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Abstract

Shared memory protocols are a complex and active area of research. A memory protocol

describes the way in which multiple processing entities communicate to achieve a consistent

view of a shared memory system. From a research perspective, it is easiest to specify a pro-

tocol at a high level, in order to emphasize what is new and interesting about the protocol.

With only this specification it is a challenge to evaluate these solutions in hardware, because

creating an entire hardware chip multiprocessor platform is a complex and error prone task.

This thesis presents Specification Language for Advanced Memory Models (SLAMM), a lan-

guage for specifying protocols at a high level in a C-like language. A SLAMM specification

is compiled to configure a hardware template which can implement the memory protocol.

This overall system template is composed of a number of independent controllers, and we

present in detail the template for one such controller and the microblocks which compose it.

We also describe a technique for verifying the resulting hardware system using a Relaxed

Scoreboard, which allows either random testing of the system or monitored directed tests.

These parts taken together provide a flexible memory platform that is easy to program and

validate to evaluate new protocols in hardware.
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Chapter 1

Introduction

The notion of using caches, small fast memory close to the processor, to hide memory

latency is an old idea [48]. Cache complexity grows in a multiprocessor context, because

for processors to work concurrently on a shared task, the data that they read and write

locally must be, in general, visible to other processors. This requires rules about how

and when the changes that they make should be observable by other processors. This

problem is called coherency and consistency, and a good deal of research havs been devoted

to developing shared memory protocols that can efficiently provide easily understandable

coherency and consistency models, much of it in the 1980’s [32, 5]. While these are well

established problems with many excellent solutions, researchers are still innovating the

hardware, for a variety of reasons. For example, Sanchez et al proposed ZCache [34], a way to

find a larger pool of good eviction candidates without slowing down the common case cache

lookups. ZCache helps the miss rate of caches and therefore has direct benefits for many

applications. Wang et al proposed PLCache [47], secure hardware that is immune to certain

timing attacks by introducing different requirements for selecting eviction candidates. In

such cases, performance is not the issue as much as isolating different processes from each

other at a hardware level without stymying performance. A final example, Cheriton et

al proposed HICAMP [11], which provides a different view of a memory system. Rather

than the traditional memory model of writing data to known addresses in the system, a

HICAMP “write” requests the address of known data. A read is still achieved by looking

up the data at a known address. This technique makes concurrency easier because the data

at an address is immutable.

As researchers innovate and propose new protocols and techniques, they often create

1



2 CHAPTER 1. INTRODUCTION

hardware simulators to evaluate their ideas, but eventually want to verify how these ideas

would perform on real hardware. An entire CMP system is exceedingly complex to design

and verify, but only relatively small changes should be needed to evaluate a new memory

protocol. The Stanford Smart Memories project aimed to evaluate this idea, by creating

a single flexible hardware platform to support multiple memory protocols. It was able to

show that the similarities between memory protocols were greater than their differences,

and was able to support multiple protocols that were active areas of research. However,

despite its design for flexibility, the hardware that was taped out was not flexible enough

to implement ideas not considered during the design phase. The Smart Memories platform

also provided no higher level interface for easy programming of the memory protocol, which

made it difficult if not impossible for a researcher with a new protocol in mind to correctly

configure the hardware to implement it.

This thesis addresses the issue of how to easily specify a desired protocol in a higher level

language, and then have that protocol converted into synthesizable hardware. To accomplish

this task, we create a flexible template and a compiler that can take our protocol description

and generate the parameters and configuration files the template needs to use.

Chapter 2 reviews the solutions used for creating and programming hierarchical memory

protocols in earlier projects. We identify the need for an easier way to specify protocols

which can be implemented in hardware. Chapter 3 first describes the abstract architecture

of a modern hierarchical memory system, and describes how it is composed of smaller

hardware templates which are able to take configuration parameters to shape their behavior.

