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Abstract

All computing systems are power limited, whether it is the 1W limit of a cell phone,

or the 100W limit of a server. Triggered by the end of voltage scaling, the restricted

power budgets are the result of energy per transistor switch scaling slower than the

number of transistors on the chip. Since technology scaling no longer provides the

energy savings it once did, to scale performance (operations/sec), we must improve

the energy per operation by reducing the number of transistors involved in each

operation. This fundamental change is forcing the design community to find new

approaches to energy efficient computing.

Most designs use pre-designed processor based solutions because of their flexibility

and availability. However, they are usually not the most energy efficient solutions.

The need for better energy efficiency has pushed these systems to become multi-

core. By reducing the peak performance of a processing core, the energy required

per instruction can be reduced, either because the processor can be operated at a

lower voltage, or because simpler core architectures can be used. Unfortunately, the

efficiency gains provided by parallelism are finite and further gains will be difficult.

To better understand the potential of producing general-purpose chips with better

efficiency, this thesis tries to analyze in detail the types of inefficiencies that exist

in general-purpose systems — designs that can be outclassed by up to 3 orders of

magnitude in both performance and energy-efficiency by ASIC designs. To collect this

data, we classify applications using the dominant sources of energy: compute, control

and memory. For compute and control bound applications we gather this data by

first identifying the types and magnitudes of energy overheads that exist in a general-

purpose Tensilica based extensible RISC chip multiprocessor (CMP) system and then
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by exploring the architectural support and customizations needed to transform a

general-purpose system to have the same energy efficiency as an ASIC.

Because the fundamental operations in compute bound applications are generally

very low-power, amortization of overheads introduced by programmability requires

execution of hundreds of these operations in one cycle. Interestingly, a high percent-

age of compute bound applications share common data-flow characteristics, which

we exploit to create a flexible yet efficient domain specific processor, called the Con-

volution Engine. Although, control bound applications also operate on low-power

control flow operations, sequential dependencies restrict the number of control flow

operations fuseable into one instruction to between ten and fifteen. This restriction

also defines the extent of achievable efficiency for control bound applications.

Unlike the low-power operations abundant in compute and control bound applica-

tions, the fundamental cost of a memory fetch is considerable. Improving the system

efficiency of memory bound applications not only requires improving the efficiency

of the processing elements, but also requires substantially increasing reuse in data

fetches.
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Chapter 1

Introduction

Over the past two decades, chip designers have leveraged technology scaling and

rising power budgets to rapidly scale performance. Aided by Dennard’s constant field

scaling theory [1] chipmakers achieved a triple benefit: each generation supplied more

gates per mm2, gate delay decreased, and energy per gate switch decreased. Thus

scaling alone brought about a significant growth in computing performance while

maintaining a constant power profile. However, as shown in Figure 1.1, power and

power density continued to increase, which caused a dramatic increase in processor

power over the past 20 years. The reason was a combination of designers not following

constant field scaling exactly and creating more aggressive designs, thereby increasing

performance more quickly than Dennard predicted.

Unfortunately, rising costs of cooling high performance designs exacerbated by

the changes to technology scaling beyond 90nm severely compromised our ability

to keep power in check rendering most chips power limited. Consequently, almost

all systems designed today, from high-performance servers to wireless sensors, are

becoming energy constrained. In this power-constrained, post-Dennard era, creating

energy-efficient designs is critical. Continually increasing performance in this new era

requires lower energy per operation, because the product of operations per second

(performance) and energy per operation is power, which is constrained.

Years of research have taught us that the best — and perhaps only — way to save

energy is to cut waste. Clearly, the first step is to reduce waste in the design. Clock

1
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Figure 1.1: Historic microprocessor power consumption statistics. Power consumption
has increased by over two orders of magnitude in the past two decades. However, as
evidenced by the Intel Atom, there is a recent trend of lower power processors for the
growing market of battery-operated devices [2]. (PA: Precision Architecture.)

gating prevents a logic block’s gates from switching during cycles when their output

isn’t used, reducing dynamic energy with virtually no performance loss. Power gating

goes even further by shutting off power to an entire block when it’s unused for longer

periods of time, reducing idle leakage power, again at low performance costs.

However, power is also wasted indirectly when we waste performance. Higher

performance requirements necessitate higher-energy operations, so removing perfor-

mance waste reduces energy per operation. Using multiple simpler units rather than

a single aggressive one, therefore, saves energy when processing parallel tasks. At

the system level, this observation is driving the recent push for parallel computing.

Backing off from peak performance to create simpler cores enables considerable re-

ductions in energy per operation as shown in Figure 1.2. Although this also harms

performance, we can reclaim this lost performance through additional cores at a far

lower energy cost. Of course, this approach sacrifices single-threaded performance,

and it also assumes that the application is parallel, which isn’t always true. However,

given the power constraints, this move to parallelization was a trade-off that industry

had to make.
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Figure 1.2: Historic microprocessor power per SPEC (Standard Performance Eval-
uation Corp.) benchmark score vs. performance statistics. Performance numbers
(x-axis) are the average of the single-threaded SPECint2006 and SPECfp2006 results
[3]. To account for technology generation, we normalized the numbers according to
feature size L, which is inversely proportional to the inherent technology speed. The
y-axis shows power per SPEC score, which is a measure of energy per operation. En-
ergy numbers are normalized to the number of cores per chip and to the technology
generation; since E = CV 2 (where E is energy, and C is the capacitance), E is pro-
portional to LV 2. Note how the move to multicore architectures typically sacrifices
single-threaded performance, backing off from the steep part of the curve [2].

Unfortunately, though, we can’t rely on parallelism to save us in the long term, for

two reasons. First, as Amdahl noted in 1965, with extensive parallelization, serial code

and communication bottlenecks rapidly begin to dominate execution time. Thus, the

marginal energy cost of increasing performance through parallelism increases with the

number of processors, and will start increasing the overall energy per operation. The

second issue is that parallelism itself doesn’t intrinsically lower energy per operation;

lower energy is possible only if sacrificing performance also yields a lower energy

design. Unfortunately, this trade-off follows the law of diminishing returns. After we

back away from high-power designs, the remaining savings are modest.
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Looking forward, the best tool in our power-saving arsenal is customization, be-

cause the most effective way to reduce waste is to find a solution that accomplishes

the same task with less work. By tailoring hardware to a specific application, cus-

tomization not only results in energy savings by requiring less work but also improves

performance, allowing an even greater reduction of the required energy. The idea of

specialization is well-known, and is already applied in varying degrees today. The

use of single instruction, multiple data (SIMD) units (such as Intel’s streaming SIMD

extension (SSE), vector machines, or graphics processing units) as accelerators is an

example of using special-purpose units to achieve higher performance and lower en-

ergy [4]. To estimate the potential gain possible through customization we execute a

single video compression application, a 720p high definition H.264 encoder, on a Ten-

silica RISC processor. A staggering 500x difference in energy dissipation per frame is

observed between the general-purpose (GP) software based implementation compared

to a typical ASIC designed for real-time 720p H.264 encoding [5]. The huge difference

is the consequence of the efficiency overheads that exist in a general-purpose (GP)

processor due to flexible instructions and data fetch.

However, despite the clear energy efficiency advantage of ASICs, the number of

new ASICs built today is not skyrocketing but decreasing, because designing them

is too expensive. The design and verification cost for a state-of-the-art ASIC today

is well over $20 million, and the total NRE costs are more than twice that, owing to

the custom software required for these custom chips [6][7]. Interestingly, fabrication

costs, though very high, account for only roughly 10 percent of the total cost today [6].

That means high design, verification, and software costs are the primary reasons why

the number of ASICs being produced today is actually decreasing [7], even though

they’re the most energy-efficient solution.

Thus, despite the fact that multiprocessors lag far behind ASICs in terms of

efficiency, their flexibility enables them to amortize high NRE costs across many

applications. However, the desire to achieve ASIC-like compute efficiencies with

multiprocessor-like application development costs remains strong and is pushing de-

signers to explore new design methodologies and programmable development plat-

forms. But to fully realize the potential of producing general-purpose chips with
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better efficiency, we need to fundamentally understand why specialized hardware is

more efficient compared to general-purpose systems and how we can leverage that

knowledge to build efficient programmable units. Additionally, we need to identify if

the huge efficiency gap between ASICs and programmable units is limited to a few

applications. If not then what sets the limit? And finally we need to determine how

general we can make the flexible core while still maintaining a high level of efficiency.

Identification of sources of inefficiency in general-purpose systems requires first un-

derstanding the limitations of existing system optimization techniques across a broad

spectrum of applications and determining how well they compare to custom hardware.

We review the limitations of the existing low-power architectural techniques in Chap-

ter 2 and present our strategy for detecting the fundamental shortcomings of current

programmable systems. Before introducing our energy optimization techniques for

the applications that we use in our study, we describe in the same chapter how we

classify applications using the dominant consumers of energy: compute, control and

memory.

Chapter 3 then looks in more depth at understanding the sources of inefficiency

in compute and control bound applications with the help of a 720p HD H.264 en-

coder. We choose H.264 because it demonstrates the large energy advantage of ASIC

solutions (500x) and because there exist commercial ASICs that can serve as a bench-

mark. Moreover, H.264 contains a variety of computational motifs, from highly com-

pute bound (motion estimation) to control intensive ones (Context Adaptive Binary

Arithmetic Coding [CABAC]). Aided by the benchmark ASIC, we analyze the source

of the energy overhead in H.264’s compute and control bound algorithms, and the

rough strategy that we need to use to reduce it.

For compute bound applications, the problem is that the very low per-cycle en-

ergy cost of the fundamental operations means that the relative overhead from other

sources such as instruction fetch becomes prohibitively large. Since it is generally not

possible to reduce these overheads, the only way to get high efficiency is to perform

100s of fundamental operates in each cycle. This then makes the amortized overhead

per operation small enough to yield efficient computation. Although, control bound

applications also benefit from the aggregation of low-power control flow instructions
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into a single instruction, it’s generally not possible to fuse together more than 10–20

operations; therefore, the efficiency gains are limited.

Because compute bound applications operate on short data and generally possess

enough data-parallelism to enable 100s of operations per cycle, our efficiency analysis

reveals that they offer the highest efficiency gains. Fortunately, compute bound appli-

cations must share a number of characteristics to be compute bound and in Chapter 4

we exploit those features to develop a specialized processor that offers high efficiency

while still retaining sufficient programmability. This flexible engine, which we refer

to as the Convolution Engine, works for a reasonable percentage of compute bound

applications within the domain of imaging and video systems.

After studying efficiency trade-offs between flexibility and customization for com-

pute and control intensive applications, we turn our attention to memory bound ap-

plications. In this regard, we analyze Speech Recognition and present our strategies

for improving energy efficiency in Chapter 5. We learn that the situation for mem-

ory bound applications is fundamentally different, since the energy cost of a memory

fetch is significant. While efficiency can be gained by reducing non-memory overhead

through parallelism, this will only give a small (3x) energy saving. Instead, efficient

hardware solutions use both parallelism and other compute optimization to reduce

the compute power, along with exploitation of application characteristics to increase

locality in the data fetches. This increased reuse often enables the use of better uti-

lization of smaller and closer on-chip memories, which have much lower energy costs

compared to DRAM.



Chapter 2

Background

The main benefit that general-purpose (GP) processors possess over ASICs is pro-

grammability, but therein lie most of the overheads. Identification of processor in-

efficiencies stemming from these overheads requires determination of the major con-

sumers of energy in a processor pipeline. With the help of a simple RISC pipeline,

shown in Figure 2.1, this chapter highlights major consumers of energy in a processor

pipeline, and then provides a brief overview of prior optimization work.

Figure 2.1 depicts the inner workings of a simple RISC pipeline. The pipeline

works by fetching an instruction from the instruction cache, which is then transferred

to the instruction decode unit. The register file is accessed in parallel with the decode

unit and the fetched data is then processed by the arithmetic execution stage. The

memory execution stage follows the arithmetic unit and if the fetched instruction

requires a memory access, an interaction with the data cache takes place here. And

in the end we have the write-back stage.

Execution of a high definition 720p H.264 encoder on a Tensilica RISC processor

with a 7-stage pipeline not much different from the one described above, we get an

energy breakdown presented in the pie-chart in Figure 2.1. The pie chart reveals that

the instruction fetch and decode units (IF) consume the most energy. The energy

dissipated in the data cache (D-$) comes in second followed by the pipeline registers.

Interestingly, the arithmetic unit that performs the useful work takes just 6% of the

total energy meaning that the rest is all overhead. Yet there must be more to this

7
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Figure 2.1: A simple RISC pipleine is presented at the top and the pie-chart represents
the energy breakdown obtained after the execution of a high definition H.264 encoder
on a Tensilica core with a 7-stage pipeline. In the pie-chart IF represents instruction
fetch and decode energy; D-$ stands for data-cache energy; Pip stands for energy
dissipated in the pipeline registers; energy consumed by the control logic is represented
by Ctl; and RF represents the energy dissipated in the register file.

story because if we optimize away the whole overhead we get an improvement of just

20x, not the 500x mentioned in Chapter 1.

Optimization strategies commonly engaged to improve the efficiency of GP pro-

cessors attempt to reduce or amortize overheads associated with programmability

over a larger number of operations. In the first group lie the architectural techniques

ranging from instruction registers to hierarchical register files which attempt to re-

duce the energy consumption of the major overheads. Traditional Vector Processors

are a good example of the second group: they use a single instruction to operate on

multiple operands [8].

The other approach to efficient computing drops the processor framework, or

relegates the processor to handling the UI, and some control, and builds a customized
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engine for each application. However, as explained in Chapter 1, this requires an

enormous design effort, and is becoming hard to justify except for very high volume

applications. Somewhere between these two extremes lie extensible processors, which

we describe in Section 2.3. These processors provide the framework of a CPU, but

allow the user to add his/her own customized instructions. This thesis relies on

the Tensilica extensible processor system to generate the data for the experiments

presented in later chapters. The next section looks at these optimization techniques

in detail, and briefly reviews the contemporary implementations of these ideas.

2.1 Embedded Low-Power Multiprocessor (ELM)

The low-power ELM processor [9][10] aims to bridge the enormous efficiency gap

between ASICs and GP processors. The design is influenced by the observation that

computation doesn’t limit the efficiency of embedded processors, instead the burden

falls on the inefficient delivery of instructions and data to the functional units. ELM

features several innovative mechanisms for improving locality through carefully sized

and strategically placed storage structures resulting in enhanced instruction issue and

data supply efficiency [9][10].

As a part of the strategy to improve locality, ELM introduces software managed

instruction registers placed in close proximity to the functional units. These registers

eliminate costly instruction cache accesses by storing the critical code close to the

functional units to reduce the fetch energy. In addition to the instruction registers,

small operand registers are also added close to the functional units. These regis-

ters capture transient data, eliminating the penalty for accessing the big monolithic

register file. The big register file also gets its share of enhancements in the form of

indexed registers. With the help of register pointers, this scheme eliminates overhead

instructions prevalent in compute-intensive applications that benefit from data-reuse

in the register files. All these optimizations combine to substantially simplify the

design and deliver extremely high efficiency. They estimate an energy per operation

of 10pJ in a 45nm technology for short integer data. While this is 10x better than a

RISC processor, it is comparable to what SIMD machines can achieve, and still about
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10x worse than ASICs.

2.2 SIMD Architectures and Vector Machines

Single Instruction Multiple Data (SIMD) is frequently employed in parallel proces-

sors to control multiple functional units all performing the same operation on different

data. Because SIMD units operate on multiple operands in parallel, appropriately de-

signed SIMD units have a profound effect on the aggregate throughput and efficiency

of data-parallel applications. The improvement in efficiency is caused by the amorti-

zation of overheads inherent in instruction fetch, decode and pipeline registers over a

large number of functional operands. However, the usefulness of SIMD units wanes if

the application possesses limited parallelism or is not able to aggregate enough par-

allel operands to fully utilize the SIMD array. The need to match the SIMD width

limits the usefulness of a large SIMD array for many applications. While too wide

a width results in waste especially in terms of area and leakage, too small a width

entails inefficient exploitation of parallelism.

Large SIMD and vector processors are effective for applications with large data-

parallelism [11][12]. To bring the efficiency and performance benefits of SIMD process-

ing to mainstream applications, many contemporary processors have added smaller

SIMD units to their pipelines. One of the well-known examples is Intel’s streaming

SIMD extension (SSE) [13][14] which in addition to operating on multiple parallel

data elements, also offer high efficiency complex instructions. The complex instruc-

tions are essentially fused data-flow graphs consisting of multiple instructions fused

into one operation, further improving the efficiency of SIMD units. As we will see

in the next chapter, leveraging these units can also improve energy efficiency for

data-parallel applications by upto 10x.

GPUs are generally considered to be the most successful SIMD machines today

[11]. They contain a large number of SIMD cores, each running 8–32 data opera-

tions in parallel and are optimized for massively data parallel graphics applications.

They employ a large number of low control overhead cores, sacrificing single thread

performance in favor of very high throughput. To further improve throughput they
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host a large numbers of threads on each core and threads switch on high memory

latency operations. By specializing for their workload characteristic, GPUs are able

to get much higher throughput performance and lower energy per operation than

general purpose processors. However, these machines are designed for performance

and not energy efficiency and many of the features especially in the memory system

are not low-energy. To support multiple independent threads, the memory system is

designed with a minimal focus on locality resulting in high energy dissipation in the

register file and memory system making GPUs unfeasible for our applications. Thus,

the resulting energy efficiency is only modestly better than a CPU [15].

