
GPU ENERGY MODELING AND ANALYSIS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Zain Asgar

June 2015

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/qb097xt0874

© 2015 by Zain Mohamed Asgar. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/qb097xt0874

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

John Montrym, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christos Kozyrakis

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

iv

Abstract

Over the past couple of decades GPUs have enjoyed tremendous scaling in both func-

tionality and performance by focusing on area e�cient processing. However, the

slowdown in supply voltage scaling has created a new hurdle to continued scaling

of GPU performance. This slowdown in voltage scaling has caused power consump-

tion to limit the achievable GPU performance. Since GPUs currently use many of

the well-known hardware techniques for reduced power consumption, GPU designers

need to start looking at architectural techniques to improve energy e�ciency. This

work explores how construct an accurate energy model to enable this architectural

exploration. We also use our model to explore potential energy reduction techniques.

For the energy model, we utilize both a detailed model that can be adjusted for a

large number of parameters (for example: clock speed, pipeline depth, etc.) as well as

a regression based designs blocks derived from existing designs. The model achieved

high correlation when compared to actual GPU designs.

Using our model we performed several “what if” studies to explore opportunities

for energy savings. One of the studies we looked as was reducing the precision of

computation. We found that this optimization can yield 20-30% energy savings in

current GPUs without sacrificing image quality.

We then used our model to conduct two studies related to reducing the amount of

work done by the GPU. The first one is reducing thread level redundancy (scalariza-

tion), and the other is reducing overdraw (which occurs when a given pixel’s value is

computed more than once). Reducing thread level redundancy can potentially yield

significant energy savings of 20 - 50%. Overdraw reduction yielded a much smaller

benefit that we initially expected. Interestingly, we found that there is significant

v

amounts of overdraw in most of the frames that we studied. However, the energy

savings are less than 15% even with an over draw of 2.3X (meaning that every pixel

on average is drawn more than 2 times). It turns out that overdraw is easier for soft-

ware developers to profile and reducing overdraw also yields significant performance

benefits. So while the overdraw in our frames was high, relatively simple computation

was getting overdrawn with much more complex computation.

The studies showcase the importance of holistically looking at the performance

and energy models. Looking at just one alone might give misleading results, as it was

evident from the scalarization and overdraw studies. In fact significant opportunities

for energy reduction might exist where an in-e�ciency in the design does not a↵ect

performance in any observable way.

vi

Acknowledgement

As I complete the PhD program I have many people to be thankful for during my

journey as a grad student. My time at Stanford has been full of learning and growing

as a person, and there are a lot of people who helped me throughout the process.

When I started Stanford many years ago I was privileged to have professor Mark

Horowitz as my advisor. I have learned so much from Mark, not only in my research

area, but also in many other ways. I am not only grateful for all his guidance, support

and mentorship over the past few years, but his extreme patience and trust in me

during my years in graduate school. I could not have gotten a better advisor.

Next, I want to thank members for Mark’s research group. Early in my PhD

program I got to work on the Smart Memories project. I got to work with many

people and learned a tremendous amount during this project. In particular: Alex

Solomatnikov, Amin Firoozshahian, Ofer Shacham, Megan Wachs, Don Stark, and

Stephen Richardson. This was probably my most memorable time at Stanford, and

has forged many long-term friendships. In particular I want to thank Ofer Shacham,

who has always been a great friend and is there whenever I need help with anything.

I also want to thank Don Stark, who was also a great mentor to me during my time at

Stanford. I am also very thankful for my other friends in Mark’s group. In particular

Pete Stevenson and Omid Azizi have been very good friends of mine.

There is also a number of support sta↵ to which I am grateful. I need to thank

Mark’s administrative assistants for always be willing to help with setting up meet-

ings, travel, etc. During the earlier years in Mark’s group Teresa Lynn helped me

setup my initial meetings with Mark, handled issues with funding, and countless

other things. Mary Jane Swenson was the administrative assistant for Mark during

vii

the latter half of my PhD. She has been absolutely helpful in setting up meetings

with many busy calendars, getting my orals setup, and helping get my thesis signed.

I must also thank Charlie Orgish for helping administer also the computer systems.

I am also very grateful to a number of friends I had outside of my research group.

In particular: Oana Carja, Roxana Daneshjou, Siejen Yin-Stevenson and Sathish

Jothikumar. They have always been there for me in times of need. I would also like

to thank my frequent project partners at Stanford: Yanjing Li and Vishal Parikh.

I would also like to thank my co-advisor, John Montrym. During part of my PhD

I was working at NVIDIA to learn more about GPUs and get access to real designs to

help me with my research. John helped me get my research work setup at NVIDIA

and provided me with lots of guidance and many interesting discussions throughout

my time at NVIDIA. I cannot thank John enough for so much time with me to help

me throughout my PhD.

I would also like to thank all my PhD committee members. Professor Subhasish

Mitra was not only on my committee but was a mentor to me in my early days at

Stanford. Professor Christos Kozyrakis was a collaborator throughout my PhD pro-

cess and is in both my reading and orals committees. I am also very grateful for

Professor Dawson Engler to take the time to chair my orals committee. There are

many other people at NVIDIA who I wish to thank. My managers at NVIDIA: Ashish

Karandikar, Narayan Kulshrestha and James Reilley. They were very helpful for me

setting up my research and supporting me throughout the process. I would also like

to thank Jonah Alben, who helped with the logistics of doing my research as well

as some great insights. Furthermore, I need to thank the many people at NVIDIA

who collaborated with me either directly or indirectly while I did my work there. In

particular Colin Sprinkle, and Visu Subramanian helped me substantially throughout

my work at NVIDIA. Daniel Finchelstein, also helped me a lot with getting instru-

mented data out of the GPU. I would also like to thank Bill Dally, Brucek Khailany,

Stuart Oberman, John Edmondson, and Michael Fetterman for the many discussions

we had about GPU energy. I would also like to thank other members (and friend) in

my group at NVIDIA, in particular: Kaushal Gandhi, Miodrag Vujkovic, and Anish

Muttreja.

viii

While at Stanford, I was also lucky to meet my wife Chang Liu. She has made

by life filled with happiness and has endlessly supported me through the process of

writing my thesis. I truly love her for bringing out the best in me and for all the fun

and adventures we have together.

None of this would have been possible without my Family. In the end, I truly

owe everything to them. I thank my Mom (Sultana) and my Dad (Mohamed) for

the endless love and support that they gave me. They raised me to always do the

right thing, provided me with a good education and instilled a love for science and

math. I still remember the time my dad helped me with building circuits and writing

computer programs. Finally, I would like to thank my elder sister (Unbareen), who

is always willing to do anything to help out.

ix

Contents

iv

Abstract v

Acknowledgement vii

1 Introduction 1

2 Background 4

2.1 Overview of Graphics Applications 4

2.2 GPU Pipeline and Architecture . 9

2.3 Parallelism and the Shader Design . 13

2.4 GPU Scaling and the Power Problem 17

2.5 Energy Consumption and Modeling 19

2.6 Energy Modeling Tools . 22

3 Methodology 26

3.1 Simulating power for existing designs 26

3.2 Our Power/Energy Modeling Approach 29

3.3 Obtaining Performance/Application Level Data 34

3.4 Shader Instrumentation . 36

4 GPU Energy Modeling 39

4.1 Energy Distribution . 39

4.2 Energy Models . 42

x

4.3 Constructing Regression Based Models 46

4.4 Comparison to GPUWattch . 53

5 Energy Limit Studies 56

5.1 Benchmarks and Methodology . 57

5.2 Shader Energy Breakdowns . 58

5.3 Understanding Floating Point Precision 61

5.4 Overdraw in GPUs . 70

5.5 Understanding Thread Level Redundancy 75

5.6 Conclusions . 82

6 Conclusions 84

Bibliography 87

xi

List of Tables

4.1 GPU configuration used in performance/power simulation. Scaled ver-

sion of high-end GPU. 40

4.2 Approximate energy values used for the major building blocks 48

4.3 Sample of performance signals used in the modeling of the shader. This

is not a comprehensive list, however, these are the most important

signals overall . 50

5.1 These are the benchmarks that were selected. We used specific frames

from these benchmarks that are known to have relatively high energy

consumption . 58

xii

List of Figures

2.1 Simple graphics pipeline. A set of pre-transformed vertices are trans-

formed by the vertex processor. These transformed vertices are then as-

sembled into primitives and rasterized. The rasterization process pro-

duces fragments which are shaded by the fragment processor. Raster

operations such as anti-aliasing and blending are performed before the

resulting image is stored in the frame bu↵er 6

2.2 Rasterization process. The vertex values are assembled into primitives

where are mapped to screen coordinates. Pixel values which are cov-

ered by the primitive are marked as being covered by the rasterization

logic[65, 27] . 7

2.3 DirectX 11 (DX11) Software Pipeline ([5, 64, 58]). The DX11 is a

complex pipeline consisting of many programmable shader stages. The

vertex, hull, domain and geometry shaders execute a graphics program

on pre-rasterized results. The pixel shader determines the pixel color

values based on executing custom software. The output merger is fixed

function hardware, which is responsible for taking either multiple sam-

ples or semi-transparent pixels and merging them into a final output

image. 10

xiii

2.4 Contemporary GPU Architecture. The GPU is a complex system con-

sisting of many di↵erent functional units, which are generally repli-

cated. The design shown above resembles NVIDIA’s GPU architec-

ture and consists of graphics blocks, shader blocks and memory blocks

which are interconnected using a crossbar ([13, 69]). GPUs have lots

of replication, for example there are many graphics blocks, which in-

ternally consist of many shader blocks and supporting logic such as

rasterizers. There are also many memory blocks that provide parallel

and high performance access to on chip caches and external memory. 11

2.5 Shader Architecture (SMX Style). This shader resembles the shader

unit inside of NVIDIA Kepler GPU. It consists of four sets of function

units with dedicated register files, which are interconnected using a

crossbar. There is a set of shared functional units, which are responsi-

ble for operations such as load/store and less common math operations 16

2.6 Performance scaling as shown by scaling of GFLOPS over time 20

2.7 Power density of GPUs since 2006 in Watts/mm2 21

2.8 Scaling of max power (specification) of GPUs since 2006 by year of

release . 21

2.9 Power e�ciency as defined by max GFLOPS/TDP (Thermal Design

Point) since 2006 . 22

2.10 Historical TDP CPU power density showing the power wall. A power

density of around 1W/mm2 is the upper limit. 24

3.1 Getting energy information for a Verilog design. A simulation-based

methodology was used where we generated activity information from

simulation and then used Primetime to generate power/energy values 27

3.2 High level representation of energy modeling approach 32

3.3 Energy Model : The big picture . 34

xiv

3.4 Getting Power/Performance/Energy Data From Emulation. The activ-

ity information which represents performance data is extracted from

emulation and is combined with energy/activation information from

synthesis to extract both power and performance data. 37

3.5 Instrumenting the shader to mine data and statistics. Instructions

are added to the shader program, which write program coordinates

to the GPU global memory. This memory can be read after program

execution to gather information about the pixel coordinates processed,

operand information, etc. 38

4.1 GPU energy breakdown across several tests. 40

4.2 Energy, area e�ciency for various datapath designs executing the single

precision fused multiply add instruction in 28nm HP technology. Only

the result with optimal frequency for each pipeline depth is shown . . 44

4.3 Clock tree model, clock is broken into several sections trunk, gated,

ungated . 47

4.4 High level SM architecture showing modeling methodology used. Green

means the unit was modeled using energy from building blocks. Yel-

low means a mixed model was used where the regular structures were

modeled from building blocks but control was modeled using regression

fits. Orange blocks were modeled purely by using a regression-based

model. Other logic that is not shown (for example, texture control)

was modeled using a regression fit. 49

4.5 Power correlation for shader. Normalized to max power obtained from

simulation . 52

4.6 Power correlation for texture unit. Normalized to max power obtained

from simulation . 53

4.7 Power correlation for the GPU. The shader is model is constructed

using a hybrid model. All other models are purely regression based.

Normalized to max power obtained from simulation 54

5.1 Frames used for benchmarking . 59

xv

5.2 Shader energy breakdown across benchmarks 62

5.3 Energy/Op for performing a fused multiply-add using datapaths of

di↵erent precision. All the datapaths used have a 4-cycle latency and

include the corresponding clock and pipelining overhead. 64

5.4 Energy/Access/Byte for 16KWords register file vs word width 65

5.5 Estimated datapath energy for the various benchmarks. Each group

consists of 4 bars that correspond to 32-bit FP, 16-bit FP, 16-bit Integer

and 12-bit Integer from left to right. 66

5.6 Exponent distribution for all benchmarks. The box represents the

25-75 percentile range. The red line is the median and the whiskers

represent the 1-99 percentile range. 68

5.7 Shows the percentage of threads in which at-least one operation had

an incorrect result because the dynamic range between the inputs was

too large to be represented accurately with the specified precision . . 69

5.8 Temporal Exponent Range. Blue shows the minimum, green the me-

dian and red the maximum. The x-axis shows math operations in the

order they were performed by the application. 71

5.9 Results showing overdraw for benchmark frames. The color shows the

number of times a given pixel was drawn. 73

5.10 Overdraw Ratios and Energy Reduction 74

5.11 Theoretical energy scaling for performing FMA operations across a

shader unit. 76

5.12 Cumulative distribution of uniqueness in shader programs. The x-

axis lists the percent of total threads that are unique in a given 32-

wide thread group (warp). The y-axis is the percent of total warps

that have uniqueness below the value specified by the x-axis. These

select shader programs were selected to show the di↵erent distributions

among various di↵erent use cases. 77

xvi

5.13 Application level aggregates showing the cumulative distribution of

the number of percent of unique threads in a warp (32-wide thread

grouping). We can see that most of the applications have only about

50% unique threads when looking at 50% of the total warps executed. 78

5.14 Potential energy reduction with scalarizing the shader. Left bar is

original and right bar is the energy with all thread level redundancy

eliminated . 79

5.15 Shows the percentage of math operations where the result was a zero

output. 81

5.16 Uniqueness vs sequence of program execution for select shader pro-

grams. The shader program in (a) has unique operations in a small

region of the program. The shader program (b) has unique values

throughout the program . 82

xvii

Chapter 1

Introduction

Power constraints are quickly changing the way GPUs are designed. Historically,

GPUs have achieved tremendous scaling by focusing on area e�cient processing

(Performance/mm2). This focus has allowed GPUs to scale in both functionality

and performance by orders of magnitude.

Since graphics is a highly parallel application, chips with massively replicated cores

have been designed where the number of transistors available largely dictated the peak

performance. As a result, the highest performance GPUs have historically been sized

to be the largest die size possible (ie. the reticle limit of the fab). This maximized

the performance at a given technology node. The continued push towards higher

performance has also caused many high performance GPUs to be fabricated using

half-node processes to enable larger transistor count, and hence higher performance

parts.

However, the slowing of supply voltage scaling post 90nm has created a new hurdle

to GPU performance. The energy density increases rapidly when core voltages remain

nearly constant and feature sizes shrink. This means that if you have the same average

activity/transistor the power consumption of the chip increases as transistor counts

increase due to technology scaling. Over the past few years this has caused GPU

performance to be more limited by Performance/Watt than Performance/mm2. Due

to physical cooling and other practical limitations high performance consumer GPUs

have e↵ectively hit the power wall. Now further performance scaling can only come

1

CHAPTER 1. INTRODUCTION 2

with a reduction in the energy consumed by each operations and not just area scaling

o↵ered by technology since Energy/Operation · Operations/s, which is power, must

stay constant.

Over the past few years the power wall has caused GPU design to pick up hardware

features such as clock gating, power gating and other improvements to the hardware

design that have dramatically improved the Performance/Watt of GPUs. These hard-

ware optimizations have allowed GPUs to continue to scale in performance. These

optimizations are not su�cient to continue performance scaling in the near future

since the benefits of these techniques have been mined out. Similar to CPUs, GPU

designers will have start looking at architectural e�ciency.

To study and improve architectural e�ciency we need tools and methodologies

to model the performance and energy consumption of a massively parallel but het-

erogeneous system like a GPU. Although GPUs contain processing cores, they also

contain a large number of dedicated hardware units which are responsible for graphics

acceleration. This dissertation explores how we can build tools to get both fast and

early energy feedback, which can be used to inform architecture level design decision

on future GPU designs.

