3.8) as an improvement over [13]. The communication cost is approximated as

linearly growing with the travel distance (number of hops transferred).

CHAPTER 5. OPTIMIZER AND RESULTS 85

5.1.3 Analytical Model Validation

The analytical model is validated in two di↵erent ways. First, we have thoroughly validated the

accuracy of our model by comparing its results to complete designs generated by our synthesis

toolchain. Our extended Halide compiler generates C++ code specialized for Catapult High-Level

Synthesis, which is then compiled to RTL designs in Verilog. We synthesized the RTL designs

in a 28 nm technology using Synopsys Design Compiler. Standard cells and memory models from

commercial vendors are used for power, performance, and area analysis. We use 16-bit arithmetic for

inference tasks throughout this paper. All of our ASIC designs achieve 400MHz frequency with no

timing violations. For power analysis, the appropriate switching activities are set on all the primary

ports and propagated through the design using the design tools. Table 5.3 shows three example

designs we have generated in ASIC platforms. Figure 5.2 shows the energy comparison between our

analytic model and post-synthesis results. The resulting errors are less than 2%.

In addition to validating our analytical model against the synthesized designs, we further vali-

dated our analysis methodology by comparing the results against prior work. With using the same

energy cost model, our framework is also able to reproduce the results from [13] with small di↵er-

ences, as demonstrated in Figure 5.2.

5.2 Optimization Flow

With these computationally simple models, this section introduces a systematical optimization

framework we developed to study the design space.1 It searches for the schedule/mapping which

optimizes the data movement across the memory hierarchy to improve memory energy e�ciency and

resource utilization. While schedule is only one plane in the 3D design space (as the yellow plane

shown in Figure 3.6 composed by loop blocking and dataflow axes), to create the optimal hardware

acceleration solution, our optimizer additionally optimizes the hardware resource allocation as well.

Furthermore, to obtain deeper understanding of the shape of the 3D design space introduced in

Section 3.3, the optimizer investigates the impact of each factor independently using the loop-based

taxonomy presented in Section 3.2.

The optimizer can be employed to realize four di↵erent goals:

1. Analyze the impact of resource allocation, loop blocking, dataflow individually with fixing

other factors.

2. Given hardware architecture and resource allocation, search the optimal schedule/mapping for

input layers that achieves highest resource utilization and throughput.

1The source is available at https://github.com/xuanyoya/CNN-blocking

https://github.com/xuanyoya/CNN-blocking

CHAPTER 5. OPTIMIZER AND RESULTS 86

3. Given hardware architecture and resource allocation, find the most energy e�cient sched-

ule/mapping while satisfying user specified requirements (for example, throughput require-

ment).

4. Given a set of DNN models, find the most e�cient memory system configuration and the

corresponding schedule.

5.2.1 Optimizer Structure

With the performance energy analytical model developed in Section 5.1.1 and Section 5.1.2, finding

the optimal accelerator design now becomes an optimization problem of minimizing E or #cycle over

the 3D design space. For instance, to determine the most energy e�cient design, e
i

is determined

by the resource allocation (Table 5.2), and RT
i

can be directly calculated from the dataflow and

loop blocking schemes. Therefore, the most energy e�cient design requires optimizing both resource

allocation and schedule, so that it can minimize access cost e
i

while meantime capturing as much

data reuse RT
i

as possible. To perform optimization for e
i

and RT
i

, we create an optimizer on top

of the analytical models to explore the 3D space, as presented in Figure 5.3 and Figure 5.4.

The optimizer in Figure 5.3 combines a schedule generator and cost analysis engine, and achieves

the first three goals. Built on top of this design, the optimizer in Figure 5.4 adds a memory system

configuration generator to enumerate various hardware configurations, thereby enabling it to jointly

optimize the hardware resource and schedules. Among the three modules, the schedule generator

is used to iterate over all possible schedule candidates. The cost analysis engine uses the iterated

schedule to quantify the overall data movement energy cost and/or throughput with a given memory

hierarchy. Composing the schedule generator and cost analysis engine creates a schedule optimizer,

which enables a search for the most energy e�cient or highest throughput schedule given a CNN

layer configuration and other architecture constraints. The memory configuration generator explores

all the possible combinations of bu↵er parameters, and calls schedule optimizer to perform cost

estimation for each candidate. Adding the memory configuration generator on top of the schedule

optimizer allows for optimizing the memory system along with the schedule.

The basic optimizer takes a cost model, configurations of the given architecture and layers as

input, and conducts exhaustive search over the huge design space. More details about the input will

be provided in Section 5.2.2. Also in later sections, we will present how we leverage the understanding

of the space and insights about each factor to prune the large space for faster exploration.

Schedule Generator: To comprehensively explore the space, schedule generator exhaustively

enumerates all combinations of loop blocking sizes, loop orders, loop unrolling choices. To achieve

this exhaustive enumeration for a L-level hierarchy, the generator generates one schedule candidate at

each iteration. The candidate is generated by recursively tiling each dimension L�1 times to produce

d
l�1, dl�2, ... d0, with

Q
L�1
i=0 d

i

= D, where (d,D) 2 {(f
x

, F
X

), (f
y

, F
Y

), (x,X), (y, Y), (c, C), (k,K),

(b, B)}. Similar to example shown in Algorithm 2, d
l�1, dl�2, ... d0 are assigned from level L � 1

CHAPTER 5. OPTIMIZER AND RESULTS 87

Schedule Guide

Schedule Generator

Layer
Configurations

Cost Analysis
Engine

Optimal Schedule

Architecture
Paramters &
Cost Model

Optimal Energy,
Performance

Schedule Optimizer

Energy, Utilization

Schedule
Candidate

Figure 5.3: The schedule optimizer flow. The optimizer reports optimal schedule with its energy
and performance. Orange hexagons are inputs and outputs of the framework. Schedule Generator
generates schedule candidates and send to analysis engine for energy and performance evaluation.

CHAPTER 5. OPTIMIZER AND RESULTS 88

Schedule Guide

Schedule
Generator

Layer
Configurations

Cost Analysis
Engine

Optimal Schedule

Architecture
Paramters &
Cost Model

Optimal Energy,
Performance

Optimizer

Energy, Utilization

Schedule
CandidateMemory System

Config Generator

Memory Config
Candidate

Schedule Optimizer

Energy

Optimal Memory
System Config

Figure 5.4: The optimizer flow. The optimizer jointly optimizes memory system and schedule, and
reports the optimal design with the achieved energy and performance. Orange hexagons are inputs
and outputs of the framework. Memory Configuration Generator generates configuration candidates
and send to schedule optimizer for energy evaluation.

CHAPTER 5. OPTIMIZER AND RESULTS 89

to level 0. After loop tiling, the generator enumerates all possible loop orders within each level to

accomplish producing one schedule candidate. If the architecture has multiple parallel compute tiles

and/or PEs, the generator also iterate over all possible loop unrolling choices. Specifically, after

obtaining tiled loops nests, the generator chooses a subset loops to unroll from the ones at the level

that has multiple parallel units. The unrolled factor for each selected is enumerated from 1 to D
i

(the tiled size at that level).

However, such generated candidate may not always be valid. To reduce the runtime, the generator

also checks each schedule to filter out invalid ones, before sending to the cost analysis engine for

evaluation. The valid schedule must satisfy certain conditions, for example, the total required bu↵er

size s
i

by the schedule doesn’t exceed the given allocated bu↵er size at each level, the total unroll

factor is not larger than the number of physical parallel units at each level, and so on.

Memory System Configuration Generator: Since resource allocation a↵ects access energy

cost e
i

, memory configuration optimizer explores the resource allocation choices to find the optimal

memory system configuration. As shown in Figure 5.4, the optimizer is built by creating an memory

configuration generator to wrap around the schedule optimizer. The memory configuration gener-

ator iterates overall all possible combinations of memory system configurations, and calls schedule

optimizer to search for the most energy e�cient schedule for the candidate memory system. Opti-

mizing for multiple layers or a set of DNN models takes a similar approach as for single layer. To

achieve the lowest energy for all the input layers, for each enumerated system candidate, it estimates

the overall best energy e�ciency by calling schedule optimizer to report the optimal energy for each

layer.

