
BALANCING EFFICIENCY AND FLEXIBILITY

IN SPECIALIZED COMPUTING

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Rehan Hameed

December 2013

Abstract

CMOS-based integrated circuits have hit a power wall, and future performance in-

creases cannot rely on increased power budgets. This means we need to create more

energy efficient solutions if we want performance to continue to scale.

A proven way to gain high efficiency is to build special-purpose ASIC chips for

the application of interest. These designs can achieve 2-3 orders of magnitude higher

energy efficiency and performance compared to general-purpose processors. However

ASIC design has become prohibitively expensive making it difficult to justify the

investments in design effort for all but the few applications with very large volumes

and stable code bases. General-purpose processors amortize the design cost over a

large number of applications, and provide standard development tools, resulting in

higher productivity and lower development costs. However, this flexibility comes at

a cost of much higher energy consumption.

This thesis examines the tradeoff between flexibility and efficiency with an aim

to develop architectures that combine the low energy consumption of customized

units with the reusability of general purpose processors. A number of approaches

are already being tried to lower the energy consumption of programmable systems,

such as a move to homogenous and heterogenous multi-core systems, augmenting the

processors with hardware accelerators, and creating application-specific processors .

However our work takes a step back to first understand and quantify what makes a

general purpose processor so inefficient and whether it is at all possible to get close

to ASIC efficiencies within a programmable framework. The insights from this work

are then used as a basis to derive new architectural ideas for efficient execution.

Specifically, we propose building domain customized functional units as a solution

iv

for balancing efficiency with flexibility. As a case study, we look at the domain of

imaging and video processing. These workloads are becoming ubiquitous across all

computing devices and have very high computing requirements often served by special

purpose hardware. At the same time there are a large number of emerging applications

in this domain with diverse requirements, so going forward there is a great need for

flexible platforms for this domain. Thus it is an ideal candidate for our study. We

demonstrate two programmable functional units for this domain - the Convolution

Engine and the Bilateral Engine. A number of key computational motifs common

to most applications in this domain can be implemented very efficiently using these

engines. The resulting performance and efficiency is within 2-3x of custom designs

but an order of magnitude better than general-purpose processors with data-parallel

extensions such as SIMD units.

We also argue that domain customized functional units demand a slight change

in the mindset of system designers and application developers – instead of always

wanting to fit the hardware to algorithm requirements, we optimize a number of key

computational motifs and then restructure our applications to make maximum use of

these motifs. As an example, we look at modifying the bilateral filtering algorithm

- a key non-linear filter common to most computational photography applications -

such that it is a good fit for the capabilities of our proposed hardware units. The

resulting implementation provides over 50x energy reduction over the state of the art

software implementation for this algorithm.

Our work suggests that identifying key data flows and computational motifs in

a domain and creating efficient-yet-flexible domain customized functional units to

optimize these motifs is a viable solution to address the energy consumption problem

faced by designers today.

v

Acknowledgements

I would like to thank the little green men from Mars.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis Overview . 3

2 Energy Constraints And The Need For Flexibility 6

2.1 Technology Scaling and Energy Constraints 7

2.2 Energy Efficiency and Processor Systems 11

2.2.1 Multi-Core Systems . 12

2.2.2 Heterogenous Multi-Core Systems 14

2.3 Imaging and Video Systems . 15

3 Overheads In General Purpose Processors 18

3.1 Anatomy of a Typical RISC Instruction 19

3.2 Removing Processor Overheads . 22

3.3 Our Methodology . 25

4 Removing Processor Overheads - H.264 Case Study 27

4.1 H.264 Computational Motifs . 28

4.2 Analysis Methodology . 29

4.3 Broad Specializations . 33

vii

4.3.1 Building a Wider SIMD . 36

4.4 Application Specific Customizations 39

4.4.1 IME Strategy . 40

4.4.2 FME Strategy . 41

4.4.3 CABAC Strategy . 44

4.5 Area Cost of Magic Instructions . 45

4.6 Magic Instructions Summary . 47

4.7 Beyond H.264 . 47

5 Convolution Engine 49

5.1 Convolution Abstraction . 50

5.2 Target Applications . 52

5.2.1 Motion Estimation . 53

5.2.2 SIFT . 53

5.2.3 Mapping to Convolution Abstraction 54

5.3 Convolution on Current Data-Parallel Architectures 54

5.4 Convolution Engine . 57

5.4.1 Load/Store Unit and Register Files 58

5.4.2 MAP & Reduce Logic . 60

5.4.3 SIMD & Custom Functional Units 61

5.4.4 A 2-D Filter Example . 62

5.4.5 Resource Sizing . 64

5.4.6 Convolution Engine CMP . 65

5.4.7 Programming the Convolution Engine 67

5.4.8 Controlling Flexibility in CE 68

5.5 Evaluation Methodology . 70

5.6 Results . 73

5.7 Convolution Engine Conclusion . 79

6 Bilateral Filtering 81

6.1 Bilateral Filtering . 83

6.1.1 Gaussian Blur . 83

viii

6.1.2 Bilateral Blur . 84

6.2 Bilateral Filtering - Existing Implementations 85

6.2.1 Bilateral Grid . 86

6.2.2 Permutohedral Lattice . 89

6.3 Extracting Locality - Modified Bilateral Grid 90

6.4 Hardware Acceleration of Modified Bilateral Grid 95

6.4.1 Path Divergence . 97

6.5 Acceleration Results . 97

6.5.1 Simulation Methodology . 97

6.5.2 Results . 98

6.6 Conclusion . 100

7 Conclusions 102

Bibliography 105

ix

List of Tables

2.1 Scaling Results for Circuit Performance. Reproduced from [23]. . . . 9

3.1 Intel’s optimized H.264 encoder vs. a 720p HD ASIC. The second row

scales Intel’s SD data to HD. Original 180nm ASIC data was scaled to

90nm. 19

3.2 Energy cost of accessing a 32-bit word from various levels of memory hi-

erarchy and register file (45nm technology node). Third column shows

the ratio of these energy costs to the cost of a 32-bit ADD operation. 22

4.1 SIMD resource sizes used for each processor. CABAC does not benefit

from SIMD, so no SIMD unit is added to the EC processor. 33

5.1 Comparison of various hardware solutions in terms of the flexibility

they offer in various components. Last column summarizes the energy

efficiency achieved by each design point relative to the base RISC, for

H.264 study in previous chapter. Designs are listed in the order of

increasing efficiency . 50

5.2 Mapping kernels to convolution abstraction. Some kernels such as sub-

traction operate on single pixels and thus have no stencil size defined.

We call these matrix operations. There is no reduce step for these

operations. 54

5.3 Sizes for various resources in CE. 63

x

5.4 Energy for filtering instructions implemented as processor extensions

with 32, 64 or 128 ALUs. Overhead is the energy for instruction fetch,

decode and sequencing. 65

5.5 Major instructions added to processor ISA. 67

6.1 Execution time and storage requirements of grayscale vs RGB bilateral

filtering schemes for an HD video frame. Decimation factor is 16 in all

dimensions. Entries refers to the array or hashtable entries required

to store the points in high dimensional space. Bytes refers to the size

of storage structure in bytes. Direct algorithm is direct application of

Equation 6.3. 87

6.2 Quality comparison of various schemes for RGB bilateral filtering of a

high definition video frame. The metric for output quality is the PSNR

relative to an exact solution of equation 6.4. 91

xi

List of Figures

1.1 Design Space for Programmability vs Energy Efficiency Tradeoff. We

would like a new design point lying somewhere in the blue region,

with energy consumption close to custom hardware, and having high

flexibility. 2

2.1 Microprocessor power consumption over the years [52]. 10

2.2 Microprocessor power densities over the years [52]. 10

2.3 The energy-performance space. The Pareto-optimal frontier line rep-

resents efficient designs—no higher performance design exists for the

given energy budget. The recent push for parallelism advocates more,

but simpler, cores. This backs off the higher performance high-power

points and uses parallelism to keep/increase performance [52]. 13

2.4 Two widely used mobile SOC platforms. 14

2.5 Simplified image capture pipeline which converts RAW data from sen-

sor into RGB images or video frames. (TODO: update with a better

pipeline) . 16

3.1 Energy breakdown of a typical 32-bit RISC instruction in 45nm tech-

nology. Assumes a 32-KByte I-Cache. 20

3.2 Further overheads on top of a RISC instruction. Executing the ADD

instruction requires further support instructions such as loads and

stores, branches, address calculations and so on. The loads and stores

involve costly D-Cache accesses. 21

xii

3.3 Amortize the cost of instruction fetch and control overheads over a

large number of simple operations 21

3.4 Amortize each memory access over a large number of instructions . . 23

3.5 Four distinct components of a computing machine. 24

4.1 Four-stage macroblock partition of H.264. (a) Data flow between

stages. (b) How the pipeline works on different macroblocks. IP in-

cludes DCT + Quant. EC is CABAC. 30

4.2 The performance and energy gap for base CMP implementation when

compared to an equivalent ASIC. Intra combines IP, DCT, and Quant. 31

4.3 Processor energy breakdown for a 32-bit RISC implementation of the

high definition H.264 encoder. The graph shows distribution across

H.264 sub-algorithms. Note: Intra combines IP, DCT, and Quant. . 32

4.4 Processor energy breakdown for base implementation. IF is instruction

fetch/decode. D-$ is data cache. P Reg includes the pipeline registers,

buses, and clocking. Ctrl is miscellaneous control. RF is register file.

FU is the functional units. 32

4.5 Each set of bar graphs represents energy consumption (mJ) at each

stage of optimization for IME, FME, IP and CABAC respectively.

The first bar in each set represents base RISC energy; followed by

RISC augmented with SIMD+OpFusion; and then RISC augmented

with magic instructions. The last bar in each group indicates energy

consumption by the ASIC. 35

4.6 Speedup at each stage of optimization for IME, FME, IP and CABAC. 35

4.7 Processor energy breakdown for H.264. SIMD+OF is SIMD with op-

eration fusion. IF is instruction fetch/decode. D-$ is data cache. Pip

is the pipeline registers, buses, and clocking. Ctl is random control.

RF is the register file. FU is the functional elements. Only the top

bar or two (FU, RF) contribute useful work in the processor. For this

application it is hard to achieve much more than 10% of the power in

the FU without adding custom hardware units. 36

xiii

4.8 (a) IME operates on a stream of video frames. Here we are encoding

frame 3 using a previous frame in the stream as reference (frame 2).

The red square is a 16x16 image macroblock, and the goal is to find

its closest match within a 48x48 search window in the reference frame.

(b) A blowup of the search windows, showing the first 16x16 search

location in the search window which is compared against the current

macroblock (c) The second search block is shifted from the first search

block by just one pixel - most of the pixels from previous comparison

are re-used. 37

4.9 A very wide hypothetical SIMD unit with 256-element compute array

and a register file with 256-element wide vector registers. 39

4.10 Custom storage and compute for IME 4 X 4 SAD. current and ref-pixel

register files feed all pixels to the 16 X 16 SAD array in parallel. Also,

the ref-pixel register file allows horizontal and vertical shifts. 42

4.11 FME upsampling unit. Customized shift registers, directly wired to

function logic, result in efficient upsampling. Ten integer pixels from

local memory are used for row upsampling in RFIR blocks. Half up-

sampled pixels along with appropriate integer pixels are loaded into

shift registers. CFIR accesses six shift registers in each column simul-

taneously to perform column upsampling. 43

4.12 CABAC arithmetic encoding loop. (a) H.264 reference code. (b) Af-

ter insertion of magic instructions. Much of the control logic in the

main loop has been reduced to one constant time instruction EN-

CODE PIPE 5. 44

4.13 Area in mm2 for magic instruction designs compared to the area of base

processor (90nm technology). These numbers include both processor

core area, as well as I-Cache and D-Cache area. 45

4.14 Area efficiency of magic vs RISC cores. 46

xiv

5.1 We use the n-tap 1D convolution presented here to explain our SIMD

implementation. For SIMD the equation is parallelized across outputs

and executed one column at a time. 55

5.2 1D Horizontal 16-tap convolution on a 128-bit SIMD machine, similar

to optimized implementation described in [56]. 16 outputs are com-

puted in parallel to maximize SIMD usage. Output is stored in two

vector registers and two multiply-accumulate instruction are required

at each step. 56

5.3 1D Horizontal 16-tap convolution using a shift register with shifted

broadcast capability. Computes 4 output pixels per instruction. . . . 57

5.4 Block Diagram of Convolution Engine. The interface units (IF) connect

the register files to the functional units and provide shifted broadcast

to facilitate convolution. 59

5.5 Executing a 4x4 2D Filter on CE. The grayed out boxes represent units

not used in the example. The sizes of all of the resources are defined.

The of choice these particular resource sizes will be explained in a later

section. 62

5.6 Convolution Engine CMP. 66

5.7 Mapping of applications to Convolution Engine CMP. 71

5.8 Energy consumption normalized to custom implementation: Convolu-

tion Engine vs custom cores and SIMD. 73

5.9 Ops/mm2 normalized to custom implementation: Number of image

blocks each core processes in one second, divided by the area of the

core. For H.264 an image block is a 16x16 macroblock and for SIFT it

is a 64x64 image block. 74

5.10 Change in energy consumption as programmability is incrementally

added to the core. 76

5.11 Change in area as programmability is incrementally added to the core. 77

6.1 Smoothing using a standard gaussian blur kernel vs a bilateral filter.

(a) Original image (b) Gaussian blur (c) Bilateral filter. 82

xv

6.2 The splat, blur and slice steps used in bilateral grid algorithm - repro-

duced from [9]. (a) Input ”image” is a 1D grayscale signal. (b) Each

pixel in the image is treated as a point in the 2D (x, I) space with a

2D position vector. (c) Each pixel is assigned to the coarse grid square

it falls in. The size of the square depends on the decimation factor.

(d) The entire 2D space is blurred using a 2D blur kernel. The lighter

pixels group is at a distance from the darker pixel group so no signif-

icant mixing of the two occurs. (e) For slicing the blurred 2D space

is sampled at positions corresponding to the original image pixels. (f)

Output pixels are now blurred without crossing the edges. 88

6.3 Permutohedral Lattice based implementation of bilateral filtering on a

Tensilica based 32-bit RISC platform. The system includes 32KB L1

instruction and data caches, as well as a 2MB L2 cache. DDR accesses

account for more than 40% of dynamic energy dissipation. Leakage

energy is also very significant and mostly comprises the leakage from

the large L2 cache. 90

6.4 (a) In regular bilateral grid algorithm each pixel imparts its energy to

all the 2d vertices of the d-dimensional hyper-cube that it falls in. In

this 2D illustration, each pixel updates all 4 vertices of its enclosing

square. (b) In the modified grid scheme, each pixel updates its closest

grid vertex as well as the d neighbors - one along each dimension. . . 91

6.5 Modified Bilateral Grid uses an XY-Grid of hash tables to represent

the decimated space (5D for RGB case). The X-Y grid represents the

points along X, Y axes of the 5D space, and the hash table at each grid

location stores the sparsely populated RGB sub-space corresponding

to that X, Y co-ordinate. 92

xvi

6.6 X, Y co-ordinates of the grid correspond directly to the X, Y pixels

locations in the image. Assuming a decimation factor of 32 in X, Y,

the green highlighted square in X, Y grid corresponds to the first 32x32

block in the image. The highlighted pixel in that 32x32 block updates

the hash-table on its nearest XY vertex, as well as the neighboring

hash-tables along X and Y. 94

6.7 Energy consumption and execution time for permutohedral lattice based

algorithm vs our modified bilateral grid. The test image is an HD video

frame. The decimation factor is 32 in spatial dimensions and 16 in RGB

dimensions. 94

6.8 Proposed data-path for modified bilateral filtering. It consists of an

array of 4-way SIMD units, which are all operated by the same in-

struction stream. While not explicitly shown, each SIMD unit has its

own address generation unit as well as a dedicated port to access the

L0-cache. 96

6.9 Energy consumption for various implementations of RGB bilateral fil-

tering for a HD video frame. Permut refers to Permutohedral Lattice

implementation, MGrid refers to Modified Grid algorithm. For Modi-

fied Grid we present results for RISC implementation as well as SIMD

implementations with one, 8 and 16 SIMD units. Results are normal-

ized with respect to Permutohedral Lattice RISC implementation. The

results marked with ’*’ use a combination of simulation and manual

estimation. 99

6.10 Energy consumption breakdown for 16-SIMD-Unit implementation of

Modified Grid bilateral filtering. 100

xvii

Chapter 1

Introduction

1.1 Motivation

A major challenge faced by computer architects today is to create new architectures

which achieve higher performance at fixed power. Most computing systems today

are power limited. In case of servers and desktops, power is constrained by our

inability to cool these devices effectively once power crosses a threshold. Mobile and

embedded devices not only have even lower cooling limits, but also aim to maximize

battery life by minimizing power consumption. While these have very different power

envelops—a few hundred watts for servers vs. a few watts for mobile platforms—both

operate under strict power limits. Since power is operations/sec x energy/operation,

we need to decrease the energy cost of each operation if we want to continue to scale

performance at constant power.

With such an emphasis on low energy designs it might be a shock to know that

current general purpose processors are extremely inefficient when it comes to energy

consumption. Studies such as [30] and [21] have shown that a general purpose proces-

sor often consumes up to 1000 times higher energy compared to dedicated hardware

solutions for compute intensive applications!. In past this steep cost of programmabil-

ity was hidden by the energy reduction achieved through voltage scaling in successive

generations of semiconductor fabrication technology. However with voltage-scaling

coming to a stop, and at the same time power budgets hitting a ceiling, we can no

1

CHAPTER 1. INTRODUCTION 2

General
Processor

Custom
HW

Reusability

Energy

Do
Everything

Specialized
for an

Application

500x

?	

Figure 1.1: Design Space for Programmability vs Energy Efficiency Tradeoff. We
would like a new design point lying somewhere in the blue region, with energy con-
sumption close to custom hardware, and having high flexibility.

longer continue to waste this much energy. This suggests we should move away from

general purpose processors and create custom ASICs which make much more efficient

use of energy and silicon area. Indeed, this has been the approach for many high-

volume applications. However with today’s billion transistor chips, designing and

manufacturing an ASIC has become extremely expensive, and very few applications

have a big enough market to justify the cost.

Processors have a big advantage that you design a processor once and then re-use

it again and again over a larger number of applications, effectively amortizing the

design cost as well as the manufacturing cost. Moreover processors provide a well-

established development environment, as well as a much greater ability to react to

changes in application requirements.

This thesis explores the large design space between ASICs and GP processors. As

depicted in Figure 1.1, we want to look for new tradeoff points in this space which

have energy consumption close to custom hardware and, yet, do not give up too much

in flexibility compared to a fully programmable processor. Ideally such design points

would fit somewhere in the blue region of Figure 1.1.

CHAPTER 1. INTRODUCTION 3

1.2 Thesis Overview

Chapter 2 discusses in detail the energy constraints faced by designs today as well

as the challenges faced by future hardware systems designed under these constraints.

Specially, we concentrate on image processing applications, which are rapidly becom-

ing an integral part of most computing systems and at the same time have very high

computation requirements.

We approach the goal of creating flexible, yet efficient designs by first understand-

ing what are the sources of energy overheads in a general purpose processor, and

quantifying the contribution of each of these to the overall inefficiency of the proces-

sors. Chapter 3 explores this topic by presenting energy breakdown of a typical RISC

instruction and also relates that to the energy cost of cache and DRAM memory

accesses. For most of the instructions, cost of an ALU operation is less than 1% of

instruction energy - much of the energy cost goes into (i) fetching and decoding the

instruction stream to implement a programmable control flow, and (ii) moving data

from a memory / cache to the ALU inputs. Conceptually, the primary mechanisms

for reducing these overheads include (i) amortizing the instruction sequencing cost by

executing tens to hundreds of ALU operations per instruction, and (ii) minimizing

cache / memory accesses by capturing most of the data-reuse in low-energy, high

bandwidth storage structures local to the processor data-path. To gain high effi-

ciency, then, we would like to incorporate these characteristics into a general purpose

computation framework.

Of course not every application class can achieve 3 orders of magnitude energy

reduction. Highest gains are achieved for applications which have a high degree of

parallelism as well as significant data locality. While these conditions might seem

restrictive, these span most of the applications for which efficient custom solutions

exist.

One architectural idea which already employs similar principles is a SIMD unit

which is now common in most modern processors including embedded processors[56,

1]. By restricting the domain of computation to 1-D data-parallel operations, a SIMD

unit loses some flexibility but gains performance and energy efficiency. However, are

CHAPTER 1. INTRODUCTION 4

these types of broad specialization strategies good enough to overcome the energy

overheads and get close to the efficiency of an algorithm specific custom hardware?

And, if not, then how much further specialization is needed to bring the processor

close to dedicated hardware designs?

Chapter 4 attempts to answer these question with a case study on HD H.264

video encoding - a highly compute intensive application often implemented as a cus-

tom ASIC. We transform a generic multi-processor RISC system into to a highly

specialized multiprocessor optimized for this application. Initially we incorporate

only broad specializations and optimizations, including SIMD, VLIW, and fused op-

erations. While the resulting processor system achieves around 10x energy reduction

for data-parallel components of the application, it still leaves a lot on the table con-

suming about 50x more energy overall compared to the ASIC. Further specialization

brings the customized processors within 2-3x of the ASIC solution. However, the

specialized data-paths that we add to achieve that, look fairly similar to their ASIC

counter parts. Unlike the ASIC, the programmable control flow breaks the ties from

a specific algorithm flow. However, in practice the highly algorithm-tuned nature of

the data-path implies that these customized processors are not very useful beyond

the algorithm they are designed for.

Chapter 5 shows that truly re-usable specialized cores can be created by special-

izing for recurring data-flow patterns instead of specializing for a specific application.

The key is identifying patterns which are not only re-used across a range of applica-

tions, but also meet both the parallelism and data-reuse requirements that we have

outlined. One such common motif in our target imaging domain is a convolution-like

data flow: apply a function to a stencil of the data, then perform a reduction, then

shift the stencil to include a small amount of new data, and repeat. Chapter 5 looks

at building a flexible Convolution Engine for this motif. We show that the resulting

unit is able to accelerate a diverse set of applications which are typically implemented

today using a combination of multiple custom hardware units and programmable ap-

plication processors and GPUs. Impressively it can do that with about two orders

of magnitude less energy compared to a general processor, and in fact the energy

consumption is within 2-3x of custom hardware. It is even an order of magnitude

CHAPTER 1. INTRODUCTION 5

better than a SIMD unit which is already specialized for data parallel algorithms.