2.3 Extensible Processors

Extensible processors such as Tensilica’s Xtensa provide a base design and instruc-

tion set which the designer can extend with custom instructions and datapath units,

based on application requirements [16]. Extending the ISA for a given application

can be done either manually or using automated tools. Tensilica provides an auto-

mated ISA extension tool [17] which has been shown to achieve speedups of 1.2x to

30x for EEMBC benchmarks [18] and signal processing algorithms [19]. Other tools

have similarly demonstrated significant gains from automated ISA extension [20][21].

While automatic ISA extension can be very effective, manual creation of custom ISA

extensions allows for even higher gains. In various app notes [22][23][24], Tensilica

reports speedups of 40x to 300x for kernels such as FFT, AES encryption and DES

encryption. We will use this system for the experimental data presented later in the

thesis.

To determine the nature and degree of customization which should be supported

by future programmable systems, we examine the sources of inefficiency present in a

programmable CMP platform and explore which aspects of customization are critical

for performance enhancements. We use the approach of customizable processors to

incrementally transform a generic CMP into a specialized energy efficient design, to

better understand the cost/benefit of different specializations.
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2.4 Application Classes

The dominant energy consumer in an application governs that application’s opti-

mization strategy. If the leading energy consumers are arithmetic operations, the

optimization strategy needs to facilitate parallel operation of functional units with

minimal data-memory fetches; however, if fetches to memory are abundant, enhanc-

ing data localization may present itself as the main challenge. Identification of these

consumers requires sifting through an application’s instruction energy profile, prun-

ing non-critical operations and grouping the remaining operations as being compute,

control or memory. In this thesis we perform this step with the help of Tensilica’s

XEnergy simulation environment that uses heuristics based upon a database of em-

pirical data and the energy estimates are reported to be within 30% of synthesized

RTL [25]. Aided by these energy simulations, we identify leading energy consumers

within an application and classify that application as being compute bound, memory

bound, or control bound. Despite the simplicity of the process, complications arise

when an application exhibits multiple dominant consumers. In this case, we draw in-

spiration from Amdhal’s law and associate the application with the energy consumer

that presents itself as the bottleneck in the optimization process.

This classification into compute, control or memory bound applications permits

us to explore optimization strategies specifically beneficial for each class of appli-

cations, which appreciably enhances their impact. Furthermore, this categorization

also enhances our ability to identify algorithmic patterns common across a wide range

of applications within each domain, which we can exploit to build efficient yet pro-

grammable hardware. We explore this issue further in the next two chapters.



Chapter 3

Understanding Sources of

Inefficiency in Compute and

Control

Bound Applications

Compute bound applications are highly arithmetic intensive and perform a consider-

able amount of arithmetic operations. Unaffected by sequential dependencies, these

applications possess a high degree of data-level parallelism permitting them to op-

erate on hundreds of data elements in parallel. A high level of data locality is vital

to keep the compute units occupied without frequently accessing the memory, oth-

erwise the application risks becoming memory bound. Thus, for an application to

remain compute bound and still meet the data supply needs of the functional units, it

must generate little memory traffic and perform a substantial number of operations

per memory fetch. Some typical examples of compute intensive imaging applica-

tions include H.264 motion estimation, Scale Invariant Feature Transform (SIFT)[26],

Demosaic[27], etc.

Performance of compute bound applications responds well to multiprocessor opti-

mization techniques such as single processor multiple data (SPMD). However, energy

13
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Figure 3.1: Comparison of functional unit energy with that of a typical RISC in-
struction in 90nm. Strategy for amortizing processor overheads includes executing
hundreds of low-power operations per instruction.

gains of general multiprocessing are modest, especially compared with other gener-

ally used data-parallel optimization techniques such as SIMD. Widely regarded as the

most efficient general-purpose optimization for compute intensive applications, SIMD

units are commonly added as datapath extensions to processing cores and their sizes

range from ten to twenty elements. Because SIMD units can simultaneously execute

tens of data operands in a single cycle, they are able to amortize processor overheads

across multiple data elements resulting in an order of magnitude better efficiency

compared to SPMD cores However, the resulting efficiency is still 50x off our goal.

Although, scalability issues of SIMD units restrict their efficiency gains, the reason

for the lower efficiency can be explained with the help of Figure 3.1, which compares

the energy dissipation of various arithmetic operations with the instruction energy of

an extremely simple RISC processor. The energy dissipation of arithmetic operations

that perform the useful work in a computation remains much lower than the energy

wasted in the instruction overheads. The crux of the problem is that the compute

intensive applications such as H.264 typically operate on short data requiring just

0.2-0.5pJ (90nm) of energy per operation, which is even an order of magnitude lower

than that of a 32-bit RISC ALU whose energy dissipation stands at 7pJ (90nm) shown

in Figure 3.1.

Because ASICs perform just the basic low-energy operations and throw away
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all the processor overheads including those that reside inside the ALU, they can

eclipse general-purpose processors by as much as three orders of magnitude in effi-

ciency. Thus, to achieve higher efficiency, a general-purpose processor not only needs

to amortize overheads that exist inside a processor by performing hundreds of low-

energy operations in a cycle, it must also waste almost no energy on memory accesses

which stands at 25pJ (90nm) per memory fetch. However, the situation changes dra-

matically if the basic arithmetic operation in an application requires higher energy

such as a floating point operation. In such a case, amortization of processor overheads

can be achieved even by executing tens of operations in parallel instead of hundreds,

though the resulting efficiency also remains limited to an order of magnitude.

To better understand the potential of creating general-purpose (GP) solutions for

compute bound applications, we investigate the sources of overhead in GP systems

using a single video compression application, 720p HD H.264 video encode. To build

this understanding, we start with a simple RISC chip multiprocessor (CMP) and

incrementally transform it to an optimized multiprocessor with specialized hardware

units. On this task, a general-purpose software solution takes 500x more energy

per frame and 500x more area than an ASIC [5] to reach the same performance.

While memory is never an issue in this application, one component, Context Adaptive

Binary Arithmetic Coding (CABAC), is control dominated, and after the compute

has been optimized, limits both the energy and the performance of the application.

We then explore how to reduce the overhead of control bound applications.

3.1 H.264

To understand how we customize a generic CMP to efficiently implement H.264,

we must first understand the basic components of the H.264 algorithm. Three major

functions comprise more than 99% of the total execution time in our base CMP imple-

mentation: a) Motion Estimation comprised of Integer Motion Estimation (IME) and

Fractional Motion Estimation (FME) b) Intra Prediction (IP), Discrete Cosine Trans-

form and Quantization (DCT/Quant) and c) Context Adaptive Binary Arithmetic

Coding (CABAC). We implement the H.264 baseline profile at level 3.1; however, we
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Figure 3.2: H.264 supports forty one different macro-block types starting from 16x16
going all the way down to 4x4 and motion estimation is performed separately for each
one of these blocks.

use CABAC in place of CAVLC because CABAC is more complex and more chal-

lenging to improve [28][29]. CABAC is also more representative of advanced coding

steps in other applications

3.1.1 Motion Estimation

A digital video stream consists of a sequence of frames that are closely spaced in

time. Because of this proximity, the frames contain a significant amount of redundant

information which if not removed, wastes storage as well as precious bandwidth when

the stream is transmitted over a network. Motion estimation (ME) eliminates this

redundancy by identifying the regions of least change between the current frame

and its neighbors using a process known as block matching. This procedure involves

comparing blocks of pixels in the current frame called macro-blocks against expanded

regions of pixels in the adjacent frames called search windows to find a match. These

matched blocks enable the transmission of only the difference between frames; thus,

conserving storage as well as network bandwidth.

ME is widely regarded as a key component of many modern day video codecs such

as H.264 because it sets the compression efficiency of the video stream. In H.264 ME

facilitates high compression efficiency by sub-dividing the current macro-block, a two
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Figure 3.3: H.264 Integer Motion Estimation Search Procedure.

dimensional block of 16x16 pixels, into smaller sized regions ranging from 4x4 pixels

to 16x16 pixels as shown in Figure 3.2. An improved matching accuracy ensues when

a match is sought for each one of these blocks of pixels within the search window.

However, this improvement in matching accuracy comes at the cost of computational

intensity which increases many fold. Thus, it should come as no surprise that ME

accounts for 90% of the execution time when a high definition H.264 encoder is

executed in software using JM8.6 reference code [30]. For this implementation we use

the Fast Full Search, which will be explained later.

While ME is highly computationally intensive, a small ASIC (in mm2) can eas-

ily satisfy the stringent performance and energy requirements of motion estimation;

however, it poses a significant challenge for general purpose processors. The energy

efficiency of general-purpose processors for H.264 motion estimation tends to be over

two orders of magnitude worse compared to an ASIC. To determine the reason behind

this dismal display of efficiency from general purpose hardware, we must first under-

stand how ME works. The computation of ME takes place in two steps: it starts with

integer motion estimation (IME), which is responsible for finding the match between

the current frame and its neighbors, and ends with fractional motion estimation which

takes the match from IME and further refines it by searching at sub-pixel granularity.
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Integer Motion Estimation (IME)

As has been stated above, IME forms the first step in the block matching process. The

algorithm that yields the best search results in H.264 is called Full Search (FS). In FS

the current frame is divided into 16x16 sized macro-blocks and for each macro-block

and its sub-blocks presented in Figure 3.2, a block match is obtained in the reference

frame using the process illustrated in Figure 3.3. Aided by motion displacements of

already matched macro-blocks, a prediction of the location of the search window is

made inside the reference frame. All the pixel locations within the search window are

evaluated for a match using Sum of Absolute Difference (SAD) as the cost function

shown in Equation (3.1). Motion Vectors (MV) are used to depict the motion between

the matching blocks. These motion vectors are transmitted to the decoder along with

the residual difference between the matched blocks.

SAD =
∑∑

abs(reference− current) (3.1)

Although, FS yields the best search results, it performs a significant amount of redun-

dant calculations by searching the whole window for each sub-block. Fast Full Search

(FFS) eliminates these excess calculations by reusing SAD results of smaller blocks to

form matches for their larger counterparts in addition to introducing early termination

of unfeasible search locations. Despite these modifications that aid in reducing the

computational complexity of FS, IME still takes up 56% of the total H.264 encoder

execution time and 52% of total energy. Although, numerous fast variants of block

matching have been proposed which require less computation[31][32][33], they are

sub-optimal and sacrifice search quality by searching fewer locations. Furthermore,

some of these algorithms are less suitable for a hardware implementation because they

contain a non-deterministic number of pixel matching iterations, irregular workload

distribution between iterations and the presence of branch instructions.
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Figure 3.4: The squares represent IME’s best match for a 4x4 block. The greyed out
locations at the top left represent the nine locations searched in FME to match the
top left pixel.

Fractional Motion Estimation (FME)

While IME performs motion estimation at integer pixel granularity, it is possible that

motion may be better represented at the sub-pixel level. The task of Fractional Mo-

tion Estimation (FME) is to refine the match obtained by IME to finer granularities.

Consider Figure 3.4 which illustrates the first step of the process. In this step, the

pixels in the reference frame adjacent to the IME match are up-sampled to a half pixel

granularity using Equation (3.2). Similar to IME, FME also subtracts the upsampled

reference pixels from the pixels of the current macro-block; but, to better approxi-

mate the processing of the proceeding H.264 pipeline, FME performs maching using a

modified SAD algorithm called Sum of Absolute Transformed Difference (SATD). In

this algorithm a Hadamard Transform is performed on the residues to approximate

the effects of the Discrete Cosine Transform (DCT) which resides further down the

pipeline — DCT is tasked with zeroing out as many residues as possible without

compromising fidelity. Using SATD as the cost metric, nine locations including the
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Figure 3.5: Luma intra-prediction modes for a 4x4 block [28][34][35].

original match are searched. In the second step of the process, the half-pixel search is

further refined by searching eight locations around the half-pixel match at a quarter

pixel granularity providing us with the final motion vector (MV). The algorithm used

for quarter pixel up-sampling is a simple bi-linear filter.

xupsampled = x−2 − 5x−1 + 20x0 + 20x1 − 5x2 + x3 (3.2)

FME is also data parallel like IME, but it has some sequential dependencies and

a more complex computation kernel which makes it more challenging to parallelize.

FME takes up 36% of the total execution time and 40% of total energy.
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3.1.2 Intra-Prediction, Discrete Cosine Transform and

Quantization

Unlike IME and FME, intra-Prediction uses previously encoded neighboring image

blocks from the current frame to form an alternate prediction for the current image-

block. To maintain a high prediction accuracy, intra-prediction supports a large num-

ber of luminance and chrominance prediction modes: nine luminance modes for 4x4

blocks, four luminance modes for 16x16 blocks and four chrominance modes. Gener-

ation of the prediction for each block requires intra-prediction to compare the predic-

tion results of various linear combinations of previously encoded and reconstructed

neighboring blocks from the left and the top. Figure 3.5 presents the formation of nine

luminance prediction modes employed for predicting 4x4 blocks. Although, the algo-

rithm is dominated by arithmetic operations, the computation is much less regular

than the motion estimation algorithms and the performance is marred by sequential

dependencies between current blocks and their neighbors.

The residual data obtained by subtracting the predicted image block from the

current image block is then transformed using a 4x4 integer approximation to the

Discrete Cosine Transform (DCT) [36]. A set of coefficients are produced by the

transform, which are then quantized (quant) and sent to CABAC. The precision of

the quantization process is governed by the quantization parameter (QP), which is

typically chosen to strike a balance between the quality of the output bit-stream and

the compression ratio. Although, the basic function of DCT and Quant is relatively

simple and data parallel, it is invoked a large number of times for each 16x16 image

block, which calls for an efficient implementation. For the rest of this paper, we merge

the operations of intra-prediction, DCT and Quant into the IP stage. The combined

operation accounts for 7% of the total execution time and 6% of total energy.

3.1.3 CABAC

The coding efficiency of H.264 is significantly enhanced by the use of Context Adap-

tive Binary Arithmetic Coding (CABAC). It is extensively utilized to deliver high

quality video at low-bitrates. While it takes less than 2% of the execution time and
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Figure 3.6: Illustration of the binarization for (a) macro-block type (mb type) and
(b) sub-macro-block type (sb mb type) for two different slice types [37].

total energy in a high definition H.264 encoder, CABAC often becomes the bottle-

neck in parallel systems due to its sequential nature. To entropy encode the H.264

bit-stream CABAC employs a three step process: binarization of non-binary input

syntax elements (SE), context modeling of binarized bin strings and binary arithmetic

coding [37].

Binarization

In CABAC binarization is regarded as the “pre-processing” step to the subsequent

stages of context modeling and arithmetic coding. The main task of binarization

is to reduce the alphabet size of the non-binary syntax elements such as macro-

block type and motion vector difference for encoding by converting the input syntax

elements into binary codes while binary valued syntax elements bypass this stage. As

shown in Figure 3.6, the input syntax elements are uniquely mapped to sequences of

binary decisions called bins, interpretable in the context of a binary code tree [38].

Because of the reduction in the alphabet size, less complex binary arithmetic coders

become available, substantially reducing the compute requirements. The conversion

also allows maintenance of statistical properties at the level of individual bins; thus,

improving coding efficiency.
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Figure 3.7: Illustration of a context template consisting of two neighboring syntax
elements A and B to the left and on top of the current syntax element C[37].

Context Modeling

The context modeling (CM) is tasked with assigning probability models to select

“bins”. CM contains 399 context models with each model being 7-bits wide. Out of

the 7-bits, 6-bits represent the probability associated with the bin and the remaining

1-bit indicates the most probable symbol (MPS) of the context bin. The probabilities

are updated in the arithmetic coding stage.

Because the coding efficiency of binarized symbols is determined by a Context

Model, selecting a model that accurately captures the statistical dependencies of

the bins and keeping it up to date during the encoding process is essential [37].

Probability models assigned to selected bins of the binarized symbols are used in

the subsequent arithmetic coding stage to drive the output bit stream. Although,

the modeling process starts by passing each bin through a coding mode decision, not

every bin is assigned a context model. Modeling is skipped for less frequently observed

bins and bins thought to have an even probability distribution. However, depending

upon the symbol type, the bins that are more frequently observed can choose among

four different types of context models. As shown in Figure 3.7, the first type of

context model involves assigning probability models to a syntax element depending

upon the context of the two neighbors in the past of the current syntax element.
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Figure 3.8: Bin encoding flow, along with the re-normalization step for when the
Range of the encoding interval falls below a certain threshold.

The second type, which is only available for syntax elements belonging to macro-

block types, takes into account the values of the previously coded bins (b0, b1, b2bi−1)

to decide the context model. In contrast, the third and the fourth types, which are

available for residual data, depend upon the position or level of the bin in the scanning

path[39]. All of the 399 context models available in CABAC are divided into these

four categories.

Binary Arithmetic Coding

Binary arithmetic coding (BAC) stage employs a recursive interval sub-division tech-

nique to produce the output bit stream. As explained in [37] BAC works by repeatedly

sub-dividing the encoding interval based upon Least Probable Symbol (LPS) or the

Most Probable Symbol (MPS) obtained from the context modeling stage. To illustrate

this further let’s consider Figure 3.8. In the figure the binary encoding interval is rep-

resented by “Low” as its lower bound and “Range” as its width. Assuming that pLPS

represents the probability of LPS, BAC works by sub-dividing the encoding interval

into two sub-ranges: RLPS = R ∗ pLPS representing the Range associated with LPS

and R − RLPS representing the Range associated with MPS. The observed binary

decision of the bin, LPS or MPS, identifies which sub-interval, RLPS or RMPS, is
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used for further processing. Because “Range” and “Low” are represented by a finite

number of bits, to ensure that the precision of “Range” is representable in hardware,

a renormalization step is undertaken when the “Range” falls below a certain limit.

Because by design renormalization takes a variable number of iterations, it presents

a serious challenge for any hardware implementation.

