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Abstract

Modern mobile devices are marvels of computation. They can encode high-de�nition

video, processing and compressing over 350MB/s of image data in real time. They

have no trouble driving displays with as much resolution as a full laptop, and smart-

phone manufacturers boast of running games with �console quality� graphics. Mobile

devices pack all of this computational power into a 1-2W hand-held package by inte-

grating a number of specialized hardware accelerators (IP) along with conventional

CPU and GPUs in a system-on-chip (SoC).

Unfortunately, creating these specialized systems is becoming increasingly expen-

sive. Since hardware accelerators come from a number of di�erent sources and design

cycles, di�erent accelerator blocks will often contain incompatible hardware inter-

faces. Therefore, a large portion of SoC design cost comes in the form of designers

manually interfacing each accelerator into a system. This work includes everything

from building custom logic to wire up a block, to developing the drivers and API

needed to take advantage of the hardware.

My research focuses on generating these interfaces, including the physical hard-

ware used to tie IP blocks into a system and the associated software collateral. Lever-

aging recent trends such as High Level Synthesis and other hardware �generator�

methodologies, I propose an IP interface abstraction and parameterization designed

to describe the interface of most current IP blocks. By encoding this knowledge at a

higher-level of abstraction, I am able to construct and demonstrate a hardware gen-

erator that maps an interface protocol description into synthesizable register transfer

language (RTL), and that can automatically create hardware bridges between di�er-

ent interconnect standards.
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To ease the integration of the next generation of IP blocks�blocks that are au-

tomatically generated based o� of user speci�cation�I propose a set of interface

primitives. When integrated into an IP generator, these primitives can automatically

generate an interface that my interface system can tie to the rest of the system. I

also demonstrate how the information stored in these types of primitives can be used

to automatically generate a low-level software driver that manages access to the IP

blocks.

Finally, I show how the simulation environment provided with an IP generator can

be used to provide a domain appropriate application programming interface (API)

to drive the software. Using an image signal processor generator as my platform, I

demonstrate the construction of a map between the simulation software and hardware

driver that enables a full one-button �ow from algorithm development to applications

running on specialized hardware within a working system.
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Chapter 1

Introduction

As seen in Figure 1.1, SoCs incorporate traditional processor cores as well as a myr-

iad of custom hardware accelerators. These accelerators are designed to compute

data intensive applications in real-time, like graphics, image processing, and wireless

communications, and are optimized to do so in a very energy e�cient manner. As

a result, they are widely used in the mobile space where packaging and battery life

requirements necessitate highly e�cient computing solutions.

In recent years, the energy and performance bene�ts of integrating custom hard-

ware on-die with the processor has led traditional desktop processor manufacturers

to start moving towards SoC-like designs. Figure 1.2 shows the die of Intel's latest

generation �Haswell� desktop processor. While the processor cores and cache take up

more area here than in mobile SoCs, over a third of the die is dedicated to acceler-

ators and peripheral controllers, including graphics, memory controllers, and display

handlers.

The energy bene�ts of SoCs, however, come with a price. The complexity of

getting all of these di�erent hardware accelerators, or �IP blocks� to work together has

caused the engineering costs of developing and verifying an SoC design to skyrocket,

and by some estimates, the cost of developing the software to get an SoC system

to function now dwarfs the cost of actual hardware development [21]. These factors

have meant that the number of new custom chip starts is actually decreasing [20]. To

help alleviate these factors, my doctoral work attempts to leverage recent trends in

1
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CPUs

GPU Cores

Figure 1.1: Die photo (top) and block diagram (bottom) of upcoming NVidia Tegra
K1 processor. In addition to processor cores, the chip contains a substantial graphics
fabric, video and image processing units, and a range of other peripherals [23].
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Figure 1.2: Annotated die photo of Intel �Haswell� (4th Generation Core Architec-
ture). Less than half of the die area is dedicated to processor cores [27].

high-level synthesis (HLS), hardware generation, and domain speci�c programming

languages (DSLs) to help automate the process of IP integration.

1.1 Hitting a Power Wall: The Continued Case for

Custom Design

With the rising costs of chip design, one might expect that custom would be on its way

out. The historical growth in the performance of general purpose processors made

it seem like many of the applications that used to require custom accelerators could

eventually be migrated into software. In practice, however, more and more portions of

die area dedicated to custom accelerators and other types of specialized computation

engines: since the release of Intel's Sandy Bridge and AMD's Llano architectures in

2011, many mainline desktop parts have started incorporating programmable graph-

ics engines, among other accelerators directly on-die, providing a huge boost to the

mathematical abilities and parallel computing resources of these parts. Also, modern

mobile and desktop processing parts like the K1 and Haswell continue to dedicate

large portions of die area to custom logic.

The reason for the continued success of custom is that most modern processor

designs are power limited. As seen in Figure 1.3, the rate of general purpose processor
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Figure 1.3: Frequency scaling of processor designs over time [14].

performance growth, as measured by operating frequency, has slowed considerably

since 2005. The reason for this is that designers had been exploiting architectural

techniques that increase performance at the cost of increasing power density [14]. This

is shown in Figure 1.4. When processor power density reached roughly 1W/mm2 [14]

in 2005, however, designers reached the limit of what could be e�ciently air-cooled.

From that point on, architects could no longer trade power for performance, which

greatly slowed the rate of performance scaling.

To make matters worse, since roughly the 45nm generation, power and perfor-

mance bene�ts from technology scaling have declined. According to Dennard's Con-

stant Field Scaling [15], if all of the physical dimensions and the threshold voltage of a

transistor are scaled down by a factor of α, the energy required to switch a transistor

drops by a factor of α3. Historically, this meant that as feature size has dropped by a

factor of
√
2 with each technology node, designers were able to double the number of
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Figure 1.4: Power density of processor designs over time [14].
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Figure 1.5: Voltage versus feature size. Voltage scaling, which began at roughly the
half micron node, has largely leveled o� since the 45nm generation [14]. The trend-line
is provided to show the sharp cuto� in scaling.
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transistors, increase the processor's operating frequency, and still maintain a constant

power density. Unfortunately, for performance to improve as operating voltage, Vdd,

scaled, the threshold voltage, Vth, needs to scale as well. Due to leakage power con-

cerns, however, threshold voltages are no longer scaling at the same rate as the rest

of the transistor, as illustrated in Figure 1.5, and thus Vdd scaling has dramatically

slowed as well.

Since performance is proportional to operations per second and power is propor-

tional to the product of energy per operation and performance (P ∝ ops
s
× E

op
), if

power is �xed, the only way to increase performance is through decreasing energy per

operation. This can be accomplished by tailoring hardware to speci�cally match the

needs of the underlying algorithms. Custom accelerators are designed to do this.

By giving up the generality found in general purpose processors and optimizing

data paths for a certain class of algorithms, custom accelerators can achieve up 1000

times lower energy than general purpose processors [22], as shown in Figure 1.6. As a

result, the SoC design methodology and customization are likely to play an important

role in chip design for the foreseeable future.

1.2 Automating SoC Integration

In this thesis, I attempt to reduce some of the hardware and software related design

costs through automation. My work does this by using the hardware generator design

methodology�rather than building a single hardware instance, we build software-like

constructors to generate customized hardware instances�to automate the integration

of IP blocks into an SoC design.

Much work has already been done to simplify the process of wiring an IP block into

a system on chip, and this work is overviewed in Chapter 2. IP blocks generally adhere

to one of many industry-standard interfaces that were designed to aid the problem

of integration. Unfortunately, the wide range of interface standards, and backwards

compatibility issues between interface revisions mean that an SoC integrator will

likely end up using IP blocks with incompatible interface standards. To address this

problem, researchers have explored various ways to encode the IP communication
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Figure 1.6: Energy e�ciency for algorithms implemented on di�erent platforms [33].
Each mark on the X-Axis represents a unique design published in JSSC.
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protocol at a higher level, and automatically generate bridge logic. This chapter

will review these methods, and highlight some improvements that a generator-based

approach can address.

Chapter 3 attempts to address the problems of connecting IP with �xed interface

standards to each other and to modern high-level designs by introducing an abstrac-

tion for IP style interfaces. I identify four key characteristics that must be present

in any IP interface and then propose a parameterization of this interface space that

is �exible enough to account for the di�erences between most IP buses. Using my

abstraction, I demonstrate a method for automatically generating hardware to bridge

between any two supported interfaces. The conversion method I use is based on three

steps that handle signal resynchronization, physical resources provisioning, and con-

trol signal conversion, and is implemented in the Genesis 2 [43] generator language. I

verify my generator's functionality by producing and simulating bridges for a number

of popular interconnect standards.

While my interface abstraction works well for existing IP blocks, future SoC de-

signs are likely to use high-level design methodologies to help ease the process of IP

design and to automate hardware integration. Since designers may still rely on RTL-

based design methodologies for certain specialized accelerators that don't map well to

their high-level design tools, in Chapter 4, I demonstrate a system for mapping high-

level interface elements to RTL-based accelerator blocks. The work discussed here

allows any IP designs that must be speci�ed through RTL to still take advantage of

the system-integration bene�ts of high-level synthesis.

Next, to push the capabilities of IP integration into the software domain, Chap-

ters 4 and 5 discuss my work to introduce transaction level model (TLM) based

interfaces into Genesis 2, and to adapt the interface information found in these inter-

faces to automatically generate a C driver for generated IP blocks. I demonstrate and

verify the functionality of my interface primitives and driver generator in the context

of an image signal processor (ISP) IP generator (ISPGen) [10].

With a mechanism for automatically generating a software driver, Chapter 5 then

focuses on how we can automatically generate software APIs for the IP so that do-

main experts without hardware knowledge can take advantage of the hardware. This
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chapter demonstrates a proof-of-concept methodology for automatically generating

hardware APIs. All IP generators will come with some sort of simulation collateral

that allow a system designer to test various parameter options before settling on a

�nal �xed IP. Since the same set of generator parameters and design constraints gov-

ern how the hardware and the software simulator are created, for a given set of IP

parameters, it is generally possible to create a mapping between the relevant simula-

tion interface and the required driver commands to complete the same computation

on the hardware. By integrating this technique into the ISP generator, we are able to

construct a system that allows for domain experts with little knowledge of computer

hardware to experiment with novel image processing algorithms in real-time.



Chapter 2

Previous Work in Interface

Generation

SoC design methodology is widely used in chip design. It allows users to assemble

entire systems out of pre-built, pre-veri�ed IP blocks. These IP blocks can be sourced

from both internal and external vendors, so, for example, an SoC might feature a

processor design from ARM, and graphics from Imagination. It is the job of the SoC

designer to integrate these devices together to form a fully functional system.

To help manage the complexity of integrating IP blocks from di�erent vendors,

most IP blocks adhere to one of a variety of interface standards. These standards

de�ne the signals, timing, and handshaking protocols used by the IP blocks to com-

municate. Major system designers like IBM [26], Intel [28], and ARM [2], and a

number of consortia like Accelera [36] and Hypertransport [24] all maintain sets of

incompatible interconnect standards. Therefore, it is likely that not all of the blocks

a system designer plans to use advertise the same interface standard.

To make matters worse, standard groups often maintain more than one standard

for IP interfaces. The widely used ARM AMBA standard, for example, is actually

a family of 10 buses and bus variants1. Each of these buses is designed with a

di�erent use case in mind. For example, AXI is used as an interface for generic high-

performance peripherals. AXI-Stream, on the other hand, is speci�cally designed for

1APB, ASB, AHB, AHB-Lite, ATB, AXI, AXI-Stream, AXI-Lite, ACE, ACE-Lite

10
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blocks with streaming interfaces, and APB is used for low performance functions,

like control interfaces. These buses are all incompatible, and custom bridge logic is

needed to convert between the ARM interfaces. Therefore, even if a particular group's

standard dominates a market, like ARM buses in the mobile space, designers may

still face the problem of trying to integrate multiple interface standards.

Finally, even if blocks conform to the same nominal standard, there is no guaran-

tee that they can actually communicate with each other. As technology progresses

and designers �nd new ways to optimize their interconnects, interface standards are

revised. Often these revisions are not backwards compatible with the version they

replace. For example, in version 3 of the AXI protocol, information sent along the

write bus can be reordered independently of the corresponding data sent on the ad-

dress bus. To keep track of which data is associated with each address, the address

and data values of a single transaction are assigned a transaction ID. In AXI version

4, however, address and data can no longer be independently reordered, and the IP

blocks are designed to assume that any address and data pairs they receive, regardless

of timing, correspond to the same bus transaction. Other discrepancies between the

two standards are shown in Table 2.1. Because of these discrepancies, AXI3 periph-

erals are not directly compatible with AXI4, and require a custom hardware bridge

to convert between protocols.

Table 2.1: List of signal and encoding di�erences between AXI3 and AXI4. Note that
�x� can refer to either �R� or �W� (e.g. ARLOCK)
Signal Change
AxLEN Incrementing burst extended to support up to 256 transfers.
AxLOCK AXI4 removes support for locked transaction. This simply becomes

a directive to the interconnect arbiter.
AxCACHE Adds new order requirements for certain transaction types, updated

de�nitions of bit meanings.
WID Only exists in AXI3. AXI4 eliminates ability to reorder write data

relative to write access.

All of these factors highlight major issues with the use of IP standards to integrate

systems on chip: there is no single standard interface that will allow any IP block to
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seamlessly integrate into any system, nor can there be. It is impossible to know what

will be needed in the future, so we need to plan to deal with changing bus interface

descriptions.

Automation seems like a solution to this evolving interface problem. Rather than

forcing system integrators to build custom bridges between di�erent interfaces, it

would be much more convenient to have a hardware constructor that can take in the

protocol used by each component, and automatically synthesize the logic needed to

tie everything together. As a result, there has been a substantial amount of work

on describing and synthesizing protocols going as far back as the mid 1980s [34, 9].

Early work focused on synthesizing interfaces from event graphs and event sequences.

In 1997, Rowson et al. proposed that, for design purposes, interface communica-

tion could be treated separately from the low-level interconnect implementation [42].

Much like the OSI 7-layer network abstraction [41] which provides an abstract frame-

work for communicating data over heterogeneous networking equipment, this abstract

separation has helped shape modern work on system integration.

Inspired, in part, by Rowson, much work has already been completed in creating

IP independent interconnect networks [31, 13, 46]. Several works propose that the

bulk of communication and data routing on chip be completed by a purpose-built

high-performance network on chip (NOC). Since the interconnect is designed inde-

pendently of the IP blocks, these systems need interfaces between the IP blocks, and

have been a target for automatic interface generation. Products from companies like

Sonics [45], Arteris [4] and various research projects [7, 40] all o�er the ability to au-

tomatically generate a custom, high-performance interconnect system. These NOC

generators leave options like data-widths, network switching characteristics, and other

characteristics as optimization parameters so that SoC integrators can tune the per-

formance, energy, and area to meet the requirements of their �nal system.