Of course not everything in the imaging domain maps to this convolution ab-

straction. One such example is bilateral filtering [58], which is a non-linear filtering

technique widely used in computational photography algorithms [9]. Bilateral filter-

ing has a large working set and thus does not immediately offer the short term data

re-use exploited in the convolution abstraction. However, as Chapter 6 shows the

algorithm still has a large degree of locality. By restructuring the algorithm to ex-

pose that locality, we bring it to a form which we know how to optimize using similar

techniques as used for the convolution based algorithms. The work on optimizing bi-

lateral filtering also reinforces our belief that a domain customized approach requires

a slight change in the mindset about how we approach hardware design. Instead of

tailoring the hardware to the requirements of each individual algorithm we would like

to identify widely applicable computational motifs which we can implement efficiently

in hardware and then restructure the algorithms if needed to make use of these highly

optimized computational motifs.

The convolution engine together with the bilateral engine provides the core capa-

bilities required to accelerate a large number of imaging applications. This includes

a multitude of emerging computational photography applications which aim to en-

hance the imaging experience and quality through use of advanced image processing

techniques, but which are currently limited by the power or performance limitation

of current imaging platforms.

Chapter 2

Energy Constraints And The Need

For Flexibility

For years digital integrated circuit chips have been on a growth path which is nothing

short of extraordinary. In just 30 years, we have gone from simple chips with only a

few thousand transistors to today’s extremely complex designs with billions of transis-

tors - a million-fold increase. This growth has been made possible by semiconductor

technology scaling - with every new generation we could not only fit exponentially

higher number of transistors in a given chip area, but could also switch these transis-

tors at exponentially lower energy to keep power in check. Designers leveraged these

ever-increasing number of lower-energy transistors, and at the same time used higher

and higher amounts of power, delivering bigger and faster designs with explosive

growth in performance.

However, power consumption of these chips has hit the maximum limit in recent

years, and at the same time energy reduction through technology scaling has slowed

down. Thus, the traditional approach to getting more performance - using a larger

number of transistors and running them at faster speed - no longer works as that

would exceed the power limit. Energy consumption has thus become a primary design

constraint today, and we need innovations in computer architecture creating designs

which could do more work with the same number of transistor switches. In other

words, these new designs have to make more efficient use of the transistor resources.

6

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 7

Another consequence of this exponential growth is a huge increase in design cost of

the chips - a billion transistor chip is much more complex than a thousand transistor

chip. In fact, the cost of designing a new dedicated hardware is now prohibitive for

most applications [49, 29]. This is leading chip designers to use more and more pro-

grammable and reusable components such as processors. This, however, goes against

the need to create energy efficient designs - as we and others [21] show, a general

purpose processor can consume a hundred to a thousand times more energy com-

pared to a dedicated hardware design. This puts us in a dilemma - given the energy

constraints, we would like to move away from these inefficient processors and create

efficient custom designs. However, the design complexity and reuse considerations

push towards using programmable processor systems.

In this chapter, we discuss the implications of these constraints for future system

design. Section 2.1 explains in detail how technology has evolved over the years

and why scaling is no longer the answer. Section 2.2 then explains some approaches

currently in use to solve this issue, including a move to multi-core systems as well as

heterogenous systems, and limitations of these approaches. Specifically in 2.3 we look

more closely at heterogeneous systems currently in use by most embedded imaging

systems and explain why these designs are not well-equipped to meet the future needs

of such systems within the given power constrains.

2.1 Technology Scaling and Energy Constraints

Technology scaling over the past few decades has been fueled by our ability to make

the transistors smaller and smaller through advances in photolithography process,

and pack a larger and larger number of these transistors on a single chip. Apart from

increasing the transistor count, these smaller transistors also require less energy to

switch them. Shacham et al. have presented a detailed account [52] of how semi-

conductor technology has scaled over the years, as well as the corresponding trends

in processor performance and power over that period. In this section, we summarize

some of these trends to help understand the current landscape for hardware system

design.

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 8

As Shacham et al. point out, understanding semiconductor technology scaling

trends is best done by considering Moore’s Law [41] and Dennard scaling [23]. Moore’s

Law, presented by Gordon Moore in 1965, predicted that the number of transistors

on a chip will grow exponentially, roughly doubling every two years. Semiconductor

chips have closely followed that trend, resulting, as stated previously, in a million-fold

increase in transistor count over the last 30 years.

Dennard’s work [23] on the other hand established scaling principles which would

allow not only increasing transistor densities but at the same time gain higher tran-

sistor switching speeds at constant power dissipation. Under Dennard scaling, when

we shrink transistor dimensions by k, the operating voltage is scaled by the same

factor k to maintain a constant electric field. Table 2.1 reproduced from [23] lists

the impact this has on various aspects of device performance. As the table suggests,

following this scaling scheme, not only does the number of transistor in a given area

increase by k2, the delay decreases by k, which in turn means the design could run

at k-times higher frequency. At the same time, despite the increased switching fre-

quency, the switching power per transistor goes down by 1/k2. If we then account

for the fact that we have now k2 time more transistors in the same area, the total

power to switch all the transistors in that area remains constant. The implication is

that we now have k2 more transistors switching at k-times higher frequency, without

requiring any increase in silicon area or power. Thus technology scaling alone could

enable increasingly higher performance chips without increasing the power budget,

as long as designers could find ways to convert these extra transistors into higher

performance.

However, as Shacham et al. further point out, in practice the semiconductor chips

have deviated from the scaling path prescribed by Dennard, targeting even higher

performance than would be achievable through Dennard scaling. Designers have

pushed for higher frequencies through deeper pipelines, faster circuit configurations,

etc. and have also increased chip areas to get even more transistors. The result

is that instead of power density as well as power remaining constant, both of these

have been increasing rapidly. One illustration of that can be seen in Figures 2.1 and

2.2 reproduced from [52] which present historical power and power density data for

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 9

Table 2.1: Scaling Results for Circuit Performance. Reproduced from [23].

Device or Circuit Parameter Scaling Factor

Device dimension tox, L, W 1/k
Doping Concentration Na k
Voltage V 1/k
Current I 1/k
Capacitance εA/t 1/k
Delay time/circuit VC/I 1/k
Power dissipation/circuit VI 1/k2

Power density VI/A 1

microprocessor designs. While this did not present a problem initially, gradually the

chips started becoming too hot to cool economically. At the same time, more and

more of the computing started moving to mobile platforms which are constrained by

limited battery life and even lower power envelopes. These factors explain why power

in Figure 2.1 tapered off soon after year 2000.

While hitting this power wall placed limitations on the techniques designers could

employ, Dennard scaling was still available at hand to continue to scale performance

within a fixed power budget. However in recent years even Dennard scaling has

stopped. With leakage current becoming significant and accounting for a major com-

ponent of chip power, it is no longer possible to scale down the threshold voltage,

Vth. Consequently, we can no longer decrease the operating voltage, Vdd, without ad-

verse impact on performance. Thus voltage scaling has pretty much stopped starting

with the 90nm technology node. In the absence of voltage scaling, if we switch, as

before, k2 times higher number of transistors at k-times higher frequency, there will

be a sharp increase in power, which is not feasible. In fact, even without increasing

the frequency, switching k2 times higher number of transistors at constant frequency

would still increase the power. Thus we need to perform a larger number of computa-

tions per second to get higher performance, but can’t proportionally increase the total

number of transistors switched per second and consequently the energy dissipated per

second. That in turn implies that each individual operation has to be performed using

a lower number of transistor switches, using lower energy. This requires a move to

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 10

Figure 2.1: Microprocessor power consumption over the years [52].

Figure 2.2: Microprocessor power densities over the years [52].

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 11

fundamentally more efficient ways to perform computations.

2.2 Energy Efficiency and Processor Systems

As the last section elaborated, increasing performance of a system without an increase

in power now requires performing each computation at a lower energy. One way to

achieve that goal is to move away from programmable processors towards custom

hardware design. Given their programmable nature, general purpose processors have

higher overheads and as a result incur a large degree of wasted work to accomplish

a given task. As seen with the H.264 ASIC example in the previous chapter, a

hardware block specialized for a single algorithm can perform that task using much

less resources and consequently much lower energy. Thus an obvious way to handle

the energy constraints is to build custom hardware instead of programmable.

However, the NRE cost of designing and verifying an ASIC is increasing exponen-

tially due to increased complexity and there are very few applications which have a

broad enough market to justify this cost of designing dedicated hardware [49, 29]. A

processor on the other hand can be designed once and then used for a large number

of applications thus amortizing the cost over many systems.

Moreover, the software cost of designing drivers and firmware for each new chip is

also increasing exponentially and in fact becoming the dominant cost now. Proces-

sors, on the other hand, have a well established software infrastructure and familiar

development tools thus substantially reducing the software cost. Another advantage

of a processor based design is the ability to adapt to changes in algorithms and re-

quirements. With a custom hardware any changes late in the design cycle are costly

both in terms of re-design effort as well as time to market. Processors can accommo-

date such changes at any point during or after the release. A huge testament to the

advantages of programmable platforms can be found in the overwhelming popularity

and rapid adoption of smartphones. What were once largely fixed function devices

with a limited use case, now offer a very diverse set of functionalities as evidenced by

millions of third-party applications in place for iOS and android-based smartphones.

There are thus compelling reasons to use processors as basic building blocks for

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 12

digital systems, and many applications which were once based on completely custom

ASICs are now making more and more use of flexible processors. This desire to

leverage flexibility of a processor-based designs, however, competes against the need

for specialization to improve energy efficiency. Moreover, in order to extract higher

and higher performance out of these processors, designers have employed more and

more aggressive techniques such as out of order execution, branch target buffers,

larger caches, deep pipelining, speculative execution and so on. These aggressive

higher-performing processors not only take huge area, but as Azizi et al. [11] show,

they are also even more inefficient in terms of energy consumption, thus further

exacerbating the situation.

There is thus a growing interest in building more energy efficient programmable

systems. This has also driven a move towards parallel multi-core systems based on

simpler processor cores.

2.2.1 Multi-Core Systems

As the last section alluded, pushing processor performance to higher levels requires

aggressive energy-hungry techniques. To illustrate that better, Figure 2.3 reproduced

from [52] shows the tradeoff space for energy vs performance in processor design. The

red-line marks the efficient frontier consisting of designs which achieve the lowest en-

ergy consumption for a given performance level. As the figure shows, performance can

be scaled to modest levels without a huge increase in energy consumption. However

once we push the performance beyond a certain point, large incremental increases in

energy consumption are incurred for relatively small gains in performance. Tradition-

ally the processors were being built with a goal to maximize single core performance

and the designs were pushed to limit extracting every last bit of performance using

aggressive techniques. Resulting designs, while fast, made highly inefficient use of

energy.

The emergence of the power wall, however, has forced designers to rethink this

strategy. Instead of pushing the performance of a single core to the steepest region

of the energy vs. performance curve, designers have moved towards systems with

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 13

Figure 2.3: The energy-performance space. The Pareto-optimal frontier line repre-
sents efficient designs—no higher performance design exists for the given energy bud-
get. The recent push for parallelism advocates more, but simpler, cores. This backs
off the higher performance high-power points and uses parallelism to keep/increase
performance [52].

multiple less aggressive cores. As indicated in Figure 2.3, these cores target a level

of performance which can be achieved without going into the most energy-inefficient

parts of the trade-off curve. Multiple such cores then work together to achieve the

performance goals. Since each of the cores makes more efficient use of energy the

higher performance is now achieved at a lower energy cost. There are of course

limitations to this approach, as not every application has the parallelism needed to

make use of multiple cores.

However, more significantly, even for highly parallel computations which can make

good use of multiple cores, this approach provides limited gain. The simpler cores

used in such multi-core systems are indeed much more efficient than the extreme

designs of the past, they are still highly inefficient. However, as the next chapter will

show, even a simple 32-bit RISC processor design, without aggressive hardware units

to boost performance, spends over 99% of its energy in wasted overheads and can

consume 2-3 orders of magnitude more energy compared to a dedicated ASIC!

This has further led designers to heterogenous multi-core systems which we discuss

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 14

Figure 2.4: Two widely used mobile SOC platforms.

next.

2.2.2 Heterogenous Multi-Core Systems

Unlike homogenous multi-core systems which employ identical cores replicated many

times, heterogenous systems bring together different processor cores each specialized

for a specific task. Figures 2.4 shows a couple of examples of such heterogenous SOCs

for mobile systems. The SOCs in these examples include not only standard RISC

processors, but also specialized cores including GPUs to handle 2D and 3D graphics

display, DSPs for signal processing tasks, imaging processors to handle camera sub-

system and video processors for video encode and decode operations.

This approach helps with energy and performance in two ways. First, a special-

ized processor can get rid of some resources which are required in a general purpose

processor but not needed for their intended use. For example, GPU cores don’t make

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 15

use of expensive out-of-order execution, speculative execution and other similar mech-

anism which are likely to be found in a high performance state-of-the-art CPU. This

reduces energy by eliminating the energy wasted on these resources and also frees

up area to implement many more simpler cores, thus enabling higher performance.

Secondly, these specialized cores could include extra resources which help with their

target applications and yet cannot be justified in general processor. For example

DSPs feature dedicated addressing modes for FFT calculation as FFT is a prevalent

operation in signal processing.

While designing and verifying such heterogenous platforms is more complex com-

pared to a homogenous platform, the low power and energy budgets of mobile devices

often necessitates this approach. Nevertheless while the current specialized processors

in these heterogenous platforms improve upon the efficiency of generic CPU cores,

they still leave a lot on the table. As we discuss next in the section on imaging and

video systems, the most computationally intensive computations in these platforms

are still offloaded to fixed function custom hardware blocks, as the GPU and DSP

cores are unable to match the extremely low energy consumption of these dedicated

blocks.

2.3 Imaging and Video Systems

Imaging and video systems are already deeply integrated into many of our devices.

In addition to traditional cameras; cell phones, laptops and tablets now all capture

high-resolution images and video. Most smartphone cameras today are equipped

with 8-13 megapixels sensors and go even as high as 41 megapixels. On the video

side high definition 1080p video at 30fps is now the norm. These imaging systems

push a large number of pixels through an image pipeline in real time and thus have

very high computational requirements. For each image or video frame a number of

processing steps are required to convert raw data from the sensor into a viewable

RGB image. Figure 2.5 shows a simplified imaging pipeline with a subset of the

typical processing steps (which does not include any of the advanced computational

photography algorithms). Furthermore, compressing individual video frames into a

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 16

Demosaic	
 Tone	
 Mapping	
 White	
 Balance	
 Denoising	
 Sharpening	

Figure 2.5: Simplified image capture pipeline which converts RAW data from sensor
into RGB images or video frames. (TODO: update with a better pipeline)

video bit-stream requires complex video codecs such as H.264. Performing these

computations could consume a lot of energy which is a concern because these devices

operate on small batteries and have small power budgets.

Looking back at Figure 2.4 of two SOCs commonly used in mobile devices such

as cell phones and tablets, we see that these systems use custom algorithm-specific

hardware to provide the required computation power for imaging tasks at low energy.

The Image Signal Processor (ISP) is responsible for implementing an imaging pipeline

like the one depicted in Figure 2.5, and the video codec units are responsible for

encoding video frames while recording a video clip and decoding the video frames at

playback time. This is despite the fact that these SOCs already contains a variety of

cores which can be used to implement imaging algorithms. Most imaging algorithms

have a large degree of data-parallelism - a domain which GPUs excel at. Similarly

the RISC CPU cores in these devices are also equipped with SIMD extensions [56,

1], which again target data-parallel algorithms. However these cores are unable to

provide the performance and energy efficiency required to enable the high compute

requirements of imaging and video pipelines necessitating the use of custom dedicated

hardware for these operations. What is even more telling is that we get not one but

up to three different hardware units for imaging - one dealing with the basic camera

pipeline, and others for video encode and decode. Each of the units is customized for a

specific task with limited flexibility. While this approach worked well until now when

camera sub-systems had a relatively well-defined functionality, new computational

photography and computer vision based applications are becoming common which

pose a problem for these platforms.

The field of computational photography aims to use algorithmic techniques to

address the limitations of camera sensors and optics. Consumer cameras are typ-

ically limited by their small sensors. Cell phones in particular are constrained by

CHAPTER 2. ENERGY CONSTRAINTS VS. FLEXIBILITY 17

the strict requirements on their form factor, and not only have fairly small sensors

but also have modest optics. As a result, despite continuous improvements, their

image quality lags far behind even cheap entry level DSLR cameras. However at the

same time cell phones are becoming more and more the primary imaging tool for a

large number of consumers due to their convenience. Computational photography

techniques use advanced image processing to overcome the small sensor limitations

and get enhanced image quality [8, 48]. These include high dynamic range imaging

[8, 22], synthetic aperture [37], flash-no-flash imaging [46], digital image stabilization

[40], super resolution [25] and video stabilization [38] to name a few. Apart from

computational photography, there is also a growing interest in implementing new

functionalities such as augmented reality [59], which makes use of imaging as well as

computer vision techniques.

However, unlike the well-defined set of functions required in the basic image

pipeline and video codec operations, these algorithms require a new and diverse

range of computations and the custom imaging units in today’s imaging SOCs are

not equipped to handle these. The alternative is to make use of general purpose CPU

cores and/or the GPU which together can provide the needed flexibility as well as

computational power for these algorithms. However as we have already seen, this

flexibility comes at the cost of 100-1000 times more energy which is highly undesir-

able given the battery life constraints. Imaging systems of the future thus face the

same competing goals that we have described earlier, requiring, on one hand, high

flexibility and programmability to handle a diverse set of computational photography

and computer vision algorithms, and at the same time requiring very high energy

efficiency.

Chapter 3

Overheads In General Purpose

Processors

In this chapter, we look closely at the energy consumption in a processor, and quantify

the energy spent on useful computations versus overheads introduced due to the

programmable nature of the processors. Once the overheads are quantified we discuss

what architectural constructs could help eliminate or reduce these overheads, and

what types of application are likely to benefit from these constructs. Finally we

present our approach to finding new architectural solutions that incorporate such

constructs in a programmable system.

To set the stage for this discussion, let’s examine the energy consumption numbers

shown in Table 3.1 for software [33] vs ASIC [17] implementations of high definition

H.264 video encoding. The software implementation employs an Intel processor ex-

ecuting highly optimized SSE code. It is also worth noting that the software imple-

mentation relies on various algorithmic simplifications, which drastically reduce the

computational complexity, but result in a 20% decrease in compression efficiency for

a given SNR [33]. Despite these optimizations the software implementation lags far

behind the ASIC version, which consumes over 500x less energy using a fraction of

the silicon area and has a negligible drop in compression efficiency. This explains why

the mobile SOC platforms depicted in Figure 2.4 contain a custom hardware unit for

video encode / decode functions. It also suggests that the processor is making an

18

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 19

Table 3.1: Intel’s optimized H.264 encoder vs. a 720p HD ASIC. The second row
scales Intel’s SD data to HD. Original 180nm ASIC data was scaled to 90nm.

FPS Area (mm2) Energy/Frame(mJ)
CPU (720x480 SD) 30 122 742
CPU (1280x720 HD) 11 122 2023
ASIC (1280x720 HD) 30 8 4

extremely inefficient use of energy. The next section looks at the energy breakdown

of a typical 32-bit RISC instruction to understand where all the energy is spent in

the processor.

3.1 Anatomy of a Typical RISC Instruction

Figure 3.1 shows the breakdown of energy consumed in the execution of a 32-bit

ADD instruction on a 32-bit RISC processor. The Tensilica processor [26] used for

this analysis is a simple single-issue core targeted towards embedded systems. In

45nm technology, execution of this ADD instruction consumes about 70pJ of energy.

However, strikingly, only 0.5pJ out of that 70pJ goes into the actual 32-bit ADD logic.

The rest of the energy goes into various overheads. One of the biggest overheads is

the instruction supply, which involves reading from instruction-cache the instruction

to execute and then decode that instruction in the processor to perform the required

operation. For a reasonably sized 32-KByte instruction cache, a single cache access

consumes about 25pJ(!), which is much larger than the 0.5pJ ADD logic. Similarly,

reading the input operands from the register file and writing the output back consumes

another 4pJ. And then there is quite a lot more energy which goes into various control

operations in the processor, such as instruction decode, program sequencing, pipeline

management etc. Thus 99% of instruction energy is the overhead of the programmable

machinery built around the basic arithmetic unit.

However that’s not all. As Figure 3.2 illustrates, there are further overheads

beyond what we have shown. Before the add instruction executes, its operands need

to be loaded from memory into the register file, which requires load instructions.

Similarly the output of the add operation has to be stored back from the register file to

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 20

ADD	
 70	
 pJ	

ADD Logic = ~0.5 pJ

(Instr decode, sequencing, pipeline management,
clocking, ….)

I-­‐Cache	
 Reg	
 Control	

25	
 pJ	
 4	
 pJ	
 ~40	
 pJ	

Figure 3.1: Energy breakdown of a typical 32-bit RISC instruction in 45nm technol-
ogy. Assumes a 32-KByte I-Cache.

memory, requiring a store operation. Each of these load and store operation is in itself

a RISC instruction, each incurring an energy cost similar to the ADD instruction.

In fact loads and store also need to access the data-cache which is another 25pJ

per access, assuming a 32-KByte data cache. Other overhead instructions include

branches to implement loops, further arithmetic operations for address calculations

and so on. Once we put that all together, it is clear that the execution of a 0.5pJ

add operation could involve hundreds of pJ’s of energy spent in overhead instructions

as well as overhead logic within each instruction. That also clearly explains the 500x

energy difference we have observed in ASIC vs. processor based implementations.

To understand how to get rid of this waste, we categorize the waste into two main

categories. The first category is the overheads which arise from the programmable

nature of the processor. These include the energy spent on instruction fetch and

decode, sequencing support, pipeline management and other related control logic.

These are unique to a processor core and do not exist in custom hardware, which is

based on hard-wired control flow. However since our goal is to retain programmable

control flow to gain maximum flexibility, one of our key challenges is to find out how

to gain efficiency while retaining this instruction-based control flow.

The second category is the overhead of accessing data from memory outside the

core, such as the d-cache in the example above. The cost of such an access is far greater

than simple arithmetic operations, and that would severely limit efficiency if every

arithmetic operation had to get its operands from an outside memory. This challenge

is not unique to processors and in fact ASICs need to solve the same problem. That

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 21

I-­‐Cache	
 Reg	
 Control	

I-­‐Cache	
 Control	

I-­‐Cache	
 Reg	
 Control	

Reg	
 Control	

I-­‐Cache	
 Reg	
 Control	

I-­‐Cache	

ADD	

LD	

LD	

ST	

BR	

D-­‐Cache	

D-­‐Cache	

25pJ

Reg	

D-­‐Cache	

Figure 3.2: Further overheads on top of a RISC instruction. Executing the ADD
instruction requires further support instructions such as loads and stores, branches,
address calculations and so on. The loads and stores involve costly D-Cache accesses.