5.2.2 Optimizer Input and Output

Input: The input to the optimizer consists of architecture parameters, a cost model for the hardware,

layer configurations, and optionally a schedule guide, as presented in Figure 5.3 and Figure 5.4.

Shown in Listing 5.2 is one sample specification of architecture parameters, and a cost model as inputs

to the optimization framework. The architecture can be specified to contain arbitrary number of

memory levels in the hierarchy. This example specifies 3 memory levels — DRAM, global bu↵er and

RF per PE, the hierarchy from level 3 to level 0 are configured as the three levels of memory hierarchy

(DRAM, global bu↵er, RF per PE), plus the array communication (inter-PE communication). Note,

even without explicit bu↵er allocation, array (neighbor PEs) is treated as an additional level in the

hierarchy, so that we can support direct inter-PE communication in systolic arrays. Additionally,

Listing 5.2 provides the energy cost per access (pJ/16 bits) at each of the three levels in the memory

hierarchy, which is generated by indexing to Table 5.2 with the corresponding bu↵er sizes. It also

supplies the communication energy cost. The BankSize in the Listing is the bank size used for the

memory at each level, which determines the number of ports, thereby the overall bandwidth of the

memory at each level.

CHAPTER 5. OPTIMIZER AND RESULTS 90

1 MemoryLevels: 3 # number of memory levels

2 MemorySize: [512, 131072, Inf] # size of [RF, global buffer, DRAM]

3 BankSize: [512, 8192, Inf] # bank size of each memory (optional)

4 MemoryEnergyCost: [0.96, 20, 200] # energy per access to [RF, global buffer, DRAM]

5 ArrayEnergyCost: [0.035] # energy for traveling one hop

6 SpatialSize: [[16, 16], 1, 1] # 16 x 16 2D array

7 CommunicationMode: [broadcast, None, None] # broadcast bus

Listing 5.2: An example input specification for architecture parameters and cost mode. The

indication of each field can be found in Section 3.3

The optimizer can take multiple layer configurations as input. When providing the configu-

rations of all the layers in a network, the optimizer searches the memory system that achieves

the highest energy e�ciency for the entire given network. Each layer configuration includes fmap

sizes, channel numbers, filter sizes, precision, etc.. The configuration of the first layer of AlexNet

is illustrated in Listing 5.3. As mentioned in Section 2.1, a CONV layer processes the ifmaps of

input fmap channel channels to produce ofmaps of output fmap channel channels, each ofmap

channel of size fmap width ⇥ fmap height. The computation are performed in a batch size

batch size, with stride size stride width and stride height at the x- and y- dimensions re-

spectively. The format supports both CONV and FC layers.

1 fmap_width: 56, # X

2 fmap_height: 56, # Y

3 input_fmap_channel: 3, # C

4 output_fmap_channel: 96, # K

5 window_width: 11, # FX

6 window_height: 11, # FY

7 batch_size: 16, # B

8 stride_width: 4, # SX

9 stride_height: 4 # SY

Listing 5.3: An example layer configuration for the first layer of AlexNet

The schedule guide is used by designer to restrict the design space to a subset for shorter search

time. For example, if the experiment is only conducted to study the impact of loop blocking, we

can specify certain reasonable dataflow in schedule guide to fix the dataflow choice, and only search

the corresponding plane that is orthogonal to the dataflow axis. For example, Listing 5.4 provides

one example schedule guide that forces the dataflow to be X | Y , with unrolling factor 16 for both

dimensions. Such spatial mapping are specified to occur at the RF level, as a result, it lays out a

16 ⇥ 16 output tile onto the PE array, with the RF inside each PE bu↵ers one output pixel. This

schedule guide is also useful to avoid searching over the non-optimal region, after obtaining insights

about the design space, as we can focus the optimal region in the schedule guide.

CHAPTER 5. OPTIMIZER AND RESULTS 91

1 Level0: { # memory level

2 X: { # loop to schedule

3 unroll: 16 # unroll factor

4 }

5 Y: { # loop to schedule

6 unroll: 16 # unroll factor

7 }

8 }

9 Level1: { # memory level

10 ...

11 }

Listing 5.4: An example schedule guide for dataflow X | Y

Output: By taking the input specifications of the architecture parameters, cost model, layer

configurations and schedule guide, the schedule optimizer in Figure 5.3 and the optimizer in Fig-

ure 5.4 outputs the optimal schedules. As depicted in Figure 5.3, by leveraging the cost analysis

engine to evaluate the energy and resource utilization rate of valid schedules, the schedule optimizer

records the schedule that consumes the lowest energy while still achieves reasonable utilization rate.

After iterating over all the schedules, the schedule optimizer reports the optimal schedule with its

energy and performance results with the given hardware configuration.

The outputs of the optimizer in Figure 5.4 are the optimal memory configuration, with the op-

timal schedule for that system. When providing multiple input layer configurations, the optimal

memory configuration is optimized for all the layers. Similar to the schedule optimizer, exhaus-

tively evaluating all memory configurations takes long running times evaluating many obviously bad

configurations. Some configurations can be eliminated as they can never be optimal designs, for

instance, the designs that have larger register files than global bu↵ers. To make it more general, the

optimal memory system configurations often follows certain rules or patterns, which can be leveraged

to speedup the search process. In the next section, we will discuss more about the observations we

obtained from the experiments that can be used to prune the resource allocation space.

5.3 Results

Using our dataflow taxonomy and the ability to rapidly generate and evaluate large numbers of

accelerator designs with Halide, this section maps out the important features of each dimension of

the design space. We begin by exploring di↵erent dataflow and loop blocking choices, and then

consider hardware resource optimizations. Using the insights from these explorations, we introduce

an e�cient optimizer for DNN accelerators.

CHAPTER 5. OPTIMIZER AND RESULTS 92

5.3.1 Impact of Dataflow and Loop Blocking

Figure 5.5 compares the energy e�ciency of di↵erent dataflow choices. We use the CONV3 layer in

AlexNet and 1⇥1 reduction layer 4C3R in GoogLeNet inception (4c) module as examples. The other

layers have also been investigated, and share a similar trend. More DNNs will be studied in Section

5.3.2. For each dataflow, the loop blocking scheme is optimized to minimize the energy based on the

analysis framework in Section 5.1, and the utilization ratio is constrained to be higher than 75%.

The setting on the utilization ratio limits the performance degradation allowed. We have evaluated

three di↵erent hardware configurations: the blue one is the same as Eyeriss [13], with 512B register

file (RF) per PE, 128KB SRAM bu↵er, and 16⇥16 PE array; the red one uses a di↵erent array

bus design, which disables inter-PE communication and makes all data broadcast from the global

bu↵er; the green one uses a smaller, 64B RF to lower its access energy (see Section 5.3.2). For the

red configuration the communication cost is independent of the transfer distance, but slightly larger

than the blue configuration. These points should amplify di↵erences caused by communication. To

lower the total energy required, the green configuration uses a smaller register file. From Figure 5.5,

we can see that when optimized loop blocking schemes are applied, di↵erent dataflows all achieve

similar and close-to-optimal energy e�ciency on the same hardware configuration. Figure 5.5(b)

and 5.5(d) also show the cases with batch size 1, which is most commonly used in mobile systems;

the conclusion is consistent across di↵erent batch sizes.

This result is not sensitive to memory/communication model used. It remains true for a variety

of scenarios, including using di↵erent layers, di↵erent NNs, di↵erent spatial array organizations,

di↵erent PE array sizes, di↵erent models for communication cost estimation, and di↵erent memory

configurations. For example, rather than building a 2-D PE array, we created a 256 PE 1-D systolic

array. This design was only up to 0.4% worse than the 2-D array.