While NOC generators have been successfully implemented in the interconnect

space, a number of factors have limited the success of attempts to automatically

bridge the interconnect to the IP interfaces. One major hurdle towards automatic IP

integration is that the SoC integrator often has no control over what the interfaces

to each IP block looks like. While many blocks may adhere to popular standards like
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AMBA, individual blocks may have unique protocols or cutting edge features that

the system integrator has not faced before. In order to accommodate these blocks,

much of the previous work in automating IP-to-interconnect connections has focused

on building extremely �exible generators.

Finite state machines (FSMs), for example, are widely used to specify formal

de�nitions of interface behavior protocol and for synthesizing protocol conversion

hardware. FSMs formally encode the functionality of an interface protocol by mod-

eling all of the possible transactions and transitions that may occur on an interface.

Recent work by Avnit et al. has demonstrated that FSM-based models are su�cient

to represent all of the functionality found in many modern IP bus standards [5]. This

same work also demonstrates how FSMs-based interface models can be used to for-

mally prove whether two interfaces are compatible. Avnit's work also demonstrates

an algorithm for synthesizing protocol converters from two protocol models. The for-

malism introduced by such approaches greatly aids the process of design veri�cation

by providing increased con�dence in the correctness of the IP-to-system interface and

by providing simulatable models for each connection.

In Avnit's work, the user enumerates the number of distinct states that the bus

can operate in and divide channels up into categories of data, input control, and out-

put control. For each state transition, the user mathematically speci�es the �guard�

conditions for transitioning to various states. These guards either involve checking

for the presence or absence of a desired value on an input control signal, or checking

the value of special user-de�ned bound counters. For each state, the user speci�es

whether a value should be read or written from the data channel, and speci�es which

values should be asserted on the output control channels. All of these speci�cations

exist as mathematical equations. To convert between two protocols, the user speci�es

a mapping between data and control channels for two protocols, and Avnit's system

mathematically determines a state machine description that can convert between the

two buses.

For complicated buses, building and verifying one of these FSM protocol descrip-

tions requires a signi�cant design e�ort. To make matters worse, there's no clear

mechanism for reusing portions of FSMs to describe other interfaces. For example,
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while AXI and APB both use a similar �valid-ready� handshake mechanism, the FSMs

are not partitioned in such a way to allow the handshake mechanism from one de�-

nition to be reused in another. Therefore, much of the e�ort of specifying common

interface mechanisms may need to be repeated for each interface modeled.

To make �nite state machine models more approachable for designers, we would

like to have a high-level way of specifying them. Ideally, we could develop an abstrac-

tion for IP interfaces that can encapsulate complex interface protocols in a succinct

description. We could then build a generator to either map the description into a

mathematical FSM description or create bus converters from the high-level descrip-

tions directly.

Attempting to address this complexity issue are interface speci�c languages or

grammars that can be used to de�ne custom interfaces. Most of these languages di-

rectly map grammar elements to hardware implementation [30][19]. These grammars

tend to limit the communication protocols to what can be de�ned by composing a set

of �xed hardware stages or block, limiting the impact of such tools on design cost.

Other groups working on automating IP interconnect have avoided the complexity

problem by limiting the number of protocols supported. For example, companies

like Sonics have developed bridges capable of connecting interconnects produced by

their NOC generator to some AMBA and OCP buses. They have not published the

mechanisms that they use to complete this conversion, however, and it is not clear how

much the interface produced by their NOC changes with di�erent implementations.

Also, if an IP interface is not explicitly supported, it is up to the system-integrator

to manually create a bridge capable of tying the block to the NOC interconnect.

If bus details may vary, perhaps it is better to de�ne interfaces at a higher level

using high-level synthesis (HLS) design methodologies. One example of an HLS ap-

proach is the use of transaction level modeling (TLM) to generate IP-to-interconnect

RTL, as exempli�ed by the works of Cho et al. and Lee et al. [12, 32]. Transaction

level modeling allows designers to focus on high-level communications between the

controller and various resources on an IP block. From a designer's perspective TLM

interface can be as simple as issuing �read� and �write� commands. Lower level de-

tails, such as �ow control mechanisms, and whether data is transfered via memory
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mapped I/O (MMIO) or through a direct memory access engine (DMA), are obscured

from the user and automatically implemented by the HLS software. By freeing sys-

tem designers from specifying the interface implementation details, TLMs provide an

important tool for tackling the issues of system integration design cost. Also, since

the low-level RTL is algorithmically generated from the model by an HLS software

package, it potentially reduces the amount of human error in the interface RTL.

While techniques like this show great promise for systems that are fully generated,

there is still the problem of connecting to existing IP blocks with �xed interfaces.

TLM-based solutions like Cho et al.'s rely on �xed libraries of protocol de�nitions

for this compatibility. This means that somewhere in the process, a designer must

still model every existing interface that they would like to use. Therefore, like FSM-

based techniques, TLM-based interface synthesis techniques could also bene�t from

the creation of a high-level interface abstraction that's capable of succinctly capturing

the functionality of existing interface blocks.

For the �rst major contribution of my doctoral work, I introduce and validate such

an abstraction. In Chapter 3 I identify and de�ne a constrained interface design space

directly applicable to IP interfaces. Within this space, I propose a parameterization

of interface features that is rich enough to capture the physical designs I have found

in a simple description.



Chapter 3

Interface Abstraction

My ability to generate a simple high-level description of interfaces rests on one ba-

sic idea: all IP interface standards are very similar. Most IP interfaces serve the

same function: to move data to/from a location in the hardware from/to the proces-

sor/memory space. This function requires 3 major pieces of information: the data

being moved, the address it is being moved to or from, and the operation that should

be performed on this data. In addition to these pieces of information that are com-

municated, these IP interfaces need to specify policies for how to control the �ow of

this information in the network. This chapter uses these concepts to allow a small

number of parameters to specify a large number of current IP interfaces, and provides

a way to semantically link signals from di�erent interface standards.

In Section 3.1, I show that completing di�erent types of transactions operations

requires each interface standard to transmit a common set of information. Since

di�erent standards may include a dizzying array of special operation types�streaming

operations, atomic accesses, cache coherent accesses, etc.�Section 3.1 only focuses

on the information each interface must encode to perform basic reads and write,

leaving a discussion of more advanced interface functionality for later in the chapter.

Section 3.2 uses this simpli�ed interface model to outline my strategy for creating a

simple way to specify these buses at a higher level. Later, in Section 3.3, I discuss how

I extended my interface de�nition to include more advanced functionalities. Finally,

I close out the chapter with a discussion of how I used my interface description to

16
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construct a hardware bridge generator, capable of automatically creating interface-

to-interface bridge RTL.

3.1 De�ning a Basic Interface

When analyzed at a high-level, all of the standards I have encountered are concerned

with executing some �avor of read and write operations. To complete these opera-

tions, every IP interface must encode a core set of information. First, IP interfaces

must have a data �eld for the read and written operations. Second, since SoC inter-

connect networks are generally designed to connect one or more masters to a set of

hardware peripherals, and since many IP blocks have a number of interface resources

that the master may want to access, I can also assume that the majority of IP in-

terface standards will have a concept of an address, that can be used to route read

and write requests to the proper desination. Finally, if interface standards can handle

multiple types of operations, both a read and write, for example, it must also have

a mechanism for specifying the fundamental operation type. Regardless of physical

layer implementation, all three of these sets of information must be communicated

between the sending and receiving blocks in order for the blocks to correctly process

each transaction.

To complete these transactions, each interface must also de�ne some aspects of

their protocol for sending information over the physical layer. I categorize this type

of information as �ow control. To e�ectively communicate more than one piece of

information, the interface's �ow control must de�ne what makes a distinct transaction,

or message. This includes de�ning the information that is contained in a single

transaction�generally some combination of data, address, and operation and control

signal.

From a �ow-control perspective, the interface also needs to de�ne when di�erent

signals on the interface are part of a valid transaction, and mechanisms for the sender

and receiver to negotiate when valid information can be sent�in other words, IP

interfaces must have a de�nition for synchronization and handshake.
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Taken together, these four categories of functionality form the bare-minimum func-

tionality of what's found in any IP interface: data, address, operation, and �ow

control.

3.2 Creating an Interface Description

While all basic buses are similar at a high-level, they vary greatly in terms of their

implementation details and mechanisms. These implementation details must be ac-

curately captured for each standard in order to accurately represent and reconstruct

the bus.

I have developed a set of parameters for each category of data, address, operation,

and �ow control capable of capturing these mechanisms. My parameters are shown

in Table 3.1. Since my aim is to reduce the amount of e�ort required to specify an

interface de�nition, I tried to keep my set of parameters as small as possible.

For the basic interface discussed in Section 3.1, the parameterization was fairly

simple. I started with the assumption that every interface is going to have a dedicated

data bus for each supported operation type. Therefore, the �rst thing I need to know

about the bus is what operation types are supported, read and/or write. This is

encoded in my op_enable parameter. I also need to know how the data is encoded

at the physical level. In my current set of parameters, I capture information about

the size of the data bus (data_size), the size of a data word (data_word), and the

endianness of any information sent over the bus (endian).

The parameterization for the address space was also fairly straightforward, as I

have only come across a handful of mechanisms for specifying address. While some IP

interfaces may multiplex addressing information with other buses, such as data, the IP

blocks and interface standards I have worked with in my research either maintain an

explicit address bus, or are point-to-point links where the address is implicit. There-

fore, my parameterization assumes that if the bus is addressable (address_enable),

an address bus exists.

One of the most common variations that I have seen in the address space is

the inclusion of a chip_select signal. One bit of this signal is routed to each IP
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Table 3.1: Parameters required to encode the basic IP interface.

Parameter Description

Data

Interface scope De�nes the directionality and basic op types

op_enable Determines if interface is read, write, or both

Data characteristics Describes the format of data to be passed

endian Big or little

data_size Size of data bus

word_size Size of a data word

Address

Address scope De�nes how addressing is accomplished

address_enable Speci�es whether bus is addressable

address_size Speci�es the width of the address bus

slave_select_enable Speci�es a onehot IP enable bus

slave_select_map Maps address range to slave-select signals

shared_rw_channels Is address shared by read and data

Flow Control and Timing

Handshake Handshake used for data transfer

�ow_control High level handshake protocol

�ow_map Map between valid ops and encoding

reply_path Does slave send replies?

shared_ready_valid Does the reply valid signal also act as slave ready

reply_map Encodings of valid and error responses

master_stallable Can the slave insert idle cycles?

slave_stallable Can the master delay a response from a slave?

max_ops_outstanding Number of ops that may be in-�ight at once

Synchronization Relative timing between components of a message

address_data_sync Is address to data timing �xed or variable

Continued on next page
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Table 3.1 � continued from previous page

Parameter Description

sync_cycles If �xed, how many cycles are they separated by

write_sync_address List of control signals sync'd with the address bus

write_sync_data List of control signals sync'd with the data bus

trans_id Speci�es if transactions have IDs

reorder Speci�es if transactions can be reordered

Operation

Operation De�nes how read/write are speci�ed

operation_enabled Is there an �op� �eld?

read_write_type Is rd/wr speci�ed by a bit or bus?

read_write_encoding Encodings for read vs. write ops

block and indicates whether a transaction is relevant to each IP. The other com-

mon variant is whether a single address bus is shared by read and write channels

(shared_rw_channels). My parameterization supports both of these variations, and

o�ers a chip_select_map parameter to allow the system to convert from a raw ad-

dress on one side of the converter to the appropriate chip select bit on the other.

Additionally, there is a category of address characterization that describes the size of

the address. The endianness of the address is assumed to be inherited from the data

characteristics.

As previously discussed, I divided the functionality of �ow control into two dis-

tinct categories. The �rst category, the handshake, encodes the mechanism used

by a master to signal valid data on a bus and the mechanism used by the slave to

communicate that it is sampling the data. For the various system bus standards I

analyzed, the handshake method was generally limited to simple ready-valid or ready-

operation_type mechanisms, where the valid and op signals are combined into one

bus. Since handshake protocols are generally designed to be used as a unit, my pa-

rameters encode the handshake by protocol name (e.g. ready-valid), and my system

currently allows for both ready-valid and ready-operation mechanisms to be speci�ed.
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The number of handshake mechanisms may be expanded, however, to accommodate

di�erent mechanisms such as credit-based �ow control.

It is also important to note that the naming convention of some of these handshake

protocols implies the timing of the protocol itself. Ready-valid for example implies

that the slave will issue a ready a signal whenever it can receive data, so that valid data

can be consumed as soon as it is available. Conversely, in a valid-ready handshake, the

slave will only issue ready after the valid signal has been asserted. While the signals

in the interface are the same in either case, this distinction in protocol can cause a

system to lock up if both master and slave are waiting for the other to advertise a

possible transaction.

In parameterizing the synchronization aspects of �ow control, my system makes

the assumption that all control signals in an interface are synchronized with either the

address or data buses. With this assumption, the parameters only need to encode the

relative timing between address and data and which control signals are synchronized

with which bus to fully capture how each interface is synchronized. My system uses

the sync_per_channel map parameter to indicate for both read and write operations

which control signals are associated with data and which are associated with the

address.

My system uses another two parameters to encode the timing between address

and data signals. In some cases, there is no �xed timing relationship between address

and data, but instead each bus has its own set of handshake signals to handle syn-

chronization. In many cases, however, there is a �xed timing relationship between

the two. Therefore, my system includes one parameter to encode whether the timing

between address and data is constant or variable. A second parameter speci�es the

number of cycles address arrives before data in a �xed timing system. This parameter

is only used if there is a �xed timing relationship between address and data signals,

and users are allowed to set this value to a negative number if data arrives �rst. So

long as my assumption about control signal synchronization holds, these parameters

should be su�cient to encode any synchronization found in an IP interface.

Finally, for each basic IP interface, my parameterization assumes that there is a

mechanism for transmitting whether an operation is a read or write. This distinction
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can be determined automatically if read and write independent address and handshake

buses�e.g. a transaction on the read channel is a read operation. For other protocols,

however, it is possible for users to specify a signal in the interface that indicates the

type of each operation, and so I o�er them a parameter to map encodings on the

selected signal as either reads or writes. Unless an IP interface distributes whether

an operation is a read or a write across multiple signals, these two parameters are

enough to convey basic operation types.

3.3 Handling Interface Complexity

While I was able to develop a relatively simple set of parameters to describe the

operations of a simple bus, most buses found on IP interfaces are far more complex.

Rather than sending a �xed-size word on every transaction, many modern buses are

designed to send transactions of varying sizes, or even to allow users to mask out

certain bytes of the data word. In fact, many common IP interface standards from

ARM [2] and IBM [25] simply do not work for basic transactions if the variable size

signals are not implemented.