I-­‐Cache	
 Reg	
 Control	

Hundreds of Simple Operations

Figure 3.3: Amortize the cost of instruction fetch and control overheads over a large
number of simple operations

then suggests that we could look learn from how typical ASICs solve this problem

and try to incorporate that into our processor based computational framework.

The next section discusses at an abstract level the mechanisms that can be used

to address both these types of overheads and derives conditions for efficient execution

within a programmable core. That would be the build-up for next chapter which

then performs a case study for a real application, discussing how to create a highly

efficient programmable multi-processor system for this application, which achieves

performance and energy consumption close to ASIC hardware.

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 22

Table 3.2: Energy cost of accessing a 32-bit word from various levels of memory
hierarchy and register file (45nm technology node). Third column shows the ratio of
these energy costs to the cost of a 32-bit ADD operation.

Energy/Access (pJ) Ratio to 32-bit ADD

DRAM 2000 4000
2MB L2-Cache 65 130
32KB L1 D-Cache 25 50

16-Word Register File 4 8

3.2 Removing Processor Overheads

As Figure 3.3 shows, one way to address the overheads of instruction fetch and decode

and other related control mechanisms is to create instructions which perform a large

number of basic arithmetic operations per instruction fetch. Instead of paying the

instruction delivery cost for each 0.5pJ ADD operation, this way the cost is amor-

tized over a much larger number of operations. Note also that for simple arithmetic

operations like ADD, we need hundreds of them per instruction to be able to fully

amortize the overhead cost. While such an instruction could clearly amortize the

overheads, it would need to access hundreds of data elements to operate. That leads

to the second constraint i.e. the high cost of accessing data memory.

Table 3.2 shows the energy cost of accessing a 32-bit word from various levels of

memory hierarchy as well as the processor register file. It also compares these costs

to the cost of a basic 32-bit arithmetic operation. A DRAM access consumes energy

which is thousands of times the cost of a 32-bit ADD operation. Clearly if every

operation needs to access the DRAM then the energy consumption of arithmetic

operations would be dwarfed by the DRAM accesses. Luckily the caching schemes

that processor systems already use to reduce the latency of memory accesses also serve

to reduce the energy cost of memory accesses. A smaller buffer close to the memory

such as an L1 cache consumes far less energy than a larger buffer away from the

processor, such as L2 cache or DRAM. Therefore cost of data memory accesses would

be minimized if a vast majority of data accesses is serviced from the lowest energy

L1 cache. Nevertheless even the L1 cache consumes about 50 times the energy of an

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 23

Load Data
Compute
Compute
Compute
Compute
Compute
…
Load Data
Compute
…

L1	
 D-­‐Cache	

Local	
 Data-­‐path	
 Storage	

ALU	
 Array	

Low Bandwidth,
High Access Energy

High Bandwidth,
Low Access Energy

Figure 3.4: Amortize each memory access over a large number of instructions

arithmetic operation, so even if 100% of data accesses are served by the L1 cache,

the execution cost would be still dominated by memory access energy. Moreover we

have setup our instructions to perform hundreds of operations on each invocation and

a D-Cache could not provide a wide enough interface to load all of that in one go.

Executing a series of costly load instructions before each compute operation would kill

the efficiency that we attempt to gain through our very wide compute instructions.

Thus if we are to create these very wide efficient instructions, most of the data

to operate on should reside in the local register storage of the processor, eliminating

the need to go to the costly and lower-bandwidth memories. The standard processor

register file however is not suitable for this. As Table 3.2 shows, the cost to access

the register file is still somewhat high relative to the compute cost and it is limited to

reading a few operands per instruction. To prevent memory accesses from becoming

the performance and energy bottleneck, such a processor needs an alternate local

storage structure which can offer high bandwidth as well as even lower-energy data

access. Figure 3.4 depicts this. We haven’t yet discussed what such storage structures

might look like. However as was already mentioned, ASICs have had to solve the

same data access problem and thus we could study custom hardware units for various

applications to understand what type of storage structures are needed. This will be

one of the the topics for the next chapter.

Figures 3.3 and 3.4 thus summarize the two conditions for highly efficient execution

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 24

Register	
 Storage	
 Structure(s)	

+	
 +	
 x	
 x	

Arithmetic Blocks

Interconnection

Control Flow
State Machine

Figure 3.5: Four distinct components of a computing machine.

within a processor framework. We need to perform a large number of simple ops per

instruction and most of the data requests should be served by a local low-energy,

high bandwidth structure with very infrequent accesses to data memory. Of course

not all applications could meet these conditions. Only those applications with a

large degree of data-level parallelism could fully utilize such instructions with very

wide compute. At the same time the application needs to have a significant degree

of data locality if we are to meet the goal of having most data accesses from local

storage without the need to go to data memory frequently. This could happen in

two ways, either an input data element fetched from data memory is used multiple

times in multiple computations, or most computations operate on intermediate data

generated and stored in local storage and subsequently consumed locally. While these

conditions might seem very restrictive, they span most applications for which efficient

hardware implementations exist. At the same time such applications also tend to be

the most computationally expensive parts of a system. Thus creating programmable

abstractions which could handle such workloads at ASIC-like efficiency would be

valuable.

The next section presents our approach to finding these new abstractions.

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 25

3.3 Our Methodology

A computing system can be thought of as having the four distinct components illus-

trated in Figure 3.5: (i) a set of arithmetic units which perform computations, (ii) a

set of storage elements to hold data on which the computation is performed, (iii) an

interface to connect the storage elements to the compute elements in some fashion,

and (iv) a control flow logic which orchestrates the use of these resources in a specific

sequence to implement the required algorithm. An ASIC incorporates specific compu-

tation and storage elements fused together as per the application need and controlled

by hardwired control logic. A processor on the other extreme has a set of general

purpose ALUs, connected to a general purpose register file with a generic read/write

interface and a programmable sequencer to implement virtually any algorithmic flow

as needed.

One approach to creating reusable efficient hardware is to start with an ASIC and

add limited flexibility to each of the four components described above. An example

of this approach would be the video codec hardware used in mobile devices, which are

designed to handle multiple codec formats [35]. Since most video codec algorithms

have a similar algorithmic structure, it is possible to create a single hardware structure

that targets all of the codecs by adding a pre-defined set of options to each of the four

components. By choosing appropriate configuration settings, any of the supported

codec variants can be used. The major limitation however is that the flexibility is

limited to choosing from a set of predefined closely related algorithmic flows rather

than having the ability to create arbitrary new algorithms.

Moving beyond this limited flexibility, based on a predefined set of options, re-

quires a flexible control logic such as the programmable sequencer in a processor. In

our work, therefore, we take the opposite approach. Instead of starting from an ASIC

and make it more flexible, we start from a processor and explore if it can be con-

verted into a highly efficient computing machine. While gaining efficiency necessarily

involves losing some flexibility we would still like the final system to retain true pro-

grammability such that the programmable sequencer can create arbitrary algorithm

CHAPTER 3. OVERHEADS IN GENERAL PURPOSE PROCESSORS 26

flows using the computation and storage resources at its disposal. As we already al-

luded to earlier, some specialized architectures such as SIMD units, DSPs and GPUs

already take a similar approach and trade some flexibility to gain efficiency and yet

retain programmability within their target domain. However these designs are still

up to two orders of magnitude less efficient compared to custom hardware. We want

to push this further towards the point where a programmable solution is much closer

to custom hardware in terms of energy consumption.

To develop an architecture which can meet these goals, we use a step-wise investi-

gation methodology. Before evaluating a specific design approach we first go back to

the basics and perform an in depth analysis of the energy consumption in a general

purpose RISC processor to understand where the energy is wasted. The goal is to

understand which components in a processor system spend most of the energy, which

then helps us understand what impact various optimizations have on each of these

sources of inefficiency. Chapter 3 presents that analysis and derives a set of conditions

required to achieve high efficiency within a processor framework.

The next step in our methodology is to apply these insights to create a specialized

processor system for a specific application i.e. H.264 video encoding. Note that our

eventual goal is to create a processor which is useful across a range of application.

However, we start with a design for a single application so as to answer a few impor-

tant questions. First we want to come up with a bound on how close we can get to

ASIC performance within a programmable processor framework. Clearly our even-

tual programmable processor would be at best as good, though more likely worse,

compared to a processor customized for a single application in terms of energy con-

sumption. Therefore this experiment gives us a useful upper bound on the efficiency

we could hope to achieve. Moreover, building on the insights from this experiment, we

can then build more generic programmable abstractions for algorithms in the imaging

domain.

The next chapter applies these ideas to an actual application transforming a

generic RISC based chip multiprocessor (CMP) into a processor system optimized

to perform H.264 video encoding.

Chapter 4

Removing Processor Overheads -

H.264 Case Study

Chapter 3 introduced two conditions for efficient execution in a processor, along with

resulting constraints on the applications which we could hope to implement with high

efficiency. In this chapter we transform these abstract ideas into a concrete form by

building very low-energy processors for high definition H.264 video encoding. The

huge energy gap in the ASIC vs. plain vanilla processor implementations of this

application have already been highlighted in previous chapters. Now we augment a

processor with new instructions and storage structures to bring its energy consump-

tion for H.264 encoding close to ASIC implementation of this application. The new

instructions and storage that we add are specialized for H.264 and designed with

aforementioned efficiency conditions in mind.

This works as a limit study for efficiency achievable within a processor framework.

The eventual goal is to build an efficient core which is useful across a range of algo-

rithms. However, initially we restrict the computation to a single highly data-parallel

application to understand how close such a specialized processor can get get to a

dedicated ASIC in terms of performance and energy consumption, and whether there

are any constraints which stop a specialized processor implementation from reach-

ing ASIC-like efficiency. Moreover the study would help us understand the level of

27

CHAPTER 4. H.264 CASE STUDY 28

customization required to reach that level of energy efficiency. Many processors to-

day already employ some broad specializations such as SIMD units [56, 1] targeting

data-parallel algorithms, and fused operations[28] which combine frequently occur-

ring instruction sequences into a single instruction. But are those enough to take us

close to custom hardware? And if we need to go beyond these then how far do we

need to go down the specialization path before we get the efficiency gain we seek?

4.1 H.264 Computational Motifs

Let’s start with an overview of H.264 encoder application - H.264 is a block-based

video encoder which divides each video frame into 16x16 macro-blocks and encodes

each one separately. Each block goes through five major functions: (i) IME: Integer

Motion Estimation (ii) FME: Fractional Motion Estimation (iii) IP: Intra Prediction

(iv) DCT/Quant: Transform and Quantization, and (v) CABAC: Context Adaptive

Binary Arithmetic Coding.

IME finds the closest match for an image block versus a previous reference image.

While it is one of the most compute intensive parts of the encoder, the basic algorithm

lends itself well to data parallel architectures. In the software implementation on a

32-bit RISC processor, IME takes up 56% of the total encoder execution time and

52% of total energy.

The next step, FME, refines the initial match from integer motion estimation and

finds a match at quarter-pixel resolution. FME is also data parallel, but it has some

sequential dependencies and a more complex computation kernel that makes it more

difficult to parallelize. FME takes up 36% of the total execution time and 40% of

total energy on our base chip-multiprocessor (CMP) design.

IP uses previously encoded neighboring image blocks within the current frame to

form an alternate prediction for the current image-block. While the algorithm is still

dominated by arithmetic operations, the computations are much less regular than

the motion estimation algorithms. Additionally, there are sequential dependencies

not only within the algorithm but also with the transform and quantization function.

Next, in DCT/Quant, the difference between a current and predicted image block

CHAPTER 4. H.264 CASE STUDY 29

is transformed and quantized to generate coefficients to be encoded. The basic func-

tion is relatively simple and data parallel. However, it is invoked a number of times

for each 16x16 image block, which calls for an efficient implementation. For the rest

of this paper, we merge these operations into the IP stage. The combined operation

accounts for 7% of the total execution time and 6% of total energy.

Finally, CABAC is used to entropy-encode the coefficients and other elements of

the bit-stream. Unlike the previous algorithms, CABAC is sequential and control

dominated. While it takes only 1.6% of the execution time and 1.7% of total energy

on our base design, CABAC often becomes the bottleneck in parallel systems due to

its sequential nature.

We note that IME and FME together dominate the computational load of the

encoder, and thus optimizing these algorithms is essential for an efficient H.264 system

design. The good news is that these are also the algorithms which most closely

match the application characteristics that we had outlined in last chapter for efficient

implementation in a processor framework. The next section outlines the methodology

we use to create optimized implementations of these and other components of the

H.264 encoder.

4.2 Analysis Methodology

As previously mentioned, our aim is to transform a generic multiprocessor into a chip-

multiprocessor (CMP) specialized for H.264. The first step then is to create the base

multiprocessor implementation for H.264. H.264’s video encoding path is very long

and suffers from sequential dependencies that restrict parallelism. Chen et al. [18]

have carried out a detailed analysis of various H.264 partitioning schemes, and suggest

partitioning the H.264 encoder into a four-stage macro-block (MB) pipeline shown in

Figure 4.1. This mapping exploits task level parallelism at the macro block level and

significantly reduces the communication bandwidth requirements between the pipeline

stages. This mapping has been subsequently adopted by ASIC implementations such

as [17]. We use a similar partitioning, and modify the H.264 encoder reference code

JM 8.6 [32] to remove dependencies and allow mapping of the five major algorithmic

CHAPTER 4. H.264 CASE STUDY 30

L
um

a
 R

ef
.

P
el

s,
C

ur
.

Lu
m

a
M

B

Luma Ref. Pels,
Cur. Luma MB

MV Info.
MV Info.,

MC Luma MB

Cur. Luma MB

C
h

ro
m

a
M

B
,

U
pp

er
 P

e
ls

Residue
MB, QP,
Intra Flag

Upper Pels

Bitstream

MB0

MB1

MB2

MB3

FME IP ECIME

IME FME IP EC

IME FME IP EC

FMEIME IP EC

Read/Write to
main memory

Delayed main memory
data

Data produced in prev.
pipe stage

(a)

(b)

Figure 4.1: Four-stage macroblock partition of H.264. (a) Data flow between stages.
(b) How the pipeline works on different macroblocks. IP includes DCT + Quant. EC
is CABAC.

blocks to this pipeline.

In the base system, we map this four-stage macro-block partition to a chip-

multiprocessor (CMP) system with four Tensilica embedded processors [26] running

at 400Mhz in 90nm technology. All four processors are identical—each of these is a

32-bit single issue RISC core with 16KB 2-way set associative instruction and data

caches. Each of these processors will be individually customized using a processor

extension language supported by Tensilica toolchain [51].

Figure 4.2 highlights the large efficiency gap between our base CMP and the refer-

ence ASIC for individual 720p HD H.264 sub-algorithms. The energy required for each

RISC instruction is similar and as a result, the energy required for each task (shown

CHAPTER 4. H.264 CASE STUDY 31

1	

10	

100	

1000	

IME	
 FME	
 Intra	
 CABAC	

Performance	
 Gap	
 Energy	
 Gap	

Figure 4.2: The performance and energy gap for base CMP implementation when
compared to an equivalent ASIC. Intra combines IP, DCT, and Quant.

in Figure 4.3) is related to the cycles spent on that task. The RISC implementation of

IME, which is the major contributor to performance and energy consumption, has a

performance gap of 525x and an energy gap of over 700x compared to the ASIC. IME

and FME dominate the overall energy and thus need to be aggressively optimized.

However, we also note that while IP, DCT, Quant and CABAC are much smaller

parts of the total energy/delay, even they need about 100x energy improvement to

reach ASIC levels.

Note that the processor performance numbers in Figure 4.2 assume that each

processor is running independently, achieving the highest performance possible for

the algorithm assigned to it. However, when these processors operate in a pipeline,

IME processor becomes the bottleneck, limiting system performance to only 0.06

FPS, even though IP and CABAC processors can independently achieve 0.48 FPS

and 1.82 FPS respectively. It could be argued that the base system performance

can be improved with a balanced pipeline giving more processor resources to IME

and FME which constitute over 90% of the computation. However this would have

negligible impact on energy consumption, and performance improvement would also

be limited to less than 2x. Thus, this imbalance has negligible contribution in the

500x performance and energy gap that we are trying to close.

CHAPTER 4. H.264 CASE STUDY 32

52%	
 41%	

6%	

1%	

IME	

FME	

Intra	

CABAC	

Figure 4.3: Processor energy breakdown for a 32-bit RISC implementation of the high
definition H.264 encoder. The graph shows distribution across H.264 sub-algorithms.
Note: Intra combines IP, DCT, and Quant.

33%	

19%	

22%	

10%	

10%	
 6%	
 IF	

D-­‐$	

P	
 Reg	

Ctrl	

RF	

Int	
 ALU	

Figure 4.4: Processor energy breakdown for base implementation. IF is instruction
fetch/decode. D-$ is data cache. P Reg includes the pipeline registers, buses, and
clocking. Ctrl is miscellaneous control. RF is register file. FU is the functional units.

CHAPTER 4. H.264 CASE STUDY 33

Table 4.1: SIMD resource sizes used for each processor. CABAC does not benefit
from SIMD, so no SIMD unit is added to the EC processor.

SIMD Width Element Width RegFile Size Memory Port VLIW Slots

IME 16 Elements 8 bits 16 Vectors 128-bit 2
FME 18 Elements 9 bits 32 Vectors 128-bit 2
IP 8 Elements 8 bits 16 Vectors 64-bit 2

At approximately 8.6B instructions to process one frame, our base system con-

sumes about 140 pJ/instruction in 90nm technology—a reasonable value for a general-

purpose system. To further analyze the energy efficiency of this base CMP imple-

mentation we break the processor’s energy into different functional units as shown

in Figure 4.4. This data makes it clear how far we need to go to approach ASIC

efficiency. The energy spent in instruction fetch (IF) is an overhead due to the pro-

grammable nature of the processors and is absent in a custom hardware state machine,

but eliminating all this overhead only increases the energy efficiency by less than one

third. Even if we eliminate everything but the functional unit energy, we still end up

with energy savings of only 20x—not nearly enough to reach ASIC levels.

So now we customize each processor for the specific algorithms running on that

particular processor. The customization is done by adding custom instructions to

each processor using a processor extension language supported by Tensilica processors

[51]. As noted earlier, we first want to analyze how far we could go with broad

specializations such as SIMD units. The next section talks about the results of that.

4.3 Broad Specializations

At first, we consider acceleration strategies that represent current state-of-the-art op-

timized CPUs. These are relatively general purpose data parallel optimizations and

consist of SIMD extensions as well as use of multiple instruction issue / cycle (we

use the VLIW strategy). Some extension units, such as those in GPUs and Intel’s

SSE [31], further incorporate a limited degree of algorithm specific customization

in the form of operation fusion—the creation of new instructions that combine fre-

quently occurring sequences of instructions. We incorporate similar fused operations

CHAPTER 4. H.264 CASE STUDY 34

at this step. Like Intel’s SSE, these new instructions are constrained to the existing

instruction formats (i.e. two input operands, one output) and fit existing datapath

structures.

Using Tensilica’s FLIX (Flexible Length Instruction eXtension) [57] feature we

create processors with up to 3-slot VLIW instructions. Using Tensilica’s extension

language called TIE [57], we add SIMD execution units to the base processor. SIMD

widths and vector register file sizes vary across each algorithm and are summarized in

Table 4.1. Each SIMD instruction performs multiple operations (8 for IP, 16 for IME

and 18 for FME), reducing the number of instructions and increasing performance.

At the same time this has the effect of amortizing the fetch and control cost as already

discussed. VLIW instructions execute 2 or 3 operations per cycle, further reducing

cycle count. Moreover, SIMD operations perform wider register file and data cache

accesses which are more energy efficient compared to narrower accesses. Therefore

all components of instruction energy depicted in Figure 4.4 get a reduction through

use of these enhancements.

We further augment these enhancements with operation fusion, in which we fuse

together frequently occurring complex instruction sub-graphs for both RISC and

SIMD instructions. To prevent the register file ports from increasing, these instruc-

tions are restricted to use up to two input operands and can produce only one output.

As an example we add a SIMD sum-of-absolute-differences instruction to the IME

processor. This instruction combines three SIMD operations—SIMD subtraction,

SIMD absolute value operation, and SIMD 4-to-1 reduction—into a single multi-

cycle instruction. Operation fusion improves energy efficiency by aggregating more

operations into a single instruction, and also reducing the number of register file

accesses by internally consuming short-lived intermediate data. Additionally, fusion

gives us the ability to create more energy efficient hardware implementations of the

fused operations, e.g. multiplication implemented using shifts and adds.

We now analyze how these designs fare in terms of the efficiency conditions we

have derived. Figures 4.5 and 4.6 summarize the results. CABAC is not data parallel

and benefits only from LIW and op fusion with a speedup of merely 1.1x. For IME,

FME and IP which are data-parallel algorithms, SIMD, VLIW and op fusion together

CHAPTER 4. H.264 CASE STUDY 35

100	

1000	

10000	

100000	

1000000	

10000000	

IME	
 FME	
 IP	
 CABAC	
 Total	

RISC	
 SIMD+OpFusion	
 Magic	
 ASIC	

Figure 4.5: Each set of bar graphs represents energy consumption (mJ) at each stage
of optimization for IME, FME, IP and CABAC respectively. The first bar in each set
represents base RISC energy; followed by RISC augmented with SIMD+OpFusion;
and then RISC augmented with magic instructions. The last bar in each group
indicates energy consumption by the ASIC.

0.1	

1	

10	

100	

1000	

IME	
 FME	
 IP	
 CABAC	
 Total	

RISC	
 SIMD+OpFusion	
 Magic	
 ASIC	

Figure 4.6: Speedup at each stage of optimization for IME, FME, IP and CABAC.

CHAPTER 4. H.264 CASE STUDY 36

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

RISC	
 SIMD+OF	
 Magic	
 RISC	
 SIMD+OF	
 Magic	
 RISC	
 SIMD+OF	
 Magic	
 RISC	
 SIMD+OF	
 Magic	

IME	
 FME	
 IP	
 CABAC	

FU	

RF	

Ctl	

Pip	

D-­‐$	

IF	

Figure 4.7: Processor energy breakdown for H.264. SIMD+OF is SIMD with oper-
ation fusion. IF is instruction fetch/decode. D-$ is data cache. Pip is the pipeline
registers, buses, and clocking. Ctl is random control. RF is the register file. FU is
the functional elements. Only the top bar or two (FU, RF) contribute useful work in
the processor. For this application it is hard to achieve much more than 10% of the
power in the FU without adding custom hardware units.

result in about 10-30 simple operations per instruction. As a result processors achieve

speedups of around 15x, 30x and 10x respectively. However, 10-30 operations per

instruction are not enough to amortize the instructions overheads, and thus as Figure

4.7 shows these overheads still dominate the instruction cost. Similarly while wider

accesses help reduce energy cost of register and memory accesses, these costs are still

substantial. Overall, the application gets an energy efficiency gain of almost 10x, but

still uses greater than 50x more energy than an ASIC.