Since each of these smaller templates must be configured as part of a whole, Chapter 4

describes the high-level language used to specify a memory protocol and how it generates

the parameters needed for the templates. Finally, we know from experience that creating an

implementation is not enough, it must also be verified, so Chapter 5 describes a technique

for verifying implementations of shared memory protocols at a high level. In Chapter 6 we

examine the utility of this approach and point out possible avenues for future work.



Chapter 2

Programmable Memory System

Concepts

Academia and industry have aggressively moved towards Chip Multiprocessors (CMP) as

the main processing unit in current and future compute platforms. A major challenge in

building these complex systems is determining how the multiple processors should com-

municate and effectively use shared memory resources. This debate regarding the “right”

programming model(s) for these machines, and hence how the memory system should be

implemented, is far from being settled. While some advocate streams [16, 23, 31] due to

their high compute density per Watt, streams have a more limited application space. Oth-

ers prefer Thread Level Speculation [17, 42], recently generalized and formulated into the

Transactional Memory model [26,18], for its broader application domain and ease of use from

the programmer’s perspective. Meanwhile, the most prevalent general purpose platforms

are still variations of a cache coherent multi-thread model [3,30,22]. Several current research

directions build on this powerful model, by enhancing the tag mapping and replacement

policies. For example, while maintaining the overall cache coherent multi-thread model,

by modifying some lower level aspects, researchers are pursuing greater performance [34],

enhanced security [47,9], and efficient snapshotting of the entire memory [11].

Historically, as designers explored different ways of creating these shared memory sys-

tems, they composed more complex systems in hardware to evaluate their ideas. In order

to create a system to implement a new memory protocol, the designers often built in a

level of programability, either for ease of implementation or the ability to make adjust-

ments and corrections after the system was constructed. Programmability also extends the

3
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Figure 2.1: An implementation of a Finite State Machine implemented using lookup tables.

utility of a system by allowing it to scale, because components can be configured to create

larger networks when the routing and communication between them is configurable. The

following section reviews some of these systems to consider why and how they were made

programmable. As the ability to put more complexity on die increased, researchers real-

ized that this programmability could be designed into the hardware as a first order design

goal to enable the evaluation of new ideas on a single platform. Section 2.2 describes a

system which takes these ideas to the extreme and is completely configurable in hardware,

the Stanford Smart Memories project. In Section 2.3 we describe the limitations of even

this degree of flexibility in hardware, and the challenges encountered in programming it.

Section 2.4 proposes using a generator approach to achieve an efficient implementation in

hardware without the limitations encountered in even configurable hardware. Since the

challenge of programming the hardware still exists, in Section 2.4 we also describe some ap-

proaches to describing memory protocols that makes them easier to implement and verify,

techniques that we will build on in this thesis to create a flexible memory system that is

easy to configure.

2.1 Programmable Memory System Platforms

In earlier multiprocessor systems, programmability was built into the memory system not

from a desire for the system to be configurable per se, but to allow debugging and corrections

in a pre- and post-silicon system. A general technique for implementing programmable

state machines is to use microcode memories. Essentially, a lookup table (LUT) is used

to generate control signals and next state logic, as shown in Figure 2.1. The same LUT

structure can be used to create microcodes for a system. Many memory systems share
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similar structures and primitives.

The MIT Alewife machine [4] consisted of Sparcle processors connected by a Communi-

cations and Memory Management Unit (CMMU). The CMMU was a standalone chip that

could handle much of the low-level primitives needed for coherent shared memory, but could

trap into software for handling more complicated sharing situations. This was done to make

the common case fast and efficient without introducing a lot of specialized hardware for less

common, more computationally intense scenarios.

The SGI Origin [27] processor used a table-based technique to implement part of its

scalable cache coherent system. The system consisted of several processors locally connected

by Hub chips which communicated over a scalable interconnection network. Each Hub

core’s behavior was dictated by the code in its Protocol Table, a microcode memory of

the sort discussed above used to implement the cache protocol. To avoid the overheads

introduced by using a reprogrammable look up table, the Protocol Tables were hardcoded

in the final hardware. More recent work by K. Kelley, the author, et al [24] has shown that

with sufficient annotation, a table based description can be synthesized into an efficient

gate implementation. The challenge of using a LUT/microcode memory becomes that of

determining the appropriate values for the LUT, and providing annotation information. The

protocols encoded the SGI Origin processor’s tables were verified using formal techniques.