Also, as interface standards evolve and are optimized for di�erent use cases, the

types of operations that they are capable of completing tends to grow. Interfaces

specialized for high-bandwidth applications, for example, may incorporate streaming

reads and writes. Di�erent interfaces also incorporate features like atomic data oper-

ations, or support for cache coherent operations. These types of features often involve

sending additional control information with each interface transaction.

To support the addition of high-level features like these, my bus de�nition must

be expanded with new sets of parameters. As part of my research, I expanded my

bus de�nition to cover common features, such as variable data size transactions, and

streaming or �burst� transmission modes. I prioritized these functionalities over other

features since several common interface standards, including ARM's AXI, require both

variable transaction size signals and burst-mode signals for even basic basic read and

write operations to work correctly.

In the bus standards I have analyzed, the mechanisms used to communicate data
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size vary substantially. In AXI and AHB-Lite, masters communicate size over a

dedicated size bus. Masters in OPB, however, uses prede�ned one-hot signals to

indicate transaction width (e.g. there is a bit to indicate a half-word transaction, and

another to indicate a whole word). Also, while in certain systems only the master

reports transaction size, in others, including OPB, the slave reports its own width

to the master. This allows for the master to determine the maximim transaction

size accepted by each IP block at run-time, but adds to the complexity of the bus

speci�cation.

These di�erences can all be abstracted into a set of three parameters: one that

encodes which elements (masters and slaves) report size; how the size is encoded,

either as a value on a bus or through a set of one-hot signals; and a parameter that

maps values on the size signals into the numerical word sizes. If the �rst parame-

ter indicates that neither master nor slave reports size, the other two size reporting

parameters are simply ignored. By giving the system designer the �exibility of spec-

ifying a map for how size is encoded, these three parameters allow a wide range of

sizing mechanisms to be speci�ed.

The full range of parameters for each functionality is enumerated in Table 3.2.

Combined, these parameters form my IP interface speci�cation.

3.4 Mapping Real Interfaces

To ensure that my interface de�nition was expressive enough to capture the func-

tionality of real IP interfaces, I map several standards from ARM and IBM into my

de�nition. Table 3.3 shows the resulting parameterization for each of the buses. With

the exception of some advanced features like cacheability that were intentionally left

unimplemented, the parameters were able to represent all of the buses' protocol and

physical speci�cations in the model. This was not surprising, however, since the de-

sign of my parameterization space was informed by the variations found in many bus

standards, including the ones I mapped.

During the course of my development, whenever I ran into a required bus feature

that did not exist in my current description, I either refactored existing parameters or
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Table 3.2: Parameters required to encode the basic bus.

Parameter Description

Data

Interface scope De�nes the directionality and basic op types

op_enable Determines if bus is read, write, or both

Data characteristics Describes the format of data to be passed

endian Big or little

data_size Size of data bus

word_size Size of a data word

dynamic_sizing How is transaction size reported (opt)

size_reply Adds size buses from slave

size_encoding Is it a �bus� or �onehot�

sizes What sizes are supported �word,� �halfword,� etc.

mask_enable Enables mask bus

mask_granularity Number of data bits a match bit applies to

Address

Address scope De�nes how addressing is accomplished

address_enable Speci�es whether bus is addressable

address_size Speci�es the width of the address bus

slave_select_enable Speci�es a onehot IP enable bus

slave_select_map Maps address range to slave-select signals

shared_rw_channels Is address shared by read and data

Flow Control and Timing

Handshake Handshake used for data transfer

�ow_control High level handshake protocol

�ow_map Map between valid ops and encoding

reply_path Does slave send replies?

shared_ready_valid Does the reply valid signal also act as slave ready

Continued on next page
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Table 3.2 � continued from previous page

Parameter Description

reply_map Encodings of valid and error responses

master_stallable Can the slave insert idle cycles?

slave_stallable Can the master delay a response from a slave?

max_ops_outstanding Number of ops that may be in-�ight at once

Synchronization Relative timing between components of a message

address_data_sync Is address to data timing �xed or variable

sync_cycles If �xed, how many cycles are they separated by

write_sync_address List of control signals sync'd with the address bus

write_sync_data List of control signals sync'd with the data bus

trans_id Speci�es if transactions have IDs

reorder Speci�es if transactions can be reordered

Operation

Operation De�nes how read/write are speci�ed

operation_enabled Is there an �op� �eld?

read_write_type Is rd/wr speci�ed by a bit or bus?

read_write_encoding Encodings for read vs. write ops

Burst mode De�nes burst mode mechanisms

burst_enabled Does bus support burst?

burst_only Are all transactions �bursts�?

early_term Can a master terminate a burst?

wrap_enable, Does the bus support address wrapping bursts?

inc_enable, Does the bus support incrementing address bursts?

�xed_enable Does the bus support �xed address bursts?

length_provided Does burst send number of transactions in the burst?

length_map Map between burst length and signal encodings

last_provided Does the burst raise a �ag on the last transmission?

�rst_provided Does the burst raise a �ag on the �rst transmission?

Continued on next page
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Table 3.2 � continued from previous page

Parameter Description

master_updates_addr Does the master update the burst address each cycle?

added new ones to implement the required features. For example, an early version of

my parameters only allowed bus masters to report the data size of a given transaction,

and assumed that the data value being passed on the data size bus would be the

number of bytes being transmitted. While these assumptions held for AMBA buses,

the OPB implementation did not �t. OPB requires both masters and slaves to report

their sizes on a per transaction basis, use a one-hot mechanism for advertising size,

and encodes larger message sizes in terms of number of data words, rather than

number of bytes.

To accommodate the OPB bus, I expanded the set of parameters dealing with

advertising transaction size. Since my old de�nition had no concept of a slave o�ering

a size and always assumed that size information traveled over a single bus, I added

two new parameters to specify whether slaves replied and how these messages are

physically transmitted. To accommodate sizes de�ned in terms of word-length, I

merely expanded the scope of the data-size encoding map parameter to allow users to

de�ne size encodings in terms of number of words as well as number of bytes. Since my

de�nition captures word size in a separate parameter, it is trivial for any system using

my de�nition to convert between words and bytes. Note that while adding support for

OPB required me to add some new parameters, by splitting OPB's size reply behavior

into several orthogonal components and by incorporating these parameters into the

existing size reply parameter subset, I was able to expand my interface de�nition in

a way that could potentially allow me to support size reply mechanisms that di�er

from any of the buses I have already seen.

In addition to providing parameters capable of specifying the basic architecture of

each IP bus, I also added a separate set of parameters that map interface functionality

to the physical wire names found in each interface standard. This list of parameters

is shown in Table 3.4, and can be �lled out for each interface instance to generate
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Table 3.3: Parameter Mappings for the system buses. These parameters are de�ned

in Table 3.2

Parameter APB AHB-Lite AXI OPB IXF

Data

op_enable Both Both Both Both Both

dynamic_sizing False True True True True

size_reply False False False True True

size_encoding NA bus bus onehot bus

sizes NA (byte, halfword, word, double, quad)

mask_enable True True True False True

mask_granularity 8 8 8 NA 8

endian little little either big little

Address

slave_select_enable True True False False False

shared_rw_channels True True False True True

Flow Control and Timing

�ow_control rdy-val rdy-op rdy-val rdy-val rdy-valid

shared_ready_repvalid True True False False False

slave_stallable False False True False True

max_ops_outstanding 1 1 NA 1 NA

address_data_sync Fixed Fixed Variable Fixed Fixed

sync_cycles 0 1 NA 0 0

trans_id False False True False False

reorder null null rd, wr, rdwr null null

Operation

read_write_type bit bit NA bit bit

burst_enabled False True True True True

burst_only NA False True False False

early_term NA True False True True

Continued on next page
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Table 3.3 � continued from previous page

Parameter APB AHB-Lite AXI OPB IXF

wrap_enable NA True True False True

inc_enable NA True True True True

�xed_enable NA False True False True

length_provided NA True True False True

last_provided NA False True False True

�rst_provided NA True False False True

master_updates_addr NA True False True True

lock False False True True True

Table 3.4: A sampling of the keywords used to map interface functionality to interface

speci�c signal names. Note that if the interface has fully independent read and write

channels, many of the keywords below must be duplicated to distinguish the read

channel signals from the write channel signals.

Keyword Description

Data

rddata Read data bus

wrdata Write data bus

rdid Read transaction ID

wrdid Write transaction ID

id Transaction ID for buses with shared address

size Size of data in transaction

mask Mask for the data bus

Address

rdaddr Read address bus

wraddr Write address bus

Continued on next page
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Table3.4 � continued from previous page

Keyword Description

addr Address bus for buses with shared address

rdslvselect Slave select for read

wrslvselect Slave select for write

slvselect Slave select for buses with shared address

Flow Control and Timing

rdvalid There is a valid read transaction

wrvalid There is a valid write transaction

valid There is a valid transaction on a shared bus

rdrdy Slave is ready for a read transaction

wrrdy Slave is ready for a write transaction

rdy Slave on a shared bus is ready for transaction

transtyp Bus conveying whether a valid transaction is occurring

repvalid Slave is transmitting a valid reply.

reprdy Master is ready for slave reply

Operation

rdwr Transaction is read/write

rep Holds reply to transaction

bsttyp Type of burst, �xed, wrap, or increment

bstlgnth Number of transactions in a burst

bstfst Flag/bus specifying the �rst transaction of a new burst

bstlst Flag/bus specifying the last transaction in a burst

hwxfer Speci�es a half word data size

wxfer Speci�es a full word data size

dwxfer Speci�es a double word data size

hwack Speci�es slave width is a half-word

wack Speci�es slave width is a word

dwack Speci�es slave width is a double word



CHAPTER 3. INTERFACE ABSTRACTION 30

Figure 3.1: High level �ow for the interface generator. It takes in two interface
descriptions�one master, one slave�and produces RTL for a bridge capable of con-
verting between them.

a pin-compatible interface converter. If not speci�ed, my de�nition will still faith-

fully capture the interface functionality, but the RTL wire names for any interface

generated by my description may be di�erent from those found in the standard.

3.5 Generating Interface Bridges

Even though each bus feature from my sample of ARM and IBM buses could map

to my de�nition there was no guarantee that the description was complete enough

to fully reconstruct the full interface protocols. To test my IP abstraction's ability

to encode and interface with existing IP, I used the parameterized bus description to

build an IP-interface-to-IP-interface converter generator.

The �ow of my converter generator is shown in Figure 3.1. The idea behind

this converter is that it would take in two of the descriptions of IP interfaces and,

using only the knowledge encoded in the description, would generate RTL capable

of translating from one protocol to the other. Such a generator would indicate that

the parameterization is su�cient to fully describe the physical signals and high-level

protocol advertised by each IP.
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I implemented the converter system with a design tool called Genesis2 [43]. High

level synthesis languages like Bluespec [35] and Chisel [6] could also have been adapted

to build this converter; however, generators are ready made for converting a list of

architectural parameters and implementation mechanisms like those found in my bus

de�nition into e�cient, domain-speci�c hardware.

As exempli�ed by Ofer Shacham's Genesis 2 [43] tool, generators enable the cre-

ation of domain-speci�c hardware generators. With generators, domain experts codify

all of the design decisions that they would make in developing a hardware instance

into a set of high-level architectural parameters. They then use a tool like Genesis 2 to

create a hardware template capable of directly parsing these architectural parameters

and creating RTL for a �xed hardware instance. Domain experts are able to place

limits on the values that users can select for each parameter to help ensure that the

generated hardware instances are e�cient. Researchers have already used these tools

to create a �oating point mathematical unit generator capable of generating highly-

e�cient hardware implementations across a range of area, energy, and performance

targets [18].

Genesis 2 hardware generator templates are composed Perl interleaved with the

designer's RTL of choice. The template developer uses Perl to describe how the

design should be elaborated, e.g. how many of which instances to create and which

algorithmic RTL implementation to include, while all of the underlying hardware for

each elaboration choice is speci�ed in RTL. During the elaboration, or generation

phase of compilation, Genesis 2 parses out the Perl code to construct a �nal, fully

speci�ed RTL module. The tool elaborates the design hierarchically, meaning that

Perl elaboration code can be written to take into account the module's position in a

design and adjust its parameters based o� of values set for its child and parent blocks.

A full description of the Genesis 2 language and design principles can be found in the

doctoral thesis of Ofer Shacham [44].

Data structures containing all of the parameters from my interface de�nition were

used to encode each bus description consumed by my interface generator. The param-

eters in the data structure are identical to the parameters enumerated in Table 3.2.

For my generator, I created data structures that de�ne AMBA's APB, AHB-Lite,
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Figure 3.2: High level architecture of the prototype bridge generator. The source and
target interface objects are used to specify the functionality of all six blocks.

and AXI standards, and IBM's OPB.

The architecture of the interface-to-interface translator is shown in Figure 3.2. At

a high level, the translator operates by converting both input bus de�nitions into a

common interchange format (IXF), and then connecting the buses through this in-

termediary interface. The detailed interface de�nition for the IXF block is available

in Table 3.3. The interface generator architecture is conceptually similar to the Uni-

versal Bridge proposed by Cho et al. [12], except instead of using a microcontroller

to handle all aspects of protocol and encoding conversion, I break the bus conversion

into three distinct steps and generate custom logic for all control.

My generator separates the master-to-IXF conversion into three architectural

steps: sync, merge, and convert. Internally, the stages communicate in a latency

insensitive manner, using the master's handshake format to determine when the next

stage can accept new data. The convert block handles the actual handshake conver-

sion, and the IXF communicates using a ready-valid protocol.

The sync stage is responsible for converting the input interface's signal synchro-

nization into the synchronization used by the IXF format�all parts of a transaction

are synchronized to the same cycle. The sync stage accomplishes this task through

the use of a set of FIFOs for each input signal. Based on the interface description,

the synchronization stage is con�gured to determine the basic operation type taking

place, generally a read or a write, and determine which signals are necessary to com-

plete a transaction of this type. Once all of the signals required for a transaction are

present, and the slave side of the interface indicates that it is ready for data, the sync
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stage sends the transaction along.

Since di�erent protocols use di�erent combinations of handshakes and synchro-

nization to indicate when data is ready, the sync stage has a built in controller that

interprets the handshake protocol and manages the FIFOs. For example, in the AHB-

Lite protocol where address information is sent the cycle before data, the controller

will capture the address signals when it receives a valid transaction, and, if the op-

eration is a write, will capture the associated write signals on the next cycle. The

controller is also designed to optimize for latency, and, when possible, will bypass

bu�ers and retransmit data on the same cycle it is received.

The merge block takes buses that, like AXI, have separate read and write ad-

dresses, and merges their transactions onto a single shared address bus. The merge

block arbitrates between requests on the two input channels to serialize the bus's op-

erations. By default, the arbiter uses a round-robin scheme; since this is a generator,

however, it is a simple matter to implement other priority schemes.