In the first part of this dissertation we look at the breakdown in technology scaling

which has caused GPUs to hit the power wall. Historical data will show that, over

the past few years, GPU designers have responded by focusing on Performance/Watt

improvements to their designs even though there have been no massive architectural

changes. We also provide a basic overview of a contemporary high performance

graphics architecture and one of the core parts of the graphics processor: the shader.

Chapter 3 explores the creation of an energy model for a GPU which can be used

to do architecture level trade-o↵s. Furthermore, we also explore why existing energy

models don’t work well for modeling a GPU. Creating these models and analyzing

the results requires that we gather statistics from existing graphics applications so

we also explore techniques that we used to gather this information. In Chapter 4, we

then apply this model to an existing GPU design and correlate its results against the

existing designs. A walk through of the shader model, which is the core processing

unit inside a GPU, shows how a simple energy model can be created with modest

CHAPTER 1. INTRODUCTION 3

e↵ort, yet provide accurate energy estimates.

In Chapter 5, we explore how this model can be used to do architectural studies.

This chapter first introduces the benchmark frames (from leading graphics bench-

marks) that we use to do these studies. We first explore how much numerical preci-

sion we really need for graphics applications since eventually the data will be down-

sampled to the color depth of the display. The second study focuses on overdraw in

graphics applications. Overdraw occurs when a given pixel value is overwritten by

another value which implies that the original computation is wasted work. We see

that modest improvements (20%) can be achieved by reducing overdraw, though this

is a lot smaller than if you were to look at the overdraw counts alone. As the last

study we look fine-grained redundancy within the shader processor. Since GPUs are

designed to be massively parallel, the shader processor is designed to concurrently

execute multiple threads in parallel across several datapaths. If multiple threads are

computing the same data values then there is redundancy that we can exploit for

energy savings. We show that this can yield significant energy savings of (20 - 50%).

Chapter 2

Background

This chapter provides the background necessary to understand the unique aspects

of graphics applications and graphics processing units (GPUs). The first section

describes how graphics applications are structured and introduces the application

programming interfaces (APIs) such as DirectX and OpenGL. The next section dis-

cusses how these APIs are generally mapped to specially designed hardware. As part

of this discussion we will talk about the shader processor, which is a core compute

unit in a GPU. While the shader processor is important, not all tasks are run on the

shader engines, some well structured tasks are abstracted into custom hardware which

makes the overall machine much more e�cient. Finally, we will discuss how GPUs

have scaled and the impact of the power wall on current and future GPU designs.

2.1 Overview of Graphics Applications

Graphics applications take a representation of a 2-Dimensional (2-D) or 3-Dimensional

(3-D) scene, which consists of a collection of objects and produces an image of the

scene from a given viewpoint. Typical applications include computer aided design,

movie production and computer gaming. This widespread usage has driven stan-

dardization between hardware and software; most graphics applications are now built

using these standard graphics APIs. OpenGL and DirectX are the most common

APIs used to write graphics applications.

4

CHAPTER 2. BACKGROUND 5

While there are many methods to create and render a scene, typical graphics ap-

plications take a representation of objects defined using primitives such as triangles1

and convert them into visible/colored regions on the screen. This process is tradi-

tionally broken up into three phases [44]. First, we take the primitives and determine

their projection on the screen, along with computing orientation and vertex colors.

Then we take this projection and rasterize the primitives. This process will deter-

mine which pixels are covered by the primitives and produces fragments (collection of

pixels) which need to be colored. As the last step the individual pixel values in each

fragment are computed. Pixel computation may consist of several sub-steps, which

include texture mapping, determining visibility, and blending with other pixels and

finally calculation the actual color value.

To understand this software pipeline for graphics we start by looking at a simplified

graphics pipeline, as shown in Figure 2.1. The processing pipeline starts by taking

vertex of the primitives and assembles/maps them based on the coordinate system2.

As part of this mapping the graphics system will do a projection map (which will

translate the 3-D coordinates to 2-D coordinates, since the final rendering surface is

typically 2-D. After the primitives are mapped to screen coordinates we can perform

rasterization, which is the process of taking the primitives and finding out which

pixels are covered by the primitives and need to be colored. A simplified view of

rasterization is shown in Figure 2.2.

After we determine which pixel values are covered we can then determine what

the output color values need to be. There are several di↵erent ways to perform this

process which is typically referred to as pixel shading. The simplest method is to do

linear interpolation of the values supplied for the primitive vertices. More complex

shading methods are typically employed by modern systems and will be discussed in

1Triangles are used because they are guaranteed to be planar and significantly simplify computa-
tion required to determine primitive intersection. It should also be noted that one exception to this
is graphics systems which work based on ray tracing. However, contemporary GPUs don’t natively
do ray tracing and are out of the scope of this document.

2Graphics systems typically employ multiple di↵erent coordinate systems (typically the object,
world, screen) to provide support for proper scaling across screen resolutions and also provide and
easy way to move objects (as is common in most graphics applications). Objects are usually defined
in a local coordinate system, which are mapped to world coordinates (typically the world ranges
from -1 to 1 in all dimensions).

CHAPTER 2. BACKGROUND 6

Figure 2.1: Simple graphics pipeline. A set of pre-transformed vertices are trans-
formed by the vertex processor. These transformed vertices are then assembled into
primitives and rasterized. The rasterization process produces fragments which are
shaded by the fragment processor. Raster operations such as anti-aliasing and blend-
ing are performed before the resulting image is stored in the frame bu↵er

CHAPTER 2. BACKGROUND 7

Figure 2.2: Rasterization process. The vertex values are assembled into primitives
where are mapped to screen coordinates. Pixel values which are covered by the
primitive are marked as being covered by the rasterization logic[65, 27]

CHAPTER 2. BACKGROUND 8

the following sections.

The last stage of the graphics pipeline is to determine which color values should

actually be output to the screen. Since we determine the color values of each of

covered pixels without sorting the incoming primitives we can potentially calculate

color values for regions, which are occluded by other primitives. These color values

can be sorted based on their depth value to determine what the actual color value

of each pixel should be. Conceptually we can think about representing each pixel on

the screen with a 2-tuple, which consists of the color values and the depth value. We

only overwrite the values if the depth value is closer from the viewer’s perspective

than the current depth value of a given pixel.

The above description provides a minimal conceptual view of the process to con-

vert a given primitive to a pixel. Common graphics APIs such as DirectX and OpenGL

typically employ a much more complex pipeline driven by the need for more realis-

tic graphics and real-time performance requirements. The contemporary DirectX 11

(DX11) pipeline is shown in Figure 2.3. While conceptually this pipeline resembles

that of the simplified pipeline and consists of similar stages (vertex processing, ras-

terization, pixel processing, output merging) each stage has a few more intermediate

steps. In particular the vertex processing in DX11 is done using a vertex shader,

which is programmable. This allows for complex mapping steps instead of simple

pre-programmed projections. It also includes a tessellator stage, which can produce

more primitives in the pipeline to generate even more realistic looking objects without

having to transfer lots of detailed primitive locations to the graphics system. A small

program that is executed by the shader processor instead generates the primitive

values.

Conceptually the rasterization step is similar to the simplified pipeline description.

The pixel shader stage is fully programmable allows the execution of fairly arbitrary

code to generate color values of pixels. This means that the graphics system is no

longer limited to shading strategies such as linear interpolation, Phong, etc [40]. Con-

ceptually the output merge remains the same, however, since the DX11 specification

supports anti-aliasing3 the output merger is also generally responsible for merging

3Anti-aliasing is done to reduce artifacts which occur due to sampling very high resolution data

CHAPTER 2. BACKGROUND 9

sample values4.

Since graphics workloads are typically very numerically expensive they generally

perform poorly on general-purpose processors. Also, the availability of popular APIs

and a well structure workload leads itself well to custom designed hardware. In the

next section we will take a look at the architecture of a graphics processor and how

the software pipeline maps to a custom implementation.

2.2 GPU Pipeline and Architecture

A contemporary GPU architecture (resembling NVIDIA’s Kepler Architecture[13]) is

shown in Figure 2.4. To understand the architecture of a GPU and how it performs

the necessary work we can take a look at how di↵erent pieces of hardware map to the

various stages in the DirectX 11 pipeline, shown in Figure 2.3.

Looking at the DirectX 11 pipeline we can see that it consists of several shader

stages, which in current GPUs, are all handled in a unified programmable shader unit

[39, 13, 69, 64]. The shader unit is the core part of the GPU which is responsible for

executing shader programs that work with either pixel or vertex data. The shader

unit internally contains a processor optimized for graphics workloads along with some

dedicated logic which helps it achieve high e�ciency. Since the shader unit is a large

and important part of a graphics processor it will be discussed in more detail in the

following section.

The rasterization is performed by a series of fixed function units outside of the

shader unit. The series of operations performed are coarse raster, fine raster and

ZCull. The coarse raster unit will first coarsely determine the outline based on the

vertex locations of the primitives and produces tiles for the visible regions. These tiles

are a small block (for example 16 x 16) of pixels (or sub-pixel samples if anti-aliasing

to the finite resolution of the screen. Many methods exists to do anti-aliasing but a popular method
is to essentially render the sub-pixels (refereed to as samples) and merge the sub-pixels into final
pixel values

4Since the pixel shader is programmable we can in theory merge samples together using the
shader and bypass the output merger. This is the basis for FXAA (Fast Approximate Anti-aliasing)
and will be discussed in Chapter 5, since FXAA is used by some of the applications we use for
benchmarking

CHAPTER 2. BACKGROUND 10

Figure 2.3: DirectX 11 (DX11) Software Pipeline ([5, 64, 58]). The DX11 is a complex
pipeline consisting of many programmable shader stages. The vertex, hull, domain
and geometry shaders execute a graphics program on pre-rasterized results. The
pixel shader determines the pixel color values based on executing custom software.
The output merger is fixed function hardware, which is responsible for taking either
multiple samples or semi-transparent pixels and merging them into a final output
image.

CHAPTER 2. BACKGROUND 11

Figure 2.4: Contemporary GPU Architecture. The GPU is a complex system con-
sisting of many di↵erent functional units, which are generally replicated. The design
shown above resembles NVIDIA’s GPU architecture and consists of graphics blocks,
shader blocks and memory blocks which are interconnected using a crossbar ([13, 69]).
GPUs have lots of replication, for example there are many graphics blocks, which in-
ternally consist of many shader blocks and supporting logic such as rasterizers. There
are also many memory blocks that provide parallel and high performance access to
on chip caches and external memory.

CHAPTER 2. BACKGROUND 12

is enabled). The tiles are then filled in by the fine-raster logic. The ZCull logic will

then bu↵er up these tiles and try to merge tiles together to reduce work downstream

[38]. Since the ZCull unit has limited storage, its purpose is to eliminate work that is

obviously redundant. Since ZCull has some internal storage it can bu↵er up primitive

to remove obviously occluded cases. It can also remove primitives which are facing

away from the camera viewpoint, which are referred to as back-facing primitives.

The raster operations pipeline (ROP, output merger in DX11 API) is fixed function

logic that is further broken down into two ROP (Raster Operations) sub-units the

Color-ROP and the Z-ROP. The Color-ROP unit is responsible for computing the final

output values of each pixel. For example it may merge multiple samples to perform

anti-aliasing or perform blend operations on fragments, which are semi-transparent.

The Z-ROP unit does depth tests to show only fragments, which are not occluded by

other fragments. In other words its responsible for sorting the depth for each of the

pixels. Raster operations require a lot of memory bandwidth since they operate on

actual pixel values and might need to access a given pixel multiple times. Due to the

high memory bandwidth requirements the ROP unit is co-located with the L2 cache

and memory controller which helps localize the high memory tra�c.

One thing to note is that GPUs can perform early-Z which means that they

perform the Z-test on pixels before shading them. This reduces the shader workload

assuming that we draw all the primitives from front to back in depth order. The

draw order is important since the GPU does not actually bu↵er up primitives but

simply performs the depth tests after rasterization against all the primitives which

have already been seen.

To summarize we will start with a primitive triangle and see how it is processed

by the GPU pipeline. The primitive will enter the various shader stages (performed

by the Shader) which will perform vertex level manipulation of the object writing

intermediate results to memory. After the primitive is mapped to screen coordinates

the rasterizer will then convert these to fragments that can be colored. If early-Z

is enabled (typical use case), the fragments will flow through the XBAR into the

Z-ROP, which will perform the Z-test; if it passes the Z-test the primitive will re-

enter the Shader to perform pixel shading. After pixel shading the fragments will go

CHAPTER 2. BACKGROUND 13

through the XBAR into the Color-ROP that will perform operations such as blending

or merging of multiple fragment samples (in the case of anti-aliasing) and produce

the final pixel values. These values are finally written to the frame-bu↵er, which is a

dedicated section of memory located on the DRAM.

Through this entire process each shader program was executed independently on

each primitive or a fragment5. This implies that there is a lot of available parallelism.

Graphics hardware exploits this parallelism to improve performance.

2.3 Parallelism and the Shader Design

The key to understanding GPU architecture is to realize that a small set of programs

are executed across tens of thousands, if not more, primitives and even more frag-

ments. Since computations across both primitives and fragments are independent of

each other they can be computed in parallel. Thus the number of resources available

to execute these programs and not data dependencies limits the performance. Overall

GPU designs are bound by the number of functional units, the balance of di↵erent

fix function units, and getting the data into the functional units.

As a result, GPUs are designed to have highly replicated functional units. These

replications are shown in Figure 2.4, which shows a GPU similar to NVIDIA’s Kepler

[13]. A chip can contain multiple graphics blocks and multiple memory blocks. A

graphics block can contain multiple shader blocks, etc. The number of each type

of functional unit is determined by performance constraints as well as expected use

cases.

On graphics processing units (GPU) the parallelism is exposed as operations on

individual primitives and pixel values. This explicit parallelism allows GPUs to focus

hardware resources on compute area. In contrast, a CPU is dominated by hardware

5Programs running on pixel shaders are very restrictive since they only have values of the fragment
they are executing. Any e↵ect that requires access to a region larger than the neighboring pixel quad
(2 x 2 pixels) requires a multi-pass solution. The first pass will render the values to the bu↵er and
the second pass will then map this bu↵er to a texture. The shader program can then access the
texture to get the values of neighboring fragments

CHAPTER 2. BACKGROUND 14

needed to enable out-of-order execution to extract implicit instruction level paral-

lelism [44, 69]. As discussed earlier, the GPU architecture also contains fixed function

hardware for performance and energy e�ciency.

The shader, which ends up being one of the most replicated blocks in the system,

is responsible for performing all the shader stages of the graphics API as well as any

general purpose computation[39]6. The high level architecture of a shader processor

similar to NVIDIA SMX[31] is shown in Figure 2.5. Internally a shader is organized

as yet another replication of building blocks. Each shader consists of four replicas

of one “quadrant” which contains a large datapath. Each quadrant of the shader

consists of a datapath, which can process 32 floating points operations in parallel,

along with a dedicated register file. To supply the needed data, these quadrants

share the load store unit, along with special function units (for example, log, exp,

sine) that have lower throughput requirements. While these shared datapaths are

also 32 wide internally they are shared with the 4 quadrants and hence, on average,

have a quarter of the throughput.

The programming abstraction for the shader is multiple parallel SIMD shader

processors. Each of the SIMD lanes in the processor is abstracted as a thread (instead

of a vector as is done in conventional CPUs). Groups of 32-threads are referred to

as warps or thread blocks. This greatly simplifies the programming model since

we can e↵ectively write functional programs which operate on pixel values and in

most cases these can be grouped together and performed in parallel across the SIMD

lanes since all the threads are executing the same shader program at any given time.

However, since shader programs can contain branches this can lead to divergence in

the program execution flow. The divergence is handled using one of two techniques.

The first option is predicate execution: code from both sides of the branch is issued

and execution of these instructions depends on the branch predicate. The other

method is replay, where we execute the branch code but predicate based on the branch

condition. After the first side of the branch has finished executing we replay the other

side of the branch until all the divergence is canceled. The former is generally used

6Since graphics processors support programmable shading we can exploit this for general purpose
computation as well. This is commonly referred to as General Purpose Graphics Processing Unit
(GPGPU)

CHAPTER 2. BACKGROUND 15

for small branches while the latter is used for much larger (or less common) branches.

