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Abstract 

Today’s mixed-signal systems-on-chip (SoC’s) are complex entities that contain 

very tightly coupled analog and digital circuits. Validating these complex systems 

requires simulating the entire design through a large number of test vectors, and each test 

vector might in turn lead to a long simulation. Due to traditionally differing views of 

validation as well as design tools for analog and digital, validation of an SoC is not easily 

accomplished. Behavioral modeling is an attractive approach that tries to address this 

issue by replacing analog circuits with high-level functional models to speed up 

simulation while retaining some of the analog behavior. This dissertation proposes a 

method for creating these models in an event-driven, digital modeling language. 

The model-writing strategy is three-pronged. First, to fit into a digital simulator 

that simulates mostly unidirectional designs, the analog circuits must be broken into sub-

blocks with unidirectional ports. Second, continuous time analog signals need to have a 

suitable representation in a discrete-time simulator. A piecewise linear format in which 

value-slope pairs are updated at discrete intervals is employed as an example. Third, time 

integration must be avoided in the computation of model outputs. By leveraging the 

linear (possibly with small nonlinearity) intent of analog circuits, a companion method of 

efficiently calculating output in piecewise linear format is developed. The overall result is 

analog behavioral models that are pin-accurate, fast to simulate and capture the key 

dynamics in analog circuits. 
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Models of various types of circuits (a simple RC filter, a phase interpolator, a 

comparator and a current DAC) are composed to illustrate the wide applicability of the 

proposed modeling method. A 250MS/s track and hold, a 2.5-1.8V switching regulator, 

and a 1GHz PLL are also modeled to verify the preservation of important circuit 

behaviors as well as to gauge these models’ computation complexity. 
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Chapter 1 

Introduction 

There are two types of circuits in modern systems-on-chip (SoC’s): analog and 

digital. Traditionally, different abstraction, design methods and tools are used for each 

type. For a long time, this approach worked well because the designs were on different 

chips, or weakly coupled, such that analog circuits can be designed and validated in 

isolation from the digital circuits. Over the past decade, however, the constant search for 

smaller, faster and less power hungry SoC’s has brought analog and digital ever closer 

together. With aggressive scaling, designers saw benefit in the smaller form factor, 

flexibility and better noise sensitivity of digital circuits and began to implement a number 

of traditionally analog functions using digital circuits. For instance, continuous time 

equalization techniques in clock and data recovery circuits are supplemented with digital 

adaptive equalization algorithms [4]; in other cases, analog equalization techniques are 

complete replaced with an ADC frontend and extensive digital signal processing [5].  

Phase-locked loops (PLL’s) have mostly been analog entities, however there has been 

tremendous interest recently in achieving frequency synthesis using mostly digital PLL’s 

[6] [7]. Since scaling degrades matching
1
, a popular solution is to use digital circuits to 

reduce analog matching errors as seen in digitally assisted data converters [3] [2]. The 

                                                 
1
 Scaling improves analog matching per unit area [99], however minimum size devices often have the 

higher performance that designers seek and the overall matching of these devices degrades as technology 

scales. 
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demand for better power performance has also brought digital power management on 

chip. Wireless transceivers use profiled power management units to reduce active power 

consumption [8] and many digital control techniques such as digital peak voltage/peak 

current [84], digital pulsewidth modulation [85] and constant on/off time control [86] 

have been developed to rival traditional analog control loops in power converters. In all 

these cases, analog and digital circuits are no longer isolated entities, but rather two 

tightly coupled and constantly interacting components of a complex system. 

Any complex system requires validation as a whole, but doing so is difficult 

because of the traditionally differing and incompatible design/validation methods of 

analog and digital circuits [80]. This thesis proposes using high-level analog functional 

models written in SystemVerilog to address this validation gap, and provides a method 

for creating these models. 

1.1 Analog Validation 

Analog circuits are validated at the device level, using a simulator (e.g. SPICE) 

that uses compact device models to evaluate the behavior of the circuit schematic. 

Designers are interested in measuring some characteristics of the analog circuit’s output 

and if a set of required performance is achieved, then the circuit is considered to be 

validated [60]. For example, in a sample and hold, designers might drive the input with a 

sinusoid slightly below the Nyquist frequency and measure the circuit’s spurious free 

dynamic range (SFDR), signal to noise ratio (SNR), power and output swing. For a 

regenerative latch, the set of test signals might be a series of constant voltages with 

varying amplitude. The performance specification might involve an upper limit on the 

input to output delay for different input voltages. Designers simulate the circuit using the 

various types of analyses available in SPICE (such as DC, transient, AC, PAC, PSS, 

PNOISE) and inspect that all simulation results meet spec. Often times, the simulation 
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space also extends to the entire gamut of process corners, temperatures and supply 

voltages [60].  

Despite the large variety of characteristics that can be measured of analog 

responses, analog outputs are smooth functions of the circuit’s input. Therefore, designers 

are usually not concerned with enumerating every possible test stimulus such that the 

input space is finely sampled. Typically, a small set of test inputs is sufficient to fully 

characterize the analog response surface, because the result from one input case yields a 

great deal of information on results from similar inputs. Using this small set of test cases, 

analog validation can be completed for each performance metric even if each analog test 

case (especially those that require transient simulations) might be time-consuming. 

1.2 Digital Validation 

The goals of digital testing are very different from those of analog test.  Rather 

than trying to extract a number of parameters of the circuit, the digital designer wants to 

know whether a large collection of logic does the correct function. A digital design with 

N state variables has 2
N
 mutually independent states – that is, the correct function of one 

state yields no information on the correct function of any of the other states. In other 

words, the result surfaces of digital circuits are not smooth like analog circuits, and it is 

hard to predict what the machine will do in a specific situation without testing that 

situation. Validating a digital circuit, therefore, involves exercising every possible state 

that the design may go through. Commonly used digital simulators include VCS and 

ModelSim. 

Even though the simulation time of a single test vector may be small, a digital 

design may contain millions of logic gates and the number of test vectors necessary to 

completely verify a design is very large – sometimes impractically so. As a result, 

coverage is oftentimes sacrificed by running only as large a set of test vectors as time will 
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allow. In addition, the verification is concerned with function only; timing information 

such as delay and skew are handled separately by static checking tools. 

1.3 Mixed-signal Validation Challenge 

Given the vastly different validation approach for analog and digital circuits, it is 

not surprising that the validation of a mixed-signal design is difficult. In order to run 

millions of test vectors with reasonable speed, the digital component of an SoC must be 

validated in a discrete-time, event-driven, digital simulator [87]. At the same time, active 

collaboration between analog and digital – for example, digital calibration – dictates that 

the digital component must be aware of the analog component’s behavior in order to 

determine its own behavior. This means that the analog component must also be 

simulated for every test vector sent to the system. Difficulties arise in this case since first, 

there is a clear disconnect between analog and digital simulators and second, time-

consuming analog transient simulation means that either the coverage of the validation 

suite will be very limited or the validation effort cannot be completed within any practical 

amount of time. 

There have been a number of approaches that address mixed signal validation and 

these will be reviewed in Chapter 2.  Among these approaches, behavioral modeling 

seems to be the only solution fast enough for mixed-signal validation. To summarize the 

contribution of this work – namely providing some formalism to behavioral modeling – 

Chapter 3 will lay down general guidelines developed to writing behavioral models. Next, 

to see how these guidelines can be applied, Chapter 4 will discuss models for different 

types of circuits. To be more specific and evaluate the models’ performance, Chapter 5 

will demonstrate the viability of the proposed model-writing strategies through several 

real circuit examples. An analysis of the models’ efficiencies will also be presented. 

Concluding remarks are provided in Chapter 6.  
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Chapter 2 

Mixed-Signal Validation Background 

System-level validation of mixed-signal SoC is challenging [16], and not 

surprisingly, it is an active area of research. To better understand the issues that need to 

be addressed, this chapter will begin with a discussion of traditional analog and digital 

simulators (Sections 2.1 and 2.2 respectively). Given the difference in simulation tools, 

three different approaches to mixed-signal validation will be compared. One approach 

focuses on modifying the simulators to make the analog simulator run faster, and be able 

to connect to a digital simulator. The macromodeling approach tried to replace the 

device-level network that is solved by the analog simulator with a simpler one that has 

equivalent behavior. Lastly, behavioral modeling completely replaces the circuit 

schematics with a functional description. While these three methods have advantages and 

disadvantages, and behavioral modeling is the solution with the highest hopes of being 

fast enough for mixed-signal SoC validation. 

2.1 Analog (SPICE) Simulator 

Analog designers use SPICE-like simulators to help them predict and analyze the 

behavior of a circuit. Starting from a schematic and very accurate device models, SPICE 
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simulators compute the voltage and current values at each node for all instants of time. 

KVL and KCL nodal equations are generated first. Due to devices such as transistors in 

the design, these equations are usually a set of differential-algebraic equations (DAE’s), 

whose general form is shown below [1]: 

  (   )

  
  (     ) (1) 

 

v = v(t) is a vector of nodal voltages and branch currents; u = u(t) is a vector of inputs; t 

is time; q() is an operator describing charge; and i() is an operator describing current. 

Numerical integration methods need to be invoked in order to solve these equations. First, 

time-discretization is applied using algorithms such as backward Euler, trapezoidal or 

second order Gear. For example, if backward Euler integration were used, the system of 

(1) will yield an algebraic equation 

             (                ) (2) 

 

This equation needs to be solved for the unknown vector of node voltages and branch 

currents, vt+t, at time t+t where t is the time step. This is equivalent to finding zeros of 

a nonlinear operator: 

 ( )               (                )    (3) 

 

The solution of (3) can be obtained with an iterative algorithm such as the Newton-

Raphson method or successive chords method. Using, for example, the Newton-Raphson 

method, a single iteration involves solving the equation: 

  ( 
   )    ( 

 )    (  ) (4) 

 

JF is the Jacobian matrix for operator F and i is the iteration number. The solution for (4) 
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can be found using direct matrix methods such as LU factorization. The iteration stops 

when the difference between v
i
 and v

i+1
 is smaller than some predefined value. 

In a transient simulation, the construction of the system of equations, the 

discretization of this set of DAE’s, and the iterative matrix solves are carried out at every 

time step. In accordance to analog designers’ expectations, SPICE simulators prioritize 

high-accuracy above anything else [1]. This in turn means highly-accurate and detailed 

device models, creating a single system of equations for the entire circuit, using very fine 

time steps during discretization, and calling direct matrix solvers that are computationally 

expensive. All these traits as well as the purpose of the analog simulator are considerably 

different from those of the digital simulator, as the next section will show. 

2.2 Digital Simulator 

Digital designers work with circuits that have already been validated at the 

transistor level to design a larger system that performs a digital function. The purpose of 

the digital simulator, hence, is to evaluate the logical function that the design created. 

These designs are generally written in a hardware description language (HDL) like 

VHDL or Verilog, and simulated in a digital simulator such as VCS or ModelSim. The 

HDL is a functional model of the design and is later mapped to standard cells 

implementing different logical functions using digital synthesis tools. 

In simulation, the distinct changes in Boolean values are tracked. As a result, 

digital simulators are discrete-time and only evaluate the functional models when inputs 

change. An internal time-wheel mechanism keeps track of when the input changes occur - 

these are called triggering events. When such an event is encountered, the simulator 

wakes up and computes the new outputs. If the outputs change, the changes are scheduled 

to take effect at a future time as determined by the delays of the gates. Then the time-

wheel advances. Periods with no change in Boolean values (e.g. between clock cycles of 
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a flip-flop) are skipped in the simulation until the next triggering event – this is called the 

selective trace technique [16]. Thus, as time progresses the evolution of the system’s state 

is determined and the logic function of the design is verified. 

The fundamental difference between an analog and a digital simulator can be 

illustrated using an inverter with some clock input (see Figure 1). To the analog simulator, 

an inverter is two transistors. The SPICE algorithm will be concerned with solving the 

output waveform very accurately at each time instance, and will be doing computations at 

all times (although the figure shows constant time steps for computation, more advanced 

analog simulators have adopted variable time steps so that computation occurs less often 

when the signal is not fluctuation much). The digital simulator, on the other hand, only 

computes the output of the inverter when the input changes its Boolean value. The correct 

timing of the output will come from the delay of the inverter annotated in its functional 

model. Therefore, for the same amount of time simulated, an analog simulation is much 

more computationally intensive and time-consuming. 

 

Figure 1 – Different treatment of an inverter by analog and digital simulators 
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2.3 Modified Simulators 

The previous two sections have demonstrated that analog and digital simulators 

use different algorithms and have very different computational costs. This clear 

disconnect makes mixed-signal validation difficult. The following sections review 

research that concentrates on altering the simulators to make them more suitable for 

mixed-signal simulations. Fast SPICE involves a collection of techniques to accelerate 

the basic SPICE engine so that larger designs (possibly including digital as well) can be 

simulated. The piecewise-linear simulator speeds up simulation by using a piecewise-

linear description of the circuit network instead of the full system of nonlinear DAE’s. 

However, simulating digital circuits with analog simulators is difficult even with efficient 

algorithms and simplified nonlinear DAE’s. Therefore, the mixed-mode simulators focus 

on creating an appropriate interface between an analog and a digital simulator so that the 

two different types of circuit can be simulated with their native engines.  

2.3.1 Fast SPICE 

The conventional SPICE simulator, whose mathematical engine was briefly 

outlined in Section 2.1, provides a means of modeling integrated circuits with the highest 

possible accuracy. Because of this constraint on accuracy, SPICE simulators must use full 

equation-based device models as well as high complexity direct linear solvers on a single 

large matrix that represents the entire design. All this results in a simulator with a 

complexity of O(n
1.5-2

) where n is the number of nodes in the circuit and a limited 

capacity of about 100,000 active elements (MOSFETs) [1]. With modern SoC designs 

reaching an active element count of from 100 million to 1 billion MOSFET devices and a 

parasitic devices count in the millions, performing full-chip functional simulation is well 

beyond the capabilities of conventional SPICE. On the other hand, the accuracy 

requirement for full-chip functional validation (especially for the digital parts of an SoC) 

is not as stringent [1]. The accelerated transistor-level (“fast SPICE”) simulator, therefore, 
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leverages this fact and applies three general methodologies to speed up simulation. These 

methodologies may be classified as matrix-based, graph-based and circuit-based. 

The matrix-based approach is equally applicable to both analog and digital 

circuits. At its core, it fundamentally argues that after all other optimizations, there was 

going to be a system of equation that needed to be solved and hence developing faster 

matrix solution algorithms will lead to shorter simulation time. For instance, hMETIS [13] 

reorders nodes during matrix factorization and linear solves to produce fill-reduced 

sparse matrices that are easier to solve. Furthermore, matrix preconditioning techniques 

such as incomplete LU factorization and multi-grid preconditioning [1] can be used on 

sparse matrices to reduce solve time. There are also fill-in based matrix partitioning 

algorithms, such as [9], that review the fill-in patterns and break down the problem into 

smaller pieces such that the sub-problems are easier to solve than the single matrix. 

The graph-based approach contains an eclectic selection of techniques that rely on 

treating the design as a graph and drawing inspiration for acceleration from hierarchical 

circuit data storage.  It has been observed in [19] that simulating a very large circuit on a 

computer with a virtual memory leads to a large amount of paging due to the near random 

distribution of data in memory. By maintaining hierarchy in a design, and careful 

memory allocation, data structures for a given sub-circuit will be in a smaller number of 

pages, and hence will reduce overheads and improve the run-time of the simulator. 

Therefore, efficient methods for processing hierarchical netlist have shown to improve 

speed and capacity, most predominantly in the simulation setup phase [1]. Isomorphic 

matching techniques [14] [15] also fall into the graph-based category. Because the netlist 

data is stored hierarchically, sufficiently identical circuit blocks can be found during the 

transient simulation phase, and repeated simulation is avoided. The isomorphic matching 

technique is particularly well-developed for identifying highly regularized circuit blocks 

like memory arrays, leading to methodologies such as hierarchical array reduction [10] 

[11] that can improve memory simulation speeds by up to 50x. 
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The circuit-based viewpoint targets the acceleration of SPICE for digital circuits. 

The method is a two-step process. First separate the circuits, automatically or semi-

automatically, with respect to their functional characteristics – analog or digital. Second, 

develop and apply appropriate optimization and simulation strategies for the two circuit 

types separately. The circuit partition algorithms have evolved over the years. Initially, 

simple methods such as grouping channel-connected MOSFETs proved to be effective in 

predominantly digital circuits connected to ideal voltage sources [1]. More recent 

advances in partition methods introduce digital rail detection as well as topological 

analysis [9]. Once the digital partitions are found, specialized simulation strategies can be 

applied to them. For example, approximate device models can be utilized instead of the 

full equation-based models.  Some common simplified device models include lookup 

tables of empirical gate delays [18] [20], ideal current source in parallel with a 

conductance exhibiting piecewise-polynomial characteristics [21] and DC operation 

region dependent current models [20] [31]. Another strategy is to use different matrix-

solving algorithms as well as integration time-points than the analog partition. For 

instance, relaxation-based algorithms in [17] discard coupling sub-matrices in the full 

matrix so that the decoupled matrices are faster to solve. In [22], the direct SPICE 

method with network separation is carried out so that relaxation is only applied when the 

coupling matrices are weak (i.e. close to 0). The coupling is also re-assessed dynamically 

for the duration of the simulation. In addition, this de-coupling allows latent sub-circuits 

(circuits whose node voltages and branch current don’t change much on successive 

iterations) to use larger time-steps of integration than those of critical analog circuits and 

hence increase simulation speed. This is called the multirate integration technique 

because in the basic SPICE engine, the entire design uses the same integration time-

points when solving the system of DAE’s. 

Though the three approaches (matrix, graph and circuit) have been presented 

separately, many fast SPICE simulators deploy all three simultaneously. Another 

technology that fast SPICE simulators benefit from is parallel computing. From the 
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matrix-based point of view, parallel and multi-threaded linear solvers can be employed to 

speed up simulation. From the circuit-based perspective, the partitioned sub-systems can 

be simulated in parallel on several processors. Some commercially available Fast SPICE 

simulators are listed in Table 1. Note that these simulators achieve an order of magnitude 

acceleration compared to conventional SPICE. 

Table 1 - Some Commercially Available Fast SPICE Simulators 

Tool Company Comments 

Spectre APS Cadence 10x faster than Spectre 

Proprietary full-matrix solver 

Multi-thread / multi-core 

Spectre XPS Cadence Announced on October 9, 2013 

Advanced partitioning/model reduction 

Virtuoso UltraSim Cadence Hierarchical storage 

Isomorphic and adaptive partitioning 

Automatic parasitic reduction 

Analog FastSPICE Platform Berkeley Design 

Automation 

5-10x faster than SPICE 

Proprietary full-matrix solver 

Multi-thread/multi-core 

FineSim Synopsys 3-10x faster than SPICE 

Advanced full-matrix solvers 

Multi-thread / multi-core 

HSIM Synopsys Hierarchical storage 

Isomorphic matching 

Parasitic reduction algorithm 

Eldo Premier Mentor 

Graphics 

2.5-20x faster than SPICE 

Proprietary full-matrix solver 

Multi-thread / multi-core 
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2.3.2 Piecewise-Linear Simulation 

In Fast SPICE, the high accuracy of analog circuit simulation is maintained, while 

various relaxation techniques are applied to simulate digital circuits. The piecewise-linear 

(PL) simulator is an interesting class of tools, in that it represents an entire design, 

including logic gates, resistors, capacitors and transistors, in the form of a piecewise 

linear system rather than the full blown differential algebraic system. In other words, it 

allows both analog and digital circuits to have a particular form of relaxation. 

Bokhoven in [88] derived that a continuous time piecewise linear dynamical 

system can be fully captured by (5). 

[
 
 
 
̇ ]  [
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]   [
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Vectors x and u represent the system’s inputs and state variables respectively. The matrix 

shown can describe a PL system of 2
n
 linear segments, with n being the dimension of 

matrix A33 [33]. The condition on p and q originates from the derivation of the matrix 

representation, which is based on the addition of ideal diodes as PL elements to linearize 

the system and ensure PL behavior is exhibited [88]. In this case, p would be the diode 

voltage, and q the diode current. As a result, equation (5) is sometimes called the ideal 

diode model.  

An advantageous property of piecewise-linear equations is that the solution 

algorithms yield global convergence, instead of local convergence which sometimes 

occurs for SPICE [33]. The most commonly used numerical algorithm for PL solutions is 

the Katzenelson algorithm [88]. This algorithm is similar to the Newton-Raphson 
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algorithm used in SPICE. The major difference is that the solution of the DAE system for 

SPICE is continuous, while here the system is described by a set of linear segments and 

discontinuities occur at the boundary of the segments. Therefore, at any iteration of the 

algorithm, if the solution vector was found to have crossed the boundary of the current 

segment, the next iteration would have to take a smaller time-step and the set of PL 

equations need to be solved for the new segment before further integration can occur. 

Stiphout et al. in [33] presents a piecewise-linear simulator, PLATO, combining the 

above PL representation of a system with multirate integration techniques described in 

Section 2.3.1. This implementation suffers from a great deal of computational overhead. 

Since each sub-circuits has its own optimal integration rate and simulation results are 

only available after the determination of a new stepsize, recomputation would be 

necessary if the new stepsizes differs too much from the previous ones because the design 

is flattened and simulated as a whole. Yang et al. in [34] improves simulation speed as 

well as capacity by performing symbolic and hierarchical piecewise-linear analysis. 