On the return path, the merge unit keeps track of the outstanding bus transaction

types. When a response comes back through IXF, the merge unit uses this record to

route the response to the appropriate interface channel (read or write). The number of

transactions that the merge unit keeps track of is determined by the max_ops_outstd

parameter.

Finally, the convert stage of the generator implements the logic necessary to con-

vert control, handshake, and other signals from the way they are speci�ed in the input

bus into the format expected by IXF. For signals that exist in IXF but not in the

master interface�data mask, for example�this stage maps them to a logical default

value�data mask is hard-coded to all 1's. This also handles all of the handshake

conversion work. While some of this is a simple combinational mapping of di�erent

signal types, other conversions involve limited synchronization. For example, if the

master protocol has shared_rdy_repvalid enabled, where ready and reply valid are

represented by the same signal, the convert block tracks outstanding operations and

valid responses to ensure that each op replies valid at the appropriate time.

The IFX-to-slave conversion operates much the same way. The unconvert block

reformats the information transmitted by IXF into the types of information speci�ed
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in the output bus. Most of its functionality is analogous to what's found in the convert

block. There is also additional bu�ering to hold a slave's reply if the slave cannot be

stalled directly.

For buses like AXI, unmerge separates operations on the single shared read-write

channel onto dedicated read and dedicated write channels. While conceptually this

should just be a demultiplexer, since the IXF bus only has a single ready signal, there

is no way for the unmerge unit to advertise which type of operation the AXI bus is

ready for. The unmerge unit solves this with an input bu�er that allows it to accept

and store a valid transaction of either read or write if the slave is not yet ready for

that type of operation.

Finally, unsync converts from the synchronization format o�ered by IXF into the

format required by the output bus. The unsync unit uses FIFOs to capture valid

transactions from IXF and release various signals at the protocol-determined timing

interval.

3.6 Validating the Abstraction

I tested my bridge generator by feeding di�erent combinations of the model objects

for APB, AHB-Lite, and AXI into the bridge generator. I then tested each of the

resulting RTL-level protocol converters. To test the converters, I obtained RTL for

peripheral memory blocks that advertised compatibility with one of the four mapped

standard system interfaces [37, 39, 38]1, and issued read and write operations across

the converter. For AXI, I was able to obtain ARM-provided SystemVerilog assertions

designed to test the protocol [3]. While the validation suite is not of production

quality, the bridge generators performed correctly in simulation, indicating that my

proposed parameterized interface speci�cation can map both the physical signals and

high-level protocols of IP interfaces.

In practice, my bridge generator has some performance limitations. The design

choice to �rst convert to a �xed intermediate standard, IXF, before converting to

1Minor alterations were made to integrate these modules into my SystemVerilog-based test envi-

ronment.
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the �nal interface format leads to ine�ciencies and extra logic in cases where the

master and slave buses have characteristics that are di�erent from IXF. An AXI-to-

AXI bridge, for example, loses about half of AXI's theoretical peak performance due

to the need to merge reads and writes onto IXF's single communication channel. A

more e�cient implementation is likely possible if I directly converted from input to

output interface formats.

As a more promising alternative, however, I could create a generator that converts

my bus descriptions into �nite state machine representations like those proposed by

Avnit et al. and discussed in Chapter 2. This would allow bridges generated from my

de�nition all of the formalism advantages of FSMs and would allow me to leverage the

synthesis work already completed for FSM structures. My bridge generator was only

constructed to help me test the completeness of my interface abstraction, however, and

the current limited architecture accomplishes that task, so I leave new and improved

implementations to future work.

3.7 Extending the Generator

As we mentioned, buses evolve over time, so it is criticial that the generator can

evolve as well. This raises two questions: how hard is it to modify the bridge gener-

ator to support the expanded de�nition, and how hard is it to maintain backwards

compatibility with older interfaces? Since a major motivation for this research is to

ease the integration of existing blocks into an SoC: it is essential for the generator to

connect older IP blocks to newer interface standards.

In some cases, maintaining backwards compatibility can be relatively straightfor-

ward. If a user comes across a bus that has a new implementation mechanism for

a feature that is already handled by the generator�a new handshake protocol for

example�they can go through the generator code and modify any areas that handle

the a�ected parameters to support the new de�nition. As part of this task, they

would teach the generator how the hardware speci�ed by the new mechanism trans-

lates into the older mechanisms, allowing the generator to map old and new interfaces

together.
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When a user adds a new high-level feature to the interface de�nition, however,

backwards compatibility becomes trickier to achieve. The problem is that not all new

features have a close analog to features found in existing buses. For example, when

mapping IBM's OPB bus into the parameter set, I was confronted with the fact that

OPB peripherals can request rearbitration through the sln_retry signal if they cannot

complete the request in time. The AMBA buses I had already mapped, however, do

not support peripheral-initiated re-arbitration. If the OPB bus is used as a master,

there is no major backwards compatibility issue: AMBA peripherals are incapable of

requesting rearbitration. By tying the OPB master's rearbitrate signal to ground, I

am able to ensure backwards compatibility with AMBA peripherals.

If an AMBA bus were updated in a future revision to support a peripheral rearbi-

tration request, compatibility would also not be an issue. In this case I could simply

map OPB's implementation of rearbitrate to the new AMBA bus's, and the system

would work properly.

For the case where a current AMBA standard with no concept of rearbitration

is the master, however, there is no simple mapping that will su�ce. If I allow the

AMBA master to ignore the re-arbitration request, the interconnect may stall waiting

on a response that will never come. On the other hand, if I map the re-arbitrate to

an AMBA bus error, which seems like the only mechanism AMBA has for handling a

peripheral that is unable to complete a request, and if the master is not programmed

to know about errors caused by re-arbitration, it may simply give up on a request,

rather than try again later. This could a�ect overall system performance, and make

use of certain OPB peripherals unreliable. Fortunately, the AMBA master's driver

software could be modi�ed to handle the re-arbitration error in an appropriate way.

Therefore, I chose to map the re-arbitrate signal to an AMBA error response.

As this example indicates, backwards compatibility for new types of transactions

can sometimes be maintained by carefully choosing a default mapping of new features

to older buses and modifying the software driver controlling the interface masters. Un-

fortunately, the framework presented in this chapter is only concerned with mapping

the low-level signals and protocols between multiple interface standards and has no

mechanism for changing the software used to power the devices.
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If there was an automated mechanism that handled hardware integration and

driver generation, however, it could make achieving backwards compatibility between

old and new buses much simpler for the system integrator. In Chapter 5, I discuss the

creation of a software driver generator that uses information about the low-level IP

interface to build a custom driver. While such a driver generator could be extended

to incorporate interconnect information to handle these sorts of interface mismatch

problems, implementing and testing that feature is left for future work.

3.8 Summary

Integrating IP blocks into a system is much harder than it could be. While stan-

dardized buses were supposed to address this issue, the evolution and proliferation of

di�erent standards means every SoC design is likely to incorporate IP blocks that use

multiple di�erent interface protocols. While much work has been completed to try to

automate the IP integration process, current techniques could bene�t from a simple

way of specifying existing IP interfaces at a higher level of abstraction.

To address this issue, I created a �exible, IP-speci�c interface abstraction. My

system is designed to be extensible so as SoC interconnects evolve over time, the gen-

erator and interface description can be expanded to connect older IP blocks to these

new interfaces. To test my interface abstraction, I constructed a hardware generator

capable of creating bridge logic between any two IP buses that can be described in

my description. I then used this system successfully to encode and translate among

a number of di�erent IP interface standards, including AXI, AHB-Lite, APB, indi-

cating that my description has su�cient �exibility to represent commercial IP block

standards.



Chapter 4

Advertising Native Interfaces

While the interface de�nition proposed in Chapter 3 provides a mechanism for inte-

grating existing IP blocks that already advertise �xed bus standards, this mechanism

is not always the most e�cient way to link IP blocks into designs. In fact, translating

between interfaces in a system can add excess logic and hurt overall bandwidth.

Any time we have to bridge an IP block that o�ers one interface to a system

interconnect that o�ers another, we are essentially instantiating two interface trans-

lations in our design. First, the IP designer had to translate from the communication

expected by the internals of the IP block into the communication protocol speci�ed

by the advertised bus standard. Second, my system, or any other bridge mechanism,

converts from the advertised bus standard into the interconnect standard. Depending

on the protocol and synchronization changes required by each of the steps, the dou-

ble conversion process may introduce throughput bottlenecks into the system-to-IP

communication. The double conversion also puts us into a position where the logic in

the IP interface-to-interconnect conversion step may be primarily designed to undo

some of the translations that occur in the IP-to-IP interface conversion step, adding

unnecessary logic and complexity into the design.

In older design methodologies, the convenience for system designers of having a

single standard bus per IP block meant that these ine�ciencies were often worth

the cost. With high-level synthesis design methodologies, the interface information

can be communicated at a higher-level, allowing IPs to be automatically integrated

38
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without advertising a �xed physical standard.

High-level synthesis tools can encode information about the di�erent data struc-

tures that the IP would like to receive and pass directly, and automatically synthesize

the necessary IP interface hardware. High-level synthesis languages enable this by

requiring both IP designers and system integrators to deal with information �ow at

a high-level. In Bluespec, for example, designers can declare interface classes and

de�ne access methods for each piece of information they wish to pass to an IP block.

This sort of interface synthesis is also known as transaction level modeling (TLM),

since it allows IP and system designers to only focus on the higher-level, transactional

data-�ow between modules without needing to worry about implementation details.

When the designer uses TLM, the synthesis program can use information provided

by the interface class to determine the required timing and �ow-control mechanisms

for communicating data between the IP blocks and the rest of the system. The syn-

thesis program then uses this information, and its knowledge about how all of the

di�erent peripherals in the system are related and interconnected to automatically

generate low-level interconnect hardware. While the generated hardware may consti-

tute a custom interconnect network, some researchers have proposed mechanisms for

using high-level synthesis to map these IP interfaces into existing system bus interface

standards [12].

There are still many design cases that cannot bene�t from TLM, however. First,

if a system designer has a large amount of legacy hardware collateral and RTL they

would like to use, the designer may not have the resources to rewrite it in a TLM

friendly manner. In this case, the designer needs a way to map their legacy modules

into a TLM-like �ow.

Even if a designer is not tied to legacy RTL, an HLS-based �ow may not be the

best for all of the components the designer would like to integrate into the design.

For example, for certain high-performance, high-e�ciency accelerators, an IP designer

may �nd that his or her high-level synthesis tool does not encode all of the knowledge

required to synthesize an e�cient IP block, and decide to implement the IP in RTL

instead. There are many bene�ts to a system integrator, however, to relying on an

HLS tool to design the system interconnect; not the least of these being the ability of
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an HLS tool to pull in required bandwidth information from each of the blocks and

provision the interconnect network accordingly. Therefore, it would be ideal if these

RTL-based blocks could be included in the HLS interconnect design �ow.

Any mechanism designed to map an RTL block to a TLM-like interface must

provide two things. First, it must encode the same set of �ow control information

that a high-level interface language would normally extract from a block, such as �ow

control and timing information. This is required so that the high-level synthesis tool

knows what sort of interconnect hardware it must generate in order to properly com-

municate with the block. Second, the mapping mechanism must provide prede�ned

RTL hardware access points that the high-level synthesis environment can map the

generated interconnect into. In other words, it would need to have a model for the

sorts of hardware that it will be connected into.

In this chapter, I discuss a system I have built for mapping high-level synthesis

interfaces into standard RTL. In Section 4.1, I brie�y discuss the image signal pro-

cessor generator system that provided my main inspiration and test case for pursuing

this work. In Section 4.2, I discuss the types of RTL hardware I expect to �nd in the

interface of an IP block, which I need to map into to successfully integrate HLS-style

system integration with existing designs. I then discuss the types of �ow control and

timing information I need to know for each interface element in order to automati-

cally generate the low-level interface hardware in Section 4.2.1. Finally, I discuss my

implementation of this high-level interface system in the Genesis 2 design language.

4.1 Image Signal Processor Generator

To make this discussion more concrete, this chapter will use the image signal pro-

cessor generator (ISPGen) created by Brunhaver [10] as the IP generator example to

demonstrate the issues that need to be addressed and the mechanisms used to address

them. The key concept behind ISPGen is that almost all image processing tasks can

be put into the form of a stencil-based computation which can be calculated with

high energy e�ciency. The ISPGen creates e�cient compute engines for the speci�c

stencil program it is given.
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Stencil based computation describes any types of operation where a set of map

and map-reduce mathematical operations are applied to a 2-D array, or stencil of

matrix operands. This operation is then iterated over every matrix element, with

the result of each map-reduce operation stored in a separate output matrix. This

class of operations includes basic 1-D and 2-D linear convolutions, and weighted-

averaging techniques among other mathematical operations. These operations are

highly parallel and have extreme locality by nature, feature large operating sets and

low precision operations, and they can be cascaded together into extremely e�cient

hardware implementations.

Stencil operations have a broad application to the domain of image processing.

Operations such as applying a Gaussian blur or a sharpness �lter to an image can be

modeled as stencil operations, as can most steps in a basic photographic pipeline. The

basic image pipeline in any camera requires tens of di�erent stencil computations to

complete. To create IP blocks capable of handling these operations, the image signal

processor generator allows users to specify their desired algorithm in an assembly-like

programming language called Data Path Description Assembly, or DPDA. A special

DPDA compiler analyzes the user's algorithm, creates custom stencil hardware to

perform each of the stencil operations, and creates a custom IP block that cascades

stencil operations together.

Depending on the algorithm speci�ed, the generated IP block will feature a wide

range of interface resources. For each stencil operation, there will generally be a set of

registers designed to hold the map coe�cients for the map-reduce operation. Depend-

ing on the operation, the IP block may also feature items like interface memories, for

example to hold look-up values to be used during the computation. When specifying

the DPDA, the user may also request that certain statistics be exported from the

IP block. For example, a user can specify that a histogram of pixel brightness be

created.

Each of these interface resources may have �ow control restrictions on when they

can be updated and read. This is a critical issue for control registers in particular,

which should generally not be changed partway through processing an image. These

constraints then need to be converted into access-control hardware on the IP interface.
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In addition to hardware timing issues, these blocks require drivers to interact with

the IP interface from software.

ISPGen is in part being developed to o�er hardware acceleration for experimental

image processing algorithms on the next generation Frankencamera [1]. For this plat-

form, we want to enable computational photography and computer vision researchers

with no background in hardware design or system architecture to write an algorithm

in software, and have it automatically implemented on the Frankencamera's FPGA

so that the algorithm can process a live image stream in real time. If the �nal system

requires researchers to write IP speci�c drivers, however, then researchers will still

need to know about the underlying hardware mechanisms in order to use the system.