The Stanford FLASH project had a flexible memory architecture supporting both cache

coherency and message passing, and had a custom node controller (the MAGIC chip) which

consisted of both hardwired data paths and a programmable processor specialized for ex-

ecuting protocol operations [20]. The use of the protocol processor simplified the design

and implementation of the system, and made it more flexible. The programmable processor

implemented a subset of the DLX instruction set [21]. However, it added special extensions

for bitwise operations and sending messages to the special hardware units which could per-

form the basic protocol operations. The protocol processor design was simple, and much of

the burden of ensuring deadlock avoidance and protocol correctness was the responsibility

of the protocol programmer. This programmability allowed experimentation and correction

of the most difficult parts of the protocol after the hardware had taped out.

The fact that the same primitive operations could be used to implement a variety of

shared memory protocol configurations did not go unnoticed. Rather than building a system

which could be coded to implement a set coding (like the SGI Origin) or a system which

could execute code, the Stanford Smart Memories project fleshed out the idea of using
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flexible hardware primitives to implement a variety of protocols in hardware. The following

section describes the Smart Memories system in more detail.

2.2 A Platform for Memory Protocol Experimentation: Stan-

ford Smart Memories

Stanford Smart Memories was a research project which extended the idea of programmable

hardware to build a single hardware platform that could support multiple programming

models by creating a flexible execution and memory system. Its goal was to show that,

from a hardware perspective, the similarities between many programming models are greater

than the differences. The project initially aimed to meet this goal by creating a configurable

data-path for the processor core, and adding programmability to the memory system [28].

This conceptual design leveraged the fact that all memory models rely on physical mem-

ory storage in proximity to the processing unit, and on controllers that orchestrate data

movements among these repositories and to and from the main memory. In addition, most

memory systems need some “state” to be associated with the data (e.g., valid bit in caches or

speculatively read/write bits in Transactional Memory), and therefore the Smart Memories

memory system added meta-data bits to its local storage arrays. The differences between

memory models were created by defining the meaning of the meta-data bits, and by defining

the protocols for the actions that need to be taken when specific conditions occur.

The resulting Smart Memories (SM) eight-core CMP presented here is a fully im-

plemented system: from an architectural simulator written in C++, through complete
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Figure 2.4: Configurable local memory. (a) Block diagram of the memory mat. (b) Ex-
ample mat organization for a 2-way cache.

RTL/gate simulation environment, to the silicon chip that fabricated in a 90nm technol-

ogy at STMicroelectronics [1]. Four SM chips have been integrated together in a system

instrumented with additional FPGAs to provide full 32-core functionality. The software

layer includes a C/C++ compiler1 and runtime environments for the stream, transactional

coherence and consistency (TCC) [18] and multi-thread execution models.

Smart Memories is a hierarchical system, as shown in Figure 2.2. Each individual chip,

or quad, consists of a set of four tiles, where each tile contains two processors and a set of

memory mats. The tiles communicate off-chip and with each other via a protocol controller.

The protocol controller can make requests to an off-chip memory controller, but can also

communicate through a generic network to other protocol controllers, to build a truly

hierarchical system. Each of these modules contain configurable, programmable features

which enable them to implement different memory protocols. This section describes these

features, and also highlights the techniques used generate the correct memory programming

configuration for each system.

The memory mats contained many programmable components, which shaped the func-

tionality of each mat and the way that they were connected together. While most of the mat

configuration was manageable enough to be determined by hand, one aspect required good

higher-level programming support. This was programming the behavior of the meta data

bits in the mat. Each address in a memory mat had a few meta-data bits whose behavior

was programmable. These bits were controlled by a separate opcode from the main data

bits at each address, so they could be read or written directly in parallel with data opera-

tions. Additionally, they could be accessed with a special read-modify-write operation. The

1Tensilica compiler instrumented with special Smart Memories TIE instructions [15].
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grammable to output 2 of the 6 total output meta-data bits.The inputs were also selected
by another configuration register, such that 6 inputs provided the PLA address, out of a
possible set of 13 inputs.