3.2 Experimental Methodology
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Figure 3.9: Four stage macroblock partition of H.264. (a) Data-flow between stages.
(b) How the pipeline works on different macroblocks. IP stands for Intra-Prediction.
EC is CABAC [40].

To understand what is needed to gain ASIC level efficiency, we use existing H.264

partitioning techniques adopted by ASIC implementations [5], and modify the H.264

encoder reference code JM 8.6 [30] to remove dependencies in IME motion vector
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prediction with minimal loss in quality and allow mapping of the three major al-

gorithmic blocks to the four-stage macro-block (MB) pipeline shown in Figure 3.9.

This mapping exploits task level parallelism at the macro-block level and significantly

reduces the inter-processor communication bandwidth requirements by sharing data

between pipeline stages.

Figure 3.10: The performance and energy gap for base CMP implementation when
compared to an equivalent ASIC [40].

In the base system, we map this four-stage macro-block partition to a four-

processor Tensilica CMP system where each processor has 16KB 2-way set associative

instruction and data caches. Figure 3.10 highlights the large efficiency gap between

our base CMP and the reference ASIC for individual 720p HD H.264 sub-algorithms.

The energy required for each RISC instruction is similar and as a result, the energy

required for each task (shown in Figure 3.11) is related to the cycles spent on that

task. The RISC implementation of IME, which is the major contributor to perfor-

mance and energy consumption, has a performance gap of 525x and an energy gap

of over 700x compared to the ASIC. IME and FME dominate the overall energy and

thus need to be aggressively optimized. However, we also note that while IP and

CABAC are much smaller parts of the total energy delay, even they need about 100x

energy improvement to reach ASIC levels.
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Figure 3.11: Processor energy breakdown for base implementation, over the different
H.264 sub-algorithms. In the chart, IME takes 52% of the total energy followed by
FME that accounts for 41% of the total. IP consumes 6% of the total while CABAC
takes just 1% of the total [40].

Although, Figure 3.10 presents performance comparison for each processor in-

dependently, when functioning in a macro-block level pipeline, IME becomes the

bottleneck restricting system performance to only 0.06 FPS. Allocation of more com-

puting resources to IME and FME computationally balances the pipeline, but it has

a negligible impact on energy efficiency and the improvement in performance remains

below 2x. Needless to say, this imbalance has an insignificant effect on the two to

three orders of magnitude performance and energy gap between the base CMP system

and the ASIC that we are looking to close.

At approximately 8.6B instructions to process 1 frame, our base system consumes

about 140 pJ per instruction; a reasonable value for a simple 90nm RISC processor

running at 1.1V. To further analyze the energy efficiency of this base CMP imple-

mentation we break the processor’s energy into different functional units as shown

in Figure 3.12. This data makes it clear how far we need to go to approach ASIC

efficiency. The energy spent in instruction fetch (IF) is an overhead due to the pro-

grammable nature of the processors and is absent in a custom hardware state machine,

but eliminating all this overhead only increases the energy efficiency by less than one

third. Even if we eliminate everything but the functional unit energy, we still end up

with energy savings of only 20x — not nearly enough to reach ASIC levels.
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Figure 3.12: Processor energy breakdown for base implementation. IF (33%) is in-
struction fetch/decode. D-$ (19%) is data cache. P Reg (22%) includes the pipeline
registers, buses, and clocking. Ctrl (10%) is miscellaneous control. RF (10%) is
register file. FU (6%) is the functional units [40].

Inspired by GPUs and Intel’s SSE instructions, we first apply datapath extensions

that are relatively general-purpose data-parallel optimizations and consist of single

instruction, multiple data (SIMD) and multiple instruction issue per cycle (we use

long instruction word, or VLIW), with a limited degree of algorithm-specific cus-

tomization coming in the form of operation fusion — the creation of new instructions

that combine frequently occurring sequences of instructions. This step represents the

datapaths in current state–of–the–art optimized CPUs or simple extensions to them.

In the next step, we replace these generic datapaths by custom units, and allow un-

restricted tailoring of the datapath by introducing new compute operations as well

as new register file structures.

The results of these customizations are shown in Figures 3.13 through 3.15. The

next three sections describe these results in detail and evaluate the effectiveness of

these three customization strategies. Collectively, these results describe how efficien-

cies improve by 170x over the baseline CMP.
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Figure 3.13: Each set of bar graphs represents energy consumption (µJ) at each stage
of optimization for IME, FME, IP and CABAC respectively. The first bar in each set
represents base RISC energy; followed by RISC augmented with SIMD and operation
fusion; and then RISC augmented with “magic” instructions. The last bar in each
group indicates energy consumption by the ASIC [40].

VLIW
Slots

Register File Size
SIMD
Width

Load/Store
Width

IME 2 16 rows x 16 cols x 8-bit 16 128-bit
FME 2 32 rows x 18 cols x 9-bit 18 128-bit
IP 2 16 rows x 8 cols x 8-bit 8 64-bit

Table 3.1: Description of VLIW and SIMD resources employed for each sub-algorithm.

3.3 SIMD and Operation Fusion

Using Tensilica’s TIE extensions we add VLIW instructions and SIMD execution

units with vector register files of custom depths and widths as described in Table 3.1.

A single SIMD instruction performs multiple operations (8 for IP, 16 for IME, and

18 for FME), reducing the number of instructions and consequently reducing IF en-

ergy. VLIW instructions execute 2 operations per cycle, further reducing cycle count.

As expected, DLP algorithms using SIMD units show a large decrease in processor
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Figure 3.14: Speedup at each stage of optimization for IME, FME, IP and CABAC
[40].

energy; speedup increases as the number of instructions executed decreases. IME

and FME use 16 and 18-way SIMD datapaths and achieve speedups of 10x and 14x.

Intra/DCT/Quant using an 8-way SIMD datapath achieves a speedup of 6x. The

SIMD units use custom-width functional units instead of standard 32-bit versions to

enable more efficient computation, and generally run between 8 and 16 bits. More-

over, SIMD operations perform wider register file and data cache accesses which are

more energy efficient compared to narrower accesses. Therefore all components of

instruction energy depicted in Figure 3.12 get a reduction through the use of these

enhancements. Unfortunately, even performing sixteen concurrent operations barely

increases the percentage energy used by the functional units, which still comprise

around 10% of the total.

We further augment these enhancements with operation fusion, in which we fuse

together frequently occurring complex instruction sub-graphs for both RISC and

SIMD instructions. To prevent the register file ports from increasing, the fused in-

structions are restricted to use up to two input operands and can produce only one
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Figure 3.15: Processor energy breakdown for H.264. IF is instruction fetch/decode.
D-$ is data cache. Pip is the pipeline registers, buses, and clocking. Ctl is random
control. RF is the register file. FU is the functional elements. Only the top bar
or two (FU, RF) contribute useful work in the processor. For this application it is
hard to achieve much more than 10% of the power in the FU without adding custom
hardware units [40].

output. One example of operation fusion is the sum–of–absolute–difference operator

used in IME in which we fuse together difference, absolute and sum operations to

create a highly optimized two input, one output SAD instruction. Operation fusion

improves energy efficiency by reducing the number of instructions and also by reducing

the number of register file accesses by internally consuming short-lived intermediate

data. Additionally, fusion gives us the ability to create more energy-efficient hard-

ware implementations of the fused operations such as multiplication implemented

using shifts and adds. The reductions due to operation fusion are less than 2x in

energy and less than 2.5x in performance.

With SIMD, VLIW and Op Fusion support, IME, FME and IP processors achieve

speedups of around 15x, 30x and 10x, respectively. CABAC is not data parallel and

benefits only from VLIW and op fusion with a speedup of merely 1.1x and almost

no change in energy per operation. Overall, the application gets an energy efficiency
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gain of almost 10x, but still uses greater than 50x more energy than an ASIC. To

reach ASIC levels of efficiency, we need a different approach.

3.4 Custom Instructions for Compute Bound

Applications

The root cause of the large energy difference between GP and ASIC is that the basic

operations in H.264 are very simple and low energy. They only require 8–16 bit inte-

ger operations, so the fundamental energy per operation is on the order of hundreds

of femto-joules in a 90 nm process. All other costs in a processor — IF, register fetch,

data fetch, control, and pipeline registers are much larger (140 pJ) and dominate

overall power. Standard SIMD and simple fused instructions can only go so far to

improve the performance and energy efficiency. It is hard to aggregate more than

10–20 operations into an instruction without incurring growing inefficiencies, and ex-

ecuting tens of low energy 8–16 bit operations per cycle is not enough to overcome

large processor overheads and we still end up with a machine where around 90% of

the energy is going into overhead functions; see Figure 3.15. It is now easy to see how

an ASIC can be 2–3 orders of magnitude lower energy than a processor. For compu-

tationally limited applications with low-energy operations, an ASIC can implement

hardware which both has low overheads, and is a perfect structural match to the

application. These features allow it to exploit large amounts of parallelism efficiently.

To match these results in a processor we must amortize the per-instruction energy

overheads over hundreds of these simple operations. To create instructions with this

level of parallelism requires matching the hardware to the data-flow of the algorithm

by building custom storage structures with algorithm-specific communication links to

directly feed large amounts of data to custom functional units without explicit register

accesses. These structures also substantially increase data-reuse in the datapath and

reduce communication bandwidth and power at all levels of the memory hierarchy

(register, cache, and memory).

Derived directly from the data-flow of the algorithm, “magic” instructions can
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Figure 3.16: Custom storage and compute for IME 4x4 SAD. Current and ref-pixel
register files feed all pixels to the 16x16 SAD array (16-SAD units) in parallel. Each
bus is 128-bits wide. Also, the ref-pixel register file allows horizontal and vertical
shifts [40].

have a large effect on both the energy and performance of an application. Yet they are

often difficult to derive directly from the code. Such instructions typically require an

understanding of the underlying algorithms, as well as the capabilities and limitations

of existing hardware resources, thus requiring someone with an understanding of the

algorithm and the hardware to create them.

3.4.1 IME Strategy

To demonstrate the nature and benefit of magic instructions we first look at IME,

which determines the best alignment for two image blocks. The best match is defined

by the smallest sum-of-absolute-differences (SAD) of all of the pixel values. Since

finding the best match requires scanning one image block over a larger piece of the

image, one can easily see that while this requires a large number of calculations, it

also has very high data locality. Figure 3.16 shows the custom datapath elements

added to the IME processor to accelerate this function. At the core is a 16 x 16

SAD array, which can perform 256 SAD operations in 1 cycle. Since our standard

vector register files cannot feed enough data to this unit per cycle, the SAD unit is fed

by a custom register structure, which allows parallel access to all 16-pixel rows and

enables this datapath to perform one 256-pixel computation per cycle. In addition,
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the intermediate results of the pixel operations need not be stored since they can be

reduced in place (summed) to create the single desired output. Furthermore, because

we need to check many possible alignments, the custom storage structure has support

for parallel shifts in all four directions, thus allowing one to shift the entire comparison

image in only one cycle. This feature drastically reduces the instructions wasted

on loads, shifts, and pointer arithmetic operations as well as data cache accesses.

“Magic” instructions and storage elements are also created for other major algorithmic

functions in IME to achieve similar gains.

Thus, by reducing instruction overheads and by amortizing the remaining over-

heads over larger datapath widths, this functional unit finally consumes around 40%

of the total instruction energy. The performance and energy efficiency improve by

200–300x over the base implementation, match the ASIC’s performance and come

within 3x of ASIC energy. This customized solution is 20–30x better than the re-

sults using only generic data-parallel techniques and no longer uses the SIMD data

structures.

3.4.2 FME Strategy

FME improves the IME match by refining the alignment to a quarter pixel granularity.

Fractional alignment necessitates interpolation of the reference image to first a half

and then to a quarter pixel granularity followed by a search stage focused on locating

a better estimate of the current image block. A six tap 2D separable filter is used to

perform the half pixel up-sampling step and is comprised of separate horizontal and

vertical interpolation stages. Because FIR filters possess the unique advantage that

each filtered output reuses nearly all inputs of the previous output, the data locality

is extremely high. To exploit this high data locality we maintain local state inside

the processor, which allows us to significantly cut back on the number of memory

operations; thus, increasing efficiency. We further exploit the local state to perform

hundreds of low-power arithmetic operations in parallel by generating and supplying

multiple shifted versions of the input data to the functional units generating multiple

filtered outputs. Such a large number of arithmetic operations executing in parallel
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Figure 3.17: FME upsampling unit. Customized shift registers, directly wired to
function logic, result in efficient upsampling. Ten integer pixels from local memory
are used for row upsampling in RFIR blocks. Half upsampled pixels along with
appropriate integer pixels are loaded into shift registers. CFIR accesses six shift
registers in each column simultaneously to perform column upsampling [40].

have a profound effect on the efficiency, which improves dramatically.

To maintain the local state and to reduce the ill effects of IF and register file

overheads, we augment the processor register file with a custom 8 bit wide, 6 entry

shift register structure which works like a FIFO: every time a new 8 bit value is

loaded, all elements are shifted. This eliminates the use of expensive register file

accesses for either data shifting or operand fetch, which are now both handled by

short local wires. All six entries can now be accessed in parallel and we create a six

input multiplier/adder which uses a carry-save data format until the final addition to

use less energy than a composition of normal 2-input adders. Finally, since we need

to perform the up-sampling in 2-D, we build a shift register structure that stores

the horizontally up-sampled data, and feeds its outputs to a number of vertical up-

sampling units (Figure 3.17). This transformation yields large savings even beyond

the savings in IF energy. From a pure datapath perspective (register file, pipeline

registers, and functional units), this approach dissipates less than 1/30th the energy

of a traditional approach.

A look at the FME SIMD code implementation highlights the advantages of this
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custom hardware approach versus the use of larger SIMD arrays. The SIMD imple-

mentation suffers from code replication and excessive local memory and register file

accesses, in addition to not having the most efficient functional units. FME contains

seven different sub-block sizes ranging from 16 x 16 pixel blocks to 4 x 4 blocks,

and not all of them can fully exploit the 18-way SIMD datapath. Additionally, to use

the 18-way SIMD datapath, each sub-block requires a slightly different code sequence,

which results in code replication and more I-fetch power because of the larger I-cache.

To avoid these issues, the custom hardware upsampler processes 4 x 4 pixels. This

allows it to reuse the same computation loop repeatedly without any code replica-

tion, which, in turn, lets us reduce the I-cache from a 16KB 4-way cache to a 2KB

direct-mapped cache. Due to the abundance of short-lived data, we remove the vector

register files and replace them with custom storage buffers. The “magic” instruction

reduces the instruction cache energy by 54x and processor fetch and decode energy by

14x. Finally, as Figure 3.15 shows, 35% of the energy is now going into the functional

units, and again the energy efficiency of this unit is close to an ASIC.

3.5 Custom Instructions for Control Bound

Applications

Control bound applications such as H.264’s CABAC are highly sequential with small

instruction blocks separated by dependent branches. As shown in Figure 3.18, the

computation performed by a control bound application is usually not expensive, but it

takes many instructions to compute. These algorithms benefit very little from data-

parallel execution units and require innovative instruction level parallelism (ILP)

techniques such as out–of–order (OOO) processing and speculative execution to im-

prove execution times; however, the complexity of the ensuing hardware keeps energy

consumption high. Absence of efficient general-purpose optimizations force control

bound applications to rely on algorithm specific techniques to improve efficiency. The

improvement in energy consumption for custom hardware is solely governed by the

height and the achievable compaction of the instruction based directed acyclic graphs
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Figure 3.18: A simplified version of a control bound loop from BAC.

(DAG) like the one shown in Figure 3.18. The DAGs are mainly comprised of basic

blocks and control flow instructions. The greater the height of the DAG and higher

the compaction, the greater the number of operations that can be executed per cycle

and more effective is the amortization of processor overheads.

In our experience it’s hard to increase the overall efficiency for a control bound

application by more than an order of magnitude. The lower overall gains compared

to compute bound applications are the consequence of the dependent branches that

restrict the fusion of DAGs to a maximum of 2–3 basic blocks. Because each basic

block is typically 4–5 instructions long, fusing together more than 10–15 instructions

efficiently becomes increasingly difficult, thus setting a hard limit on the expected

efficiency.

3.5.1 CABAC Strategy

CABAC originally consumed less than 2% of the total energy, but after data-parallel

components are accelerated by “magic” instructions, CABAC dominates the total

energy and becomes the tall pole. However, it requires a different set of optimizations

because it is control oriented and not data parallel. Thus, for CABAC, we are more

interested in control fusion than operation fusion.

A critical part of CABAC is the arithmetic encoding stage, which is a serial process
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Figure 3.19: CABAC Arithmetic Encoding Loop 3.19(a) H.264 reference code.
3.19(b) After insertion of “magic” instructions. Much of the control logic in the
main loop has been reduced to one constant time instruction ENCODE PIPE 5 [40].

with small amounts of computation, but lots of control-flow decisions. Despite the

low-complexity of the encoding stage, the abundance of control-flow decisions force

the RISC based implementation to be comprised of tens of instructions resulting in

low efficiency. Therefore, to reduce the control-flow overhead and to compress this

large instruction graph, we break the arithmetic coding down into a simple pipeline

and drastically change it from the reference code implementation, reducing the binary

encoding of each symbol to five instructions. While there are several if–then–else con-

ditionals reduced to single instructions (or with several compressed into one), the most

significant reduction came in the encoding loop, as shown in Figure 3.19(a). Each it-

eration of this loop may or may not trigger execution of an internal loop that outputs

an indefinite number of encoded bits. By fundamentally changing the algorithm, the

while loop was reduced to a single constant time instruction (ENCODE PIPE 5) and

a rarely executed while loop, as shown in Figure 3.19(b).