On the other hand, in Figure 5.6 we observe that the PE array utilization, and therefore the

computation throughput, is slightly more sensitive to di↵erent dataflow choices than the energy

e�ciency for some convolution layers. Without replication (Figure 5.6(a)), the overall utilization

can vary significantly and stay low for many dataflow choices. However, using proper replication

substantially improves the utilization and eliminates most of the di↵erences among all dataflows

(Figure 5.6(b) and 5.6(c)). These results also imply, accelerators that can support a diversity of

replication schemes using flexible communication such as CGRAs, Eyeriss V2 [14], will generally

achieve higher overall utilization, compared to the ones with fixed interconnects. Here, the impact

of the interconnect bandwidth to evaluate the overall performance is not included in the analysis, as

prior works [14, 53] have already studied such impact. For the CONV3 layer in AlexNet, the C |K
dataflow achieves 20% higher utilization than the others such as F

Y

|Y . This is because the channel

dimensions C and K are typically the largest in most CONV and FC layers, so it is easier to unroll

them onto a fixed-sized PE array with better load balance. From a performance perspective, we

select the C |K dataflow in the rest of this paper.

CHAPTER 5. OPTIMIZER AND RESULTS 93

Dataflow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

En
er
gy

/p
J

1e10

512B 64B 512B+Global

Fx|Fy Fy|Y X|Y C|K

(a) Batch 16 (AlexNet).

Dataflow

0.0

0.2

0.4

0.6

0.8

1.0

En
er
gy

/p
J

1e9

512B 64B 512B+Global

C|K

(b) Batch 1 (AlexNet).

Dataflow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

En
er
gy

/p
J

1e9

512B 64B 512B+Global

X|Y C|K

(c) Batch 16 (GoogleNet).

Dataflow

0.00

0.25

0.50

0.75

1.00

1.25

1.50

En
er
gy

/p
J

1e8

512B 64B 512B+Global

X|Y C|K

(d) Batch 1 (GoogleNet).

Figure 5.5: Design space of dataflow for AlexNet CONV3 and GoogLeNet 4C3R layers. Y-asix is
the energy consumed to execute the entire batch. Di↵erent dataflows are shown horizontally, with
only the most common choices labeled for clarity. All dataflows use replication and the optimal loop
blocking schemes. Di↵erent colors represent di↵erent hardware resource allocations, and the energy
cost is to complete the batch.

CHAPTER 5. OPTIMIZER AND RESULTS 94

Fx|Fy Fy|Y X|Y K|C
Dataflow Type

0.0

0.2

0.4

0.6

0.8

1.0
PE

 U
til

iza
tio

n

(a) No Replication (AlexNet)

K|C
Dataflow Type

0.0

0.2

0.4

0.6

0.8

1.0

PE
 U

til
iza

tio
n

X|YFy|YFx|Fy

(b) With Replication (AlexNet) (c) With Replication (GoogleNet)

Figure 5.6: PE array utilization for the energy-optimal dataflow choices on AlexNet CONV3 layer
with and without replication, and GoogleNet 4C3R layer with replication.

CHAPTER 5. OPTIMIZER AND RESULTS 95

Figure 5.7: Design space of loop blocking for AlexNet CONV3 using dataflow C |K with 512B RF
per PE.

Not all the computational layers have as much data sharing to exploit. Weight sharing in FC

connected layers only comes from batching, and some applications limit the batch size to be small,

even one. Interestingly, even in these computations the dataflow does not have a large influence on

performance or energy. For computations with limited reuse, the data must come from the o↵-chip

DRAM, or the last level on-die storage, if it is large enough. The storage properties at this level

will limit the device’s energy and performance, so for this class of application, the design of the

computation units is less important.

Instead of dataflow choices, Figure 5.7 shows the design space of loop blocking for AlexNet

CONV3, using a 512B RF, corresponding to the blue configuration in Figure 5.5(a). We draw

the energy distribution of all blocking choices as a histogram, with y-axis being the counts of the

blocking choices that consume the corresponding energy on the x-axis. The energy variance of

di↵erent blocking schemes is much more significant than that of dataflow, only 30% of the schemes

fall within 1.25⇥ of the minimum energy, with the distribution having a long tail on the higher

energy side. Besides, the optimal loop blocking choices vary depending on the layer shapes. This

indicates that loop blocking has a large impact on energy e�ciency.

Observation 1: With the same hardware resource, di↵erent dataflows are all able to achieve

similar and close-to-optimal energy e�ciency, as long as proper loop blocking and replication are

used.

In hindsight, this result is not surprising. When the DNNs exhibit enormous data reuse oppor-

tunities, regardless of the dataflow used, as long as high data reuse is achieved through proper loop

blocking schemes, the resulting energy e�ciency should be good. When the reuse is limited, the

CHAPTER 5. OPTIMIZER AND RESULTS 96

Figure 5.8: Energy breakdown of the optimal dataflows with di↵erent hardware configurations. 2D
and global refer to the best blue and red points in Figure 5.5. 2D-32 and 1D change the PE array
to 32⇥32, and 1D with 256 PEs respectively.

performance is limited by the bandwidth of the last level in the memory hierarchy instead of the

PE array. These two situations are further illustrated in Figure 5.8, where the left bars with 512B

RF show the energy breakdown of the optimal dataflow for the blue configuration in Figure 5.5(a).

For CONV layers with high reuse, most energy is consumed in the RF level rather than the array

buses or intermediate bu↵ers. By optimally blocking the computation, nearly all accesses (98%)

occur at the RF level, making it the dominant energy component. For FC layers with limited reuse,

most of the DRAM energy is inevitable, since the data have to be fetched at least once from o↵-

chip (compulsory misses). On the other hand, the on-chip communication is generally only a small

portion of the total energy, and therefore di↵erent dataflows do not substantially impact the overall

energy e�ciency. However, to support various replication schemes for better computation resource

utilization requires flexible communication between the PEs.

5.3.2 Impact of Hardware Resource Allocation

Another interesting result from Figure 5.8 is that the total energy is always dominated by the RF

level with a 512B RF. This suggests that resource allocation may be suboptimal. Figure 5.9 shows

the impact of memory resource allocation on energy e�ciency. The energy is accumulated across

all layers (including FC layers) in AlexNet, and contains both computation and memory access

portions. It indicates that using a smaller RF size such as 32 or 64B can significantly improve the

total energy e�ciency by up to 2.6⇥. If we also increase the global SRAM bu↵er size, the energy

CHAPTER 5. OPTIMIZER AND RESULTS 97

88

0
1
2
3
4
5
6
7

En
er

gy
 (p

J)

32B 64B 128B 256B 512B
RF Size

64 KB
128KB
256KB
512KB

Bu�er Size

Figure 5.9: Memory hierarchy exploration with dataflow C |K. Di↵erent RF sizes per PE are shown
horizontally. Lines with di↵erent colors correspond to di↵erent SRAM bu↵er sizes.

e�ciency can further improve. However, when SRAM bu↵er size grows beyond 256KB, the benefit

becomes negligible. Given the significant area cost, it is not always necessary to use large global

bu↵ers.

We further look at the energy breakdown of using a 64B register file, shown in Figure 5.10.

Compared with a 512B register file, the right bars in Figure 5.10, which give the energy breakdown

of using a 64B RF, illustrate that the energy decreases dramatically for all the CONV layers due to

the much lower energy cost per access of the smaller RF. At the same time, more accesses go to the

inter-PE array level and the global bu↵er, since the smaller RF captures less data reuse inside each

PE. This also explains why dataflows with 64B RF (green dots in Figure 5.5) has a large variance.

But reducing the RF size has almost no impact on the DRAM energy, as the data are still e�ciently

reused in the global bu↵er. Overall, a smaller RF achieves significantly better energy e�ciency, with

a more balanced energy breakdown among di↵erent memory hierarchy levels.

Observation 2: The total energy of an e�cient system should not be dominated by any individual

level in the memory hierarchy.