Instead of the ideal diode formulation, parameterized matrices model a given linear 

segment of the system behavior. Not only does this allow for more compact data 

representation, symbolic solution can also be obtained so that each iteration of the 

Katzenelson algorithm does not require a separate LU factorization, hence accelerating 

simulation speed. The hierarchical scheme allows very large (actually without limit) 

designs to be analyzed symbolically since the size of the circuit matrix that needs to be 

solved is reduced to the size of small sub-blocks [34]. The symbolic and hierarchical PL 

simulator proposed in [34] reports simulation speed ups of up to 10x compared to 

conventional SPICE. 

An interesting property of the piecewise-linear simulator is that macromodels of 

sub-circuits such as operational amplifiers can be simulated instead of the full transistor-

level model [33]. Just as digital circuits are simulated in their Boolean abstraction in 

digital simulators, here, the analog circuits can be simulated in a high-level piecewise-

linear abstraction. As long as a sub-circuit’s behavior is described by a set of PL matrices, 
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this sub-circuit can be inserted directly into the overall design’s matrices and be naturally 

mixed with low-level components [33]. The idea of abstracting away transistors inside an 

analog sub-block is actually what macromodeling – another area of research geared 

toward mixed-signal SoC validation – attempts to achieve. The macromodeling solution 

will be presented in Section 2.4. 

2.3.3 Mixed-Mode/Co- Simulation 

Fast SPICE simulators have come a long way from conventional SPICE. Because 

of their efficient algorithms and in some cases, specialized technologies that target a 

specific circuit topology (e.g. memory arrays), they have been adopted by industry to aid 

in circuit design. Yet, they are not often employed in SoC validation. Although Fast 

SPICE simulators have an improved time complexity of O(n
1.1-1.5

) compared to O(n
1.5-2

) 

of basic SPICE, they are still not scalable to designs with up to billions of active devices 

requiring millions of test vectors [1]. The mixed-mode simulator research community 

recognizes the difficulties of simulating both analog and digital circuits using an analog 

(or simplified and optimized analog) simulator, and proposes to stitch together an analog 

simulator with a digital simulator, thus allowing each type of circuit to be analyzed by 

their respective engines.  

Some work (for example [12] and [24]) focus on implementing only the interface 

and making it flexible so that numerous simulators can be coupled together without much 

modification to the interface itself. Others choose to integrate specific analog solvers and 

digital simulators into a single entity. Whichever the route taken, the key elements at play 

in the design of a mixed-mode simulator are sub-circuit type labeling, electrical interface 

between analog and digital, and global timing synchronization. First, circuit sub-blocks 

must be designated as digital or analog. Manual partitioning of a design is often done [20] 

as it is natural in a top-down flow for the designer to be aware ahead of time which sub-

blocks are analog and which are digital. In this case, the partitions are inherent in the 

representation of each block: schematic for analog, RTL for digital. 
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Once the sub-circuits are marked for either the analog solver or the digital engine, 

the interface between analog and digital circuits needs to be defined and signal value 

conversion rules need to be set. In its simplest form (as seen used in [16]), an analog to 

digital signal conversion is a threshold given by (6): 

       {
            (      )
           (       )

 (6) 

 

where VDD is the supply voltage, and kr and kf are technology dependent constants with 

0<kf<kr<1. A more elaborate conversion method is used in [20] in which a four-level 

threshold (Max-H, Max-L, Min-H, Min-L) is implemented, such that Max-H and Min-H 

determine the margin for the detection of logic high and Max-L and Min-L determine the 

margin for logic low. If the simulator does not detect two logic levels (high and low) or a 

digital input is non-monotonic, an error flag is sent to the user or if the schematic 

representation of the digital block is available, the simulator automatically switches this 

block to the analog solver. 

For digital to analog interface, the typical method is to use rise and fall times on 

the digital signal since analog solvers do not handle well instantaneous transitions in 

voltage [16]. In [20], the user defines delay parameters including rise/fall time and 

driving capability in capacitance units. The total rise/fall delay time would equal rise/fall 

time + capability factor * load capacitance. The high impedance state in digital logic 

could be modeled as a user defined high impedance output resistance, which is ramped 

exponentially to its final value so that instantaneous changes in voltage can be avoided 

[16]. 

The last major piece to a mixed-mode simulator is a global timing 

synchronization mechanism. Recall from Section 2.1, the time-steps in the analog solver 

is controlled by the required simulation accuracy. For the digital simulator, the evaluation 

points occur when inputs change and is recorded on a time wheel. The time instances of 



Chapter 2. Mixed-Signal Validation Background 17 

 

 

 

the analog time-steps are independent from the time instances of the digital events, but 

they need to move forward together in a mixed-mode simulator. The scheme presented in 

[16] and [23] is to preserve the digital event list and between the events, let the analog 

solver evaluate using numerical methods but adapt the integration step such that it stops 

at a digital event. At the same time, when an analog signal reaches a certain condition 

that causes a digital event, that event is scheduled on the digital time wheel to force an 

evaluation in the digital simulator. 

Now that the conceptual mixed-mode / co- simulator is complete, parallel 

computing can be applied to accelerate simulation just as it had benefited Fast SPICE 

simulators. A design is first partitioned onto different processors, either randomly or by 

applying some heuristics such as grouping by nearness [25]. Communicating across 

partitions is a large overhead. Value synchronization across multiple processors is 

typically achieved with sending messages containing information on the last simulated 

time [24]. A few scheduling policies include deadlock avoidance [26], deadlock detection 

and recovery [27], the Timewarp algorithm [30] and the moving time window algorithm 

[28]. The latter algorithms try to reduce communication by blocking value udpates in 

time. Speedup from parallelism is typically sub-linear due to the communication 

overhead across multiple processors [24]. 

Mixed-mode or co- simulators bring together analog and digital simulation with 

the aim to benefit from the best of two worlds: analog circuits will be solved accurately 

by the analog simulation engine, and at the same time, the digital simulation will be 

maintained at its usual blazing speed [29]. When pitted against top-level mixed-signal 

SoC validation, however, analog simulation becomes the bottleneck and slows down the 

entire simulation [32]. Even if a Fast SPICE simulator were used as the analog solver 

here, the speedup would be about an order of magnitude (recall from Section 2.3.1 and 

2.3.2), but performing mixed-signal SoC validation requires the analog circuits be 

simulated over millions of test vectors. For example, a test might involve a power-up 

sequence that needs to wait for the analog circuits to turn on and reach a stable operation 
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point, or it might run through a complex digital calibration loop. These simulations could 

take ms or even longer, while the analog simulator’s integration step might be on the 

order of ps or fs. Therefore, another line of attack is needed. 

2.4 Macromodeling 

Modifying the analog and digital simulators brought about some (but not enough) 

simulation acceleration. Time is predominantly being spent in the analog simulator. With 

this in mind, macromodeling aims to alleviate the analog bottleneck. Given a circuit 

netlist, the complete behavior of the system is captured by a set of differential-algebraic 

equations (1). Loosely speaking, the macromodeling problem (sometimes called model 

order reduction problem) is defined as finding an alternate, possibly simpler, version of 

(1) which will then simulate faster, but preferably retain as much of the full SPICE model 

behavior as possible. To evaluate the effectiveness of macromodeling for the mixed-

signal validation problem, this section will review two macro model generation methods. 

Both methods assume a model candidate and attempts to determine the model 

“coefficients” through an assortment of approximation techniques. The Linear Time 

Invariant (LTI) macromodeling method, as the name suggests, assumes the circuit is an 

LTI system. The nonlinear methods assume various degrees and types of nonlinearity 

exist in the circuit to be modeled. 

2.4.1 LTI Circuit Macromodeling 

A representation of an LTI system is its transfer function H(s). Since the analog 

circuit is assumed to be LTI, a straightforward modeling method is to fit a reduced-order 

transfer function Hr(s) to the original full transfer function. A well-known method is the 

Padè approximation [53] in which Hr(s) takes the form of 
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 ( ) is also known as the k-th moment of the transfer function. Hence this is 

also called the moment-matching method. Asymptotic Waveform Evaluation (AWE) and 

Padè via Lanczos (PVL) are two macromodeling algorithms based on this idea. AWE [58] 

explicitly computes the moments to perform the order reduction; however, the reduced 

model often has numerical inaccuracies which then need to be remediated using heuristic 

methods. PVL [59] improves on the numerical instability and provides an error bound on 

the accuracy of the reduced model. 

So far, moment-matching algorithms yield reduced models in the frequency 

domain; however, recall from Section 2.1 that an analog simulator solves a set of DAE’s 

and therefore cannot simulate a transfer function. The transfer function could be 

transformed into the matrix format that an analog solver accepts, but it is difficult to 

control the properties of the resulting matrix (for example, it might be non-passive which 

then leads to instability [47]). Linear projection based algorithms start with the DAE 

representation of the circuit, and projects that system onto a smaller linear subspace that 

still roughly encloses the circuit’s trajectories. The intuition is that by projecting the 

system onto such a subspace, the model order is reduced and at the same time, major 

dynamics of the original circuit is preserved since most of the system’s state is reachable 

in the smaller subspace [39]. For LTI circuits, the DAEs have a specific form due to 

linear properties: 
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The vector x represents the state variables, u the list of inputs and y the list of outputs. 

The reduced-order model is in the same form with new and smaller C, G, B, and D 

matrices that are defined by 

    
        

        
       

    (10) 

 

V and W are projection matrices that define the smaller subspace onto which the original 

system is projected [39]. Since these models look just like any other matrix that an analog 

simulator is intended to solve, they can be directly inserted into SPICE/fast SPICE or a 

mixed-mode simulator. The selection of the V and W can be made to guarantee certain 

desirable linear circuit properties of the resulting macromodel, such as passivity [47], 

balanced controllability and observability [43], stability[44], etc. 

The speed up achieved by simulating the reduced order macromodel instead of the 

full circuit DAE is directly correlated with the amount of order reduction performed. The 

smaller the resulting macromodel, the faster it will simulate. Wang et. al in [35] 

demonstrats LTI macromodeling of a two-stage op-amp using projection-based methods. 

The model order is reduced from 51 to 16, and a 60x improvement in runtime is observed 

using HSPICE. 

2.4.2 Nonlinear Circuit Macromodeling 

Nonlinear macromodeling has the same goal as LTI macromodeling, which is 

finding a lower order matrix representation of an analog circuit; however, it has the 

additional aim of capturing some nonlinear behavior of the original DAE’s as well. 

Macromodeling algorithms for nonlinear systems are not as mature as those of LTI 
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systems [39]. In most cases, a particular modeling technique and model candidate are 

needed for each type of nonlinear behavior to be preserved in the reduced model. For 

example, if the behavior is linear time-varying (LTV), the Padè-like moment matching 

algorithm presented in [36] can be applied to preserve moments of such a system. The 

model candidate is a set of multirate partial differential equations. For a nonlinear 

behavior described by a Volterra series approximation, the NORM [41] algorithm retains 

the moments of the Volterra kernels by using polynomial differential equations as the 

model candidate. More nonlinear macromodeling algorithms are listed in Table 2. 

Table 2 – Nonlinear macromodeling algorithms 

Method Model Candidate Behavior Retained Application 

QLMOR [48] quadratic-linear 

differential equations 

moments of Volterra 

kernels 

weakly nonlinear 

circuits 

ISF [37] time-varying phase 

sensitivity 

oscillator phase 

sensitivity 

oscillators 

PPV [38] scalar differential 

equation 

oscillator phase 

sensitivity 

oscillators 

POD [39] linear differential 

equations 

deviation from training 

waveforms 

nonlinear circuits 

TPWL [48] piecewise-linear 

differential equations 

moments of transfer 

function of each 

linearized segment 

nonlinear circuits 

ManiMor [45] piecewise-linear 

differential equations 

DC and AC response nonlinear circuits 

 

The ad hoc nature of the above collection of algorithms is a good indication that 

nonlinear macromodeling is a difficult problem. In fact, many of these algorithms do not 

achieve much order reduction in their macromodels. For example, the POD method, 
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which is based on the idea of projecting the nonlinear state space onto a linear sub-space, 

may return a macromodel that’s as large as the full model [39]. The ManiMor algorithm 

fairs a little better. Gu et. al [45] [46] proposes that the trajectories of a nonlinear circuit 

are restricted not to a linear subspace, but more likely to a nonlinear manifold. Intuitively 

speaking, since a manifold presents a more “snug” fit to the space that contains the 

circuit’s trajectories, it is usually lower-dimensional compared to a linear sub-space. In 

[45], a 4-stage CML buffer with inductive peaking is shown to be order-reduced from 52 

to 5 by the ManiMor algorithm. 

LTI macromodeling provided nearly two orders of magnitude of analog runtime 

reduction; however, these order-reduced models are still not commonly used in high-level 

validation of mixed-signal SoC’s with large digital circuits [39]. Nonlinear 

macromodeling, though more accurate in the sense that some nonlinearity of the original 

model is captured in the reduced model, is even less likely to provide the necessary 

simulation acceleration. Behavioral modeling is a form of macromodeling that relaxes the 

stringent requirement of accuracy and the next section will focus on this approach to 

mixed-signal validation. 

2.5 Behavioral Modeling 

The LTI and nonlinear macromodeling methods seek to ensure that the reduced-

order model faithfully captures circuit characteristics in the transistor-level description 

[39]. Full-chip functional validation, however, has more moderate expectation on 

accuracy; designers were willing to pay a price for the ability to simulate a much larger 

system with greater speed [1]. Behavioral modeling is a method of fulfilling this need. 

Behavioral models are hand-crafted (sometimes automatically generated) models written 

in a high-level language that require expert knowledge of the analog circuit being 

modeled [39]. Because the models are not derived directly from low-level transistor 

models, there will be some loss in accuracy [52]. The attractiveness of behavioral 
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modeling, however, comes from the potential for 100-1000x simulation speedup [32] and 

at such speeds, a more complete validation of mixed-signal SoC seems more feasible. In 

addition, it is possible to include checking or assertions in the behavioral models to aid 

the validation effort. Many high-level modeling languages exist and the following 

discussion will be divided according to the language used. 

2.5.1 Simulink/Matlab 

Simulink/Matlab has been a popular tool for system-level functional simulation 

and verification [64]. The Simulink libraries have wide-ranging fundamental building 

blocks including continuous time integration, derivative, state space and transfer function 

blocks, discrete time quantizers, filters and delay elements, mathematical operators, 

signal routing blocks and data visualization scopes. The system-level designers only have 

to select the correct blocks from the libraries, connect them and configure the simulation 

settings [64]. If only discrete time components exist in the model, the solver is discrete; 

for continuous time states, several DAE solvers are available and the user may choose 

between fixed step size or variable step size numerical integration methods – the variable 

step size integration method is a means of potential simulation acceleration. In fact, the 

MATLAB toolbox has been widely used (for bang-bang PLL’s [65], clock/data recovery 

circuits [66], DC-DC regulator’s [67], etc.) and is the de facto tool for discrete-time delta-

sigma modulator modeling [64]. A disadvantage of Simulink/Matlab is that these models 

must run in Matlab’s simulator and cannot be easily connected to the digital system that 

needs to be validated in an SoC. 

2.5.2 SystemC-AMS 

SystemC-AMS is a more recently available modeling language that has garnered 

some attention. This is a C++ based language that extends SystemC (a digital circuits 

modeling language) and provides three Modes of Computation (MoCs) – Timed Data 

Flow model (TDF), Linear Signal Flow model (LSF) and Electrical Linear Networks 
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model (ELN) [69]. TDF is a discrete-time modeling style which treats data as signals 

sampled in time while carrying discrete or continuous values [70]. Different blocks are 

allowed to have different time steps [69]. The LSF MoC enables the modeling of 

continuous time systems as a set of linear algebraic equations [70] – this is similar to 

Simulink’s continuous model elements. In the ELN model, electrical primitives can be 

instantiated along with the rest of the design. Available primitives include [70] 

current/voltage sources, resistors, capacitors, inductors, transmission lines, transformers, 

ideal switches, etc. In literature, models of PLL’s [69] have been demonstrated. 

Heterogeneous systems (e.g. CMOS video sensor [71], wireless sensor networks [72]) 

have also found SystemC-AMS to be a useful modeling language. Unfortunately, again, 

SystemC-AMS has its own simulator and therefore is difficult to connect to a digital 

system written in Verilog. 

2.5.3 Verilog-A/Verilog-AMS/VHDL-AMS 

These languages, like MATLAB/Simulink and SystemC-AMS, are capable of 

handling continuous as well as discrete systems; but they have the added advantage of 

easier integration into circuit design tools such as Cadence, which has mixed-mode 

simulation capabilities [64], making the connection to a digital system relatively easy. 

Verilog-A is an extension of Verilog-HDL and introduces analog functions such as 

integration, differentiation, delay, transition, Laplace transform and Z transform [74]; and 

its solver for continuous systems is similar to DAE solvers found in SPICE simulators. 

Verilog-AMS and VHDL-AMS are the union of Verilog/VHDL and Verilog-A, and 

therefore inherit the ability to handle both digital and continuous time analog signals [73]. 

Models of diodes [75], gain amplifiers [74], PLL’s [73], delta-sigma modulators [76], etc. 

have been prototyped. 

Labeled Hybrid Petri Nets (LHPN) [60] [62] is an interesting algorithm that 

automatically generates finite state machine (FSM) based models in Verilog-AMS. It 

relies on the concept of system identification [50] [51]. The general idea is to view the 
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circuit to be modeled as a black box, measure the circuit’s output waveforms 

corresponding to a set of input training waveforms, and fit a parameterized model that 

relates the input and output. 

All the languages here have a SPICE-like analog solver. Even though it is most 

likely solving a much smaller problem than a full circuit DAE, once the solver is invoked, 

it must execute all the steps described in Section 2.1 in order to solve differential 

equations. Therefore, using the continuous time analysis capabilities of these languages 

will result in longer simulation times compared to pure digital simulation. For example, 

David in [68] presents a PLL Verilog-AMS model that simulates approximately 125x 

faster than its transistor-level representation. 

2.5.4 Digital Verilog with Real 

Lastly, Verilog simulators with “real” value interconnect wires and basic 

algebraic capability have existed for several years [80] and modeling using digital 

languages (VHDL/Verilog/SystemVerilog) with these extended functionality has been 

demonstrated. Digital Verilog is inherently discrete-time, hence sampled data systems 

have a natural fit into the simulation environment [77]. The format of sampled data is 

illustrated in Figure 2. The signal updates periodically and at each update, the signal has a 

value and that value is held constant until the next update. 

 

Figure 2 – Sampled data representation of continuous time signal 

 

V[i] 

V[i+1] 
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Some analog systems such as delta sigma modulators (DSM) and switched 

capacitor (SC) filters can be modeled with sampled data without much difficulty. Take 

the first order DSM in Figure 3 as an example. The output of the modulator will be 

sampled directly by a digital system and when properly designed, all nodes will settle 

when the clock edge arrives. In other words the system is synchronous. The same can be 

said of SC filters. Figure 4 shows the corresponding signal flow graph for the first order 

DSM assuming CF = C. 

  

Figure 3 – Switched capacitor implementation of 1
st
 order DSM 

 

Figure 4 – Signal flow graph for 1
st
 order DSM 

A difference equation that describes the system can be extracted from the graph as 

below: 
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Using SystemVerilog as an example, the pseudo-code for the first order DSM is shown in 

Listing 1. 

 

Listing 1 – Example model of first order delta-sigma modulator 

Recall from Section 2.5 that MATLAB has been used extensively to model delta 

sigma modulators and switched capacitor filters. Here, digital Verilog languages with real 

number extensions provide similar capabilities. For other continuous time analog systems, 

various transformation techniques to approximate them as discrete-time systems can be 

found in literature. The most common is the bilinear transform [77], which converts 

analog transfer functions to discrete-time difference equations using a sufficiently high 

sampling rate (by the Nyquist criterion). The use of the forward Euler integration 

module DSM ( 
  input clk, 
  input real Vin, 
  output real Vout 
); 
 
parameter real Vref = 0.5; 
real Vx, VF; 
 
always @ (negedge clk) begin 
  // fill in difference equation here 
  Vx = Vin – VF + Vx; 
  VF = sign(Vx)*(Vref/2); 
  Vout = sign(Vx); 
end 
 
endmodule 
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technique to perform the conversion has also been demonstrated in [80]. A variety of 

circuits have been modeled using the above concepts; these circuits include successive 

approximation ADC’s [77], auto-gain control circuit (AGC) [77], switched capacitor 

amplifiers [80], phase-interpolators [52], oscillators [78] and all-digital PLL’s [79]. 

2.6 Summary 

Validation of a mixed-signal SoC requires the concurrent simulation of both 

analog and digital in order to verify the complex interaction between the two [76]. 

Unfortunately, basic analog and digital simulators are inadequate for this job. The digital 

simulator cannot solve DAE’s and the analog simulator is too slow to compute 

waveforms for the digital back-end, which nowadays is likely to contain several million 

gates [78]. This chapter examined several research areas that address the issue of mixed-

signal validation. 

Fast SPICE experiments with the ideas of cleverer matrix manipulation and 

computation to speed up analog simulation, as well as efficient digital structure 

recognition and storage to allow for relaxation on digital simulation accuracy and hence 

improved digital simulation speed in an analog environment. Currently, however, they 

often cannot provide adequate simulation speed for large mixed-signal SoC [80]. 

Macromodeling and piecewise-linear simulators try to reduce the complexity of the 

nonlinear system that analog solvers need to solve and hence accelerate simulation. 

Mixed-mode simulation leverages the efficiency of specialization, and advocates for the 

preservation of accuracy for analog as well as speed for digital. It accomplishes its goals 

by bringing together an analog simulator and a digital engine through appropriate 

continuous/discrete conversion interfaces and timing synchronization mechanisms.  