The decision to insert predication vs replay is left to the compiler.

The shader processors also use abundant parallelism to hide the e↵ects of latency

on program performance. For example, the shader itself has no branch prediction and

also has minimal forwarding logic to deal with data path and register file latencies.

Instead, it has a very large register file (on the order of 32 - 64 KB), which contains

the state of many active threads with a set of registers used for each thread. When an

instruction with high latency is executed, the shader simply moves to another thread,

which is ready to be executed. Furthermore, the latency of most operations is known

at compile time and can be statically scheduled by the compiler, removing overhead

for complex logic needed to track thread states. For instructions with variable latency

(for example, memory or texture operations), a barrier instruction is used to block

thread execution.

The shader also contains its own internal L1 cache, which can also be used as

shared memory (software managed cache). The shared memory is an important

aspect of the shader as it allows local scratch memory to be software managed and

allows for e�cient implementations of certain operations such as transpose which

are expensive with traditional memory systems. The caches and shared memory are

interconnected via a XBAR to the load/store units.

Unlike conventional high performance CPU designs, the majority of the shader

code can be software scheduled by the compiler by inserting hints into compiled shader

program. These static hints are always the first instruction in each instruction cache

line and have scheduling hints for all the other instructions in the cache line. The

hints contain information about both latency and pairing. For example, the hint can

say the instruction requires 4 cycles for the results to be available. Another common

hint used is pairing, which informs the shader that the two instructions referred to

can be issued together. This method can be used to e�ciently pipeline a multi-issue

processor with datapath latencies without incurring hardware necessary to schedule

these instructions. Since single threaded performance is not very important dynamic

run-time optimization is not necessary.

While not immediately apparent even the shader contains a lot of fixed function

CHAPTER 2. BACKGROUND 16

Figure 2.5: Shader Architecture (SMX Style). This shader resembles the shader
unit inside of NVIDIA Kepler GPU. It consists of four sets of function units with
dedicated register files, which are interconnected using a crossbar. There is a set of
shared functional units, which are responsible for operations such as load/store and
less common math operations

CHAPTER 2. BACKGROUND 17

logic not usually found on general purpose CPUs. For example, a common graphics

operation is attribute interpolation based on vertex values. The shader contains

special instructions to perform lower precision floating operations to do attribute

interpolation for primitives based on coordinates7. In addition a cache is used to

hold these primitive values since many attribute calculations are usually performed

hence this operation has high locality. The shader also contains dedicated logic to do

transcendental operations, which is not common on most CPU implementations.

There is also fixed function logic to perform texture filtering which is handled by

the texture unit and is closely coupled to the shader. Texture filtering, which is the

process of sampling a texture at di↵erent resolutions, can be very e�ciently performed

using fixed function hardware [56, 44]. While the texture unit itself is not part of the

shader processor it is tightly coupled by the shader processor. In fact, most of the

memory accesses done by shader programs are texture operations performed by the

texture unit.

2.4 GPU Scaling and the Power Problem

Over the past decade GPUs have had massive scaling both in terms of absolute

performance (as shown in Figure 2.6) and in terms of performance/mm. This scaling

occurred both due to architectural improvements and process scaling due to Moore’s

law. Although an empirical observation, Moore’s law has held true over the past

five decades as the number of transistors per chip has continued to exponentially

increase. While Moore forecasted the scaling of transistor densities, Dennard[16] in

1974 showed how MOS transistors would change with scaling.

Dennard’s scaling theory showed how all chips can achieve a triple benefit from

scaling. First, device sizes scale by ↵ in both the x and y dimensions, allowing for 1
↵

2

more transistors in the same area. Second, capacitance is scaled down by ↵ (because

C / L·W
t

ox

, where C is the capacitance, L and W are the channel length and width,

respectively, and t
ox

is the gate oxide thickness8. But, if we assume that the electric

7Since the attribute interpolation is somewhat of a preprocessing step for attributes, some GPU
architecture perform this step in dedicated logic outside of the shader processor

8We should note that wire capacitance (and resistance) is relevant to both the energy and delay.

CHAPTER 2. BACKGROUND 18

field V/L is constant, implying that V scales by a factor of ↵, the charge Q that must

be removed to change a particular node’s states scales down by ↵2 (because Q = CV).

The current is also scaled down by ↵, so gate delay D which is Q/i also decreases

by ↵. Finally, because energy is equal to CV 2, energy decreased by ↵3. Thus,

following constant field scaling, each generation supplied more gates per mm2, gate

delay decreased, and energy per gate switch decreased. Most important, following

Dennard scaling maintained constant power density: logic area scaled down by ↵2,

but so did power: energy per transition scaled down by ↵3, but frequency scaled

up by 1
↵

, resulting in an ↵2 decrease in power per gate. In other words, with the

same power and area budgets, 1
↵

3 more gate switches per second were possible. Thus,

scaling alone was able to bring about significant growth in computing performance

at constant power profiles.

However, if we observe GPU power density data as shown in Figure 2.7, we can

clearly see that the power density is increasing. The reason this happened is two fold.

First, GPU designers scaled up GPU performance faster than pure technology scaling

allows and second, V
DD

did not scale linearly with feature size. Recently the VDD

problem has gotten worse: it has nearly stopped scaling. This happened because

V
th

scaling drastically slowed down due to transistor leakage. In order to maintain

performance V
DD

had to be maintained constant in relation to the threshold voltage.

With constant voltages, energy now scales as ↵ rather than ↵3, and as we continue

to put 1
↵

2 more transistors on a die, we are facing potentially dramatic increases in

power densities unless we decrease the average number of gate switches per second.

Although decreasing frequencies would accomplish this goal, it isn’t necessarily a good

solution, because it sacrifices performance.

The need for higher energy e�ciency is urgent. From Figure 2.8, it is apparent

that high end consumer GPUs have hit a power wall at around 250W. It turns out

that past 250W the cost of cooling the GPU quickly becomes infeasible. The result,

as Figure 2.9 shows, that the power e�ciency of GPUs has been drastically improving

after 2011 (with a slight slowdown in 2010/2011)9.

As technology scales and more complex designs are built the relative wire lengths tend to increase
which makes the wire capacitance an increasing fraction of the gate capacitance

9Interestingly, this slow down in scaling happened when GPUs hit the power wall after which we

CHAPTER 2. BACKGROUND 19

Initial energy e�ciency improvements in GPUs came using the same techniques

as those pioneered by the CPU community. For example, both clock and power

gating were introduced into GPUs during this time frame. Other improvements have

included better datapath architectures along with moving to unified shaders (which

appear as increased FMA throughput since some of the fixed function logic was moved

into programmed units).

While historically GPU architects have focused on improving area e�ciency, it

is clear that current designer need to focus on improving energy e�ciency if GPU

performance is to continue scaling. Energy e�ciency improvements can come in the

form of better hardware designs (improved clock gating, dynamic voltage control, etc),

architecture and algorithmic improvements. To aid this process, this thesis focuses on

the development of tools and methodologies to improve architectural and algorithmic

energy e�ciency.

2.5 Energy Consumption and Modeling

Since improving energy e�ciency is required to improve performance we need to

understand how energy is consumed in the design and how it can be modeled. All

GPU designs today are built using CMOS technology. Fundamentally, the energy in

CMOS circuits can be broken down into three-categories: Dynamic, Short-circuit and

Leakage:

P
Total

= P
Dyanamic

+ P
Short�Circuit

+ P
Leakage

(2.1)

Dynamic power is related to a the activity of the device as given by the following

equation:

P =
↵fCV 2

2
(2.2)

Where ↵ is the activity factor (the average number of times the capacitance

changes state each cycle), f is the frequency of the design, C is the capacitance

see significant improvements in energy e�ciency

CHAPTER 2. BACKGROUND 20

Figure 2.6: Performance scaling as shown by scaling of GFLOPS over time

and V is the operating voltage. Short-circuit power is consumed whenever individual

cells switch and the PMOS and NMOS transistors are both temporarily on. This frac-

tion of energy is usually small compared to the dynamic power and is typically in the

10% range, though it can sometime be much higher[51]. Leakage power is caused by

current flow through nominally o↵ devices and is related to transistor characteristics.

It is a strong function of voltage, temperature and threshold voltage.

Using high threshold voltage transistors or power gating, a technique that turns

o↵ the power to unused blocks in the system usually reduces leakage power in designs.

Decreasing the Vdd, the capacitance of the nodes in the system, the activity for a given

operation or all three reduces dynamic power. Reductions can be accomplished by

hardware techniques such as clock gating, or architecture/algorithmic optimizations,

which reduce the amount of work necessary to produce a given result.

Since it is generally prohibitive to create a large number of complete designs

and evaluate them individually, simulations and modeling tools are used to evaluate

di↵erent early stage designs. Power models attempt to predict the power of these

designs, usually based on activity of higher-level events.

CHAPTER 2. BACKGROUND 21

Figure 2.7: Power density of GPUs since 2006 in Watts/mm2

Figure 2.8: Scaling of max power (specification) of GPUs since 2006 by year of release

CHAPTER 2. BACKGROUND 22

Figure 2.9: Power e�ciency as defined by max GFLOPS/TDP (Thermal Design
Point) since 2006

2.6 Energy Modeling Tools

Given that CPU designs hit the power wall much earlier than GPUs (around 2001),

as shown in Figure 2.10, we first look whether their tools can be directly applied to

GPUs. There have been many CPU oriented power modeling tools developed over

the last decade. These tools can be divided into two major classes: simulation based

models which use either actual designs or representations of the design to calculate

power estimates and regression/statistical models which are based on correlating some

events with power and using that as a proxy for power. These models are usually

derived from silicon measurements.

The most straight forward method to estimate power for a given design is to do

either SPICE simulations or use digital power analysis tools such as Primetime-PX

[72]. While these approaches o↵er high accuracy, the results are usually only available

after the design is mostly complete making it di�cult to make meaningful architecture

or algorithmic changes.

In order to get early architecture feedback there have been several di↵erent energy

modeling frameworks proposed for CPU’s. Cacti[62], which was one of the first energy

modeling tools proposed has become the de-facto standard for creating energy models

for caches in both academia and industry. Wattch[6] was one of the first frameworks

CHAPTER 2. BACKGROUND 23

that proposed using high level architecture building blocks for energy/power estima-

tions instead of lower level circuit and RTL based tools. In Wattch, activity from

architecture simulations tools was applied to building block based models in order to

arrive at power estimates. Wattch proposed the following classes of building blocks:

• Arrays: RAMs, Caches, registers

• CAMs: Content Addressable Memories

• Combination Logic: All the functional units, including wires

• Clocking: All gates associated with the clock distribution network

In Wattch, these models are based on measurement of actual designs along with

theoretical calculations based on size and capacitance (for example, Array power can

be determined using a mathematical model). McPAT[37] augmented these energy

models with both area and timing information. McPAT also improved the underly-

ing modeling by adding both leakage and short-circuit modeling along with making

the models hierarchical. The hierarchical model can be easily configured to target

di↵erent multi-processor based systems in order to rapidly create new architectural

models.

Statistical modeling was is one of the older techniques to model power consumption

of CPUs. The models are created by running either application or directed test on

silicon and measuring power. This measured power is then correlated (using linear

regression or other machine learning techniques) to either the instruction trace to

obtain an instruction level power model[63, 55, 53] or performance signals to create

a model based on performance counts.

Directly applying these CPU tools to GPUs is di�cult. While GPUs are multi-

processor systems with some resemblance to modern multi-processor CPUs they have

some characteristics which make them very di↵erent than contemporary CPU designs.

GPUs solve some very well defined and structured problems (ie. Texture Mapping,

Anti-Aliasing, Rasterization, etc) for which they have many fixed function units. Even

though GPUs have been moving towards a more general-purpose model (mostly to

CHAPTER 2. BACKGROUND 24

Figure 2.10: Historical TDP CPU power density showing the power wall. A power
density of around 1W/mm2 is the upper limit.

push into HPC), they still maintain dedicated logic that helps them maintain high

performance. Also, internal data structure (for example register files, caches, shared

memory) have very di↵erent structures compared to CPU designs.

Most of the prior work on GPU architecture power modeling has focused on using

a statistical modeling approach. This likely resulted from the fact that there was

no open implementation of a GPU, and little published work on the inner workings

of a GPU. One such model by Ma. et. al.[41], used a set of 5 performance signals

obtained from an NVIDIA GPU to predict the power consumption of the device. The

training in this case was done using a support vector machine against silicon power

measurements. Several other GPU power models rely on related statistical modeling

approaches to estimate power of GPUs [28, 73]. With the exception of [41] the rest

of the GPU related power modeling work focuses on GPGPU workloads.

While statistical models are good for creating models for existing GPUs or GPU

design with incremental changes, it hard to use such models for studying big archi-

tectural or algorithmic changes. Yet building complete bottom up model for a GPU

would be an overwhelming exercise due to the sheer number of dedicated units. The

CHAPTER 2. BACKGROUND 25

resulting model would also be less flexible and less useful for studying architectural

trade-o↵s. To overcome di�culties in modeling a complex architecture that consists of

many-fixed function operations we created a hybrid methodology for modeling GPUs.

Since we started this work in 2010, there have been other GPU models that have

been crated. One model that is similar to this work and Wattch is GPUWattch[36].

GPUWattch is a model that predicts energy consumption of NVIDIA GPUs while

executing GPGPU workloads. GPUWattch is driven by a custom CUDA simulator

that predicts both the performance and energy consumption. Both energy and per-

formance estimates are validated using actual hardware. While both this work and

GPUWattch use a methodology similar to Wattch our model is constructed from ac-

cess to detailed implementations of the design. This allows us to not only model very

coarse functional units but also get very detailed and high fidelity energy estimates.

Our model also consists of many validated variations of GPU components, which

allows for rapid construction of di↵erent variants so that we can quickly perform

architectural “what if” studies. We will provide a much more detailed comparison

between our model and GPUWattch in Chapter 4.

The following chapter discusses both this methodology and other tools developed

to analyze GPU architecture and energy e�ciency.

Chapter 3

Methodology

In this chapter we take a look at how to model energy consumption of a given design

for a given workload. This understanding is critical to both reducing the energy

consumption as well as modeling actual energy improvements. We start by creating a

very detailed model of the design. While accurate, this high fidelity model is di�cult

to modify making it not useful for our objective. The rest of the chapter explores the

construction of an alternative model and methodologies to extract stimulus, which is

critical for this model to function.

3.1 Simulating power for existing designs

Since we had access to several existing GPU designs we could simply measure power/energy

consumption by simulating the designs. We used a single methodology to run power

simulations regardless of the design size (from a single datapath to the entire shader

unit)1, which allowed us to get consistent data. Figure 3.1 illustrates the method that

we used.

To begin the simulation process we first obtain the Verilog code for the design.

In some cases the Verilog code was generated by a pre-processor, which allowed us

to obtain di↵erent versions of a single design. We also needed test vectors, which in

our case can either be a directed test or given benchmark that we want to execute.

1For larger designs, we had to use a divide and conquer approach.

26

CHAPTER 3. METHODOLOGY 27

F
ig
u
re

3.
1:

G
et
ti
n
g
en
er
gy

in
fo
rm

at
io
n
fo
r
a
V
er
il
og

d
es
ig
n
.
A

si
m
u
la
ti
on

-b
as
ed

m
et
h
od

ol
og
y
w
as

u
se
d
w
h
er
e
w
e

ge
n
er
at
ed

ac
ti
vi
ty

in
fo
rm

at
io
n
fr
om

si
m
u
la
ti
on

an
d
th
en

u
se
d
P
ri
m
et
im

e
to

ge
n
er
at
e
p
ow

er
/e
n
er
gy

va
lu
es

CHAPTER 3. METHODOLOGY 28

In most cases we were able to re-use the functional test environments and used test

data that is more relevant for energy/power studies. The Verilog for the design is

synthesized using Synopsys Design Compiler[4] and place and routed (P&R) using

Synopsys IC Compiler2,3. The P&R step allows us to get accurate estimation of

energy with wire loads. We should also note that P&R step allows us to get accurate

timing information that we can use to determine the operating frequency of the design.