Observation 2 also explains why some existing output-stationary and weight-stationary designs

do not perform well, as discussed by [13]. Those designs cannot capture su�cient reuse at the RF

level, and result in high energy consumption at the DRAM level, which dominates the overall energy.

However, there is an exception for Observation 2. When DRAM dominates the total energy

but the number of DRAM accesses is already minimized (fetching the input once and writing back

output once), the DNN is memory bound, and based on Amdahl’s law, little further optimization

can be achieved for the memory hierarchy. This is the case particularly for a batch size of 1, and

MLPs and LSTMs that contain many FC layers.

CHAPTER 5. OPTIMIZER AND RESULTS 98

Figure 5.10: Energy breakdown comparison between 512B and 64B RF sizes with the same dataflow.
Using a 64B RF reduces the overall energy significantly.

By rearranging the memory sizes in the current hierarchy, we reap a significant e�ciency im-

provement. We also investigate whether changing the hierarchy itself can further improve the energy

e�ciency. Due to the dominant role of the RF level, we add another level of private register file,

and plot the resulting impact on energy in Figure 5.11. We again use the C | K dataflow, but other

dataflows have a similar trend.

We normalize the total energy against that of using one-level register file with the optimal size

(64B). The energy reduction for the CONV layers in the network, is more than 30%. This reduction

leads to an overall e�ciency improvement of approximately 25%, by choosing 16B and 256B to be

the two level register file sizes, and 256KB to be the global bu↵er size. The energy for the overall

network only reduces by 25% is because the FC layers, which are included in the total energy, have

its locality exploited in the original memory hierarchy, and almost all the data (input, weights, and

output) are only accessed from the main memory once. As a result additional levels of memory

hierarchy don’t improve the e�ciency of the FC layer. We can expect a slightly higher e�ciency

improvement for ResNet [39] or GoogLeNet [89], as they are mostly composed of CONV layers.

In Figure 5.11, the largest energy e�ciency improvement is obtained when sizing each memory

level is based on the rule that the ratio of the on-chip storage sizes between the adjacent levels

should be around 4 to 16. In an optimally-sized memory hierarchy, each memory level should shield

most of the references it receives from the next level in the hierarchy. Since the energy cost of an

access grows slowly with size, this leads to large changes in memory size. The optimal size for the

2-level registers is 8B/128B, and 8 or 16B/256B, which both have min ratio of 16. Sixteen of these

CHAPTER 5. OPTIMIZER AND RESULTS 99

Figure 5.11: Overall energy e�ciency improvement by adding another level of register file into the
memory hierarchy. This improvement is calculated by dividing the overall energy of using two
levels of RF by the optimal energy of using single level of RF. Bars that exceed 1.0 indicate energy
improvements.

units create a 4 kB memory, which fetches data from a 256 kB or 512 kB bu↵er, which is a scale

up of 64 to 128. The size of this bu↵er doesn’t depend much on the configuration of the register

hierarchy, and mainly depends on shielding most of the DRAM references. This is due to the fact

that sizing RF sizes properly already captures more of the memory references at the RF level, the

bu↵er only consumes a small portion of the total energy. Hence, even the bu↵er energy can be

further optimized by adding additional memory levels, it will only make negligible impact on the

overall energy e�ciency at the cost of area overhead. Figure 5.9 with Figure 5.11, we find that the

optimal global bu↵er sizes are both 512KB, the same regardless of di↵erent numbers of hierarchy

levels.

Figure 5.12 depicts the optimal memory resource allocation and the corresponding total energy

for AlexNet when varying PE array size. We use only one level of RF here. These correspond to the

optimal points on the optimizing plane shown in Figure 3.6. With increasing numbers of PEs, the

optimal memory size at each level grows sub-linearly. Ideally we would like to keep the same amount

of data reuse with constant storage capacity for each PE, which would lead to linearly increased

memory size. However, the access cost of each memory level grows with its size (Table 5.2), which

slows down the optimal capacity scaling to sub-linear. Between the RF and the SRAM bu↵er, the

data reuse in RF is more critical. So the RF level has a stronger trend to keep constant capacity

per PE. But it is eventually bound by the size of the next-level, i.e., the SRAM bu↵er.

Also we notice that the total energy reduces slightly with the increasing number of PEs. This

indicates that larger arrays will have a significant e↵ect on throughput and a small change in energy

e�ciency. The energy improvement is achieved by bu↵ering more data on chip for reuse, and

since most communication is nearest neighbor, the larger die does not increase communication costs

significantly.

CHAPTER 5. OPTIMIZER AND RESULTS 100

Figure 5.12: The optimal memory resource allocation and the corresponding total energy when
varying PE array size.

5.4 An E�cient Optimizer

With the large number of hardware and software choices for DNN accelerators, exhaustive search for

the optimal designs is usually infeasible. Instead, using the observations above, we can speed up the

optimization process by pruning the search space and evaluating only a small number of candidates

using the framework from Section 5.1.

We developed an auto-optimizer that e�ciently finds energy e�cient accelerator designs for

given DNNs. The optimizer takes as input the DNN topology, the energy cost model, and various

constraints such as the total chip area. First, according to Observation 1, we fix the dataflow to

be C |K, and only search the design points on the optimizing plane in Figure 3.6. Next, we only

evaluate a subset of hardware configurations with the optimal size of each memory level satisfying

Observation 2, leveraging the rule that the ratio of the on-chip storage sizes and the adjacent

levels should be around 4 to 16. It outputs an optimized design with corresponding Halide schedule

primitives, which can then be fed into our hardware synthesis toolchain.

We use four CNNs, three LSTMs, and two MLPs as benchmarks to demonstrate the e↵ectiveness

of our e�cient optimizer. All DNNs evaluated use 16-bit precision. The CNNs are AlexNet, VGG-

16 [83], MobileNet [45], and GoogleNet [89] with batch size 16. The LSTM-M and LSTM-L are

proposed by Google for sequence-to-sequence learning [88] with embedding sizes 500 and 1000. We

also study the Recurrent Highway Network (RHN) [106]. The MLPs are from [17] with batch size

128. We use two baselines, both using dataflow C |K, which are the two left columns in Figure 5.13.

The smaller chip uses a memory hierarchy similar to Eyeriss [13], and 16⇥16 PE array, whose area

and power budgets are suitable for mobile platforms. The larger chip uses 128⇥128 PE array with

CHAPTER 5. OPTIMIZER AND RESULTS 101

8B register per PE, 64KB for first-level global bu↵er, and a 28 MB second-level global bu↵er, similar

to cloud-based accelerators such as TPU [48].

Figure 5.13 demonstrates the energy e�ciency gain achieved by the e�cient optimizer. We can

improve the energy e�ciency by up to 3.5⇥, 2.7⇥, and 4.2⇥ for VGG-16, GoogleNet and MobilelNet,

up to 1.6⇥ for LSTMs, and up to 1.8⇥ for MLPs. The optimal memory hierarchy uses 16B and

128B for the first-level and second-level register files, with a 256KB global SRAM double bu↵er.

This hardware configuration is shared by all the layers in the DNNs. Di↵erent from Eyeriss, the

overall system energy consumption is not dominated by the RF level. The energy e�ciency for the

nine benchmarks are 1.85, 1.42, 0.87, 0.35, 0.49, 0.47, 0.5, 0.46, and 0.48 TOPs/W, respectively.

Notice that even though the larger system has a smaller RF size, its energy is better than the smaller

system. This is because with a much larger global SRAM bu↵er, it can store all the input and output

data and the layer weights, and the accesses to DRAM are eliminated when switching to the next

layer.

Figure 5.13: Overall energy e�ciency improvement by using the auto-optimizer.

In summary, using the systematical analysis framework to study the global design space, we ob-

serve many dataflows can achieve similar and near-optimal energy e�ciency, since properly blocking

the computation can capture most memory references at the memory level closest to the compu-

tation units. The parameters in the space that make significant impact on e�ciency are the loop

blocking choice and the memory hierarchy design. The results indicate making register files larger

does not always make them better, especially when the energy cost of the operations is small, and

confirms the power of deep memory hierarchies.