Behavioral modeling seems to have the most potential in terms of simulation time 

reduction (up to three orders of magnitude). Many modeling languages and model 
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examples have been reviewed; some are faster, others are more easily connected to digital 

designs. Overall, the models are varied. It is not uncommon for engineers to have their 

favorite language and write what was needed at the moment [80]. This ad hoc nature 

causes compatibility issues and is a detriment to the efficiency of the validation process. 

What’s presented in the rest of this thesis is a set of guidelines that regularizes the process 

of creating behavioral models in an event-driven environment as well as an investigation 

of the applicability of these guidelines to mixed-signal SoC validation. 

 

  



 

30 

 

 

Chapter 3 

Behavioral Modeling Approach 

Based on the information provided in Chapter 2, behavioral modeling is currently 

the only approach that might be fast enough for mixed-signal SoC validation. In order for 

behavioral modeling to work well, the models must satisfy several criteria. When 

behavioral models are inserted into the top-level design for simulation, correlation 

between system success/failure and sub-circuit or interface correctness/error is dependent 

upon the equivalence of the behavioral models and their circuit implementation. Example 

equivalence checking methods include transfer matrix matching under linear system 

assumption [81], simulation trace matching [61], and finite-state-machine-based 

macromodel generation followed by state space exploration [83]. Regardless of the 

checking method used, to have the models verified at all stipulates that the pins of the 

model must match those of the schematics. This is the first criterion. Second, as discussed 

in Chapter 2, writing behavior models to raise abstraction level is a commonly-accepted 

solution to increase the simulation speed by hiding low-level details of the architecture 

[72]. Therefore, the models should simulate relatively quickly. Lastly, the mission of 

functional validation prior to tape-out is not only checking correctness of wire 

connections and signal routing, but also making a rough performance analysis “over night” 

[76]. Hence, capturing important circuit dynamics in the models is highly desirable.  
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With these goals in mind, this chapter will describe the necessary elements to 

writing behavioral models for SoC validation. First, a modeling language needs to be 

chosen and the reasons for choosing SystemVerilog as an example in this thesis will be 

discussed in Section 3.1. Then, in order to fit into a digital simulation environment that’s 

unidirectional, proper circuit partitioning is necessary and will be the topic of Section 3.2. 

Next, even though SystemVerilog is supplemented with real number capabilities, it is still 

a discrete-time simulator, and therefore an appropriate method of representing analog 

signals is presented in Section 3.3. Lastly, given the proposed signal representation, the 

models must compute their outputs in an efficient fashion and an approach will be 

described in Section 3.4. Throughout all these steps, designer’s knowledge is 

indispensable and will be relied upon to aid the modeling of analog circuits. 

3.1 Modeling Language 

Among the available modeling languages described in Section 2.5, SystemVerilog 

is used to write all the specific examples that follow; however, the methods presented in 

this thesis can be applied to any event-driven simulator with real number capabilities. The 

choice of this particular modeling language is rather arbitrary, but SystemVerilog is not 

without its many advantages. The digital languages (VHDL/Verilog/SystemVerilog) 

extended with real numbers have the potential for at least an order of magnitude increase 

in speed compared to Verilog-A/Verilog-AMS/VHDL-AMS [52]. Simulink and 

SystemC-AMS can achieve similar simulation speed at the system level, but models 

written in these languages have little resemblance to the actual physical implementation 

[9] and are very much disconnected with circuit design tools. SystemVerilog, on the other 

hand, is currently the go-to language for digital validation among all the digital modeling 

languages, and therefore eliminates the need to recreate the digital portion of the SoC for 

a different platform. Due to the above benefits, as well as in anticipation of the continued 

increase in analog/digital interaction and the size of mixed-signal SoC (and the 
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commensurate need for scalability), SystemVerilog is chosen as the representative 

modeling language. 

3.2 Circuit Partitioning 

Since the behavioral models need to run in a digital simulator - SystemVerilog to 

be specific – the first challenge to tackle is related to the unidirectional modeling 

framework of the digital environment. In general, digital gates are unidirectional [16] – 

the output of one gate drives the input of the next gate and the output of the driven gate 

doesn’t affect the output of the driving gate. The digital simulator is designed to deal with 

unidirectional signal propagation and uses the fact that a gate’s input changes cause it to 

re-evaluate that gate. 

With analog circuits, however, unidirectionality is not guaranteed. A good 

example is current summing nodes. In a current DAC (Figure 5), for example, the output 

of the current sources is current, while the feedback resistor drives a voltage back to the 

input node of the buffer. This causes conflict. In another example, the frontend of a 

single-slope ADC (Figure 6) could be intuitively split into a sampler with a sampling cap, 

a switchable current source and a comparator. Equivalence checking will work under this 

particular way of partitioning, but the input of the comparator would have two drivers – 

the sampler’s voltage output and the current source’s current output. The current source 

injects charge into the capacitor, which then sets the voltage. Like the feedback resistor in 

the DAC example, this current source creates a non-unidirectional node at the comparator 

input. 
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Figure 5 – Current summing node in DAC 

 

Figure 6 – Current summing node in single-slope ADC frontend 

In both examples, a current summing node cannot be on the boundary of a stand-

alone module; instead, circuit blocks must be combined so that these nodes are absorbed 

into the interior of a module. Equivalence checking would then be performed on these 

combined modules. For the current DAC, all the current sources need to be combined 

into a cell with a single current output that drives the buffer. Furthermore, by design, the 

input of the current buffer is a good virtual ground, hence the voltage at this node doesn’t 

move much. With this design intuition, the buffer with the feedback resistor must be 

modeled as one block with a current input and voltage output. In the single-slope ADC 

frontend, the sampler and current source must be combined to form a block with a single 

voltage output, which then drives the comparator. It should be noted that the schematics 
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can retain hierarchy, but it is important to have a wrapper for the combined block that can 

be checked against the functional model. The implication for validation using a digital 

simulator then is that hierarchies that contain non-unidirectional nodes should be 

carefully planned as early as the schematic design phase. 

A procedure to determine the appropriate boundary of analog wrapper modules is 

illustrated in Figure 7. To arrive at a model that has closer resemblance to the physical 

implementation, start with existing blocks in the schematic. Since these blocks most 

likely made intuitive sense to the analog designer, the models will be able to leverage the 

mathematical tools that were used, in the first place, to design these blocks to better 

capture the circuit dynamics. Non-unidirectional nodes usually occur when multiple 

current sources are summed or both current and voltage signals co-exist at a single point. 

A circuit designer would know best where these nodes are located in a schematic. If non-

unidirectionality exists, combine as few of the blocks as possible until all current 

summing nodes are within a module.  Smaller blocks are preferred since they are more 

likely to have well established theories that encapsulate their analog behaviors and hence 

are more beneficial towards the modeling of circuit dynamics. 

It might be possible to use an automatic program to execute the partitioning, as 

long as the circuit designers annotate “current” or “voltage” for all ports in a design. The 

automation program can then construct a graph of all the connections, detect nodes with 

multiple current drivers or current/voltage contention, and hide those nodes until there 

aren’t any left. Of course, the analog designer might want to prune the final result 

according to a design’s specific characteristics. For example, the computerized program 

might conclude that the entire DAC in Figure 5 is a single module; however, if the 

designer is aware that the virtual ground is a good approximation, then he/she might 

decide to have the current sources as one module, and the current buffer as a separate 

module. 



Chapter 3. Behavioral Modeling Approach 35 

 

 

 

 

Figure 7 – Circuit partitioning procedure 

3.3 Signal Representation 

After the analog circuits are properly segmented into unidirectional blocks, the 

next challenge to overcome is the fact that digital simulators work with Boolean values 

and discrete events, while analog signals are continuous-time and continuous-value. Even 

though simulators like SystemVerilog have real number extensions and is considered to 

be continuous-value, the digital environment is still discrete-time. This section will 

explain the issues with the sampled data representation of analog signals, propose a 

piecewise linear (PWL) representation and demonstrate that this augmented 

representation is capable of interaction with digital signals as easily as the sampled data 

representation. 

3.3.1 Sampled Data Representation 

When it comes to approximating a continuous time signal as discrete time, the 

most obvious method is to use a Nyquist sampled representation. Recall that this method 

has been described in Section 2.5 as part of the background on behavioral modeling. 
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Details of writing models for a delta-sigma modulator and switched capacitor filter were 

discussed as well. The ports of these models are real-valued and any digital simulator 

with real number extensions can handle this with ease. These circuits are also clocked 

and their output is synchronous. Since the evolution of the states in the system marches to 

the edges of one or more clock signals, the sampled data representation fits in naturally 

with signals that are updated periodically according to these clocks and held constant 

throughout the period until the next update. 

Although this approach has proven to work very well for “synchronous” analog 

systems, many analog circuits do not fall into this category. A classic example is a clock-

less comparator. As Figure 8 shows, a comparator toggles its output from low to high as 

its positive input increases in value beyond its negative input. In the continuous time 

world, the crossing point is indicated in the figure. When the input is represented as 

sampled data, the crossing point will be shifted in time. This error becomes smaller as the 

sample rate increases; however this means that an analog signal requires many finely 

spaced samples leading to prohibitive simulation time. The fundamental issue here is that 

the digital simulator cannot interpolate between two signal updates until the second 

sample arrives. 

 

Figure 8 – Comparator behavior using sampled data representation 
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A similar deficiency of the sampled data representation can be seen in a track-

and-hold circuit (see Figure 9). For simplicity, assume that the input is a sinusoid with the 

same frequency (100MHz in the illustration) as the sampling clock so that the same point 

on the input signal is sampled repeatedly. Under ideal conditions, the sampling clock has 

no jitter. The resulting sampled values are identically -0.5878 as shown in Figure 10. 

 

Figure 9 – Track-and-hold using sampled data representation 

 

Figure 10 – Sampled data representation with jitter-less clock 
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Now consider superimposing an rms jitter of 50ps on the sampling clock, while 

the sampled data representation is still used for the input. The sampled values are shown 

in Figure 11. In this case, the error on the sampled values compared to the case without 

jitter is either zero or equal to the difference between two consecutive input signal 

updates (or sometimes, when the clock happens to deviate quite far, the difference is 

between the ideal value and two signal updates away). What occurs in reality, however, 

should be an error distribution that’s close to a Gaussian. 

 

Figure 11 – Samples captured by jittery clock under sampled data representation 

3.3.2 Augmented Representation 

When dealing with asynchronous analog circuits, the sampled data representation 

of analog signals falls victim to a lack of information on the signal shape between sample 

updates. A solution is to augment the samples to contain more information. The concept 

of samples or signal updates will still apply since the digital simulator is discrete-time. 

One form of data supplement will be considered here: piecewise linear (PWL) signal 

representation. In SystemVerilog, pin-accuracy can be retained by defining structures that 

contain more than one element and passing these structures across module ports. Listing 

2 shows a structure containing a starting value v1 of the signal and a slope, as well as 

how it can be defined as the type of a module’s input/output port. 
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Listing 2 – SystemVerilog structure for piecewise linear representation 

With this structure, analog signals can be described in a piecewise linear manner, 

in which each linear segment starts at the value and continues on the slope. The time 

instance of each signal sample or update is indicated by a change in either element of the 

structure, and therefore is not restricted to any particular period like the sampled data 

representation. 

The PWL representation, like any approximation method, will cause errors. It is 

interesting to study the errors introduced into the simulation result of a design when its 

continuous time input is represented in piecewise linear format. To that end, a pure 

sinusoid of a particular frequency fsig is employed here for demonstration purposes. A 

fixed update rate fupdate for the piecewise linear representation is assumed for convenience. 

In effect, the frontend of the design consumes and processes a sampled signal 

reconstructed with an ideal first-order hold; in the frequency domain, the input sinusoid 

would look like Figure 12 with copies of the sinusoid spectrum shifted by integer 

multiples of the signal update rate fupdate and their magnitudes modified by a sinc
2
 

function. 

typedef struct { 
  real v1; 
  real slope; 
} pwl_struct; 
 
module TH ( 
  input pwl_struct Vin, 
  input clk, 
  output pwl_struct Vout 
); 
 
. . . 
 
endmodule 
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Figure 12 – Spectrum of piecewise linear representation of a sinusoid 

If the attenuated spectrum copies are considered to be unwanted signal content or 

“errors,” then a metric for measuring the amount of error introduced by the PWL 

representations could be formulated as the difference in power between the signal tone 

and the largest spur. Figure 13 plots this difference for various ratios of signal update rate 

to sinusoid frequency. For any band-limited system, the circuits that process this sinusoid 

will further attenuate the spurs. The amount of suppression depends on the system’s 

bandwidth and the chosen signal update rate.  

 

Figure 13 – Signal to error ratio vs. signal update rates for constant time internal PWL 

waveform 
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This analysis indicates that the PWL representation results in small spurs in the 

continuous time domain, while the sampled data representation does not introduce any 

distortion to synchronous systems in the discrete time domain. However, although the 

signal update rate is fixed in the above discussion for convenience, the piecewise linear 

representation does not stipulate such a fixed rate. A signal may exhibit different rates of 

change throughout the simulated time frame; the update rate may be faster when the 

signal slope changes quickly, or it may be slower when the signal barely moves. This 

freedom cannot be easily afforded by models leveraging the sampled data representation 

and bilinear transforms, since such transforms require a known and fixed sample rate. 

The key value of the PWL representation, however, lies in its ability to allow 

digital simulators to generate asynchronous events, thereby solving the issue with the 

sampled data representation that was identified in the preceding section. To illustrate the 

enabling abilities of the PWL representation in general terms, Figure 14 depicts all the 

circuits and interfaces that can now be modeled (the sampled data representation is 

suitable for modeling only the right half of the figure). 

 

Figure 14 – Block to block interactions in mixed-signal design 
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First consider a PWL signal crossing from the analog to the digital domain. The 

signal could cross as a data signal or a clock signal. If it crosses as a data signal, then 

there will usually be a digital clock that samples it and the sampled value can be 

interpolated at the clock edge according to the slope of the signal. This case is similar to 

the track-and-hold example. Using the same sampling clock with 50ps rms jitter and the 

same input signal represented in PWL format, the distribution of the sampled values is 

portrayed in Figure 15. Compared to Figure 11, this distribution more closely resembles a 

realistic profile.  

If the signal is a clock signal that’s generated in the analog domain and supplied 

to the digital domain, then the timing of the clock edges are critical for the digital circuits. 

In this case, any delay or skew of the clock signal will need to be accounted for in the 

analog block that generated the signal. This case was illustrated by the continuous time 

comparator example in Section 3.3.1. The asynchronous crossing of the comparator can 

now be resolved since the slope information allows the simulator to interpolate.  

 

 

Figure 15 – Samples captured by jittery clock under piecewise linear representation 
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Similarly, the signal flow from synchronous to asynchronous circuits can also be 

modeled. The treatment is the same whether it’s a data or clock signal. The format of the 

signal needs to be first converted to the PWL structure, in which the slope element would 

be identically 0 in this case. If the rise or fall time is important for modeling the receiving 

analog module’s behavior, then slopes and delays can be attached to the staircase signal 

to make them trapezoidal signals. This can be done as a frontend to the analog module or 

as a separate module since digital signals typically have a few buffers or inverters to 

increase their drive strength for the downstream analog blocks. 

Lastly, the PWL signal representation allows a chain of asynchronous circuits to 

be modeled. In order for a chain to exist, the individual analog models need to consume a 

PWL signal from the previous block and produce a PWL signal for the next block. The 

details of the required computation will be the topic of the following section. 

In summary, the commonly used sampled data representation of analog signals is 

unsuitable for modeling asynchronous analog circuits. A piecewise linear signal 

representation (or some form of data supplementation) solves this issue. Providing the 

value and slope of the signal during each update allows digital simulators to generate 

asynchronous events for asynchronous circuits and therefore sets up the stage to better 

capture circuit dynamics – a goal of modeling writing established at the beginning of the 

chapter. In addition, the user defined structure available in SystemVerilog lets multiple 

pieces of data to be passed through a port as single entity and therefore pin-accuracy of 

the model can be preserved under PWL signal representation. 

3.3.3 Another Augmented Representation: XMODEL 

The XMODEL [55] is a modeling approach developed contemporaneously and 

independently from this work. It seeks to write behavioral models that describe analog 

functions as nearly linear filters in the s-domain (possibly after some domain 

transformation [54] to place the circuit in a mostly linear domain) and consequently uses 
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the s-domain representation of analog signals. Data augmentation is achieved via the 

equivalence between a time domain signal and its Laplace transform.  

Jang et al. show in [55] that waveforms of source elements available in SPICE 

can be captured in the form of x(t) with their equivalent Laplace domain expressions X(s) 

as shown below: 

 ( )  ∑    
       

 
        ( )   ∑

  
(    )     

 (12) 

 

The set of coefficients {ai, bi, mi} uniquely identifies an analog signal. The output of a 

model can then be computed by multiplying the s-domain representation of the input with 

the s-domain transfer function of the system. The resulting expression will have the same 

form as (12) after partial-fraction decomposition. The inputs and outputs of all models are 

therefore a set of real numbers corresponding to the coefficients of the signals’ Laplace-

domain representation. This set of coefficients changes in size and value at discrete 

instances to reflect the signal change in time domain. Consequently, unlike the PWL 

representation, XMODEL does not require steps in time; however, reconstruction is 

necessary to view the waveforms in time domain. A high-speed link including a 

transmitter, channel, a continuous time equalizer (CTLE), and a decision feedback 

equalizing receiver has been demonstrated in [55], and a switching boost converter in 

[56]. Among these models, the CTLE achieved ~990x speed-up compared to HSPICE. 

The two different representations each have their own advantages, and which is better 

depends heavily on the type and complexity of waveforms and systems modeled. 
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3.4 Module Output Computation 

As shown in Figure 14 of Section 3.3.2, the input and output of analog circuits are 

now a multi-element, real-valued structure – no longer the Boolean used in typical digital 

designs. Hence, a way of computing a PWL output from PWL input is fittingly the next 

challenge. The linear abstraction of analog circuits and the concept of domain translation 

mentioned in the behavioral modeling section of the background will be leveraged in the 

process. Recall that analog result surfaces are smooth in some domain; it could be the 

voltage or current domain, or some transformed domain such as phase and time. This 

smoothness is what makes analog validation practical. 

A continuous time amplifier, for example, is smooth in voltage. This circuit is 

biased at an operating point on its smooth result surface and the vicinity of the bias point 

can be captured by a linear system (possibly with small non-linearity). The amplifier 

might be made to move to a different operating point through the adjustments of, for 

example, the bias current. Though the system that describes the behavior of the new 

operating point will be different, it nonetheless remains linear. In another example, a 

ring-based voltage controlled oscillator’s output is roughly a square wave in the voltage 

domain and therefore is not smooth. When viewed in the phase domain, however, the 

VCO accumulates phase by integrating frequency over time. Integration is a linear 

operation and the VCO frequency is a (piecewise) linear function of the control voltage. 

Therefore, if phase was taken as a VCO’s output, the system would be smooth. A circuit 

designer’s knowledge must be called upon to determine a domain of linearity for a 

particular circuit and the model’s output is computed in this domain (followed by a 

possible translation to the voltage domain for the downstream modules if necessary).  

Based on this linear assumption, the computation of the PWL output of a module 

due to a PWL input can be accomplished in three steps. First compute the continuous 

time domain response of a module due to a single linear segment on its input. Then based 

on the time constants of the system, a piecewise linear approximation is formed. Repeat 
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with the next linear segment that arrives on the input. Lastly, in order to be efficient, 

output updates that are within a certain error tolerance are removed. The following 

sections will describe the process of computing a module’s output in more detail. 

3.4.1 Time Domain Response 

A piecewise linear input can be viewed as a series of delayed inputs each with a 

different initial value and slope. The total transient response is a trajectory traced out by 

the evolution of the system’s states when stimulated with successive delayed inputs. 

Since the final states at the conclusion of the current input segment are the initial states 

for the next input segment, and each input segment is in the same form (i.e. value and 

slope), it is sufficient to examine the behavior of the system due to a single linear 

segment and repeat the computation for the sequence of linear segments as they get 

updated.  

Under the assumption of linear intent, the superposition property allows a 

piecewise linear segment to be decomposed into a step with magnitude equaling to the 

initial value element of the PWL structure, and a ramp that starts at 0 but increases at the 

rate indicated by the slope element of the PWL structure. The total response of the system, 

then, is composed of the response to the step, the response to the ramp and the decay of 

the initial states of the system. Figure 16 illustrates this decomposition. 
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Figure 16 – Time domain response to input linear segment 

The input linear segment with  being the initial value and  being the slope is 
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 respectively in the Laplace domain. For any linear module with a transfer function 

F(s), the time domain waveform of the driven response (due to the new step value and the 

new ramp) can be calculated using the inverse Laplace transform method. This is shown 

as the top two paths in the figure. The decay of the initial states is subject to the dynamics 

imposed by the poles of the system in question and this translates to exponentials in the 

time domain. Adding this third path completes the picture for the time domain response. 

To be more concrete, take the example of a single-pole system in Figure 17 (this 

could be a track-and-hold in track mode, an amplifier, an RC network, etc.). The total 

output response to a linear segment on the input is a sum of exponentials. The last term 

depicts the decay of the initial state, i.e. the previous voltage on the capacitor slowly 

drains away. The rest of the terms constitute the driven response due to the linear 

segment. This response can be further decomposed into a response to the step and a 
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response to the ramp. The response to the step is represented by term number three – an 

exponential approach to the step value. The response to the ramp is represented by the 

first two terms, in which the first term indicates that the output voltage tracks the slope on 

the input, while the second term indicates a finite error in the tracking that converges to -

 as time approaches infinity. Other linear systems will yield similar closed-form 

equations that compute the module’s output, as a function of time, in response to a linear 

ramp on the input. 