This is useful for obtaining di↵erent design points, which is done in Chapter 4.

We then performed a Verilog simulation of this design using Synopsys VCS [60]

using the post P&R netlist. The output of this process was a Switching Activity

Interchange Format (SAIF) file which contains information about the toggle counts,

the state of control signals during toggles and the exercised paths of individual cells4.

The resulting SAIF file and the post P&R netlist was used to estimate power using

Synopsys Primetime PX [72].

This methodology allows us to collect power information of existing designs with

very high accuracy. However a limitation of this technique is that it requires the actual

hardware to be designed at the Verilog level. This implies that quick exploration of

the design space is not easy/possible. Instead we need to have a better way to build

up a model that can be both flexible yet accurate while varying design parameters.

Energy consumption is fundamentally related to the amount of capacitance switched

so it can be modeled by activity of the design and a constant, which is the energy,

consumed every time that region of the design is activated. Borrowing techniques

from Wattch/McPAT we can model the energy as product of block activations and

building block energy cost per activation. The next section explores how we can build

up such a model and what implications such a model has on accuracy.

2We only performed global route to get parasitic estimation. In some cases, when we had good
correlation, we used back-propagated wire loads models from existing designs or DC-Topographical
instead of IC-Compiler.

3For designs with a lot of memory elements, hints were provided to the place and route tool to
obtain good placement

4This is known as State Dependent Path Dependent (SDPD), power estimation. The method-
ology yields more accurate results b/c it captures the state along with toggle. For examples, the
number of times the clock toggled when the write enable of a given ram was enabled.

CHAPTER 3. METHODOLOGY 29

3.2 Our Power/Energy Modeling Approach

We used a combination of existing techniques to create an energy model for a com-

mercially available GPU. Creating an energy model for the GPU requires modeling

both the shader processor (SM) and also other fixed function logic. Modeling the

fixed function logic is critical, since for a high end GPU about 40% of the GPU area

is not in the cores/caches. This percentage is larger in smaller GPUs since they need

to have at least one copy of all the fixed function logic.

We created a model that was a compromise between a pure statistical model and

a building block level model such as McPAT. This model can be rapidly constructed

but also be used for fairly detailed architectural studies as we show in Chapters 4 and

5. Our model is based on the premise that performance monitor (PM) counts can

be used to predict the energy usage of the various GPU components (for example,

Texture, SM, Raster, Primitive Engine). PM counts are metrics that are produced

by either the simulation or the design itself that counts how many times a given

operation was on a given resource in the design. Given that energy is consumed when

a resource is used, we expressed the energy consumption of a design as follows:

Energy =
nX

i=0

PM
i

· E
PM

i

(3.1)

Where PM
i

represents the ith PM count and E
PM

I

is the energy associated with

this particular PM count. The implicit assumption here is that the energy is related

linearly to the performance counts. We further assumed that the energy associated

with a particular PM is always constant. This implies that factors such as data

dependent power cannot be taken into account using this model5.

The fastest and easiest way to obtain a model for an existing design is to simply fit

the above model to power simulation results from existing designs as shown in Section

3.1. We used a simple linear regression model to fit the data while minimizing the

error function, which is given by:

5Using pathological data where, for example, the data is always 0 or always switching will pro-
duce di↵erent power data. In all our experiments we used data that was expected from real-world
applications. This data independence hasn’t caused any large errors, perhaps because of the low
correlation in the low order bits of that data

CHAPTER 3. METHODOLOGY 30

Err =
nX

test=0

(Energy
Actual

� Energy
Estimated

)2 (3.2)

We used a solver called CVXOPT [14], to perform this optimization. By using

this approach we came up with a model that was constructed using hundreds of small

tests that can be used to predict power of various applications (We will see some of

the correlation results in Chapter 4), which would not be feasible to run using RTL

or gate simulations. At this point we have a regression-based model. However, the

issue with this model is that it is hard to do “what if” studies since these models are

fundamentally rigid. Since the model is based on a regression, the energy associated

with each PM may not represent the actual physical design if the PM counts are not

linearly independent. Furthermore, it may be hard to scale the values for a given PM

unless the initial PM signals were carefully selected (for example data path active).

While the detailed Verilog level model was accurate, but hard to construct and

not flexible, this model is accurate, easy to construct but still not flexible. In order to

improve the flexibility of the model we decided to model some regions and functional

units in the design using flexible building blocks. These flexible building blocks were

actual functional units such as the floating-point unit, which were simulated for many

di↵erent parameters and substituted into the model instead of doing a regression fit.

Since these models come from synthesis and not regression, we have high confidence

that they track parametric energy costs. This allowed us to create a model, which is

both, relatively easy to create as well as flexible. Composing the model out of regres-

sion based models as well as building blocks allow us to do architecture exploration.

Based on the level of exploration we want to do, we can change the level of detail for

the energy model.

Constructing this model requires us to separate out the regions that are regression

based and parts that we are going to create using building blocks. In general we opted

to have control logic be regression based while using building blocks for memories and

datapaths. We can also pick which regions are building blocks based on the study,

which needs to be conducted. To understand how to create a basic model we look

at the simple design shown in Figure 3.2. In this design there are 4 PM counts:

CHAPTER 3. METHODOLOGY 31

Active, Instruction Fetch, Register File Accessed and Datapath Active. The design

consists of three major building blocks: a datapath, a register file and miscellaneous

control logic. If we are interested in doing a study related to the organization of the

datapath and register file but not in exploring changes to control logic, we will simply

associate the energy of the datapath and the register file to their respective PMs and

use the linear regression shown above in order to solve for the remaining energy. This

allows for the energy associated with some of the PM signals to now become a simple

function of the building block actually used instead of a fixed number determined by

linear regression. Similarly to Wattch and McPAT we have several di↵erent kinds of

building blocks:

• Datapaths and larger functional units

• RAM’s

• Clock Distribution/Gating

• XBAR’s

• Wires/Interconnects

Unlike Wattch [6], we associate local clock distribution and flip-flop overhead in

the building blocks themselves. This means that there are several di↵erent datapath

models targeting di↵erent frequencies and pipeline depth that can be selected de-

pending on the design being studied. We found that this leads to better correlation

when aggressive re-timing is used in the design. We also did not create models for

large caches and CAM’s since they are not used in contemporary GPU architectures.

Furthermore, we found that Cacti is a poor proxy for predicting the power consump-

tion of GPU caches which is most likely due to the large amount of fixed function

logic present in a GPU’s cache (for compression, decompression, format conversion,

etc). Instead we opted to use a custom energy model for modeling the GPU cache.

Using the above modeling approach we were able to quickly develop models for the

GPU while only focusing on having details on an as-needed basis given a particular

CHAPTER 3. METHODOLOGY 32

Figure 3.2: High level representation of energy modeling approach

CHAPTER 3. METHODOLOGY 33

study that needs to be performed. The actual models and correlation results are

shown in more detail in Chapter 4.

The energy per event of the building blocks was obtained by simply simulating

existing designs using the flow shown in Section 3.1. This direct simulation approach

gives a high fidelity model we use to calibrate the architecture level models as shown

above. A few assumptions are made during the characterization of these models:

• Data activity is not a factor in the creating of these models. We simply assumed

a random distribution of data that is similar to what we might expect in most

real world application. As such, contrived workload with either low or excessive

data activity will exhibit large error.

• We also did not model the cost of switching instructions. For example if a

datapath supported two operations multiply and add, we characterized the two

energies separately and did not take the energy associated with switching be-

tween add/multiply into account.

• RAM models were generated from commercially available RAMs and energy

data was only available for RAMs running at one particular frequency. As such

the energy/access is constant regardless of the frequency of operation.

By putting together both the building block and regression based model we were

able to create an energy model such as the one shown in Figure 3.3. This model

basically consists of various hierarchies of the design with each design consisting of a

regression based model for associating PM counts with energy and possibly building

blocks from a library which are associated with a particular PM count.

As discussed we need PM counters to derive the power information. These PM

counters can be derived by performing either an instrumented simulation or using a

performance specific simulator.

CHAPTER 3. METHODOLOGY 34

Figure 3.3: Energy Model : The big picture

3.3 Obtaining Performance/Application Level Data

Performance data is extremely critical to the construction of a high-level energy model

and many techniques exist to obtain this data. We can capture the performance

counters from existing silicon, simulate the performance counters in a performance

simulator or simply monitor the performance counters in the Verilog simulation. We

actually used all of these methods at di↵erent stages of this model development, and

for performing the various studies.

Using silicon to get performance data has the advantage of being very fast. We can

obtain performance data for a given frame in seconds rather than hours as required

by simulation. The GPU has several performance counters, which are accessible

during or after application run-time. Some of these performance counters can be

accessed with publicly available tools such as NVIDIA NSIGHT[11], but we also used

internal tools to access more detailed and larger number of performance counters.

This information was immensely helpful in finding interesting workloads and even to

determine if trimmed application traces exhibit the same behavior (allowing for their

use in the detailed performance simulator).

CHAPTER 3. METHODOLOGY 35

Another method we used is the performance simulator. Other researchers con-

structed these tools, so the functionality of these tools is only briefly reviewed next.

We broadly used three di↵erent types of simulators for doing the various studies.

These are the architecture simulator, performance simulator and SM performance

simulator.

The architectural simulator is a bit-approximate functional simulator with no no-

tion of timing. This particular simulator is useful to gather quick statistics about how

much work needs to be done (for example, primitives processed, shader instructions,

etc.). However, this model is only SW architecturally correct and does not model

any work reduction optimizations done by the actual design limiting its usefulness for

direct power analysis.

The performance simulator is an extension of the architecture simulator described

above. The performance simulator adds the work reduction features of the real design

along with actual timing information. It is a fully execution driven simulation which

is bit-accurate and cycle-approximate. We attempted to make sure that knobs in this

simulation framework had equivalents in the power models.

The SM simulator (which is a part of the performance simulator) is a stand-alone

trace driven performance simulator of the SM. This simulator simply models the

ordering and timing behavior of the SM without modeling the actual functionality of

the SM. Since this model is much faster than the full performance simulator, we used

it for exploring and modeling the e↵ects of many architectural changes for a number

of applications traces.

For simple studies and to obtain data for fitting the model we just used direct

simulation of the design using both internal and commercial tools. All power analysis

was performed on the gate level netlist as described in Section 3.1. Using netlist

simulations we were severely constrained on data collection and were only able to

run really short application traces or directed tests. To alleviate some of these issues

and obtain more data we were able to capture performance and power data from

emulators developed by Cadence.

We used Cadence Palladium emulation[8], which allowed us to collect detailed

power and performance information on actual application frames or frame segments

CHAPTER 3. METHODOLOGY 36

which were obtained by scissoring. Using this emulation process we can capture

detailed design activity and performance signals during run-time. The process of

using emulation and converting it to power information is shown in Figure. 3.4. Using

emulation we were able to obtain detailed data for several frames a day, something,

which could take weeks, if not months on RTL simulation.

The combination of the above performance measurements tools gave us the ability

to both train our model and use it to generate power/energy information. However,

we also wanted to understand application level characteristics of our app, such as

data patterns and ordering. To capture this information we instrumented the shader

code.

3.4 Shader Instrumentation

Perhaps the most useful silicon instrumentation was the ability to modify the shader

code executed by the GPU. This is in practice similar to other binary instrumentation

tools such as Valgrind and Cachegrind[48], which are used to examine execution of

software on CPUs. Most of the stimulus data in Chapter 5 was obtained by using

shader instrumentation. We used two major types of shader instrumentation:

• Operand Profiling : Log operands of individual instructions

• Pixel Profiling : Log the pixels that are a↵ected by individual shader threads

The shader code is profiled by modifying the code as shown in Figure 3.5. Essen-

tially for every instruction we append instructions that store the value of the operands

to the GPU global memory. Right before the EXIT instruction we also add informa-

tion about the x,y,z coordinate of this particular thread and write that information

to the global memory as well. This information can then be scanned out at the end

of the frame, which will allow us to capture instruction level details of the shader

program while being able to run orders of magnitude faster than simulation.

Using the methodology described in this chapter we created a flexible energy model

for a GPU. In the next chapter we will discuss both the details of how this model was

constructed and details about the underlying building blocks used.

CHAPTER 3. METHODOLOGY 37

Figure 3.4: Getting Power/Performance/Energy Data From Emulation. The activity
information which represents performance data is extracted from emulation and is
combined with energy/activation information from synthesis to extract both power
and performance data.

CHAPTER 3. METHODOLOGY 38

F
ig
u
re

3.
5:

In
st
ru
m
en
ti
n
g
th
e
sh
ad

er
to

m
in
e
d
at
a
an

d
st
at
is
ti
cs
.
In
st
ru
ct
io
n
s
ar
e
ad

d
ed

to
th
e
sh
ad

er
p
ro
gr
am

,
w
h
ic
h
w
ri
te

p
ro
gr
am

co
or
d
in
at
es

to
th
e
G
P
U

gl
ob

al
m
em

or
y.

T
h
is

m
em

or
y
ca
n
b
e
re
ad

af
te
r
p
ro
gr
am

ex
ec
u
ti
on

to
ga
th
er

in
fo
rm

at
io
n
ab

ou
t
th
e
p
ix
el

co
or
d
in
at
es

p
ro
ce
ss
ed
,
op

er
an

d
in
fo
rm

at
io
n
,
et
c.

Chapter 4

GPU Energy Modeling

In Chapter 3, we described the methodology we used for energy modeling. This chap-

ter discusses how we created the models. One of the guiding principles of creating our

energy model was to create energy models based on only the level of detail necessary

to capture the energy accurately and to model the most interesting (i.e. high energy)

components first. To follow this principle we first looked at the energy breakdown of

GPUs to understand where the energy is spent and what information is needed to

model this energy.

Following this discussion, the next section describes how we constructed the de-

tailed models for the building blocks. We will then use these models along with linear

regression to create models of larger function like the shader and texture units. Cor-

relation studies between our model and measured results show that we can predict

the power/energy consumption of a GPU with good fidelity.

4.1 Energy Distribution

Understanding the energy distribution in a GPU is important: it focuses our modeling

attention to the blocks that matter. Looking at the design of the GPU itself we can

surmise that the shader is one of the heavy hitters but we wanted to know how much

of the energy is actually used by the shader and how relevant the energy consumption

of the other components in the GPU system are.

39

CHAPTER 4. GPU ENERGY MODELING 40

Figure 4.1: GPU energy breakdown across several tests.

Parameter Value
Shaders 3
Textures 4 per Shader
L1 Cache + Shared Memory 3 X 64 KB
Register File 64 KB
L2 Cache 192 KB
Frame Bu↵er Partitions 1
Clock Frequency 1 GHz
Process TSMC 28HP Typical
Nominal Voltage 1.0V

Table 4.1: GPU configuration used in performance/power simulation. Scaled version
of high-end GPU.

CHAPTER 4. GPU ENERGY MODELING 41

To obtain this information we measure the dynamic energy distribution of a GPU

using high speed simulation as described in Section 3.3. We did not measure the

leakage component of the power consumption, as we were not looking at optimizing

low power and sleep states of the GPU1 The results of this are shown in Figure 4.1.

The specific tests that we used were chosen from leading applications and benchmark

suites and represent high-power use cases for the GPU. For this study we primarily

focused on state of the art game frames, which stress various parts of the GPU. The

GPU power is broken down broadly in the following categories:

• Shader : Unified shaders + L1

• Texture : Texture units

• XBAR : Fully connected XBAR interconnecting the Shaders to L2

• L2 : L2 Cache, Compression and Decompression

• Raster : Raster (setup, raster, zcull, tiler)

• Raster Operations Pipeline (ROP) : Color, Z raster units (anti-aliasing, depth)

• Misc : Top level control logic, Framebu↵er compression, Framebu↵er decom-

pression, Framebu↵er control

As shown in Figure 4.1, the shader in the GPU dominates the energy consumption

followed by the Texture and L2 units. The energy breakdown is only of the GPU

chip itself and does not include the energy used by the DRAM and PCI express host

interface2. Given this breakdown, the vast majority of e↵ort in modeling was spent

on creating accurate models for the shader followed by accurate models for Texture

and other functional units on the GPU.
1Historically, at peak dynamic power consumption the leakage power tends to be approximately

30% of the total power.
2The work in this thesis did not target the energy consumption of the DRAM or PCI express

host interface so not much time was spent obtaining this information. Furthermore, the high-speed
simulation methodology that we used does not work for obtaining these results. However, empirically,
we know that the DRAM power is about 20-30% of the overall GPU power consumption when the
GPU is operating in a high performance state. The PCI express interface is a much smaller part of
the power consumption accounting for less than 5% of the total power

CHAPTER 4. GPU ENERGY MODELING 42

4.2 Energy Models

Our hybrid model must capture most of the shader, texture, L2 and XBAR energy as

building blocks to provide the desired flexible, accurate energy model. This section

discusses how the building block energy models were constructed, while the next

section goes into details of actually constructing a regression based model which use

these building blocks. Since the shader is a type of processor, and it’s a large fraction

of the GPU power, we used categories similar to the ones used in CPU power models

such as Wattch [6]. We broke down the energy models into the following categories:

• Datapaths : The actual compute units such as floating point units, arithmetic

units, etc.