4.3.1 Building a Wider SIMD

The obvious way to improve over these result is to build a wider SIMD engine, however

simply creating wider arithmetic instructions does not solve the problem of feeding

enough data to keep these large number of arithmetic arrays busy. Trying to naively

scale the SIMD model quickly becomes limited by load / store operations and/or data

rearrangement operations.

To understand why that’s the case let’s assume we create a huge 256-way SIMD

CHAPTER 4. H.264 CASE STUDY 37

Search
Window

Reference Frame Current Frame

Video Frame 0 Video Frame 1 Video Frame 2 Video Frame 3

16x16
Current
Image
Block

16x16
Current
Image
Block

(a)

(b) (c)

Figure 4.8: (a) IME operates on a stream of video frames. Here we are encoding
frame 3 using a previous frame in the stream as reference (frame 2). The red square
is a 16x16 image macroblock, and the goal is to find its closest match within a 48x48
search window in the reference frame. (b) A blowup of the search windows, showing
the first 16x16 search location in the search window which is compared against the
current macroblock (c) The second search block is shifted from the first search block
by just one pixel - most of the pixels from previous comparison are re-used.

unit and try to map one of the H.264 algorithms - Integer Motion Estimation - on

it. Figure 4.8 shows an overview of the integer motion estimation algorithm. The

algorithm operates on a sequence of video frames. Each frame is divided into 16x16

image blocks called macroblocks (MBs), and the goal is to find for each MB in current

frame, the closest matching 16x16 patch in a previous reference frame. The search for

the matching block is carried out over a 48x48 window in the reference frame. Figures

4.8(b) and 4.8(c) show the first two search locations within the search window. As

illustrated each search location is offset from the previous one by only one pixel in

horizontal or vertical direction.

This has a few implications. First there is a huge amount of computation to

CHAPTER 4. H.264 CASE STUDY 38

be performed - each comparison is a sum-of-absolute-differences operation requiring

256 difference operations, 256 absolute value operations, and finally a reduction or

summation step to combine these 256 results. And for a 48x48 search range, 1024

such comparisons are required for just a single 16x16 image MB. At the same time

the operations are highly data-parallel making this algorithm a good match for a

SIMD-like computation model. At the same time since most of the pixels are re-used

from one search location to the next, there is a potential of extracting a large amount

of data-reuse if there exist the right storage structure in the data-path to exploit this

data flow.

Now imagine mapping this to the very wide 256-element SIMD unit depicted in

Figure 4.9. Loading the first search location from Figure 4.8(b) into one of the wide

256-element vector registers requires sixteen 128-bit loads. Note that the data is not

stored in contiguous memory locations so having a wider access port to data memory

would not help. Once we process the the first search location, it is time to move on

to the next location depicted in 4.8 (c). Most of the data for this second location is

already present in the vector register used for first search location, and we just need

one extra pixel from each of the 16 rows. However reading these 16-pixels and inserting

them at the right places in the 256-element register would require a large number of

additional loads and data re-arrangement instructions. The other option is to reload

the second search window from the data memory, avoiding the need for data shuffling

but still incurring costly D-Cache accesses and load operations (further complicated

by the fact that these data accesses would go to unaligned addresses). Clearly such an

implementation would severely limit the utilization of the wide compute instructions,

consequently limiting any gain in energy efficiency. We observed similar constraints

in mapping FME and IP to a wide SIMD unit.

The next section explores adding more specialized instructions to the processors,

inspired by the ASIC implementation.

CHAPTER 4. H.264 CASE STUDY 39

256-­‐element	
 Vector	

Register	
 File	

+	
 +	
 +	
 +	
 +	
 +	
 +	
 +	
 +	
 +	
 +	
 +	
 +	

Figure 4.9: A very wide hypothetical SIMD unit with 256-element compute array and
a register file with 256-element wide vector registers.

4.4 Application Specific Customizations

The root cause of the large energy difference between processor and ASIC imple-

mentations of H.164 is that the basic operations in H.264 are very simple and low

energy. They only require 8- to 16-bit integer operations, so the fundamental energy/-

operation is on the order of hundreds of femtojoules in a 90nm process. Thus these

operations are even lower energy compared to the 32-bit arithmetic operations in our

standard RISC and as a result all the processor overheads that we have discussed—

instruction fetch, register fetch, data fetch, control, and pipeline registers—are even

greater (140 picojoules vs a few hundred femtojules). Thus even with SIMD and

fusion combining to issue tens of these extremely low energy operations per cycle we

still have a machine where around 90% of the energy is going into overhead functions.

As the previous section has shown, simply scaling a traditional SIMD unit to a

wider number of elements is not the answer either - the resulting unit would not

have storage and compute structures matched to the data flow requirements of the

problem. An ASIC incorporates hardware which has minimal control overheads, as

well as has storage structures specialized to the algorithm. These storage structures

not only help retain most of the data to be processed within the data-path, but also

provide much higher bandwidth connection to a large number of arithmetic units than

is possible for a standard register file. These features allow the ASIC to exploit large

amounts of parallelism efficiently, achieving high performance at low energy cost.

To make possible our approach of creating very wide instructions which amortize

CHAPTER 4. H.264 CASE STUDY 40

the per-instruction energy overheads over hundreds of these simple operations, similar

specialized storage structures must be added to the processor data-path. These cus-

tom storage structures have algorithm-specific communication links to directly feed

large amounts of data to arithmetic units without explicit register accesses.

Once this hardware is in place, the machine can issue “magic” instructions that

accomplish large amounts of computation at very low cost. This type of structure

eliminates almost all the processor overheads for these functions by eliminating most

of the communication and control cost associated with processors. We call these

instructions “magic” because they can have a large effect on both the energy and

performance of an application and yet they would be difficult to derive directly from

the code. Such instructions typically require an understanding of the underlying

algorithms, as well as the capabilities and limitations of existing hardware resources,

thus requiring greater effort on the part of the designer. Since the IP stage uses

techniques similar to FME, the rest of the section will focus on IME, FME and

CABAC.

4.4.1 IME Strategy

To demonstrate the nature and benefit of magic instructions we first look at IME,

which determines the best alignment for two image blocks. The best match is de-

fined by the smallest sum-of-absolute-differences (SAD) of all of the pixel values. As

discussed earlier in Section 4.3.1, finding the best match requires scanning one image

block over a larger piece of the image, and while this requires a large number of cal-

culations, it also has very high data locality. Figure 4.10 shows the custom datapath

elements added to the IME processor to accelerate this function. At the core is a

16x16 SAD array, which can perform 256 SAD operations in one cycle. Since our

standard vector register files cannot feed enough data to this unit per cycle, the SAD

unit is fed by a custom register structure, which allows parallel access to all 16-pixel

rows and enables this datapath to perform one 256-pixel computation per cycle. In

addition, the intermediate results of the pixel operations need not be stored since it

can be reduced in place (summed) to create the single desired output. Furthermore,

CHAPTER 4. H.264 CASE STUDY 41

because we need to check many overlapping search locations, the custom storage

structure has support for parallel shifts both horizontal and vertical directions, thus

allowing one to shift the entire comparison image in only one cycle. Thus unlike the

SIMD example of Section 4.3.1, the overlapping block can be easily re-used without

a need for a large number of loads or data-rearrangement operation. In fact with this

arrangement once the initial 16 rows have been filled into the shift register, only a

single 256-bit load is needed for every 16 comparisons. Thats just a single 256-load

for every 4K absolute difference operations!

Thus this shift register structure drastically reduces the instructions wasted on

loads, shifts and pointer arithmetic operations as well as data cache accesses, and

enables 256 fused absolute-difference operations per instruction. “Magic” instructions

and storage elements are also created for other major algorithmic functions in IME to

achieve similar gains. Thus, by reducing instruction overheads and by amortizing the

remaining overheads over larger datapath widths, functional units finally consume

around 40% of the total instruction energy. The performance and energy efficiency

improve by 200-300x over the base implementation, match the ASIC’s performance

and come within 3x of ASIC energy. This customized solution is 20-30x better than

generic data-parallel engines.

4.4.2 FME Strategy

FME improves the output of the IME stage by refining the alignment to a fraction

of a pixel. To perform the fractional alignment, the FME stage interpolates one

image to estimate the values of a 4x4 pixel block at fractional pixel coordinates. This

operation is done by a filter and upsample block, which again has high arithmetic

intensity and high data locality. In H.264, upsampling uses a six-tap FIR filter that

requires one new pixel per iteration. To reduce instruction fetches and register file

transfers, we augment the processor register file with a custom 8-bit wide, six entry

shift register structure which works like a FIFO: every time a new 8-bit value is

loaded, all elements are shifted. This eliminates the use of expensive register file

accesses for either data shifting or operand fetch, which are now both handled by

CHAPTER 4. H.264 CASE STUDY 42

 Figure 4.10: Custom storage and compute for IME 4 X 4 SAD. current and ref-pixel
register files feed all pixels to the 16 X 16 SAD array in parallel. Also, the ref-pixel
register file allows horizontal and vertical shifts.

short local wires. All six entries can now be accessed in parallel and we create a

six input multiplier/adder which can do the calculation in a single cycle and also

can be implemented much more efficiently than the composition of normal 2-input

adders. Finally, since we need to perform the upsampling in 2-D, we build a shift

register structure that stores the horizontally upsampled data, and feeds its outputs

to a number of vertical upsampling units (Figure 4.11).

This transformation yields large savings even beyond the savings in instruction

fetch energy. From a pure datapath perspective (register file, pipeline registers, and

functional units), this approach dissipates less than 1/30th the energy of a traditional

approach.

A look at the FME SIMD code implementation highlights the advantages of this

custom hardware approach versus the use of larger SIMD arrays. The SIMD imple-

mentation suffers from code replication and excessive local memory and register file

accesses, in addition to not having the most efficient functional units. FME contains

seven different sub-block sizes ranging from 16x16 pixel blocks to 4x4 blocks, and not

CHAPTER 4. H.264 CASE STUDY 43

RFIR RFIR RFIR RFIR RFIR

Integer buffer Row Half Buffer Column Half Buffer

Ten integer pixels loaded from local memory

C
F

IR

C
F

IR

C
F

IR

C
F

IR

C
F

IR

C
F

IR

C
F

IR

C
F

IR

C
F

IR

RFIR Row upsampling CFIR Column upsampling

C
F

IR

C
F

IR

Figure 4.11: FME upsampling unit. Customized shift registers, directly wired to
function logic, result in efficient upsampling. Ten integer pixels from local memory
are used for row upsampling in RFIR blocks. Half upsampled pixels along with
appropriate integer pixels are loaded into shift registers. CFIR accesses six shift
registers in each column simultaneously to perform column upsampling.

all of them can fully exploit the 18-way SIMD datapath. Additionally, to use the 18-

way SIMD datapath, each sub-block requires a slightly different code sequence, which

results in code replication and more I-fetch power because of the larger I-cache.

To avoid these issues, the custom hardware upsampler processes 4x4 pixels. This

allows it to reuse the same computation loop repeatedly without any code replication,

which, in turn, lets us reduce the I-cache from a 16KB 4-way cache to a 2KB direct-

mapped cache. Due to the abundance of short-lived data, we remove the vector

register files and replace them with custom storage buffers. The “magic” instruction

reduces the instruction cache energy by 54x and processor fetch and decode energy by

14x. Finally, as Figure 4.7 shows, 35% of the energy is now going into the functional

units, and again the energy efficiency of this unit is close to an ASIC.

CHAPTER 4. H.264 CASE STUDY 44

(a) (b)

Figure 4.12: CABAC arithmetic encoding loop. (a) H.264 reference code. (b) After
insertion of magic instructions. Much of the control logic in the main loop has been
reduced to one constant time instruction ENCODE PIPE 5.

4.4.3 CABAC Strategy

CABAC originally consumed less than 2% of the total energy, but after data parallel

components are accelerated by “magic” instructions, CABAC dominates the total

energy. However, it requires a different set of optimizations because it is control

oriented and not data parallel. Thus, for CABAC, we are more interested in control

fusion than operation fusion.

A critical part of CABAC is the arithmetic encoding stage, which is a serial process

with small amounts of computation, but complex control flow. We break arithmetic

coding down into a simple pipeline and drastically change it from the reference code

implementation, reducing the binary encoding of each symbol to five instructions.

While there are several if-then-else conditionals reduced to single instructions (or

with several compressed into one), the most significant reduction came in the encoding

loop, as shown in Figure 4.12(a). Each iteration of this loop may or may not trigger

execution of an internal loop that outputs an indefinite number of encoded bits. By

fundamentally changing the algorithm, the while loop was reduced to a single constant

time instruction (ENCODE PIPE 5) and a rarely executed while loop, as shown in

CHAPTER 4. H.264 CASE STUDY 45

0	

0.5	

1	

1.5	

2	

2.5	

IME	
 FME	
 IP	
 CABAC	

Ar
ea
	
 (m

m
2)
	

RISC	
 Magic	

Figure 4.13: Area in mm2 for magic instruction designs compared to the area of base
processor (90nm technology). These numbers include both processor core area, as
well as I-Cache and D-Cache area.

Figure 4.12(b).

The other critical part of CABAC is the conversion of non-binary-valued DCT

coefficients to binary codes in the binarization stage. To improve the efficiency of this

step, we create a 16-entry LIFO structure to store DCT coefficients. To each LIFO

entry, we add a single-bit flag to identify zero-valued DCT coefficients. These struc-

tures, along with their corresponding logic, reduce register file energy by bringing the

most frequently used values out of the register file and into custom storage buffers.

Using “magic” instructions we produce Unary and Exponential-Golomb codes using

simple operations, which help reduce datapath energy. These modifications are in-

spired by the ASIC implementation described in [53]. CABAC is optimized to achieve

the bit rate required for H.264 level 3.1 at 720p video resolution.

4.5 Area Cost of Magic Instructions

Figure 4.13 shows the area for each of the four customized processors we have created.

The numbers for RISC include the processor core area, as well as the area of L1 caches.

For magic processors, the area includes processor core area, extension unit area, and

CHAPTER 4. H.264 CASE STUDY 46

0.01	

0.1	

1	

10	

100	

IME	
 FME	
 IP	
 CABAC	

FP
S	

/	

m
m
2	

RISC	
 Magic	

Figure 4.14: Area efficiency of magic vs RISC cores.

the area of L1 caches. Note that the L1 caches for each magic core are sized according

to the requirements of the optimized code running on that core. In some cases these

sizes can be substantially lower than the starting base core. This explains why the

final CABAC processor is smaller than the base processor.

IME and FME add substantially large extension units to the processor. Some

of the area is reclaimed by the reduction in I-cache and D-cache sizes, but the total

processor area still increases by around 0.7mm2 and 0.9mm2 for IME and FME

respectively. However, unlike the base processor, these units make a far more efficient

use of this area. As Figure 4.14 shows, customized processors for IME and FME

achieve more than two orders of magnitude higher FPS/mm2 figures over their RISC

counterparts. IP and CABAC require much smaller extensions, as the computation in

these tasks is much simpler. Still, these relatively small extensions enable a significant

performance boost, and as a result the area efficiency (FPS/mm2) goes up by more

than an order of magnitude.

CHAPTER 4. H.264 CASE STUDY 47

4.6 Magic Instructions Summary

To summarize, the magic instructions perform up to hundreds of operations each time

they are executed, so the overhead of the instruction is better balanced by the work

performed. This is hard to do in a general way, since bandwidth requirements and

utilization of a larger SIMD array would be problematic. We solved this problem by

building custom storage units tailored to the application, and then directly connecting

the necessary functional units to these storage units. These custom storage units

greatly amplified the register fetch bandwidth, since data in the storage units are used

for many different computations. In addition, since the intra-storage and functional

unit communications were fixed and local, they can be managed at ASIC-like energy

costs.

After this effort, the processors optimized for data-parallel algorithms have a total

speedup of up to 600x and an energy reduction of 60-350x compared to our base CMP.

For CABAC total performance gain is 17x and energy gain is 8x. Figure 4.7 provides

the final energy breakdowns. The efficiencies found in these custom datapaths are

impressive, since, in H.264 at least, they take advantage of data sharing patterns and

create very efficient multiple-input operations. This means that even if researchers

are able to a create a processor which decreases the instruction and data fetch parts

of a processor by more than 10x, these solutions will not be as efficient as solutions

with “magic” instructions.

4.7 Beyond H.264

Achieving ASIC-like efficiency required 2-3 special hardware structures for each sub-

algorithm, which is significant customization work. Some might even say we are

just building an ASIC in our processor. We feel that adding this hardware in an

extensible processor framework has many advantages over just designing an ASIC.

These advantages come from the constrained processor design environment and the

software, compiler, and debugging tools available in this environment. Many of the

low-level issues, like interface design and pipelining, are automatically handled. In

CHAPTER 4. H.264 CASE STUDY 48

addition, since all hardware is wrapped in a general-purpose processor, the applica-

tion developer retains enough flexibility in the processor to make future algorithmic

modifications.

However our eventual goal is to create efficient processors which are useful across

a wide range of algorithms and not just a single application, and that’s the topic for

the next chapter.

Chapter 5

Convolution Engine

Earlier in Section 3.3 we identified four major components of every hardware system.

Table 5.1 compares various hardware solutions we have discussed so far, in terms of

flexibility they offer in each of these components. Our specialized processors from last

chapter get very close to ASIC level efficiencies by adding custom data-path elements

to the processor core. Unlike ASICs, these are built around a programmable pro-

gram sequencer, however, as Table 5.1 points out, they still have algorithm-specific

arithmetic units, algorithm-specific storage structures and algorithm-specific intercon-

nection just like ASICs, and that limits their applicability to a particular algorithm.

Broadening the applicability of these processors requires making the storage and com-

pute structures more flexible as well. Unfortunately trying to cover too broad a space

would take us back to the SIMD computation model, which targets the entire domain

of data-parallel algorithms, but in the processes loses at least an order of magnitude

in energy efficiency. Thus, the goal of this chapter is to find the right balance between

flexibility and efficiency which would maximize the re-use potential of the processor

without spending too much extra energy.

We have also learnt in the previous chapter that efficient designs are built around

specialized storage structures and interconnections which facilitate exploiting the

data-reuse and parallelism inherent in an algorithm. This tuning of storage and in-

terconnect to an algorithm is the part which makes the resulting hardware algorithm-

specific instead of general. A key realization however is that data flow patterns are

49

CHAPTER 5. CONVOLUTION ENGINE 50

Table 5.1: Comparison of various hardware solutions in terms of the flexibility they
offer in various components. Last column summarizes the energy efficiency achieved
by each design point relative to the base RISC, for H.264 study in previous chapter.
Designs are listed in the order of increasing efficiency

Control Flow Arithmetic Storage Interconnection Eficiency

General Processor Programmable General General General 1
SIMD Processor Programmable Somewhat Specialized Somewhat Specialized Somewhat Specialized 10
Specialized Processor Programmable Custom Custom Custom 250
ASIC Hard Wired Custom Custom Custom 500

often not unique to an algorithm. In fact algorithms in a domain tend to share similar

data flow patterns. Therefore the efficient storage and interconnection structures that

we create need not be limited to serving a single application. Adding a small degree

of flexibility to these structures can make them useful across a range of algorithms

based on similar data flow. Since we expect the efficiency cost of this added flexibil-

ity to be small, this could provide a way to significantly increase the reusability of

the processor without incurring a big efficiency loss. In other words we argue that

to build efficient yet reusable processors, we should specialize for a data flow rather

than specializing for an algorithm or application.

We present an example, the Convolution Engine (CE), specialized for the convolution-

like data-flow that is common in computational photography, image processing, and

video processing applications. CE achieves energy efficiency by capturing data reuse

patterns, eliminating data transfer overheads, and enabling a large number of opera-

tions per memory access. We quantify the tradeoffs in efficiency and flexibility and

demonstrate that CE is within a factor of 2-3x of the energy and area efficiency of

custom units optimized for a single kernel. CE improves energy and area efficiency

by 8-15x over a SIMD engine for most applications.

5.1 Convolution Abstraction

Section 2.3 previously highlighted the growing number of computational photography,

image processing, and video processing applications in mobile systems. Interestingly,

even though the range of applications is very broad, a large number of kernels in

these applications look similar. These are kernels where the same computation is

CHAPTER 5. CONVOLUTION ENGINE 51

performed over and over on (overlapping) stencils within, and across frames. For

example, demosaicing takes squares of n x n Bayer patterned pixels and interpolate the

RGB values for each pixel. This is similar to the sum-of-absolute-differences (SAD)

applied on n x n stencils used for motion estimation that we have already discussed in

previous chapter. Other examples which fit this pattern include feature extraction and

mapping in scale-invariant-feature-transform (SIFT), windowed histograms, median

filtering, 2D FIR filtering and many more. We categorize this class of stencil operation

as convolution-like.

Convolution is the fundamental building block of many scientific and image pro-

cessing algorithms. Equation 5.1 and 5.2 provide the definition of standard discrete

1-D and 2-D convolutions. When dealing with images, Img is a function from image

location to pixel value, while f is the filter applied to the image. Practical kernels

reduce computation (at a small cost of accuracy) by making the filter size small,

typically in the order of 3x3 to 8x8 for 2-D convolution.

(Img ∗ f)[n]
def
=

∞∑
k=−∞

Img[k] · f [n− k] (5.1)

(Img ∗ f)[n,m]
def
=

∞∑
l=−∞

∞∑
k=−∞

Img[k] · f [n− k,m− l] (5.2)

We generalize the concept of convolution by identifying two components of the

convolution: a map operation and a reduce operation. In Equation 5.1 and 5.2, the

map operation is multiplication that is done on pairs of pixel and tap coefficient,

and the reduce operation is the summation of all these pairs to a single value at

location [n,m]. Replacing the map operation in Equation 5.2 from x · y to |x − y|
while leaving the reduce operation as summation, yields a sum of-absolute-differences

(SAD) function for H.264 motion estimation. Further replacing the reduce operation

from
∑

to max will yield a max of absolute differences operation. Equation 5.3

generalizes the standard definition of convolution, to a programmable form. We refer

to it as a convolution engine, where f, Map and Reduce (’R’ in Equation 5.3) are the

pseudo instructions, and c is the size of the convolution.

CHAPTER 5. CONVOLUTION ENGINE 52

(Img
CE∗ f)[n,m]

def
= R|l|<c{R|k|<c{Map(Img[k], f [n− k,m− l])}} (5.3)

Unfortunately programmable platforms today do not handle convolution-like com-

putation efficiently because their register files are not optimized for convolution. To

address this issue, traditional camera and camcorder manufacturers typically use their

own ASICs to implement camera pipelines such as Canon’s DIGIC series [2], Nikon’s

Expeed processors [19] and Sony’s Bionz processors [20]. Cellphone SoCs, including

TI’s OMAP [3], Nvidia’s Tegra [5] and Qualcomm’s Snapdragon [4] platform take a

similar approach.