The other critical part of CABAC is the conversion of non-binary-valued DCT

coefficients to binary codes in the binarization stage. To improve the efficiency of
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this step, we create a 16-entry LIFO structure to store DCT coefficients. To each

LIFO entry, we add a single-bit flag to identify zero-valued DCT coefficients. These

structures, along with their corresponding logic, reduce register file energy by bringing

the most frequently used values out of the register file and into custom storage buffers.

Using “magic” instructions we produce Unary and Exponential-Golomb codes using

simple operations, which also helps reduce datapath energy. These modifications are

inspired by the ASIC implementation described in Shojania and Sudharsanan [41].

CABAC is optimized to achieve the bit rate required for H.264 level 3.1 at 720p video

resolution.

3.6 Custom Instructions Area Comparison

Figure 3.20: Area comparison of “magic” instructions with the base processor for
IME, FME, IP and CABAC. Each area bar includes the area for Tensilica RISC
core, instruction and data L1 caches and custom units (applicable only in “magic”
instructions). Although, the non-optimized base processor for each algorithm has
16KB 2-way set associative L1 caches, the cache sizes are customized for “magic”
instructions according to the requirements of each algorithm. Because CABAC’s code
size reduces appreciably after the application of “magic” instructions, CABAC’s area
for the customized case is smaller than that of the non-optimized base configuration.

The area comparisons for magic instructions for IME, FME, IP and CABAC are
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Figure 3.21: Comparison of area efficiency (FPS/mm2) for IME, FME IP and
CABAC.

presented in Figure 3.20. Although, magic instruction based datapaths perform algo-

rithm specific customization of L1 cache sizes reducing the memory area appreciably,

the addition of custom storage structures and datapath extensions considerably in-

creases the area of the processing elements. It’s especially evident in IME and FME,

which add substantially large storage structures and datapath extension units to the

Tensilica RISC processors. However, as shown in Figure 3.21, IME and FME also

report the highest gains in area efficiency (FPS/mm2), recording up to two orders

of magnitude improvement in area efficiency over the non-optimized Tensilica core.

Because of simpler computation, IP and CABAC require relatively smaller datapath

extensions but they also report at least an order of magnitude boost in area efficiency.

3.7 Custom Instructions Summary

To summarize, the magic instructions for data-parallel algorithms perform up to hun-

dreds of operations each time they are executed, so the overhead of the instruction
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is better balanced by the work performed. Of course this is hard to do in a gen-

eral way, since bandwidth requirements and utilization of a larger SIMD array would

be problematic. Therefore we solved this problem by building storage units tailored

to match the data-flow of the application, and then directly connecting the neces-

sary functional units to these storage units. These data-flow optimized storage units

greatly amplified the register fetch bandwidth, since data in the storage units is used

for many different computations. In addition, since the intra-storage and functional

unit communications were fixed and local, they can be managed at ASIC-like energy

costs. After this effort, the processors optimized for data-parallel algorithms have a

total speedup of up to 600x and an energy reduction of 60–350x compared to our base

CMP as shown in Figure 3.15. The efficiencies found in these data-flow optimized

datapaths are impressive. Because they perform hundreds of operations in parallel

by taking advantage of data sharing patterns and by creating very efficient multiple-

input operations, efficiency gains of up to three orders of magnitude are realizable

over general-purpose processors.

Unlike data-parallel algorithms, efficiency gains for control intensive applications

such as CABAC remain relatively low. We observe that for CABAC the performance

improves by 17x while efficiency goes up by 8x. While impressive, these results

demonstrate the challenge of improving the efficiency of control intensive applications.

3.8 Conclusion

It is important to remember that the “overhead” of using a processor depends on the

energy required for the desired operation. Floating point (FP) energy costs are about

10x the small integer operations we have explored in this thesis, so machines with ten

wide FP units will not be far from the maximum efficiency possible for that class of

applications. Unfortunately for the very simple operations, a gain of 10x offered by

SIMD units is not enough to bridge the wide efficiency gap between general-purpose

optimizations and ASIC. Here we need to execute hundreds of operations per cycle,

and thus need to couple storage with the compute hardware. Interestingly, for these

types of gains to be possible the operations must be simple and the memory accesses
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must be very limited. This greatly restricts the type of computation that can achieve

these high gains, and opens the possibility of constructing a more general, highly

efficient engine. The design of this engine will be described in the next chapter.

For control bound applications the solution is to restructure the application, and

then compact the instructions required for control into a small number of complex

instructions. Thus, without incorporating custom instructions in a control bound

application the efficiency limit cannot be achieved.



Chapter 4

Convolution Engine: Balancing

Efficiency and Flexibility in

Specialized Computing

In this chapter we explore the trade-offs between flexibility and efficiency in specialized

computing with the help of simple function limited applications. We have already

identified that compute bound applications limited by extremely low-power arithmetic

operations offer the highest efficiency gains. These gains in efficiency, which can be as

high as three orders of magnitude, are achieved with the help of specialized units tuned

to the data storage and compute structures and their connectivity to the data-flow

and data locality patterns of the algorithms. This tuning eliminates redundant data

transfers and facilitates creation of closely coupled datapaths and storage structures

allowing hundreds of low-energy operations to be performed for each instruction and

data fetched. Hence, if we identify data-flow and data locality patterns that are

common to a wide range of kernels and perform a substantial amount of compute

using short data with minimal reliance on the memory, we can create specialized

units that are highly energy efficient and yet can be programmed and reused across

a wide range of applications.

Thus, to achieve high efficiency while still retaining flexibility the engine must

target a data-flow that enables execution of a substantial amount of compute with

43
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Figure 4.1: This diagram represents the constraints that a flexible processing element
must satisfy to maintain high efficiency.

limited to no interaction with the memory. Although, these constraints significantly

reduce energy waste and enable effective amortization of processor overheads, they

profoundly influence the design of the flexible engine. In the absence of abundant

memory traffic, the engine must now maintain local state to keep the compute units

busy. A multipurpose storage structure is needed to store the local state and merge it

with the incoming memory data. This structure is also responsible for supplying data

to the compute units. Because the number of compute units is large, integration of a

combining tree with the functional units is desired to reduce the number of outputs to

a manageable size before storing them to the memory. An abstract model satisfying

the constraints described above is presented in Figure 4.1.

While the data-flow is very restrictive, there are a number of commonly used com-

putational models that satisfy the constraints we have identified. They all fall into the

class of Convolution like applications. This computational model is widely employed

in computational photography, image processing and video processing applications,

which are quite popular on mobile systems. Convolution-like data-flow is a common

motif among these applications and involves applying a function to a stencil of the
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data, then performing a generalized fusion/reduction, then shifting the stencil to in-

clude a small amount of new data, and then repeating. Some prominent examples in-

clude demosaic, feature extraction and mapping in scale–invariant–feature–transform

(SIFT), windowed histograms, median filtering, motion estimation for H.264 video

processing and many more.

For imaging and video applications, mobile systems typically employ hardware

accelerators optimized for a single kernel, and if configurable, are configured by ex-

perts in firmware. They offer the highest efficiency but little to no programmability.

In contrast programmable accelerators prevalent in embedded and desktop processors

such as SIMD units target data-parallel algorithms and remain one to two orders of

magnitude less efficient compared to algorithm-specific custom units. In this section

we show that by targeting the data-flow described above it is possible to build more

efficient programmable engines that offer efficiencies comparable to custom hardware

while still retaining flexibility. Because our solution is optimized for the convolution

like data-flow, we refer to our engine as the Convolution Engine (CE).

4.1 Computational Models

Convolution is the fundamental building block of many scientific and image processing

algorithms. Equation 4.1 and 4.2 provide the definition of standard discrete 1–D and

2–D convolutions. When dealing with images, Img is a function from image location

to pixel value, while f is the filter applied to the image. Practical kernels reduce

computation (at a small cost of accuracy) by making the filter size small, typically in

the order of 3x3 to 8x8 for 2–D convolution.

(Img ∗ f)[n]
def
=

∞∑
k=−∞

Img[k] · f [n− k] (4.1)

(Img ∗ f)[n,m]
def
=

∞∑
l=−∞

∞∑
k=−∞

Img[k] · f [n− k,m− l] (4.2)

We generalize the concept of convolution by identifying two components of the
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convolution: a map operation and a reduce operation. In Equation 4.1 and 4.2, the

map operation is multiplication that is done on pairs of pixel and tap coefficient, and

the reduce operation is the summation of all these pairs to a single value at location

[n,m]. Replacing the map operation in Equation 4.2 from x ·y to |x−y| while leaving

the reduce operation as summation, yields a sum of absolute numbers (SAD) function

which is used for H.264’s motion estimation. Further replacing the reduce operation

from
∑

to max will yield a max of absolute differences operation. Equation 4.3

generalizes the standard definition of convolution, to a programmable form. We refer

to it as a convolution engine, where f, Map and Reduce (’R’ in Equation 4.3) are the

pseudo instructions, and c is the size of the convolution.

(Img
CE∗ f)[n,m]

def
= R|l|<c{R|k|<c{Map(Img[k], f [n− k,m− l])}} (4.3)

The convolution like data-flow works for many applications, but is limited by the

need to have a single associative operation in the reduction. There are a number

of applications that have good data locality, but need to combine results through a

specific graph of operations extractable from the original algorithm. By increasing the

complexity of the Reduce operator to enable non-commutative functions, a generalized

combining network can be formulated. Powered by a diverse set of operators, we can

now extend the “reduction” stage to create a structure that can input a large number

of values and then compute a small number of outputs through effectively a fused

super instruction as shown in Figure 4.2.

The down side of this extension is that the placement of input into the combining

tree is now significant; thus, to realize the full potential of the new generalized reduce

operator, a high level of flexibility is required in the data supply network to move the

needed data to the right position. This is achieved by extending the definition of the

map operator to also support a data permutation network in addition to the already

supported set of compute operators. These new enhancements to the map and reduce

operators substantially boost their generalizability and applicability; thus, increasing

the space of supported applications even further.
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Figure 4.2: This diagram represents how the generalized reduction unit fuses the
individual operations into a super instruction.

4.2 Applications

In this section we present our test applications and explain how we map their kernels

onto the generalized map–and–reduce framework. Because we have already described

H.264 Motion Estimation in detail in the previous chapter, here we include just a

brief overview.

4.2.1 Motion Estimation

Motion estimation is a key component of many video codecs including H.264 in which

it is computed in two steps: IME and FME.

Integer Motion Estimation (IME)

IME searches for an image-block’s closest match from a reference image. The search

is performed at each location within a two dimensional search window, using sum

of absolute differences (SAD) as the cost function. IME operates on multiple scales

with various blocks sizes from 4x4 to 16x16, though all of the larger block results

can be derived from the 4x4 SAD results. SAD fits quite naturally to a convolution

engine abstraction: the map function is absolute difference and the reduce function

is summation.
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Motion Estimation (FME)

FME refines the initial match obtained at the IME step to a quarter-pixel resolution.

FME first up-samples the block selected by IME, and then performs a slightly modi-

fied variant of the aforementioned SAD. Up-sampling also fits nicely to the convolution

abstraction and actually includes two convolution operations: First the image block

is up-sampled by two using a six-tap separable 2D filter. This part is purely convo-

lution. The resulting image is up-sampled by another factor of two by interpolating

adjacent pixels, which can be defined as a map operator (to generate the new pixels)

with no reduce.

4.2.2 Scale Invariant Feature Transform (SIFT)

Scale Invariant Feature Transform (SIFT) is widely employed for object recognition,

stereo matching and motion tracking. As explained in [26] SIFT works on images to

extract features that are invariant to translations, rotations and scaling and are rela-

tively stable against changes in illumination, image noise and camera viewpoint. The

extraction process consists of four stages which work as a “cascade of filters”. They

are scale-space extrema detection; key-point localization; orientation assignment; and

key-point descriptor. Let’s look at the first two stages in detail:

Scale-Space Extrema Detection

In the first stage all the image points are searched to isolate points of interest invariant

to scale and rotation. As explained in [42], this process is referred to as blob detection

in Computer Vision and represents mathematical techniques used to detect areas in

an image that differ from their surroundings. In SIFT the scale–space–invariant

blobs are detected with the help of a multi-resolution difference–of–Gaussian (DOG)

pyramid in which the blobs correspond to the extrema in the DOG values. The DOG

based detection procedure is an approximation to the local scale–space–extrema of

the scale-normalized Laplacian of Gaussian operator which is generally employed to

identify blobs. To understand this further let us consider an image f(x, y) smoothed

by convolving with the Gaussian operator G(x, y; s) = 1
2πs
e

−(x2+y2)
2s at scale s to obtain
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Figure 4.3: This diagram represents difference–of–Gaussian (DOG). Each Octave
represents doubling of the value of s [26].

a scale-space representation: L(x, y; s) = G(x, y; s) ∗ f(x, y). Now, the points of

interest are represented by the local extrema in the appropriate scale space identified

by applying scale-normalized Laplacian operator to the blurred image as shown in

Equation (4.4)[43]:

52
normL(x, y; s) = s(Lxx + Lyy) = s(

∂2L

∂x2
+
∂2L

∂y2
) = s52 (G(x, y; s) ∗ f(x, y)) (4.4)

As we alluded to earlier, SIFT approximates the scale-normalized Laplacian op-

erator with the help of difference of Gaussians (DOG) as shown in Equation (4.5).

This approximation allows SIFT to substantially reduce the computational intensity

of the process for identification of points of interest.

DOG(x, y; s) = L(x, y; s+ ks)− L(x, y; s) ≈ k

2
52 L(x, y; s)

DOG(x, y; s) ≈ (k2 − 1)

2
)52

norm L(x, y; s)

(4.5)
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Figure 4.4: SIFT Extrema detection [26].

Since DOG(x, y; s) is the difference between Gaussian blurred images at scales

s and ks where k is small, the first step in SIFT consists of generation of these

images by convolving f(x, y) and G(x, y; s) = 1
2πs
e

−(x2+y2)
2s to obtain L(x, y; s) =

G(x, y; s) ∗ f(x, y) at different scales as illustrated in Figure 4.3[44]. To reduce the

computational intensity further, the blurred images are down-sampled by a half before

starting the next octave. Identification of key-points requires determination of the

local extrema within DOGs. As shown in Figure 4.4, comparing each sample point

within a DOG with its eight surrounding neighbors and nine neighbors in the scales

above and below allows us to identify the local extrema. This requires 26 comparisons

in total, but most of the points are eliminated quite quickly.

Even though finding scale-space extrema is a 3D stencil computation, we can

convert the problem into a 2D stencil operation by interleaving rows from different

images into a single buffer. The extrema operation is mapped to convolution using

compare as a map operator and logical AND as the reduce operator.

Key-Point Localization

The first SIFT stage is followed by a pruning stage where the number of selected

key-points is trimmed down. The points that are on the edges or possess low-contrast

are rejected because their stability is compromised. The pruning process requires
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characterization of each key-point to determine its location, scale and ratio of prin-

cipal curvatures. These properties are determined with the help of a quadratic 3D

curve fitting method applied to the interpolated data nearby a key-point to locate the

extrema. While low-contrast points are detected by thresholding the magnitude of

the extremum value obtained by the 3D curve fitting method, edge detection requires

solving for the ratio of eigenvalues of a 2x2 Hessian Matrix computed at the position

and scale of the key-point as shown in Equation (4.6). The ratio between the deter-

minant and the trace of the Hessian matrix generates the ratio between the principle

of curvatures, which is thresholded to determine if the key-point lies on edge or not.

HL =

Lxx Lxy

Lxy Lyy

 (4.6)

Because SIFT performs a substantial amount of Gaussian filtering, its execution time

is dominated by two-dimensional convolution operations which match our architec-

ture. Thus, both filtering and extrema detection can be mapped to the convolution

engine.

4.2.3 Demosaic

Imaging sensors capture color information with the help of a color filter array (CFA)

in which each location captures just one color. Bayer array is one such CFA in which

the luminance information (green) is sampled at twice the rate of chrominance (red

and blue). The association of green with luminance is derived from the luminance

response of the eye which is highest for green. The missing colors are interpolated to

get the full image through a procedure called Demosaicing. There are many ways of

implementing Demosaicing and we will use the method based upon Adaptive Color

Plane Interpolation (ACPI) [27]. ACPI is a multi-pass process that makes use of

gradients and second derivative terms to interpolate the missing colors as described in

more detail in [45]. ACPI starts by interpolating the missing luminance (green) values

and then uses the existing and newly interpolated luminance values to formulate the

missing chrominance (red/blue) values.
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Figure 4.5: Pixels considered for the interpolation of missing luminance values. [45]

Luminance Interpolation Interpolation of luminance values constitutes the first

pass of the algorithm. Determination of the direction of the biggest change is needed

to interpolate the missing green. Consider Figure 4.5 in which Ci represents chromi-

nance values (red/blue) while Gi represents luminance or greens. The direction of

biggest change is determined by comparing the vertical and the horizontal luminance

gradients aided by chrominance second derivatives as shown in Equation (4.7). The

goal is to interpolate in the direction of the smallest slope and derivative. Once

determined, the direction of interpolation is used to compute an arithmetic average

of the luminance weighted by chrominance second derivatives from the same direc-

tion as shown in Equation (4.8). If the horizontal and vertical directions display an

equal change, the luminance values from all four directions are averaged with the

appropriate chrominance second derivatives added in.