Chapter 6

Conclusion

DNN applications are becoming pervasive, due to the superior accuracy on many modern intelli-

gence problems, including recognition, detection, sequence modeling and so on. These workload are

extremely computationally intensive, and require significant memory. Despite of the massive dataset

involved in the computation, the algorithms have high data locality and parallelism, which previous

researcher have exploited in a variety of DNN accelerators.

Even after many papers describing e�cient DNN accelerators that have been published, there

was little clarity about which hardware or software parameters were critical for e�ciency. To help

address this issue, we showed that the design space of DNN accelerators can be viewed as a 3D

design space for DNNs, where one axis is loop blocking, another is the hardware dataflow used,

and the last is the hardware resource allocation. More importantly, we realized that these three

dimensions can be precisely and concisely described as the schedules of loop transformations. Thus

we transform the problem of describing the design space of DNN accelerators into the problem of

blocking and scheduling the (upto) seven level loop nest of a DNN.

Since Halide scheduling language already provides the required facilities for describing loop trans-

formations for software programs, it provided a great starting point for our hardware generation

framework. With only small extensions, we were able to express both the micro-architectures and

dataflow mappings for existing DNN accelerators as schedules of a Halide program. Thus by ex-

tending the scheduling language and creating a hardware backend for Halide system, we were able

to generate and fairly compare all proposed dense DNN accelerators.

Perhaps unsurprisingly given the large diversity of the existing DNN accelerators, the high locality

in DNN algorithms means that there are many ways of partitioning the problem that achieve high

e�ciency. As long as the data reuse and the resource utilization are maximized by proper loop

blocking and replication, hardware dataflow decisions aren’t critical, and the results will be near

optimal. The choices of loop blocking and the design of memory hierarchy have a larger e↵ect on

system e�ciency, than the hardware dataflow. Again unsurprising in hindsight, optimal solutions try

102

CHAPTER 6. CONCLUSION 103

to balance energy among the di↵erent levels in the memory hierarchy. The large number of accesses

to the memory next to the compute units really drives making these register files small, significantly

smaller than we expected when we started. When designing future accelerators, we argue that deep

memory hierarchies with properly sized memory at each level is important for DNNs, just as they

are for CPUs. And the memory should be sized to accommodate e�cient loop blocking that ensure

any single memory level doesn’t dominate the overall energy.

While this framework enabled us to better understand the DNN design space, there are a number

of ways it could by further improved. The first one is a question of e�ciency. Our current method

of optimizing the memory resources and schedule enumerates through di↵erent memory options. It

should be possible to speed this exploration by using a smarter joint search algorithm. Another

limitation of our system is that it doesn’t consider data resolution. In the last decade, outstanding

breakthroughs have been made that successfully reduced the network size and memory footprint

with negligible accuracy loss by optimizing the data precision. Combing the previously proposed

quantization technique with the energy modeling in our optimization framework, we can replace

the size of memory footprint with the energy cost as the optimization objective to directly optimize

the algorithms for minimal energy cost. Furthermore, adding this extension can allow us to explore

the opportunities of using di↵erent precision at each memory level with re-optimizing the schedule

choices to achieve even better e�ciency.

Another major improvement would be to extend the work on auto-schedulers for Halide to work

for hardware generation as well. Researchers have already created auto-schedulers on top of the

Halide scheduling system to search the optimal schedule that maximizes the performance for CPU

and GPU targets [61, 5]. We should be able to integrate the simple hardware performance and energy

analytical models we use in our optimizer into the more general auto-scheduler and explore how well

it works on both the DNNs that we have covered, as well as the problems that need acceleration. We

hope that the strong connections between loop transformations and hardware designs we uncovered

in this work will make designing accelerators easier in the future. And our findings will highlight

the importance of deep memory hierarchies with proper memory sizes for future DNN accelerators.

Bibliography

[1] Arm ML Processor. https://developer.arm.com/products/processors/machine-learning/

arm-ml-processor/.

[2] Intel ETANN. https://en.wikichip.org/wiki/intel/etann.

[3] NVDLA. http://nvdla.org/.

[4] Tensilica customizable processor IP. http://ip.cadence.com/ipportfolio/tensilica-ip.

[5] Andrew Adams, Karima Ma, Luke Anderson, Riyadh Baghdadi, Tzu-Mao Li, Michaël Gharbi,

Benoit Steiner, Steven Johnson, Kayvon Fatahalian, Frédo Durand, and Jonathan Ragan-

Kelley. Learning to optimize halide with tree search and random programs. ACM Trans.

Graph., 38(4):121:1–121:12, July 2019.

[6] Jorge Albericio, Patrick Judd, Tayler Hetherington, Tor Aamodt, Natalie Enright Jerger, and

Andreas Moshovos. Cnvlutin: Ine↵ectual-neuron-free deep neural network computing. In 43rd

Annual International Symposium on Computer Architecture (ISCA), pages 1–13, 2016.

[7] Altera. Intel fpga sdk for OpenCL. https://www.altera.com/products/design-software/

embedded-software-developers/opencl/overview.html.

[8] Manoj Alwani, Han Chen, Michael Ferdman, and Peter Milder. Fused-layer CNN accelerators.

In 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages

1–12, 2016.

[9] Erfan Azarkhish, Davide Rossi, Igor Loi, and Luca Benini. Neurostream: Scalable and en-

ergy e�cient deep learning with smart memory cubes. IEEE Transactions on Parallel and

Distributed Systems, 29(2):420–434, 2017.

[10] Srimat Chakradhar, Murugan Sankaradas, Venkata Jakkula, and Srihari Cadambi. A dy-

namically configurable coprocessor for convolutional neural networks. In ACM SIGARCH

Computer Architecture News, volume 38, pages 247–257. ACM, 2010.

104

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor/
https://developer.arm.com/products/processors/machine-learning/arm-ml-processor/
https://en.wikichip.org/wiki/intel/etann
http://nvdla.org/
http://ip.cadence.com/ipportfolio/tensilica-ip

BIBLIOGRAPHY 105

[11] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q Yan, LeyuanWang, Yuwei

Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: end-to-end optimization

stack for deep learning. arXiv preprint arXiv:1802.04799, pages 1–15, 2018.

[12] Tianshi Chen, Zidong Du, Ninghui Sun, Jia Wang, Chengyong Wu, Yunji Chen, and Olivier

Temam. DianNao: A small-footprint high-throughput accelerator for ubiquitous machine-

learning. In 19th International Conference on Architectural Support for Programming Lan-

guages and Operating Systems (ASPLOS), pages 269–284, 2014.

[13] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss: A spatial architecture for energy-

e�cient dataflow for convolutional neural networks. In 43rd Annual International Symposium

on Computer Architecture (ISCA), pages 367–379, 2016.

[14] Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible and high-performance

accelerator for emerging deep neural networks. arXiv preprint arXiv:1807.07928, 2018.

[15] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. Eyeriss: An energy-e�cient

reconfigurable accelerator for deep convolutional neural networks. In IEEE International Solid-

State Circuits Conference (ISSCC), pages 262–263, 2016.

[16] Yunji Chen, Tao Luo, Shaoli Liu, Shijin Zhang, Liqiang He, Jia Wang, Ling Li, Tianshi Chen,

Zhiwei Xu, Ninghui Sun, and Olivier Temam. DaDianNao: A machine-learning supercomputer.

In 47th Annual ACM/IEEE International Symposium on Microarchitecture (MICRO), pages

609–622, 2014.

[17] Ping Chi, Shuangchen Li, Cong Xu, Tao Zhang, Jishen Zhao, Yongpan Liu, Yu Wang, and

Yuan Xie. PRIME: A novel processing-in-memory architecture for neural network computation

in ReRAM-based main memory. In 43rd International Symposium on Computer Architecture

(ISCA), pages 27–39, 2016.