10 CHAPTER 2. PROGRAMMABLE MEMORY SYSTEM CONCEPTS

Figure 2.6: Memory Mat PLA Configuration Spreadsheet Screenshot. The blocks were color
coded to guide the user into what they needed to fill out and copy into the configuration
file.

action of the modify operation was programmable. For example, a memory mat on a cache

load could conditionally set the ‘M’ (modified) state bit if and only if there was a hit and

and this was the hitting way, while other ways would clear the ‘M’ bit on a hit. The logic

for this behavior for each of the configurable bits (and separately for mats which held tag

bits and those which held data bits) was specified in a large lookup table, or Programmable

Logic Array (PLA). In order to keep this lookup table to a reasonable size, there was a

preselection configured for what inputs would actually be used to address the table. For

each pair of output bits, a set of 6 inputs was selected from 13 possible inputs by one set

of configuration registers.

Figure 2.5 shows the PLA for the memory mat. The 48 entries in this lookup table were

initially tediously programmed by hand. Bug fixes with this technique or changes to the

protocol were extremely cryptic, and often caused new errors. To simplify and enable the

correct configuration, a spreadsheet-based programming solution was introduced. Figure

2.6 gives an example screenshot of the programming spreadsheet. The screenshot shows

the amount of designer knowledge that was needed for programming the 48 configuration

registers for the PLA for a single mat on a tile. This knowledge had to be extended to each of

the 16 mats on a tile, as well as to the many other configuration values within the mat. These

values were simply documented with the correct configuration for different programming
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had created generic Vera configuration routines and created programming files for different
types of memory mats. A simulation-based approach was used to convert the Vera simu-
lation routines into executable JTAG scripts or compilable C code, which only considered
the configuration values and addresses after the configuration had been done in simulation.
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Figure 2.8: Screenshot of example code for the Smart Memories protocol controller Code.
This is just a small part of just one of the dozen or so configuration (microcode) memories
inside the protocol controller.

models, then never changed. In addition to the configuration within a mat, the the memory

mats were connected to create caches or higher level structures. In order to enable the

verification of the system, several set connectivity patterns (i.e. known cache sizes, sharing

patterns, and associativities), were established. The configuration for connecting the mats

to enable these caches were then calculated and saved.

Each tile (apart from the mats within) also needed a great deal of configuration in

order to implement anything other than a default uncached memory configuration. The

configuration process was achieved either by code executed by the processors (on startup,

one processor could run code in an uncached mode which would configure the chip into a

cached mode), or it could be done before boot via JTAG writes. Therefore, the challenge of

configuring the tile reduced to determining what configuration values needed to be written to

what configuration addresses, and in what order. This was accomplished using a simulation-

based flow to generate JTAG and C scripts from higher-level Vera configuration routines,

illustrated in Figure 2.7.

The mechanism for actually configuring the protocol controller was much the same as

for the tile. However, the configuration “registers” in the protocol controller were more
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substantial than those in the tile. Rather than a few scattered registers, the protocol

controller’s programmability was provided via large programming memories. These looked

like giant microcode banks. The code (simulation Vera) that configured them looked very

similar to the tables as implemented in hardware, and was so large and verbose that it

often crashed text editors trying to modify a single bit to fix a bug. A small example of

this massive body of code is shown in Figure 2.8. The code that configured them was hand-

tweaked, and required the knowledge of the designer in order to know when a bit should

be set to 1 or 0. Most of the configuration was either single bit selectors (“do I source this

field from the previous block, or from a state register?”) or type selectors (“send out a

message of type X”). In many cases, the configuration memories were even more complex,

because they were implemented as two linked memories in the form of a TCAM (Tertiary

Content Addressable Memory). The first compared against some masked lookup data to

give a matching index, and the second table provided the output values at that index.