Manual driver development would also slow down the rate at which new algorithms

could be prototyped and integrated into a test system.

The wide range of interfaces and interface requirements found in the ISP generator

made it an ideal target for my research into interface synthesis and driver software

generation. As con�gurable data engines, each ISPGen instance advertises a wide

variety of interface elements ranging from �ow-control heavy programmable registers,

to high-bandwidth ports designed to stream in image data as quickly as possible. The

number of interface elements found in these blocks can also vary widely, ranging from

a few registers used as �lter taps for a basic �ltering IP to hundreds of registers and

memory structures used to control an entire photographic pipeline. Finally, the fact

that this generator may be used by programmers with limited hardware knowledge

means that any solutions I implement to generate interface hardware and software

must be completely automated and transparent to the user; e.g. there's no way for a

solution to �cheat� and require manual user intervention for synthesis.

4.2 Mapping HLS to RTL

In order to use RTL-based modules in the context of a high-level synthesis �ow, we

need a set of well de�ned interface hardware for the high-level tool to map into. In

Chapter 3, I addressed this problem by limiting my work to cover RTL modules that
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Figure 4.1: Block diagram of an RTL IP architecture, illustrating the functional
units, the intrinsic interface, and standard bus interface. In this chapter, I attempt
to eliminate the bus interface segment and bring the high-level interface �ow to the
level of the intrinsic interface.

advertise an instance of an IP interface. This ensured that there were always well-

de�ned address, data, and �ow-control mechanisms. As already discussed, however,

the reliance on �xed interface standards can lead to interconnect ine�ciencies and

bandwidth limitations if there are con�icts between how the IP interface and system

interconnect expect to communicate.

Rather than rely on a �xed interface standard, the goal of this part of the work

was to bring the high-level synthesis tool directly to the internal interface of the IP

block. This meant de�ning what an internal, or intrinsic IP interface looks like. For

the purposes of my research, I view the internal IP interface as a number of data

storage elements that exist at the periphery of the hardware's functional units. This

setup is shown in Figure 4.1.

At the lowest level, an IP block may feature resources that correspond to simply

bits and buses. Since these resources require no additional �ow or access control, all

a high-level synthesis tool needs to do to map to these is to create a single set of

wires, making this the simplest type of resource that a high-level synthesis �ow can

be mapped into. I refer to this class of intrinsic IP interface resources as a message.

As a special case of message, the IP blocks that I have encountered often feature a
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number of one-bit signals used for control and synchronization. These signals include

things like clock, reset, and idle. Control signals may either be active high or low

(or trigger on posedge or negedge) as there is no single convention that all designers

follow. I capture these signals with the control port or cport primitive. The only

di�erence between a cport and a message is that a cport is assumed to be associated

with additional encoding information: e.g. is it active_low or active_high. This

information is required for extending the high-level synthesis tool to the IP block

since, at generation time, the HLS tool will need to know how IP control signals map

to the same signals coming from the system scope.

The next object, or interface primitive, is the bu�ered type, which represents

simple bu�ering memory elements like registers, queues, and FIFOs. Much of the

hardware I have run into uses control registers to hold con�guration values at the

interface, and uses FIFO-like elements to quickly stream in data, therefore, this is

arguably one of the most common types of hardware that HLS needs to be mapped

into. Fortunately, these elements all have very similar physical interfaces: they likely

have a physical port for writing in a new word, a port for reading out the current word,

and an enable (or push) signal that controls when they can be written. The resource

may also have a full, busy, or similar signal indicating that they can temporarily not

be written. Therefore, the HLS interface generator must be able to map all of these

signals in order to properly interface with bu�ered type interface elements.

Finally, on the intrinsic interfaces I have encountered, I have also run into a number

of addressable memory elements, such as register banks, SRAMs, and lookup tables.

Basic addressable memory structures also tend to share similar physical interfaces as

well. All of these elements contain physical address buses for accessing a speci�c data

location, buses for taking in write data and driving out read data, and either a bus

for specifying the operation type (read or write), or speci�c ports for a given access

type. The HLS tools must be taught how to map into this interface as well in order

to support interface generation for RTL blocks. As a side-note, some memories that

may exist on an interface are multi-ported to handle multiple memory requests, and

each port generally has its own address, data and �ow controller, meaning that it can

be encoded by modeling the multi-ported block as multiple single-ported memories.
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Therefore, for now, I have not worried about explicitly mapping HLS tools into multi-

ported blocks.

To bring an HLS type interface generation �ow into the IP intrinsic interface,

the HLS hardware must be able to connect the low-level interfaces that are likely to

be advertised by the IP block. These four distinct interface types cover most of the

mechanisms that will be found on an intrinsic interface: message, cport, bu�ered, and

addressable. This list of primitives, the type of hardware each primitive is capable of

mapping to, and their low-level physical interface are summarized in Table 4.1.

Table 4.1: Summary of primitives used to map TLM style interfaces into Genesis 2
generator designs.

Type Sample Hardware Interface Signals

Message signal bus data
Cport 1-bit control signals data
Bu�ered register, FIFO, queue rd_data, wr_data, enable, clock, reset,

full/busy
Addressable memory, look-up table address, rd_data, wr_data, enable, clock,

reset, full/busy

4.2.1 Specifying Flow Control and Access

Simply giving the RTL's hardware connection points to the high-level synthesis tool is

not enough to automatically generate an interface between the IP block and the rest

of the system. For example, if an IP designer is creating a hardware accelerator to

apply a uniform Gaussian blur across an entire image, the designer may con�gure the

block to read the �lter weighting coe�cients from control registers. Once integrated

into a system, the interconnect will need to write these control registers in order to set

up each new Gaussian blur. If these values are changed in the middle of processing a

frame, however, the �nal image may exhibit tearing from where the old values were

replaced by the new. Likewise, if an IP block advertises a set of statistics registers that

store data about the current run, the IP designer may wish to prevent the processor

from writing to it. Given the way I have de�ned the intrinsic interface for the IP
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block, in each of these cases, it would be up to the high-level interface generator to

implement the low-level hardware or software mechanisms necessary to prevent these

kinds of illegal accesses from happening.

In a conventional HLS �ow, creating these �ow restrictions is possible since the

tool has created the hardware it is interfacing, and is �aware� of the required access

patterns. In our case, however, we must �rst develop a method for communicating

the �ow control information to the high-level synthesis tool.

For a mechanism to e�ectively communicate RTL �ow control requirements to a

high-level synthesis tool, it must allow �ow control information to be speci�ed on a

per IP resource, or per interface primitive basis. Di�erent sets of control registers and

interface hardware may have di�erent requirements, and the RTL-to-HLS mapping

mechanism must be �exible enough to support this.

Beyond that, to create an RTL-to-HLS mapping mechanism, it is necessary to

de�ne what sorts of �ow-control options an IP interface can request. For this work,

I used my experience with ISPGen to try to develop a comprehensive set of access

control information to share with the HLS tool.

The �rst �ow control parameter that the user can set is the direction of the

primitive. This can be set to �input,� �output,� or �both� depending on whether the

interface resource is an input, output, or a bi-directional element from the perspective

of the IP block. During generation, the primitives use this distinction to determine

which input/output (I/O) signals to generate. For example, if a message primitive is

set to �input,� the generator will create a unidirectional signal that only allows data

to be transmitted from the interconnect to the message resource. Since the processor

cannot read this resource, a return data path is omitted. Since these primitives

are used to generate the connection with the interconnect network, it would also

be possible to implement hardware checks that send an error response to the bus if

an illegal read or write is attempted. We leave this as an exercise for future work,

however. Regardless of the speci�ed direction, the interface generator can still provide

a full two-way interface to support hardware testing.

The bu�ered and addressable primitive types also have the ability to take in a

designer speci�ed �blocking signal.� When active, this signal blocks the interconnect
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from writing to the data structures. To use this feature, the user provides a cport

type object to be used as the blocking signal. The register and memory primitive use

the cport's active high/low parameter to determine when writes should be blocked.

This signal is distinct from any sort of �full� signal that might be found on a queue

or FIFO, and is used to tell the interconnect generator if there are conditions relating

to the IP's state that prevent the resource from being accessed. The reason for this

distinction is largely one of optimization. If a resource is only temporarily blocked

because of a self-correcting issue�e.g. the input FIFO is full because the IP is not

running fast enough internally to clear it�it may make sense to leave any requests

to write to the FIFO on the interface so that the value can be written as soon as

the FIFO frees up. In fact, most �xed interface standards explicitly support handling

these sorts of temporary stoppages through some sort of internal �ready-valid� �ow

control mechanisms.

On the other hand, if an IP resource is going to be frozen for an extended period

of time�for example, if a user tries to reprogram a control register that cannot be

overwritten while the IP is processing an image�it may make more sense to send the

master a �resource busy� bus error to the bus master and discard the transaction so

as to not lock up the interface resources.

Finally, the bu�ered and addressable primitive types may also need to pass some

performance information to the HLS system in order to ensure that it properly pro-

visions them with network resources.

One important consideration when integrating an IP block into a system is whether

it can be fed fast enough to make full use of the block's computational resources. For

especially data hungry units, the interconnect generator may need to provision extra

data links to a particular unit, or ensure that an IP block can be directly written by

a DMA engine to ensure a consistent high-bandwidth transfer of data. My system

communicates these needs by providing two pieces of information for each primitive:

whether the interface resource is �streaming,� and, if so, what its required streaming

bandwidth is. Using this information, the generator can appropriately generate the

interconnect for these units.

As a further optimization, the RTL-to-HLS interface generator may also need to
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know about shadow bu�ers. Shadow bu�ers are groups of registers that sit on the

path to the control register. They can be written at any time, and their output is

multiplexed together so the user can select which bu�er gets written to the actual

control register. Shadow bu�ers allow the user to load successive con�gurations to

the IP block in advance and quickly switch between them, helping to mask any inter-

connect congestion or latency issues that might be present. This resource exists solely

as an optimization parameter. Therefore, in an ideal world, the high-level interface

synthesis tool would be able to analyze latency issues and implement shadow bu�ers

automatically if it would help system performance. Since this is an optimization

parameter, however, and since a tool may not always implement shadow bu�ers au-

tomatically or generate the correct number, I leave this as a parameter that a system

designer can optionally set.

The full list of �ow control and optimization options is shown in Table 4.2. While

the �ow control parameters implemented here are limited to basic functionality, they

could easily be extended to encode higher level protocol information about how the

IP block expects to interact with the rest of the system. For example, if an IP block

has a list of �illegal� or �unimplemented� values that should never be written to a

control register, the bu�ered and addressable primitives could be extended to store

this information. During generation time, the high-level interface synthesis tool could

then use this protocol information to issue errors if an illegal value is ever sent. So

long as such changes do not a�ect the primitive's interface to the IP or interconnect,

generator designers are free to tweak and customize the design primitives. If the

modi�cations do change the interface, however, it is up to the designer to modify the

interconnect generator portion of the design to handle the new functionality.

4.3 Building an HLS-to-RTL System

Based o� of the hardware mappings discussed in Section 4.2, and the information

about necessary control �ow information in Section 4.2.1, I built a system capable of

advertising high-level interfaces on RTL.
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Table 4.2: Summary �ow control and optimization information passed to the high-
level interface synthesis tool. Note that �streaming,� and �bandwidth� options are
only available for bu�ered and addressable types, while the �shadow bu�ers� option
is only available for bu�ered types.
Feature Allowed Values Description

Direction �input�, �output�, Speci�es whether the interface element is
�both� an input, output, or both to the IP block

Blocking cport Uses the provided cport to block access
to the element.

Streaming True, False Speci�es whether element should be
streamed to

Bandwidth integer Speci�es required bandwidth for full
performance (MB/s)

Shadow Bu�ers integer Speci�es numbers of shadow bu�ers

Since my target application, ISPGen was already constructed in the Genesis 2

design language, I created my system in Genesis 2 as well. In Genesis 2, I made a

software object for each of the hardware interface primitives summarized in Table 4.1.

Each of these software objects not only contains information about the low-level

hardware interface that it must map to, but also have methods for setting all of the

�ow-control and optimization options summarized in Table 4.2.

To map these primitives into an actual RTL design, the IP designer instantiates

one primitive of the appropriate type for each IP resource they would like to adver-

tise. On instantiation, the user provides each of these objects with basic information

about the IP resource it represents, including the name, and width. Using built-in

methods, the user can also set the more advanced �ow-control information used by

each primitive to generate the appropriate interconnect hardware. These steps are

illustrated in Figure 4.2.

On instantiation, the object internally creates a unique set of Verilog signal names

for the data, address, and control signals of the IP interface resource it represents.

To connect the interface hardware to each primitive, the IP designer uses �assign�

statements to attach their internal Verilog signals to the signals advertised by the

interface object. The designer can get the interface object's basic Verilog signal name

using the object's built-in m2v function call. The signal name returned by this function
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//;# For each piece of the interface , create a primitive

//;# First define some of the primitive 's basic parameters

//; my $direction = 'both ';

//; my $width = 5;

//;

//;# Then instantiate the object for the primitive.

//; my $msg = new buffered('ifc_resource_name ', $direction ,

//; $width );

//; $msg ->set_acc_name('isp_instance_1 ');

//; $msg ->set_blocking($idle);

//; $msg ->set_streaming(False);

//;

//;# Create a Genesis 2 parameter to hold all of the

//;# primitives , so that they will be available at other

//;# levels of the design hierarchy.

//; my $ifc = parameter(Name => 'interface ', Val =>[$msg],

//; Doc => 'Array of objects to define interface ');

Figure 4.2: Code used to map an interface resource in an IP design to a bu�ered
primitive.

call corresponds to the base Verilog name that my HLS-to-RTL system will use to

construct the names for each signal advertised by the primitive. The IP designer can

�construct� the other Verilog signals for each resource by appending the signal name

su�xes listed in Table 4.3. This mapping process is illustrated in Figure 4.3.

Table 4.3: Summary of su�xes that must be appended to an object's m2v provided
signal name to �construct� the other signal names advertised by the primitive.

Signal Su�x
rd_data _rd
wr_data _wr
address _addr
enable _en
full _full

While the process of manually mapping the object's Verilog signals to the IP's

internal signals can be tedious, my interface objects also contain macros for quickly
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// Assign the interface element signals to the primitive

//; my $base_name = $msg ->m2v();

// Assign the signals that originate outside the IP

assign elem1_data_in = `$base_name`_rd;

assign elem1_write_enable = `$base_name`_en;

// Assign the IP signals to the output

assign `$base_name`_wr = elem1_data_out;

Figure 4.3: Code used to map an interface bus in an IP design to a bu�ered primitive.

module myIP( `msg1 ->genAcc ()`,

`msg2 ->genAcc ()`,

....