[18] Nitin Chugh, Vinay Vasista, Suresh Purini, and Uday Bondhugula. A dsl compiler for ac-

celerating image processing pipelines on fpgas. In 2016 International Conference on Parallel

Architecture and Compilation Techniques (PACT), pages 327–338. IEEE, 2016.

[19] Jason Cong, Yiping Fan, Guoling Han, Wei Jiang, and Zhiru Zhang. Platform-based behavior-

level and system-level synthesis. In 2006 IEEE International SoC Conference, pages 199–202.

IEEE, 2006.

[20] Jason Cong and Jie Wang. Polysa: Polyhedral-based systolic array auto-compilation. In

Proceedings of the International Conference on Computer-Aided Design, ICCAD ’18, pages

117:1–117:8, New York, NY, USA, 2018. ACM.

BIBLIOGRAPHY 106

[21] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Binaryconnect: Training deep

neural networks with binary weights during propagations. In Advances in neural information

processing systems, pages 3123–3131, 2015.

[22] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Bina-

rized neural networks: Training deep neural networks with weights and activations constrained

to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[23] Philippe Coussy, Daniel D Gajski, Michael Meredith, and Andres Takach. An introduction to

high-level synthesis. IEEE Design & Test of Computers, 26(4):8–17, 2009.

[24] Ruizhou Ding, Zeye Liu, Rongye Shi, Diana Marculescu, and R.D. (Shawn) Blanton. Lightnn:

Filling the gap between conventional deep neural networks and binarized networks. In Pro-

ceedings of the on Great Lakes Symposium on VLSI 2017, GLSVLSI ’17, pages 35–40, New

York, NY, USA, 2017. ACM.

[25] Bruce Draper, Walid Najjar, Wim Bohm, Je↵rey Hammes, Bob Rinker, Charlie Ross, Monica

Chawathe, and José Bins. Compiling and optimizing image processing algorithms for fpgas.

In Proceedings Fifth IEEE International Workshop on Computer Architectures for Machine

Perception, pages 222–231. IEEE, 2000.

[26] Zidong Du, Robert Fasthuber, Tianshi Chen, Paolo Ienne, Ling Li, Tao Luo, Xiaobing Feng,

Yunji Chen, and Olivier Temam. ShiDianNao: Shifting vision processing closer to the sensor.

In 42nd Annual International Symposium on Computer Architecture (ISCA), pages 92–104,

2015.

[27] Clément Farabet, Berin Martini, Benoit Corda, Polina Akselrod, Eugenio Culurciello, and

Yann LeCun. Neuflow: A runtime reconfigurable dataflow processor for vision. In 2011 IEEE

Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pages 109–

116, 2011.

[28] Chang Gao, Daniel Neil, Enea Ceolini, Shih-Chii Liu, and Tobi Delbruck. Deltarnn: A power-

e�cient recurrent neural network accelerator. In Proceedings of the 2018 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays, pages 21–30. ACM, 2018.

[29] Mingyu Gao, Jing Pu, Xuan Yang, Mark Horowitz, and Christos Kozyrakis. TETRIS: Scalable

and e�cient neural network acceleration with 3D memory. In 22nd ACM International Confer-

ence on Architectural Support for Programming Languages and Operating Systems (ASPLOS),

2017.

[30] Mingyu Gao, Xuan Yang, Jing Pu, Mark Horowitz, and Christos Kozyrakis. Tangram: Opti-

mized coarse-grained dataflow for scalable nn accelerators. In Proceedings of the Twenty-Fourth

BIBLIOGRAPHY 107

International Conference on Architectural Support for Programming Languages and Operating

Systems, ASPLOS ’19, pages 807–820, New York, NY, USA, 2019. ACM.

[31] Vinayak Gokhale, Jonghoon Jin, Aysegul Dundar, Berin Martini, and Eugenio Culurciello.

A 240 G-ops/s mobile coprocessor for deep neural networks. In 2014 IEEE Conference on

Computer Vision and Pattern Recognition Workshops (CVPRW), pages 696–701, 2014.

[32] Mentor Graphics. Catapult High-Level Synthesis. https://www.mentor.com/hls-lp/

catapult-high-level-synthesis/.

[33] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. Fpga-based accelerator for long

short-term memory recurrent neural networks. In 2017 22nd Asia and South Pacific Design

Automation Conference (ASP-DAC), pages 629–634. IEEE, 2017.

[34] Zhi Guo, Betul Buyukkurt, Walid Najjar, and Kees Vissers. Optimized generation of data-

path from c codes for fpgas. In Proceedings of the conference on Design, Automation and Test

in Europe-Volume 1, pages 112–117. IEEE Computer Society, 2005.

[35] Zhi Guo, Walid Najjar, and Betul Buyukkurt. E�cient hardware code generation for fpgas.

ACM Transactions on Architecture and Code Optimization (TACO), 5(1):6, 2008.

[36] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learn-

ing with limited numerical precision. In Proceedings of the 32Nd International Conference

on International Conference on Machine Learning - Volume 37, ICML’15, pages 1737–1746.

JMLR.org, 2015.

[37] Philipp Gysel, Mohammad Motamedi, and Soheil Ghiasi. Hardware-oriented approximation

of convolutional neural networks. arXiv preprint arXiv:1604.03168, 2016.

[38] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz, and

William J. Dally. EIE: E�cient inference engine on compressed deep neural network. In 43rd

Annual International Symposium on Computer Architecture (ISCA), pages 243–254, 2016.

[39] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image

recognition. arXiv preprint arXiv:1512.03385, 2015.

[40] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy Cohen, Steven

Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Darkroom: compiling high-level

image processing code into hardware pipelines. ACM Trans. Graph., 33(4):144–1, 2014.

[41] James Hegarty, Ross Daly, Zachary DeVito, Jonathan Ragan-Kelley, Mark Horowitz, and

Pat Hanrahan. Rigel: Flexible multi-rate image processing hardware. ACM Transactions on

Graphics (TOG), 35(4):85, 2016.

https://www.mentor.com/hls-lp/catapult-high-level-synthesis/
https://www.mentor.com/hls-lp/catapult-high-level-synthesis/

BIBLIOGRAPHY 108

[42] Geo↵rey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm for deep

belief nets. Neural computation, 18(7):1527–1554, 2006.

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,

9(8):1735–1780, 1997.

[44] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient convolutional neural

networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[45] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias

Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: E�cient convolutional neural

networks for mobile vision applications. CoRR, abs/1704.04861, 2017.

[46] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and

Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and¡ 0.5 mb

model size. arXiv preprint arXiv:1602.07360, 2016.

[47] Yangqing Jia, Evan Shelhamer, Je↵ Donahue, Sergey Karayev, Jonathan Long, Ross B. Gir-

shick, Sergio Guadarrama, and Trevor Darrell. Ca↵e: Convolutional architecture for fast

feature embedding. CoRR, abs/1408.5093, 2014.

[48] Norman P. Jouppi, Cli↵ Young, Nishant Patil, David Patterson, Gaurav Agrawal, Ramin-

der Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre luc

Cantin, Cli↵ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Je↵rey Dean, Ben

Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann,

C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron

Ja↵ey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch,

Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan

Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark

Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad

Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg,

Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay

Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. In-datacenter

performance analysis of a tensor processing unit. In Proceedings of the 44th Annual Interna-

tional Symposium on Computer Architecture (ISCA), Jun 2017.

[49] Patrick Judd, Jorge Albericio, Tayler Hetherington, Tor M Aamodt, and Andreas Moshovos.

Stripes: Bit-serial deep neural network computing. In 2016 49th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), pages 1–12. IEEE, 2016.

BIBLIOGRAPHY 109

[50] Duckhwan Kim, Jaeha Kung, Sek Chai, Sudhakar Yalamanchili, and Saibal Mukhopadhyay.

Neurocube: A programmable digital neuromorphic architecture with high-density 3D memory.

In 43rd Annual International Symposium on Computer Architecture (ISCA), pages 380–392,

2016.