 

Figure 17 – Time domain response of single pole system to a linear input segment 
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output waveform when it is stimulated by a linear ramp. It is necessary now to convert 

this waveform into piecewise linear segments for the following block to process. In order 

to obtain a reasonable segmentation, the time constants in the system need to be 

examined. Continuing with the single-pole system example, and assuming a step input 

(the slope element is 0), Figure 18 illustrates output waveforms of two systems with 

different pole locations. Systems that respond quickly (i.e. small time constants) produce 
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signals that change more quickly and therefore require shorter linear segments. In Figure 

18, T1 (less than T2) is needed for the faster system. 

 

Figure 18 – PWL segment length for systems with different time constants 

The general idea is to estimate the length of time after which the output response 

deviates too much from a linear ramp, output immediately the segment describing the 

signal from now until that time, and return after that length of time has expired to 

compute the output waveform again to determine the next linear segment. For most linear 

systems, the time until the output waveform deviates too much from a ramp is a fraction 

of the smallest time constant in the system that’s of importance. Figure 13 from Section 

3.2.2 can, in addition, be used as a guideline to estimate this length of time using the 

smallest time constant that’s important as the equivalent fsig. The amount of spur that can 

be tolerated will be upper-bounded by the noise performance of the circuit in question as 

well as the bandwidth of the subsequent block (a lower bandwidth block will attenuate 

the spurs more than a high bandwidth block and therefore, larger spurs could be 

acceptable with little impact on the performance of the design as a whole).  

3.4.3 Filtering Output Updates 

The procedures described so far will be able to propagate an analog signal in 

piecewise linear format through a chain of analog modules. Each input update will result 
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in one or more output updates (which will become the input updates for the next block) 

and each update constitutes a value and a slope. The caveat is that with Boolean logic, it 

is very clear when an output changes, but with continuous time signals it is not so clear. 

A procession of updates might be all within some delta from each other, and this will 

cause an unnecessarily large number of events. In designs with feedback, the number of 

events might even grow unboundedly. In Figure 19, suppose that there is a single input 

update and this leads to an update on the error signal in, which then causes a change on 

Vout. Because of the feedback loop, Vout will cause Vfb to change, which then forces a 

second update on in. These updates of little or no real change in signal value will 

continue forever without any advancement in time and the simulator will hang. 

 

Figure 19 – Forever loop caused by a single input update 

One way to eliminate these forever loops is through the observation that signals 

that have “settled” don’t need to be updated. Here, “settled” isn’t taken in its traditional 

sense of the signal approaching a zero slope, but rather the signal having a similar slope 

as the previous output segment, i.e. approaching a linear ramp. Listing 3 illustrates a test 

function that can be used to determine whether the signal has settled. The newly 

calculated output segment is compared to the previous segment by extending the previous 

segment along its slope and determining the difference in the final value of both segments. 

If the final values differ by more than the tolerance set by the user, then the function 
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returns true and the output is updated with the new numbers for its value and slope 

elements. If the function returns false, the output of the module is not updated, hence 

preventing blocks in feedback from computing more updates. Figure 20 illustrates the 

above operations graphically. 

 

Listing 3 – Filtering unnecessary output updates 

 

Figure 20 – Filtering unnecessary output updates 

function update (pwl_struct old_seg, new_seg); 
 
  real old, new; 
 
  update = 0; 
 
  old = old_se.g.v1 + (dT+T)*old_se.g.slope; 
  new = new_se.g.v1 + T*new_se.g.slope; 
 
  if (abs(old – new) > `ERR_TOL) update = 1; 
 
endfunction 
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3.5 Summary 

This chapter establishes three goals of behavioral modeling for mixed-signal 

validation – the models need to be pin-accurate to facilitate equivalence checking 

between model and schematic, fast so that many test vectors can be run with practical 

time costs, and they need to capture circuit dynamics to permit a rough performance 

evaluation of the entire SoC. Then, a set of guidelines to achieve these goals is described. 

Circuits need to be first partitioned into unidirectional blocks so that they fit into the 

digital simulation environment. Any analog signals need to have supplemental 

information in order to accommodate their asynchronicity in a discrete-time simulator. In 

this case, the piecewise linear approximation is the chosen representation. The 

smoothness of the analog output surface and the linear intent of circuits are leveraged to 

quickly compute a module’s output waveform in closed-form equations. Lastly, 

piecewise linear segments of the waveform are created with extra care taken to avoid 

unnecessary updates. Designer’s knowledge is heavily intertwined with each step in 

writing a behavioral model, from circuit partitioning, to selecting an appropriate domain 

of linearity that allows module outputs to be evaluated quickly, to taking into 

consideration time constants in a system for output waveform segmentation. The next 

chapter will demonstrate how these techniques can be utilized in the creation of 

behavioral models for different types of analog circuits. 
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Chapter 4 

Creating Analog Behavioral Models 

Given the general approach described in Chapter 3, it is now possible to model a 

variety of analog circuits. This chapter provides more details on how to create these 

models. Once the models are created, it is necessary to check that they are being used in 

the region for which they have been characterized and modeled. Therefore the creation of 

models is discussed first in Sections 4.1 to 4.4, and Section 4.5 then describes how to use 

assertions to perform these operating region checks. 

Since analog circuits are very diverse in nature, a rough categorization of analog 

functionality will be used to help structure the discussion of modeling details in the first 

four sections. The division is based on input/output port characteristics and is illustrated 

in Figure 21. 

 

Figure 21 – Circuit categories based on input/output characteristic 
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      Analog A-to-A A-to-D 
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Some analog signals are analog in the voltage domain, i.e. the detailed shape of 

the signal is necessary to describe system behavior, and ports carrying these signals are 

branded as analog ports. Other analog signals affect system behavior only at their 

transition edges. In these cases, all the analog information is contained in the switching 

points. As a result, these signals may be represented as binary values, and hence their 

corresponding ports are labeled as “digital”. Under this categorization, analog sub-

circuits can be divided into four groups as shown in Figure 21. 

It turns out that the most fundamental analog functionality is analog inputs and 

outputs (the A-to-A category). These circuits filter some analog input to produce their 

outputs. All the other circuit categories (D-to-D, A-to-D and D-to-A) are either variations 

or can be built with the A-to-A circuits as a foundation. Given the importance of the A-

to-A category, models of this type of circuit will be discussed first in Section 4.1, 

followed by a section for each of the remaining three circuit groups. A specific circuit 

will be used for demonstrative purposes for each category, since models of circuits in the 

same category are similar. In addition, recall that one of the goals of behavioral modeling 

is to obtain some rough estimate of a system’s performance and because no circuit is 

ideal, each representative model will also illustrate some methods for including non-ideal 

behavior from the circuit.  

4.1 A to A (Filter-like) Circuits 

The behavior of this class of circuits can be roughly described as “filter” in that 

the analog input is filtered through a transfer function to produce an analog output. The 

shape of the input and output waveforms have significant impact on the performance of 

the circuit itself and the overall system. Examples of circuits that fall into this category 

include programmable gain amplifiers (PGA), transimpedance amplifiers (TIA), 

continuous time linear equalizers (CTLE), continuous time filters (RLC networks, 
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biquads, etc.) and linear voltage regulators. The guidelines presented in Chapter 3 can be 

pieced together without much modification to form a model of these filter-like circuits. 

The pseudo-code for a generic A to A module is shown in Listing 4. The 

module’s ports consist of a PWL input and a PWL output, as expected. The variable 

out_int is utilized as a memory element to keep track of the current, internally calculated 

output value (recall that due to output filtering, the value on a module’s port may differ 

by a user set tolerance). To control the formation of a piecewise linear output, the always 

loop is activated either when the input changes or when the internal evaluation signal is 

triggered, indicating the time between internal evaluations, and it is time to compute the 

next segment on the output. T is usually a fraction of the smallest time constant in the 

system being modeled, as discussed in Section 3.3. The always loop performs three 

actions. First, it calls the compute() task to determine the circuit’s response to the input 

linear segment. Then, it applies the update() function to the newly computed output and 

determines whether the output should be updated. The last action is to schedule an output 

evaluation point after a time period of T has expired, so that the next linear segment on 

the output can be computed. The compute() function is at the core of the A-to-A module 

since it is responsible for computing the output waveform. The starting value of the 

module’s output at the current time is first calculated based on the response of the system 

to the input starting from the last time the function f was evaluated to the current time. 

Function f is the closed-form equation that describes the system’s response to a linear 

ramp, as discussed in Section 3.3. The resulting value is stored in the memory element 

out_int. Then the behavior of the system is projected forward, using the same function f, 

to a time period of T later. This second value is stored in a temporary variable out_in_T. 

The second task performed by the compute() function is to formulate the newly 

calculated output in the predefined pwl_struct that delineates a piecewise linear segment. 

The v1 element of the pwl_struct is the value of the variable out_int, while the slope 

element is computed using the value of out_in_T in conjunction with out_int and T. 

Variable out_curr is used to hold this structure temporarily before it is determined 
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whether to update the module’s output port to the new values in this structure. The helper 

function update() rounds out the components of this generic A-to-A module. An example 

of this function was presented in Section 3.3.3, in which the decision to update the output 

is made by examining the difference between extending the current output along its slope 

and updating to the new values. 

 

Listing 4 – Generic A-to-A module 

The various analog sub-circuits that belong to the A-to-A filter group (PGA, TIA, 

CTLE, RLC networks, etc.) can now be modeled as variations of this generic module. 

module A2A ( 
  input pwl_struct in, 
  output pwl_struct out 
); 
 
real out_int; 
 
always @ (in or eval) begin 
  compute(); 
  if (update(out, out_curr)) out = out_curr; 
  #T eval.trigger; 
end 
 
task compute(); 
  out_int = f(in_prev, current_time-previous_compute_time, out_int); 
  out_in_T = f(in, T, out_int); 
 
  out_curr.v1 = out_int; 
  out_curr.slope = (out_in_T – out_int) / T; 
endtask 
 
function update (pwl_struct old_seg, new_seg); 
  // compares old_seg with new_seg 
  // see section 3.3.3 for example 
endfunction 
 
endmodule 
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The distinguishing tone of each of the circuits lies in their respective transfer function; 

hence, applying the generic model to the different blocks entails replacing the function f 

in the compute() task with the appropriate closed-form equations. A single-pole system 

would use the equation derived in Figure 17. Transfer functions of higher order systems 

with multiple poles and zeros can be decomposed via the partial fractions method into a 

series of single pole/zeros transfer functions, and therefore, the function f would take the 

form of a sum of exponentials. 

The compute() function also plays an important role in the inclusion of non-

idealities when modeling these circuits. In some cases, the non-idealities present 

themselves as a varying transfer function (and hence a varying function f) whose 

coefficients change depending on the value of the inputs. For instance, the gain of an 

amplifier may decrease as the input amplitude increases. Or in the simple sample and 

hold shown in Figure 9, the on resistance of the transistor may fluctuate as the voltage 

across its gate and source nodes varies, and in effect, the time constant of the system 

becomes non-constant throughout simulation. In other cases, the non-idealities can be 

modeled as an additional transfer function from a second input to the circuit’s output. For 

example, the supply voltage of an amplifier could affect its output behavior. Since the 

supply typically does not vary very much and amplifiers are designed to have good power 

supply rejection, the power supply effect can be taken as an independent transfer function 

from the supply input to the amplifier output. Whatever the imperfection-causing agents 

are, SPICE simulations are needed to determine how the basic transfer function changes. 

Listing 5 illustrates the use of parameters to modify a block’s output computation 

function f according to input values, as well as the addition of a second transfer function 

to the output. Of course, many more possibilities exist given the host of mathematic 

operations, data structures and general programming capabilities that are available in 

SystemVerilog. The functions g1 and g2 need to be extracted from SPICE simulations, 

and while in Listing 5 these are cast into algebraic functions, other forms such as lookup 

table could also be used.  
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Listing 5 – Inclusion of non-idealities in A-to-A modules 

4.2 D to D Circuits 

Circuits under this classification have inputs and outputs with all their analog 

information contained in the timing of their transition instants. The details in the shape of 

the waveforms are not important. Therefore, the models actually have binary (0 or 1) 

signals on their ports; however, these circuits are different from normal digital logic in 

the sense that they do not need to be composed entirely of digital gates and it is only that 

their domain of smoothness is in the time or delay domain so that their inputs and outputs 

may be represented as “digital” signals with correct transition times. As a result, a D-to-D 

module A2A_nonideal ( 
  input pwl_struct in, 
  output pwl_struct out, 
  input pwl_struct vdd 
); 
 
… 
 
task compute(); 
  // input amplitude effects on circuit gain 
   gain =  g1(in); 
 
  // input/output effect on circuit time constant 
  tau = g2(in, out); 
 
// compute output using sum of 2 transfer functions to include 
supply effects 
  out_int = f1(in_prev, t, out_int, gain and/or tau) + f2(vdd_prev, t, 
out_int); 
  … 
endtask 
 
endmodule 
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sub-circuit is typically a block that changes the timing of clock signals or digital circuits 

that require detailed description of their delays. Examples include phase interpolators, 

duty cycle correction circuits and digital circuits under the influence of supply voltage 

fluctuations. Delays in SystemVerilog (in fact, any flavor of Verilog) are denoted by the 

# directive and writing models for D-to-D circuits entails the composition of appropriate 

equation(s) to quantify the amount of delay needed. A similar kind of analog modeling is 

done here as with the A-to-A models; the difference is that the computation domain is 

time or phase and the analog information is expressed as a change in time rather than a 

change in voltage. 

Listing 6 provides the pseudo-code for a phase interpolator with a possible 

implementation shown in Figure 22. The purpose of an interpolator is to construct a clock 

signal with a phase that’s somewhere in between the two input clocks, clk1 and clk2. 

Figure 23 shows representative waveforms on the inputs and output. As wt increases from 

0000 to 0011 to 1111, more inverters pass clk2 as their output resulting in a stronger 

presence of the second phase such that the interpolated clock is delayed more. Note that 

both the inputs and output are full-rail square waves, and therefore are not smooth in the 

voltage domain. Nonetheless, the delay of the interpolated clock is a linear function 

(under ideal conditions) of the digital control bits, wt, and the phase/delay difference 

between the two input clocks. Thus, the analog behavior of the phase interpolator is 

modeled in time domain. 

The particular implementation shown has additional configuration bits including 

the 4-bit wn which adjusts the drive strength of the pull down transistors in order to 

modify the duty cycle of the output clock, and the 4-bit cap which tunes the time constant 

of the circuit so that across all process corners, the input clock edges are slowed down 

enough to permit a smooth interpolation, but not too slow so as to cause excess jitter. 

These will be treated as non-idealities in the phase interpolator and discussed later in this 

section. The validated operation region of this circuit is limited to a maximum input clock 
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frequency as well as a maximum time difference between clk1 and clk2. Assertions to 

check these operating conditions will be discussed later in Section 4.5. 

 

Figure 22 – A phase interpolator implementation 

 

Figure 23 – Phase interpolator sample waveforms 

In the ideal model, an always loop is used to calculate the fraction to be applied to 

the input clock delay difference to determine the overall delay of the interpolated output. 

The function toDec() helps this process by first converting the wt bits into an integer. 

Concurrently, a second always loop sensitive to level changes in clk1 is used to record the 

 

 

      

phase control 

wt [3:0] 
duty-cycle control 

wn [3:0] 

loading control 
cap [3:0] 

buffers 

final load 

clk1 

clk1 

clk2 

clk2 

0 

1 

0 

1 

clk_out 

clk1 

clk2 

clk_out 

wt = 0000 

wt = 1111 

. 

. 

. 

. wt = 0001 

wt = 0111 
wt = 0011 



Chapter 4. Creating Analog Behavioral Models 61 

 

 

 

times at which clk1 exhibits an edge. The final two always loops react to edges in clk2 

and they use their time of activation as well as the edge time from clk1 to determine the 

phase difference between the two clocks (denoted d). Lastly, the interpolation delay is 

calculated and the output is toggled to the correct value after this delay. 

 

Listing 6 – Ideal phase interpolator module 

module interpolator ( 
  input clk1, clk2, 
  input [3:0] wt, wn, cap, 
  output clk_out 
); 
 
  always @ (wt) frac = toDec(wt) / 4; 
 
  always @ (clk1) t = get_current_time(); 

 
  always @ (posedge clk2) begin 
    d = get_current_time() – t; 
    clk_out <= #(insertion_delay + d*frac) 1; 
  end 
 
  always @ (negedge clk2) begin 

d = get_current_time() – t; 
clk_out <= #(insertion_delay + d*frac) 0; 

  end 
 
  function toDec (input [3:0] code); 

case (code) 
  4’b0000: toDec = 0; 
  4’b0001: toDec = 1; 
  4’b0011: toDec = 2; 
  … 
endcase 

  endfunction 
 
endmodule 
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Non-idealities such as the duty cycle correction control (wn), edge rate control 

(cap) and supply (vdd) effects can be modeled by including these as parameters in the 

function that computes delay. Listing 7 provides an illustration. 

 

Listing 7 – Phase interpolator with non-idealities 

SPICE simulation is first performed to extract a mapping of wt, wn, cap, d and 

vdd to the final phase interpolator delay. Ideally, all these have a linear relation to the 

delay. Therefore, to accommodate some nonlinearity, it can be hypothesized that the 

module interpolator_nonideal ( 
  input clk1, clk2, 
  input [3:0] wt, wn, cap, 
  input vdd, 
  output clk_out 
); 
 
… 
 
  always @ (posedge clk2) begin 

d = get_current_time() – t; 
calculate_delay(); 
jitter = $dist_normal(seed, mean=0, sigma=insertion_delay*x%); 
delay = insertion_delay + jitter; 

    clk_out <= #delay 1; 
  end 
 
… 
 
  task calculate_delay(); 
    insertion_delay = f(wt, wn, cap, d, vdd); 
  endfunction 
 
endmodule 



Chapter 4. Creating Analog Behavioral Models 63 

 

 

 

relationship is modeled by a polynomial (13) whose coefficients are determined by fitting 

the SPICE results. 

      (                         )
  (13) 

 ∑  (  )
 (  ) (   ) ( ) (   )   

                                             

                    
 

 

The order of the polynomial depends on the desired fitting error. Lower order models 

may result in larger errors, but would have fewer terms and hence require less 

computation. It is at the discretion of the model-writer to select an equation template 

appropriate for his/her particular application. Finally, jitter due to transistor noise can be 

added on top of the above non-idealities using any of the random number generator 

functions available in SystemVerilog. Listing 7 utilizes the $dist_normal function which 

generates a Gaussian random variable. 

To summarize, the conceptual foundation underlying D-to-D models are similar 

to that of A-to-A models. Because all the analog information is contained in transition 

timing, the signals on the input and output ports of this class of circuits have binary 

values, and while the model syntax may look different from the A-to-A models since 

time is handled differently from voltage values by the modeling language, the same idea 

of “filtering” an input to produce an output with small deviations from a perfectly linear 

response applies. In the A-to-A case, the domain of smoothness and thus computation is 

mostly voltage or currents, and for D-to-D circuits that domain is time. 

4.3 A to D Circuits 

Some examples of circuits in this category include comparators, latches and 

voltage controlled oscillators (VCO’s); they share the common characteristic that their 
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behavior depends on the details of the input waveforms while the downstream blocks 

consider only the transition instant of the output generated by these blocks. As a result, 

the inputs to these circuits are in piecewise linear form and their outputs are digital 

signals. The solution to the construction of the corresponding models can be simplified if 

one realizes that these circuits can be thought of as an analog circuit followed by an ideal 

slicer. Thus all A-to-D circuits can be modeled by appending an ideal slicer to an A-to-A 

module which, fortunately, has already been solved. This model construction is illustrated 

in Figure 24. The analog circuitry and dynamics of the circuit are capture by the A-to-A 

frontend, while the ideal slicer converts the detailed waveform into transition edges by 

calculating the time at which point the waveform crosses a threshold. Circuitry after the 

slicer can be modeled by digital gates. 

 

Figure 24 – A-to-D module block diagram 

Listing 8 provides the pseudo-code for an ideal slicer with a parameterized 

threshold. When the input changes, a time t until the signal crosses the threshold is 

computed from the value and slope of the input. If the threshold is greater/less than the 

value of the input, and the input has a positive/negative slope, then a crossing will occur. 

In either case, the computed value of t is positive, and this is the condition used to 

determine if the output needs to be toggled. Finally, the output is changed in the 

computed amount of time to the correct value according to the polarity of the input slope. 

If the input changes before the scheduled output change occurs, then the newly 

determined output event will override the previous one. The benefit of parameterizing the 
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threshold is that this module can be initialized multiple times to different thresholds and 

each instance overwrites the default threshold value of the module. 

 

Listing 8 – Ideal slider module 

To illustrate the usage of the slicer module, the circuit example for this section 

will be a comparator whose output is either digital high (represented by 1 in the model) or 

low (0 in the model). Listing 9 outlines the model of the comparator. 

This comparator module internally instantiates three sub-modules. The A2A 

frontend would depict the signal dependency of the comparator delay. The slicer module 

is the ideal slicer presented in Listing 8 parameterized such that it toggles its output when 

the filter frontend produces a signal that crosses half the supply voltage or some other 

reference voltage. The last block is a D-to-D output buffer that delays the comparator 

output depending on the final loading (since the ideal slicer assumes no load). It is useful 

to parameterize this block with the technology specific “fanout of 4” value so that it is 

easily reusable for different technology nodes. With the three components working in 

module slicer ( 
  input pwl_struct in, 
  output out 
); 
 
  parameter threshold = 0; 
 
  always @ (in) begin 

t = (threshold – in.v1) / in.slope; 
if (t > 0) begin 
  if (in.slope < 0) out <= #(t) 0; 
  else out <= #(t) 1; 
end 

  end 
 
endmodule 
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succession, the digital signal provided to subsequent circuits will properly reflect the 

effect of the comparator’s dynamics on signal timing. 