• Storage/Memory : Register File, Caches, SRAMs, TLB

• Interconnect : Wiring, XBARs

• Clock Distribution : Clock trees, clock bu↵ering

Unlike existing energy models we had access to a wealth implementations of actual

functional units used in GPUs. This allowed us to create a both a high fidelity and

flexible model. Furthermore, all of our functional unit models were fully self-contained

including the overhead for physical placement, clocks trees and any sequencing over-

head introduced by pipelining. Having the models fully self-contained allowed us to

compose di↵erent sets of models together based on the configuration of the perfor-

mance simulator. For example, if the performance simulator was setup to have 4-cycle

latency in the datapath, the energy model of the data path would account for this

design choice.

The datapath was hierarchically broken down into smaller units, until reaching

a “leaf” unit. An example of a leaf building block is a simple floating-point unit.

These leaf units are parameterized, which increases the flexibility of the higher-level

models. For example a leaf floating point unit might have parameterized pipeline

depth, frequency and data width. The models contain information about the result-

ing energy/operation, and its area and clock loading. To provide a feeling for the

CHAPTER 4. GPU ENERGY MODELING 43

complexity of the models we created, Figure 4.2 displays the energy for a fused mul-

tiply/add operation in a leaf floating point unit. The figure only provides data that

is on the optimal frontier for the chosen pipeline depth.

Generating these models required extensive simulations that attempted to find

an optimal floating-point unit by varying the pipeline depth and frequencies then

using synthesis and place and route to create the actual design. We obtained these

models by using a parameterized/generated Verilog design for a FMA floating-point

unit, which allowed for di↵erent topologies and pipeline depths. For each of the

parametrized design points we performed logic synthesis using Design Compiler [4],

while sweeping the clock period to obtain di↵erent design points. We used the power

estimation methodology as discussed in Section 3.1. This process of obtaining this

model is similar to the methodology used by Sameh et. al. [20], and this work was

conducted concurrently.

Performing this parametrized synthesis allowed us to obtain the energy, area and

throughput information with various frequencies and architectures. This allowed us

to construct a Pareto curve for this unit as shown in Figure 4.2. In this curve we

plotted the area e�ciency, which is the area/throughput (mm2/Gops), vs. the energy

e�ciency, which is energy/operation (pJ/Op). Designs not on the Pareto frontier

(following the edge of the curve towards the lower left) are not optimal. If a design

does not appear on the Pareto frontier we can always select another design that will

either have better area or energy e�ciency. The Pareto curve allows us to quickly

see the trade-o↵s with picking di↵erent design points. For example, if we want a

more area e�cient design we would target the left side of the graph, which achieved

the most Flops/mm2. These are more deeply pipelined machines, and were the best

choice when designs were transistor limited. But they are also energy ine�cient.

Because of the law of diminishing returns, designs at either end of the graph are

rarely a good choice. Looking at this graph we can quickly see that a 4-stage pipeline

design occurs on the Pareto frontier (and the knee) of this graph. This also happens

to be the pipeline depth of the datapath used in the shader units that we studied.

We used a similar methodology to construct models for other datapath building

blocks. This included integer units, units at di↵erent bit-width and even custom

CHAPTER 4. GPU ENERGY MODELING 44

F
ig
u
re

4.
2:

E
n
er
gy
,
ar
ea

e�
ci
en
cy

fo
r
va
ri
ou

s
d
at
ap

at
h
d
es
ig
n
s
ex
ec
u
ti
n
g
th
e
si
n
gl
e
p
re
ci
si
on

fu
se
d
m
u
lt
ip
ly

ad
d

in
st
ru
ct
io
n
in

28
n
m

H
P
te
ch
n
ol
og
y.

O
n
ly

th
e
re
su
lt
w
it
h
op

ti
m
al

fr
eq
u
en
cy

fo
r
ea
ch

p
ip
el
in
e
d
ep
th

is
sh
ow

n

CHAPTER 4. GPU ENERGY MODELING 45

logic blocks. We also created detailed models for clock distribution networks, com-

munication crossbars, memory structures and various specialized stages of the texture

pipeline. This allowed us to have various designs with parameterization that we can

use to compose more complex models.

The energy models for all storage elements were based on using memory com-

piler/generators that were used for creating memory by tiling custom designed mem-

ory cells. Since all the memory cells were custom designs we did not have energy values

for these designs optimized for di↵erent frequencies. Hence all the energy numbers

used for the storage elements were done assuming a 1GHz operating frequency with

28nm typical process.

The interconnect models were fairly straight forward based on expected capaci-

tance/mm from the process specification and the overhead introduced by repeaters

and flip-flops for longer wires. The energy models for interconnects are only accurate

for fairly long wires (>300um) since smaller wires tend to be dominated by the input

capacitance of the sink and our model was only accurate when at least one repeater

was used. This was not a problem since we only used these models for longer global

interconnects and not for shorter local wires, which were estimated using the load

capacitance of the sink model.

The clock tree model was constructed to take clock gating into account. There

are two main forms of clock gating: fine-grained clock gating, and block level clock

gating. Fine-grained clock gating is used to gate a small group of flip-flops (usually

between 4 and 32) while block level clock gating is used to turn o↵ entire functional

units. Specialized cells called ICG’s (Integrated Clock Gates) are used to turn o↵ the

clock. These cells contain a latch to prevent glitching and provide support to turn

on clocks during scan testing. The structure of the actual clock model is shown in

Figure 4.3. As in most well designed clock trees, energy tends to be dominated by the

leaf nodes. The clock model breaks down the reported power into various categories:

• Trunk : These are the main clock distribution bu↵ers and their energy is mostly

dominated by wire distribution. (Chip Level)

• Main Tree : The tree after any block level clock gating (wiring dominated)

CHAPTER 4. GPU ENERGY MODELING 46

• FGCG : Fine-grained clock gates. Responsible for turning o↵ the clock for a

small group of flip-flops

• Gated/Ungated Subtree : The part of the tree that actually drives the leaves.

The base model for the clock tree is still the interconnect model as most of the

energy in the upper part of the tree is due to running long distances. The main di↵er-

ence here is that unlike signal wires clock tree wires do not pass through flip-flops and

need to maintain sharper edges. The need to maintain sharper edges implies smaller

spacing between repeaters and hence more gate capacitance. As a matter of fact,

the energy/mm is approximately 3 times higher than signal wires at approximately

300fJ/mm in 28nm process at 1.0V.3

This comprehensive clock energy model keyed on number of leafs, leaf capacitance,

design area and clock gating percentage was useful to quickly estimate the clocking

overhead of various designs and floorplans without doing a full place and route.

4.3 Constructing Regression Based Models

Now that we have these building block models, we need to derive the hybrid regression

building block model that we discussed earlier. Our strategy will be to first subtract

the energy use estimates generated from the building blocks and the performance

counters, and run the regressions on the resulting residual energy. This approach not

only merges the two models, it also captures how well the building blocks model the

energy of the underlying units. If the building block models are accurate and capture

a large part of the design, the resulting residual energy correlated with the block

activation should be small. Even if the residual is not zero, since the regression-based

model applies to a small portion of the design (10-15 %), bad scaling heuristics are

unlikely to cause a significant error in energy estimation.

3An interesting data-point is that the amortized costs of a flip-flop was 7fJ with about 60 percent
of the energy consumed in the leafs (clock bu↵ers/logic in the flip-flops). This information turns out
to be useful for making quick estimates about the energy cost of sequential logic. As a side e↵ect of
this work this also led to some further hardware optimization of the actual flip-flop elements used
in the design.

CHAPTER 4. GPU ENERGY MODELING 47

Figure 4.3: Clock tree model, clock is broken into several sections trunk, gated,
ungated

To show how this method works, this section walks through the modeling of the

shader processor, one of the most complex, replicated, and energy-consuming units

on the GPU. Figure 4.4 shows how we decided to partition the shader model between

building blocks and regression fits.

As explained in Chapter 3, we started with the building blocks and assigning

performance signals that should correlate well with the activity of that block. Some

of the performance signals used are shown in Table 4.3, along with the blocks that

they influence. Since the model is hierarchical we can assign the signals we use to

a general area of the design. The energy of the major building blocks for 1GHz

operation in a 1V 28nm technology for the config shown in Table 4.1 is shown in

Table 4.2. In Chapter 5, when we perform studies on the shader, we show how energy

of these building blocks scale.

After we assign performance signals to the various parts of the design we can then

take the performance signals that correspond to specific building blocks and subtract

the energy used by the building block from the total, whenever the given building

CHAPTER 4. GPU ENERGY MODELING 48

Building Block name Energy Consumption

Local Datapath (FMA) 12 pJ/op
Local Datapath (FMUL) 10 pJ/op
Local Datapath (FADD) 7 pJ/op
Load/Store (Load/store unit + XBAR) 34 pJ/ 4-byte word
L1 Read 8 pJ/ 4-byte word
L1 Write 10 pJ/ 4-byte word
RF Read 5 pJ/ 4-byte word
RF Write 7 pJ/ 4-byte word

Table 4.2: Approximate energy values used for the major building blocks

block is active. We perform this for all the building blocks used in the design and are

left with the residual energy, which is simply the total energy of the design minus the

energy of the active building blocks as predicted using the performance signals. For

example, if the datapath is active and a FMA instruction is being performed we will

subtract the FMA energy from the total energy. The residual energy is then put into

linear regression to derive weights. If no building blocks are used then the residual

is simply the entire energy and the generated model will be purely regression based

and not hybrid.

To build the model we obtained training data by running unit level simulations

of the shader under various circumstances including the use of directed tests. These

unit level simulations yielded two useful artifacts: performance counter values and

the energy used by the design. The energy was obtained by simulating post synthesis,

topological wire routed designs at the gate level. For the most part we used functional

tests that were used for verification of the design but sometimes instrumented them

with additional stalls in order to capture the stall behavior of the design. Overall,

approximately 30 unique tests were used, however, we had over 1000 training points

since we broke down di↵erent regions of a given test and used each as a unique

observation. We also used cross validation in our regression to reduce over-fitting of

the model.

In order to validate the model we obtained more data by running parts of various

industry leading benchmarks (3DMark, Citadel, etc) on high-speed simulation (as

discussed in Chapter 3). While running these tests we captured the energy used by the

design at approximately 5µs intervals. Once again, we replayed the simulation results

CHAPTER 4. GPU ENERGY MODELING 49

Figure 4.4: High level SM architecture showing modeling methodology used. Green
means the unit was modeled using energy from building blocks. Yellow means a mixed
model was used where the regular structures were modeled from building blocks but
control was modeled using regression fits. Orange blocks were modeled purely by
using a regression-based model. Other logic that is not shown (for example, texture
control) was modeled using a regression fit.

CHAPTER 4. GPU ENERGY MODELING 50

P
e
r
f
o
r
m
a
n
c
e
P
a
r
a
m
e
t
e
r
s
U
s
e
d

C
o
m
m
e
n
t
s

U
s
e
d

f
o
r
m
o
d
e
l
i
n
g

re
gi
st
er

re
ad

b
an

k[
0.
.3
]

R
eg
is
te
r
re
ad

by
b
an

k
R
F
,
X
B
A
R

re
gi
st
er

w
ri
te

b
an

k[
0.
.3
]

R
eg
is
te
r
w
ri
te

by
b
an

k
R
F
,
X
B
A
R

in
st

is
su
ed

p
ip
e[
p
ip
e
n
am

e]
N
u
m
b
er

of
in
st
ru
ct
io
n
ex
ec
u
te
d
by

a
gi
ve
n
d
at
ap

at
h
in

th
e
sh
ad

er
D
at
ap

at
h
s,

X
B
A
R

in
st

is
su
ed

N
u
m
b
er

of
in
st
ru
ct
io
n
s
b
ei
n
g
is
su
ed

C
on

tr
ol

te
x
fe
tc
h
es

P
ix
el

qu
ad

s
fr
om

te
xt
u
re

u
n
it

C
on

tr
ol
,
T
ex

In
te
rf
ac
e

in
st

ex
ec
u
te
d

N
u
m
b
er

of
in
st
ru
ct
io
n
s
b
ei
n
g
ex
ec
u
te
d

C
on

tr
ol
,
M
is
c

st
or
e
b
u
s
ac
ti
ve

S
to
re

b
u
s
is

ac
ti
ve

C
on

tr
ol
,
S
to
re

im
c
h
it

Im
m
ed
ia
te

C
ac
h
e
h
it

Im
m
ed
ia
te

C
ac
h
e

im
c
ac
ce
ss

Im
m
ed
ia
te

C
ac
h
e
A
cc
es
s

Im
m
ed
ia
te

C
ac
h
e

l1
c
h
it

L
1
C
ac
h
e
H
it

L
1
C
ac
h
e

l1
c
m
is
s

L
1
C
ac
h
e
M
is
ss

L
1
C
ac
h
e

T
ab

le
4.
3:

S
am

p
le

of
p
er
fo
rm

an
ce

si
gn

al
s
u
se
d
in

th
e
m
od

el
in
g
of

th
e
sh
ad

er
.
T
h
is

is
n
ot

a
co
m
p
re
h
en
si
ve

li
st
,

h
ow

ev
er
,
th
es
e
ar
e
th
e
m
os
t
im

p
or
ta
nt

si
gn

al
s
ov
er
al
l

CHAPTER 4. GPU ENERGY MODELING 51

on post synthesis, post topological wire routed designs to obtain the simulated actual

energy. This actual energy normalized to the maximum energy is plotted against the

model energy in Figure 4.5.

The resulting model has very good correlation with this validation set, the r2 =

0.98. The validation set was not used during the training and model selection phase.

The model, however, tends to slightly under predict the power on average4 There is

also a significant spread in the middle power ranges. While, some tests are perfectly

on the 1:1 slope there are certain characteristics of the design that are not extremely

well modeled. For example, units in the model that are not active do not consume

any power while in the actual design might not be perfectly gated. One scenario

where this will happen is if there is a bubble in the pipeline. This happens when we

execute a floating point operation followed by several no-ops. In the model the data

path will consume all the energy when the operation is executed (single cycle). In the

actual hardware the unit will remain active for multiple cycles because an instruction

is in flight in the pipeline. Though the total energy used for the operation will be

the same across the actual implementation and the model, the actual implementation

has some wasted power while it’s kept active. We accounted for this inaccuracy in

areas of the design that were modeled using regressions. In areas of the design that

were completely modeled using building blocks this inaccuracy remains. Some of this

inaccuracy might have been alleviated if we fit residual energy for the large areas of

the design that were completely modeled by building blocks.

This model can be improved by better taking into account some of the ine�ciencies

of the design or perhaps by increasing the size of the training set to account for more

scenarios. In general the correlation of the model improves as we increase the interval

over which the results are averaged. Overall our results are quite good, the model is

within 15% of the expected power results while remaining flexible enough to explore

interesting trade-o↵s.

Another case study we looked at is applying the energy model to the texture unit.

In this case we followed a similar test methodology as the shader. The texture unit

4This is not normally expected from a linear regression based fit. We mostly attribute this to
inaccuracy in the power estimation methodologies, especially because the high speed simulation does
not account for state dependent, path dependent power in the SRAMs as discussed in in Chapter 3.