[51] Jong Hwan Ko, Burhan Mudassar, Taesik Na, and Saibal Mukhopadhyay. Design of an energy-

e�cient accelerator for training of convolutional neural networks using frequency-domain com-

putation. In Proceedings of the 54th Annual Design Automation Conference 2017, DAC ’17,

pages 59:1–59:6, New York, NY, USA, 2017. ACM.

[52] Alex Krizhevsky, Ilya Sutskever, and Geo↵rey E Hinton. ImageNet classification with deep

convolutional neural networks. In 25th International Conference on Neural Information Pro-

cessing Systems (NIPS), pages 1097–1105, 2012.

[53] Hyoukjun Kwon, Michael Pellauer, and Tushar Krishna. MAESTRO: an open-source infras-

tructure for modeling dataflows within deep learning accelerators. CoRR, abs/1805.02566,

2018.

[54] Hyoukjun Kwon, Ananda Samajdar, and Tushar Krishna. MAERI: Enabling flexible dataflow

mapping over DNN accelerators via reconfigurable interconnects. In Proceedings of the Twenty-

Third International Conference on Architectural Support for Programming Languages and Op-

erating Systems, ASPLOS ’18, pages 461–475, New York, NY, USA, 2018. ACM.

[55] Yi-Hsiang Lai, Yuze Chi, Yuwei Hu, Jie Wang, Cody Hao Yu, Yuan Zhou, Jason Cong, and

Zhiru Zhang. Heterocl: A multi-paradigm programming infrastructure for software-defined

reconfigurable computing. In Proceedings of the 2019 ACM/SIGDA International Symposium

on Field-Programmable Gate Arrays, pages 242–251. ACM, 2019.

[56] Huimin Li, Xitian Fan, Li Jiao, Wei Cao, Xuegong Zhou, and Lingli Wang. A high perfor-

mance FPGA-based accelerator for large-scale convolutional neural networks. In 2016 26th

International Conference on Field Programmable Logic and Applications (FPL), pages 1–9,

Aug 2016.

[57] Wenyan Lu, Guihai Yan, Jiajun Li, Shijun Gong, Yinhe Han, and Xiaowei Li. FlexFlow:

A flexible dataflow accelerator architecture for convolutional neural networks. In 23rd IEEE

International Symposium on High Performance Computer Architecture (HPCA), pages 553–

564, 2017.

[58] Daisuke Miyashita, Edward H Lee, and Boris Murmann. Convolutional neural networks using

logarithmic data representation. arXiv preprint arXiv:1603.01025, 2016.

BIBLIOGRAPHY 110

[59] Bert Moons and Marian Verhelst. A 0.3–2.6 tops/w precision-scalable processor for real-time

large-scale convnets. In 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits), pages 1–2.

IEEE, 2016.

[60] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krish-

namurthy. VTA: an open hardware-software stack for deep learning. CoRR, abs/1807.04188,

2018.

[61] Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, and Kayvon

Fatahalian. Automatically scheduling halide image processing pipelines. ACM Transactions

on Graphics (TOG), 35(4):83, 2016.

[62] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. Polymage: Automatic optimiza-

tion for image processing pipelines. In Proceedings of the Twentieth International Conference

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15,

pages 429–443, New York, NY, USA, 2015. ACM.

[63] Naveen Muralimanohar, Rajeev Balasubramonian, and Norm Jouppi. Optimizing NUCA

organizations and wiring alternatives for large caches with CACTI 6.0. In Proceedings of the

40th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 40, pages

3–14, Washington, DC, USA, 2007. IEEE Computer Society.

[64] Walid A Najjar, Wim Bohm, Bruce A Draper, Je↵ Hammes, Robert Rinker, J Ross Beveridge,

Monica Chawathe, and Charles Ross. High-level language abstraction for reconfigurable com-

puting. Computer, 36(8):63–69, 2003.

[65] Eriko Nurvitadhi, David She�eld, Jaewoong Sim, Asit Mishra, Ganesh Venkatesh, and Debbie

Marr. Accelerating binarized neural networks: Comparison of fpga, cpu, gpu, and asic. In

2016 International Conference on Field-Programmable Technology (FPT), pages 77–84. IEEE,

2016.

[66] Eriko Nurvitadhi, Jaewoong Sim, David She�eld, Asit Mishra, Srivatsan Krishnan, and Deb-

bie Marr. Accelerating recurrent neural networks in analytics servers: Comparison of fpga,

cpu, gpu, and asic. In 2016 26th International Conference on Field Programmable Logic and

Applications (FPL), pages 1–4. IEEE, 2016.

[67] Alexandros Papakonstantinou, Karthik Gururaj, John A Stratton, Deming Chen, Jason Cong,

and Wen-Mei W Hwu. Fcuda: Enabling e�cient compilation of cuda kernels onto fpgas. In

2009 IEEE 7th Symposium on Application Specific Processors, pages 35–42. IEEE, 2009.

[68] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rangharajan

Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and William J Dally. SCNN:

BIBLIOGRAPHY 111

An accelerator for compressed-sparse convolutional neural networks. In Proceedings of the 44th

Annual International Symposium on Computer Architecture, pages 27–40. ACM, 2017.

[69] Ardavan Pedram, Robert A Van De Geijn, and Andreas Gerstlauer. Codesign tradeo↵s for

high-performance, low-power linear algebra architectures. IEEE Transactions on Computers,

61(12):1724–1736, 2012.

[70] Maurice Peemen, Arnaud AA Setio, Bart Mesman, and Henk Corporaal. Memory-centric

accelerator design for convolutional neural networks. In 31st International Conference on

Computer Design (ICCD), pages 13–19, 2013.

[71] Jing Pu. Programming Heterogeneous Systems From an Image Processing Domain Specific

Language. PhD thesis, Stanford University, 2017.

[72] Jing Pu, Steven Bell, Xuan Yang, Je↵ Setter, Stephen Richardson, Jonathan Ragan-Kelley,

and Mark Horowitz. Programming heterogeneous systems from an image processing DSL.

ACM Trans. Archit. Code Optim., 14(3):26:1–26:25, August 2017.

[73] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi

Tang, Ningyi Xu, Sen Song, et al. Going deeper with embedded FPGA platform for convolu-

tional neural network. In Proceedings of the 2016 ACM/SIGDA International Symposium on

Field-Programmable Gate Arrays, pages 26–35. ACM, 2016.

[74] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand, and

Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism, locality,

and recomputation in image processing pipelines. In Proceedings of the 34th ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’13, pages 519–530,

New York, NY, USA, 2013. ACM.

[75] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Ima-

genet classification using binary convolutional neural networks. In European Conference on

Computer Vision, pages 525–542. Springer, 2016.

[76] Oliver Reiche, Moritz Schmid, Frank Hannig, Richard Membarth, and Jürgen Teich. Code

generation from a domain-specific language for c-based hls of hardware accelerators. In Pro-

ceedings of the 2014 International Conference on Hardware/Software Codesign and System

Synthesis, page 17. ACM, 2014.

[77] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organi-

zation in the brain. Psychological review, 65(6):386, 1958.

[78] John S.Brunhaver. Design and Optimization of a Stencil Engine. PhD thesis, Stanford Uni-

versity, 2015.

BIBLIOGRAPHY 112

[79] Fabian Schuiki, Michael Scha↵ner, Frank K Gürkaynak, and Luca Benini. A scalable near-

memory architecture for training deep neural networks on large in-memory datasets. IEEE

Transactions on Computers, 68(4):484–497, 2018.

[80] H. Sharma, J. Park, D. Mahajan, E. Amaro, J. K. Kim, C. Shao, A. Mishra, and H. Es-

maeilzadeh. From high-level deep neural models to FPGAs. In 2016 49th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pages 1–12, Oct 2016.

[81] Yongming Shen, Mechael Ferdman, and Peter Milder. Overcoming resource underutilization

in spatial CNN accelerators. In 2016 26th International Conference on Field Programmable

Logic and Applications (FPL), pages 1–4, Aug 2016.