In contrast to the custom hardware approach used by current imaging solutions,

we have created a flexible domain-specific processor core for all these applications

which we call Convolution Engine (CE). Section 5.2 introduces the four application

kernels we target in this study, and how they map to the generalized convolution

abstraction. Section 5.3 gives an overview of how convolution operations perform on

existing data-parallel architectures and what are the limitations. Section 5.4 describes

the CE architecture focusing primarily on features that improve energy efficiency

and/or allow for flexibility and reuse. Next we compare the energy efficiency of

the Convolution Engine to general-purpose cores with SIMD extensions, as well as

highly customized solutions for individual kernels. Section 5.5 first introduces the

methodology for that evaluation and Section 5.6 shows that the CE is within a factor

of 2-3x of custom units and almost 10x better than the SIMD solution for most

applications.

5.2 Target Applications

The following sections describe the two test applications—motion estimation and

SIFT.

CHAPTER 5. CONVOLUTION ENGINE 53

5.2.1 Motion Estimation

Motion estimation is a key component of many video codecs including H.264 encod-

ing. As previously noted in Chapter 4, motion estimation accounts for ∼90% of the

execution time in the software implementations of H.264 encoder. Here we review the

two H.264 motion estimation steps—IME and FME—, and describe how to express

these in terms of map and reduce operations of Equation 5.3.

Integer Motion Estimation (IME): IME searches for an image-block’s closest

match from a reference image. The search is performed at each location within a

two dimensional search window, using sum-of-absolute-differences (SAD) as the cost

function. IME operates on multiple scales with various blocks sizes from 4x4 to 16x16,

though all of the larger block results can be derived from the 4x4 SAD results. Note

how SAD fits quite naturally to a convolution engine abstraction: the map function

is absolute difference and the reduce function is summation.

Fractional Motion Estimation: FME refines the initial match obtained at

the IME step to a quarter-pixel resolution. FME first up-samples the block selected

by IME, and then performs a slightly modified variant of the aforementioned SAD.

Up-sampling also fits nicely to the convolution abstraction and actually includes two

convolution operations: First the image block is up-sampled by two using a six-

tap separable 2D filter. This part is purely convolution. The resulting image is

up-sampled by another factor of two by interpolating adjacent pixels, which can be

defined as a map operator (to generate the new pixels) with no reduce.

5.2.2 SIFT

Scale Invariant Feature Transform (SIFT) looks for distinctive features in an image

[39]. Typical applications of SIFT use these features to find correspondences between

images or video frames, performing object detection in scenes, etc. To ensure scale

invariance, Gaussian blurring and down-sampling is performed on the image to create

a pyramid of images at coarser and coarser scales. A Difference-of-Gaussian (DoG)

pyramid is then created by computing the difference between every two adjacent image

scales. Features of interest are then found by looking at the scale-space extrema in

CHAPTER 5. CONVOLUTION ENGINE 54

Table 5.2: Mapping kernels to convolution abstraction. Some kernels such as sub-
traction operate on single pixels and thus have no stencil size defined. We call these
matrix operations. There is no reduce step for these operations.

Map Reduce Stencil Sizes Data Flow

IME SAD Abs Diff Add 4x4 2D Convolution
FME 1/2 Pixel Upsampling Multiply Add 6 1D Horizontal And Vertical Convolution
FME 1/4 Pixel Upsampling Average None – 2D Matrix Operation
SIFT Gaussian Blur Multiply Add 9, 13, 15 1D Horizontal And Vertical Convolution
SIFT DoG Subtract None – 2D Matrix Operation
SIFT Extrema Compare Logical AND 3 1D Horizontal And Vertical Convolution

the DoG pyramid [39].

Even though finding scale-space extrema is a 3D stencil computation, we can

convert the problem into a 2D stencil operation by interleaving rows from different

images into a single buffer. The extrema operation is mapped to convolution using

compare as a map operator and logical AND as the reduce operator.

5.2.3 Mapping to Convolution Abstraction

Table 5.2 summarizes the kernels we use and how they map to the convolution ab-

straction. The table further describes how each algorithm is divided into the map

and reduce operator and what is its data flow pattern such as 2D convolution or

1D vertical convolution. Although, two kernels could have identical map and reduce

operators and data flow patterns, they may have differences in the way they handle

the data. For example up-sampling in FME produces four times the data of its input

image. These requirements differentiate them from simple filtering operations and

require additional support in hardware as we will see next.

5.3 Convolution on Current Data-Parallel Archi-

tectures

Convolution operators are highly compute-intensive, particularly for large stencil

sizes, and being data-parallel they lend themselves to vector processing. However,

existing SIMD units are limited in the extent to which they can exploit the inherent

CHAPTER 5. CONVOLUTION ENGINE 55

Y0 = x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3 + ….. + xn * cn
Y1 = x1 * c0 + x2 * c1 + x3 * c2 + x4 * c3 + ….. + xn+1 * cn
Y2 = x2 * c0 + x3 * c1 + x4 * c2 + x5 * c3 + ….. + xn+2 * cn
……

Figure 5.1: We use the n-tap 1D convolution presented here to explain our SIMD
implementation. For SIMD the equation is parallelized across outputs and executed
one column at a time.

parallelism and locality of convolution due to the organization of their register files.

Section 4.3.1 in the last chapter already illustrated this for H.264 Integer Motion

Estimation which is based on a 2D convolution operation. We now discuss another

example, this time of a 1D filtering operation. Figure 5.1 presents equations for

an n-tap 1D convolution. Figure 5.2 demonstrates the limitations of a SIMD based

convolution implementation by executing a 16-tap convolution on a 128-bit SIMD

datapath. This is a typical SIMD implementation similar to the one presented in

[56], and the SIMD datapath is similar to those found in many current processors.

To enable the datapath to utilize the vector registers completely irrespective of the

filter size, the convolution operation is vectorized across output locations allowing the

datapath to compute eight output values in parallel.

As we have already established, given the short integer computation that is re-

quired, one needs a large amount of parallelism per instruction to be energy efficient.

While n-tap 1D convolution has the needed parallelism, scaling the datapath by eight

times to perform sixty four 16-bit operations per cycle would prove extremely costly.

It would require an eight times increase in the register file size, inflating it to 1024-bits,

greatly increasing its energy and area. To make matters worse, as shown in Figure

5.2, the energy efficiency of the SIMD datapath is further degraded by the fact that a

substantial percentage of instructions are used to perform data shuffles which consume

instruction and register energy without doing any operations. Alternatively, one can

reload shifted versions of vectors from the memory to avoid data shuffles; however,

that also results in substantial energy waste due to excessive memory fetches. These

data motion overheads are worse for vertical and 2-D convolution.

CHAPTER 5. CONVOLUTION ENGINE 56

…………….	
 x16	
 x17	
 x18	
 x31	

X	
 X	
 X	
 X	

……….	
 0	
 1	
 7	
 ……….	
 8	
 9	
 15	

Two 16x8 bit
Input
Registers

Coefficient Value

Two 8x16 bit
Accumulators

Core Kernel:!
 Load input!
 Out0 =0; Out1 = 0; !
 For I = 1 ... 15!

! Load coefficient i!
! Out0 = Out0 + Input_Lo * Coeff_i!
! Out1 = Out1 + Input_Hi * Coeff_i!
! Shift Input Register 0!
! Shift Input Register 1!

 End For!
 Normalize Output!
 Store to mem!

......	
 x0	
 x1	
 x7	
 	
 x8	
 x9	
 x15	

X	
 X	

C0	
 C0	
 	
 C0	
 C0	
 C0	
 	
 C0	

......	
 	

Figure 5.2: 1D Horizontal 16-tap convolution on a 128-bit SIMD machine, similar to
optimized implementation described in [56]. 16 outputs are computed in parallel to
maximize SIMD usage. Output is stored in two vector registers and two multiply-
accumulate instruction are required at each step.

GPUs also target massively data parallel applications and can achieve much higher

performance for convolution operations than SIMD. However, due to their large regis-

ter file structures and 32-bit floating point units, we don’t expect GPUs to have very

low energy consumption. To evaluate this further we measure the performance and

energy consumption of an optimized GPU implementation of H.264 SAD algorithm

[55] using GPGPUSim simulator [13] with GPUWattch energy model [36]. The GPU

implementation runs forty times faster compared to an embedded 128-bit SIMD unit,

but consumes thirty times higher energy. Even with a GPU customized for media ap-

plications we do not expect the energy consumption to be much better than the SIMD

implementation as the GPU energy is dominated by register file, which is central to

CHAPTER 5. CONVOLUTION ENGINE 57

.............	
 0	
 1	
 15	

64	
 Mul+pliers	

Reduc+on	

Normalize	

0	
 1	
 2	
 3	

…………….	
 31	
 0	
 1	
 2	
 3	

…....	
 0	
 1	
 15	

…....	
 0	
 1	
 15	

…....	
 0	
 1	
 15	

…....	
 1	
 2	
 16	

…....	
 0	
 1	
 15	

…....	
 2	
 3	
 17	

…....	
 0	
 1	
 15	

…....	
 3	
 4	
 18	

256-bit Shift register

128-bit coefficient register

Shifted Broadcast Input

Broadcast Coefficient

128-bit output register

Shift in pixels

Figure 5.3: 1D Horizontal 16-tap convolution using a shift register with shifted broad-
cast capability. Computes 4 output pixels per instruction.

how GPUs achieve their high degree of parallelism.

5.4 Convolution Engine

Convolution Engine (CE) is a flexible domain-specific processor core which imple-

ments the generalized convolution abstractions described in Section 5.1. It builds

on the ideas we developed in the last chapter. One of the kernels discussed in that

chapter was 16x16 SAD calculation—a 2D convolution operation. There, a 2D shift

register file with horizontal and vertical shift capability, was central to the efficient

IME data-path targeting this computation. Since all 2D convolution operations have

the same basic flow, the heart of the CE is a similar 2D shift register, augmented

with additional resources to support the generalized map and reduce operations.

In a manner similar to the 2D case, a 1D shift register file helps accelerate the

1D convolution operations. As shown in Figure 5.3, when such a storage structure

CHAPTER 5. CONVOLUTION ENGINE 58

is augmented with an ability to generate multiple shifted versions of the input data,

it can not only facilitate execution of multiple simultaneous stencils, but can also

eliminate most of the shortcomings of traditional vector register files. Aided by the

ability to broadcast data, these multiple shifted versions can fill sixty-four ALUs from

just a small 256-bit register file saving valuable register file access energy as well as

area. Thus, CE also incorporates a generalized version of this 1D shift register to

handle 1D convolution flows.

The key blocks in Convolution Engine are depicted in Figure 5.4. As discussed, 1D

and 2D shift registers form its core. Memory data is loaded to these register through

load/store units. The interface units route data from these registers to the ALUs, with

the routing pattern dependent on the size and type of convolution flow. The ALU

array, performs the arithmetic operations for the map step. Finally the reduction tree

performs the appropriate type of reduction. CE also includes a light-weight SIMD

unit to perform further processing on convolution output when needed.

CE is developed as a domain specific hardware extension to Tensilica’s extensible

RISC cores [27]. Augmented with user-defined hardware interfaces called TIE ports,

developed using Tensilica’s TIE language [57], these RISC cores control the program

flow of CE by first decoding the instructions in their instruction fetch unit and then

routing the appropriate control signals to CE using TIE ports. Since the number of

cores that interface with CE can be more than one, the TIE ports are muxed. The

cores are also responsible for memory address generation, but the data is transferred

directly to/from the register files within CE.

The next few sections describe in more detail the various blocks in CE.

5.4.1 Load/Store Unit and Register Files

The load/store unit loads and stores data to and from the various register files. To

improve efficiency, it supports multiple memory access widths with the maximum

memory access width being 256-bits and can handle unaligned accesses.

The 1D shift register supplies data for horizontal convolution operations along

image rows. New image pixels are shifted horizontally into the 1D register as the 1D

CHAPTER 5. CONVOLUTION ENGINE 59

Mul$-­‐level	
 Reduc$on	
 Tree	

Output	

Register	
 file	

SIMD	
 ALUs	

1D	
 Shi?	
 Reg	

Horizontal	

IF	

2D	
 Shi?	
 Register	

Column	

IF	
 2D	
 IF	

ALUs	

2D	
 Coeff	

Register	

1D	
 IF	
 2D	
 IF	

ALU	
 Input	
 Port	
 2	

ALU	
 Input	
 Port	
 1	

Load/Store	
 IF	

Row	
 Select	

MAP

REDUCE

Figure 5.4: Block Diagram of Convolution Engine. The interface units (IF) connect
the register files to the functional units and provide shifted broadcast to facilitate
convolution.

stencil moves over an image row. 2D shift is used for vertical and 2D convolution

flows and supports vertical row shift: one new row of pixel data is shifted in as the 2D

stencil moves vertically down into the image. The 2D register provides simultaneous

access to all of its elements enabling the interface unit to feed any data element into

the ALUs as needed. A standard vector register file, due to its limited design, is

incapable of providing all of this functionality.

The 2D Coefficient Register stores data that does not change as the stencil moves

across the image. This can be filter coefficients, current image pixels in IME for

performing SAD, or pixels at the center of Windowed Min/Max stencils. The results

of filtering operations are either written back to the 2D Shift Register or the Output

Register. The Output Register is designed to behave both as a 2D Shift register as

well as a Vector Register file for the vector unit. The shift behavior is invoked when

CHAPTER 5. CONVOLUTION ENGINE 60

the output of the stencil operation is written. This shift simplifies the register write

logic and reduces the energy. This is especially useful when the stencil operation

produces the data for just a few locations and the newly produced data needs to be

merged with the existing data which results in a read modify write operation. The

Vector Register file behavior is invoked when the Output Register file is interfaced

with the vector unit shown in the Figure 5.4.

5.4.2 MAP & Reduce Logic

As described earlier we abstract out convolution as a map step that transforms each

input pixel into an output pixel. In our implementation, interface units and ALUs

work together to implement the map operation; the interface units arrange the data as

needed for the particular map pattern and the functional units perform the arithmetic.

Interface Units: Interface Units (IF) arrange data from the shift register into

a specific pattern needed by the map operation. Currently this includes providing

shifted versions of 1D and 2D blocks, and column access to 2D registers, though we

are also exploring a more generalized permutation layer to support arbitrary maps.

All of the functionality needed for generating multiple shifted versions of the data

is encapsulated within the IFs. This allows us to shorten the wires by efficiently

generating the needed data within one block while keeping the rest of the datapath

simple and relatively free of control logic. Since the IFs are tasked to facilitate stencil

based operations, the multiplexing logic remains simple and prevents the IFs from

becoming the bottleneck.

The Horizontal Interface generates multiple shifted versions of the 1D data and

feeds them to the ALU units. The data arrangement changes depending on the size of

the stencil so this unit supports multiple power of 2 stencil sizes and allows selecting

between them. Column Interface simultaneously accesses the columns of the 2D Shift

register to generate input data for multiple locations of a vertical 1D filtering kernel.

The 2D interface behaves similarly to the Vertical interface and accesses multiple

shifted 2D data blocks to generate data for multiple 2D stencil locations. Again

multiple column sizes and 2D block sizes are supported and the appropriate one is

CHAPTER 5. CONVOLUTION ENGINE 61

selected by the convolution instruction.

Map Units: Since all data re-arrangement is handled by the interface unit, the

functional units are just an array of short fixed point two-input arithmetic ALUs. In

addition to multipliers, we support difference of absolute to facilitate SAD and other

typical arithmetic operations such as addition, subtraction, comparison. The output

of the ALU is fed to the Reduce stage.

Reduce Unit: The reduce part of the map-reduce operation is handled by a

general purpose reduce stage. Based upon the needs of our applications, we currently

support arithmetic and logical reduction stages. The degree of reduction is dependent

on the kernel size, for example a 4x4 2D kernel requires a 16 to 1 reduction whereas 8

to 1 reduction is needed for an 8-tap 1D kernel. The reduction stage is implemented

as a tree and outputs can be tapped out from multiple stages of the tree.

5.4.3 SIMD & Custom Functional Units

To enable an algorithm to perform vector operations on the output data, we have

added a 16-element SIMD unit that interfaces with the Output Register. This unit

accesses the 2D Output Register as a Vector Register file to perform regular Vector op-

erations. This is a lightweight unit which only supports basic vector add and subtract

type operations and has no support for higher cost operations such as multiplications

found in a typical SIMD engine.

An application may perform computation that conforms neither to the convolution

block nor to the vector unit, or may otherwise benefit from a fixed function implemen-

tation. If the designer wishes to build a customized unit for such computation, the

Convolution Engine allows the fixed function block access to its Register Files. This

model is similar to a GPU where custom blocks are employed for rasterization and

such, and that work alongside the shader cores. For these applications, we created

three custom functional blocks to compute motion vector costs in IME and FME and

the Hadamard Transform in FME.

CHAPTER 5. CONVOLUTION ENGINE 62

	

2D	
 Coefficient	

Register	

Mul3-­‐level	
 Reduc3on	
 Tree	

Output	

Register	
 file	

SIMD	
 ALUs	

1D	
 ShiB	
 Reg	

Horizontal	

	
 IF	

2D	
 ShiB	
 Register	

Column	

IF	

ALUs	

ALU	
 input	
 Port	
 2	

ALU	
 input	
 Port	
 1	

Load/Store	
 IF	

Row	
 Select	

MAP

REDUCE

1D	
 IF	

4	
 Pixel	
 Rows	
 4x4	
 Coeff	

Block	

Filtered	
 Data	

ALUs	
 64 10-bit Multiplies

2D	
 IF	
 2D	
 IF	

256-bit 256-bit 256-bit

16x10-bit
(4:1 Reduction)

64x10-bit
64x10-bit

16x18x10-bit 16x16x10-bit 40x10-bit
16x18x10-bit

160-bit

256-bit

16x10-bit

Up to 64:1
Reduce

64x20-bit

Figure 5.5: Executing a 4x4 2D Filter on CE. The grayed out boxes represent units
not used in the example. The sizes of all of the resources are defined. The of choice
these particular resource sizes will be explained in a later section.

5.4.4 A 2-D Filter Example

Figure 5.5 shows how a 4x4 2D filtering operation maps onto the convolution engine.

Filter coefficients reside in the first four rows of the Coefficient Register. Four rows

of image data are shifted into the first four rows of the 2D Shift register. In this

example we have 64 functional units so we can perform filtering on up to four 4x4

2D locations in parallel. The 2D Interface Unit generates four shifted versions of 4x4

blocks, lays them out in 1D and feeds them to the ALUs. The Coefficient Register

Interface Unit replicates the 4x4 input coefficients 4 times and send them to the other

ALU port. The functional units perform an element-wise multiplication of each input

pixel with corresponding coefficients and the output is fed to the Reduction stage.

The degree of reduction to perform is determined by the filter size which in this case

is 16:1. The four outputs of the reduction stage are normalized and written to the

CHAPTER 5. CONVOLUTION ENGINE 63

Table 5.3: Sizes for various resources in CE.
Resource Sizes

ALUs 64 10-bit ALUs
1D Shift Reg 40 x 10bit
2D Input Shift Reg 16 rows x 18 cols x 10bit
2D Output Shift Register 16 rows x 18 cols x 10bit
2D Coefficient Register 16 rows x 16 cols x 10bit
Horizontal Interface 4, 8, 16 kernel patterns
Vertical Interface 4, 8, 16 kernel patterns
2D Interface 4x4, 8x8 , 16x16 patterns
Reduction Tree 4:1, 8:1, 16:1, 32:1, 64:1

Output Register.

Since our registers contain data for sixteen filter locations, we continue to perform

the same operation described above; however, the 2D Interface Unit now employs

horizontal offset to skip over already processed locations and to get the new data

while the rest of the operations execute as above. Once we have filtered sixteen

locations, the existing rows are shifted down and a new row of data is brought in and

we continue processing the data in the vertical direction. Once all the rows have been

processed we start over from the first image row, processing the next vertical stripe

and continue execution until the whole input data has been filtered.

For symmetric kernels the interface units combine the symmetric data before co-

efficient multiplication (since the taps are the same), allowing it to use adders in

place of multipliers. Since adders take 2-3x lower energy, this further reduces wasted

energy. Wiht this support, the 1D 16-tap filtering of Figure 5.1 can exploit that to

achieve even higher efficiency.

The load/store unit also provides interleaved access where data from a memory

load is split and stored into two registers. An example use is in demosaic, which needs

to split the input data into multiple color channels.

CHAPTER 5. CONVOLUTION ENGINE 64

5.4.5 Resource Sizing

Energy efficiency and performance requirements of target applications drive the sizes

of various resources within CE. In the data-paths of the last chapter, overheads such

as instruction fetch and decode were amortized by performing hundreds of arithmetic

operations per instruction. However, while algorithms such as motion estimation

employ extremely low-energy 8-bit addition/subtraction, filtering is typically domi-

nated by multiplication that consumes higher energy per operation. To determine

how to size the ALUs for CE with the goal of keeping overheads as low as possible,

we present the energy dissipated in executing filtering instructions using 32, 64 and

128 10-bit ALUs (the precision required) in Table 5.4. In this table the total energy

is comprised of the energy wasted in the processor overheads including fetch, decode

and sequencing as well as the useful energy spent in performing the actual compute.

With 32 ALUs, a substantial percentage of energy is consumed by the overheads.

As the number of ALUs increases, the overhead energy as a percentage of the total

energy reduces. At 64 ALUs, the overhead is 12% which is low but not negligible. As

we go to 128 ALUs, the overhead percentage goes down slowly and we start moving

towards diminishing returns. Moreover, keeping 128 or more ALUs busy is hard for

smaller convolution kernels. As an example, for a 4x4 symmetric convolution kernel,

32 output pixels must be computed in a single instruction to keep 128 ALUs busy. To

store enough data for computing that many output pixels in parallel, the 2D register

must be wider than 32-elements. Thus, we choose 64 as the number of ALUs in CE as

this achieves good efficiency without requiring very wide register resources. For larger

kernels, requiring more ALUs to meet the performance goal, multiple CE instances

can be chained together.

The rest of the resources are sized to keep sixty-four, 10-bit ALUs busy. The size

and capability of each resource is presented in Table 5.3. These resources support

filter sizes of 4, 8 and 16 for 1D filtering and 4x4, 8x8 and 16x16 for 2D filtering.

Notice that that the register file sizes deviate from power of 2; this departure allows

us to handle boundary conditions common in convolution operations efficiently.

CHAPTER 5. CONVOLUTION ENGINE 65

Table 5.4: Energy for filtering instructions implemented as processor extensions with
32, 64 or 128 ALUs. Overhead is the energy for instruction fetch, decode and se-
quencing.