);

Figure 4.4: Code used to generate the Verilog module instantiation for an IP block
that relies on my primitives for interface synthesis.

de�ning all of the object's input and output Verilog signals in the Verilog module's

header. To do this, the user simply invokes each primitive's genAcc method. A code

sample illustrating this step is provided in Figure 4.4 When instantiating an instance

of each of these modules, the user can pull out the list of messages from the Genesis

module object and use each message's gen_hw method to automatically create an I/O

list for the instantiated instance that is compatible with the signal names created by

the interface-to-interconnect generator discussed in Section 4.4.

Once the user has mapped all the interface signals into my primitives, he or she

then feeds all of their primitives into another Genesis 2 object I developed called

�system_connector�. This object, discussed in greater detail in Section 4.4 forms the

basis for implementing my HLS to interface primitive objects mapping.

4.4 Interconnect Generator

With Genesis 2 objects exporting �xed physical interfaces and high-level control infor-

mation for each interface primitive, the next step in realizing an HLS-to-IP intrinsic

interface system was mapping a high-level language to the objects I created. Since my
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objects were already in Genesis 2, and since the ISPGen, my test platform, was also

in the Genesis 2 design �ow, I chose to use Genesis 2 as the high level language for

my implementation. Existing HLS tools like Bluespec and SystemC could be mapped

to my objects as well, however, this is left for future work.

My Genesis 2 HLS mapping solution is based around a Genesis2 object I created

called the system_connector. This object gathers together all of the primitive objects

in an IP block, and generates the RTL required to map the IP's interface primitives

into a given interface standard. The object also governs the generation of hardware

required to enforce the �ow control constraints on each interface primitive.

For the sake of limiting implementation complexity, the system_connector object

has been created to map the hardware primitives into any number of pre-de�ned inter-

face standards. While ideally my object would make use of the interface abstraction

described in Chapter 3 to map the primitives into a wide variety of interconnect net-

works, my HLS-to-RTL interface system was actually completed before I developed

my interface abstraction.

The use of my system_connector primitive is illustrated in Figure 4.5. The object

is designed to be used at the level of the design hierarchy where the IP block it is

connecting is instantiated. To instantiate the interface connection hardware created

by the system_connector object, the user invokes the connector's gen_hw function

call.

Internally, my system_connector object is designed to use Genesis 2 generators to

convert between the primitive objects and the interconnect network. This is done to

make my tool more easily extensible to more interconnect standards. The template

is responsible for handling address decoding for the IP resources, and connecting the

IP buses to the read and write data stream. The template must also convert the

�ow-control and control mechanisms used by the system-interconnect into the format

required by the IP primitives. This last stage may require special hardware to handle

synchronization and other handshaking issues.

When generating, the system_connector object assigns each interface resource an

address space starting from a user de�ned o�set address o�set. In general, each cport

and bu�ered type is granted one 32 bit address word. If the register has shadow
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//;# Create a new system connector

//; my $sys_conn = new system_connector('IPIF ');

//;# Add in the primitive objects pulled from the IP instance

//; $sys_conn ->add_msg($ip1_msg1 );

//; $sys_conn ->add_msg{$ip1_msg2 );

// Instantiate the conversion hardware

`$sys_conn ->gen_acc ()`

//;# Create geneis module instance and pull out interface objects

//; my $ipInst = generate('myIP ', 'myIP1 ');

//; my $ipInstIfc = ipInst ->get_param('interface ');

//;# Build the I/O list

//; my $ipInstIo = [];

//; foreach my $msg (@{ipInstIfc }){

//; push(@{$ipInstIo}, $msg ->gen_hw ());

//; }

// Instantiate the IP and connect it to the interconnect

`$ipInst ->instantiate ()`(

`join(',', @{$ipInstIo });

);

Figure 4.5: Code used to automatically map an interconnect standard (in this case,
Xilinx's IPIF) to my primitives.
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bu�ers enabled, however, it is granted one address per shadow bu�er. Addressable

memory types are also granted an address space proportional to their capacity.

Once the address spaces have been assigned, the template creates a combinational

decoder that maps and translates the handshake to each protocol. For a bu�ered

type, this decoder activates the primitive's �enable� signal whenever the bus issues a

write to that address. For addressable type, the decoder will send the write operation

to the primitive whenever a valid write is registered to that primitive's address space.

For cports and messages, the decoder output is used to mask the data signal to these

elements unless they are the target of a transaction. The mapper also computes the

correct local address for indexing elements within the addressable primitive based o�

of the global interconnect address.

For reads, my template multiplexes the response signals from the primitives, and

uses the address as a select signal. The mapper also automatically acknowledges all

operation requests on the cycle after it receives each transaction.

Finally, the template calls the built-in generate function on each interface prim-

itive, which triggers the primitives to generate all of the hardware required to im-

plement the user de�ned �ow control and optimization requirements. The primitives

enforce the block signal by inverting it and �anding� it with the enable signal. If busy

is high, the enable passed into the IP interface resource will be low, preventing new

values from being written. Finally, my bu�ered primitives automatically generate the

hardware required to implement any shadow bu�ers speci�ed by the IP designer. My

primitives instantiate the appropriate number of registers and a multiplexer to select

among them.

The overall �ow of my interconnect generator is shown in Figure 4.6.

4.5 Testing and Summary

I integrated this system into the ISP generator to automatically integrate ISPGen

IPs into the Xilinx Zynq development platform Using my system, we were able to

automatically integrate and prototype accelerators for FAST, Canny, Harris, Stereo,

Lucas Kanada Optical Flow, SLIC super pixel segmentation, and camera pipeline
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Figure 4.6: Flow diagram of how my primitives work with Genesis 2.

algorithms, demonstrating the functionality of my primitives.

While bringing high-level synthesis integration capabilities to RTL-like designs

like ISPGen proved useful for our goals, it is not necessarily groundbreaking. The

real bene�t of my primitives is that they export a substantial amount of information

about the physical IP interface in a predictable, parseable data-structure. As I will

discuss in Chapter 5, I can leverage the standardized interface information contained

in the primitives and system_connector to automatically generate custom low-level

software drivers for IP blocks produced by ISPGen.



Chapter 5

Automating Software Generation

Up until now, my contributions have mostly focused on wiring an IP block into a

larger SoC system. This, however, only solves part of the interface problem. For

the hardware to be used in the system, the processor still needs software collateral,

including low-level C drivers to make the hardware accessible to the software, and a

high-level API to make it accessible to application developers.

How this software is created has major rami�cations for the nascent IP genera-

tor design methodology. One of the proposed bene�ts of generator framework, and

one that features a prominent role in the goals of ISPGen, is the generator's ability

to enable rapid prototyping and design re�nement at low non-recurring engineering

costs. This would enable �eld-testing a wide variety of designs on recon�gurable fab-

rics like FPGAs. If a new driver and software stack needs to be manually written

for each instance that the generator creates, however, system designers will still be

severely limited in their abilities to iterate through and test multiple designs, and

a sizable portion of the bene�ts from using generators will be lost. If the software

collateral could be automatically generated along with the hardware, however, then

the generator design methodology could truly enable rapid prototyping.

This chapter discusses the driver and API generator I created for ISPGen. My

generator leverages the IP and interconnect information encoded in the primitives I

proposed in Chapter 4 and combines it with an Operating System speci�c template

in order to create a full Linux driver. I then leverage this same information along

56
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with other algorithm speci�c collateral produced by the Darkroom DSL-to-DPDA

hardware synthesis �ow to create the high-level API.

5.1 Building Drivers

To function, a device driver must contain information about the hardware it is

driving�including the IP's advertised interface, and knowledge about the system

interconnect�to be able to e�ciently send data to the IP. For my generator, I al-

ways assume that the IP is mapped via some type of memory-mapped input/output

(MMIO) system�e.g. from the processor's perspective, the various device resources

can be accessed just like standard memory addresses.

From the IP, the driver needs to know the number and types of interface elements,

the �ow control requirements, and how each of these elements map to the device's

address range. To make things easier for the programmer and driver designer, it is

also helpful to know the mapping of the architectural name for each resource to each

of the interface elements. From the interconnect, the driver needs information like

the base address of each block, whether there are DMA engines available, and how

to use all of these resources.

In addition to information about the hardware, the driver also needs to contain

mechanisms on how to interact with both the operating system kernel and the user

to advertise the hardware's functionality. Operating systems like Linux often have a

set of software methods that all drivers are required to implement. For example, in

Linux character and block drivers, which allow devices to be advertised to the user as

a �le handle, the driver must implement open and close methods that de�ne actions

the system should take when the device's ��le� is accessed. While every Linux driver

must implement these methods, other operating systems may have di�erent hardware

access models

Additionally, the operating system also places some restrictions on how driver

functionality can be advertised to users. In Linux, for example, all driver function-

ality must be advertised through a handful of standard function calls�read, write,

iocontrol, mmap, and a few others.
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Within these constraints, it is then up to the designer or tool that is creating the

driver to determine how best to advertise the device's capabilities to the programmer,

and to implement the driver's functionality.

5.1.1 Driver Design Techniques

While there are some conventions on how basic drivers interact with the user space�

in Linux, simple character drivers use the Linux write and read methods for moving

operands to and from the devices�for specialized IPs like those produced by the ISP

Generator, that can have hundreds of individually settable IP interface resources,

and where there might be a need for some software processing in the kernel space,

there may be no single �correct� way to advertise the IP resources to user space

software. This means that most driver generator systems will still need some level of

user interaction to specify how the generated driver should interact with the system.

From an implementation perspective, there are many existing conventions and

techniques that help to make driver creation simpler. One of these is to encode the

high-level functionality of a class of devices directly into the communication protocol.

One example of this is the USB mass storage device class, which de�nes a set of

protocols for how all USB storage devices, such as �ash drives should interact with

the system. This standard is speci�cally written to enable and simplify high-level

storage tasks like �le transfer, and �le system management. As a result, once a USB

mass storage driver is written for an operating system, most USB storage devices will

automatically be compatible, negating the need for per device drivers.

The concept of one driver being used to power a class of devices has implications

for individual hardware instances created by generators. In ISPGen, while all of

the generated hardware instances have unique interfaces and functionality, they also

share a number of characteristics. Functionally, they all use the same mechanisms for

moving those images in and out of the device, they share the same high-level control

mechanisms for controlling image processing and per stage �ow control, and all have

distinct con�guration and operation states. Therefore, the kernel optimizations and

high-level I/O protocol for accessing each device, and the general structure of the
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driver could be shared.

The challenge with creating such a general driver is that the control interface of

a generated IP is likely to vary from instance to instance. Therefore, the generic

driver would need some mechanism for knowing about the IP's speci�c con�gura-

tion interface. This interface information could be communicated dynamically by the

device as part of a generic ISPGen communication protocol, but this would require

added complexity on the part of the IP to store and transmit con�guration informa-

tion. A �driver generator� approach could help to rectify this problem by allowing a

user to create a general driver template, and then populating the template with the

per-instance implementation details.

People working in the recon�gurable computing �eld have already started to build

such driver generators. The Xilinx Vivado design suite [17], for example, addresses

this problem by automatically generating a C header �le that maps the architectural

name of each IP interface resource to its physical address on the bus. The person or

software in charge of creating the full driver can then plug this generated C collateral

into a driver template to handle the I/O communications with hardware. My imple-

mentation of a driver generator expands on the work of previous driver generators

by automatically incorporating advanced �ow-control mechanisms. By leveraging the

information encoded in my interface objects from Chapter 4, my driver generator

provides functionality like automatically managing shadow bu�ers, deciding which

interface elements should be accessed via DMA, and ensuring that interface resources

are only written at legal times. While incremental, these advances help to ensure that

the resulting driver is both high-performance and easy to interface with.

While the use of a generic driver or driver template to create a driver for a class of

IP blocks helps amortize the required driver development e�ort across many devices,

someone still has to write the driver. To address this fact, a few researchers have built

varying types of driver generators over the years. One approach, exempli�ed by the

work of Bombieri et al. builds drivers directly from test benches [8]. Bombieri uses

software to convert the test bench's functionality into a �nite state machine. Either

the IP or system designer then manually annotates the sub graphs of the �nite state

machine into tasks that they would like to see in the driver. The designer is also
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asked to provide the MMIO addresses for each of the IP block's interface elements.

Bombieri's driver generator takes the annotated state machine and mapping table

and produces C code for a basic driver.

Since most IP blocks come with test benches for use in veri�cation, Bombieri's

method has a low barrier to entry. Also, by separating out the graph annotation

and IP resource memory mappings, this technique opens up the possibility for an IP

designer to carefully construct and annotate a test bench and driver graph for his

block. System integrators would then only need to provide MMIO mappings for the

IP block in their system to get a fully functional driver.

For generated systems, however, this approach has a few drawbacks. Mainly, this

method requires manual user intervention to construct a driver for each generated

IP block. The ISPGen for example is capable of creating hardware for anything

from a simple Gaussian blur �lter to a complete photographic pipeline capable of

processing raw images from a camera sensor, and the details of the interface for each

of these blocks varies substantially both in terms of number and types of interface

resources that need to be programmed to compute a task. While ISPGen could

produce a unique test bench for each generated instance, each time a system integrator

wished to specify a new IP block they would have to manually annotate the test

bench �nite state machine and edit the MMIO mappings to create a driver. This

would require the system integrator to know about the IP block's functionality, and

the added manual design e�ort would likely limit the ability to rapidly prototype

these designs. Bombieri's annotation technique could potentially be expanded to

automatically handle the sorts of small interface variations found between ISPGen's

generated instances, but that is beyond the scope of this work.

Therefore, for my driver generator, I still rely on a pre-written driver template

to provide me with most of the driver implementation details. While the template I

use here was speci�cally built and tested for the ISP generator architecture, many of

the features of the drivers I generate are applicable to a range of �xed hardware

accelerators. Therefore, it is my hope that as part of future work, some of the

mechanisms of the ISPGen driver template can be generalized into a more generic

driver generator.
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Figure 5.1: Block diagram of my driver generator system. It combines design infor-
mation from Genesis 2 with a driver template to create an IP speci�c custom driver.

5.1.2 Generating the Driver

As discussed in Section 5.1.2, driver software has two main jobs: handling I/O, and

interfacing with the operating system and user. For the I/O portion, my driver gen-

erator is able to get most of the information it needs from the interface primitives

introduced in Chapter 4. To manage the device, however, and to optimize the driver

performance through kernel functions, additional knowledge about the low-level de-

vice functionality and architecture is required. In my generator �ow, illustrated in

Figure 5.1, I rely on a pre-built driver template to provide these higher-level functions.