Interpolatehoriz = abs(GR −GL) + abs(2CC − CR − CL)/2

Interpolatevert = abs(GU −GD) + abs(2CC − CU − CD)/2
(4.7)
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Figure 4.6: Pixels considered for the interpolation of missing chrominance values [45].
Figure a) represents the case when the missing red or blue information is required in
the presence of an existing green while figure b) represents the case when the red/blue
information is required in a place where either blue or red already exists.

if(Interpolatehoriz < Interpolatevert){

//Interpolate horizontally

GC = (GL +GR)/2

}elseif(Interpolatevert < Interpolatehoriz){

//Interpolate vertically

GC = (GU +GD)/2

}else{

//Use both directions

CAV G = (CU + CD + CL + CR)/4

Ccorrection = CC − CAV G
GC = (GL +GU +GR +GD)/4 + Ccorrection/2

}

(4.8)

Chrominance Interpolation In the second pass of the algorithm the missing

chrominance information is estimated with the assistance of the newly computed

and existing luminance pixels. Figure 4.6 (a) illustrates the two scenarios when the

missing chrominance information is sought in the presence of existing greens. In this

case an arithmetic average of the colors adjacent to the center green is obtained and
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a weighting factor is applied comprised of the second derivative of the green in the

center and the newly computed green values at the two locations adjacent to the

location of interest. Now, consider Figure 4.6 (b) in which the red/blue information

is required in a place where either blue or red already exists. The procedure followed

for estimating chrominance in this particular case is similar to the one described for

estimating the missing luminance values. The main difference is that the vertical and

horizontal directions are replaced by the two diagonals. The direction of the biggest

spatial change is determined with the help of the chrominance gradients along the two

diagonals aided by the second derivatives of the newly formed greens. An arithmetic

average of the chrominance is obtained along the selected diagonal with a weighting

factor coming in the form of the second derivatives of the greens. Once again if the two

diagonals display directions of an equal spatial change, all four chrominance values

are averaged with an appropriate luminance based second derivative term added.

While Demosaic could use a conventional CE, it would first need to compute its

gradients. Then it would need to compare the gradients to find out which direction

was more stable, and finally using this information it could compute the needed

output. But this solution would not be efficient since little computation is done in

each step. Since all the information required is available from the original input data,

and the total computation is not complex, we use a more complex combining tree to

do the entire computation in one step.

4.2.4 Mapping to “Map” and “Reduce” Abstraction

Table 4.1 summarizes the kernels we use and how they map to the map and reduce

abstraction. It further describes each algorithm’s data-flow pattern and categorizes

the computational model as convolution or fusion. Although, kernels within the table

could have identical map and reduce operators and data-flow patterns, they may

differ in the way they fetch, manipulate and store the data. This dissimilarity in

data manipulation is best illustrated by FME up-sampling, which despite having the

same map and reduce operators as regular filtering, produces four times the data of its

input image and requires additional hardware support for interleaving the up-sampled
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Map Reduce
Stencil
Sizes

Data-Flow

IME SAD Abs Diff Add 4x4 2D Convolution

FME 1/2 Pixel
Upsampling

Multiply Add 6
1D Horizontal And

Vertical Convolution

FME 1/4 Pixel
Upsampling

Average None – 2D Matrix Operation

SIFT Gaussian
Blur

Multiply Add 9, 13, 15 1D Horizontal And
Vertical Convolution

SIFT DoG Subtract None – 2D Matrix Operation

SIFT Extrema Compare
Logical
AND

3
1D Horizontal And

Vertical Convolution
Demosaic
Interpolation

Permute Fusion – 2D Graph Fusion

Table 4.1: Mapping kernels to map and reduce abstraction. Some kernels such as
subtraction operate on single pixels and thus have no stencil size defined. We call
these matrix operations. There is no reduce step for these operations [46].

values before sending them to memory. These special data manipulation requirements

differentiate these algorithms from simple filtering and fusion operations and require

additional hardware support which we will describe in later sections.

4.3 Convolution Engine

Y0 = x0 * c0 + x1 * c1 + x2 * c2 + x3 * c3 + ….. + xn * cn 
Y1 = x1 * c0 + x2 * c1 + x3 * c2 + x4 * c3 + ….. + xn+1 * cn 
Y2 = x2 * c0 + x3 * c1 + x4 * c2 + x5 * c3 + ….. + xn+2 * cn 
…… 

Figure 4.7: We use the n-tap 1D convolution presented here to explain our SIMD
implementation. For SIMD the equation is parallelized across outputs and executed
one column at a time [46].
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…………….	  x16	   x17	   x18	   x31	  

X	   X	   X	   X	  

……….	  0	   1	   7	   ……….	  8	   9	   15	  

Two 16x8 bit 
Input 
Registers 

Coefficient Value 

Two 8x16 bit 
Accumulators 

Core Kernel:!
    Load input!
    Out0 =0; Out1 = 0; !
    For I = 1 ... 15!

!   Load coefficient i!
!   Out0 = Out0 + Input_Lo * Coeff_i!
!   Out1 = Out1 + Input_Hi * Coeff_i!
!   Shift Input Register 0!
!   Shift Input Register 1!

    End For!
    Normalize Output!
    Store to mem!

......	  x0	   x1	   x7	   ......	  x8	   x9	   x15	  

X	   X	  

C0	   C0	   ......	   C0	   C0	   C0	   ......	   C0	  

......	   ......	  

Figure 4.8: 1D Horizontal 16-tap convolution on a 128-bit SIMD machine, similar to
the optimized implementation described in [47]. 16 outputs are computed in parallel
to maximize SIMD usage. Output is stored in two vector registers and two multiply-
accumulate instruction are required at each step [46].

Convolution operators are highly compute-intensive, data-parallel operations par-

ticularly for large stencil sizes, and lend themselves to vector processing. However,

existing SIMD units are limited in the extent to which they can exploit the inherent

parallelism and locality of convolution due to the organization of their register files.

Figure 4.7 presents equations for an n-tap 1D convolution that form the basis of a

SIMD based convolution implementation presented in Figure 4.8. We demonstrate in

Figure 4.8 the limitations of a SIMD based convolution implementation by executing

a 16-tap convolution on a 128-bit SIMD datapath. This is a typical SIMD imple-

mentation similar to the one presented in [47], and the SIMD datapath is similar to

ones found in many current processors. To enable the datapath to utilize the vector
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…....	  3	   4	   18	  

256-bit Shift register 

128-bit coefficient register 

Shifted Broadcast Input 

Broadcast Coefficient 

128-bit output register 

Shift in pixels 

Figure 4.9: 1D Horizontal 16-tap convolution using a shifter register with shifted
broadcast capability. Computes 4 output pixels per instruction [46].

registers completely irrespective of the filter size, the convolution operation is vector-

ized across output locations allowing the datapath to compute eight output values in

parallel.

Given the short integer computation that is required, one needs a large amount

of parallelism per instruction to be energy efficient [40]. While this application has

the needed parallelism, scaling the datapath by eight times to perform sixty four

16-bit operations per cycle would prove extremely costly. It would require an eight

times increase in the register file size, inflating it to 1024-bits, greatly increasing

its energy and area. To make matters worse, as shown in Figure 4.8, the energy

efficiency of the SIMD datapath is further degraded by the fact that a substantial

percentage of instructions are used to perform data shuffles which consume instruction

and register energy without doing any operations. Alternatively, one can reload

shifted versions of vectors from the memory to avoid data shuffles; however, that

also results in substantial energy waste due to excessive memory fetches. These data
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motion overheads are worse for vertical and 2-D convolution.

Figure 4.10: The pie chart presents the GPU energy breakdown. The energy con-
sumed in the memory structures is not included. As can be seen, streaming multi-
processor (SM) pipeline (37%) and the register file (36%) consume the most amount
of energy followed by execution units (23%) and the warp scheduler (4%).

GPUs target massively data parallel applications and can achieve much higher

performance for convolution operations than SIMD. However, due to their large reg-

ister file structures and 32-bit floating point units, we don’t expect GPUs to have very

low energy consumption. To evaluate this further we measure the performance and

energy consumption of an optimized GPU implementation of H.264 SAD algorithm

[48] running on an NVIDIA GTX480 [49] using GPGPU–Sim simulator [50] with

GPUWattch energy model [51]. The GPU implementation runs forty times faster

compared to an embedded 128-bit SIMD unit, but consumes thirty times higher en-

ergy. The energy breakdown is presented in Figure 4.10 and shows that streaming

multiprocessor pipeline and the register files consume the most amount of energy.

Even with a GPU customized for media applications we do not expect the energy

consumption to be much better than the SIMD implementation as the GPU energy

is dominated by register file, which is central to how GPUs achieve their high degree
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of parallelism.

CE reduces most of the register file overheads described earlier with the help of a

shift register file or a FIFO like storage structure. As shown in Figure 4.9, when such

a storage structure is augmented with an ability to generate multiple shifted versions

of the input data, it can not only facilitate execution of multiple simultaneous stencils,

but can also eliminate most of the shortcomings of traditional vector register files.

Aided by the ability to broadcast data, these multiple shifted versions can fill sixty

four ALUs from a small 256-bit register file saving valuable register file access energy

as well as area.

Figure 4.11: Block diagram of Convolution Engine. The interface units (IF) connect
the register files to the functional units and provide shifted broadcast to facilitate
convolution. Data shuffle (DS) stage combined with Instruction Graph Fusion (IGF)
stage form the Complex Graph Fusion Unit. IGF is integrated into the reduction
stage for greater flexibility [46].

Our CE facilitates further reductions in energy overheads by supporting more

complex operation in the reduction tree, allowing multiple “instructions” to be fused
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together. This fusion also offers the added benefit of eliminating temporary storage of

intermediate data in big register files saving valuable register file energy. Furthermore,

by changing the shift register to have two dimensions, and by allowing column accesses

and two dimensional shifts, these shift registers possess the potential to extensively

improve the energy efficiency of vertical and two dimensional filtering. As Figure 4.11

shows, these 1D and 2D shift registers sit at the heart of our Convolution Engine.

Using Tensilica’s TIE language [52], the CE is developed as a domain specific

hardware extension to Tensilica’s extensible RISC cores [20]. To augment the CE

with the ability to run multiple independent threads, user-defined hardware interfaces

called TIE ports are added to allow multiple RISC cores to share the CE. The TIE

ports enable routing of appropriate control signals to the CE from the RISC cores at

the granularity of individual instructions. Since the number of cores interfacing with

CE could be more than one, the TIE ports are muxed. The cores are also responsible

for memory address generation, but the data is sent/return directly from the register

files within CE. The next sections discuss the key blocks depicted in Figure 4.11.

4.3.1 Register Files and the Load/Store Unit

The Convolution Engine uses a 1D shift register to supply data for horizontal convo-

lution flow. New image pixels are shifted horizontally into the 1D register as the 1D

stencil moves over an image row. The 2D shift register is used for vertical and 2D

convolution flows and supports vertical row shift: one new row of pixel data is shifted

in as the 2D stencil moves vertically down into the image. The 2D register provides

simultaneous access to all of its elements enabling the interface unit to feed any data

element into the ALUs as needed.

The 2D Coefficient Register stores data that does not change as the stencil moves

across the image. This can be filter coefficients, current image pixels in IME for

performing SAD, or pixels at the center of Windowed Min/Max stencils. The results

of filtering operations are either written back to the 2D Shift Register or the Output

Register. The Output Register is designed to behave both as a 2D Shift register as

well as a Vector Register file for the vector unit. The shift behavior is invoked when
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the output of the stencil operation is written. This shift simplifies the register write

logic and reduces the energy. This is especially useful when the stencil operation

produces the data for just a few locations and the newly produced data needs to be

merged with the existing data which results in a read modify write operation. The

Vector Register file behavior is invoked when the Output Register file is interfaced

with the vector unit shown in the Figure 4.11.

The data transfer between these register files and the main memory is handled

by the load/store unit. To improve efficiency, it supports multiple memory access

widths with the maximum memory access width being 256-bits and can handle un-

aligned accesses. These load/store operations can be coupled with the shift operations

mentioned above.

4.3.2 Map & Reduce Logic

As described earlier we abstract convolution as a map and reduce step that transforms

each input pixel into an output pixel. In our implementation interface units and

ALUs work together to implement the map operation; the interface units arrange the

data as needed for the particular map pattern and the functional units perform the

arithmetic.

Interface Units

The Interface Units (IF) arrange data from the register files into a specific pattern

needed by the map operation. Currently this includes providing shifted versions of

1D and 2D blocks, and column access to 2D register, though we are also exploring a

more generalized permutation layer to support arbitrary maps. All of the functionality

needed for generating multiple shifted versions of the data is encapsulated within the

IFs. This allows us to shorten the wires by efficiently generating the needed data

within one block while keeping the rest of the datapath simple and relatively free

of control logic. Since the IFs are tasked to facilitate stencil based operations, the

multiplexing logic remains simple and prevents the IFs from becoming the bottleneck.

The Horizontal Interface generates multiple shifted versions of the 1D data and
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feeds them to the ALU units. The data arrangement changes depending on the size of

the stencil so this unit supports multiple power of 2 stencil sizes and allows selecting

between them. Column Interface simultaneously access the columns of the 2D Shift

register to generate input data for multiple locations of a vertical 1D filtering kernel.

The 2D interface behaves similarly to the Vertical interface and accesses multiple

shifted 2D data blocks to generate data for multiple 2D stencil locations. Again

multiple column sizes and 2D block sizes are supported and the appropriate one is

selected by the convolution instruction.

Functional Units

Since all data re-arrangement is handled by the interface unit, the functional units

are just an array of short fixed point two-input arithmetic ALUs. In addition to mul-

tipliers, we support absolute difference to facilitate SAD and other typical arithmetic

operations such as addition, subtraction, comparison. The output of the ALU is fed

to the Reduce stage.

Reduce Unit

The reduce part of the map-reduce operation is handled by a general purpose reduce

stage. Based upon the needs of our applications, we currently support arithmetic

and logical reduction stages. The degree of reduction is dependent on the kernel size,

for example a 4x4 2D kernel requires a 16 to 1 reduction whereas 8 to 1 reduction

is needed for an 8-tap 1D kernel. The reduction stage is implemented as a tree and

outputs can be tapped out from multiple stages of the tree; allowing multiple outputs

to be generated each cycle.

4.3.3 Instruction Graph Fusion

As described earlier, we increase the domain of applications which can effectively use

the CE by creating a combining tree that is more powerful than what is required

for true reductions. The ability to handle non-commutative operations enables us to

merge many different convolution instructions into a single fused “super instruction”.
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The fused instruction allows a small program to be executed for each pixel in one

convolution instruction, which increases the computational efficiency proportionally

to the reduction in required instructions.

Figure 4.12: An overview of Complex Graph Fusion Unit. The “Shuffle Network” in
the “Data Shuffle Stage” is responsible for selecting one out of eight rows of data from
the register files. The selected data is shifted by “Element Shift” at the granularity
of individual elements, and stored in the dedicated “Data Shuffle Register”. The
“Fusion Arrays” in the “Instruction Graph Fusion” stage represent the generalized
reduction stage and perform fusion. The “Comparator Array” updates the “Status
Register” after comparing the outputs of fusion arrays [46].

In CE, this extra capability is provided by the programmable complex graph fusion

unit (CGFU) presented in Figure 4.12. CGFU is comprised of a Data Shuffle Stage
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Figure 4.13: An overview of Instruction Graph Fusion (IGF) stage. The data from the
dedicated “Data Shuffle Register” powers the IGF, which is organized as a generalized
reduction network of functional units. Each FU is individually configurable and
supports predicated execution [46].

which forms the map step followed by Instruction Graph Fusion Stage, which forms

the reduce step. The CGFU has the ability to fuse together up to nine arithmetic

instructions and obtains its input from both the input and the output registers.

Data Shuffle

Since this more complex data combination is not commutative, the right data (output

of the map operation) must be placed on each input to the combining network. Thus

the CGFU includes a very flexible swizzle network that provides permutations of

the input data and sends it to a shifter unit which takes the shuffled data to perform
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element level shifts. These two units combine to form a highly flexible swizzle network

that can reorder the data to support 1D horizontal, 1D vertical and even 2D window

based fusions. However, this flexibility costs energy, so it is bypassed on standard

convolution instructions. Often multiple fusion instructions use the data after it is

shuffled, which we exploit to reduce the energy wasted in register file accesses by

introducing a dedicated storage structure, called Data Shuffle Register file, between

the data shuffle stage (DS) and the actual instruction graph fusion stage.

Complex Graph Fusion

While the DS stage is tasked with data reordering, the Instruction Graph Fusion

(IGF) stage is responsible for executing the more complex data combining to im-

plement the fused instruction sub-graphs. The most critical parts of the IGF stage

are the two fusion arrays which are shown in Figure 4.13. Each array supports a

variety of arithmetic operations and can implement data dependent data-flow by us-

ing predicated execution. These units are pipelined, so bits of the Status Register

which are set from computation early in the combining tree can be used later in the

computation to generate the desired output. Like the normal reduction network, the

outputs of the two arrays are also fed to a two dimensional output register where

they are stored in pairs. The absorption of IGF into the reduction stage does entail

higher energy costs for convolution operations, but our experiments indicate that the

overheads remain less than 15%.

4.3.4 Lightweight SIMD

To facilitate vector operations on the output data, we have added a 16-element SIMD

unit that interfaces with the Output Register. This unit accesses the 2D Output

Register as a Vector Register file to perform regular Vector operations. This is a

lightweight unit which only supports basic vector add and subtract type operations

and has no support for higher cost operations such as multiplications found in a

typical SIMD engine.
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4.3.5 Custom Functional Units

An application may perform computation that conforms neither to the convolution

block nor to the vector unit, or may otherwise benefit from a fixed function imple-

mentation. If the designer wishes to build a customized unit for such computation,

the Convolution Engine allows the fixed function block access to its Output Register

File. This model is similar to a GPU where custom blocks are employed for rasteriza-

tion and such, and that work alongside the shader cores. For these applications, we

created three custom functional blocks to compute motion vector costs in IME and

FME and the Hadamard Transform in FME.

4.3.6 A 2-D Filter Example

Figure 4.14: Executing a 4x4 2D Filter on CE. The boxes displayed in a lighter color
represent units not used in the example. The sizes of all of the resources are defined
which will be explained in a later section [46].