32 ALUs 64 ALUs 128 ALUs

Total Energy (pJ) 156 313 544
Overhead Energy (pJ) 37 39 44
Percent Overhead 24 12 8

5.4.6 Convolution Engine CMP

Figure 5.6: Convolution Engine CMP.

To meet the diverse performance and energy requirements of different applications

effectively, we have developed a CE chip multiprocessor (CMP) shown in Figure 5.6.

The CMP consists of four CEs and two of Tensilica’s extensible RISC processors

communicating with the CEs through muxed TIE ports as described earlier in this

CHAPTER 5. CONVOLUTION ENGINE 66

section. The decision to support two independent threads of control in the form of

two processors is influenced largely by the requirements of the applications of inter-

est, but also to a lesser extent by energy efficiency as smaller TIE port muxes keep

energy wasted per instruction low. In the CMP, each instance of the CE is referred

to as a slice and the slices possess the capability to operate completely independent

of other slices and also in concatenation to perform an even larger number of op-

erations per cycle. Dynamic concatenation of slices is especially desirable when the

performance requirements of an algorithm cannot be satisfied by one slice or when

the algorithm operates on small data requiring more than 64 operations per cycle to

amortize overheads.

When the slices are concatenated dynamically the register files and interface units

of the interconnected slices are joined through short wires that run from one slice to

another. Since the slices are laid out in close proximity to one another, these wires

waste very little energy; therefore, not influencing the energy efficiency of connected

slices. In addition to connecting multiple slices together to form a bigger slice with

wide registers and ALU arrays, it is also possible to shut off the ALUs in the ad-

ditional slices and use their registers as additional independent storage structures.

The processors and the slices are fed by dual-ported 16K instruction and 32K data

caches. As has been discussed earlier, the processors are responsible for data address

generation for the connected slices, but the flow of data into and out of the data cache

is controlled by the slices themselves.

5.4.7 Programming the Convolution Engine

Convolution Engine is implemented as a processor extension and adds a small set

of instructions to processor ISA. These CE instructions can be issued as needed in

regular C code through compiler intrinsics. Table 5.5 lists the major instructions

that CE adds to the ISA and Listing 5.1 presents a simplified example code which

implements 15-tap horizontal filtering for a single image row. There are mainly 3 types

of instructions. Configuration instructions set options which are expected to stay

fixed for a kernel such as convolution size, ALU operation to use etc. Other options

CHAPTER 5. CONVOLUTION ENGINE 67

Table 5.5: Major instructions added to processor ISA.
Description

SET CE OPS Set arithmetic functions for MAP and REDUCE steps
SET CE OPSIZE Set convolution size
LD COEFF REG n Load n bits to specified row of 2D coeff register
LD 1D REG n Load n bits to 1D shift register. Optional shift left
LD 2D REG n Load n bits to top row of 2D shift register. Optional shift row down
ST OUT REG n Store top row of 2D output register to memory
CONVOLVE 1D HOR 1D convolution step - input from 1D shift register
CONVOLVE 1D VER 1D convolution step - column access to 2D shift register
CONVOLVE 2D 2D Convolution step with 2D access to 2D shift register

which can change on a per instruction basis are specified as instruction operands.

Then there are load and store operations to store data into appropriate registers as

required. There is one load instruction for each input register type (1D input register,

2D input register, Coefficient register). Finally there are the compute instructions,

one for each of the 3 supported convolution flows—1D horizontal, 1D vertical and

2D. For example the CONVOLV 2D instruction reads one set of values from 2D and

coefficient registers, performs the convolution and writes the result into row 0 of the

2D output register. The load, store and compute instructions are issued repeatedly

as needed to implement the required algorithm.

The code example in Listing 5.1 brings it all together. First CE is set to perform

multiplication at Map stage and addition at Reduce stage, which are the required

settings for filtering. The convolution size is set which controls the pattern in which

data is fed from the registers to the ALUs. Filter tap coefficients are then loaded

into the coefficient register. Finally the main processing loop repeatedly loads new

input pixels into the 1D register and issues 1D CONVOLVE operations to perform

filtering. While 16 new pixels are read with every load, our 128-ALU CE configuration

can only process eight 16-tap filters per operation. Therefore two 1D CONVOLVE

operations are performed per iteration, where the second operation reads the input

from an offset of 8 and writes its output at an offset of 8 in the output register. For

illustration purposes we have added a SIMD instruction which adds 2 to the filtering

output in row 0 of 2D output register. The results from output register are written

back to memory.

CHAPTER 5. CONVOLUTION ENGINE 68

// Set MAP function = MULT , Reduce function = ADD

SET_CE_OPS (CE_MULT , CE_ADD);

// Set convolution size 16, mask out 16th element

SET_CE_OPSIZE (16, 0x7fff);

// Load 16 8-bit coefficients into Coeff Reg Row 0

LD_COEFF_REG_128(coeffPtr , 0);

// Load & shift 16 input pixels into 1D shift register

LD_1D_REG_128(inPtr , SHIFT_ENABLED);

// Filtering loop

for (x = 0; x < width - 16; x += 16) {

// Load & Shift 16 more pixels

LD_1D_REG_128(inPtr , SHIFT_ENABLED);

// Filter first 8 locations

CONVOLVE_1D_HOR(IN_OFFSET_0 , OUT_OFFSET_0);

// Filter next 8 locations

CONVOLVE_1D_HOR(IN_OFFSET_8 , OUT_OFFSET_8);

// Add 2 to row 0 of output register

SIMD_ADD_CONST (0, 2);

// Store 16 output pixels

ST_OUT_REG_128(outPtr);

inPtr += 16;

outPtr += 16;

}

Listing 5.1: Example C code implements a 15-tap filter for one image row and adds
2 to each output.

It is important to note that unlike a stand-alone accelerator the sequence of oper-

ations in CE is completely controlled by the software which gives complete flexibility

over the algorithm. Also CE code is freely mixed into the C code which gives added

flexibility. For example in the filtering code above it is possible for the algorithm to

produce one CE output to memory and then perform a number of non-CE operations

on that output before invoking CE to produce another output.

CHAPTER 5. CONVOLUTION ENGINE 69

5.4.8 Controlling Flexibility in CE

The programmable convolution engine as described has full flexibility in silicon to

perform any of the supported operations, and the desired operation is selected at

run time through a combination of configuration registers and instruction operands.

However, we also want to study the individual impact of various programmability

options present in CE. To facilitate that, we have designed the CE in a highly param-

eterized way such that we can generate instances with varying degrees of flexibility

ranging from fixed kernel configurations such as the one shown in Figure 5.3, to the

fully programmable instance discussed in previous sections. When the fixed kernel

instance of Figure 5.3 is generated, the whole 2D register with its associated interface

unit goes away. The 1D interface also goes away, replaced by the hardwired access

pattern required for the particular kernel. The remaining registers are sized just large

enough to handle the particular kernel, the flexible reduction tree is replaced by a

fixed reduction and the ALU only supports the single arithmetic operation needed.

The efficiency of this fixed kernel datapath matches the custom cores. The pro-

grammability options that convolution engine has over this fixed kernel datapath can

be grouped into three classes which build on top of each other:

Multiple kernel sizes: This includes adding all hardware resources to support

multiple kernel sizes, such that we still support only a single kernel, but have more

flexibility. The support for that primarily goes in interface units which become con-

figurable. Register files have to be sized to efficiently support all supported kernel

sizes instead of one. The reduction stage also becomes flexible.

Multiple flows: This step adds the remaining data access patterns not covered

in the previous step, such that all algorithm flows based on the same arithmetic

operations and reduction type can be implemented. For example for a core supporting

only 2D convolutions, this step will add vertical and 1D interfaces with full flexibility

and also add any special access patterns not all already supported including offset

accesses, interleaved writes and so on.

Multiple arithmetic operations: This class adds multiple arithmetic and logi-

cal operations in the functional units, as well as multiple reduction types (summation

versus logical reduction).

CHAPTER 5. CONVOLUTION ENGINE 70

The next section describes how we map different applications to a Convolution

Engine based CMP and the experiments we perform to determine the impact of

programmability on efficiency. By incrementally enabling these options on top of a

fixed kernel core we can approach the fully programmable CE in small steps and

assess the energy and area cost of each addition.

5.5 Evaluation Methodology

To evaluate the Convolution Engine approach, we map each target application onto a

CE based CMP described in Section 5.4.6. As already discussed this system is fairly

flexible and can easily accommodate algorithmic changes such as changes in motion

estimation block size, changes in down-sampling technique etc. Moreover, it can be

used for other related algorithms such as a different feature detection scheme like

SURF, or other common operations like sharpening or denoising etc.

To quantify the performance and energy cost such a programmable unit, we also

build custom heterogeneous chip multiprocessors (CMPs) for each of the three ap-

plications. These custom CMPs are based around application-specific cores, each of

which is highly specialized and only has resources to do a specific kernel required by

the application. Both the CE and application-specific cores are built as a datapath

extension to the processor cores using Tensilica’s TIE language [57]. Tensilica’s TIE

compiler uses this description to generate simulation models and RTL as well as area

estimates for each extended processor configuration. To quickly simulate and evalu-

ate the CMP configurations, we created a multiprocessor simulation framework that

employs Tensilica’s Xtensa Modeling Platform (XTMP) to perform cycle accurate

simulation of the processors and caches. For energy estimation we use Tensilica’s

energy explorer tool, which uses a program execution trace to give a detailed analysis

of energy consumption in the processor core as well as the memory system. The esti-

mated energy consumption is within 30% of actual energy dissipation. To account for

interconnection energy, we created a floor plan for the CMP and estimated the wire

energies from that. That interconnection energy was then added to energy estimates

CHAPTER 5. CONVOLUTION ENGINE 71

Slice	
 0	
 Slice	
 1	
 Slice	
 2	
 Slice	
 3	

H.264	
 IME	
 FME	

SIFT	
 DOG	
 Extrema	

Figure 5.7: Mapping of applications to Convolution Engine CMP.

from Tensilica tools. The simulation results employ 45nm technology at 0.9V operat-

ing voltage with a target frequency of 800MHz. All units are pipelined appropriately

to achieve the frequency target.

To further extend the analysis, we quantify the individual cost of different pro-

grammability options discussed in Section 5.4.8. Starting from a fixed kernel datapath

closely matching the custom hardware, we add the programmability options in steps.

That way we can identify the incremental cost of each programmability class and

understand if some types of programmability options are costlier than others.

Figure 5.7 presents how each application is mapped to our CE based CMP. This

mapping is influenced by the application’s performance requirements. In this study,

like most video systems these days, we support HD 1080P video at 30FPS. This

translates to an input data rate of around 60 MPixels/s. For still images we want to

support a similar data rate of around 80-100 MPixels/s which can be translated for

example to processing 10MP images at 8-10FPS or 5MP images at a higher rate of

16-20FPS etc. H.264 motion estimation only deals with video data, whereas SIFT

can be applied to both video and still images. Now, we describe the mapping in detail

for each application.

H.264 Motion Estimation: Our mapping allocates one processor to the task of

H.264 integer motion estimation. The 4x4 SAD computation is mapped to the convo-

lution engine block, and the SIMD unit handles the task of combining these to form

the larger SAD results. This requires a 16x32 2D shift register and 128 ABS-DIFF

ALU units, so 2 slices are allocated to this processor. In addition a fixed function

block is used to compute motion vector cost, which is a lookup-table based opera-

tion. Fractional motion estimation uses up only 64 ALU units, but requires multiple

register files to handle the large amount of data produced by up-sampling, so it takes

CHAPTER 5. CONVOLUTION ENGINE 72

up 2 slices. The convolution engine handles up-sampling and SAD computation. A

custom fixed function block handles the Hadamard transform.

SIFT: Each level in the SIFT Gaussian pyramid requires five 2D Gaussian blur

filtering operations, and then down-sampling is performed to go to the next level.

The various Gaussian blurs, the difference operation and the down-sampling are all

mapped to one of the processors, which uses one convolution engine slice. The Gaus-

sian filtering kernel is a separable 2D filtering kernel so it is implemented as a hor-

izontal filter followed by a vertical filter. The second processor handles extrema

detection, which is a windowed min/max operation followed by thresholding to drop

weak candidates. This processor uses 2 slices to implement the windowed min across

3 difference images and SIMD operations to perform the thresholding. SIFT gener-

ates a large amount of intermediate pyramid data, therefore 64x64 image blocking is

used to minimize the intermediate data footprint in memory. The minima operation

crosses block boundaries so buffering of some filtered image rows is required. More-

over, the processing is done in multiple passes, with each pass handling each level of

the pyramid.

5.6 Results

Figures 5.8 and 5.9 compare the performance and energy dissipation of the proposed

Convolution Engine against a 128-bit datap-arallel (SIMD) engine and an application

specific accelerator implementation for each of the five algorithms of interest. In most

cases we used the SIMD engine as a 16-way 8-bit datapath, but in a few examples

we created 8-way 16-bit datapaths. For our algorithms, making this unit wider did

not change the energy efficiency appreciably. For SIMD implementation of motion

estimation, one SIMD engine performs IME and another performs FME. Similarly

for SIFT, one SIMD engine handles DOG, and the other handles extrema detection.

The fixed function data points truly highlight the power of customization: for

each application a customized accelerator required 8x-50x less energy compared to an

optimized data-parallel engine. Performance per unit area improves a similar amount,

8x-30x higher than the SIMD implementation.

CHAPTER 5. CONVOLUTION ENGINE 73

0	

1	

10	

100	

SIFT	
 -­‐	
 DoG	
 SIFT-­‐Extrema	
 H.264	
 -­‐	
 FME	
 H.264-­‐	
 IME	
 Demosaic	

En
er
gy
	
 N
or
m
al
iz
ed

	
 T
o	

Cu

st
om

	

(L
ow

er
	
 is
	
 b
eI

er
)	

Custom	
 Convolu+on	
 Engine	
 SIMD	

Figure 5.8: Energy consumption normalized to custom implementation: Convolution
Engine vs custom cores and SIMD.

CHAPTER 5. CONVOLUTION ENGINE 74

0.0	

0.1	

1.0	

10.0	

SIFT-­‐DoG	
 SIFT-­‐Extrema	
 H.264-­‐FME	
 H.264-­‐IME	
 Demosaic	

O
ps
/m

m
2 	
 N

or
m
al
iz
ed

	
 to
	
 C
us
to
m
	

(H
ig
he

r	

is
	
 b
eI

er
)	

Custom	
 Convolu+on	
 Engine	
 SIMD	

Figure 5.9: Ops/mm2 normalized to custom implementation: Number of image blocks
each core processes in one second, divided by the area of the core. For H.264 an image
block is a 16x16 macroblock and for SIFT it is a 64x64 image block.

CHAPTER 5. CONVOLUTION ENGINE 75

Note the biggest gains were in IME and SIFT extrema calculations. Both kernels

rely on short integer add/subtract operations that are very low energy (relative to the

multiply used in filtering and up-sampling). To be efficient when the cost of compute

is low, either the data movement and control overhead should be very low, or more

operations must be performed to amortize these costs. In a SIMD implementation

these overheads are still large relative to the amount of computation done. These

kernels also use a 2D data flow which requires constant accesses and fetches from the

register file. Custom hardware, on the other hand, achieves better performance at

lower energy by supporting custom 2D data access patterns. Rather than a vector, it

works on a matrix which is shifted every cycle. Having more data in flight enables a

larger number arithmetic units to work in parallel, better amortizing instruction and

data fetch.

With this analysis in mind, we can now better understand where a Convolution

Engine stands. The architecture of the Convolution Engine is closely matched to the

data-flow of convolution based algorithms, therefore the instruction stream difference

between fixed function units and the Convolution Engine is very small. Compared to

a SIMD implementation, the Convolution Engine requires 8x-15x less energy.

The energy overhead of the CE implementation over an application specific ac-

celerator is modest (2-3) for the other applications, and requires only twice the area.

While these overheads are small, we were interested to better understand which pro-

grammability option discussed in Section 5.4.8 added the most overhead compared

to custom accelerators. To generate these results, For each convolution algorithm we

start with an accelerator specialized to do only the specific convolution kernels re-

quired for that algorithm, and then gradually add flexibility. These results are shown

in Figures 5.10 and 5.11.

For SIFT’s filtering stage, the first programmability class entails an increase in

energy dissipation of just 25% which is relatively small. The fixed function hardware

for SIFT already has a large enough 1D shift register to support a 16-tap 1D horizontal

filter so adding support for smaller 4 and 8 tap 1D filters only requires adding a small

number of multiplexing options in 1D horizontal IF unit and support for tapping

the reduction tree at intermediate levels. However, the second programmability class

CHAPTER 5. CONVOLUTION ENGINE 76

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

SIFT	
 DoG	
 SIFT	
 Extrema	
 H.264	
 FME	
 H.264	
 IME	

En
er
gy
	
 n
or
m
al
iz
ed

	
 to
	
 fi
xe
d	

ke
rn
el
	

Fixed	
 Kernel	
 Flexible	
 Kernel	
 Size	
 Flexible	
 Size	
 and	
 Pa>ern	
 Full	
 flexibility	

Figure 5.10: Change in energy consumption as programmability is incrementally
added to the core.

CHAPTER 5. CONVOLUTION ENGINE 77

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

4.00	

4.50	

SIFT	
 DoG	
 SIFT	
 Extrema	
 H.264	
 FME	
 H.264	
 IME	

A
re
a	

no

rm
al
iz
ed

	
 to
	
 F
ix
ed

	
 K
er
ne

l	

Fixed	
 Kernel	
 Flexible	
 Kernel	
 Size	
 Flexible	
 Size	
 and	
 Pa;ern	
 Full	
 flexibility	

Figure 5.11: Change in area as programmability is incrementally added to the core.

CHAPTER 5. CONVOLUTION ENGINE 78

incurs a bigger penalty because now a 2D shift register is added for vertical and 2D

flows. The coefficient and output registers are also upgraded from 1D to 2D structures,

and the ALU is now shared between horizontal, vertical and 2D operations. The result

is a substantial increase in register access energy and ALU access energy. Moreover,

the 2D register comes with support for multiple vertical and 2D kernel sizes as well

as support for horizontal and vertical offsets and register blocking, so the area gets

a big jump and consequently the leakage energy increases as well. The final step of

adding multiple compute units has a relatively negligible impact of 10%.

For SIFT extrema the cost of adding multiple kernel sizes is again only 1.3x.

However, supporting additional access patterns adds another 2x on top of that bring-

ing the total cost to roughly 2.5x over the fixed kernel version. Unlike the filtering

stage, SIFT extrema starts with 2D structures so the additional cost of adding the

1D horizontal operations is relatively low. However, the 2D and vertical IF units also

become more complex to support various horizontal and vertical offsets into the 2D

register. The cost of multiplexing to support these is very significant compared to

the low energy map and reduce operations used in this algorithm. The result is a

big relative jump in energy. The last step of supporting more arithmetic operations

again has a relatively small incremental cost of around 1.2x. The final programmable

version still takes roughly 12x less energy compared to the SIMD version.

Like SIFT extrema, IME also has a lightweight map step (absolute difference),

however, it has a more substantial reduction step (summation). So the relative cost

of muxing needed to support multiple 2D access patterns is in between the high-

energy-cost filtering operations and low-energy-cost extrema operations. The cost of

supporting multiple kernel sizes and multiple arithmetic operations is still relatively

small.

FME differs slightly from other algorithms in that it takes a big hit when going

to multiple kernel sizes. The fixed function core supports 1D-Horizontal and 1D-

Vertical filtering for a relatively small filter size of 8 taps. The storage structures

are sized accordingly and consist of two small 2D input and two even smaller 2D

output shift registers. Adding support for multiple kernel sizes requires making each

of these registers larger. Thus multiple stencil sizes not only require additional area

CHAPTER 5. CONVOLUTION ENGINE 79

in the interface units, but the bigger storage structures also make the muxes sub-

stantially bigger, increasing the register access cost. This is further exacerbated by

the increase in the leakage energy brought about by the bigger storage structures

which is fairly significant at such small feature sizes. Thus the first programmability

class has the most impact on the energy efficiency of FME. The impact of the second

programmability class is relatively modest as it only adds a 2D interface unit—most

of the hardware has already been added by the first programmability class. The cost

of supporting multiple arithmetic operations is once again small suggesting that this

programmability class is the least expensive to add across all algorithms.

Our results show that the biggest impact on energy efficiency takes place when the

needed communication paths become more complex. This overhead is more serious

when the fundamental computation energy is small. In general the communication

path complexity grows with the size of the storage structures, so over provisioning

registers as is needed in a programmable unit hurts efficiency. This energy overhead

is made worse since such structures not only require more logic in terms of routing

and muxing, but also have a direct impact on the leakage energy which is significant

at such small feature sizes. On the other hand, more flexible function units have small

overheads, which provides flexibility at low cost.

5.7 Convolution Engine Conclusion

As specialization emerges as the main approach to addressing the energy limitations of

current architectures, there is a strong desire to make maximal use of these specialized

engines. This in turn argues for making them more flexible, and user accessible.

While flexible specialized engines might sound like an oxymoron, we have found that

focusing on the key data-flow and data locality patterns within broad domains allows

one to build a highly energy efficient engine, that is still user programmable. We

presented the Convolution Engine which supports a number of different algorithms

from computational photography, image processing and video processing, all based on

convolution-like patterns. A single CE design supports applications with convolutions

of various size, dimensions, and type of computation. To achieve energy efficiency,

CHAPTER 5. CONVOLUTION ENGINE 80

CE captures data reuse patterns, eliminates data transfer overheads, and enables a

large number of operations per cycle. CE is within a factor of 2-3x of the energy

and area efficiency of single-kernel accelerators and still provides an improvement of

8-15x over general-purpose cores with SIMD extensions for most applications. While

the CE is a single example, we hope that similar studies in other application domains

will lead to other efficient, programmable, specialized accelerators.

Chapter 6

Bilateral Filtering

The algorithms that we have considered so far have modest working sets which could

fit in a relatively small storage structure. However once we move to algorithms with

much larger working sets—say a 128x128 convolution kernel—it is no longer feasible

to store the entire set into local registers. The size of the buffer required would be

big enough to not provide much energy advantage over accessing the data from the

memory and at the same time area and leakage would become very high. So even

though there is an even larger degree of parallelism and data-reuse present in these

larger kernels, we can’t exploit that using the same techniques that we have used so

far.