 

Listing 9 – Comparator module 

Non-idealities can be attached to all three sub-modules of the comparator if a 

more detailed description of the circuit is necessary. Listing 10 illustrates a few 

possibilities. The comparator performance could suffer from input offset errors, for 

module comparator ( 
  input pwl_struct in, 
  output out 
); 
   
  parameter comp_thresh = vref; 
 
  A2A frontend (.in(in), .out(pwl_struct frontend2slicer)); 
 
  slicer #(.threshold(comp_thresh)) 
      slicer (.in(pwl_struct frontend2slicer), .out(out_ideal)); 
 
  outbuf #(.cload(cap_val)) outbuf (.in(out_ideal), .out(out)); 
 
endmodule 
 
… 
 
module outbuf ( 
  input in, 
  output out 
); 
 
  parameter cload = 10fF; 
   
  always @ (in) out <= #(m*cload+b) in; 
 
endmodule 
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example; or the comparator has a tunable offset. The effect could be conveyed through 

the adjustment of the input signal to the A-to-A frontend that subtracts out the offset 

voltage. The operating point of the comparator may be subject to different bias conditions 

as well as supply voltages. Both effects can be modeled together in the A-to-A frontend 

as a parameterized transfer function or as a “switched” system in which the transfer 

function is chosen among several versions depending on the value of the bias control and 

supply voltage. In the slicer sub-module, a different supply voltage means setting the 

threshold to a different value. A pin can be added to the slicer for this purpose instead of 

using a fixed-upon-run-time parameter. All the above imperfections can be categorized as 

changes to the circuit dynamics due to controlled inputs and this method of modeling is 

valid as long as the bandwidth of these controlled inputs is much less than that of the 

signal bandwidth (which is usually the case).  

Any noise, jitter and stochastic non-idealities of the comparator can be lumped 

into the final D-to-D block as a random variable on the delay. To describe all of the 

above non-idealities, simulations need to be first carried out in a SPICE simulator and the 

result either recorded as a lookup table or fitted to a parameterized function, which then is 

incorporated into computations in the model. 
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Listing 10 – Comparator with non-idealities 

module comparator ( 
  input pwl_struct in, 
  input vdd,  
  input [2:0] bias, [2:0] offset, 
  output out 
); 
   
… 
 
  always @ (offset) begin 

case(offset) 
3’b000: in_adj = in – vos0; 
3’b001: in_adj = in – vos1; 
… 
endcase 

  end 
 
  A2A frontend (.in(pwl_struct in_adj), .vdd(vdd), .bias(bias), .out(pwl_struct 
frontend2slicer)); 
  slicer slicer (.in(pwl_struct frontend2slicer), .threshold(vdd/2), .out(out_ideal)); 
  outbuf outbuf(.in(out_ideal), .out(out)); // add jitter, see Listing 7 
 
endmodule 
 
module A2A (…); 
 
… 
 
  task compute(); 

// see Listing 4 and Listing 5 
// replace f with the appropriate transfer function 
// parameterized by bias and supply 

  endtask 
 
endmodule 
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4.4 D to A Circuits 

D-to-A circuits are the opposite of A-to-D circuits; their behavior hinges on the 

distinct instances of change on their inputs (and sometimes the rise/fall slopes), and their 

outputs are analog in nature because the circuits for which they provide inputs require 

detailed features of the signals in order to capture their own dynamics. Examples of D-to-

A circuits include digital to analog converters (resistor string, current, capacitor, etc.) and 

charge pumps. Because of their opposite behavior compared to A-to-D circuits, the 

construction of the model for the D-to-A is, naturally, a flipped version of the A-to-D 

circuits. This construction is portrayed in Figure 25. Here, the filter-like module which 

captures any circuit dynamics is preceded by an ideal digital to piecewise linear 

conversion module. 

 

Figure 25 – D-to-A module block diagram  

To use a current DAC as an example, the outline of the model is shown in Listing 

11 (refer to Figure 5 for a representative circuit implementation). The unit current sources 

or binary weighted sources naturally constitute individual modules and it might be 

tempting to leave them as such; however, as posited in Chapter 3, current summation 

needs to be encapsulated in a module. Therefore, all the current sources must be 

combined with the output buffer to yield a module with a single voltage output and this is 

the module sketched out in Listing 11. Though the individual current sources still exist as 

sub-modules, a wrapper encloses all of them and it is this larger module that should be 

used in schematic-model equivalence checking. 
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Listing 11 – Current DAC module 

module DAC ( 
  input [3:0] Din, 
  output pwl_struct out 
); 
   
  D2A #(.iout(20e-6)) I0 (.Din(Din[0]), .out(pwl_struct i0)); 
  D2A #(.iout(40e-6)) I1 (.Din(Din[1]), .out(pwl_struct i1)); 
  … 
 
  assign Iout = i0 + i1 + i2 + i3; 
 
  A2A i2v (.in(Iout), .out(out)); 
 
endmodule 
 
module D2A ( 
  input Din, 
  output pwl_struct out 
); 
 
  parameter iout = 20e-6; 
   
  always @ (posedge Din) begin 
    pwl_out.v1 = iout; 
    pwl_out.slope = 0; 
  end 
   
  always @ (negedge Din) begin 
    pwl_out.v1 = 0; 
    pwl_out.slope = 0; 
  end 
 
endmodule 
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Listing 12 – Non-ideal current DAC module 

module DAC ( 
  input [3:0] Din, 
  output pwl_struct out 
); 
   
  D2D #(.del(48ps)) D0 (.in(D[0]), .out(Dmod[0])); 
  D2D #(.del(51ps)) D1 (.in(D[1]), .out(Dmod[1])); 
  … 
 
  D2A #(.inom(20e-6)) I0 (.Din(Dmod), .n(0) .out(pwl_struct i0)); 
  D2A #(.inom(40e-6)) I1 (.Din(Dmod), .n(1), .out(pwl_struct i1)); 
  … 
 
endmodule 
 
module D2A ( 
  input n, [3:0] Din, 
  output pwl_struct out 
); 
 
  parameter inom = 20e-6; // nominal current 
  initial iout = $dist_normal(seed, mean=inom, sigma=1% inom); 
   
  always @ (posedge Din[n]) begin 
    pwl_out.v1 = 0; 
    rt = g(Din[3:0]); // variable rise time 
    i_n = $dist_normal(seed, mean=0, sigma=0.01% inom); // current noise 
    pwl_out.slope = (iout + i_n) / rt; 
    #rt pwl_out.v1 = iout + i_n; 
    pwl_out.slope = 0; 
  end 
   
  always @ (negedge Din[n]) begin 
    … 
  end 
 
endmodule 
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The example model in Listing 11 works as follows. When the digital control bits 

change, they are converted to piecewise linear current outputs. The D2A modules handle 

the conversion by attaching a slope of zero (or the actual rise and fall time) to the digital 

input and outputting a PWL structure. All the currents are then summed together forming 

a staircase signal in the main module. Once the digital input is converted, the i2v module 

is an A-to-A block that is used to transform the staircase current signal into a voltage. In 

the ideal case, the final voltage output is also a staircase signal, but other desired shapes 

are possible by modifying the transfer function of the A-to-A module. 

Listing 12 demonstrates several non-idealities of the DAC circuit. The digital 

control bits might have different path delays and pick up noise in the form of jitter along 

their way to the DAC. This is taken care of with a group of D-to-D modules that adjust 

and randomize the timing of each bit individually. The staircase current signal from the 

ideal version of the model might be too optimistic, and for certain applications, it might 

be beneficial to describe the transient behavior of the current step transitions. The 

approach to modeling this would be to include the rise and fall times by attaching non-

zero slopes in the conversion process. The slopes could be different as the output 

impedance of the DAC is changed by different numbers of current sources being 

connected to the output. Relaying this information to the individual current sources is 

accomplished by passing the entire code after timing adjustments, instead of a single bit, 

to each D-to-A module and varying the rise/fall times accordingly. Furthermore, the 

current sources could be affected by transistor mismatch and have different static output 

current. This mismatch can be emulated as a random variable that’s initialized once 

during the instantiation of each current source. Lastly, noise of the current sources and 

buffer can be superimposed on their respective outputs using the various random 

generators in SystemVerilog (Listing 12 opts to use the Gaussian distribution as in the 

previous sections). As usual, all the necessary data would be extracted from SPICE 

simulations before being incorporated into the model. 



Chapter 4. Creating Analog Behavioral Models 73 

 

 

 

So far, models of four different groups of analog circuits have been created. The 

next critical step is to ensure that these models are not being used outside the region for 

which they have been tested and validated. The following section will deal with 

constructing automatic checks that detect any such violations.  

4.5 Assertions 

When writing any model, the coverage of behavior is limited, whether it’s the 

fundamental behavior or the non-idealities, to the environment in which the SPICE level 

circuits have been explored. For example, common mode ranges are generally limited, so 

are acceptable peak input amplitudes and supply ranges. If during simulation, the model’s 

inputs wander outside the region for which the circuit has been tested, there is no 

guarantee that the behavior can be well described by an extrapolation of the behavior 

from the verified region. As a consequence, the models have an obligation to inform 

users when their inputs are out of bounds. 

SystemVerilog provides assertion capabilities through the assert() procedural 

statement and the usage is demonstrated in Listing 13. When the conditional expression 

of the assert evaluates to x, z or 0, then the assertion fails and the simulator writes an 

error message. Several severity levels are available: $fatal, $error (the default), $warning 

and $info. In Listing 13, the amplifier module checks for the correct range of bias current 

and supply voltage. The bias current has an additional polarity characteristic that requires 

an assertion. To distinguish P and N MOS current sources and sinks, it is good practice to 

adhere to, for instance, a positive polarity for a PMOS source and NMOS sink. The time 

at which an assertion fails may also be recorded as shown in the check for supply range. 

It is useful to have such a time stamp on the assertion because the amplifier might be 

powering up or down so that assertion fails during these times are not errors and can be 

filtered out based on the time stamp. Listing 13 also includes assertion examples for the 

phase interpolator from section 4.2. Recall that the interpolator has been verified for a 
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limited phase difference between the two input clocks and the wt control bits are 

thermometer coded. Therefore, the model must assert error when the phase difference is 

too large or the control bits accidentally became binary coded. 

 

Listing 13 – Assertions Examples 

module amplifier (… 
  input vdd, ibias 
); 
 
  always @ (vdd) begin 
    assert (vdd < vdd_max & vdd > vdd_min) 
      else $error(“%t: Supply out of range. Comparator may not work.”, $time); 
  end 
 
  always @ (ibias) begin 
    assert (ibias > 0) else $fatal(“Inverted comparator bias current direction.”); 
    assert (ibias < ibias_max & ibias > ibias_min) 
      else $error(“Bias current out of range. Comparator may not work.”); 
  end 
 
endmodule 
 
module interpolator ( … 
  input [3:0] wt, wn, cap, 
  input vdd 
); 
 
  always @ (d) begin 
    d_max = f(cap); 
    assert (d < d_max) else $error(“Input phase difference too large.”); 
end 
 
  always @ (wt) 
    assert (wt is thermometer coded) else $error(“wt control bits out of range.”); 
 
endmodule 
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4.6 Summary 

The creation of a complete behavioral model requires two components: a 

description of the circuit function (the model) and a set of assertions that describe when 

the model can be trusted. The trust region is coded by using assertions. The model itself 

can be realized using techniques introduced in Chapter 3. Although analog circuits are 

highly diverse, being able to model all the circuit types fundamentally depend on being 

able to analyze filter type circuits – the A-to-A modules. The other three groups 

discussed in this chapter are either a variation of these filter modules or can be built by 

adding simple modules to these filters. D-to-D blocks process delay or manipulate timing 

of clock signals, and therefore can be thought of as A-to-A blocks in the time or phase 

domain. The A-to-D models can be obtained by placing a slicer after an A-to-A module, 

while placing a digital to PWL converter in front of an A-to-A module produces a D-to-A 

module. Additional D-to-D blocks can then be positioned at the digital end of either A-to-

D or D-to-A in order to create more realistic timing in these blocks.  
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Chapter 5 

Experimental Results 

Chapter 3 first laid out the fundamental concepts needed to create behavioral 

models well-suited for mixed-signal SoC validation, and then Chapter 4 detailed the 

construction of models for different types of commonly encountered circuit modules. In 

this chapter, larger analog circuits will be modeled by drawing on insights gained in the 

two previous chapters. The behavior of the composite models as well as their simulation 

speed will be compared with that of SPICE simulation, in order to verify that they exhibit 

the three desirable characteristics (pin-accurate, fast and capture realistic circuit behavior) 

that enable system-level validation. In the last section of this chapter, a breakdown of 

CPU activity during SystemVerilog simulation will be presented in order to propose a 

possible acceleration technique to further shorten simulation time of the models. 

5.1 Track and Hold 

For any system that interface to the outside world, an analog-to-digital converter 

(ADC) is a critical component [95], and while the architecture of the ADC could be one 

of many, most ADC’s are sampled data systems, and work better if their input doesn’t 

change during the conversion (for example, improved speed and linearity [97]). Thus 
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most converters have an explicit track and hold (T/H) circuit to create a stable voltage 

when processing is performed. An important metric for these T/H circuits is the distortion 

performance (in terms of spurious-free dynamic range, SFDR) and this section will 

demonstrate that using the techniques formulated in Chapters 3 and 4, this behavior can 

be captured during behavioral modeling. 

5.1.1 Circuit Description 

Figure 26 depicts the block-level diagram of a 250MS/s open-loop bottom-plate-

sampling track and hold, which is one of many architectures used for a T/H. The 

differential circuit accommodates an input common mode of 0.7V, an output swing of 

1.6Vpk-pk and an output load of 500fF. Figure 26 also illustrates the timing details of the 

circuit’s set of switches that performs the bottom-plate sampling operation. The frontend 

samplers are manipulated such that the switch (p1e) on the bottom plate of the sampling 

capacitor opens slightly earlier than p1, so that there will be very little signal dependent 

charge injection once the input signal is sampled on the capacitor. This switching 

arrangement improves the linearity of the samplers. 

The main source of nonlinearity in this differential sampler is caused by the 

variable on-resistance of the transistor during tracking mode, and this manifests as higher 

order distortion. For example, if the quadratic model of a transistor were used, the third 

order distortion HD3 can be estimated by equation (14) 

    
 

 

  

(      ) 
         (14) 

 

where A and fin are the amplitude and frequency of the input, R is the quiescent resistance 

of the sampling switch, and Cs is the sampling cap [101]. Even though equation (14) is 

presented here, it will not be used for modeling purposes; instead, it will help give insight 

into how to design this circuit. Looking at equation (14), since the frequency and 
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amplitude of the input signal are often not under the control of the designers, the main 

route to improve linearity is to suppress the contribution from the biasing voltages. To 

this end, the samplers’ gates are bootstrapped to a voltage one supply (1.8V) above the 

input signal during the tracking phase and returns to 0 during the sampling phase. The 

concept of a bootstrapped NMOS sampler is illustrated in Figure 27 [96]. 

 

Figure 26 – Track and hold circuit block diagram 

 

Figure 27 – Bootstrapping concept 

In order to drive the large load specified, an output buffer in the form of a pseudo-

differential source follower is employed. The nonlinearity of the source follower structure 
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can be observed from its large signal transfer characteristics (again based on quadratic 

transistor models): 

      (     (√        √   ))  √
   

    
 
 

 (15) 

 

In a source follower, the source node voltage is the output voltage; therefore, the 

dominant source of distortion comes from the second term in the bracket, which is the 

output dependent threshold voltage of the transistor (also known as the body effect). One 

method of improving the distortion is by tying the body terminal of the input transistor to 

the source node. With the most commonly used N-well process, this connection can only 

be made on the PMOS transistors. Therefore PMOS is used for the source follower; 

however, this leads to the issue of incompatible common mode voltage - the required 

0.7V from the input signal is too high for PMOS transistors. Thus a set of switches 

between the frontend sampler and the output buffer is added to translate the common 

mode voltage from 0.7V to 0.35V. 

The aggregate non-linearity of the track and hold is composed of contributions 

from the frontend sampler and the output buffer. The intermediary switches are designed 

to settle completely in each of the phases and therefore do not degrade the distortion 

performance. For the same reason, the sampled noise of the entire circuit consists of 

settled and uncorrelated noise samples from the sampler as well as white noise from the 

output buffer. 

5.1.2 Model Description 

Since all nodes in the track and hold are unidirectional, one intuitive partition is to 

have one module for the sampler and one module for the output buffer. Both modules can 

be categorized as analog in and out modules, and will be discussed in succession. 
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In the sampler module, it makes sense to separate the sampling function from the 

level-shifting function performed by switch p2. Since by design, p2 is sized properly to 

allow signals to fully settle, the level-shifting sub-module is simply an all-pass filter that 

copies the sampled voltage to the buffer input with a common mode shift from 0.7V to 

0.35V. 

The main function of the sampler module is the sampling operation, which is 

controlled by the sampling clock p1. When p1e falls, the switch connecting the capacitor 

to 0.35V turns off and the output of the sampler no long changes. For this case, nothing 

needs to be done by the model. When p1 is high, the switch together with Cs forms an RC 

filter. The output computation of a single pole system was discussed in detail in Section 

3.3 and the outline of an A-to-A module was presented in Section 4.1. The distinguishing 

feature here is that the on-resistance of the switch varies according to the input value and 

is included in order to introduce distortion into the model. The transistor resistance (rds) 

can be approximated as drain-source voltage (vds) divided by drain-source current (ids), 

where ids is a function of gate-source voltage (vgs) and vds. During output computation the 

variable R in Figure 17 is replaced with the value of rds = vds/ids. Figure 28 plots the 2-D 

function for ids from SPICE simulation. Since the sampler is bootstrapped, vgs is close to 

the supply voltage, and the range of vds that could develop across the NMOS sampler is 

restricted to the input swing of 0.8V. Therefore, only a part of the surface in Figure 28 is 

needed to fit ids as a function of vgs and vds. A second order polynomial model is assumed 

and the resulting fit is shown in Figure 29 with the goodness of the fit annotated.  
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Figure 28 – Sampling transistor current vs vgs and vds 

 

Figure 29 – Sampling transistor current extracted as function of vgs and vds 

In order to obtain the correct value of vgs for the computation of rds in real time, a 

helper function is created within the sampler module that mimics the bootstrapping 

operation. Ideally, the gate voltage boosting capacitor should maintain vgs at the supply 

voltage when the sampling clock p1 is high, however due to effects such as charge 

sharing, the bootstrapping is not perfect. SPICE simulation was performed to yield (16) 
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as the equation that results in the correct vgs. The R
2
 value of the fit is 1 and the RMSE is 

0.14mV. 

                   (16) 

 

The finite fall time of the gating signal on switch p1 is another potential source of 

non-linearity in the T/H. As Figure 30 illustrates, a transistor turns off when its gate to 

source voltage falls below the transistor threshold voltage, Vth. When the fall time of the 

gating signal is slow compared to the input signal, the actual sample time will be different 

from the ideal sample time. 

 

Figure 30 – Signal dependent sampling instant 

In this design, care was taken to make the fall time 50ps so that the distortion 

coming from the non-ideal sample time is insignificant, and therefore this nonlinearity is 

not modeled. If, however, this effect were to be modeled, the approach would be to insert 

a sampling clock adjustment module inside the sampler. This module would be composed 

of a D-to-A module cascaded with an A-to-D module. The D-to-A module attaches the 

simulated rise and fall times to the digital sampling clock signal, making it an analog 

signal. The A-to-D module then computes when the difference between the gating signal 

and the input signal falls below Vth and toggles a digital signal. Finally, the sampler will 

take this modified digital signal as its gating signal. 
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The output buffer is the second A-to-A module in the T/H, whose transfer 

function is approximately a single-pole system with close to unity gain. The exact 

parameters of the transfer function are obtained from SPICE simulation. The model 

construction is the same as the sampler during tracking phase, i.e. a filter module. This 

bare-bones transfer function models the portion of the buffer distortion due to the buffer’s 

limited ability to settle to the correct value each sampling cycle. A second source of 

distortion modeled here is the input dependent gain of the buffer. To incorporate this non-

ideality, the equation in Figure 17 for a single-pole system is modified to the following: 

       [      ( 
 
 
    )   (    

 
  )]     

 
 
   (17) 

 

where g is the DC gain of the source follower as a function of its input amplitude and is 

evaluated for every output. The form and coefficients of this function is determined from 

SPICE simulation and sketched out in Figure 31. 

 

Figure 31 – Buffer gain extracted as a function of input amplitude 

Lastly, the total integrated noise voltage at the output of the track and hold is 

simulated in Spectre to be 136.3uVrms (Figure 32 shows the output noise power 
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spectrum from 125Hz to 125MHz). Since the noisy samples are uncorrelated, this value 

is used directly as the standard deviation of a Gaussian random variable that is added to 

the buffer’s output. 

 

Figure 32 – Track and hold total output noise power spectrum 

5.1.3 Simulation Results 

To test the model for distortion performance, a sinusoid of amplitude 0.8V and 

frequency 2045/4096*fs (where fs is 250MHz) is sent to the model. Figure 33 shows a 

selection of transient waveforms. The top strip is the input waveform. The piecewise 

constant appearance is a display artifact; the slope value can be seen as the input PWL 

structure is expanded below the waveform. The effective sampling clock and the output 

of the sampler are shown next. The sampler is seen tracking the input signal when the 

sampling clock is high, and holding its output when the sampling clock falls. Then, 

switch p2 is seen moving the common mode of the sampled signal for the input of the 1x 

buffer. Lastly, the buffer output is shown in the second last strip and the clock in the last 

strip is used to sample this output to determine the distortion performance of the model. 
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Figure 33 – Transient waveforms of T/H model 

Figure 34 plots the 4096-point FFT from Spectre simulation and shows an SFDR 

of 61.7dB. 