The driver generator template is raw C code that implements kernel driver func-

tions. To create a complete driver, I insert generated code into speci�c places in the

template to complete the driver. My template advertises the control interface to the

programmer through the Linux mmap command. For each of the resources found on

the control interface of the ISPGen, there is a corresponding set of addresses in the

memory pointer returned by invoking mmap. To change a con�guration value, the

user simply writes a value to the corresponding mmap pointer, and the driver ensures

that the value is passed to the IP block the next time the IP block is idle. Rather

than transferring these values directly to the IP block, the driver captures any value
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sent to the mmap command internally, and sends the value to the IP only when the

user requests that a frame be processed.

Linux convention would normally dictate that transferring an image to the IP

for processing should be handled by the user passing a pointer to the image to the

driver's write method. For performance reasons related to our Zynq-based system,

our template designer, Steven Bell, decided to compel users to specially request a pre-

allocated kernel-space memory bu�er for storing their images and transfer the image

to there. The template uses the Linux ioctl driver interface to provide a pointer to

a free bu�er to the user. There is also an ioctl command to �deallocate� each bu�er,

which essentially just tells the driver that the bu�er is no longer in use. There are an

additional set of ioctl commands for activating the IP and getting results.

This implementation choice made the process of DMA'ing images from user space

to the IP device simpler, as otherwise the driver would need to build large scatter-

gather tables to DMA the image from user-space memory to the hardware. The

changes made to the advanced ISP driver made the driver more complex to interact

with, however. While the read and write driver commands are de�ned as part of the

standard Linux driver model, ioctl commands are driver speci�c. Therefore, users

need to know speci�c details about the ISP generator driver in order to work with it.

Also, depending on how common this sort of bu�er pre-allocation is, optimizations

like these may limit the re-usability of the driver template. Ultimately, the person in

charge of creating the driver template must determine if these trade-o�s are worth it.

Internally, the driver template uses a queue structure to manage multiple frame

requests at a time, associating each requested frame with the mmap control information

speci�ed for it.

To generate the �nished driver, my system is responsible for pulling in informa-

tion about the IP's communication interface and integrating this information into

the template code. My generator reads information about the IP interface from the

outputs of the Genesis II hardware generator language. Whenever Genesis II is used

to generate an IP instance it produces an XML �le listing all of the di�erent con-

�guration parameters used to generate that instance. This XML �le includes all of
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the information about the IP interface encoded by my interface primitives and inter-

connect generator organized into a �xed, predictable data structure. The full list of

interface data that my primitives encode is shown Table 5.1. The interface data from

each primitive is aggregated into a single Genesis 2 parameter, DRIVER_DATA, by the

sys_connector object, discussed in Chapter 4.

Table 5.1: Summary of IP interface information provided by each primitive. For the
ISPGen implementation, accelerator identi�es the kernel, and local_name identi-
�es the speci�c interface resource.

Key Description
local_name Interface signal name as speci�ed within the IP RTL
accelerator Name of the IP accelerator
arch_name Architectural name of interface resource (accelerator name +

local name)
start_addr Base address for interface element
end_addr Last address for interface element
addr_space Total address space covered by element
groups Number of shadow bu�ers
data_width Width of data bus
enable_index Chip enable index for the primitive
block_sig The signal that gates access to this primitive
direction Whether the primitive is an input, output, or both from the

IP's perspective
streaming Whether the primitive should be accessed via DMA
bandwidth Bandwidth required by the IP for full performance

Using this information, my generator sets up the template with the MMIO ad-

dresses for each interface resource. I also use this information to automatically handle

access control to the IP resources. The information stored in the generator allows me

to enforce directionality of data to and from IP blocks. For example, I can separate out

read-only elements from write and read/write elements, and write the driver so that

commands cannot be written to these blocks except in debug modes. My generator

also integrates knowledge of the interface primitives' �block� signals into the driver.

This guarantees that interface resources are only written at legal times. For any IP

resources that are set as �stream� enabled, my driver generator will automatically set

up the driver to DMA data to these blocks.
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The information allows the generator to build the driver to automatically manage

the shadow bu�ers on control registers. As discussed in Chapter 4, shadow bu�ers are

groups of registers that exist between the interconnect and a con�guration register

on the IP interface. These extra registers are used to bu�er future con�guration

values for the IP block so that the IP can be quickly con�gured for the next run.

My generator knows which addresses correspond to which IP resources, and which of

these correspond to shadow bu�ers. Using this information, whenever there are more

than one requests pending in the work queue, the generated driver can automatically

pre-load the shadow registers with the program values used by subsequent frames. As

soon as a control sequence is transferred from the shadow bu�ers to the IP, the driver

can reuse the shadow bu�er for the next queued set of control values. When combined

with driver-side optimizations, like only rewriting con�guration values when values

change between frames, or using a dedicated way of the shadow bu�ers to �memoize�

popular or default control settings (left for future work), such optimizations can

decrease interconnect tra�c and reduce the time between successive IP runs, and all

can be automatically implemented by my generator.

Finally, my generator uses knowledge about shadow bu�ers to simplify the control

interface presented to the driver user. Thanks to my generator, when a user memory

maps the IP interface, they only see one instance of each control register. All of the

complexity of keeping track of which shadow bu�er to write and which set of shadow

bu�ers corresponds to which frames is handled automatically by the driver.

The information in the generated interface also allows my generator to present a

higher level interface to the driver user. The Linux memory map function advertises

the control interface as one contiguous bu�er of memory space. It does not, however,

encode or communicate any knowledge about which index corresponds with which IP

interface element. As shown in Figure 5.2, I use the information stored in the Genesis

�le to create a C struct that maps between the hierarchical IP interface names and

their corresponding memory map indices. This is provided to the user as a C header

�le.

By design, my generated C struct only includes the IP interface elements that

can be written by the user�a separate struct (not pictured) is provided for reading
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/* Generated map*/

struct name2mem{

unsigned int isp_filter_tap1 ,

unsigned int isp_filter_tap2 ,

unsigned int isp_approx_table [5],

unsigned int* isp_ctrl_fifo ,

unsigned int isp_ctrl_fifo_len

};

Figure 5.2: A C struct mapping architectural names of interface resources to their
index in the mmap bu�er. Both the driver's mmap interface and C structure are designed
to be aware of the directions of the primitives, the type of hardware the primitives
represent, and whether they are streaming.

values from elements�and the struct elements are typed depending on the type of

interface primitive they represent. �Addressable� blocks that are not marked as re-

quiring streaming access are advertised as a C array. Interface primitives that the

hardware designer has set as �streaming� show up as pointers, so the user can point

to the memory location where the data is located. The driver then uses this pointer

to set up a DMA between the data and the IP streaming interface element.

To program the IP block, programmers simply populate this C struct (from Fig-

ure 5.2) with the desired parameters, and copy its contents directly into the memory

map bu�er provided by the driver.

Combined, these features o�er full access to the ISP generator hardware. Pro-

grams can easily transfer images stored in memory to the accelerator, and have them

processed in real time.

While the specialized template we constructed was only tested with John Brun-

haver's ISPGen, it is to a broader class of streaming hardware devices: functionalities

like programming control registers and transferring large data sets between the de-

vice and OS are not exclusive to the domain of image processing. In fact, it is likely

that after building driver generators and templates for a number of di�erent types of

IP generators, we can identify commonalities and design patterns among the types

of driver functions that are implemented in di�erent classes of devices. This would

allow us to create a very general driver template that could be used to create e�cient

drivers for a wide swath of IP generators. In addition to commonly used features,
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like handling DMAs to various IP interface elements and registering interrupts, such

a template could even be built to implement more advanced features like system pro-

�ling, where the driver generator automatically builds performance counters into the

driver.

5.2 Generating the API

Even with automated driver constructions, application programmers still need to

know some low-level details about the Linux driver model, and the generated IP to

use the hardware. For applications like the ISP generator, where the target user is

algorithm developers in the domain of computational photography, many of our users

may lack this kind of knowledge. Therefore, we need to create a high-level API to

allow our users to take advantage of our generated driver and hardware.

One of the big challenges with automatically creating an API is that APIs are

generally written to re�ect how the IP is going to be used. This is tied to the

functionality of the IP block. Up until now, the generators discussed here all rely

on the abstractions speci�ed and implied by the SoC methodology. I used general

architectural models for IP control interfaces and well known communication models

to integrate and implement basic communications with IP blocks. With heterogeneous

IP blocks, however, no single use abstraction exists; there is not enough information

to create an API. Fortunately, in the case of the ISP Generator, we have another

mechanism for determining the IP's high-level functionality: the Darkroom domain

speci�c language [29].

Domain speci�c languages (DSLs) have recently gained popularity as a way for

programmers to create e�cient code in a speci�c application domain. These languages

specially tailor their programming models and capabilities to �t the constructs and

types of computations generally used for writing high-level algorithms in a given

application domain. The back-ends of these languages then leverage knowledge about

the domain and the DSLs tailored programming model to create highly-e�cient,

optimized implementations for heterogeneous hardware platforms [11].

Darkroom is a DSL based o� of the Terra programming language [16]. It is
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speci�cally designed to represent image processing pipelines and recently has been

co-developed with ISPGen. Both projects are designed to represent the same classes

of image processing algorithms, and the Darkroom DSL has been �tted with a DPDA-

compiler back-end. Since DPDA is the language used to specify hardware synthesis

in the ISPGen language, this means that Darkroom allows developers to specify their

algorithms at a high-level, and automatically create custom hardware through the

ISP generator.

Additionally, the use of Darkroom as a front-end for synthesizing hardware pro-

vides all of the high-level information necessary to automatically create an API. Since

Darkroom and Terra are �rst and foremost software simulation languages, Darkroom

programs are designed to be linked into high-level application code by producing

linkable C function calls for the algorithm. Since software developers can use the

Darkroom C simulation code to test their algorithms, it stands to reason that this

software interface is both high level enough and fully featured enough to act as an

API.

Also, the structure of the C API calls advertised by Darkroom map very directly to

tap values used to con�gure the hardware. Regardless of the algorithm, the Darkroom

C API always takes in two arguments, a pointer to the image to be processed, and a C

struct that contains �elds and con�guration values for all of the con�guration registers

and memories on the IP block. Not coincidentally, this structure is very similar to

the driver C structure I generate, illustrated in Figure 5.2, as the Darkroom�ISPGen

�ow ensures that all of the con�guration values that must be set to process an image

in Darkroom are represented in the IP block with one or more dedicated interface

primitive.

In order to create an API, we must map the Darkroom function calls to the IP's

driver interface. Darkroom by itself, however, does not contain su�cient information

to map its high-level software interface to the driver: due to some quirks in the DPDA

speci�cation and ISPGen's implementation, the hardware interface requested by the

DPDA can sometimes slightly di�er from the interface advertised by the generated

hardware. Since the driver's interface depends heavily on the IP's physical inter-

face, this meant that my API generator had to synthesize information from both the
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Darkroom and ISPGen tools to match the interfaces together.

5.2.1 Mapping the API to the Driver

To run Darkroom code in software, the �rst thing a user does is specify the �lter

coe�cients and other image pipeline settings. Darkroom does this by providing users

with a C struct with named entries for each di�erent �lter parameter. In the next

step, the user makes a function call to run the pipeline, and the function returns the

processed image.

In hardware, the Darkroom function call actually encompasses a number of func-

tional processing steps. Mapping the kernel con�guration to the driver is a fairly

simple process. All of the members of the Darkroom-produced pipeline con�guration

struct generally map in a one-to-one fashion to interface resources on the IP block.

Occasionally some hardware is duplicated to allow for parallel processing. In this case,

the taps in hardware are duplicated, and given uniqui�ed names, making the mapping

between the Darkroom struct element and the IP interface element one-to-many.

All of the names of resources advertised on the generated hardware interface share

a common base name with but are distinct from the name of the corresponding

Darkroom struct item they are derived from. Mapping the API struct elements to

driver memory mapped I/O values is as simple as doing a text match on the two sets

of names. To get the Darkroom struct element names into my generator, I parse an

XML �le already generated by the Darkroom-to-DPDA �ow. I get the names of the

hardware taps from the interface primitives discussed in Chapter 4.

While the Darkroom API allows a user to pass a pointer to user-space memory

containing the image to be processed, the driver expects the image to reside in a

driver allocated bu�er. To handle this, the API software uses the driver's �allocate

bu�er� ioctl command to get a bu�er and copies the image into kernel space.

When the user calls the API, the API opens the driver, and copies the values from

the Darkroom de�ned C struct, into the mmap control interface. It allocates a kernel

space bu�er from the driver, copies the image over, and uses the driver's �process

image� ioctl command to start computation. The API then calls �read image� and
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blocks until the processed image returns. All of this code is automatically generated

for any IP block generated by the ISP generator. While this implementation is heav-

ily de�ned by the inner-workings of Darkroom, the ISP generator, and the driver

generator, these concepts can be applied to a general range of DSL-enabled hardware

generators.

5.2.2 API Limitations and Future Work

The software interfaces provided by these DSLs, however, are not always the optimal

choice for a hardware API. This often stems from the fact that coding techniques

that make sense in software do not always make sense for driving high performance

hardware. This is a problem that we have run into with Darkroom and the ISP

generator, as Darkroom was built with a software implementation in mind.

A major issue is that there are di�erent scheduling constraints between software

and IP. Since processor-to-IP communication can take many cycles and often occurs

over potentially congested shared-links, hardware often includes optimizations to try

to mask communication latencies. Hardware optimizations like shadow bu�ers, for

example, allow the programmer to queue up IP programs in advance, so the IP can

start processing the next frame immediately after �nishing the current one. These

optimizations rely on the user queuing driver calls in advance, and work best with

a non-blocking API, where users can queue new frames at any time. In software,

however, these communication delays do not play as large a role, so the Darkroom C

only o�ers single-frame, blocking calls to the algorithm. Once again, the Darkroom

API limits the performance of the IP block.

One option to address this limitation is to simply model the API o� of the DSL

simulation interface, rather than copy it directly. In the case of the ISP generator,

this would involve adding a function call to allocate kernel bu�ers, and creating

non-blocking variants of the pipeline function calls. Of course, the downside of this

method is that the generated API may no longer be fully compatible with the test

code. Even if the API generator mapped the original DSL simulation function calls

to driver commands, and just o�ered the hardware optimized calls as an expanded
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feature set, any existing code would still need to be retooled. Since in most cases the

desired changes are possible and not harmful in the software version (and might even

help for parallel execution engines), the right solution when possible is to update the

interface speci�cation so that programmers and system testers only need to worry

about one set of function calls. This will hopefully be completed in a future version

of Darkroom.

5.2.3 API Summary

Looking forward, the ability to automatically generate uni�ed software/hardware

APIs also hints at a solution to one of the major hurdles for casual application devel-

opers looking to incorporate hardware acceleration into their programs: compatibility.