CHAPTER 4. GPU ENERGY MODELING 52

Figure 4.5: Power correlation for shader. Normalized to max power obtained from
simulation

was modeled by breaking it down into 9 major segments. Each of these segments

performed a major operation in the texture unit for which we had corresponding per-

formance signals available. The texture unit had building blocks for various internal

datapaths as well as internal memory structures. We manually assigned performance

signals to various parts of the texture unit then fit the left over residual energy using

linear regression as discussed in Chapter 3.

Even though the texture unit performs some complex tasks, it internally resembles

a more fixed function pipeline compared to the shader. This allowed the model to

be extremely accurate. Using the same tests as were used for the shader we obtain

correlation plot as shown in Figure 4.6. The texture model achieves a r2 value of

0.987. Once again while the fit is good there is still some variation and the model

still tends to under-predict the energy. We expect that this error is observation error

in our validation data as discussed earlier.

Using a similar methodology as the texture unit we built up a model for the other

major units on the GPU. The correlation of this versus the power obtained from high

speed simulation is shown in Figure 4.7. Overall, the fit is very good however there is

still some under-prediction. Some of this under-prediction occurs for reasons similar

to the SM and texture. Some under-prediction also results because we did not model

all the small units of the GPU and they add up to about 5% of the power as shown

CHAPTER 4. GPU ENERGY MODELING 53

Figure 4.6: Power correlation for texture unit. Normalized to max power obtained
from simulation

in Figure 4.1.

4.4 Comparison to GPUWattch

While this work was conducted around the same time as GPUWattch, it’s worth

noting similarities and di↵erences. The overall methodology of GPUWattch is very

similar to this work. Their model is constructed from a set of building blocks, which

are compared to measured power using microbenchmarks that stress a specific com-

ponent. They then refine this model by scaling the numbers, or by obtaining more

accurate microbenchmarks, until they get an acceptable fit.

When constructing our model we had access to the details of the micro-architecture

as well as the ability to execute simulations and measure power on a given part of the

design. This allowed us to get a better fit, which gives us more accurate unit level

breakdowns and overall prediction of total power. For example, comparing Figure

9 from [36], it is clear that our model has better overall prediction of the power as

shown in Figure 4.7. Another interesting thing to note is the di↵erence between

energy breakdowns between di↵erent units of the GPU. For example, in GPUWattch,

on average the NOC uses 9.5%, which in our model is called the XBAR. The XBAR

in our model uses substantially less energy, while the L2/shader uses a lot more.

CHAPTER 4. GPU ENERGY MODELING 54

Figure 4.7: Power correlation for the GPU. The shader is model is constructed using
a hybrid model. All other models are purely regression based. Normalized to max
power obtained from simulation

Since our model was constructed with detailed knowledge and simulation of various

components we know that our component level breakdowns are accurate. While it’s

impossible to a 1:1 comparison of GPUWattch with his work, since they use di↵erent

set of benchmarks (compute focused vs. graphics focused), and a di↵erent generation

of GPUs (Fermi vs. Kepler), it is clear that there is some level of systematic variation.

Having a di↵erent breakdown than the actual design can cause one to make di↵er-

ent design tradeo↵s. For this reason it’s important to have both an accurate model as

well as accurate breakdowns of where energy is spent in the design. There are likely

several factors that led to GPUWattch having di↵erent results than us. GPUWattch

is based on using external measurements of the GPU, which can be inaccurate due to

RLC e↵ects as discussed in [36]. While they compensate for that, it’s hard to get a

microbenchmark that can isolate a region of the design with complete accuracy. One

of the things that we learned throughout this process is that it is very di�cult, if not

impossible, to create an accurate energy model without a detailed understanding of

the design. Furthermore, having detailed energy breakdowns from existing designs

helps guide model construction.

In this chapter, we walked through how both building block and actual energy

models are created. We dived deeply into creating a model for the SM by using

various performance counters, and then followed that with a model for texture unit

CHAPTER 4. GPU ENERGY MODELING 55

and the other parts of the GPU. Overall, we have an accurate yet flexible model for

the GPU, which is suitable for conducting architecture exploration and studies. In

the next chapter we will explore using these models in studies, which might yield

insights that can lead to significant reductions in energy consumption for GPUs.

Chapter 5

Energy Limit Studies

This section uses the energy models as presented in Chapter 4 to understand some

ine�ciencies and redundant work done by the shaders in the GPU. The first section

will describe energy breakdowns of a typical GPU SM (shader processors). It can

be seen in these breakdowns that the shader energy is dominated by the datapaths:

control/instruction overhead is small since it is amortized by having a large number

of floating point operations that are processed in parallel.

While a typical GPU shader is meant to be an e�cient processor with high com-

putation density we found several cases where ine�ciencies in the pipeline result in

extra work being done by the shader. This extra work translates into lost energy and

overall higher power consumption of the shader. The next few sections describe limit

studies, which try to look at ine�ciencies caused by extra work. These include:

• High Precision Math: In modern GPU shaders the majority of math op-

erations are done using either 32-bit or 64-bit IEEE compliant floating point

operations[69, 68, 50]. This makes the SW development much easier since one

does not need to worry about overflow or loss of precision during scaling. Af-

ter looking at several frame level profiles we found that in most cases the high

precision of these floating point units is never used. We wanted to quantify

the energy savings of going to lower precision floating point or even integer

operations. This information can then be used to drive algorithmic/compiler

improvements to reduce computation precision.

56

CHAPTER 5. ENERGY LIMIT STUDIES 57

• Overdraw: Overdraw occurs when the shader processes a single pixel value

more than once. This can happen when the primitives are not rendered in front

to back order (reverse painter’s algorithm)[22, 67] which can cause the shader to

run on the hidden pixels causing extra computation which will have no impact

on the image output. We take a look at the overdraw across several frames

and quantify the idealized energy savings assuming everything was rendering in

front to back order.

• Redundancy Across Threads: The shader also operates on 32-wide thread

groups, which reduces the control overhead of the design. We refer to this

grouping with the NVIDIA terminology of warps. This is the equivalent of

the SIMD width on the CPU. Profiling several frames, we found that there is

significant thread level redundancy where more than one thread in the warp is

using the same input operands. We take a look at these frame level profiles and

quantify the energy savings of shutting down redundant threads.

5.1 Benchmarks and Methodology

To perform the shader studies, several application/benchmark frames were used as

shown in Table 5.1 and Figure 5.1. These frames were specifically chosen as they

are considered important for the next generation of GPU designs and come from

applications commonly used to showcase GPU performance. The frames were also

chosen since they have fairly diverse workloads (but all were pixel shader heavy as

are most frames) as characterized by GPU performance counters. This choice of

benchmarks was made to avoid biasing the results to a particular workload.

Shader programs were dynamically instrumented by the driver as described in

Section 3.4. This instrumentation was used to capture operand data (for shader

precision and redundancy study) and the frame bu↵er writes (for the overdraw study).

All pixel shader programs for a given frame were instrumented to capture operands

while only pixel shader programs that write to the final frame bu↵er and had blending

disabled were used for the overdraw study. If blending is enabled, then the overdraw

CHAPTER 5. ENERGY LIMIT STUDIES 58

Table 5.1: These are the benchmarks that were selected. We used specific frames
from these benchmarks that are known to have relatively high energy consumption

Frame Number Application

1 3DMarkVantage
2 3DMarkVantage
3 3DMarkVantage
4 Batman Arkham City
5 Battlefield 3
6 Dirt3
7 Samaritan Demo (FXAA)
8 Metro 2033 Benchmark

changes the pixel values and is not redundant computation. The accuracy of this

data collection method is also discussed in this section.

Since capturing all operands for every instruction executed in the shader for a

particular frame is not very practical (>30 Billion operands per frame) sampling was

used to reduce the data captured while trying to maintain the overall statistics of the

data. For most cases, capturing 5% of the frame was su�cient and these were selected

by randomly scissoring the output frame into 64 x 64 pixel non-overlapping regions.

The size of 64 x 64 was chosen since it was the most optimal unit for capturing the

shader data for the particular GPU used.

Energy estimation in this chapter was done using performance counters and energy

models as described in Chapter 3. While a lot of silicon/netlist level correlation was

done on the energy models described earlier, obviously the results in this chapter

are based purely on the performance models since these designs have not yet been

implemented.

5.2 Shader Energy Breakdowns

The frames (Figure 5.1) were taken through the energy estimation flow as described in

Chapter 3 on the original shader implementation. The results of the energy estimation

were broken down broadly into the following categories:

CHAPTER 5. ENERGY LIMIT STUDIES 59

(a) 3MarkVantage (Frame 1) (b) 3MarkVantage (Frame 2)

(c) 3MarkVantage (Frame 3) (d) Batman Arkham City (Frame 4)

(e) Battlefield 3 (Frame 5) (f) Dirt3 (Frame 6)

(g) Samaritan (Frame 7) (h) Metro 2033 (Frame 8)

Figure 5.1: Frames used for benchmarking

CHAPTER 5. ENERGY LIMIT STUDIES 60

• Idle: The amount of energy that is used when the shader is idle but the clock

is ticking. This refers specifically to dynamic power not static leakage. Most

of this energy is waste since this can be mostly eliminated with perfect clock

gating (other than clock gating overhead)

• Control: This is the energy spent in instruction decode, scheduling, ordering

and managing texture transactions.

• RF: This is the energy spent in the register file of the GPU. Keep in mind that

the register files on GPU are substantially larger than those on conventional

CPUs.

• Local DP: The data path that is local to a single slice of the shader and

is physically co-located to a slice of the register file. This local datapath is

responsible for performing common operations such as FFMA, FMUL, FADD,

etc.

• Global DP: This is the datapath that is shared across several shader slices.

While the throughput of the global data path is lower it is used to perform

either rare or complicated instructions. For example: SIN, EXP, DFMA, etc.

The texture unit is also in the global datapath of the shader but its energy is

not included since it is physically not part of the shader and can be shared with

several shaders (or have multiple instances per shader).

• Cache: This refers to the energy used by the shader L1 cache or shared

memory. In most pure graphics workloads if the application does not contain

CUDA or DX Compute code the shader cache is used as either a shared memory

or as bu↵ers for the primitive engine.

The estimated energy broken down by functional units is shown in Figure 5.2.

The energy has been normalized so that the breakdown can be shown without regard

for the actual energy consumed by any given benchmark.

It is clear that the shader spends most the energy in the datapaths and the register

file. These units account for about 50% of the energy. This is in contrast to general

CHAPTER 5. ENERGY LIMIT STUDIES 61

purpose CPUs where the majority of energy is spent getting the instructions and data

needed for computation [25, 2]. These results imply that improving shader design can

at most yield a 40 percent reduction in energy if nothing was done to the datapaths

or register files. There is room available for reducing energy in the control logic of

GPUs by switching to doing static scheduling or reducing waste, however, we can’t

get large reductions in energy without either improving the datapaths or figuring out

how to do less data processing.1 The next few sections touch on ideas to both reduce

data processing cost and also reduce the amount of data processing required to render

a frame.

5.3 Understanding Floating Point Precision

The majority of datapath operations performed on the GPU are done using 32-bit

IEEE compliant floating point, which consists of a 8-bit exponent, 23-bits of mantissa

and 1-bit sign. The final render target for a GPU is reduced to display precision, which

is at usually 8 to 10 bits (integer) per color channel.

GPUs do computations in higher precision and truncate later for several reasons.

In vertex shader workloads world coordinates can have a large dynamic range. Sup-

porting a large dynamic range without floating point numbers is di�cult since a lot of

rescaling might be necessary. For pixel shaders, use of floating point numbers allows

intermediate computations to be done without worry of saturation or overflow. This

greatly simplifies the programming model at the cost of more complex and less e�-

cient hardware. This section will focus mostly on pixel shader workloads since that

is where the majority of energy is spent.

There are two parts to understanding if we can/should do cheaper arithmetic

operations. One is to understand the impact of reducing the precision on the energy

consumed by the shader. The other is to understand the workloads and determine

whether such a change would lead to unacceptable image quality reduction.

One way to get a quick estimate of the potential energy savings is to scale the

1There has been ongoing work/research into creating more e�cient floating point data paths. We
take into account the existence of these datapaths in our results [20]

CHAPTER 5. ENERGY LIMIT STUDIES 62

Figure 5.2: Shader energy breakdown across benchmarks

CHAPTER 5. ENERGY LIMIT STUDIES 63

arithmetic and register file energy based on a lower precision design. Since, the

shader relies heavily on compiler driven software pipelining we wanted to keep design

changes to a minimum and decided to evaluate datapaths designs that could complete

the given operation in 4 cycles at 1GHz in a nominal 28nm process.

The energy per arithmetic operation is shown in Figure 5.3. These energy numbers

were obtained on a nominal 28nm process for a datapath running at 1GHz with a

latency of 4 cycles. From the graph we can see that there is a large energy di↵erence

between 32-bit FP and 64-bit FP. Part of this is because double precision floating

point is more complex and the other is because of the cycle time pressure causing gates

to be up-sized. Similarly we see that savings decrease between 12/16 bit integer data

paths as the design is starting to get dominated by overhead imposed by flip-flops

and clocking structures. Some of this overhead may be artificially introduced in our

study since we decided to keep the datapath latency the same (4-cycles) to prevent

impacting the control/scheduling logic. Changes to scheduler/compiler might yield

more further improvements in energy e�ciency. Similarly, the energy/access/byte

(assuming 32 word wide access) for the register access is shown in Figure 5.4.

Using this information and performance counters we can come up with perfor-

mance estimates for the design assuming that we can change all single-precision float-

ing point operations (evaluation of which will be discussed later); Figure 5.5 shows

these results. Moving to 16-bit FP saves about 20 percent of the overall energy across

the frames benchmarked while moving to 16-bit integer saves about 30 percent of the

overall energy. As we move to lower precision the design becomes more dominated

by control and idle energy. While the shader design is well balanced for a 32-bit FP

arithmetic it might need significant changes to optimally use a 16-bit/12-bit design,

including changes in the datapath cycle time which can have a significant impact on

energy.

Given the significant potential energy savings, we now need to look at the work-

loads to see if this might be possible. In order to do this we extracted operands from

shader programs as discussed in Section 3.4. In particular we captured the output

values of every single math operation in the sampled region of the frame. Each oper-

ation was broken down into the exponent and mantissa and analyzed. The exponent

CHAPTER 5. ENERGY LIMIT STUDIES 64

Figure 5.3: Energy/Op for performing a fused multiply-add using datapaths of dif-
ferent precision. All the datapaths used have a 4-cycle latency and include the corre-
sponding clock and pipelining overhead.

CHAPTER 5. ENERGY LIMIT STUDIES 65

Figure 5.4: Energy/Access/Byte for 16KWords register file vs word width

is plotted in Figure 5.6 and is expected to be in the range of -126 to 127 if the entire

range is being used since it is a 8-bit number. However, we see that the 99th per-

centile does not exceed half the range a↵orded by the 8-bit number. As expected the

mantissa values were uniformly distributed.

While it is obvious that the full exponent range is not really utilized reducing it

has only a marginal savings in energy, since the extra exponent range accounts for

just one extra bit and an extra shift in the data path. The majority of energy for

an FMA operation is consumed by the mantissa computation. At initial glance it

might not seem like this data really supports moving to a lower precision design since

the entire mantissa range is used and only a single bit can be eliminated from the

exponent.

This is where we need to consider the final format and resulting values of the pixel

shader program. The results of the pixel shader are truncated to screen precision

which is 8 to 10 bits per color channel. This means that most of the mantissa range

is unused unless there are large mantissa over/underflows. Since the exponent is not

CHAPTER 5. ENERGY LIMIT STUDIES 66

Figure 5.5: Estimated datapath energy for the various benchmarks. Each group
consists of 4 bars that correspond to 32-bit FP, 16-bit FP, 16-bit Integer and 12-bit
Integer from left to right.

CHAPTER 5. ENERGY LIMIT STUDIES 67

fully utilized we can see that a large part of the resulting mantissa is truncated and

lost when converting to screen resolution, which means that we could have skipped

computing it in the first place.

Since we see that the entire numeric range is not utilized we can exploit this to

save energy in several ways. One is to replace the FP hardware with lower precision

hardware. This option might not be entirely practical since high precision is still

needed in some cases. Also, 32-bit compliant FP math is commonly used in the

ever increasing GPGPU programs [50]. Another option is to analyze the required

precision by applying techniques in [23] and use multi-precision hardware [29] which

will execute the programs with precision necessary based on input dynamic range and

required output range.