The mechanism for configuring the off-chip memory controller was very similar to that

of the protocol controller’s microcoded, TCAM-based lookup system. In the same way as

the protocol controller, while the configuration values mapped to addresses in configuration

space that were written by the software flow shown in Figure 2.7, the actual determination

of the values in the Verilog script was written by hand.

2.3 Programming Limitations of Smart Memories

Smart Memories was fabricated (Figure 2.9), and was brought up into a fully functional

system [44]. The programming flows were adapted from the verification stage to generate

configuration tests in JTAG. It used the same flow intended for generating C configurations

to generate the C code the hardware ran to configure itself. While no functional errors were

found in the actual hardware, a plethora of errors arose due to the configuration scripts and

the tools that generated the scripts. The scripts were also brittle in that they had never

been tested for more than a processor or two, notably not for theoretically possible but

untested scenarios, like the configuration of multiple quads from a single running quad into

a TCC configuration. While these were ultimately debugged, it was a hand-done process

and took time and thought.

Since the Smart Memories system was a fully functional programmable memory system,
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Figure 2.9: Smart Memories Die Photo. The chip was packaged and put into a 4-quad
system with 32 processors.
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we presented it to researchers in other groups/at other institutions, as a configurable mem-

ory system, asking “What can Smart Memories do for you?” There was enthusiasm and cu-

riosity from other researchers, in particular, a group from Princeton that had been proposing

modified cache coherence protocols in order to prevent cache timing attacks [46,47,45,10,9].

They were having trouble convincing the circuits/architecture/hardware community that

their approach was viable. Their simulations showed that their solution did a good job of

foiling cache timing attacks, but those in the hardware-related fields did not believe that it

was possible to build such a design in an efficient way. These secure-cache designers saw in

Smart Memories a potential tool for doing real hardware simulations, by configuring it to

implement their protocols, rather than building a CMP from scratch.

The simplest security protocol [47], required just the addition of a “Lock” bit to the

cache lines to prevent certain cache lines from being evicted (if all ways of a set were locked,

then none could be evicted and the cache line would have to be just brought in uncached

from off chip every access). This sounded simple and was exactly the sort of thing Smart

Memories should have been been able to do.

The first consideration was the lock (‘L’) bit and where it would fit into Smart Memories’

hardware. To control the cache behavior based on the L bit and to consider it in the eviction

protocol, it had to be included in the programmable ‘meta data’ bits of the tag mat. This

issue was addressed by filling out the memory mat PLA calculator accordingly, which was

simple enough to do. However, system and protocol controller configuration tasks were

drastically more complicated. We had to write new tasks for configuring the cache in ‘PL-

Mode’, code for each tag mat, data mat, etc. The code for these tasks were each similar

to the obscure code shown in Figure 2.8, which had to be hand-modified to do what we

wanted. The Protocol Controller (PC) code handled the control of eviction, which had to

be modified to make sure the eviction candidate was not in the ‘L’ state, and updating the

‘L’ state accordingly given special operations from the processor. This hand modification

was nearly impossible, and required several sessions with the designer and author of the

protocol controller in order to configure it. Even with the designer present it was very

unclear what each bit should be (the generally successful strategy was to find a command

that was “pretty close” and copy that line of the configuration). Finally this was done

successfully for the simplest design, PLCache [47]. The more advanced cache designs that

the security researchers wanted to implement, could not be realized on the taped-out Smart

Memories hardware.
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As we were developing Smart Memories, we realized that there was no reason that

the chip, while fully configurable in design, had to be taped out in a fully configurable

format. Configuring a flexible chip after fabrication was very difficult, and we could focus

our energy on ways to make sure we configured the chip correctly for a given application,

and manufacture only one specific configuration at a time. What we would ideally want to

do is create a high level specification of the protocol and hardware we want to implement,

then from that configuration generate hardware. We knew that generating hardware from

scratch from a specification is an impossible task, so we focused on building a flexible

hardware template that can take the specification in order to configure itself.