Figure 4.14 shows how a 4x4 2D filtering operation maps onto the convolution
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engine. Filter coefficients reside in first four rows of the Coefficient Register. Four

rows of image data are shifted into the first four rows of the 2D Shift register. In this

example we have 64 functional units so we can perform filtering on up to four 4x4

2D locations in parallel. The 2D Interface Unit generates four shifted versions of 4x4

blocks, lays them out in 1D and feeds them to the ALUs. The Coefficient Register

Interface Unit replicates the 4x4 input coefficients 4 times and send them to the other

ALU port. The functional units perform an element-wise multiplication of each input

pixel with corresponding coefficients and the output is fed to the Reduction stage.

The degree of reduction to perform is determined by the filter size which in this case

is 16:1. The four outputs of the reduction stage are normalized and written to the

Output Register.

Since our registers contain data for sixteen filter locations, we continue to perform

the same operation described above; however, the 2D Interface Unit now employs

horizontal offset to skip over already processed locations and to get the new data

while the rest of the operations execute as above. Once we have filtered sixteen

locations, the existing rows are shifted down and a new row of data is brought in and

we continue processing the data in the vertical direction. Once all the rows have been

processed we start over from the first image row, processing next vertical stripe and

continue execution until the whole input data has been filtered.

For symmetric kernels the interface units combine the symmetric data before coef-

ficient multiplication (since the taps are the same), allowing it to use adders in place

of multipliers. Since adders take 2–3x lower energy, this further reduces wasted en-

ergy. The load/store unit also provides interleaved access where data from a memory

load is split and stored into two registers. An example use is in demosaic, which needs

to split the input data into multiple color channels.

4.3.7 Resource Sizing

Energy efficiency and resource requirements of target applications drive the sizes

of various resources within the CE. Energy overheads such as instruction fetch and

decode affect the efficiency of programmable systems and can only be amortized
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Table 4.2: Sizes for various resources in CE.
Resource Sizes

ALUs 64 10-bit ALUs
1D Shift Reg 1 row x 40 cols x 10-bit
2D Input Shift Reg 16 rows x 18 cols x 10-bit
2D Output Shift Register 16 rows x 18 cols x 10-bit
2D Coefficient Register 16 rows x 16 cols x 10-bit
Horizontal Interface 4, 8, 16 kernel patterns
Vertical Interface 4, 8, 16 kernel patterns
2D Interface 4x4, 8x8 , 16x16 patterns
Reduction Tree 4:1, 8:1, 16:1, 32:1, 64:1

Table 4.3: Energy for filtering instructions implemented as processor extensions with
32, 64 or 128 ALUs in 90nm. Overhead is the energy for instruction fetch, decode
and sequencing [46].

32 ALUs 64 ALUs 128 ALUs

Total Energy (pJ) 468 939 1632
Overhead Energy (pJ) 111 117 132
Percent Overhead 24 12 8

by performing hundreds of arithmetic operations per instruction as shown in [40].

However, the authors in [40] studied small data such as 8-bit addition/subtraction,

while convolution is typically dominated by multiplication that takes more energy

per operation. To determine how to size the ALUs for the CE with the goal of

keeping overheads as low as possible, we present the energy dissipated in executing

filtering instructions using thirty–two, sixty–four and one–twenty–eight 10-bit ALUs

(the precision required) in Table 4.3. In this table the total energy is comprised of

the energy wasted in the processor overheads including fetch, decode and sequencing

as well as the useful energy spent in performing the actual compute. As the number

of ALUs increases, the overhead energy as a percentage of the total energy reduces.

We choose sixty–four as the number of ALUs in the CE as a compromise between

efficiency and flexibility because it is easier to chain small units. The rest of the

resources are sized to keep sixty-four 10-bit ALUs busy. The size and capability of

each resource is presented in Table 4.2. These resources support filter sizes of 4, 8
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and 16 for 1D filtering and 4x4, 8x8 and 16x16 for 2D filtering. Notice that that the

register file sizes deviate from power of 2; this departure allows us to handle boundary

conditions common in convolution operations efficiently.

4.3.8 Convolution Engine CMP

Figure 4.15: Communication connections among various components of the Convolu-
tion Engine CMP. The two Tensilica RISC processors use their TIE ports to provide
control signals to the four CE slices and the fixed function blocks. The control inter-
face (IF) acts as the arbiter between requests in the case of conflicts [46].

To meet the diverse performance and energy requirements of different applications

effectively, we have developed a CE chip multiprocessor (CMP) shown in Figure 4.15.

The CMP consists of four CEs and two Tensilica’s extensible RISC processors commu-

nicating with the CEs through muxed TIE ports as described earlier in this section.

The decision to support two independent threads of control in the form of two pro-

cessors is influenced largely by the requirements of the applications of interest, but



CHAPTER 4. CONVOLUTION ENGINE 70

also to a lesser extent by energy efficiency as smaller TIE port muxes keep energy

wasted per instruction low. In the CMP, each instance of the CE is referred to as

a slice and the slices possess the capability to either operate independent of other

slices or in concatenation to perform an even larger number of operations per cycle.

Dynamic concatenation of slices is especially desirable when the performance require-

ments of an algorithm cannot be satisfied by one slice or when the algorithm operates

on small data requiring more than 64 operations per cycle to amortize overheads.

When the slices are concatenated dynamically the register files and interface units

of the interconnected slices are joined through short wires that run from one slice to

another. Since the slices are laid out in close proximity to one another as shown in

Figure 4.15, these wires waste very little energy and don’t have a large effect on the

energy efficiency of connected slices. In addition to connecting multiple slices together

to form a bigger slice with wide registers and ALU arrays, it is also possible to shut

off the ALUs in the additional slices and use their registers as additional independent

storage structures. Although, all the slices offer the same functionality, slices 0 and

1 are also equipped with complex graph fusion units integrated into their reduction

blocks. The side effect of this integration is the additional 10–15% cost incurred by

convolution operations executed on these slices. The processors and slices are fed by

dual-ported 16K instruction and 32K data caches. As has been discussed earlier, the

processors are responsible for data address generation for the connected slices, but

the flow of data into and out of the data cache is controlled by the slices themselves.

4.3.9 Programming the Convolution Engine

The Convolution Engine is implemented as a processor extension and adds a small set

of instructions to the processor ISA. These CE instructions can be issued as needed

in regular C code through compiler intrinsics. Table 4.4 lists the major instructions

that CE adds to the ISA and Listing 4.1 presents a simplified example code which

implements a 15-tap horizontal filter for a single image row. There are four types of

instructions: configuration, memory, compute and permute. Configuration instruc-

tions set options which are expected to stay fixed for a kernel such as convolution size,
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Table 4.4: Major instructions added to processor ISA [46].

Instructions Description

Configuration

SET CE OPS Set arithmetic functions for MAP
and REDUCE steps

SET CE OPSIZE Set convolution size

Memory

LD COEFF REG n Load n bits to specified row of 2D
coeff register

LD 1D REG n Load n bits to 1D shift register.
Optional shift left

LD 2D REG n Load n bits to top row of 2D shift
register. Optional shift row down

ST OUT REG n Store top row of 2D output
register to memory

Compute

CONVOLVE 1D HOR 1D convolution step - input from
1D shift register

CONVOLVE 1D VER 1D convolution step - column
access to 2D shift register

CONVOLVE 2D 2D Convolution step with 2D
access to 2D shift register

EXE FUSION Performs instruction graph fusion

SIMD 1D Execute SIMD operations

Permutation EXE SHUFFLE Shuffles input data

ALU operation to use etc. Other options which can change on a per instruction basis

are specified as instruction operands. Then there are memory operations to load and

store data into appropriate registers as required. There is one load instruction for

each input register type (1D input register, 2D input register, Coefficient register).

Then there are the compute instructions, one for each of the 3 supported convolu-

tion flows — 1D horizontal, 1D vertical and 2D. For example the CONVOLV 2D

instruction reads one set of values from 2D and coefficient registers, performs the

convolution and writes the result into the row 0 of the 2D output register. The load,



CHAPTER 4. CONVOLUTION ENGINE 72

store and compute instructions are issued repeatedly as needed to implement the re-

quired algorithm. Finally, there are the permutation instruction used to implement

CGFU.

// Set Number of slices

SET_NUM_SLICES (2);

// Set MAP function = MULT , Reduce function = ADD

SET_CE_OPS (CE_MULT , CE_ADD );

// Set convolution size 16, mask out 16th element

SET_CE_OPSIZE (16, 0x7fff );

// Load 16 8-bit coefficients into Coeff Reg Row 0

LD_COEFF_REG_128(coeffPtr , 0);

// Load & shift 16 input pixels into 1D shift register

LD_1D_REG_128(inPtr , SHIFT_ENABLED );

// Filtering loop

for (x = 0; x < width - 16; x += 16) {

// Load & Shift 16 more pixels

LD_1D_REG_128(inPtr , SHIFT_ENABLED );

//With a convolution size of 16, using 128 ALUs

//8 positions can be done in parallel

// Filter first 8 locations

CONVOLVE_1D_HOR(IN_OFFSET_0 , OUT_OFFSET_0 );

// Filter next 8 locations

CONVOLVE_1D_HOR(IN_OFFSET_8 , OUT_OFFSET_8 );

// Add 2 to row 0 of output register

SIMD_ADD_CONST (0, 2);

// Store 16 output pixels

ST_OUT_REG_128(outPtr );

inPtr += 16;

outPtr += 16;

}

Listing 4.1: Example C code implements a 15-tap filter for one image row on a two
slice configuration using 128 ALUs. A scalar value of 2 is added to each output before
storing to memory [46].

The code example in Listing 4.1 brings together configuration, memory and com-

pute. First the CE is set to perform multiplication at MAP stage and addition at

reduce stage which are the required setting for filtering. The convolution size is set
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which controls the pattern in which data is fed from the registers to the ALUs. Fil-

ter tap coefficients are then loaded into the coefficient register. Finally the main

processing loop repeatedly loads new input pixels into the 1D register and issues

1D CONVOLVE operations to perform filtering. While 16 new pixels are read with

every load, our 128-ALU CE configuration can only process eight 16-tap filters per

operation. Therefore two 1D CONVOLVE operations are performed per iteration,

where the second operation reads the input from an offset of 8 and writes its output

at an offset of 8 in the output register. For illustration purposes we have added a

SIMD instruction which adds 2 to the filtering output in row 0 of 2D output register.

The results from output register are written back to memory.

It is important to note that unlike a stand-alone accelerator the sequence of oper-

ations in CE is completely controlled by the software which gives complete flexibility

over the algorithm. Also CE code is freely mixed into the C code which gives added

flexibility. For example in the filtering code above it is possible for the algorithm to

produce one CE output to memory and then perform a number of non-CE operations

on that output before invoking CE to produce another output.

The next section describes how we map different applications to a Convolution

Engine based CMP and the experiments we perform to determine the impact of

programmability on efficiency. By incrementally enabling these options on top of a

fixed kernel core we can approach the fully programmable CE in small steps and

assess the energy and area cost of each addition.

4.4 Evaluation Methodology

To evaluate the Convolution Engine approach, we map each computationally bound

target application described in Section 4.2 on a CE based CMP. As already discussed,

this system is fairly flexible and can easily accommodate algorithmic changes such

as different motion estimation block sizes and different downsampling techniques. To

quantify the performance and energy cost of such a programmable unit, we also built

custom heterogeneous chip multiprocessors (CMP) for each of the three applications.

These custom CMPs are based around application-specific cores, each of which is
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highly specialized and only has resources to do a specific kernel required by the appli-

cation. Both the CE and application-specific cores are built as a datapath extension

to the processor cores using Tensilica’s TIE language [52]. Tensilica’s TIE compiler

uses this description to generate simulation models and RTL as well as area estimates

for each extended processor configuration.

To quickly simulate and evaluate the CMP configurations, we created a multi-

processor simulation framework that employs Tensilica’s Xtensa Modeling Platform

(XTMP) to perform cycle accurate simulation of the processors and caches. For

energy estimation we use Tensilica’s energy explorer tool, which uses a program ex-

ecution trace to give a detailed analysis of energy consumption in the processor core

as well as the memory system. The estimated energy consumption is within 30% of

actual energy dissipation. To account for interconnection energy, we created a floor

plan for the CMP and estimated the wire energies from that. That interconnection

energy was then added to energy estimates from Tensilica tools. The simulation re-

sults employ 90nm technology at 1.1V operating voltage with a target frequency of

450MHz. All units are pipelined appropriately to achieve the frequency target.

Figure 4.16: Mapping of applications to CE CMP [46].

Figure 4.16 presents how each application is mapped to our CE based CMP. This

mapping is influenced by the application’s performance requirements. In this study

we support HD 720P video at 30FPS. This translates to an input data rate of around

30 MPixels/s. For still images we want to support a similar data rate of around 40–50

MPixels/s which can be translated for example to processing 5MP images at 8–10FPS

or 3MP images at a higher rate of 13–16FPS etc. H.264 motion estimation only deals

with video data, whereas SIFT and Demosaic can be applied to both video and still

images. However, when SIFT and Demosaic are applied to 720p HD video streams
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the resolution drops from 5MP to 1MP increasing the frame rate substantially. More

details on the mapping of each application are given below.

4.4.1 H.264 Motion Estimation

Our mapping allocates one processor to the task of H.264 integer motion estimation.

The 4x4 SAD computation is mapped to the convolution engine block, and the SIMD

unit handles the task of combining these to form the larger SAD results. This requires

a 16x32 2D shift register and 128 ABS-DIFF ALU units, so 2 slices are allocated to

this processor. In addition a fixed function block is used to compute motion vector

cost, which is a lookup-table based operation. Fractional motion estimation uses up

only 64 ALU units, but requires multiple register files to handle the large amount

of data produced by up-sampling, so it takes up 2 slices. The convolution engine

handles up-sampling and SAD computation. A custom fixed function block handles

the Hadamard transform.

4.4.2 SIFT

Each level in the SIFT Gaussian pyramid requires five 2D Gaussian blur filtering

operations, and then down-sampling is performed to go to the next level. The various

Gaussian blurs, the difference operation and the down-sampling are all mapped to

one of the processors, which uses one convolution engine slice. The Gaussian filtering

kernel is a separable 2D filtering kernel so it is implemented as a horizontal filter

followed by a vertical filter. The second processor handles extrema detection, which

is a windowed min/max operation followed by thresholding to drop weak candidates.

This processor uses 2 slices to implement the windowed min across 3 difference images

and SIMD operations to perform the thresholding. SIFT generates a large amount of

intermediate pyramid data, therefore 64x64 image blocking is used to minimize the

intermediate data footprint in memory. The minima operation crosses block bound-

aries so buffering of some filtered image rows is required. Moreover, the processing is

done in multiple passes, with each pass handling each level of the pyramid.
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4.4.3 Demosaic

Demosaic generates a lot of new pixels and intermediate data and thus needs multiple

2D shift register files. It uses register resources from two slices and further uses

register blocking to get multiple virtual registers from the same physical register.

Demosaicing is the first step in a typical camera pipeline. In our current mapping, the

second processor and remaining two slices are idle when demosaicing is in operation.

However, these resources can be used to implement next steps in the imaging pipeline

such as white balance, denoising, and sharpening which are also based on convolution-

based kernels.

4.5 Results

Figures 4.17 and 4.18 compare the performance and energy dissipation of the proposed

Convolution Engine against a 128-bit data-parallel (SIMD) engine and an application

specific accelerator implementation for each of the five algorithms of interest. In most

cases we used the SIMD engine as a 16-way 8-bit datapath, but in a few examples we

created 8-way 16-bit datapaths. For our algorithms, making this unit wider did not

change the energy efficiency appreciably.

The fixed function data points truly highlight the power of customization: for each

application a customized accelerator required 8x–50x less energy compared to an op-

timized data-parallel engine. Performance per unit area improves a similar amount,

8x–30x higher than the SIMD implementation. Demosaic achieves the smallest im-

provement (8x) because it generates two new pixel values for every pixel that it loads

from the memory. Therefore, after the customization of compute operations, loads/-

stores and address manipulation operations become the bottleneck and account for

approximately 70% of the total instructions.

Note the biggest gains were in IME and SIFT extrema calculations. Both kernels

rely on short integer add/subtract operations that are very low energy (relative to the

multiply used in filtering and up-sampling). To be efficient when the cost of compute

is low, either the data movement and control overhead should be very low, or more
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operations must be performed to amortize these costs. In a SIMD implementation

these overheads are still large relative to the amount of computation done. These

kernels also use a 2D data flow which requires constant accesses and fetches from the

register file. Custom hardware, on the other hand, achieves better performance at

lower energy by supporting custom 2D data access patterns. Rather than a vector, it

works on a matrix which is shifted every cycle. Having more data in flight enables a

larger number arithmetic units to work in parallel, better amortizing instruction and

data fetch.

Figure 4.17: Energy consumption normalized to Custom implementation: Convolu-
tion Engine vs Custom Cores and SIMD [46].

With this analysis in mind, we can now better understand where a Convolution

Engine stands. The architecture of the Convolution Engine is closely matched to the

data-flow of convolution based algorithms, therefore the instruction stream difference

between fixed function units and the Convolution Engine is very small. Compared

to a SIMD implementation, the convolution engine requires 8x–15x less energy with

the exception of Demosaic that shows an improvement of 4x while the performance

to area ratio of CE is 5–6x better. Again Demosaic is at the low end of the gain as a

consequence of the abundance of loads and stores. If we discount the effect of memory
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operations from Demosaic, assuming its output is pipelined into another convolution

like stage in the image pipeline, the CGFU based Demosaic implementation is ap-

proximately 7x better than SIMD and within 6x of custom accelerator. The higher

energy ratio compared to a custom implementation points up the costs of the more

flexible communication in CGFU compared to CE’s blocks optimized for convolution.