[82] Yongming Shen, Mechael Ferdman, and Peter Milder. Maximizing CNN accelerator e�ciency

through resource partitioning. In Proceedings of the 44th Annual International Symposium on

Computer Architecture (ISCA), Jun 2017.

[83] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale

image recognition. arXiv preprint arXiv:1409.1556, 2014.

[84] Linghao Song, Jiachen Mao, Youwei Zhuo, Xuehai Qian, Hai Li, and Yiran Chen. Hypar:

Towards hybrid parallelism for deep learning accelerator array. In 2019 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages 56–68. IEEE, 2019.

[85] Mingcong Song, Jiaqi Zhang, Huixiang Chen, and Tao Li. Towards e�cient microarchitectural

design for accelerating unsupervised GAN-based deep learning. In High Performance Computer

Architecture (HPCA), 2018 IEEE International Symposium on, pages 66–77. IEEE, 2018.

[86] Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao, Zhiru Zhang,

David Albonesi, Vivek Sarkar, Wenguang Chen, Paul Petersen, et al. T2s-tensor: Productively

generating high-performance spatial hardware for dense tensor computations.

[87] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma, Sarma Vrudhula,

Jae-sun Seo, and Yu Cao. Throughput-optimized OpenCL-based FPGA accelerator for large-

scale convolutional neural networks. In Proceedings of the 2016 ACM/SIGDA International

Symposium on Field-Programmable Gate Arrays, pages 16–25. ACM, 2016.

[88] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural

networks. CoRR, abs/1409.3215, 2014.

[89] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,

Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.

arXiv preprint arXiv:1409.4842, 2014.

BIBLIOGRAPHY 113

[90] Maxeler Acceleration Technology. MaxCompiler White Paper. https://www.maxeler.com/

media/documents/MaxelerWhitePaperMaxCompiler.pdf.

[91] Kodai Ueyoshi, Kota Ando, Kazutoshi Hirose, Shinya Takamaeda-Yamazaki, Junichiro Kado-

moto, Tomoki Miyata, Mototsugu Hamada, Tadahiro Kuroda, and Masato Motomura. Quest:

A 7.49 tops multi-purpose log-quantized dnn inference engine stacked on 96mb 3d sram using

inductive-coupling technology in 40nm cmos. In 2018 IEEE International Solid-State Circuits

Conference-(ISSCC), pages 216–218. IEEE, 2018.

[92] Xuechao Wei, Cody Hao Yu, Peng Zhang, Youxiang Chen, Yuxin Wang, Han Hu, Yun Liang,

and Jason Cong. Automated systolic array architecture synthesis for high throughput CNN

inference on FPGAs. In Proceedings of the 54th Annual Design Automation Conference 2017,

DAC ’17, pages 29:1–29:6, New York, NY, USA, 2017. ACM.

[93] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An insightful visual

performance model for floating-point programs and multicore architectures. Technical report,

Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States), 2009.

[94] Xilinx. Vivado High-Level Synthesis: Accelerates IP Creation by Enabling C, C++ and

System C Specifications. https://www.xilinx.com/products/design-tools/vivado/integration/

esl-design.html.

[95] Xuan Yang, Jing Pu, Blaine Burton Rister, Nikhil Bhagdikar, Stephen Richardson, Shahar

Kvatinsky, Jonathan Ragan-Kelley, Ardavan Pedram, and Mark Horowitz. A systematic ap-

proach to blocking convolutional neural networks. arXiv preprint arXiv:1606.04209, 2016.

[96] Amir Yazdanbakhsh, Michael Brzozowski, Behnam Khaleghi, Soroush Ghodrati, Kambiz

Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh. Flexigan: An end-to-end solution for fpga

acceleration of generative adversarial networks. In Proceedings of the IEEE Symposium on

Field-Programmable Custom Computing Machines (FCCM18), 2018.

[97] Amir Yazdanbakhsh, Kambiz Samadi, Nam Sung Kim, and Hadi Esmaeilzadeh. Ganax: A

unified mimd-simd acceleration for generative adversarial networks. In Proceedings of the 45th

Annual International Symposium on Computer Architecture, pages 650–661. IEEE Press, 2018.

[98] Jiecao Yu, Andrew Lukefahr, David Palframan, Ganesh Dasika, Reetuparna Das, and Scott

Mahlke. Scalpel: Customizing DNN pruning to the underlying hardware parallelism. In

Proceedings of the 44th Annual International Symposium on Computer Architecture (ISCA),

pages 548–560, 2017.

[99] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason Cong. Optimizing

FPGA-based accelerator design for deep convolutional neural networks. In 2015 ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA), pages 161–170, 2015.

BIBLIOGRAPHY 114

[100] Chen Zhang, Guangyu Sun, Zhenman Fang, Peipei Zhou, Peichen Pan, and Jason Cong.

Ca↵eine: Towards uniformed representation and acceleration for deep convolutional neural

networks. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

2018.

[101] Chi Zhang and Viktor Prasanna. Frequency domain acceleration of convolutional neural net-

works on CPU-FPGA shared memory system. In Proceedings of the 2017 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays, FPGA ’17, pages 35–44, New York,

NY, USA, 2017. ACM.

[102] Shijin Zhang, Zidong Du, Lei Zhang, Huiying Lan, Shaoli Liu, Ling Li, Qi Guo, Tianshi Chen,

and Yunji Chen. Cambricon-X: An accelerator for sparse neural networks. In 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12, 2016.

[103] Yiwei Zhang, Chao Wang, Lei Gong, Yuntao Lu, Fan Sun, Chongchong Xu, Xi Li, and Xuehai

Zhou. A power-e�cient accelerator based on fpgas for lstm network. In 2017 IEEE Interna-

tional Conference on Cluster Computing (CLUSTER), pages 629–630. IEEE, 2017.

[104] Ritchie Zhao, Weinan Song, Wentao Zhang, Tianwei Xing, Jeng-Hau Lin, Mani Srivastava,

Rajesh Gupta, and Zhiru Zhang. Accelerating binarized convolutional neural networks with

software-programmable fpgas. In Proceedings of the 2017 ACM/SIGDA International Sympo-

sium on Field-Programmable Gate Arrays, pages 15–24. ACM, 2017.

[105] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen. Incremental network quan-

tization: Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044,

2017.

[106] Julian G. Zilly, Rupesh Kumar Srivastava, Jan Koutńık, and Jürgen Schmidhuber. Recurrent

highway networks. CoRR, abs/1607.03474, 2016.

[107] Wei Zuo, Yun Liang, Peng Li, Kyle Rupnow, Deming Chen, and Jason Cong. Improving high

level synthesis optimization opportunity through polyhedral transformations. In Proceedings

of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA

’13, pages 9–18, New York, NY, USA, 2013. ACM.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28113017

2021

	Abstract
	Acknowledgments
	Introduction
	Thesis Outline

	Background
	DNN Algorithms
	DNN Accelerators
	High-Level Synthesis
	DSL Systems
	Image Processing DSL Systems
	DNN DSL Systems

	Halide Language
	Halide Algorithms
	Halide Schedules

	Summary

	The Design Space of DNN
	DNN Accelerators
	DNN Accelerator Architectures
	DNN Schedules

	Previous DNN Scheduling Taxonomy
	Stationary-Based Dataflow
	Loop Nest-Based Schedule
	Data-Centric Dataflow

	Design Space Overview
	A Formal Loop-based Dataflow Taxonomy

	DSL System Design for DNN
	Halide Schedules for DNN Accelerators
	Extended Halide IR
	Compiler Implementation
	Hardware Generation
	Double Buffer
	Systolic Array

	Summary

	Optimizer and Results
	Energy and Performance Models
	Performance Analytical Model
	Energy Analytical Model
	Analytical Model Validation

	Optimization Flow
	Optimizer Structure
	Optimizer Input and Output

	Results
	Impact of Dataflow and Loop Blocking
	Impact of Hardware Resource Allocation

	An Efficient Optimizer

	Conclusion
	Bibliography