For linear convolution operations, a few different approaches exist to reduce the

computation and data requirements of large kernels [34]. These include techniques

such as converting the convolution kernel into a recursive filter [54]; implementing

convolution by first converting the image and kernel into frequency domain where

convolution becomes a multiplication [54]; and tiling methods such as overlap-save

and overlap-add [10], which break the kernel and/or the image into smaller pieces

which are computed independently and then merged together. For blur kernels such

as gaussian filters, which effectively reduce the spatial resolution of the image, another

effective technique is to first decimate the image to reduce its dimensions, apply a

smaller blur kernel on that smaller image, and then up-sample back to the original

size. Moreover some convolution kernels such as the gaussian kernels are separable

81

CHAPTER 6. BILATERAL FILTERING 82

(a) (b)

(c)

Figure 6.1: Smoothing using a standard gaussian blur kernel vs a bilateral filter. (a)
Original image (b) Gaussian blur (c) Bilateral filter.

and thus can be applied as a horizontal 1D convolution along image rows, followed by

a vertical 1D convolution along image columns. All of these techniques can bring the

problem size back to a level where it can be efficiently attacked without being limited

by the memory accesses. However not all stencil operations can be simplified that

way, and alternate strategies are needed to handle those. In this chapter we discuss

efficient hardware implementation of one such algorithm called bilateral Filtering,

which is a non-linear filter used for image smoothing.

CHAPTER 6. BILATERAL FILTERING 83

6.1 Bilateral Filtering

A common task in image processing is to blur an image. One reason to blur an

image is to reduce photographic noise introduced by the camera. Another typical

reason is to separate out the base and detail layers of the image, which can then

be further processed independently [12]. The simplest method of blurring an image

involves convolving the image with a smoothing kernel such as a Gaussian Blur kernel.

That type of a convolution kernel can be easily implemented using the convolution

engine we discussed in last chapter. The problem with that approach, as shown by

Figure 6.1, is that while it smoothes out the noise, it also blurs away the edges in

the image. Bilateral filtering is an edge-aware smoothing technique, which performs

piece-wise smoothing of the image without blurring across the edges [58]. Figure 6.1

(c) illustrates that for our example image.

6.1.1 Gaussian Blur

The Gaussian blur of Figure 6.1, replaces each input pixel by a weighted average of

all the pixels in the neighborhood of that pixel. Equation 6.1 gives gaussian blur

operation for grayscale images. ~xi is the position vector for a pixel in the image at

row yi and column xi. Î(~xi) is the intensity of the output pixel at ~xi. j represents the

set of input pixels in the neighborhood over which the weighted average is computed.

Intensity I(~xj) of each input pixel in the neighborhood is weighted by a factor which

depends on the vector distance between ~xj and ~xi. The exponential weight quickly

falls to zero as the distance increases. Thus only the pixels in the close vicinity of ~xi

have an impact on the output and neighborhood j just needs to be large enough to

cover these pixels. Note that the equation as given describes a gaussian kernel with

standard deviation = 1. Increasing or decreasing the standard deviation controls how

slowly or rapidly the gaussian falls off and correspondingly the size of neighborhood

which has to be included in the computation of the blur. Equation 6.1 can be modified

to incorporate the standard deviation term. However scaling the position vectors by

an appropriate factor and applying Equation 6.1 achieves the same result.

Equation 6.2 gives the corresponding equation for RGB images. Instead of scalar

CHAPTER 6. BILATERAL FILTERING 84

intensities, each pixel value is now represented as an RGB vector ~v = (r, g, b).

Î(~xi)=
∑
j

I(~xj) · e−|~xi−~xj |2/2 (6.1)

~̂v(~xi)=
∑
j

~v(~xj) · e−|~xi−~xj |2/2 (6.2)

Gaussian blur works on the assumption that neighbors in the vicinity of a pixel

are similar to that pixel, and thus the weighted sum accumulates the contributions

from these similar pixels. The size of blur kernels is typically small (5x5 or 7x5 are

common) to help ensure this assumption holds. However the assumption breaks down

close to edge boundaries. At these boundaries, dissimilar pixels across the edge also

contribute to the weighted average thus blurring the edge. Bilateral Filtering solves

this problem as described next.

6.1.2 Bilateral Blur

Equation 6.3 shows the bilateral filtering operations for grayscale images. The weight

applied to intensity I(~xj) now depends on not just the x,y distance |~xi − ~xj| but

also on the intensity difference I(~xi) − I(~xj). The additional gaussian term falls off

with the difference in intensity. Equation 6.4 gives the equivalent bilateral filtering

operation for color RGB images, where the additional gaussian term falls off with the

vector distance between RGB values i.e. |~v(~xi)−~v(~xj)|. As a result of these additional

gaussian terms, neighboring pixels with intensities or RGB values very different from

the current pixel, get a low weight. Thus dissimilar pixels across the edge do not

contribute significantly to the weighted sum, avoiding the blurring across the edge.

Î(~xi)=
∑
j

I(~xj) · e−|~xi− ~xj |2/2 · e−(I(~xi)−I(~xj))
2/2 (6.3)

~̂v(~xi)=
∑
j

~v(~xj) · e−|~xi−~xj |2/2 · e−|~v(~xi)−~v(~xj)|2/2 (6.4)

Bilateral filtering is used widely in computational photography, computer vision

CHAPTER 6. BILATERAL FILTERING 85

and medical imaging. A typical use is to decompose an image into a smoothed-

out base layer as well as a detail layer and then manipulate these independently

before combining them back to produce the output image [12]. Applications include

sharpening [12], high dynamic range imaging [24], video de-noising [14], optical flow

regularization [60] and texture removal [44] to name a few. In next section we discuss

existing techniques for accelerating this operation, and their limitations.

6.2 Bilateral Filtering - Existing Implementations

With its ability to reject contributions from dissimilar pixels, bilateral filter no longer

relies on spatial closeness to find similar pixels. Instead it can use larger stencils so

a pixel can get contributions from similar pixels farther away in the image. Thus

large stencil sizes such as 100x100 are common. As a result, a direct application

of Equation 6.4, would be prohibitively costly. Also while bilateral filter operations

have a structure similar to the gaussian blur, these are non-linear filters as the weights

now depend on not just the position but also the pixel values. As a result the usual

techniques for dealing with large linear convolution operations, identified earlier in

this chapter, do not apply.

Techniques such as bilateral grid [16], as well as constant time O(1) bilateral

filtering approaches presented in [47] and [61] provide efficient means to handle the

grayscale case. A low-power real-time hardware implementation of bilateral grid

scheme has also been presented in [50]. However these techniques do not scale well

to RGB bilateral filtering [6]. In our work we have concentrated on RGB case for a

couple of reasons. First, because unlike the grayscale case, no satisfactory low power

implementations exist for the RGB case. Moreover, it provides a greater challenge

for the type of efficient hardware abstractions we have defined so far.

The state-of-the art software implementation for RGB images is a permutohe-

dral lattice based approach presented in [6]. This technique, as well as others such

as gaussian KD-Tree based approach [7] and bilateral grid approach, convert bilat-

eral filtering into higher dimensional linear filtering. As [45] shows, bilateral filtering

CHAPTER 6. BILATERAL FILTERING 86

operations of Equations 6.3 and 6.4 can be converted into a higher dimensional lin-

ear filtering operation by expressing them as a Gauss Transform operation given in

Equation 6.5:

~̂v(~pi)=
∑
j

~v(~pj) · e−|~pi−~pj |
2/2 (6.5)

Vectors ~pi and ~pj are now positions in a higher dimensional space instead of 2D

(x, y) locations. For the grayscale bilateral filtering, these are of the form (x, y, I),

giving a 3D space. For RGB case, position vectors are of the form (x, y, r, g, b)

i.e. a 5D space. Note that the input and output values here are defined over a 3D

(grayscale) or 5D (RGB) space. Thus the image pixels first have to be populated

at appropriate points in the 3D or 5D space before the higher dimensional linear

gaussian blur kernel is applied to blur the whole space. Moreover as [45] shows, for

this linearization strategy to work, the input and output values use a homogenous

representation. So in case of RGB images, the input values are represented as (r, g,

b, 1). The output values of Equation 6.5 then have the form (r, g, b, w), where w

gives the weighting factor. The final RGB output value is computed as (r/w, g/w,

b/w).

Gauss transform of Equation 6.5 applies a high dimensional gaussian blur to a high

dimensional space. Thus the computational requirements of directly implementing

this operation would be even higher than the cost of Equations 6.3 and 6.4. However

since the blur kernel is linear, some of the techniques that we discussed earlier for

dealing with large convolutions can now be applied. We discuss two such schemes -

bilateral grid and permutohedral lattice - as our work combines ideas from these two.

6.2.1 Bilateral Grid

Bilateral grid represents the higher dimensional space of equation 6.5 using a coarse

decimated grid [16]. For the grayscale bilateral filtering case discussed in [16], this

is a 3D grid decimated along each of x, y and I axes. Each dimension in the space

is decimated by a factor equal to the standard deviation σ of the gaussian in that

dimension. The algorithm has 3 steps called splat, blur and slice. Splat projects each

CHAPTER 6. BILATERAL FILTERING 87

Table 6.1: Execution time and storage requirements of grayscale vs RGB bilateral
filtering schemes for an HD video frame. Decimation factor is 16 in all dimensions.
Entries refers to the array or hashtable entries required to store the points in high
dimensional space. Bytes refers to the size of storage structure in bytes. Direct
algorithm is direct application of Equation 6.3.

Space Entries Bytes Time

Direct - Grayscale 2D - - 6m 49s
Bilateral Grid - Grayscale 3D 142K 1.1MB 0.5s
Bilateral Grid - RGB 5D 41M 531MB 11s
Permutohedral Lattice - RGB 5D 1M 22MB 2.6s
Modified Bilateral Grid - RGB 5D 90K 1.5MB 1s

image pixel to appropriate grid locations based on its position (x, y) and intensity I.

The blur step blurs all the locations in the 3D grid using a 3D blur kernel. Finally

slice step computes the pixels in output 2D image by sampling appropriate positions

in the blurred 3D grid. Figure 6.2 reproduced from [9] illustrates this process for a

1D grayscale image.

The cost of the blur step goes down dramatically in this scheme. Due to aggressive

decimation the size of the grid is fairly small. As Table 6.1 shows, for a typical

decimation factor of 16 in spatial and intensity dimensions, the 3D grid corresponding

to a HD video frame only has about 129K entries, requiring a modest 1.1MB of storage

memory. Moreover only a small 3x3x3 or 5x5x5 blur kernel is needed in this decimated

space. Finally the gaussian blur kernel is separable so the 3D blur can be implemented

as a series of 3 small linear blurs, one along each of the x, y and I dimensions. As

Table 6.1 shows, the processing time of this algorithm for an HD video frame is only

0.5s second compared to around 7 minutes required for direct application of equation

6.3!

However this approach does not scale well to the 5D RGB case as the size of

grid scales exponentially with dimensions. Bilateral grid for an RGB HD video frame

contains 41 million points using about 656MB of storage. The time to blur this grid

also gets a corresponding exponential increase and the overall execution time goes up

from 0.5s per frame for the grayscale case to 11s for the RGB case.

CHAPTER 6. BILATERAL FILTERING 88

Figure 6.2: The splat, blur and slice steps used
in bilateral grid algorithm - reproduced from
[9]. (a) Input ”image” is a 1D grayscale sig-
nal. (b) Each pixel in the image is treated as a
point in the 2D (x, I) space with a 2D position
vector. (c) Each pixel is assigned to the coarse
grid square it falls in. The size of the square
depends on the decimation factor. (d) The en-
tire 2D space is blurred using a 2D blur kernel.
The lighter pixels group is at a distance from
the darker pixel group so no significant mixing
of the two occurs. (e) For slicing the blurred
2D space is sampled at positions corresponding
to the original image pixels. (f) Output pixels
are now blurred without crossing the edges.

CHAPTER 6. BILATERAL FILTERING 89

6.2.2 Permutohedral Lattice

Note from previous section that the the number of grid locations in the 5D case

far exceed the number of pixels in the image, and thus the space is only sparsely

populated. Thus storage requirements as well as blur time can be reduced using

a sparse representation of populated points in the space. However to achieve good

quality, when a pixel is splatted to the grid it distributes some of its weight to each of

the 2d vertices of the d-dimensional hyper-cube that it falls in. Figure 6.4 illustrates

that for a 2D space. Thus the number of populated points in space, while sparse, are

still exponential in dimensions, and so is the cost of splat, slice and blur operations.

To solve that issue, permutohedral lattice partitions the higher dimensional space

into uniform simplices instead of the hyper-cubes. A uniform simplex is the general-

ization of a uniform triangle and a d-dimensional simplex thus has d+1 vertices. In

the permutohedral lattice approach, each image pixel is splatted to the d+1 vertices

of the uniform simplex enclosing it. Thus the complexity of splat step becomes linear

in number of dimensions. Consequently the number of populated points in the space

also become linear in d, and are sparsely stored using a hashtable. The execution of

blur step is proportional to number of populated points in space and thus no longer

scales exponentially with dimensions. Finally the slice step is also linear in d. As

Table 6.1 shows, for an RGB image, Permutohedral Lattice algorithm requires much

less storage and is significantly faster compared to the bilateral grid.

This algorithm represents the state of the art in fast bilateral filtering for RGB

images. However from an energy consumption perspective it is not very efficient. Most

of the operations in this algorithm operate on the hash-table structure, which is far too

big to fit in the on-chip memory and has to reside in the DDR. Figure 6.3 shows the

energy breakdown for an implementation of this algorithm on 32-bit RISC platform

based on our base Tensilica core. About 40% of the dynamic energy consumption goes

into DDR accesses. That means that unless these DRR accesses could be eliminated,

accelerating the compute could not reduce dynamic energy consumption by more than

2x. Leakage also accounts for about 33% of energy consumption. However leakage

energy scales linearly with execution time, so making the computation faster would

cause this component of energy to go down.

CHAPTER 6. BILATERAL FILTERING 90

Processor	
 Dyn	

33%	

L1	
 Dcache	
 Dyn	

4%	

L2	
 Dcache	
 Dyn	

1%	

DDR	
 Dynamic	

28%	

Leakage	

34%	

Energy	
 Breakdown	
 (45nm)	

32-­‐bit	
 RISC	
 Processor	

32K	
 2Way	

L1	
 D-­‐Cache	

32K	
 2Way	

L1	
 I-­‐Cache	

2MB	
 2Way	
 L2	
 Cache	

128MB	
 DDR	
 Memory	

Figure 6.3: Permutohedral Lattice based implementation of bilateral filtering on a
Tensilica based 32-bit RISC platform. The system includes 32KB L1 instruction and
data caches, as well as a 2MB L2 cache. DDR accesses account for more than 40%
of dynamic energy dissipation. Leakage energy is also very significant and mostly
comprises the leakage from the large L2 cache.

6.3 Extracting Locality - Modified Bilateral Grid

We have created a modified bilateral filtering algorithm which has a much smaller

memory foot print eliminating the DDR accesses and offers locality both at L1 and L2

cache level. To enable these memory optimizations, it uses a grid structure. However

unlike the regular bilateral grid, each pixel in our proposed algorithm updates only

d+1 vertices in the grid. These includes the closest vertex of the hyper-cube enclosing

that pixel, as well as d neighbors of that vertex, one along each dimension. Figure

6.4 illustrates for a 2D space and compares that to the regular bilateral grid.

To understand the motivation for this change, we discuss in a bit more detail how

blurring works in these high-dimensional bilateral filtering approaches. In all these

algorithms, grid or lattice vertices serve as stores for ”pixel energy”, accumulating

energy from nearby pixels. Blurring the grid locations then spreads this energy to

farther regions of the image. As a result the output pixels sliced from these blurred

vertices get contributions from a large spatial neighborhood. To ensure uniform

spread in all dimensions, the regular bilateral grid algorithm splats a pixel to all 2d

vertices of the hyper-cube. Permutohderal Lattice construction uses a smaller number

of vertex updates to achieve an approximately uniform energy spread, with only a

CHAPTER 6. BILATERAL FILTERING 91

(a) (b)

Figure 6.4: (a) In regular bilateral grid algorithm each pixel imparts its energy to all
the 2d vertices of the d-dimensional hyper-cube that it falls in. In this 2D illustration,
each pixel updates all 4 vertices of its enclosing square. (b) In the modified grid
scheme, each pixel updates its closest grid vertex as well as the d neighbors - one
along each dimension.

Table 6.2: Quality comparison of various schemes for RGB bilateral filtering of a high
definition video frame. The metric for output quality is the PSNR relative to an exact
solution of equation 6.4.

Algorithm PSNR

Bilateral Grid 52
Permutohedral Lattice 48.7
Modified Bilateral Grid 47.9
Gaussian KD-Tree 41
Nearest Neighbor Bilateral Grid 40.2

small SNR loss [6].

Our modified bilateral grid scheme similarly spreads the energy in an approxi-

mately uniform manner using only d + 1 vertices instead of 2d, and incurs a compa-

rable SNR loss. Table 6.2 compares the SNR achieved by this scheme with others

including regular bilateral grid, Permutohedral Lattuce and Gaussian KD-Tree. We

also show results for a version of bilateral grid where only the nearest vertex in the

grid is updated. As shown this modified grid construction fairly closely matches the

characteristics of the permutohedral lattice implementation. However the use of a

regular grid structure now enables data-locality optimizations which are hard to do

with the permutohedral implementation.

CHAPTER 6. BILATERAL FILTERING 92

X

Y

Figure 6.5: Modified Bilateral Grid uses an XY-Grid of hash tables to represent the
decimated space (5D for RGB case). The X-Y grid represents the points along X,
Y axes of the 5D space, and the hash table at each grid location stores the sparsely
populated RGB sub-space corresponding to that X, Y co-ordinate.

CHAPTER 6. BILATERAL FILTERING 93

As Figure 6.5 shows, instead of representing the entire 5D space as a single global

hash table, we now represent it as a dense XY grid of small hash tables. Each of

these hash tables stores the sparse RGB-sub space corresponding to a particular x,

y location. The XY grid is just a decimated version of the original image x, y co-

ordinates. Typical decimation factors for x and y dimensions are generally 16 or

32 and correspond to the standard deviation of the gaussian blur kernels in x and

y. Assuming a spatial decimation factor of 32, every grid ”square”, encapsulates a

32x32 region of the original image. Figure 6.6 highlights one such square. Every pixel

in this square would update 3 of the 4 hash tables - the one residing on its closest x,

y vertex and those residing on the two neighbors of that vertex along x and y. For a

variety of images ranging from 1MP to 10MP, the maximum size of individual hash

tables was found to remain within a few KBytes each, and thus an L1 data cache can

fit all four hash tables at once. Therefore we perform splatting and slicing in a block

by block fashion resulting in high temporal locality in hash table accesses.

Moreover, we no longer need to splat the whole image before starting the blur

step. Blur across R, G and B dimensions can be performed locally within each hash-

table, right after all the splats to that hash table are complete. Similarly, assuming we

process the 32x32 blocks in horizontal scan-line order, blur across X can be performed

once three 32x32 blocks have been processed. That also implies that to fully exploit

temporal locality, our L1 D-Cahe should be big enough to hold at least eight hash-

table structures corresponding to three 32x32 image blocks. The Y-Blur however is

not possible until three rows of image blocks have been processed. For a HD video

frame using a block size of 32x32, this requires storing about 250 of these hash tables

before vertical blur can be performed. Given that each hash-table could be up to a

few KBytes, a 1-to-2 MB L2 cache can store these without the need to ever write the

hash-table entries to DRAM.

Figure 6.7 compares the performance of this algorithm against the Permutohe-

dral Lattice algorithm. Dynamic energy contribution from DDR goes to almost zero

in our modified scheme. The execution goes down by about 3, partly because no

complex lattice calculations are needed and at the same time no cycles are wasted

waiting for the data from DDR. As expected, leakage energy goes down by the same

CHAPTER 6. BILATERAL FILTERING 94

X

Y

Figure 6.6: X, Y co-ordinates of the grid correspond directly to the X, Y pixels loca-
tions in the image. Assuming a decimation factor of 32 in X, Y, the green highlighted
square in X, Y grid corresponds to the first 32x32 block in the image. The highlighted
pixel in that 32x32 block updates the hash-table on its nearest XY vertex, as well as
the neighboring hash-tables along X and Y.

0	

50	

100	

150	

200	

250	

Permutohedral	
 Modified	
 Grid	

En
er
gy
	
 (m

J)
	

Energy	
 Breakdown	

Processor	
 Dyn	
 L1	
 Dcache	
 Dyn	
 L2	
 Dcache	
 Dyn	

DDR	
 Dynamic	
 Leakage	

0.00	

0.50	

1.00	

1.50	

2.00	

2.50	

3.00	

3.50	

Permutohedral	
 Modified	
 Grid	

Ex
ec
uG

on
	
 T
im

e	

(s
)	

ExecuGon	
 Time	

Figure 6.7: Energy consumption and execution time for permutohedral lattice based
algorithm vs our modified bilateral grid. The test image is an HD video frame. The
decimation factor is 32 in spatial dimensions and 16 in RGB dimensions.

CHAPTER 6. BILATERAL FILTERING 95

factor as execution time. With DDR energy no longer being the bottleneck, it finally

makes sense to accelerate the compute using the sort of techniques we have previously

employed.

6.4 Hardware Acceleration of Modified Bilateral

Grid

Since most operations in the modified bilateral grid work on (r, g, b, w) pixel values,

these can be naturally expressed as 4-way SIMD operations. Of course we are looking

for a much larger degree of parallelism both to improve performance and to amortize

the instruction overheads. To achieve that extra degree of parallelism, we process

multiple pixels in parallel. Thus if we use a 64-wide compute array as we did for

convolution engine, we could process 16 pixels in parallel. This is however complicated

by the accesses to the hash tables. Each step of the algorithm involves accesses to the

hash table. Splat updates a total of 5 different hash table entries across 3 different

hash tables for each input pixel. Blur operates across each of the 5 dimensions,

reading and writing values from multiple hash tables. Similarly slice operation again

needs to access 5 different hash table entries across 3 different hash tables to produce

each output pixel. With convolution operations of Chapter 5, feeding data to the 64

ALUs was easy as adjacent pixels operated on adjacent and overlapping data values.

Here each of the 16 sets of ALUs potentially needs data from a different part of the

hash table. This has implications on both the data access support as well as the

address generation and control flow support that is needed.

Figure 6.8 shows the structure of the proposed data-path. The data-path is or-

ganized as an array of 4-wide SIMD ALUs. We evaluate multiple sizes of arrays,

starting from a single 4-way SIMD ALU, going up to 8, 16 or higher number of SIMD

ALUs. Since each pixel goes through the same computation, these SIMD ALUs are

controlled by a single instruction stream, providing the amortization of instruction

fetch cost as needed. Since each 4-ALU SIMD unit needs data from different parts

of memory, each of these units has its own address generation unit, with dedicated

CHAPTER 6. BILATERAL FILTERING 96

32K	
 2Way	

L1	
 D-­‐Cache	

32K	
 2Way	

L1	
 I-­‐Cache	

2MB	
 2Way	
 L2	
 Cache	

128MB	
 DDR	
 Memory	

1K	
 L0	

D-­‐Cache	

SIMD	
 0	
 SIMD	
 1	
 SIMD	
 2	
 SIMD	
 n	

Risc	
 Core	

Single SIMD
Instruction

Figure 6.8: Proposed data-path for modified bilateral filtering. It consists of an array
of 4-way SIMD units, which are all operated by the same instruction stream. While
not explicitly shown, each SIMD unit has its own address generation unit as well as
a dedicated port to access the L0-cache.

address registers.