Today's major mobile development platforms all are designed to run the same soft-

ware across a variety of hardware platforms. This is especially notable in Android,

where di�erent handset manufacturers source a wide range of SoCs for their phones,

and is to a lesser extent a problem on iOS where new generations of phones bring

new hardware capabilities. If a developer wants to use hardware acceleration in a pro-

gram, he or she must �rst detect whether the hardware is present in the system and,

if not, provide a software implementation to perform the computation. Using consis-

tent APIs between hardware and software implementations, however, can eliminate

this concern. As part of API generation, the system can also build a wrapper around

the DSL simulation C and the API. When a program makes a call to the wrapper,

the wrapper can automatically detect whether the IP block is present, and if not,

route the function call through software for processing. Therefore, regardless of the

hardware platform the application developer is working on, they can safely use the

API software and get the bene�ts of hardware acceleration wherever it is available.
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Conclusions

SoC design o�ers many bene�ts to chip designers. By allowing designers to integrate

many pre-veri�ed custom accelerators into a single chip, this methodology helps sys-

tem designers achieve the energy and performance bene�ts of custom design across a

wide range of application domains. As transistors get smaller, SoC provides a powerful

framework for combining functionalities that used to span multiple chips onto a single

die, further improving energy and performance while decreasing manufacturing costs

for the target systems. These strengths have allowed SoCs to dominate the mobile

compute space, and have allowed it to make some inroads into the high-performance

desktop market.

As designers move to incorporate ever more functionality onto a single die, how-

ever, they are increasingly running into the limits of our abilities to design these

heterogeneous systems. Every new accelerator needs to be physically connected into

the system, and these connections need to be veri�ed, and communication protocols

need to be checked to ensure that the accelerator can properly communicate. Once

the hardware is attached, software connections, a driver and an API, need to be built

for the accelerator to be used in the system.

To allow designers to keep pushing the bounds of system performance with new

and more powerful SoCs, we need to devise new ways to integrate these systems. One

potential solution to this dilemma is automation. Ideally, IP modules would be sim-

ply �plug-and-play�: the module would advertise its interface and how it expects to
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be communicated with, and a design tool would automatically generate the logic re-

quired to integrate it with the system interconnect. This same information could then

be combined with high-level information about the IP block to automatically gener-

ate low-level hardware drivers and a high-level software API. If possible, this could

drastically cut the amount of design e�ort required to integrate each new IP block

into a system. While many researchers have tried to address pieces of this problem,

with this thesis, I have tried to propose a set of solutions that addresses everything

from automatically wiring the IP blocks into the system to software generation.

Recognizing that one hurdle to automating hardware integration of various ex-

isting IP blocks using current HLS mechanisms was the di�culty of specifying IP

interface protocols, my �rst contribution was to propose an IP bus interface abstrac-

tion and interface de�nition capable of succinctly capturing interface protocols. Using

the observation that, for a given high-level bus functionality, all interface buses need

to encode similar sets of information, I was able to distill a compact set of parame-

ters that are capable of encoding the di�erent mechanisms a bus is likely to use to

transmit this information. I then used my parameters to demonstrate a prototype

interface generator capable of creating synthesizable bridge RTL between di�erent

interface descriptions encoded in my parameters. While my de�nition currently does

not support all of the advanced high-level operations found in high-performance buses

like OCP�cache coherency, atomic operations, multi-threading, etc.�it does provide a

model for how designers can continue to use existing IP blocks as they transition to-

wards HLS design and integration methodologies. This work also teases the potential

that if an automated system were used for both IP hardware integration and driver

generation, we can help ensure that IPs built for old interface standards can continue

to perform on interfaces with newer, incompatible features.

With a means of describing existing IP interfaces at a high-level, which would

potentially allow them to be integrated with high-level design approaches to system

integration, I then moved on to the problem of how future RTL-based IP blocks and

generators can be built to take advantage of HLS-based interface synthesis techniques.

While I believe HLS will become a predominant design methodology for creating

IP blocks, there are still likely to be specialized accelerators that are not handled
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optimally by a user's set of HLS tools and that must be written in RTL. For system

integration, however, these blocks should still be able to bene�t from HLS-based

interface synthesis techniques. Therefore, I developed a set of Genesis 2 interface

primitives that can be used to map the interface of these RTL blocks into HLS �ows,

and immediately put these primitives to use in automatically integrating the hardware

of IP blocks generated by the ISPGen tool into an FPGA-on-SoC framework.

While integrating the IP hardware into a larger system certainly helps to address

the problem of SoC design complexity, the system still needs a software driver for the

IP block to be used in software. For the IP block to be accessible to the average appli-

cation developer, it also needs an API that obscures the low-level tasks of interacting

with the device driver with high-level function calls for using the hardware.

Using the IP information encoded in my RTL-to-HLS interface mechanisms in

conjunction with a driver template tailored for use with ISPGen, I constructed a

system capable of automatically creating a C software driver for generated IP blocks.

While the driver template may need to be tweaked to work with each distinct IP

generator a system integrator would like to use, the techniques used to automate the

driver creation process are general, and will hopefully act as a basis for creating a

powerful, largely application independent driver generator framework.

Finally, I tackled the issue of creating a high-level API for generated IP blocks.

My work in this area was for IP generator systems that already use a domain speci�c

language to specify the specialized hardware generated. I created a system that

mapped the API of the Darkroom DSL to the driver calls required to process an

image in the hardware generated from the Darkroom description.

Combined with the hardware created by ISPGen, this work allows for a true �one-

button �ow� that takes a Domain expert from testing a new way to process images

in software to prototyping a real-time hardware implementation in the �eld. Such

a setup could potentially enable boom in the creation of IP blocks and the use of

programmable logic in general purpose computing, as it would allow domain experts

with no hardware knowledge to experiment with custom hardware design.



Bibliography

[1] Andrew Adams, Eino-Ville Talvala, Sung Hee Park, David E. Jacobs, Boris

Ajdin, Natasha Gelfand, Jennifer Dolson, Daniel Vaquero, Jongmin Baek, Mar-

ius Tico, Hendrik P. A. Lensch, Wojciech Matusik, Kari Pulli, Mark Horowitz,

and Marc Levoy. The Frankencamera: An experimental platform for computa-

tional photography. In ACM SIGGRAPH 2010 Papers, SIGGRAPH '10, pages

29:1�29:12, New York, NY, USA, 2010. ACM.

[2] ARM. AMBA. http://www.arm.com/products/solutions/ AMBAHome-

Page.html.

[3] ARM. AMBA 4 AXI4, AXI4-Lite and AXI4-Stream System Ver-

ilog Assertions (SVAs). http://infocenter.arm.com/help/index.jsp?topic=

/com.arm.doc.ihi0022d/index.html.

[4] Arteris. Arteris, The Network-On-Chip Company. www.arteris.com.

[5] K. Avnit and A. Sowmya. A formal approach to design space exploration of pro-

tocol converters. In Design, Automation Test in Europe Conference Exhibition,

2009. DATE '09., pages 129�134, 2009.

[6] Jonathan Bachrach, Huy Vo, Brian Richards, Krste Asanovic, and John

Wawrzynek. Chisel: Constructing hardware in a Scala embedded language. In

Proceedings of the 49th Design Automation Conference (DAC), 2012.

[7] Daniel Ulf Becker. E�cient microarchitecture for network-on-chip routers. 2012.

74



BIBLIOGRAPHY 75

[8] Nicola Bombieri, Franco Fummi, Graziano Pravadelli, and Sara Vinco. Correct-

by-construction generation of device drivers based on RTL testbenches. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe, pages

1500�1505. European Design and Automation Association, 2009.

[9] Gaetano Borriello and Randy H Katz. Synthesis and optimization of interface

transducer logic. In Proceedings of the International Conference on Conputer

Aided Design, pages 481�494, 1987.

[10] John Brunhaver. Design and Optimization of a Stencil Engine. PhD thesis,

Stanford University, 2014.

[11] Hassan Cha�, Arvind K. Sujeeth, Kevin J. Brown, HyoukJoong Lee, Anand R.

Atreya, and Kunle Olukotun. A domain-speci�c approach to heterogeneous par-

allelism. In Proceedings of the 16th ACM Symposium on Principles and Practice

of Parallel Programming, PPoPP '11, pages 35�46, New York, NY, USA, 2011.

ACM.

[12] Hansu Cho, Samar Abdi, and Daniel Gajski. Interface synthesis for heteroge-

neous multi-core systems from transaction level models. In ACM SIGPLAN

Notices, volume 42, pages 140�142. ACM, 2007.

[13] W.J. Dally and B. Towles. Route packets, not wires: on-chip interconnection

networks. In Design Automation Conference, 2001. Proceedings, pages 684�689,

2001.

[14] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark

Horowitz. CPU DB: recording microprocessor history. Communications of the

ACM, 55(4):55�63, April 2012.

[15] R.H. Dennard, F.H. Gaensslen, H.N. Yu, V.L. Rideout, E. Bassous, and A.R.

LeBlanc. Design of ion-implanted MOSFET's with very small physical dimen-

sions. Proceedings of the IEEE (reprinted from IEEE Journal Of Solid-State

Circuits, 1974), 87(4):668�678, 1999.



BIBLIOGRAPHY 76

[16] Zachary DeVito, James Hegarty, Alex Aiken, Pat Hanrahan, and Jan Vitek.

Terra: A multi-stage language for high-performance computing. SIGPLAN Not.,

48(6):105�116, June 2013.

[17] Tom Feist. Vivado design suite. Xilinx, White Paper Version, 1, 2012.

[18] Sameh Galal, Ofer Shacham, JS Brunhaver, Jing Pu, Artem Vassiliev, and Mark

Horowitz. FPU generator for design space exploration. In Computer Arithmetic

(ARITH), 2013 21st IEEE Symposium on, pages 25�34. IEEE, 2013.

[19] A Grasset, F. Rousseau, and AA Jerraya. Automatic generation of component

wrappers by composition of hardware library elements starting from communi-

cation service speci�cation. In Rapid System Prototyping, 2005. (RSP 2005).

The 16th IEEE International Workshop on, pages 47�53, June 2005.

[20] Douglas Grose. Keynote: From contract to collaboration delivering a new ap-

proach to foundry. DAC '10: Design Automation Conference, June 2010.

[21] 2011 Technology Working Group. Design. In International Technology Roadmap

for Semiconductors. 2011 edition edition, 2011.

[22] Rehan Hameed, Wajahat Qadeer, Megan Wachs, Omid Azizi, Alex Solomat-

nikov, Benjamin C. Lee, Stephen Richardson, Christos Kozyrakis, and Mark

Horowitz. Understanding sources of ine�ciency in general-purpose chips. In

ISCA '10: Proc. 37th Annual International Symposium on Computer Architec-

ture. ACM, 2010.

[23] Jen-Hsun Huang. nVidia CES 2013. Las Vegas Convention Center, January

2013. http://www.nvidia.com/object/ces2013.html.

[24] HyperTransport. HyperTransport. http://www.hypertransport.org/.

[25] IBM. OPB. https://www-01.ibm.com/chips/techlib/techlib.nsf/techdocs/

9A7AFA74DAD200D087256AB30005F0C8.



BIBLIOGRAPHY 77

[26] IBM. CoreConnect Bus Architecture - IBM Microelectronics. https://www-

01.ibm.com/chips/techlib/techlib.nsf/products/CoreConnect_Bus_Architecture,

March 2006.

[27] Intel. 4th Generation Intel®Core�Processor Die Shot.

http://download.intel.com/newsroom/kits/core/4thgen/gallery/images.

[28] Intel. Intel®Quickpath Interconnect Maximizes Multi-Core Per-

formance. http://www.intel.com/content/www/us/en/io/quickpath-

technology/quickpath-technology-general.html.

[29] James Hegarty, John Brunhaver, Zachary DeVito, Jonathan Ragan-Kelley, Noy

Cohen, Steven Bell, Artem Vasilyev, Mark Horowitz, and Pat Hanrahan. Dark-

room: Compiling high-level image processing code into hardware pipelines. In

Proceedings of SIGGRAPH 2014, Vancouver, Canada, August 2014. ACM.

[30] Erica Jones and Jonathan Sprinkle. autoVHDL: A domain-speci�c modeling

language for the auto-generation of VHDL core wrappers. In Proceedings of the

Compilation of the Co-located Workshops on DSM'11, TMC'11, AGERE!'11,

AOOPES'11, NEAT'11, & VMIL'11, SPLASH '11 Workshops, pages 71�76, New

York, NY, USA, 2011. ACM.

[31] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tien-

syrja, and A. Hemani. A network on chip architecture and design methodology.

In VLSI, 2002. Proceedings. IEEE Computer Society Annual Symposium on,

pages 105�112, 2002.

[32] Dongwook Lee, Hyungman Park, and Andreas Gerstlauer. Synthesis of optimized

hardware transactors from abstract communication speci�cations. In Proceedings

of the eighth IEEE/ACM/IFIP international conference on Hardware/software

codesign and system synthesis, pages 403�412. ACM, 2012.

[33] Dejan Markovi¢ and Robert W Brodersen. DSP Architecture Design Essentials.

Springer, 2012.



BIBLIOGRAPHY 78

[34] J Nestor and DE Thomas. Behavioral synthesis with interfaces. In Proc. IEEE

International Conference on Computer Aided Design, pages 112�115, 1986.

[35] R. Nikhil. Bluespec System Verilog: e�cient, correct RTL from high level spec-

i�cations. In Formal Methods and Models for Co-Design, 2004. MEMOCODE

'04. Proceedings. Second ACM and IEEE International Conference on, pages 69

� 70, june 2004.

[36] OCP. OCP-IP: Get the Speci�cations. http://ocpip.org/get_the_speci�cations.php.

[37] OpenCores. Generic AHB Slave Stub. http://opencores.org/project,ahb_slave.

[38] OpenCores. Generic APB Slave Stub. http://opencores.org/project,apb_slave.

[39] OpenCores. Generic AXI Slave Stub. http://opencores.org/project,axi_slave.

[40] Michael K. Papamichael. CONNECT: Re-Examining Conventional Wisdom for

Designing NoCs in the Context of FPGAs.

[41] ITUTX Recommendation. 200 (1994)| iso/iec 7498-1: 1994. Information

technology�Open Systems Interconnection�Basic Reference Model: The basic

model.

[42] James A Rowson and Alberto Sangiovanni-Vincentelli. Interface-based design. In

Proceedings of the 34th annual Design Automation Conference, pages 178�183.

ACM, 1997.

[43] Ofer Shacham. Creating Chip Generators Using Genesis2. Stanford,

http://genesis2.stanford.edu/.

[44] Ofer Shacham. Chip multiprocessor generator automatic generation of custom

and heterogeneous compute platforms /. 2011.

[45] Sonics. Sonics On-Chip Communication Network for Advanced SoCs.

www.sonicsinc.com.



BIBLIOGRAPHY 79

[46] D. Wingard. MicroNetwork-based integration for SOCs. In Design Automation

Conference, 2001. Proceedings, pages 673�677, 2001.



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

28120964

2021