 

Figure 34 – T/H output spectrum (Spectre) 

In SystemVerilog simulation, it is possible to turn on all the second order effects 

described in the previous section one by one; Table 3 breaks down the contributions of 

each to total nonlinearity. The magnitudes of the signal tone as well as that of the 3rd, 5th 

and 7th harmonics are listed. The even order harmonics are suppressed due to the 
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differential nature of the track and hold. The reference model (first row of Table 3) is set 

by a completely linear model – nominal sampler resistance independent of input voltage 

and no gain compression from the output buffer. Figure 35 plots the FFT result of this 

linear model.  As expected, there is no distortion. Moving down Table 3, it can be 

concluded that the bootstrapping scheme works well in reducing nonlinearity by almost 

removing signal dependent vgs variation; the remaining distortion from the sampler 

originating from input dependent vth is captured by accurately modeling rds as a function 

of all three transistor terminal voltages; and the gain compression of the output buffer 

adds approximately the same amount of distortion to the whole system as the sampler 

alone. 

Table 3 – Contributions to distortion in track and hold 

 Fundamental 3rd 5th 7th SFDR 

Linear model -2.37dB -148.06dB -147.91dB -149.01dB 145.69dB 

+ vgs variation -2.36 -78.84dB -96.62dB -107.32dB 76.48dB 

+ vth/vds variation -2.40 -68.73dB -86.26dB -96.69dB 66.32dB 

+ buffer distortion -2.41 -65.33dB -83.51dB -94.97dB 62.92dB 

 

Figure 35 – T/H output spectrum (SystemVerilog without distortion effects) 
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Adding noise to the model containing all the non-idealities produces the FFT plot 

shown in Figure 36 with an SFDR of 62.8dB. Summing up all the noise bins in the figure 

yields a total noise voltage of 135.4uVrms (compared to 136.3uVrms from Spectre plot in 

Figure 32). Table 4 lists the tones and SFDR obtained from this model and that of Spectre 

simulation. 

 

Figure 36 – T/H output spectrum (SystemVerilog with distortion and noise) 

Table 4 – Output tones of track and hold 

Harmonic SPICE SystemVerilog 

Fundamental -2.86dB -2.41dB 

3rd -64.58dB -65.3dB 

5th -87.14dB -83.56dB 

7th -92.29dB -94.24dB 

SFDR 61.7dB 62.8dB 
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5.2 DC-DC Switching Regulator 

DC-DC switching regulators are indispensable to many mixed-signal SoC’s. In 

fact, several regulators may be needed in most cases [94]. One of the critical performance 

metrics is, of course, the regulated steady state output voltage. Other details that could be 

of interest include the startup and settling behavior and the response of the regulator to a 

change in its load. This section models a buck converter with a novel digital control loop 

[94]. 

5.2.1 Circuit Description 

The block diagram of the buck converter is shown in Figure 37. 

 

Figure 37 – Buck converter block diagram 

This regulator outputs 1.8V from a 2.5V external supply. The range of current 

draw supported is 2mA to 100mA. Intuitively speaking, the feedback loop creates a duty-

cycled waveform that controls the power MOSFETs with the correct average voltage. It 

is important to never switch on both the P and N MOS at the same time, in order to avoid 

excessive short circuit current. The inductor and capacitor network connected to the 
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output then act as a filter to remove the high frequency content of the switching operation 

and provides just the average voltage to the load. 

The feedback loop that regulates the average voltage of the switching waveforms 

includes a sense circuit that monitors the instantaneous output voltage and a 

compensation or control logic block that tunes the on-off ratios of the power MOSFETs 

such that the observed instantaneous voltage is closely matched to a desired reference 

voltage. In the particular implementation discussed here, the sense circuit approximates 

the ripple current through the inductor by using an RC filter across the inductor, which 

then passes through voltage divider. Due to the divide ratio, the reference voltage used is 

1.2V so that the output will be regulated at 1.8V.  

The control logic employed here is of the constant-off-time variety to take 

advantage of the mostly digital nature of this scheme. A clocked comparator determines 

whether the sensed voltage is above or below the 1.2V reference. The power MOSFET 

gating signals are determined from the following Boolean expression: 

        (         )                           (18) 

 

The NMOSFET will be turned on if at any clock cycle the sensed voltage is greater than 

1.2V and will remain on for a fixed amount of time (~2.6ns) as determined by the delay 

of a delay line. For the rest of the time, the PMOSFET will be turned on. With this 

scheme, the frequency of one switching period of the power MOSFETs (and in effect, the 

on-off time ratio) is adjusted constantly to match the output voltage to the desired 1.8V. 

A small modification to the output filter network is necessary to aid the comparison 

process. Since the ripple voltage across the inductor is, by design, very small during 

steady state operation, it may not be enough to trigger the clocked comparator. Therefore, 

a resistor of 0.5 ohm is added in series with the parasitic resistance of the inductor to 

synthetically create a larger ripple. 
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5.2.2 Model Description 

The power MOSFETs and LC output filter form a single digital input, analog 

output module. As described in Section 4.4, a D-to-A module consists of an ideal 

conversion module followed by a filter. Here, the converter frontend combines the P and 

N gating signals into a single signal and delays it according to simulated SPICE results 

since the power MOSFETs are large and require a chain of drivers. Also, an assertion to 

check that the P and N FETs are not turned on simultaneously is important and is 

included in the frontend. The filter-like portion of this D-to-A module then models the 

second order system formed by the inductor and capacitor. Typically, the component 

values (L, C, R’s) are substituted with fixed numbers during each simulation run; 

however, if the load resistor needs to change in real time, its value can be left as a 

variable in the equation and changed when necessary. 

The sense circuit, by design, does not interact much with the output filter, and 

therefore is treated as a separate block here. The transfer function of this A-to-A module 

reflects the high pass filter and resistive divider formed by three resistors and a capacitor. 

In fact, a single scaled down high pass filter transfer function is used in the model. 

Much of the feedback control loop is implemented in digital gates. The delays of 

these gates affect the response time of the converter and any ripple that may be of interest 

on the regulated output. In order to better capture these characteristics, the compressed 

Boolean expression (18) is not used; instead, the actual gates are coded with their 

respective delays extracted from SPICE simulation. These are D-to-D modules that look 

similar to the example given in Section 4.2. 

The clocked comparator is the other critical component in the control loop and its 

delay is, hence, also important. As mentioned in Section 4.3, a comparator can be 

categorized as an A-to-D circuit. The filter frontend, in this particular case, models a 

first-order system represented by the continuous-time pre-amplifier in the comparator 



Chapter 5. Experimental Results 91 

 

 

 

implementation. The pre-amplifier amplifies the difference between the sense circuit 

output and a reference voltage; then, a cross-coupled latch clocked at 2.9GHz makes a 

decision on the sign of the difference. The slicer in the model, therefore, embodies this 

latch. Since delay is the critical property to be captured and the regeneration rate of the 

latch varies according to its input amplitude, a delay vs. input plot is obtained from 

Spectre simulation (Figure 38). The resulting curve is fitted to a power function 

(annotated on the same graph) and incorporated into the slicer backend of the comparator 

model. 

 

Figure 38 – Clocked latch delay extracted as a function of input amplitude 

5.2.3 Simulation Results 

Transient simulations are run to measure the dc-dc converter’s performance. First, 

signals at various points in the feedback loop are displayed in Figure 39 to demonstrate 

the model’s correct functionality. The topmost strip shows the steady state output voltage 

of the converter. Below it is the sensed inductor voltage, which is provided to the 

comparator for comparison. The next two signals are the clock signal that drives the 

comparator and the comparator output. When the regulated voltage is too high, the 
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comparator outputs 1 and vice versa. The final two waveforms are the power MOSFET 

gating signals resulting from the comparator’s decision. These two signals complete the 

loop by turning off the PMOS (and turning on the NMOS) for a fixed amount of time if 

the instantaneous converter output is too high, and turning back on the PMOS when the 

regulated voltage dips below the 1.8V target. To be more exact, the feedback voltage is a 

superposition of the average voltage at the power MOSFET switch node and the ripple 

voltage across the inductor. Since the ripple voltage is synthetically amplified by the 

added series resistance, the feedback voltage reaches 1.2V slightly earlier than the output 

voltage reading 1.8V, and therefore the final regulated output is lower than 1.8V (1.75V 

as shown in Figure 39) . 

 

Figure 39 – Transient waveforms of buck converter model 

The next two graphs (Figure 40 and Figure 41) compare the startup behavior of 

the converter. The loading condition shown is 20Ω. The model achieves similar settling 

time (roughly 800ns) and regulated voltage (1.75V) as Spectre results. The sensed and 

feedback voltage is also a good match, exhibiting high pass behavior in the various 

voltage jumps and allowing an amplified ripple voltage to pass through in steady state 

operation. 
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Figure 40 – Startup behavior of buck converter (Spectre) 

 

Figure 41 – Startup behavior of buck converter (SystemVerilog) 

The load response of the converter is verified in Figure 42 and Figure 43. In this 

transient simulation, the converter is allowed to reach steady state with a 20Ω load for 

1.5us, and then the load is changed to 10Ω. The two figures plot the converter response 

immediately following the load change. Both the model and circuit netlist simulations 

reveal a maximum change of about 20mV on the regulated output. 
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Figure 42 – Buck converter load response (Spectre) 

 

Figure 43 – Buck converter load response (SystemVerilog) 

5.3 Phase Locked Loop 

The phase locked loop is a clocking system that uses feedback to lock the phase 

of the output clock to an input clock. By dividing down the output clock, one creates 

frequency synthesizers useful for many TV [90] and wireless systems [92]. Simpler clock 
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multiplication ratios are used in digital systems to generate a stable clock for multicore 

processors and memories [91]. The benefit derived from using a PLL instead of just the 

input clock include jitter reduction and skew suppression [93]. A PLL’s locking behavior, 

static phase offset, and jitter/phase noise performance are some of the prominently 

featured metrics during system level integration and hence validation. As this section will 

show, the techniques developed in Chapters 3 and 4 are capable of modeling these 

behaviors. 

5.3.1 Circuit Description 

The circuit modeled in this section is a simple clock multiplication PLL shown in 

Figure 44 that would be appropriate for high-frequency digital systems. The reference 

frequency is set to 500MHz, while the PLL outputs a 1GHz clock. Therefore, the divider 

ratio is 2. The phase frequency detector (PFD) generates up and down pulses proportional 

to the phase difference between the divided down VCO clock and the reference. These 

pulses then become gating signals of the charge pump (CP), which outputs proportional 

current. This current is integrated onto the low pass filter (LPF), which in essence reduces 

the ripple on the PFD pulses and extracts the average value. Since the PFD pulses occur 

at the reference frequency of 500MHz, the bandwidth of the loop filter must be much 

lower (121MHz in this case) in order to achieve the desired filtering. The resulting 

average value then controls the frequency of the VCO. The VCO is CMOS ring-based 

and its frequency is tuned through modulating the ring’s supply voltage. A regulator is 

employed to buffer the LPF output voltage and provide enough current for the VCO. Due 

to this arrangement, the VCO output will have limited swing. Therefore, a buffer 

(VCOBUF) is necessary to increase the swing to full CMOS rail. Finally, the overall 

feedback mechanism ensures that the buffered VCO output edges are aligned to those of 

the reference clock. 
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Figure 44 – PLL block diagram 

This type of circuit is generally modeled in the phase domain, and the resulting 

model is shown in Figure 45. Note that this linear model as a whole is not relied upon 

when writing the SystemVerilog model; instead, the PLL will be modeled as several 

separate modules and the closed-loop behavior will naturally result from the connection 

of these modules. This brief discussion of the linear model is presented here to provide 

background for the jitter/phase noise simulation results in Section 5.3.3, since that is a 

very important metric for a PLL design. 

 

Figure 45 – Linearized PLL model 

From classical feedback theory, the closed loop transfer function from reference 

phase modulation to PLL output phase deviation can be written as: 
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where L is the loop gain. Figure 46 plots the transfer function for this specific PLL 

implementation and indicates a bandwidth of approximately 15MHz with peaking at 

5MHz. 

 

Figure 46 – Closed loop PLL transfer function 

The phase noise transfer functions for various sub-blocks of the PLL can be 

derived as follows: noise from the PFD and divider are low pass filtered by the PLL; 

noise from the VCO and VCO buffer are high pass filtered. The total phase noise at the 

PLL output is the addition of all the noise sources, and has a power spectral density (PSD) 

similar to Figure 47. Reference noise dominates at low frequencies (not modeled in 

SystemVerilog); PFD, CP and divider noise at mid frequencies; and the VCO at high 

frequencies beyond the bandwidth of the PLL. Most notably, the PSD is expected to have 

a peak around the peaking frequency and bandwidth of the closed loop transfer function 

due to VCO noise. 
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Figure 47 – Typical PLL phase noise plot 

5.3.2 Model Description 

The diagram in Figure 44 provides a good starting point for the partitioning and 

categorization of blocks in the PLL.  A non-unidirectional node exists in the loop at Vctrl. 

The charge pump injects currents at this node, and this current is integrated onto the loop 

filter, resulting in a control voltage for the VCO on the same node. Therefore, the charge 

pump and the loop filter must be combined to form a single block. This combined block 

has two digital inputs (up and dn) and a single voltage output, making it a D-to-A module. 

The categorization of other blocks in the PLL follows from the signal type designation 

for each of their inputs and outputs. All the clock signals (ref, fbclk, divclk and vcoclk) 

are digital types. The up and dn pulses are also digital. Vctrl and Vreg are analog signals. 

Thus, the PFD, VCOBUF and DIV blocks are D-to-D circuits, while the regulator is an 

A-to-A circuit, and the VCO is an A-to-D circuit. Each block will be discussed in more 

detail below. 

The construction of the charge pump and low pass filter model is as described in 

Section 4.4: a digital to PWL converter followed by an A-to-A filter. The frontend 

converter is responsible for mapping the PFD output pulses into the correct PWL current 

Open loop VCO 

noise 

Open loop 

ref noise 

Open loop 
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output. A few non-idealities are dealt with here. First, the up and dn pulses undergo 

slightly different delays before being turned into currents. From Spectre simulation, these 

two delays are extracted as functions of the supply voltage (a range of 0.8V-1.3V is used 

for the fit). After the delays, the digital pulses are converted to PWL structure. The on 

currents of the P and N sources are somewhat mismatched (103uA vs. 70.8uA as 

observed in Spectre simulation), and they vary according to supply voltage as well as the 

drain voltage of the transistors. Again, these non-ideal effects are distilled into closed-

form equations and the value element of the PWL structure takes on a number computed 

from these equations. The converter frontend can also be setup to include noise of the 

charge pump. A total rms noise current of 1.88nA is obtained from Spectre simulation 

and used as the standard deviation of a Gaussian random variable that is added to the 

PWL current structure. 

The A-to-A filter backend of this D-to-A module transforms the PWL current into 

a PWL voltage, Vctrl. The transfer function of the filter component is equivalently the 

impedance of the loop filter. Noise of the LPF originates from the resistor in the network 

and its effect is added to Vctrl by constructing an internal A-to-A block whose transfer 

function is the noise transfer function of the resistor to the LPF output, and whose input is 

the flat noise voltage of √    . 

The regulator is a block with analog input and output. Its output is modeled as the 

sum of two transfer functions: one from the input and the other from its supply. SPICE 

simulations show that the input to output transfer function is not affected very much 

when the supply is varied between +/- 10%. Therefore, it is acceptable to take the supply 

as a second input to the regulator and add the response to both inputs at the output. If the 

two transfer functions affected each other, the model template can be changed to select 

between several versions of one transfer function according to the value of the parameters 

that affects it. Noise performance is also extracted from Spectre (467.44uVrms of total 
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integrated noise) and this result is added to the model using random number generators 

available in SystemVerilog as before. 

The VCO is an analog to digital block that operates nearly linearly in the phase 

domain. The filter portion of the VCO model is an integrator with phase as its state 

variable and  

   ∫         ( )   (20) 

 

as the equation that governs the evolution of this state variable (in other words, its 

transfer function is proportional to 1/s). The slicer backend determines when the phase 

crosses π and schedules the output to be toggled at that time. The effect of substrate 

disturbances is integrated into the model by fitting the VCO frequency as a function of 

both the control voltage and the substrate voltage, so that Kvco in equation (20) becomes 

the sum of Kvctrl and Kvsub. Jitter is also modeled. A VCO exhibits accumulating jitter 

since each phase disturbance is permanent and the phase error add up over time [98]. 

Therefore, at each state (i.e. phase) evaluation point, the phase noise accumulated since 

the last evaluation point is added to the incremental phase resulting from the state 

equation alone. 

The remaining three blocks (PFD, VCO buffer and divider) are all D-to-D 

modules. The delays through these blocks are carefully characterized through Spectre 

simulation and fitted into functions of supply voltage over a range of 0.8V-1.3V. Time-

domain noise analysis is also done in Spectre to obtain the jitter performance and these 

results are used as the standard deviations for Gaussian random number generators that 

add small deviations to the nominal delays. 
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5.3.3 Simulation Results 

Transient waveforms for several signals in the PLL loop are shown in Figure 48 

to illustrate the circuit’s operation in steady state. 

 

Figure 48 – Transient waveforms of PLL model 

The first two strips are the reference clock and the divided down PLL clock, 

respectively. The divided clock (and hence the VCO clock) can be seen to be locked to 

the reference with some static phase offset. The next two strips are the up and dn pulses 

from the PFD. The dn pulse is wider since the PLL clock is slightly ahead of the 

reference. The current pulses due to the PFD output are shown next. The P and N MOS 

currents are mismatched, but over each reference clock cycle, the total charge injected 

into the LPF is 0. Vctrl and Vreg are shown next. The slight ripple is due to the staggered 

turn on of the P and N MOS currents in the charge pump. The VCO buffer output is the 

final signal shown here, and it has twice the frequency of the divided down clock in the 

second strip. 

Figure 49 and Figure 50 compare the model locking behavior with that of circuit 

schematic. Both indicate a locking acquisition time of around 2us. Note that the plotted 

voltage, Vreg, is the output of the regulator to the input of the VCO (as opposed to Vctrl 

which is the output voltage of the charge pump and low pass filter going into the 
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regulator). The slight discrepancy near the beginning of Vreg is due to the regulator being 

offline for Vctrl less than 0.2V, and this behavior was not included in the model. In 

addition, a static phase offset of 33ps is measured in SystemVerilog and 34.5ps in Spectre. 

 

Figure 49 – PLL locking behavior (Spectre) 

 

Figure 50 – PLL locking behavior (SystemVerilog) 

Next, the noise/jitter properties of the PLL sub-blocks are turned on one by one in 

the model and their respective contribution to output jitter is listed in Table 5. The VCO 

is by far the most significant jitter source. Since all the noise contributions are relatively 

independent of each other, a total jitter of 7.9ps can be expected by adding all the rows in 
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an rms fashion. This total is essentially from the VCO. Eliminating all the other sources 

changes the total jitter by 0.6%. Then, with all the noise sources turned on in the model, 

and plotting 8000 clock edges, the jitter histogram shown in Figure 51 results. The 8ps of 

total rms jitter achieved matches well with the expected value from Table 5. In addition, a 

jitter of 7.78ps calculated from Spectre phase noise simulation further confirms the match. 

Table 5 – PLL sub-block contribution to output jitter (SystemVerilog) 

Noise Source PLL Output Jitter 

PFD 0.556ps 

CP 0.126ps 

LPF 0.124ps 

Regulator 0.612ps 

VCO 7.85ps 

VCO Buffer 0.394ps 

Divider 0.126ps 

 

 

Figure 51 – PLL output jitter histogram (SystemVerilog) 
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Figure 52 is a phase noise plot constructed from 430k output edges generated by 

the model. Welch’s method [100] with an FFT size of 4096 and overlap of 2048 is 

utilized. As expected, the phase noise peaks around the PLL closed-loop peaking 

frequency of 5MHz due to the high pass nature of the VCO noise transfer function. 

 

Figure 52 – PLL output phase noise spectrum (SystemVerilog) 

To verify the modeling of supply effects, voltage steps are applied to the PLL 

supply. The green line in Figure 53 illustrates the steps of +100mV from nominal at 3us 

and -100mV from nominal at 4us. The transient output clock edge offset from the 

reference vs. time is plotted in the same graph. Again, the model results and Spectre 

simulation show good correlation. 
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Figure 53 – PLL output phase response to supply disturbances 

5.4 Simulation Speed Analysis 

As the above sections have shown, the three models are pin-accurate and their 

behaviors are closely matched with those of the corresponding circuits simulated in 

Spectre. A third criterion for behavioral models (recall from Chapter 3) is that they 

should be able to run quickly in a digital simulator. This section will investigate how well 

these models perform in this respect. 

The simulation speed of a model is proportional to how often the model is 

evaluated. There are two factors that control the rate of output evaluation: the input signal 

update rate and the internal re-evaluation rate. The input update rate could be set by a 

user selected rate for a test signal, or it could be a byproduct of the error tolerance used 

on the preceding module’s output event filter. The internal re-evaluation rate is set as a 

fraction of the smallest time constant in the system.  