This realization led us to consider a new methodology for designing chips, which we

refer to as a generator methodology [39]. The inherent flexibility of this method lends it

to a good solution for our problem of implementing and experimenting with new memory

protocols. However, the problem that we had in Smart Memories of how to easily and

reliably configure such a system remains, so we must ensure that the generator for this

application is able to take a higher level specification as configuration input.

2.4 The Generator Approach

In order to make it easy (or at least possible) to specify a new memory protocol, we want

to start with a higher level specification of a protocol rather than having to describe the

value of every bit in a look up table which implements a protocol. In order to create such a

specification, however, there needs to be an abstract hardware execution model associated

with it – we need to know what our memory system primitives are that we can compose

and modify to implement the protocol. The higher level specification would “program”

this hardware, to create an implementation of the protocol. This does require creating a

template of the hardware needed in a memory system that can accept the configuration

program. The generator methodology described in this section provides a mechanism for

creating a such a programmable hardware template.

The generator methodology creates a system that embeds knowledge about design op-

tions, dependencies, and optimization tools inside the design. Rather than record one output

of the design and optimization process—the design produced—the process is codified, so

future “designers” can leverage it for other designs with different system constraints. The

design artifact produced becomes the process of creating an instance, not the instance itself.
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The design becomes a generator system that can generate many different platforms, where

each is a different instance of the system architecture, customized for a different application,

a different design constraint, or a different memory protocol.

A generator provides application designers with a new interface—a system level simula-

tor whose components can be configured and calibrated. In addition, it provides a mature

software tool chain that already contains compilation tools and runtime libraries, since even

though the internal components are configurable, the system architecture is fixed and some

basic set of features always exists.

(a) Phase 1: Design exploration and tuning (b) Phase 2: Automatic generation of the RTL
and the verification collateral

Figure 2.10: Two-phase hardware design and customization using a chip generator: (a)
Tight feedback loop of both application performance and power consumption enables fast
and accurate tuning of design knobs and algorithm. (b) Automatic generation of hardware
to match the desired configuration.

Configuring the system becomes a two phase process (Figure 2.10): In the first phase, the

designer tunes both the application code and the hardware configuration. The generator’s

system simulator provides crucial feedback regarding correctness and performance, as well

as physical properties such as power and area. The designer can therefore iterate and quickly

explore different architectures until the desired performance and power or area envelope is

achieved. Once the designer is satisfied with the performance and power, the second phase

further optimizes the design at the logic and/or circuit levels and generates hardware based

on the chosen configuration. Furthermore, it generates the relevant verification collateral

needed to test the chip functionality (since all tools can have bugs).
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2.4.1 Building a Generator for a Memory System

Given the generator methodology and our problem of building a programmable memory

protocol system, we need to define the “template” that we will program to implement dif-

ferent protocols. This template needs to address the first problem that we faced in our

earlier flexible system: the logical submodules need to be able to easily access different log-

ical inputs and signals, for control logic decisions and for manipulating and communicating

data. We also want to leverage the power of the generator to allow different numbers, sizes,

latencies, etc, of units. To that end, Chapter 3 goes into detail on the type of template

one might construct for an overall hierarchical memory system. Since the generator idea

encourages the idea of hierarchical templates, we also go in depth in one of the controllers

of the system and explain how it is parameterized, and again another level deeper for the

individual blocks which make up the controller and show how those too are generators.

The inflexibility of the hardware was not the only issue we faced in the previous archi-

tecture. It was too difficult for a human user to program by hand, and the tools that did

exist for programming it were rudimentary and ad-hoc. Therefore, we also need a language

for specifying the protocol which we would like to implement with the flexible hardware

architecture. Chapter 4 describes the high level programming methodology that helps to

configure the hardware template and makes it possible to implement standard and novel

memory protocols with the same template. Before we can address the problem of how to

specify a protocol in such a way that makes it possible to implement and test in hardware,

we should consider the different levels at which one could specify a protocol, which is the

topic of the next section.