Figure 4.18: Ops/mm2 normalized to Custom implementation: Number of image
blocks each core processes in one second, divided by the area of the core. For H.264
an image block is a 16x16 macroblock and for SIFT and demosaic it is a 64x64 image
block [46].

The energy overhead of the CE implementation over application specific acceler-

ator is modest (2–3x) for the other applications, and requires only twice the area.

While these overheads are small, we explore the sources of these overheads in the

next section.
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4.5.1 Generating Instances with Varying Degrees of

Flexibility

To study the impact of various programmability options, we have designed the CE

in a highly parameterized way such that we can generate instances with varying

degrees of flexibility ranging from fixed kernel to fully programmable CE. The results

of this analysis are shown in Figures 4.19 and 4.20. The fixed 1-D convolution kernel

instance shown in Figure 4.9 is used, the whole 2D register with its associated interface

unit goes away. The 1D interface also goes away, replaced by the hardwired access

pattern required for the particular kernel. The remaining registers are sized just

large enough to handle the particular kernel, the flexible reduction tree is replaced

by a fixed reduction and the ALU only supports the single arithmetic operation

needed. The efficiency of this fixed kernel datapath should match custom cores. The

programmability options that convolution engine has over this fixed kernel datapath

can be grouped into three classes which build on top of each other:

Multiple kernel sizes

This includes adding all hardware resources to support multiple kernel sizes, such that

we still support only a single kernel, but have more flexibility. The support for that

primarily goes in interface units which become configurable. Register files have to be

sized to efficiently support all supported kernel sizes instead of one. The reduction

stage also becomes flexible.

Multiple flows

This step adds the remaining data access patterns not covered in previous step, such

that all algorithm flows based on the same arithmetic operations and reduction type

can be implemented. For example for a core supporting only 2D convolutions, this

step will add vertical and 1D interfaces with full flexibility and also add any special

access patterns not all already supported including offset accesses, interleaved writes

and so on.
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Multiple arithmetic operations

This class adds multiple arithmetic and logical operations in the functional units, as

well as multiple reduction types (summation versus logical reduction).

For SIFT’s filtering stage, the first programmability class entails an increase in en-

ergy dissipation of just 25% which is relatively small. The fixed function hardware for

SIFT already has a large enough 1D shift register to support a 16-tap 1D horizontal

filter so adding support for smaller 4 and 8 tap 1D filters only requires adding a small

number of multiplexing options in 1D horizontal IF unit and support for tapping

the reduction tree at intermediate levels. However, the second programmability class

incurs a bigger penalty because now a 2D shift register is added for vertical and 2D

flows. The coefficient and output registers are also upgraded from 1D to 2D struc-

tures, and the ALU is now shared between Horizontal, Vertical and 2D operations.

The result is a substantial increase in register access energy and ALU access energy.

Moreover, the 2D register comes with support for multiple vertical and 2D kernel

sizes as well as support for horizontal and vertical offsets and register blocking, so

the area gets a big jump shown in Figure 4.20 and consequently the leakage energy

increases as well. The final step of adding multiple compute units has a relatively

negligible impact of 10%.

For SIFT extrema the cost of adding multiple kernel sizes is again only 1.3x. How-

ever, supporting additional access patterns adds another 2x on top of that bringing

the total cost to roughly 2.5x over the fixed kernel version. Unlike filtering stage,

SIFT extrema starts with 2D structures so the additional cost of adding the 1D hori-

zontal operations is relatively low. However, the 2D and vertical IF units also become

more complex to support various horizontal and vertical offsets into the 2D register.

The cost of multiplexing to support these is very significant compared to the low

energy map and reduce operations used in this algorithm. The result is a big relative

jump in energy. The last step of supporting more arithmetic operations again has a

relatively small incremental cost of around 1.2x. The final programmable version still

takes roughly 12x less energy compared to the SIMD version.

Like SIFT extrema, IME also has a lightweight map step (absolute difference),
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however, it has a more substantial reduction step (summation). So the relative

cost of muxing needed to support multiple 2D access patterns is in between the

high–energy–cost filtering operations and low–energy–cost extrema operations. The

cost of supporting multiple kernel sizes and multiple arithmetic operations is still

relatively small.

FME differs slightly from other algorithms in that it takes a big hit when going

to multiple kernel sizes. The fixed function core supports 1D-Horizontal and 1D-

Vertical filtering for a relatively small filter size of 8 taps. The storage structures are

sized accordingly and consist of two small 2D input and two even smaller 2D output

shift registers. Adding support for multiple kernel sizes requires making each of these

registers larger. Thus multiple stencil sizes not only require additional area in the

interface units, but the bigger storage structures also make the muxes substantially

bigger, increasing the register access cost. This is further exacerbated by the increase

in the leakage energy brought about by the bigger storage structures. Thus the

first programmability class has the most impact on the energy efficiency of FME.

The impact of the second programmability class is relatively modest as it only adds

a 2D interface unit — most of the hardware has already been added by the first

programmability class. The cost of supporting multiple arithmetic operations is once

again small suggesting that this programmability class is the least expensive to add

across all algorithms.

Our results show that the biggest impact on energy efficiency takes place when the

needed communication paths become more complex. This overhead is more serious

when the fundamental computation energy is small. In general the communication

path complexity grows with the size of the storage structures, so over provisioning

registers as is needed in a programmable unit hurts efficiency. This energy overhead

is made worse since such structures not only require more logic in terms of routing

and muxing, but also have a direct impact on the leakage energy. On the other hand,

more flexible function units have small overheads, which provides flexibility at low

cost.
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Figure 4.19: Change in energy consumption as programmability is incrementally
added to the core [46].

Figure 4.20: Increase in area as programmability is incrementally added to the
core [46].

4.6 Conclusion

As specialization emerges as the main approach to addressing the energy limitations of

current architectures, there is a strong desire to make maximal use of these specialized

engines. This in turn argues for making them more flexible, and user accessible.

While flexible specialized engines might sound like an oxymoron, we have found that
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focusing on the key data-flow and data locality patterns within broad domains allows

one to build a highly energy efficient engine, that is still user programmable. We

presented the Convolution Engine which supports a number of different algorithms

from computational photography, image processing and video processing, all based on

convolution-like patterns. A single CE design supports applications with convolutions

of various size, dimensions, and type of computation. To achieve energy efficiency,

CE captures data reuse patterns, eliminates data transfer overheads, and enables a

large number of operations per cycle. CE is within a factor of 2–3x of the energy

and area efficiency of single-kernel accelerators and still provides an improvement of

8–15x over general-purpose cores with SIMD extensions for most applications.



Chapter 5

Analysis of Memory Bound

Applications

Once the compute energy has been optimized away, the energy of loads and stores

starts controlling the application energy rendering the application memory bound.

Unlike compute bound applications where removing processor overheads is enough,

the fundamental energy of a single memory access is expensive relative to the pipeline

cost and requires innovative strategies for reducing its impact. Consider Table 5.1,

which reveals that the cost of accessing memory increases by an order of magnitude

with each level of hierarchy. Since accessing smaller memories that are closer to the

processor takes much less energy than larger memories farther away from the core, the

efficiency of a memory bound application such as Speech Recognition is predominantly

determined by the data’s proximity to the processor and reuse within that level of

Memory Hierarchy
Dynamic Energy per

Access(pJ)

16KB 2-way L1 Cache 10

1MB 8-way L2 Cache 200

128MB DRAM 2000

Table 5.1: Memory energy consumption at various levels of hierarchy obtained using
Cacti 6.5 [53].

84
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hierarchy. The closer the data is to the processor and higher the reuse, the smaller is

the memory energy and higher the application efficiency. Because of the high latency

associated with accessing larger, farther memories this optimization is already done

for performance reasons with the help of caches. Furthermore, the ability of the

caches to capture data reuse within close proximity to the processor remains quite

high so they also boost energy efficiency. Because of the efficiency benefits linked to

performance optimizations, further reduction of memory energy becomes challenging

and demands advanced strategies such as algorithmic restructuring and introduction

of additional hierarchies primarily targeted at increasing efficiency. However, despite

the gains introduced by memory centric techniques, improvement in efficiency remains

modest unless a restructuring of the algorithm has a large change in memory locality.

5.1 Speech Recognition

Although, some applications start off as being memory bound with memory access

energy taking a sizeable portion of the total system energy, many applications only

become memory bound once the compute has been optimized away. Automatic speech

recognition, which transforms human speech into text [54], is one such application.

Speech recognition systems that offer high accuracy pose a significant challenge for

general-purpose systems as they not only require significant compute power, but

also need a substantial amount of memory bandwidth. One such speech recognition

system is Sphinx 3.0, which has been developed at CMU. In contrast to recent speed

optimized recognition systems, Sphinx 3.0 offers a high accuracy, but is marred by

slow decoding speeds. The biggest obstacles in achieving high performance are high

computational intensity and a large memory footprint. To achieve even reasonable

decoding speeds using a 5000 word Wall Street Journal corpus [55], Sphinx 3.0 requires

a powerful ILP optimized core with a significant amount of on-chip cache.
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Figure 5.1: The figure presents the four state HMM model used for representing
tri-phones in Sphinx 3.0.

5.1.1 CMU Sphinx Speech Recognition

Before devising ways to improve the decoding speed, let’s look at how Sphinx 3.0

works. As explained in [54][56] the recognizer consists of three main stages: feature

extraction, acoustic scoring and backend search. The first two stages or the frontend

extract acoustic features from digitized input audio in 10msec frames; while the third

stage or the backend uses the features extracted in the frontend to convert the input

speech into text. To maintain a high accuracy, the backend operates in sub-word units

called phones. Representation of speech at the phonetic level is performed using a

four-state Hidden Markov Model (HMM) where the first three states correspond to

a contextually dependent phone triplet called tri-phones[57] as shown in Figure 5.1.

Aided by the acoustic features extracted in the frontend, the transition and observa-

tion probabilities of the HMM states govern within-word and cross-word transitions

with the latter leading to recognized words. Let’s look at each of these stages in

detail.

Frontend

As defined earlier, the Frontend consists of two stages: feature extraction and acoustic

scoring. Before being passed to the feature extraction stage, the input speech is

digitized and organized into 10ms blocks called frames. These frames are converted

by feature extraction into frequency domain components to identify and examine
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the more distinctive speech features to help differentiate speech utterances. A 39-

element feature vector is generated containing all the acoustic information for the

frame and is passed to the acoustic scoring stage, which uses Gaussian Mixture Models

(GMM) to match the features in each frame against a large collection of sounds or

tri-phones to generate HMM state probabilities. Because the number of sounds can

be enormous, modeling all sounds would require a huge amount of data; therefore,

in Sphinx similar phones are combined together into senones[57] used to represent

individual HMM states in place of phones. The backend search stage uses these sound

probabilities to find the most probable word sequence by gluing together sounds using

their probabilities.

While the number of features identified in the feature extraction stage is large,

the execution time is dominated by the conversion of speech frames to the frequency

domain. A 512 point Fast Fourier Transform (FFT) is typically employed to trans-

form digitized speech into the frequency domain, which can be easily accelerated to

run several times faster than real-time by an energy-efficient data parallel processor

with support for bit-reverse addressing[54]. The acoustic scoring stage, however, is

much more computationally demanding compared to feature extraction. Although,

this computational intensity ensues from the use of GMMs, Sphinx 3.0 keeps the

complexity in check by performing GMM computation in the log domain. Using

some typical parameters, it is shown in [54] that the performance requirement of the

acoustic scoring stage is approximately 500MFLOPs, which can be further reduced

by exploring other optimization techniques such as quantization and bit-width re-

duction. The frontend consists of standard compute limited computation and can be

easily handled using techniques described in the previous chapters.

Backend

The main task of the backend search stage is to convert frontend senone state proba-

bilities into word suggestions. To achieve a high accuracy, the search stage maintains

a pool of active words whose probabilities are updated every frame using the incom-

ing senone scores. Since each word can consist of multiple phones, the number of

corresponding active HMMs can run into thousands and generally require off-chip
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storage. The active HMMs are processed and updated by the backend stage with the

help of the Viterbi Beam Search and the Language Model that are described below:

Viterbi Beam Search The primary task of the Viterbi algorithm is to update the

state probabilities of active HMMs by combining the senone scores obtained from

the frontend with the transition probabilities of the individual HMM states. This

process is performed on a per-frame basis and at the end of each frame only the

highest probabilities of the states are maintained highlighting the best path to the

states. Although, Viterbi is guaranteed to find the most likely word sequence by

continuously updating the state probabilities every frame, the search space becomes

large especially for large vocabularies because of the addition of new HMMs to the

system. This substantial increase in the space has a detrimental effect on the per-

formance prompting beam pruning to curtail the list of active HMMs at the expense

of some accuracy loss. Pruning involves removal of less probable states and their

corresponding HMMs allowing only the more probable states to continue to the next

frame. New HMMs are added to the system when the active state probabilities cross

a certain threshold. The Language Model is invoked if a cross-word transition takes

place otherwise within-word transitions are handled by an adjunct stage called the

Transition stage. Furthermore, after a word is recognized, it is added to the word lat-

tice which keeps track of detected words to facilitate the backtracking step employed

in the end to determine the most likely sequence of detected words.

Language Model Sphinx 3.0 employs an n-gram Language Model (LM) where n

equals 3, to identify word candidates most likely to follow those recently recognized.

To activate new words after a cross-word transition, Sphinx 3.0 determines the rela-

tive probabilities of new words given preceding word sequences in the word lattice in

the following order: word triples (trigrams) with probability P (w3/(w1, w2)) are con-

sidered first where w3 is the new word and w1 and w2 denote the two-word history;

this is followed by word pairs (bigrams) with probability P (w3/w2); with single word

probabilities (unigrams), P (w3), coming in the end. Because the memory require-

ments exponentially increase with the number of prior words considered, recognizers
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usually stop at word triples or trigrams. Boosted by grammar knowledge and occur-

rence frequency of words and phrases in the training data, these n-gram probabilities

substantially improve the decoding accuracy of Sphinx 3.0.

As mentioned earlier, recognition accuracy is achieved by the Backend stage by

tracking numerous simultaneous words at the phonetic level. However, this comes

at the expense of a substantial increase in the processing requirements. From our

experiments we have determined that for a 5000 word Wall Street Journal corpus,

the Backend stage accounts for 60% of the execution time of the speech recognition

system. The percentage share rises to more than 70% for a 60,000 word vocabulary

[58]. Because the backend search stage constitutes the most critical part of the speech

recognition system, its irregular computation and high memory traffic presents the

biggest obstacle to the improvement in performance and energy efficiency of speech

recognition. Thus, this thesis focuses on devising strategies for improving the effi-

ciency and performance of the backend search stage.

5.2 Baseline Speech Recognition System

Speech recognition’s backend decoding path is quite long and suffers from sequential

dependencies that restrict parallelism. Additionally, the decoder relies on a large

probabilistic model built into the HMM data-structure that not only requires off-chip

storage, but also needs frequent accesses resulting in high memory energy dissipation.

To develop an energy efficient speech decoding system we need to reduce the energy

wasted in the processor in addition to curtailing accesses to DRAM by boosting

locality and data-reuse. Remarkably, the algorithmic changes required to expose

task level parallelism by overcoming dependencies also carry the added advantage of

limiting redundant memory accesses. While the number of modifications is large, the

major changes are described below:



CHAPTER 5. ANALYSIS OF MEMORY BOUND APPLICATIONS 90

5.2.1 Pruning Stage

To maintain a high accuracy the decoder tracks numerous words simultaneously.

Since these words are tracked at the phonetic level, the number of HMMs can run into

thousands. To keep the number of HMMs from increasing exponentially Viterbi Beam

Search stage prunes the HMMs whose probability falls below a certain threshold. This

threshold is updated every frame and requires the Viterbi Stage to first update the

state probabilities of all the active HMMs. A record is maintained of the highest

probability which is then used to ascertain the threshold. The updated HMMs are

read again and their probabilities compared with the threshold. Those that fall below

the threshold are pruned away. Because of this dependency, the active HMMs are read

twice which substantially increases the memory traffic. Using the technique presented

in [59], we eliminate these redundant accesses by using the highest probability from

the previous frame. This technique also allows us to eliminate sequential dependencies

by enabling different HMMs to be processed by different stages in parallel.

5.2.2 Patch List

When the Language Model adds new words to the system after a cross-word transi-

tion, the HMM list is searched for matches. If an HMM corresponding to the first

tri-phone of the new word is active, its state probability is updated if it’s lower than

that of the new word. Since the HMMs generally require off-chip storage and the num-

ber of new word candidates can be substantial, this process can require several DRAM

accesses. As presented in [59], we eliminate the off-chip accesses by de-coupling the

Language Model from the HMM list using an on-chip storage structure referred to as

the Patch List. This allows the new word candidates to be merged with the HMMs

in the next frame when they are fetched for processing by the Viterbi Stage.

5.2.3 CMP System

Removal of sequential dependencies in the decoding path facilitates partitioning of the

backend search into a four stage HMM level pipeline shown in Figure 5.2. The first

three stages are formed when the “Viterbi Beam Search” described in Section 5.1.1
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Figure 5.2: Four stage HMM level partition of Sphinx 3.0. Each processor contains
private L1 caches connected through a shared L2. Queues are added between the first
three processors to facilitate transfer of HMMs fetched by the “Fetch” stage. While
the queue between “Transition/Prune” and the “Language Model” is used to store
scores for all possible right-contexts (RC Scores) of the completed word instead of
HMMs.

is split into three distinct phases called “Fetch”, “Viterbi” and “Transition/Prune”.