In order to determine the reasonable settings for each model, the error tolerance 

for output filtering will be fixed (1uV for all voltages and 0.1uA for the charge pump 
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current in the PLL model) while varying the input test signal update rates as well as the 

internal re-evaluation rates for individual sub-blocks. The variations in these rates will 

cause small deviations in the measured behavior from the models. Based on the degree of 

impact, an appropriate set of rates can be chosen for the models. The results for each of 

the three circuits will be discussed below in succession. 

Table 6 enumerates the different rate scenarios (in decreasing order) studied for 

the track and hold, and Figure 54 shows the corresponding T/H SFDR. Spectral accuracy 

up to the 7
th

 harmonic (approximately -92dB from signal tone) can be used as a modeling 

target, to ensure that the 3
rd

 harmonic – equivalently the SFDR – can be extracted 

correctly from model simulation. With this requirement, settings #6 and #7 from Table 6– 

input updated every 100ps, sampler re-evaluated every 100ps or 500ps, and output buffer 

re-evaluated every 500ps – provide the necessary accuracy with comparatively less 

computation than the other scenarios. This result can be explained intuitively by 

examining how the T/H works and some of the design parameters used in the circuit. 

Table 6 – Internal re-evaluation rates for T/H 

Scenario Input Sampler Buffer # evals % filtered 

1 40ps 100ps 100ps 764.7k 0.006 

2 40ps 100ps 500ps 633k 0.001 

3 40ps 100ps 1ns 616.5k 0.0008 

4 40ps 300ps 500ps 633k 0.0009 

5 40ps 500ps 500ps 633k 0.0009 

6 100ps 100ps 500ps 275.4k 0.002 

7 100ps 500ps 500ps 275.4k 0.002 

8 500ps 1ns 1ns 68.26k 0.004 
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Figure 54 – T/H SFDR error for various re-evaluation rates 

Three blocks need to have their evaluation rates set: the input generator, the 

sampler and the output buffer. The rate of the input signal update can be estimated with 

the help of Figure 13. Assume that the energy of any spur resulting from representing the 

input signal as PWL should be less than the 7
th

 harmonic distortion (approximately -

92dB). If the input signal were updated every 200ps, Figure 13 indicates that the largest 

spur will be roughly 65dB below signal tone. The PWL input signal then is filtered by the 

sampler with a 3dB bandwidth of about 760MHz, and this will provide an additional 

16dB of spur suppression. However, this is not sufficient to achieve -92dB. Thus, the 

input signal is updated every 100ps. Since the input to the sampler is already updated 

every 100ps (less than one tenth of the sampler’s bandwidth), setting the re-evaluation 

rate for the sampler any higher is unnecessary. As can be observed from Table 6 and 

Figure 54, using 100ps (scenario #6) or 500ps (scenario #7) for the sampler makes no 

difference in the number of evaluations or the SFDR result. 

The input of the buffer is a staircase signal and only the value the output settles to 

near the end of the sampling cycle is important. Recall that the buffer is modeled as a 

single-pole system with a DC gain adjustment proportional to the input amplitude. Since 

the input doesn’t change over the period that the buffer is evaluating, not many re-
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evaluation points are needed, as long as the final value is computed correctly. The buffer 

is given 2ns to settle, and its time constant is 183ps; therefore, if a re-evaluation rate of 

every 500ps is used, then at the last of the 4 computation points within the 2ns window, 

the buffer will have had enough time to settle, and it is this output segment that’s used for 

further processing in a larger system. As a result, the input update rate is really what sets 

the re-evaluation rate for this entire pipeline, and adding any more internal events only 

increases complexity without benefitting the accuracy.  

In the case of the DC-DC converter, three blocks need to set their internal re-

evaluation rates: the power MOSFET and output filter, the sense circuit, and the pre-

amplifier of the comparator in the feedback control loop. Table 7 lists the different 

scenarios studied. Figure 55 plots the startup and settling behavior for each scenario. 

Figure 56 shows the converter’s response to a load change for same set of settings. From 

Spectre simulation, the switching frequency of the converter is approximately 100MHz, 

and this is an indication that the power MOSFET and output filter should be evaluated at 

least every 10ns. This intuition is corroborated by scenario #9 which evaluates the power 

path every 20ns and yields vastly different simulation results than the other settings. 

Evaluation at such a low rate creates large errors in the linear approximation of the output 

voltage waveform, which is then given to the comparator in the feedback loop to compute 

the gating signals for the power MOSFETs. Due to the errors in this approximation, the 

comparator triggers at incorrect times, causing the duty cycle to be erroneous and hence 

shifting the regulated voltage.  The evaluation rates of the sense circuit and pre-amplifier 

have much less impact on the overall model behavior because the sense circuit outputs 

nearly piecewise-linear waveforms (see Figure 39) and computation in excess of what’s 

dictated by the output filter module will give similar results. Overall, scenario #6 – 

evaluating all modules every 1ns or at one tenth of the nominal switching frequency – 

seems to provide a good compromise between accuracy and speed for both metrics. 
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Table 7 – Internal re-evaluation rates for DC-DC converter 

Scenario Power FET 

/output filter 

Sense Pre-amp # evals % filtered 

1 100ps 100ps 100ps 96.9k 14.4 

2 400ps 100ps 100ps 72.5k 8.7 

3 1ns 100ps 100ps 67.9k 8.6 

4 1ns 200ps 200ps 36.2k 9.6 

5 1ns 400ps 400ps 23k 5.9 

6 1ns 2ns 2ns 10.5k 2.3 

7 5ns 2ns 2ns 5.47k 2.7 

8 10ns 5ns 5ns 3.3k 1.2 

9 20ns 20ns 20ns 2.46k 0.08 

 

 

Figure 55 – Buck converter startup behavior for various re-evaluation rates 
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Figure 56 – Buck converter load response for various re-evaluation rates 

The re-evaluation rates for the PLL model is lower-bounded by the reference 

clock frequency much like the T/H example in which the input signal updates set the 

evaluation points for all downstream blocks. Table 8 documents the CP/LPF and 

regulator re-evaluation rates investigated. There is no significant impact on PLL steady 

state behavior across all scenarios. Evaluating all blocks at 1ns (i.e. the PLL output 

frequency) causes only small deviations in the locking behavior as well as the response to 

a 180 degree phase step (see Figure 57 and Figure 58). The accuracy of finer second 

order non-idealities such as jitter begins to fall apart beyond scenario #6 (i.e. when the 

evaluation rates approach and exceed half the PLL output period). Therefore, setting #6 

will be chosen as the balanced choice for the PLL evaluation rates. 

Table 8 – Internal re-evaluation rates for PLL 

Scenario CP/LPF Regulator # evals % filtered 

1 100ps/100ps 100ps 199.3k 4.3 

2 500ps/100ps 100ps 194.1k 3.2 

3 4ns/100ps 100ps 182.4k 3.4 

4 500ps/500ps 100ps 126k 0.38 
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5 500ps/1ns 100ps 122.8k 0.29 

6 500ps/2ns 100ps 120k 0.3 

7 500ps/500ps 500ps 71.8k 0.6 

8 1ns/1ns 1ns 56k 0.4 

 

 

Figure 57 – PLL locking behavior for various re-evaluation rates 

 

Figure 58 – PLL phase step response for various re-evaluation rates 
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Figure 59 – PLL output jitter error for various re-evaluation rates 

So far, the re-evaluation rates of all the analog blocks have been studied and 

settings that achieve reasonable accuracy can be determined as scenario #7 for the T/H, 

#6 for the converter and #6 For the PLL. Relaxing the error tolerance at this point will 

lead to more filtering, but not much reduction in the number of events since the selected 

rates are now constrained by some fundamental frequency in the circuit that requires 

computation regardless of the number of output events from the proceeding block – for 

example, the input update frequency for the T/H, the converter switching frequency 

partly constrained by a constant-off time, and the PLL reference clock frequency. To 

gauge the simulation speeds of the models, the aforementioned settings are used without 

relaxing the error tolerance, and Table 9 lists the model simulation times vs. Spectre. 

Because the buck converter control loop contains a great deal of digital logic, a fast 

SPICE simulator (BDA) is used to achieve fairer comparison in speed. 
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Table 9 – Schematic and model simulation times 

Circuit Transient Time SPICE SystemVerilog 

Track and Hold 16.4us 42min 18s (Spectre) 1.84s 

Buck Converter 3us 25h 15min (Spectre) 

1h 38min (BDA) 

0.45s 

PLL 3us 33min 48s (Spectre) 0.56s 

Digital Design 

(1GHz, 62k gates) 

3us N/A 16.58s 

 

Table 9 also lists a digital design’s RTL simulation speed. The gate count is an 

estimate from a synthesis tool, and roughly speaking a PLL model is equivalent to 2k 

digital gates. Twenty different digital designs were also tabulated for their simulation 

times and the equivalent gate count for the PLL model is plotted in Figure 60. The PLL is 

the equivalent of anywhere between 5340 and 623 gates, with an average of 2115 gates. 

Note that this is a comparison of simulation speed and is not an indication of the actual 

complexity of the circuit implementation. 

 

Figure 60 – PLL model equivalent gate count from digital designs 



Chapter 5. Experimental Results 114 

 

 

 

In addition to setting the evaluation rate of a model for a good accuracy and speed 

tradeoff, it is also interesting to investigate the efficiency of the models in term of CPU 

time spent on different tasks in a model. This distribution pinpoints any specific task that 

is dominating simulation time. The processing time of all the A-to-A modules is profiled 

according to the type of computation performed and the averaged result is shown in 

Figure 61. 

 

Figure 61 – A-to-A module CPU time distribution 

The scheduling of events consumes a quarter of the total simulation time, while 

the rest is consumed by some form of arithmetic calculation. The calculations are further 

divided into 32% spent on the computation of output waveform and 18% on deciding 

whether to update the output (output filtering). The remaining 25% is spent on DPI calls 

which use external C functions to perform the computation of special functions such as 

absolute value, sine/cosine and exponentials. This 25% is distributed between the output 

computation and output filtering operations. 

Given the above distribution, one possible way to speed up the simulation of these 

models is to avoid DPI calls. Custom functions or look up tables have been written and 

the simulation time needed for 10k calls to each of these functions is listed in Table 10 

and compared with DPI call times. The custom functions are roughly 5 times faster. This 

Output filtering 

18% 

DPI calls 

25% Scheduling 

25% 

Output computation 

32% 
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indicates that the model simulation times listed previously have a potential to be reduced 

by 20%. 

Table 10 – Simulation time of DPI vs. custom function calls 

Function DPI Call Custom Function 

abs() 1.15s 0.31s 

sin() 1.8s 0.34s 

exp() 1.53s 0.33s 

 

Overall, the reduction in simulation time from the avoidance of DPI function calls 

is small compared to selecting the appropriate evaluation rate for each module. If the 

fastest evaluation rates for each of the composite circuit were blindly used (i.e. scenario 

#1), then the number of events would be 3x, 10x and 2x more for the T/H, converter and 

PLL respectively. This translates proportionately to simulation time. Therefore, it is 

critical to fine tune the evaluation rate for each module according to the particular 

circuit’s characteristic in order to maximize the benefit of the behavioral models when 

validating mixed-signal SoC’s. 

5.5 Summary 

Behavioral models of three composite circuits are the focus of this chapter. The 

techniques discussed in Chapter 3 as well as the categorization of circuits described in 

Chapter 4 are leveraged to create these models. The sub-modules of the track and hold, 

switching regulator and PLL, together, cover all four types of circuits identified in the 

previous chapter. Various non-idealities are incorporated into the models to achieve 

closer resemblance to the circuits’ behavior in schematic simulation. The similarity 

between the obtained data from SystemVerilog and Spectre indicate that performance 
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metrics such as distortion, startup/settling time and jitter/noise that characterize the 

circuits can be measured from the models. In addition, the speed analysis section shows 

several internal re-evaluation rates for the different models and the corresponding model 

behavior. These results indicate that the internal re-evaluation rates can be set relatively 

low (and hence benefitting computation speed) according to a fundamental frequency that 

exists in these circuits. For instance, in the T/H it is the input update rate that determines 

overall rate of the sampler; in the buck converter, the nominal switching frequency 

provides a good reference rate; and in the PLL, the reference clock frequency sets a lower 

bound on all the re-evaluation rates. Furthermore, it is expected that rates somewhat 

above these fundamental frequencies are needed to measure second order effects such as 

higher order harmonics in the T/H, transient startup behavior in the converter, and 

accurate jitter performance in the PLL. With the techniques presented in Chapters 3 and 4, 

and the insights of this chapter on internal rate selection, behavior models can simulate 

up to 3 orders of magnitude faster than the circuit netlist, while maintaining critical 

performance aspects. Based on these results, the three models indeed have demonstrated 

that they are pin-accurate, fast and able to depict key circuit dynamics, and therefore are 

suitable for mixed-signal SoC validation. 
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Chapter 6 

Conclusions 

Validating today’s mixed-signal SoC’s is not an easy task because of the large 

interaction between analog and digital circuits. Due to this tight interface, validation tests 

need to simulate analog and digital side by side through millions of test vectors, each of 

which might require ms or more of simulation data. As seen in Chapter 2, traditional 

tools like SPICE for validating analog circuits and VCS for validating digital circuits 

cannot be directly used for mixed-signal validation. Among the several solutions 

reviewed, behavioral modeling has the most chance of succeeding for several reasons. 

First, it provides the option of sidestepping an analog solver, the use of which inevitably 

slows down an entire simulation. Second, many modeling languages have built-in 

algebraic and mathematical operators that can aid in the emulation of analog circuit 

functions and behaviors. Lastly, the connection to the digital systems of the SoC comes 

almost naturally for some of the modeling languages so that, indeed, the complete SoC 

can be simulated. 

Behavioral models, however, are currently rather ad hoc, and this thesis provides 

a framework for creating these models. The approach described in Chapter 3 allows the 

creation of behavioral models that fit nicely into an event-driven digital environment and 

remain pin-accurate, fast and faithful to circuit characteristics that designers care about. 
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There are several key concepts to this approach. First, modules need to be created with 

unidirectional semantics, which means that analog circuits must be partitioned properly to 

avoid having non-unidirectional (i.e. current summing) nodes as ports of a module. Next, 

an appropriate representation of analog signals as a discrete-time sequence of events is 

necessary in order to fit into the digital simulation framework. Finally, a method of 

efficiently computing model outputs under the chosen signal representation completes the 

picture for this modeling approach. As an example, the piecewise linear representation of 

analog signals is demonstrated along with the corresponding method of output 

computation, which leverages a (nearly) linear abstraction of analog circuit function as 

well as the idea of variable domain translation. 

These techniques are general guidelines and therefore can be applied to a variety 

of analog circuits. Chapter 4 illustrated this generality by using the SystemVerilog 

language to create models of different circuit categories including A-to-A, D-to-D, A-to-

D and D-to-A. Among these four categories, the A-to-A models carry slightly more 

weight because not only are they a category by themselves, they can also be preceded by 

a digital-to-PWL converter to form a D-to-A model and followed by a slicer to form an 

A-to-D model. After the models are created, assertions are inserted in order to qualify the 

usable range of the models and notify the users when inputs exceed the bounds of what 

was characterized and hence modeled. 

Using these techniques on a few real circuits gave promising results. Functional 

models for a 250MS/s track and hold, a DC-DC switching regulator and a 1GHz PLL all 

match Spectre-simulated result using many orders of magnitude less time. In conclusion, 

this dissertation has achieved its goals. By applying the proposed methods, it is possible 

to create behavioral models that capture important circuit dynamics, maintain pin-

accuracy and achieve speeds that are suitable for mixed-signal validation. In addition, 

two important insights can be gleaned from this experiment. First, a good filter model 

that’s amenable to asynchronous events is at the center of the modeling process since 

other analog functions are easier to build if this basic block were available. Second, a 
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designer’s knowledge of the circuit being modeled is indispensible. Designers are aware 

of the locations of non-unidirectional nodes and therefore can guide circuit partitioning. 

The design equations used during circuit design, as Chapter 5 showed, are useful in the 

modeling of circuit dynamics. Lastly, designers can narrow down the list of non-idealities 

that are important for a specific application, and simplify and focus the models in a 

meaningful direction.  



 

120 

 

 

Bibliography 

[1]. M. J. Rewieński, "A Perspective on Fast-SPICE Simulation Technology," in 

Simulation and Verification of Electronic and Biological Systems, Netherlands: 

Springer, 2011, pp.23-42. 

[2]. M. El-Chammas, and B. Murmann, "A 12-GS/s 81-mW 5-bit Time-Interleaved 

Flash ADC with Background Timing Skew Calibration," Solid-State Circuits, IEEE 

Journal of, vol.46, no. 4, pp. 838-847, Apr. 2011. 

[3]. E. Janssen et al., “An 11b 3.6GS/s Time-Interleaved SAR ADC in 65nm CMOS,” in 

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE 

International, 2013, pp. 464-465. 

[4]. S. Parikh et al., “A 32Gb/s Wirelines Receiver with a Low-Frequency Equalizer, 

CTLE and 2-Tap DFE in 28nm CMOS,” in Solid-State Circuits Conference Digest 

of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp.28-29. 

[5]. H. Yamaguchi et al., “A 5Gb/s Transceiver with an ADC-based Feedforward CDR 

and CMA Adaptive Equalizer in 65nm CMOS,” in Solid-State Circuits Conference 

Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp.168-169. 

[6]. R. B. Staszewski et al., “All-Digital PLL and Transmitter for Mobile Phones,” 

Solid-State Circuits, IEEE Journal of, vol.40, no. 12, pp. 2469-2482, Dec. 2005. 

[7]. T. K. Jang et al., “A 0.062mm
2
 5.3mW 32-to2000MHz Digital Fractional-N Phase 

Locked-Loop Using a Phase-Interpolating Phase-to-Digital Converter,” in Solid-



Bibliography 121 

 

 

 

State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE 

International, 2013, pp.254-255. 

[8]. D. S. Kim et al., “A Wireless Sensor Node SoC with a Profiled Power Management 

Unit for IR Controllable Digital Consumer Devices,” Consumer Electronics, IEEE 

Transactions on, vol. 56, no. 4, pp. 2282-2287, Nov. 2010. 

[9]. K. J. Kerns, M. Bhattacharya, S. Rudnaya, and K. Gullapalli, “Automatic, 

Hierarchy-Independent Partitioning Method for Transistor-Level Circuit Simulation,” 

U.S. Patent 8 060 355, Jan. 29, 2009 (pending). 

[10]. K. J. Kerns and Z. Peng, “SPICE Optimized for Arrays,” U.S. Patent 7 324 363, 

Dec. 12, 2008. 

[11]. M. J. Rewieński and K. J. Kerns, “Optimization of Post-Layout Arrays of Cells for 

Accelerated Transistor Level Simulation,” U. S. Patent 8 091 052, Apr. 30, 2009 

(pending). 

[12]. H. Fleurkens and P. Buurman, “Flexible Mixed-Mode and Mixed-Level Simulation,” 

in Proc. Circuits and Systems, 1993 IEEE International Symposium on, 1993, pp. 

2137-2140. 

[13]. G. Karypis and V. Kumar, (1998, Nov. 22), hMetis 1.5: A Hypergraph Partitioning 

Package [Online], Available: 

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview 

[14]. Cadence Design Systems, Inc., Using Hierarchy and Isomorphism to accelerate 

Circuit Simulation [Online], Available: 

http://w2.cadence.com/whitepapers/5084_AccelCircuitWP_FNL.pdf 

[15]. Tcherniaev A. et al., “Transistor Level Circuit Simulator Using Hierarchical Data,” 

U.S. Patent 6 577 992, Jun. 10, 2003. 



Bibliography 122 

 

 

 

[16]. M. Zwolinski, K. G. Nichols, A. D. Brown and M. Awan, “A Mixed-Mode Circuit 

Simulator,” in Proc. UK IT Conference, 1990, pp. 390-393. 

[17]. J. A. Watts, and T. Kwasniewski, “ROOMMS: A Relaxation-based, Object-

Oriented, Mixed-Mode Simulator,” in Proc. Custom Integrated Circuits Conference, 

1990 IEEE, 1990, pp. 5.3.1-5.3.4.  

[18]. U. Bretthauer, and E. H. Horneber, “BRASIL: The Braunschweig Mixed-Mode-

Simulator for Integrated Circuits,” in Proc. Design Automation, IEEE European 

Conference on, 1996, pp. 10-14. 

[19]. A. F. Carpenter, J. B. Goslin, and H. J. Kahn, “An Accurate Hierarchical Simulation 

Engine,” in Proc. 3
rd

 Silicon Design Conference, 1986, pp. 257-66. 

[20]. Y.-H. Jun, and I. N. Hajj, “A Mixed-Mode Simulator for Digital/Analog VLSI 

Circuits Using an Efficient Timing Simulation Approach,” in Proc. Circuits and 

Systems, 1991 IEEE International Symposium on, 1991, pp. 2383-2386. 

[21]. Y.-H. Jun, and S.-B. Park, “Piecewise Polynomial Models for MOSFET DC 

Characteristics with Continuous First Order Derivative,” Electronic Circuits and 

Systems, IEEE Proceedings on, vol. 135, no. 6, pp. 241-246, Dec. 1988. 

[22]. M. Nishigaki, N. Tanaka, and H. Asai, “Mixed Mode Circuit Simulator SPLIT2.1 

Using Dynamic Network Separation and Selective Trace,” in Proc. Circuits and 

Systems, 1994 IEEE International Symposium on, 1994, vol. 1, pp. 9-12. 

[23]. G. Ruan, “A Behavioral Model of A/D Converters Using a Mixed-Mode Simulator,” 

Solid-State Circuits, IEEE Journal of, vol.26, no. 3, pp. 283-290, Mar. 1991. 