To understand how much error would be introduced by computing pixel shader

values using lower precision math we compared the operand values for all the math

operations performed. If the math operation is a multiply or divide then the dynamic

range of the inputs has a significant impact on the results. If the operations per-

formed are an add/subtract the higher value will dominate with a large di↵erence in

dynamic range. As shown in Figure 5.7 we aggregated this data across our bench-

mark applications and recorded the percentage of threads where there was at-least

one computation that could not be performed with lower precision and the value was

utilized. Most of the applications had less than a tenth of a percent of threads that

were incorrect, with Samaritan being the largest at about 0.4% for computing with

FP16 math. While there were errors in the results they were mostly isolated to a few

threads, which could perhaps be executed at higher precision.

To further understand where in a given thread we are having a loss in precision

we collected the min/max exponent range of individual shader programs for every

math operation executed. This information is shown in Figure 5.8. Two particular

pixel shader programs are shown but they are representative of the many di↵erent

pixel shader programs. In the first pixel shader program we can see that there is a

large region of the program where even 4-bits of the exponent are not used. As a

matter of fact there are only a few instructions, which use almost the entire range.

The second program shown is similar except that there are more programs utilizing

CHAPTER 5. ENERGY LIMIT STUDIES 68

Figure 5.6: Exponent distribution for all benchmarks. The box represents the 25-75
percentile range. The red line is the median and the whiskers represent the 1-99
percentile range.

CHAPTER 5. ENERGY LIMIT STUDIES 69

Figure 5.7: Shows the percentage of threads in which at-least one operation had an
incorrect result because the dynamic range between the inputs was too large to be
represented accurately with the specified precision

CHAPTER 5. ENERGY LIMIT STUDIES 70

the entire range.

Overall, we saw that even though GPUs use 32-bit FPU arithmetic they use only

a small part of that range in real pixel shader application. This can be exploited to

yield significant power savings of 20-30 percent. These savings might be even larger

if we can use a scheduler/control design specifically for lower precision math.

5.4 Overdraw in GPUs

The next ine�ciency we are interested in looking at is overdraw. Overdraw occurs

when the GPU over writes a particular values in the frame bu↵er. This occurs for

instances when you have an object that appears in front of another occluding a part of

the background object. This problem is traditionally dealt with by using a technique

called deferred rendering where all primitives are sorted to make sure they can be

perfectly culled [33, 18, 30].

In most high performance GPUs, primitives are not sorted because this introduces

a serialization point in the pipeline which means all generated objects need to be

stored in intermediate storage before rendering. This is hard to do with the high

primitive counts, which become larger with tessellation. Instead they rely on software

rendering objects in front to back order for optimal performance. If objects are

rendering in front to back order they can be culled based on primitives seen in the

past without having to bu↵er all primitives and sort (a process known as Early-

Z[32, 54, 45]). The GPU processes primitives in order to make sure that primitives

that appear in the foreground correctly overwrite the frame bu↵er.

Overdraw is pure waste and can be reduced either in hardware or in software.

Hardware solutions are complex and require primitive storage and sorting while soft-

ware solutions pose their own challenges by requiring that applications keep track of

object ordering. In order to understand how much e↵ort to spend reducing overdraw

we would like to quantify the potential energy savings of the instrumented shader pro-

grams. The instrumented shader programs wrote a side bu↵er everytime the frame

bu↵er was touched for a given pixel. This allowed us to capture the hit mask for every

pixel, for every pixel shader that wrote to the final frame bu↵er. Shader programs

CHAPTER 5. ENERGY LIMIT STUDIES 71

(a) Temporal Exponent Range. (Samaritan
Demo shader)

(b) Temporal Exponent Range (Metro 2033
shader)

Figure 5.8: Temporal Exponent Range. Blue shows the minimum, green the median
and red the maximum. The x-axis shows math operations in the order they were
performed by the application.

CHAPTER 5. ENERGY LIMIT STUDIES 72

that had blending enabled in the ROP were not profiled and included in the hit mask.

By definition blended programs can’t have overdraw since the previous value of the

frame bu↵er can have an impact on the results.

The results of capturing the shader program invocations for each pixel are shown

in Figure 5.9. Metro 2033 hung the pixel profiler and is not included here. What we

see here are really interesting results where the majority of frames overdraw pixels

more than 2 times. Actually, it is apparent from the images that some complex parts

of the screen are drawn several times while more background regions are drawn only

once averaging to approximately 2.3X.

These initial results indicate a potential for large energy savings. To evaluate the

energy savings we used detailed performance counters as well as information about

which shader values were finally used to estimate energy. For example if shader

program 1 wrote to the frame bu↵er and then subsequently shader program 2 writes

to the same pixel on the frame bu↵er, we assume the work done by program 1 was

waste. Also we took care to make sure an entire 2x2 pixel quad of work was eliminated

before counting it as waste since the values would have to be used for texture (level

of detail) LOD calculations[69] otherwise and would need to be rendered anyways.

Looking closely at Figure 5.9 you can see this square blocking pattern for the quads.2

The computed energy savings are shown in Figure 5.10. Interestingly, the energy

savings while significant are not as large as we expected them to be. The average

energy reduction is just 15 percent while the average overdraw is 2.3 times. Looking

through the actual shader programs it was pretty apparent that pixel shaders that

were overdrawn generally were very short programs that consumed very little energy

while the final program was generally much longer and more complicated.

While this may initially seem counterintuitive it actually makes sense. Overdraw

is an ine�ciency that can cause significant loss of performance because of all the extra

work that it causes the GPU to do. In other words it is actually an important opti-

mization criteria for game developers who work on these complex games. As a matter

of fact there are tools such as NVIDIA PerfHUD [12] which help developers visualize

2Quads are a group of 2x2 pixels which are processed together. This grouping allows the graphics
processor to calculate finite-di↵erence derivatives, which are used to calculate texture level of detail
(LOD)

CHAPTER 5. ENERGY LIMIT STUDIES 73

(a) 3MarkVantage Frame 1 (b) 3MarkVantage Frame 2

(c) 3MarkVantage Frame 3 (d) Batman Arkham City Frame 1

(e) Battlefield 3 Frame 1 (f) Dirt3 Frame 1

(g) Samaritan Frame 1 (h) Metro 2033 Frame 1

Figure 5.9: Results showing overdraw for benchmark frames. The color shows the
number of times a given pixel was drawn.

CHAPTER 5. ENERGY LIMIT STUDIES 74

Figure 5.10: Overdraw Ratios and Energy Reduction

and reduce overdraw. Our guess here is that the developers optimized overdraw until

they picked out all the low hanging fruit to get the maximum performance. This in

turn means that they indirectly reduce the amount of wasted computation and hence

energy.

Overall, while there is about 15 percent energy savings to be had, the case for

overdraw elimination is not as compelling as we initially thought. Even if the savings

are sligly higher when we consider other parts of the system such as the caches and

DRAM, the most significant energy reductions can be made with just application or

driver level shader program optimization that reduce the amount of overdraw done

by more complex shader programs. So the best approach to achieve this scaling is

through software and not hardware.

CHAPTER 5. ENERGY LIMIT STUDIES 75

5.5 Understanding Thread Level Redundancy

The final shader optimization explores idling threads that share computation with

other threads. In contemporary shader architecture, operations are performed over

several pixels in parallel with each instruction. This amortizes the control overhead

in a system where there is a lot of data parallelism, and creates a basic SIMD[26]

execution engine. This engine is similar to that used to execute SIMD instructions

in general purpose CPUs. In GPUs, however, there are several such SIMD cores

with each SIMD core executing independent instructions streams. This is referred to

as Multiple Instruction Multiple Data (MIMD) [17, 43]. Also, GPUs generally have

much more relaxed constraints about memory access patterns in SIMD and generally

allow words to be swizzled between operations.

This architecture allows GPU shaders to achieve a high compute density of 32-

math operations/instruction. However, we found that in many cases the shader per-

forms more work than necessary to produce the correct result. In these cases threads

within a given warp were operating on the exact same data and producing identical

results. If there was some way to identify that similar operands were present we could

turn o↵ some of the datapaths and save energy while still computing all the values

that we need.

To quantify the energy saving we profiled the output results of all the math op-

erations performed by the shader using the methodology shown in Section 3.4 and

used our energy model to compute the potential energy savings. From this profile

we computed the ratio of the unique operations performed in each step of the warp

execution and the total operations performed. The total number of operations per-

formed by the warp in each cycle might not be 32 since some lanes in the datapath

may be shut o↵ due to predication.

To calculate the energy we applied the energy model and scaled the register file

and datapath energy based on the operations being scalarized. Figure 5.11, shows an

example of what the energy would look like for a shader performing FMA operations.

The Y-intercept is roughly the control energy for each instruction. Thus one should

note that while the energy decreases when there are fewer active threads in a given

CHAPTER 5. ENERGY LIMIT STUDIES 76

Figure 5.11: Theoretical energy scaling for performing FMA operations across a
shader unit.

warp the e�ciency also reduces. This is since every math operations performed helps

amortize the control overhead.

Some sample results generated by mining the datapath values are shown in Figure

5.12. Each cumulative histogram shows percentage operations that required less than

a certain percentage of the available threads in a given warp. This plot is always

100 percent at 100 percent of the threads. In general most warps exhibit a couple

of patterns. One pattern as can be seen in (b, c, d) is where we have a bi-modal

distribution, threads are either totally unique or not unique at all, with very few

cases in between. The other common pattern is where we have almost every thread

doing redundant computation, as shown in (a). One reason this might be happening

is due to a lack of a pure scalar unit in the GPUs we used. The DX11 specification

provides a scalar shader abstraction and some GPUs provide scalar shader hardware

[64].

Using the energy models and thread scalarization information (for example: Figure

5.12), we can compute the energy savings and breakdowns. These results are shown

in Figure 5.14. As expected, we only see changes in energy of the functional units

CHAPTER 5. ENERGY LIMIT STUDIES 77

(a) Battlefield 3 (select shader pro-
gram)

(b) Metro 2033 (select shader pro-
gram)

(c) Metro 2033 (select shader pro-
gram)

(d) Samaritan Demo (select shader
program)

Figure 5.12: Cumulative distribution of uniqueness in shader programs. The x-axis
lists the percent of total threads that are unique in a given 32-wide thread group
(warp). The y-axis is the percent of total warps that have uniqueness below the
value specified by the x-axis. These select shader programs were selected to show the
di↵erent distributions among various di↵erent use cases.

CHAPTER 5. ENERGY LIMIT STUDIES 78

(a) 3MarkVantage (Frame 1) (b) 3MarkVantage (Frame 2)

(c) 3MarkVantage (Frame 3)
(d) Batman Arkham City
(Frame 4)

(e) Battlefield 3 (Frame 5) (f) Dirt3 (Frame 6)

(g) Samaritan (Frame 8) (h) Metro 2033 (Frame 7)

Figure 5.13: Application level aggregates showing the cumulative distribution of the
number of percent of unique threads in a warp (32-wide thread grouping). We can
see that most of the applications have only about 50% unique threads when looking
at 50% of the total warps executed.

CHAPTER 5. ENERGY LIMIT STUDIES 79

Figure 5.14: Potential energy reduction with scalarizing the shader. Left bar is
original and right bar is the energy with all thread level redundancy eliminated

CHAPTER 5. ENERGY LIMIT STUDIES 80

and register file and not the control logic. Interestingly, there is a fair amount of

energy spent on duplicate data. The energy savings range from about 15% all the

way to almost 50%. The large amount of thread level redundancy and energy savings

initially was a surprise, since we have these 3D images with complex lighting. Also, if

the energy savings are so large why haven’t developers optimized their applications?

Unlike the previous study on overdraw, redundancy in operations does not a↵ect

performance. As a result there are fewer developer tools to identify thread level

redundancy and due to the lack of any performance gains, little incentive to make

improvements. Yet this still leaves the question of why this occurs at all.

Upon closer examination we found that a lot of energy savings result from the com-

putation of intermediate draw calls, for example: shadow mask and stencil computa-

tions. This means that while the final image may have di↵erent values for adjacent

pixels there could have been a lot of shared intermediate computation.

Now that we have seen that there is a lot of opportunity from scalarization we

can explore a few possible solutions that we might be able to use to save energy. The

first thing we looked at was what percent of the datapaths produced a constant value

such as 0.

As shown in Figure 5.15 a significant percent of the data being operated on (5-

15%) is zero (or one of the degenerate zero cases in floating point). This turns out

to be fairly common and it is probably at least partially related to a lot of GPU

operations having a saturate at zero attribute. Knowing this information we can

think of a simple architectural changes to exploit this redundancy. For example, we

can tag the register file with a bit that indicates that the value is zero. When we

read the register file we can use this attribute to gate all the downstream logic and

prevent energy waste.

Another area that we can consider looking at is possible compiler optimization

that might help find regions of code with thread level redundancy. To understand

the program behavior we plotted the uniqueness vs the sequence of program execu-

tion. This is shown for a few sample program in Fig 5.16. The figure shows some

sample shader programs that exhibit di↵erent classes of behaviors. A set that has

unique operations scattered throughout the entire program and another set that has

CHAPTER 5. ENERGY LIMIT STUDIES 81

Figure 5.15: Shows the percentage of math operations where the result was a zero
output.

CHAPTER 5. ENERGY LIMIT STUDIES 82

(a) 3DMark (Frame 2, select shader
program)

(b) 3DMark (Frame 2, select shader
program)

Figure 5.16: Uniqueness vs sequence of program execution for select shader programs.
The shader program in (a) has unique operations in a small region of the program.
The shader program (b) has unique values throughout the program

a small part of the shader program containing a large percentage of unique values.

This information can potentially be used to do profile driven optimization where the

shader can tag relevant register file entries by performing comparisons during fairly

redundant parts of the program and performing all computations when values are

likely to be unique.

Looking at the holistic view of both performance and energy data we see that

there is a significant opportunity to save energy by scalarizing certain parts of the

shader program. While the actual implementation of an energy reduction technique

is out of scope of this discussion there is an opportunity of between 15-40% depending

on the application.

5.6 Conclusions

In this chapter we showed how several studies can be performed by having a flexible

energy model along with relevant performance data. The shader precision studied

showed that a significant reduction in energy is possible by reducing the precision at

which operations need to be performed. Application traces showed that the majority

of shader operations don’t require the level of precision provided by a single precision

CHAPTER 5. ENERGY LIMIT STUDIES 83

floating point unit. While further study is needed regarding what artifacts will be

created or if the precision can be selected by the compiler, initial results are promising.

When studying overdraw reduction we saw that there was significant overdraw

which yielded only 15% energy saving. We suspect that this is due to the fact that

overdraw a↵ects performance and software level performance optimization improved

energy e�ciency too. Further software optimization should be able to recover more

energy savings without hardware changes. The energy issues that don’t a↵ect per-

formance, like scalarization, have more potential for energy savings. Here we found

15-50% energy saving is possible. Taken together there is significant performance im-

provement possible at a constant power by implementing the energy savings discussed

in this chapter.

Chapter 6

Conclusions

Since the power wall limits GPUs performance scaling, further increases in GPU per-

formance will require improvements in energy e�ciency. In this dissertation we extend

current energy and performance modeling tools and optimization methodologies that

allowed us to explore both the GPU architecture design space and graphics specific

optimizations. As part of this framework we created a hierarchical energy model that

contains both regressions and building block based models for units of the GPU. We

also created tools and explored methodologies for understanding application behavior

and it’s impact on energy consumption. These models were then used to estimate

the performance and energy of a contemporary GPU architecture.

In the process of creating these models we gained valuable insights into what

is necessary to create performance/energy models for a GPU. GPUs are complex

designs with many di↵erent functional units and a fairly large and complex software

stack. We explored building the models based on performance counters, which are

externally visible/accessible by the software. While we can obtain a fair amount of

modeling accuracy using just externally visible performance counters, the flexibility

of this model is limited. We found that using internal data about the architecture

and circuits used in the actual design were instrumental in creating both an accurate

and flexible model. We also gained a lot of insight when examining the workloads of

the GPU. Initially when we wanted to see internal values in the datapaths we were

inclined to use the architectural simulator. This turned out to be fairly slow compared

84

CHAPTER 6. CONCLUSIONS 85

to just using the actual silicon and instrumenting the shader programs to write the

values to a section of the memory, which could later be downloaded. Furthermore,

some aggregated frame level data could also be computed without having to deal

with the massive amount of data that is processed for each frame. For experiments

where aggregated values were not enough we used sampling to make data volume

manageable.