The data-path also includes a small 1K cache between the processor and the L1

cache. Inclusion of this cache is motivated by the observation that there exists a

large degree of short-term temporal locality in the algorithm. Adjacent pixels in

the image generally have similar color values and thus have a high probability of

updating the same hash table entries. The L0 cache captures this very effectively

and has about 90% hit rate. Due to its smaller size it also has roughly 5 times lower

access energy compared to the 32-K L1 D-Cache, resulting in about 60% reduction

in overall memory access energy. This increases the amount of data-parallelism that

could be exploited before memory becomes a bottleneck again. The second use of

this structure is to provide the larger bandwidth needed to feed the large number of

SIMD arrays, and it does that by providing multiple access ports.

CHAPTER 6. BILATERAL FILTERING 97

6.4.1 Path Divergence

In normal execution, all the SIMD ALUs operate in lock-step executing the same set of

operations from a single execution stream. There are however some instances where

the execution paths diverge depending on the data, and special support is needed

to handle those cases. Small data-dependent control-flow deviations among these

SIMD units are handled through conditionally executed instructions. Computing the

co-ordinates of say the x-neighbor of our closest grid point, is one such example.

Depending on the pixel position, this could be on right or left of the closest grid

point. Thus both of these paths are executed and depending on the condition flags,

each SIMD unit gets the result of one or the other path.

Another divergence happens when one or more of the SIMD ALUs miss in the

L0 cache. In this case we assume that the misses are sequentially serviced, all units

remain stalled until misses have been served and then the execution resumes in lock

step. The third divergence happens when one of the SIMD units misses on a hash

table access. This happens when the index predicted by the hash function does not

have a matching key, and multiple iterations are needed to get to the correct hash

table index. In this case we assume that the execution becomes serial, where the

missing unit continues on its own until it gets to the correct index.

6.5 Acceleration Results

6.5.1 Simulation Methodology

Unfortunately some aspects of this proposed architecture are not expressible using

the Tensilica tool system that we have used so far. These include support for a

multi-ported L0 cache, as well as the control flow support for detecting and handling

the path divergence arising from cache misses or hash table misses. Therefore we use

Tensilica simulation in combination with some estimation based on program statistics.

The version with a single SIMD unit can be simulated directly in the Tensilica flow

without any manual estimation. For the multiple SIMD case, we use TIE to create

the wide data-path instructions including the compute instructions as well as address

CHAPTER 6. BILATERAL FILTERING 98

generation and hash computation instructions. We also use Tensilica’s TIE compiler

tool to get the energy estimation for these instructions. Then we analyze the inner

loop of the simulated single-SIMD execution and manually replace the energy for

the narrow SIMD operations by the energy of these wider SIMD operations to get

an energy estimate. For memory system we developed a small memory simulation

system in C to get the cache miss and hit statistics from program execution trace.

These statistics were used in combination with cache and DRAM accesses energies

calculated using CACTI 6.0 [42], to find the energy for various levels of memory

hierarchy. Finally the cache miss and hash table miss statistics gathered from single-

unit SIMD execution were used to estimate the additional stall cycles incurred to

handle the path divergence. These stall cycles were then added to execution time

and at the same time leakage energy as well as processor dynamic energy numbers

were updated to reflect these additional idle cycles.

6.5.2 Results

Figure 6.9 shows the energy consumption for various implementations of RGB bi-

lateral filtering for a HD video frame. The single-SIMD-unit implementation gets

more than 4x improvement over the RISC implementation with a total reduction of

about 12x over the Permutohedral Lattice implementation. The reduction is higher

than SIMD width of 4 because apart from SIMD-parallelism this implementation also

benefits from dedicated address registers, custom instructions which fuse computing

the hash and accessing the indexed key into one instruction, as well as conditional

execution removing some of the branch overheads. Having eight of these SIMD units

gives another 3.5x reduction in energy, with a total reduction of just over 40x, and

finally 16 SIMD units only gives an improvement of about 1.25x over 8 SIMD units.

The diminishing returns in going from 8 to 16 SIMD units can be explained by looking

at the energy breakdown of 16 SIMD unit case, presented in Figure 6.10.

As shown the processor core dynamic energy now represents only 15% of the

energy consumption and energy for various caches now dominates. Therefore unless

further reductions could be made in memory accesses to higher level caches, further

CHAPTER 6. BILATERAL FILTERING 99

0.1	

1	

10	

100	

Permut-­‐RISC	
 MGrid-­‐RISC	
 MGrid-­‐
SIMDx1	

MGrid-­‐
SIMD8*	

Mgrid	

SIMD16*	

En
er
gy
	
 R
ed

uc
<o

n	

te
la
<v

e	

to
	
 R
is
c	

Energy	
 Savings	

Figure 6.9: Energy consumption for various implementations of RGB bilateral filter-
ing for a HD video frame. Permut refers to Permutohedral Lattice implementation,
MGrid refers to Modified Grid algorithm. For Modified Grid we present results for
RISC implementation as well as SIMD implementations with one, 8 and 16 SIMD
units. Results are normalized with respect to Permutohedral Lattice RISC imple-
mentation. The results marked with ’*’ use a combination of simulation and manual
estimation.

CHAPTER 6. BILATERAL FILTERING 100

Processor	

Dyn	

15%	

L0	
 D-­‐Cache	
 Dyn	

20%	

L1	
 D-­‐Cache	

Dyn	

17%	

L2	
 D-­‐Cache	

Dyn	

15%	

DDR	
 Dyn	

3%	

Leakage	

30%	

SIMDx16	
 Energy	
 Breakdown	

Figure 6.10: Energy consumption breakdown for 16-SIMD-Unit implementation of
Modified Grid bilateral filtering.

parallelism would not result in a significant reduction in energy consumption. Overall

the optimized 16-SIMD-unit version gains a 50x energy reduction compared to the

state-of-the-art Permutohedral Lattice implementation.

6.6 Conclusion

The bilateral filtering algorithm flow is very different and complex compared to the

linear convolution operations of Chapter 5. However, the final optimized hardware for

this algorithms draws on the same basic architectural ideas. Parallelism is achieved

using a wide arithmetic array which is supported by a small local store which provides

low-energy, high bandwidth memory accesses by exploiting the re-use. However the

algorithmic changes required to exploit this abstraction go beyond simple software

optimization and require domain expertise to come up with a fundamentally new

algorithm which could map well to our desired abstraction. This is similar to what

has been happening in GPU world. GPU hardware achieves very high performance for

CHAPTER 6. BILATERAL FILTERING 101

a specific type of data-parallel operations common in Graphics. However subsequently

a number of algorithms which were not the intended target of the architecture have

been restructured to make use of the high performance available in the GPUs. This

has also lead to the development of CUDA framework [43] which enables tapping

the power of GPUs for a range of algorithms outside graphics. We believe that the

domain-customized functional unit approach requires a similar mindset on the part

of system designers and application developers and relies as much on our ability to

transform the algorithms to make use of well-optimized hardware abstractions, as

it depends on our ability to create efficient units for frequently used computation

patterns.

Chapter 7

Conclusions

As specialization emerges as the main approach to addressing the energy limitations

of current architectures, there is a strong desire to extract maximal re-use from these

specialized engines. We propose handling that challenge by identifying and targeting

computation patterns which have two properties - they are used across a broad range

of algorithms, and they can be implemented very efficiently in hardware. The second

property places an important constraint. Some existing computing abstractions such

as 1D SIMD model as well as traditional DSP architectures have wide applicability,

but fail to achieve the very high performance and extremely low energy consumption

of dedicated custom hardware. Other abstractions such as GPU computing model

achieve very high performance across a variety of applications, however the large

resource requirements of that model preclude low-energy implementations comparable

to specialized hardware.

One of the contributions of this thesis is to identify the characteristics which

a computation pattern must have for efficient implementation to be possible. To

offset the high energy cost of data memory accesses, a computation pattern must

have enough reuse in input and/or intermediate data values that close to 99% of the

data accesses could be served by a small storage structure local to the data-path.

Moreover the computation pattern should have a large-degree of parallelism, so that

instruction supply cost can be amortized over a large number of arithmetic operations

per instruction.

102

CHAPTER 7. CONCLUSIONS 103

The general architectural template of the resulting hardware unit would include

a large compute array, combined with a small, low-energy local data buffer which

could also provide very high bandwidth. Our work shows that providing this high

bandwidth normally requires that the data routing from the storage structures to the

compute array is highly tuned to the data-access requirements of the algorithm. Thus

efficient hardware units are generally tied to a specific data-flow pattern. Thus our

quest for efficiently-implementable reusable computation abstractions translates to

finding data-flow patterns with large parallelism and data locality which repeatedly

occur across many applications.

We believe that key is to concentrate on specific computation domains as algo-

rithms in a domain often share similar data-flow patterns. Thus our convolution

engine targets the convolution abstraction prevalent in image and media processing

applications. The computing model is more restricted compared to say a SIMD ma-

chine but fully user programmable and useful across a range of media processing

applications. Importantly as our work shows it can be implemented with an order of

magnitude higher efficiency compared to a traditional SIMD unit. While the CE is

a single example, we hope that similar studies in other application domains will lead

to other efficient, programmable, specialized accelerators.

Another important question is whether every new application domain and com-

putation pattern that we explore requires a complete effort from scratch to create

completely new efficient abstraction, or can some of work be leveraged for other do-

mains as well. Our work on bilateral filtering provides some answers to that question.

While bilateral filtering has a very different computation structure from convolution

operations, the hardware abstractions that we use to implement it have a similar

structure to convolution hardware. There are however a couple of issues. Bilat-

eral filtering required a major algorithmic modification to make it fit our parallelism

model. Such algorithmic modifications are often carried out when creating custom

hardware as well. However in the context of domain customized functional units,

the restructuring must be done keeping in view the computation abstractions that

can be implemented efficiently by domain customized units. Also while bilateral

unit and Convolution unit both utilize a small local buffer to capture re-use, the

CHAPTER 7. CONCLUSIONS 104

interface between this buffer and the compute array, which enables re-use as well as

high-bandwidth access, is completely different. Nevertheless the general architectural

template could still be re-used across domains.

In our work we have primarily considered only one parallelism model based on a

single wide compute array, in which each element performs the same arithmetic oper-

ation. In essence this is just an extension of the SIMD model with appropriate data

storage and access support to enable a larger degree of parallelism than is possible

with the traditional SIMD machine. In a less constrained setting each arithmetic unit

could be performing a different operation. At the same time instead of implement-

ing single wide computation the arithmetic units could be arranged in a cascade to

implement an instruction flow graph over multiple cycles, with parallelism extracted

through pipelining. It is not obvious how to create a data-path structure to handle

these models in a generic way, and how to control such a structure using a single in-

struction stream with a reasonably friendly programming model. Nevertheless some

of our early work in this area shows promise and invites further exploration.

Another important question is how to program these specialized units. Convolu-

tion Engine is programmed in standard C augmented with intrinsics for special CE

instructions. This has the advantage of providing a familiar well-established devel-

opment environment to control any specialized unit. It also eliminates the need to

partition an application into ”kernels” running on the accelerator and higher level

application code running on an application processor. The accelerator instructions

could be mixed into regular C code as needed. However making good use of these

intrinsic instructions requires the application developer to have a fairly detailed un-

derstanding of the underlying hardware. An alternate approach is to use Domain

Specific Languages (DSLs) [15], where a domain expert can express an algorithm us-

ing a set of algorithmic constructs common to the domain. Compared to a general C

compiler, the DSL compiler has lot more information about the structure of the com-

putations and can automatically generate optimized code to run on the programmable

accelerator.

Bibliography

[1] ARM - NEON.

[2] Digic Processors, Canon Inc. http://learn.usa.canon.com/resources-

/articles/2012/digic processors.htmlp.

[3] Omap 5 platform, texas instruments. www.ti.com/omap.

[4] Snapdragon Processors, Qualcomm Inc. http://www.qualcomm.com/snapdragon/processors.

[5] Tegra processors. NVIDIA Corporation.

[6] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional filtering using the

permutohedral lattice. In Computer Graphics Forum, volume 29, pages 753–762.

Wiley Online Library, 2010.

[7] A. Adams, N. Gelfand, J. Dolson, and M. Levoy. Gaussian kd-trees for fast

high-dimensional filtering. ACM Transactions on Graphics (TOG), 28(3):21,

2009.

[8] A. Adams, D. Jacobs, J. Dolson, M. Tico, K. Pulli, E. Talvala, B. Ajdin, D. Va-

quero, H. Lensch, M. Horowitz, et al. The frankencamera: an experimental plat-

form for computational photography. ACM Transactions on Graphics (TOG),

2010.

[9] A. B. Adams. High-dimensional gaussian filtering for computational photography.

Stanford University, 2011.

105

BIBLIOGRAPHY 106

[10] V. O. Alan, W. S. Ronald, and R. John. Discrete-time signal processing. New

Jersey, Printice Hall Inc, 1989.

[11] O. Azizi, A. Mahesri, B. C. Lee, S. Patel, and M. Horowitz. Energy-Performance

Tradeoffs in Processor Architecture and Circuit Design: A Marginal Cost Anal-

ysis. In ISCA ’10: Proc. 37th Annual International Symposium on Computer

Architecture. ACM, 2010.

[12] S. Bae, S. Paris, and F. Durand. Two-scale tone management for photographic

look. In ACM Transactions on Graphics (TOG), volume 25, pages 637–645.

ACM, 2006.

[13] A. Bakhoda, G. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt. Analyzing

cuda workloads using a detailed gpu simulator. In ISPASS: IEEE International

Symposium on Performance Analysis of Systems and Software, 2009.

[14] E. P. Bennett and L. McMillan. Video enhancement using per-pixel virtual

exposures. In ACM Transactions on Graphics (TOG), volume 24, pages 845–

852. ACM, 2005.

[15] H. Chafi, A. K. Sujeeth, K. J. Brown, H. Lee, A. R. Atreya, and K. Olukotun.

A domain-specific approach to heterogeneous parallelism. In Proceedings of the

16th ACM symposium on Principles and practice of parallel programming, pages

35–46. ACM, 2011.

[16] J. Chen, S. Paris, and F. Durand. Real-time edge-aware image processing with

the bilateral grid. In ACM Transactions on Graphics (TOG), volume 26, page

103. ACM, 2007.

[17] T. C. Chen. Analysis and architecture design of an HDTV720p 30 frames/s

H.264/AVC encoder. IEEE Transactions on Circuits and Systems for Video

Technology, 16(6):673–688, 2006.

BIBLIOGRAPHY 107

[18] T.-C. Chen, Y.-W. Huang, and L.-G. Chen. Analysis and design of macroblock

pipelining for h. 264/avc vlsi architecture. In Circuits and Systems, 2004. IS-

CAS’04. Proceedings of the 2004 International Symposium on, volume 2, pages

II–273. IEEE, 2004.

[19] N. Corporation. Expeed Digital Image Processors. Nikon Corporation.,

http://imaging.nikon.com/lineup/microsite/d300.

[20] S. Corporation. BIONZ Image Processing Engine. Sony Corporation.,

http://www.sony-mea.com/microsite/dslr/10/tech/bionz.html.

[21] W. Davis, N. Zhang, K. Camera, F. Chen, D. Markovic, N. Chan, B. Nikolic, and

R. Brodersen. A design environment for high throughput, low power, dedicated

signal processing systems. In Custom Integrated Circuits Conference(CICC),

2001.

[22] P. Debevec, E. Reinhard, G. Ward, and S. Pattanaik. High dynamic range

imaging. In ACM SIGGRAPH 2004 Course Notes, page 14. ACM, 2004.

[23] R. Dennard, F. Gaensslen, H. Yu, V. Rideout, E. Bassous, and A. LeBlanc. De-

sign of ion-implanted MOSFET’s with very small physical dimensions. Proceed-

ings of the IEEE (reprinted from IEEE Journal Of Solid-State Circuits, 1974),

87(4):668–678, 1999.

[24] F. Durand and J. Dorsey. Fast bilateral filtering for the display of high-dynamic-

range images. ACM Transactions on Graphics (TOG), 21(3):257–266, 2002.

[25] S. Farsiu, M. D. Robinson, M. Elad, and P. Milanfar. Fast and robust multiframe

super resolution. Image processing, IEEE Transactions on, 13(10):1327–1344,

2004.

[26] R. Gonzalez. Xtensa: A Configurable and Extensible Processor. Micro, IEEE,

20(2):60–70, Mar/Apr 2000.

[27] R. Gonzalez. Xtensa: a configurable and extensible processor. Micro, IEEE,

20(2):60–70, Mar/Apr 2000.

BIBLIOGRAPHY 108

[28] D. Goodwin and D. Petkov. Automatic generation of application specific pro-

cessors. In Proceedings of the 2003 international conference on Compilers, ar-

chitecture and synthesis for embedded systems, pages 137–147. ACM, 2003.

[29] D. Grose. Keynote: From Contract to Collaboration Delivering a New Approach

to Foundry. DAC ’10: Design Automation Conference, June 2010.

[30] R. Hameed, W. Qadeer, M. Wachs, O. Azizi, A. Solomatnikov, B. C. Lee,

S. Richardson, C. Kozyrakis, and M. Horowitz. Understanding Sources of Ineffi-

ciency in General-Purpose Chips. In ISCA ’10: Proc. 37th Annual International

Symposium on Computer Architecture. ACM, 2010.

[31] Intel Corporation. Intel SSE4 Programming Reference.

[32] ITU-T. Joint Video Team Reference Software JM8.6.

[33] V. Iverson, J. McVeigh, and B. Reese. Real-time H.264/avc Codec on Intel

architectures. IEEE Int. Conf. Image Processing ICIP’04, 2004.

[34] P. Karas and D. Svoboda. Algorithms for efficient computation of convolution.

Design and Architectures for Digital Signal Processing. 1st ed. Rijeka (CRO):

InTech, pages 179–208, 2013.

[35] M. Kimura, K. Iwata, S. Mochizuki, H. Ueda, M. Ehama, and H. Watanabe.

A full hd multistandard video codec for mobile applications. Micro, IEEE,

29(6):18–27, 2009.

[36] J. Leng, S. Gilani, T. Hetherington, A. ElTantawy, N. S. Kim, T. M. Aamodt,

and V. J. Reddi. Gpuwattch: Enabling energy optimizations in gpgpus. In ISCA

2013: International Symposium on Computer Architecture, 2013.

[37] M. Levoy, B. Chen, V. Vaish, M. Horowitz, I. McDowall, and M. Bolas. Synthetic

aperture confocal imaging. ACM Transactions on Graphics (TOG), 23(3):825–

834, 2004.

BIBLIOGRAPHY 109

[38] F. Liu, M. Gleicher, J. Wang, H. Jin, and A. Agarwala. Subspace video stabi-

lization. ACM Transactions on Graphics (TOG), 30(1):4, 2011.

[39] D. Lowe. Distinctive image features from scale-invariant keypoints. International

journal of computer vision, 60(2):91–110, 2004.

[40] Y. Matsushita, E. Ofek, X. Tang, and H. Shum. Full-frame video stabilization.

In Computer Vision.

[41] G. Moore. Cramming More Components onto Integrated Circuits. Electronics

Magazine, 38(8), April 1965.

[42] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Cacti 6.0: A tool to

model large caches. HP Laboratories, 2009.

[43] C. Nvidia. Compute unified device architecture programming guide. 2007.

[44] B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based modeling and photo

editing. In Proceedings of the 28th annual conference on Computer graphics and

interactive techniques, pages 433–442. ACM, 2001.

[45] S. Paris and F. Durand. A fast approximation of the bilateral filter using a signal

processing approach. In Computer Vision–ECCV 2006, pages 568–580. Springer,

2006.

[46] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama.

Digital photography with flash and no-flash image pairs. In ACM Transactions

on Graphics (TOG). ACM, 2004.

[47] F. Porikli. Constant time o (1) bilateral filtering. In Computer Vision and

Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,

2008.

[48] R. Raskar. Computational photography. In Computational Optical Sensing and

Imaging. Optical Society of America, 2009.

BIBLIOGRAPHY 110

[49] W. C. Rhines. Keynote: World Semiconductor Dynamics: Myth vs. Reality.

Semicon West ’09, July 2009.

[50] R. Rithe, P. Raina, N. Ickes, S. V. Tenneti, and A. P. Chandrakasan. Reconfig-

urable processor for energy-efficient computational photography. 2013.

[51] C. Rowen and S. Leibson. Flexible architectures for engineering successful SOCs.

Design Automation Conference, 2004. Proceedings. 41st, pages 692–697, 2004.

[52] O. Shacham, O. Azizi, M. Wachs, W.Qadeer, Z. Asgar, K. Kelley, J. Stevenson,

A. Solomatnikov, A. Firoozshahian, B. Lee, S. Richardson, and M. Horowitz.

Why design must change: Rethinking digital design. IEEE Micro, 30(6):9 –24,

nov.-dec. 2010.

[53] H. Shojania and S. Sudharsanan. A VLSI Architecture for High Performance

CABAC Encoding. In Visual Communications and Image Processing, 2005.

[54] S. W. Smith et al. The scientist and engineer’s guide to digital signal processing.

1997.

[55] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, vLi Wen Chang, N. Anssari,

G. D. Liu, and W. mei W. Hwu. Impact technical report. In IMPACT-12-01,

2012.

[56] Tensilica Inc. ConnX Vectra LX DSP Engine Guide.

[57] Tensilica Inc. Tensilica Instruction Extension (TIE) Language Reference Manual.

[58] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color images.

In Computer Vision, 1998. Sixth International Conference on, pages 839–846.

IEEE, 1998.

[59] D. Van Krevelen and R. Poelman. A survey of augmented reality technologies,

applications and limitations. International Journal of Virtual Reality, 9(2):1,

2010.

BIBLIOGRAPHY 111

[60] J. Xiao, H. Cheng, H. Sawhney, C. Rao, and M. Isnardi. Bilateral filtering-based

optical flow estimation with occlusion detection. In Computer Vision–ECCV

2006, pages 211–224. Springer, 2006.

[61] Q. Yang, K.-H. Tan, and N. Ahuja. Real-time o (1) bilateral filtering. In Com-

puter Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on,

pages 557–564. IEEE, 2009.

Rehan Hameed

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Christoforos Kozyrakis) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Mark Horowitz)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Stephen Richardson)

Approved for the University Committee on Graduate Studies