The “Fetch” stage is responsible for fetching the HMMs from the memory and merging

them with the words from the Patch List; the senone scores formulated in the front

end are then employed by the “Viterbi” stage to update the state probabilities of the

HMMs from the “Fetch” stage; while the “Transition/Prune” stage is tasked with

tracking within and cross word transitions, pruning of non-performing HMMs and

writing un-pruned HMMs back to the memory. The “Language Model” constitutes

the fourth stage and is activated only after a cross-word transition is detected in

the “Transition/Prune” stage. This division not only streamlines the data transfers

between stages significantly, but also allows us to exploit task-level parallelism at the

HMM level.

To build a base system, we map the four stage HMM level pipeline to a four-

processor Tensilica based RISC CMP system designed to run at 400MHz in 90nm.

Each processor is assigned private 16KB 2-way set associative instruction and data

L1 caches connected through a 512KB 8-way set associative unified L2 cache with
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Figure 5.3: Energy distribution between the processing elements and the memory for
the base CMP system.

a 32B line size. The memory energy is estimated using CACTI 6.5 [53]. To ensure

a speedy transfer of HMMs and other data between stages, first-in-first-out (FIFO)

queues are incorporated between processors. Assisted by the availability of significant

task level parallelism, the CMP system accomplishes decoding of a 5000 word WSJ

vocabulary in real-time. However, a quick look at Figure 5.3 reveals that memory is a

major portion of the total system energy indicating that enhancement of the system

efficiency also involves improving data locality in addition to eliminating superfluous

loads and stores emanating from the processor.

5.3 Experimental Methodology

Because the data is too big to fit on-chip, memory energy consumes a substantial

portion of the total system energy. As noted in [54] Sphinx 3.0 not only reports

a much higher miss rate, 48% local miss rate for a unified 512KB L2 cache with

a 128B line size, than other SPEC benchmarks for a 60K Broadcast News (HUB4)
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task, but the memory footprint of 64MB also remains quite high. Although, in this

thesis we use a 5000 word WSJ vocabulary task which is considerably smaller than

60K HUB4 vocabulary, the miss rate still remains quite high. Unfortunately, the

processor instruction stream is also dominated by memory access operations such as

loads and stores so a large improvement in processor energy dissipation observed in

compute bound applications remains improbable without a considerable improvement

in the data reuse inside the processor.

5.3.1 Processor Optimization Strategy

As alluded to earlier, processor energy represents a major portion of the total sys-

tem energy. All four pipeline stages are load/store intensive with “Fetch”, “Tran-

sition/Prune” and “Language Model” also being control intensive. Other factors

impeding processor efficiency gains are limited data level parallelism and irregular

nature of the computation. Although, all these factors collaborate to render general

purpose optimizations such as SIMD largely ineffective, speech recognition possesses

a considerable degree of task level parallelism allowing multiple cores to operate in

parallel; however, its effect on efficiency remains moderate at best. Thus, to improve

efficiency as well as performance, we draw inspiration from the lessons learned in

Chapter 3 and create highly customized fused instruction sub-graphs called DAGs.

These fused instructions collapse the control-flow instructions and pack as much com-

pute as possible in a single instruction permitting us to amortize processor overheads

over many operations. As noted earlier, the efficiency improvements are determined

by the height of fused DAGs and generally stay within an order of magnitude. After

the processor energy efficiency is optimized, memory energy becomes the tall pole.

5.3.2 Memory Optimization Strategy

Due to a lack of significant locality, reducing memory energy is hard. The dynamic

data is dominated by the large HMM data structure that is streamed in, updated and

written back every frame. There is no intra-frame temporal locality in the HMM data

structure and the data is too big to fit on-chip. Although, read-only data dominated
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Major Consumers Read Misses (M) Write Misses (M) %age Of
Total

HMM 7.9 9.0 39.0

Patch List 8.0 5.6 31.6

Language Model 9.0 - 20.7

Rest 3.7 - 8.7

Total 28.6 14.6 100.0

Table 5.2: The table presents the LL cache misses for the major consumers of memory
energy.

by the Language Model (LM) possesses moderate temporal locality, it also requires

megabytes of storage. With all these factors colluding to increase the miss rate of

the last level (LL) cache, memory energy goes up significantly. The cost of accessing

the DRAM now represents 79% of the total memory energy. While we can improve

performance with things like latency hiding and prefetch, they have no effect on

memory energy.

We want to capture some reuse to prevent us from accessing memory that is fur-

ther away in the memory hierarchy. Although, a relatively big LL cache can capture

a considerable degree of data-locality, when it fails improving results further is diffi-

cult, especially with limited visibility into the behavior of individual data structures

accessing the big cache. We address this issue by isolating the principal consumers of

energy in the application, ascertaining trends in their access patterns and establish-

ing the size of memory required by each consumer. While the principal consumers

are recognized by studying LL cache misses, the latter two objectives are met by

examining data access patterns across 600+ speech samples. Using the data patterns

we identify statistically hot data and ascertain the size of memory required by each

consumer to capture reuse in the common case while ignoring the tall tail behav-

ior. Equipped with this information we determine the requisite cache size, establish

guidelines on memory management of the important data structures and eliminate

redundant cache misses.
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Principal Energy Consumers

After a careful analysis of the LL cache misses, we isolate the principal energy con-

sumers, which are presented in Table 5.2. Together these data structures account for

over 90% of the total LL cache misses.

• Active HMMs: As explained earlier, HMM is a probabilistic model employed

for representing tri-phones of the language. In each frame of speech we test

the active HMMs to check the probability of their occurrence in the prior and

current frames. We always check some number of them across frames as long

as their score remains high enough. Because each HMM entry requires 48B of

storage and the number of active HMMs per frame runs into tens of thousands

(> 30,000), HMMs cause frequent cache misses and account for 39.0% of the

total LL cache misses.

• Patch List: New words initiated by LM after a cross-word transition are stored

in the Patch List. Each patch list entry is 16B wide, but with approximately

6500 words in the system Patch List requires in excess of 100KB of storage and

accounts for 31.6% of the total LL cache misses.

• Language Model Word Candidates: Language model word candidates

stand for the n-gram probabilities representing the relative probabilities of new

words given preceding word sequences in the word lattice. Although, each en-

try is just 8B, there are millions of word candidates and require mega bytes of

storage with relatively little locality. As a result, LM accounts for 20.7% of the

total LL cache misses.

5.4 Results

We start looking at processor optimization because the energy consumed in the pro-

cessing elements accounts for a slightly larger portion of the system energy. These

improvements appreciably reduce the processor energy consumption leaving speech

recognition memory bound. Since the memory optimization techniques consist of
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reducing the energy dissipation of the principal consumers, we outline optimization

strategies for each major consumer of energy describing the amount of memory re-

quired to store the statistically hot data and how to best manage the data-structure

in a cache based system. Collectively, these results describe how system efficiency

improves by 5x over the baseline CMP configuration.

5.4.1 Processor Optimization Results

Figure 5.4: Improvement in performance over the base system that was operating at
real-time after the application of custom instructions.

Figure 5.5: Improvement in energy per frame over the base system after the applica-
tion of custom instructions.

Using Tensilica’s TIE language we create application specific instructions that col-

lapse multiple control-flow graphs into single instructions. In addition to performing
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Figure 5.6: Energy distribution between the processing elements and the memory
after processor customizations.

multiple operations per instruction, the fused instructions also facilitate the flow of

short-lived intermediate data from one operation to another without accessing the

register file providing a much needed energy efficiency improvement. However, as

mentioned earlier, fusing together more than 2-3 basic blocks becomes increasingly

difficult; thus, the efficiency gains remain restricted to an order of magnitude. The

introduction of these operations enables the CMP to run at 15 times better than

real-time and consume an order of magnitude less energy than the base configuration

as shown in Figures 5.4 and 5.5 respectively. However, further gains are difficult to

come by because random loads and stores start dominating the instruction stream

of “Fetch”, “Viterbi” and “Transition/Prune” stages while the “Language Model”,

which is also the bottleneck, gets limited by the energy wasted on branches. Af-

ter the application of processor optimizations, speech recognition becomes memory

bound because memory energy takes 88% of the total energy as shown in Figure 5.6.



CHAPTER 5. ANALYSIS OF MEMORY BOUND APPLICATIONS 98

5.4.2 Memory Optimization Results

As mentioned earlier “Active HMMs”, “Language Model Word Candidates” and

“Patch List” account for more than 90% of the total LL cache misses. In this section

we present optimization strategies for each data structure.

Active HMMs

The first optimization involves reducing the memory footprint of active HMM data

structure. With the help of non-standard precision, we can reduce the amount of

storage required by each HMM entry from 48B to 32B without compromising data

integrity. This shrinkage results in memory energy savings of 16% and cuts the

number of HMM LL misses in half.

Figure 5.7: The plot captures the total size of the HMM data structure in the current
frame on the x-axis and the relative frequency a structure of this size is likely to occur
in a given frame on the y-axis.

Now, that we have reduced the size of the HMM data-structure, we turn our

attention to enhancing the reuse of the HMM phoneme data across frames. With the

help of 600+ speech samples, we determine the relative frequency of a certain size

of the HMM data structure occurring in a given frame and plot it against the total

size of the HMM data structure in the current frame as shown in Figure 5.7. The

plot exposes the power-law curve in the probability distribution and reveals that the

probability of the number of active HMMs staying below 13,000 is over 90%. Thus,

with each HMM reduced to 32B, to capture reuse of the data in the common case
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Figure 5.8: The plot captures the relative frequency of a given amount of memory
needed to store Patch List entries in the current frame.

we need just 400KB of storage, which is significantly less than the 1MB of storage

required in the worst case. However, to ensure that only memory locations within the

recommended storage space are used, software management of the HMM storage space

is imperative. Since the HMMs are constantly deleted and created, it’s critical that

the most recently deleted entry is reallocated. Using standard “malloc” was one cause

of the high miss rates in the original application, a fact hard to find until we knew

what the answer was supposed to be. In addition to the simple garbage collector, non-

allocating stores are also needed to eliminate write misses emanating from output only

data. Furthermore, you will notice that given the size of the recommended storage

is 400KB, an LL cache size in excess of our base system’s 512KB is required to leave

room for other data structures.

Patch List

Using the same technique that we employed in the last section, we determine that

certain Patch List entries are updated much more often than others. Consider Fig-

ure 5.8, which presents the relative frequency of a given amount of memory needed

by the Patch List entries in the current frame. The amount of memory is directly

correlated with the number of valid Patch List entries in the current frame. From
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the figure we ascertain that using just an 8KB memory we can capture more than

50% of the accesses going to the Patch List, which is much smaller than the 100KB

required in the worst case. However, to substantially reduce memory energy we need

to capture as much of the accessed data as possible and it turns out that placing

all of newly activated/updated words on-chip gives us the greatest advantage in the

trade-off of efficiency vs memory storage; thus, when we determine the new size of

the L2 cache we consider the worst case storage requirement for Patch List entries.

Language Model Word Candidates

Figure 5.9: The plot captures the relative frequency of a given amount of memory
needed to store Trigram word candidates in the current frame.

Unfortunately, Language Model word candidates require mega bytes of storage

and incur frequent misses. However, a careful analysis of the access frequencies of the

n-gram (Bigram and Trigram) probabilities reveals some interesting patterns. Firstly,

we notice that accesses to the biggest LM data structure, Trigram Word Candidates,

is uniformly distributed; however, two Trigrams are accessed much more frequently

than others and account for 25% of the total Trigram traffic as shown in in Figure 5.9.

Fortunately, Bigram word candidates as shown in Figure 5.10 exhibit substantially

less randomness and up to 40% of the total Bigram traffic can be captured using

just a couple of hundred kilobytes of storage, which is remarkably less than the few
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Figure 5.10: The plot captures the relative frequency of a given amount of memory
needed to store Bigram word candidates in the current frame.

Major Consumers Read Misses (M) Write Misses (M) %age Of
Total

HMM 0.5 - 6.2

Patch List - - 0.0

Language Model 4.7 - 56.9

Rest 3.1 - 36.9

Total 8.3 - 100.0

Table 5.3: The table presents the LL cache misses for the major consumers of memory
energy after memory optimizations.

megabytes required to store the whole Bigram data structure. However, in our quest

to decrease the LL cache miss rate using usage statistics, we go one step further

and rearrange Bigram and Trigram word candidates in memory placing frequently

accessed word candidates in close proximity to each to improve spatial locality even

more.

As we alluded to earlier, the amount of storage needed to capture statistically

hot data is in excess of 768KB easily surpassing the 512KB LL cache used in our

base CMP system. Taking into consideration requirements of other data structures

in Sphinx 3.0, in our optimized system we use a 1MB LL cache. Furthermore, we

augment our cache to perform non-allocating stores. The combination of bigger LL
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Figure 5.11: Energy distribution between the processing elements and the memory
for the optimized CMP system.

cache size, software management of data structures to bring out locality and the

addition of non-allocating stores, improves the memory energy by 3x. The LL miss

breakdown is presented in Table 5.3 and the system energy breakdown is shown in

Figure 5.11. From the figure we can determine that while the memory energy has

decreased appreciably, the system is still memory bound.

5.5 Conclusion

Aided by processor customization and improved data reuse inside the cache, we man-

aged to reduce the system energy by 5x. Despite insignificant spatial and temporal

locality, the improvement in memory energy was made possible through the exploita-

tion of application characteristics. Helped by the analysis of data access patterns

of the principal consumers of memory energy, we were able to isolate and exploit

statistically hot data that proved vital in improving memory energy. Thus finding

locality someway, in order to bring the data as close to the processing elements as
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possible, is critical for improving memory energy. In our case locality was found by

using probabilities in large models. However, the thing to note is that despite using

extensive processor customization and memory enhancements, the gains were limited

to an order of magnitude over the base CMP using a large LL cache. This indicates

that caches generally work well for capturing locality and reuse in an application and

significantly improving memory energy is difficult.

Because the memory energy now dominates the total energy, the system efficiency

is limited by the fundamental cost of accessing the memory. Even an ideal ASIC that

can eliminate all of the processor cost, would still only be a factor 1.3x more as we are

fundamentally limited by the memory. Building an ASIC for this application makes

little sense.



Chapter 6

Conclusion

When systems are power limited, improved performance requires decreasing the en-

ergy of each operation, but technology scaling is no longer providing the energy

reduction required. Thus, providing this energy reduction requires tailoring systems

to specific applications, and such customization is extremely expensive because of

high non-recurring engineering (NRE) costs. To address this issue in this thesis we

study the potential of creating efficient yet flexible general-purpose chips by analyzing

the inefficiencies introduced by programmability. We gather this data across three

classes of applications defined by their leading energy consumers: compute, control

and memory. For each application class we determine the source of energy overhead

and devise strategies to reduce them. We take applications that are employed in sys-

tems with stringent energy budgets like cellphones, video cameras, etc., but require

custom hardware solutions to meet the energy and performance requirements effec-

tively, since these provide examples of efficient hardware solutions we can analyze.

While studying the sources of inefficiency in compute bound applications, we

learned that the scope of the problem depended upon the type of computation being

performed. For many applications where ASICs have large gains like H.264 motion

estimation, the critical operations are extremely low-power. For any compute bound

application to achieve high efficiency, the critical operations must limit energy; how-

ever, the energy wasted in processor overheads such as instruction fetch and register

file is far higher than that that of the critical operations. To amortize these overheads,
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we need to execute hundreds of basic operations per cycle which requires close cou-

pling between storage and the functional units. Furthermore, interactions with the

memory need to be curtailed otherwise compute intensive applications risk becoming

memory bound.

Of course if the critical operation requires moderate energy such as floating point

(FP), the overhead of using a processor is smaller, around 10x. This means that

machines with ten wide FP units are not far from the maximum efficiency possible

for that class of applications. Thus, CPUs with wide SIMD units or GPUs can

be efficient programmable solutions for these applications. Unfortunately, this also

means that energy gains are limited. Said differently, if we want ASIC-like energy

efficiencies — 100x to 1000x more energy efficient than general-purpose CPUs — we

will have to transform our algorithms to be dominated by the simple, low-energy

operations we have been studying in this thesis.

Although, conditions for achieving high efficiency in compute bound applications

seem overly restrictive at a fist glance, there exists a large number of compute intensive

applications which satisfy these requirements. These applications have a convolution

like data-flow and we presented a flexible, efficient engine, called the Convolution

Engine, which supports this flow. To achieve energy efficiency, CE captures data

reuse patterns, eliminates data transfer overheads, and enables a large number of

operations per cycle. CE is within a factor of 2–3x of the energy and area efficiency

of single-kernel accelerators and still provides an improvement of 8–15x over general-

purpose cores with SIMD extensions for most applications.

Unlike data parallel applications, efficiency gains for control intensive applications

such as CABAC remain relatively low even after algorithmic restructuring. We ob-

serve that for CABAC even highly custom control-flow graph instructions are only

able to improve the performance and efficiency by just an order of magnitude. The

gains in control bound applications are limited by inter-dependent branches that re-

strict the number of fuseable basic blocks to 2–3. The pivotal role played by highly

custom instructions in achieving the efficiency gains, makes us believe that for control

intensive applications to achieve high efficiency custom instructions will need to be

crafted for each important loop in the application. Looking forward, a generalized
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control-flow graph fusion network that offers predicated execution and the ability

to fuse together multiple simple control-flow operations in one instruction can offer

efficiency gains superior to general-purpose processors while still retaining flexibility.

Of course after these data and control optimizations are done, the application is

likely to become memory energy limited. While the answer to reducing energy is

obvious, exploit locality, the easy locality has already been extracted by the caches

in a modern processor. In these cases, it often requires a detailed look at each of the

important data structures to understand the locality issues, and possible algorithmic

restructuring to improve locality.
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