While creating these models we wanted to both focus on interesting regions of the

design from an energy e�ciency perspective and also get detailed breakdowns about

where energy is spent. We opted to use a hierarchical energy models. We also made

some models regression based and others based almost entirely on building blocks

(such as floating point unit, register file, etc). This distinction allowed us to focus our

time on modeling high impact regions of the design and regions of the design that we

were interested in exploring.

Accuracy of the model is extremely important when using it to make design trade-

o↵s so we compared our model to both existing silicon as well as detailed gate level

simulations. We showed that the generated models are good predictors of GPU en-

ergy consumptions by comparing them across various graphics benchmarks. Having

a good model we conducted several potential energy optimizations.

The first study that we performed examined the data values in the shader data

path for pixel shader programs. We determined that the vast majority of operations

don’t require the precision o↵ered by the single precision floating point units that are

used by current GPUs. We did a “what if” study where we examined the potential

energy savings if we were to perform some operations with lower precision. We found

that this optimization can yield 20-30% energy savings in current GPUs.

We then studied the impact of overdraw on the energy e�ciency of GPUs. Over-

draw occurs when a given pixel is drawn more than once because a later processed

primitive overwrites the previous value at a given location. Interestingly, we found

that there is significant amounts of overdraw in most of the frames that we stud-

ied. However, the energy savings are less than 15% even with an over draw of 2.3X

(meaning that every pixel on average is drawn more than 2 times). While, initially

surprising, this resulting low energy savings makes sense. Overdraw has a significant

CHAPTER 6. CONCLUSIONS 86

impact on performance and software developers have tools that help with overdraw

elimination. Even with the significant overdraw only small shader programs are get-

ting rerun while the larger shader programs have been optimized to run only once for

a given pixel.

The last study we looked at tried to understand if we can share computation

across thread groups (warps) in a shader processor. It turns out this actually yields

significant energy savings of as much as 50%. Relatively few tools exists for software

developers to see what the thread level redundancy is, hence, few applications are

actually optimized to reduce it.

The studies showcase the importance of holistically looking at the performance

and energy models. Looking at just one alone might give misleading results, as it

was evident from the scalarization and overdraw studies. Overall, our methodology

allows for exploration of GPU design space, which can be used to improve the energy

e�ciency, which in turn will yield higher performance GPUs.

Bibliography

[1] Tomas Akenine-Möller and Jacob Ström. Graphics for the masses: a hardware

rasterization architecture for mobile phones. In ACM SIGGRAPH 2003 Papers,

SIGGRAPH ’03, pages 801–808, New York, NY, USA, 2003. ACM.

[2] Omid Azizi, Aqeel Mahesri, Benjamin C. Lee, Sanjay J. Patel, and Mark

Horowitz. Energy-performance tradeo↵s in processor architecture and circuit

design: a marginal cost analysis. SIGARCH Comput. Archit. News, 38(3):26–36,

June 2010.

[3] D. H. Bailey and P. N. Swarztrauber. The fractional Fourier transform and

applications. SIAM Rev., 33(3):389–404, 1991.

[4] Himanshu Bhatnagar. Advanced ASIC Chip Synthesis Using Synopsys R� Design

Compiler R� Physical Compiler R� and PrimeTime R�. Springer, 2002.

[5] Chas Boyd. The directx 11 compute shader. ACM SIGGRAPH 2008 classes,

2008.

[6] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: a framework for

architectural-level power analysis and optimizations. SIGARCH Comput. Archit.

News, 28(2):83–94, May 2000.

[7] D.M. Brooks, P. Bose, S.E. Schuster, H. Jacobson, P.N. Kudva, A. Buyukto-

sunoglu, J. Wellman, V. Zyuban, M. Gupta, and P.W. Cook. Power-aware

microarchitecture: Design and modeling challenges for next-generation micro-

processors. Micro, IEEE, 20(6):26–44, 2000.

87

BIBLIOGRAPHY 88

[8] Cadence. Cadence palladium technical brief, 2010.

[9] Zhongliang Chen, David Kaeli, and Norman Rubin. Characterizing scalar oppor-

tunities in gpgpu applications. In Performance Analysis of Systems and Software

(ISPASS), 2013 IEEE International Symposium on, pages 225–234. IEEE, 2013.

[10] Brett W Coon, John Erik Lindholm, Samuel Liu, Stuart F Oberman, and Ming Y

Siu. Operand collector architecture, November 16 2010. US Patent 7,834,881.

[11] NVIDIA Corporation. Nvidia parallel nsight.

[12] NVIDIA Corporation. Nvidia: Nvidia perfhud version 5.1, 2007.

[13] NVIDIA Corporation. Nvidias next generation cuda compute architecture: Ke-

pler gk110, 2012.

[14] J Dahl and L Vandenberghe. Cvxopt, 2007.

[15] V.M. del Barrio, C. Gonzalez, J. Roca, A. Fernandez, and Espasa E. Attila: a

cycle-level execution-driven simulator for modern gpu architectures. In Perfor-

mance Analysis of Systems and Software, 2006 IEEE International Symposium

on, pages 231 – 241, march 2006.

[16] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and

Andre R LeBlanc. Design of ion-implanted mosfet’s with very small physical

dimensions. Solid-State Circuits, IEEE Journal of, 9(5):256–268, 1974.

[17] Gregory Diamos, Andrew Kerr, and Mukil Kesavan. Translating gpu binaries to

tiered simd architectures with ocelot. 2009.

[18] Jerome F Duluk Jr, Richard E Hessel, Vaughn T Arnold, Jack Benkual, Joseph P

Bratt, George Cuan, Stephen L Dodgen, Emerson S Fang, Zhaoyu Gong, Y Yo

Thomas, et al. Deferred shading graphics pipeline processor having advanced

features, October 5 2010. US Patent 7,808,503.

[19] S. Galal and M. Horowitz. Energy-e�cient floating-point unit design. Computers,

IEEE Transactions on, 60(7):913–922, 2011.

BIBLIOGRAPHY 89

[20] Sameh Galal and Mark Horowitz. Energy-e�cient floating-point unit design.

IEEE Trans. Comput., 60(7):913–922, July 2011.

[21] M. Gebhart, D.R. Johnson, D. Tarjan, S.W. Keckler, W.J. Dally, E. Lind-

holm, and K. Skadron. Energy-e�cient mechanisms for managing thread con-

text in throughput processors. ACM SIGARCH Computer Architecture News,

39(3):235–246, 2011.

[22] Andrew Glassner and Henry Fuchs. Hardware enhancements for raster graphics.

In Fundamental Algorithms for Computer Graphics, pages 631–658. Springer,

1991.

[23] Eric Goubault. Static analyses of the precision of floating-point operations. In

Static Analysis, pages 234–259. Springer, 2001.

[24] Ziyad S. Hakura and Anoop Gupta. The design and analysis of a cache archi-

tecture for texture mapping. In Proceedings of the 24th annual international

symposium on Computer architecture, ISCA ’97, pages 108–120, New York, NY,

USA, 1997. ACM.

[25] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomat-

nikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark

Horowitz. Understanding sources of ine�ciency in general-purpose chips.

SIGARCH Comput. Archit. News, 38(3):37–47, June 2010.

[26] Mark Harris. Mapping computational concepts to gpus. In ACM SIGGRAPH

2005 Courses, page 50. ACM, 2005.

[27] F Hill and S Kelley. Computer Graphics Using OpenGL, 3/E. Pearson, 2007.

[28] Sunpyo Hong and Hyesoon Kim. An integrated gpu power and performance

model. SIGARCH Comput. Archit. News, 38(3):280–289, June 2010.

[29] Libo Huang, Li Shen, Kui Dai, and Zhiying Wang. A new architecture for

multiple-precision floating-point multiply-add fused unit design. In Computer

BIBLIOGRAPHY 90

Arithmetic, 2007. ARITH’07. 18th IEEE Symposium on, pages 69–76. IEEE,

2007.

[30] Josh Klint. Deferred rendering in leadwerks engine. Copyright Leadwerks Cor-

poration, 2008.

[31] Scott J Krieder. An overview of current and future accelerator architectures.

[32] Jens Kruger and Rüdiger Westermann. Acceleration techniques for gpu-based

volume rendering. In Proceedings of the 14th IEEE Visualization 2003 (VIS’03),

page 38. IEEE Computer Society, 2003.

[33] Andrew Lauritzen. Deferred rendering for current and future rendering pipelines.

SIGGRAPH Course: Beyond Programmable Shading, 2010.

[34] B.C. Lee and D.M. Brooks. Accurate and e�cient regression modeling for mi-

croarchitectural performance and power prediction. In ACM SIGOPS Operating

Systems Review, volume 40, pages 185–194. ACM, 2006.

[35] S. Lee, A. Ermedahl, S.L. Min, and N. Chang. An accurate instruction-level

energy consumption model for embedded risc processors. In ACM SIGPLAN

Notices, volume 36, pages 1–10. ACM, 2001.

[36] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gilani, Nam Sung

Kim, Tor M Aamodt, and Vijay Janapa Reddi. Gpuwattch: Enabling energy

optimizations in gpgpus. In Proceedings of the 40th Annual International Sym-

posium on Computer Architecture, pages 487–498. ACM, 2013.

[37] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,

and Norman P. Jouppi. Mcpat: an integrated power, area, and timing modeling

framework for multicore and manycore architectures. In Proceedings of the 42nd

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 42,

pages 469–480, New York, NY, USA, 2009. ACM.

[38] E Lindholm, H Moreton, J Montrym, and S Whitman. Apparatus and method

for raster tile coalescing, 06 2009.

BIBLIOGRAPHY 91

[39] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. Nvidia tesla: A unified

graphics and computing architecture. Micro, IEEE, 28(2):39 –55, march-april

2008.

[40] David Luebke and Greg Humphreys. How gpus work. Computer, 40(2):96 –100,

feb. 2007.

[41] X. Ma, M. Dong, L. Zhong, and Z. Deng. Statistical power consumption analysis

and modeling for gpu-based computing. In Proceeding of ACM SOSP Workshop

on Power Aware Computing and Systems (HotPower), 2009.

[42] E. Macii, M. Pedram, and F. Somenzi. High-level power modeling, estimation,

and optimization. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 17(11):1061–1079, 1998.

[43] Ogier Maitre. Understanding nvidia gpgpu hardware. In Massively Parallel

Evolutionary Computation on GPGPUs, pages 15–34. Springer, 2013.

[44] J. Montrym and H. Moreton. The geforce 6800. Micro, IEEE, 25(2):41 – 51,

march-april 2005.

[45] Stephen L Morein. System, method, and apparatus for early culling, February 14

2006. US Patent 6,999,076.

[46] V. Moya, C. Gonzalez, J. Roca, A. Fernandez, and R. Espasa. Shader per-

formance analysis on a modern gpu architecture. In Microarchitecture, 2005.

MICRO-38. Proceedings. 38th Annual IEEE/ACM International Symposium on,

pages 10 pp. –364, nov. 2005.

[47] V. Moya, C. González, J. Roca, A. Fernández, and R. Espasa. A single (uni-

fied) shader gpu microarchitecture for embedded systems. High Performance

Embedded Architectures and Compilers, pages 286–301, 2005.

[48] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight

dynamic binary instrumentation. SIGPLAN Not., 42(6):89–100, June 2007.

BIBLIOGRAPHY 92

[49] Hubert Nguyen. Gpu gems 3. Addison-Wesley Professional, first edition, 2007.

[50] J. Nickolls and W.J. Dally. The gpu computing era. Micro, IEEE, 30(2):56 –69,

march-april 2010.

[51] K. Nose and T. Sakurai. Analysis and future trend of short-circuit power.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 19(9):1023–1030, 2000.

[52] J. Owens. Gpu architecture overview. In ACM SIGGRAPH, volume 1, pages

5–9, 2007.

[53] J.T. Russell and M.F. Jacome. Software power estimation and optimization for

high performance, 32-bit embedded processors. In Computer Design: VLSI in

Computers and Processors, 1998. ICCD’98. Proceedings. International Confer-

ence on, pages 328–333. IEEE, 1998.

[54] Pedro V Sander, David Gosselin, and Jason L Mitchell. Real-time skin rendering

on graphics hardware. In the proceedings of SIGGRAPH, 2004.

[55] T. Sato, Y. Ootaguro, M. Nagamatsu, and H. Tago. Evaluation of architecture-

level power estimation for cmos risc processors. In Low Power Electronics, 1995.,

IEEE Symposium on, pages 44–45. IEEE, 1995.

[56] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Pradeep Dubey,

Stephen Junkins, Adam Lake, Robert Cavin, Roger Espasa, Ed Grochowski,

et al. Larrabee: A many-core x86 architecture for visual computing. IEEE

micro, 29(1):10–21, 2009.

[57] A. Sharif and H.H.S. Lee. Total recall: a debugging framework for gpus. In

Proceedings of the 23rd ACM SIGGRAPH/EUROGRAPHICS symposium on

Graphics hardware, pages 13–20. Eurographics Association, 2008.

[58] Allen Sherrod. Beginning DirectX 11 game programming. Cengage Learning,

2012.

BIBLIOGRAPHY 93

[59] S. Steinke, M. Knauer, L. Wehmeyer, and P. Marwedel. An accurate and fine

grain instruction-level energy model supporting software optimizations. In Proc.

of PATMOS. Citeseer, 2001.

[60] VCS Synopsys. Verilog simulator, 2004.

[61] T. Tamasi. Evolution of computer graphics. Proc. NVISION, 8, 2008.

[62] D. Tarjan, S. Thoziyoor, and N.P. Jouppi. Cacti 4.0. HP laboratories, Technical

report, 2006.

[63] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: a first

step towards software power minimization. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 2(4):437–445, 1994.

[64] Alexandre Valdetaro, Gustavo Nunes, Alberto Raposo, Bruno Feijó, and

R de Toledo. Understanding shader model 5.0 with directx11. In IX Brazilian

symposium on computer games and digital entertainment, volume 1, page 13,

2010.

[65] Andries Van Dam, Steven K Feiner, Morgan McGuire, and David F Sklar. Com-

puter graphics: principles and practice. Pearson Education, 2013.

[66] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim, and W. Ye. Energy-

driven integrated hardware-software optimizations using simplepower. In Pro-

ceedings of the 27th annual international symposium on Computer architecture,

ISCA ’00, pages 95–106, New York, NY, USA, 2000. ACM.

[67] Kevin Weiler and Peter Atherton. Hidden surface removal using polygon area

sorting. In ACM SIGGRAPH Computer Graphics, volume 11, pages 214–222.

ACM, 1977.

[68] Nathan Whitehead and Alex Fit-Florea. Precision & performance: Floating

point and ieee 754 compliance for nvidia gpus. rn (A+ B), 21:1–1874919424,

2011.

BIBLIOGRAPHY 94

[69] C.M. Wittenbrink, E. Kilgari↵, and A. Prabhu. Fermi gf100 gpu architecture.

Micro, IEEE, 31(2):50 –59, march-april 2011.

[70] H. Wong, M.M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos. De-

mystifying gpu microarchitecture through microbenchmarking. In Performance

Analysis of Systems & Software (ISPASS), 2010 IEEE International Symposium

on, pages 235–246. IEEE, 2010.

[71] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. The design and use of

simplepower: a cycle-accurate energy estimation tool. In Proceedings of the 37th

Annual Design Automation Conference, DAC ’00, pages 340–345, New York,

NY, USA, 2000. ACM.

[72] Gordon Yip. Expanding the synopsys primetime R� solution with power analysis.

[Online document] June, 2006.

[73] Ying Zhang, Yue Hu, Bin Li, and Lu Peng. Performance and power analysis of

ati gpu: A statistical approach. In Networking, Architecture and Storage (NAS),

2011 6th IEEE International Conference on, pages 149 –158, july 2011.

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

28120196

2021