[24]. A. R. W. Todesco, and T. H.-Y. Meng, “Symphony: A Simulation Backplane for 

Parallel Mixed-Mode Co-Simulation of VLSI Systems,” in Proc. Design 

Automation Conference, 33
rd

 ACM Annual, 1996, pp. 149-154. 



Bibliography 123 

 

 

 

[25]. R. D. Chamberlain, and M. A. Franklin, “Analysis of Parallel Mixed-Mode 

Simulation Algorithms,” in Proc. Parallel Processing Symposium, Fifth 

International IEEE, 1991, pp. 155-160. 

[26]. K. M. Chandy and J. Misra, “Distributed Simulation: A Case Study in Design and 

Verification of Distributed Programs,” Software Engineering, IEEE Transactions on, 

vol. SE-5, no. 5, pp. 440-452, Sep. 1979. 

[27]. K. M. Chandy and J. Misra, “Asynchronous Distributed Simulation via a Sequence 

of Parallel Computations,” Communications of the ACM, vol. 24, no. 11, pp. 198-

206, Apr. 1981. 

[28]. L. M. Sokol, D. P. Briscoe and A. P. Wieland, “MTW: A Strategy for Scheduling 

Discrete Simulation Events for Concurrent Execution,” Distributed Simulation, vol, 

19, no. 3, pp. 34-42, 1988. 

[29]. N. Abdallah, P. B. Sabet, and A. Greiner, “On the Design of Mixed-Mode 

Simulators for Modern VLSI Circuits,” in Proc. Circuits and Systems, IEEE 38
th

 

Midwest Symposium on, 1995, vol. 2, pp. 1168-1171. 

[30]. D. R. Jefferson, “Virtual Time,” ACM Transactions on Programming Languages 

and Systems, vol. 7, no. 3, pp. 404-425, Jul. 1985. 

[31]. A. Hajjar, R. Marbot, A. Greiner, and P. Kiani, “TAS, an accurate timing analyzer 

for CMOS VLSI,” in Proc. Design Automation, IEEE European Conference on, 

1991, pp. 261-265. 

[32]. C.-J. R. Shi, “Mixed-Signal System-on-Chip Verification Using a Recursively-

Verifying-Modeling (RVM) Methodology,” in Proc. Circuits and Systems, 2010 

IEEE International Symposium on, 2010, pp. 1432-1435. 



Bibliography 124 

 

 

 

[33]. M. T. van Stiphout, J. T. J. van Eigndhoven, and H. W. Buurman, “PLATO: A New 

Piecewise Linear Simulation Tool,” in Proc. Design Automation, IEEE European 

Conference on, 1990, pp.235-239. 

[34]. J. J. Yang, S. X.-D. Tan, Z. Qi, M. Gawecki, “Hierarchical Symbolic Piecewise-

Linear Circuit Analysis,” in Proc. Behavioral Modeling and Simulation Workshop, 

2005 IEEE International, 2005, pp. 140-145. 

[35]. J. Wang, X. Li, and L. T. Pileggi, “Parameterized Macromodeling for Analog 

System-Level Design Exploration,” in Proc. Design Automation Conference, 44
th

 

ACM Annual, 2007, pp. 940-943. 

[36]. J. Roychowdhury, “Reduced-order Modeling of Time-Varying Systems,” Circuits 

and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol. 

46, no. 10, pp. 1273-1288, Oct. 1999. 

[37]. A. Hajimiri and T. Lee, “A General Theory of Phase Noise in Electrical Oscillators,” 

Solid-State Circuits, IEEE Journal of, vol. 33, no. 2, pp. 179-194, Feb. 1998. 

[38]. A. Demir, A. Mehrotra, and J. Roychowdhury, “Phase Noise in Oscillators: A 

Unifying Theory and Numerical Methods for Characterization,” Circuits and 

Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol. 47, 

no. 5, pp. 655-674, May 2000. 

[39]. C. Gu, “Algorithmic Nonlinear Macromodeling: Challenges, Solutions and 

Applications in Analog/Mixed-Signal Validation,” in Proc. Custom Integrated 

Circuits Conference, 2013 IEEE, 2013, pp. 1-8. 

[40]. W. Rugh, Nonlienar System Theory – The Volterra-Wiener Approach, Baltimore:  

Johns Hopkins University Press, 1981. 



Bibliography 125 

 

 

 

[41]. P. Li and L. Pileggi, “Compact Reduced-Order Modeling of Weakly Nonlinear 

Analog and RF Circuits,” Computer-Aided Design of Integrated Circuits and 

Systems, IEEE Transactions on, vol. 24, no. 2, pp. 184-203, Feb. 2005. 

[42]. J. Phillips, “Projection-Based Approaches for Model Reduction of Weakly 

Nonlinear, Time-Varying Systems,” Computer-Aided Design of Integrated Circuits 

and Systems, IEEE Transactions on, vol. 22, no. 2, pp. 171-187, Feb. 2003. 

[43]. B. Moore, “Principle Component Analysis in Linear Systems: Controllability, 

Observability, and Model Reduction,” Automatic Control, IEEE Transactions on, 

vol. 26, pp. 17-32, Feb. 1981. 

[44]. E. Grimme, “Krylov Projection Methods for Model Reduction,” Ph.D. dissertation, 

University of Illinois, EE Dept., Urbana-Champaign, 1997. 

[45]. C. Gu and J. Roychowdhury, “Model Reduction via Projection onto Nonlinear 

Manifolds, with Applications to Analog Circuits and Bio-Chemical Systems,” in 

Proc. Computer-Aided Design, IEEE/ACM International Conference on, pp. 85-92, 

2008. 

[46]. C. Gu and J. Roychowdhury, “Generalized Nonlinear Timing/Phase Macromodeling: 

Theory, Numerical Methods and Applications,” in Proc. Computer-Aided Design, 

IEEE/ACM International Conference on, pp. 284-291, 2010. 

[47]. A. Odabasioglu, M. Celik, and L. T. Pileggi, “PRIMA: Passive Reduced-Order 

Interconnect Macromodeling Algorithm,” in Prco. Computer Aided Design, 1997 

IEEE/ACM International Conference on, 1997, pp. 58-65. 

[48]. M. Rewienski and J. White, “A Trajectory Piecewise-Linear Approach to Model 

Order Reduction and Fast Simulation of Nonlinear Circuits and Micromachined 

Devices,” Computer-Aided Design of Integrated Circuits and Systems, IEEE 

Transactions on, vol. 22, no. 2, pp. 155-170, Feb. 2003. 



Bibliography 126 

 

 

 

[49]. C. Gu, “QLMOR: A Projection-Based Nonlinear Model Order Reduction Approach 

Using Quadratic-Linear Representation of Nonlinear Systems,” Computer-Aided 

Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 30, no. 9, pp. 

1307-1320, Sep. 2011. 

[50]. L. Ljung and E. Ljung, System Identification: Theory for the User, Upper Saddle 

River, NJ: 1987. 

[51]. R. Isermann and M. Mnchhof, Identification of Dynamic Systems: An Introduction 

with Application, Verlag Berlin Heidelberg: Springer, 2011. 

[52]. C. V. Kashyap, and C. S. Amin, “Raven: A Tool for Automatic Generation of 

Analog Behavioral Models from Schematics,” presented at Frontiers in Analog 

Circuit Synthesis and Verification, Snowbird, Utah, 2011. 

[53]. G. Baker and P. Graves-Morris, Padé Approximants, New York: Cambridge 

University Press, 1996. 

[54]. J. Kim, K. D. Jones, and M. A. Horowitz, "Variable Domain Transformation for 

Linear PAC Analysis of Mixed-Signal Systems," in Proc. Computer-Aided Design, 

2007 IEEE/ACM International Conference on, 2007, pp. 887-894. 

[55]. J.-E. Jang, M.-J. Park, D. Lee, and J. Kim, "True Event-Driven Simulation of 

Analog/Mixed-Signal Behaviors in SystemVerilog: A Decision-Feedback 

Equalizing (DFE) Receiver Example," in Proc. Custom Integrated Circuits 

Conference, 2012 IEEE, 2012, pp. 1-4. 

[56]. J.-E. Jang, M.-J. Park, and J. Kim, “An Event-Driven Simulation Methodology for 

Integrated Switching Power Supplies in SystemVerilog,” in Proc. Design 

Automation Conference, 2013 ACM/EDAC/IEEE 50
th

, 2013, pp. 1-7. 

[57]. X. Li, P. Li and L. T. Pileggi, “Parameterized Interconnect Order Reduction with 

Explicit and Implicit multi-parameter Moment Matching for Inter/Intra-die 



Bibliography 127 

 

 

 

Variation,” in Proc. Computer-Aided Design, 2005 IEEE/ACM International 

Conference on, 2005, pp. 806-812. 

[58]. L. T. Pillage and R. A. Rohrer, “Asymptotic waveform evaluation for timing 

analysis,” Computer-Aided Design, IEEE Transactions on, vol. 9, pp. 352-366, 

Apr.1990. 

[59]. P. Feldmann and R. W. Freund, “Efficient linear circuit analysis by Padé 

approximation via the Lanczos process,” Computer-Aided Design, IEEE 

Transactions on, vol. 14, no. 5, pp. 649-649, May 1995. 

[60]. S. Little, D. Walter, K. Jones, C. Myers, and A. Sen, “Analog/Mixed-Signal Circuit 

Verification Using Models Generated from Simulation Traces,” International 

Journal of Foundations of Computer Science, vol. 21, no.2, pp.191-210, 2010. 

[61]. A. Donzé, and O. Maler, “Systematic Simulation Using Sensitivity Analysis,” in 

Hybrid Systems: Computation and Control, A. Bemporad, A. Bicchi, G. Buttazzo, 

Eds., Berlin Heidelberg: Springer, 2007, pp. 174-189. 

[62]. S. Batchu, D. Kulkarni, C. Myers, “Automatic Generation of Abstract Models for 

Analog/Mixed-Signal Circuits,” presented at Frontiers in Analog Circuit Synthesis 

and Verification, Snowbird, Utah, 2011. 

[63]. C. Gu and J. Roychowdhury, “FSM Model Abstraction for Analog/Mixed-Signal 

Circuits by Learning from I/O Trajectories,” in Proc. Design Automation 

Conference, 2011 IEEE 16
th

 Asia and South Pacific, 2011, pp.7-12. 

[64]. G. Zheng, S. P. Mohanty, and E. Kougianos, “Design and Modeling of a 

Continuous-time Delta-Sigma Modulator for Biopotential Signal Acquisition: 

Simulink Vs. Verilog-AMS Perspective,” in Proc. Computing Communication & 

Networking Technologies, 2012 IEEE 3
rd

 International Conference on, 2012, pp. 1-

6. 



Bibliography 128 

 

 

 

[65]. F. M. Kolagar, and H. M. Naimi, “An Approach to Transient Analysis of Bang-

Bang Phase Locked Loops for Phase Step Inputs,” in Proc. Electrical Engineering, 

2011 IEEE 9
th

 Iranian Conference on, 2011, pp. 1-6. 

[66]. A. Gabr, and T. Kwasniewski, “Unifying approach for Jitter Transfer Analysis of 

Bang-Bang CDR Circuits,” in Proc. Electronics and Information Engineering, 2010 

IEEE International Conference on, 2010, vol. 2, pp. V2-40. 

[67]. J. W. Sun, H. L. You, Z. Y. Li, and X. Z. Jia,  “Research on Modeling Control 

Module of DC-DC Converter for Simulink,” in Proc. Power Electronics and 

Intelligent Transportation System, 2009 IEEE 2
nd

 International Conference on, 

2009, vol. 1, pp. 129-132. 

[68]. J. David, “Verification of CML circuits used in PLL contexts with Verilog-AMS,” 

in Proc. Behavioral Modeling and Simulation Workshop, 2006 IEEE International, 

2006, pp. 97-102. 

[69]. K. Ma, “A Fast and Accurate SystemC-AMS Model for PLL,” in Proc. Mixed 

Design of Integrated Circuits and Systems, 2011 IEEE 18
th

 International 

Conference on, 2011, pp. 411-416. 

[70]. Open SystemC Initiative (2010, Oct. 02), SystemC AMS extension User’s Guide 

[Online], Available: http://www.systemc.org/downloads/standards 

[71]. F. Cenni, S. Scotti, and E. Simeu, “SystemC AMS Behavioral Modeling of a CMOS 

Video Sensor,” in Proc. VLSI and System-on-Chip, 2011 IEEE/IFIP 19
th

 

International Conference on, 2011, pp. 380-385. 

[72]. G. S. Beserra, J. E. G. de Medeiros, A. M. Sampaio, and J. C. da Costa, “System-

Level Modeling of a Mixed-Signal System on Chip for Wireless Sensor Networks,” 

in Proc. Design, Automation & Test in Europe Conference & Exhibition, 2011 IEEE, 

2011, pp. 1-4. 

http://www.systemc.org/downloads/standards


Bibliography 129 

 

 

 

[73]. P. Gang, “Behavioral Modeling and Simulation of Analog/Mixed-Signal Systems 

Using Verilog-AMS,” in Proc. Information, Computing and Telecommunication, 

2009 IEEE Youth Conference on, 2009, pp. 383-386. 

[74]. X. Lai, Y. Zhang, Y. Li, and X. M. Liu, “Behavioral Modeling of Electronic Circuit 

Module with Verilog-A Language,” in Proc. ASIC, 2001 IEEE 4
th

 International 

Conference on, 2001, pp. 155-158. 

[75]. B. Troyanovsky, P. O’Halloran, and M. Mierzwinski, “Analog RF Model 

Development with Verilog-A,” in Radio Frequency Integrated Circuits (RFIC) 

Symposium, 2005 IEEE, 2005, pp. 287-290. 

[76]. Y. Wang, C. Van-Meersbergen, H.-W. Groh, S. Heinen, “Event Driven Analog 

Modeling for the Verification of PLL Frequency Synthesizers,” in Proc. Behavioral 

Modeling and Simulation Workshop, 2009 IEEE International, 2009, pp. 25-30. 

[77]. D. Dumlugol, and D. Webber, “Analog Modeling Using Event-Driven HDL’s,” in 

Proc. VLSI Design, 1994 IEEE 7
th

 International Conference on, 1994, pp. 53-56. 

[78]. R. B. Staszewski, C. Fernando, and P. T. Balsara, “Event-Driven Simulation and 

Modeling of Phase Noise of an RF Oscillator,” Circuits and Systems I: Regular 

Papers, IEEE Transactions on, vol. 52, no. 4, pp. 723-733, 2005. 

[79]. T. J. Wen, and T. Kwasniewski, “Phase Noise Simulation and Modeling of ADPLL 

by SystemVerilog,” in Proc. Behavioral Modeling and Simulation Workshop, 2008 

IEEE International, 2008, pp. 29-34. 

[80]. A. Prodic, and D. Maksimovic, “On Behavioral Modeling of a Mixed-Signal 

Analog to Digital Converter,” in Proc. Computers in Power Electronics, 2002 IEEE 

Workshop on, 2002, pp. 100-105. 



Bibliography 130 

 

 

 

[81]. B. C. Lim, J. Kim, and M. A. Horowitz, “An Efficient Test Vector Generation for 

Checking Analog/Mixed-Signal Functional Models,” in Proc. 47
th

 ACM Design 

Automation Conference, 2010, pp. 767-772. 

[82]. M. Horowitz, M. Jeeradit, F. Lau, S. Liao, B. Lim and J. Mao, “Fortifying Analog 

Models with Equivalence Checking and Coverage Analysis,” in Proc. 47
th

 ACM 

Design Automation Conference, 2010, pp. 425-430. 

[83]. T. R. Dastidar, and P. P. Chakrabarti, “A Verification System for Transicent 

Response of analog Circuits Using Model Checking,” in Proc. VLSI Design, 2005 

IEEE 18
th

 International Conference on, 2005, pp. 195-200. 

[84]. G. Zhou, J. Xu, J. Wang, and Y. Jin, “Comparison Study on Digital Peak Current, 

Digital Peak Voltage, and Digital Peak Voltage/Peak Current Controlled Buck 

Converter,” in Proc. Industrial Electronics and Applications, 2009 IEEE 4
th

 

Conference on, 2009, pp. 799-804. 

[85]. C.-A. Yeh, and Y.-S. Lai, “Digital Pulsewidth Modulation Technique for a 

Synchronous Buck DC/DC Converter to Reduce Switching Frequency,” Industrial 

Electronics, IEEE Transactions on, vol. 59, no. 1, pp. 550-561, 2012. 

[86]. R. Redl, and J. Sun, “Ripple-Based Control of Switching Regulators – An 

Overview,” Power Electronics, IEEE Transactions on, vol. 24, no. 12, pp. 2669-

2680, 2009. 

[87]. C. Werner et al., “Modeling, simulation and design of a multi-mode 2-10Gb/sec 

fully adaptive serial link system,” in Proc. Custom Integrated Circuits Conference, 

2005 IEEE, 2005, pp. 709-716. 

[88]. W.M.G. van Bokhoven, “Piecewise-Linear Modeling and Analysis,” Ph.D. 

Dissertation, Dept. of Engineering, Technical University of Eindhoven, Eindhoven, 

The Netherlands, May 1981. 



Bibliography 131 

 

 

 

[89]. K. F. Wong and M. A. Franklin, “Load and Communications Balancing in 

Multiprocessor Logic Simulation Engines,” in Proc. International Workshop in 

Hardware Accelerators, 1987, pp. 80-89. 

[90]. W. Kim, J. Park, J. Kim, T. Kim, H. Park and D. Jeong, “A 0.032mm2 3.1mW 

Synthesized Pixel Clock Generator with 30psrms Integrated Jitter and 10-to-

630MHz DCO Tuning Range,” in Solid-State Circuits Conference Digest of 

Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 250-251. 

[91]. W. Deng et al., “A 0.0066mm2 780uW Fully Synthesizable PLL with a Current-

Output DAC and an Interpolative Phase-Coupled Oscillator Using Edge-Injection 

Technique,” in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 

2014 IEEE International, 2014, pp. 266-267. 

[92]. A. Elkholy, A. Elshazly, S. Saxena, G. Shu, and P. Hanumolu, “A 20-to-1000MHz 

+/-14ps Peak-to-Peak Jitter Reconfigurable Multi-Output All-Digital Clock 

Generator Using Open-Loop Fractional Dividers in 65nm CMOS,” in Solid-State 

Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 

2014, pp. 272-273. 

[93]. B. Razavi, “Design of Monolithic Phase-Locked Loops and Clock Recovery 

Circuits – A Tutorial,” in Monolithic Phase-Locked Loops and Clock Recovery 

Circuits: Theory and Design. IEEE Press, 1996. 

[94]. S. Arora, D. K. Su and B. A. Wooley, “A Compact 120-MHz 1.8V/1.2V Dual-

Output DC-DC Converter with Digital Control,” in Proc. Custom Integrated 

Circuits Conference, 2013 IEEE, 2013, pp. 1-4. 

[95]. H. Orser and A. Gopinath, “A 20Gs/s 1.2V 0.13um CMOS Switched Cascode 

Track-and-Hold Amplifier,” Circuits and Systems II: Express Briefs, IEEE 

Transactions on, vol. 57, no. 7, Jul. 2010. 



Bibliography 132 

 

 

 

[96]. A. M. Abo and P. R. Gray, “A 1.5-V, 10-bit, 14.3-MS/s CMOS Pipeline Analog-to-

Digital Converter,” Solid-State Circuits, IEEE Journal of, vol.34, no. 5, pp. 599-606, 

May 1999. 

[97]. Z. Wang and M.-C. F. Chang, “A 600Msps 8-bit CMOS ADC Using Distributed 

Track-and-Hold with Complementary Resistor/Capacitor Averaging,” Circuits and 

Systems I: Regular Papers, IEEE Transactions on, vol.55, no. 11, pp. 3621-3627, 

Dec. 2008. 

[98]. A. Demir, “Computing Timing Jitter from Phase Noise Spectra for Oscillators and 

Phase-Locked Loops with White and 1/f Noise,” Circuits and Systems I: Regular 

Papers, IEEE Transactions on, vol.53, no. 9, pp. 1869-1884, Sep. 2006. 

[99]. M. J. M. Pelgrom, H. P. Tuinhout and M. Vertregt, “Transistor Matching in Analog 

CMOS Applications,” in Technical Digest Electron Devices Meeting, 1998 IEEE, 

1998, pp. 915-918. 

[100]. A. Oppenheim and R. Schafer, Digital Signal Processing, Upper Saddle River, NJ: 

Prentice-Hall, 1975. 

[101]. W. Yu, S. Sen and B. H. Leung, “Distortion Analysis of MOS Track-and-Hold 

Sampling Mixers Using Time-Varying Volterra Series,” Circuits and Systems II: 

Analog and Digital Signal Processing, IEEE Transactions on, vol.46, no. 2, pp. 

101-113, Feb. 1999. 

 

 

 

 



ProQuest Number: 

INFORMATION TO ALL USERS 
The quality and completeness of this reproduction is dependent on the quality  

and completeness of the copy made available to ProQuest. 

Distributed by ProQuest LLC (        ). 
Copyright of the Dissertation is held by the Author unless otherwise noted. 

This work may be used in accordance with the terms of the Creative Commons license 
or other rights statement, as indicated in the copyright statement or in the metadata  

associated with this work. Unless otherwise specified in the copyright statement  
or the metadata, all rights are reserved by the copyright holder. 

This work is protected against unauthorized copying under Title 17, 
United States Code and other applicable copyright laws. 

Microform Edition where available © ProQuest LLC. No reproduction or digitization  
of the Microform Edition is authorized without permission of ProQuest LLC. 

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, MI 48106 - 1346 USA 

28121180

2021