2.4.2 Protocol Specification Levels

Figure 2.11 shows the different levels at which we can consider specifying protocols. The

Protocol Specification Level is the most abstract level, and is completely implementation

agnostic. Rather than saying anything about how the protocol should be implemented, it

states basic properties about its observed behavior. For memory protocols, certain sets of

such rules are common and are grouped together by standard, agreed-upon names. For

example, the protocol could be specified as implementing Total Store Ordering [38] or Se-

quential Consistency [25], or could make some security guarantees about interaction between
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Figure 2.11: Memory System Specification Levels

processes. The protocol level is the level at which we should perform a good deal of verifi-

cation, because adherence to this protocol is what we actually want to test. While writing

rules and building a checker at this level can be tricky, Chapter 5 describes a successful

technique for doing so.

The protocol level does not provide any information about how to actually implement

the desired protocol. Moving closer to the implementation, the Architectural Abstraction

Level begins to make assumptions about the underlying architecture. For example, it might

refer to what entities exist (e.g. processors, caches, communication channels), and describe

things that these entities can do (for example, main memory can be read and written

given an address, caches can modify their contents based on their current state and a

given operation, processors can stall, etc). Current generator tools work at this level, and

parameters at this level are used to configure the system. A good understanding of this

architecture, its capabilities, and its configuration requirements, is essential for using the

architecture to implement a memory protocol, but does not yet provide details about a

specific protocol.
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The Architectural Configuration Level describes how to configure the agreed-upon archi-

tecture to implement the desired protocol. There are many well-studied memory protocols

which can implement sequential consistency, such as MESI [32] or Dragon [5]. This level

describes the desired (lower-level) protocol in some language that is understandable and

implementable by the architectural template above.

The Configuration Program Level uses the program from the previous level to actually

generate the configuration information for the virtualized hardware in the chip generator.

This could mean populating microcode memories, selecting parameters to control the tem-

plate, or selecting from appropriate subinstances, depending on the type of generator used.

Many specifications have been proposed to verify languages at the protocol level. One

higher level description is a protocol’s message flows [43]. A message flow is the sequences

of messages sent among processors to complete a single transaction in the protocol. Talupur

et. al. use the flow description of a protocol to construct invariants for verification, but

researchers could also leverage the same description to generate hardware programs or

configurations. However, this is too high level to easily translate into hardware, especially

without a clear architectural level model. For implementation purposes, we choose to specify

protocols at the architectural configuration level, and use the hardware template to provide

the necessary information at the architectural abstraction level.

The University of Wisconsin’s Specification Language for Implementing Cache Coher-

ence (SLICC) [41,29], is a good model of a language at the architectural configuration level.

It was a language used by the GEMS Multifacet Simulator for its shared memory protocols.

It provided a way to more intuitively and compactly describe cache coherence protocols, by

describing them in a C-like language which provided the following constructs:

• State machines

• States (enumerated per state machine)

• Events (enumerated)

• Actions (enumerated and described)

• Transitions (described)

In addition, SLICC has strong primitives for message types and queues between different

state machines, as well as providing support for external types and methods (which are
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written outside of the SLICC language). SLICC was designed for generating simulator code

for modeling hardware performance and correctness, and also benefited the verification of

a protocol by providing easy to analyze formats as output.

Given that we’d like to start with a protocol description similar to the one provided by

SLICC, but compilable into hardware, we need to build hardware that can accept such a

specification as input. The next chapter describes the method we have used to create the

hardware platform to take an architectural configuration specification. The specification

language itself is discussed in detail in Chapter 4.
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Chapter 3

A Programmable Hardware

Architecture

We prefer to specify memory protocol implementations at a high level, to avoid becoming

lost in the implementation details. Therefore, we need a form of hardware that can take

as input the program for the memory protocol, and have the program take into account

the high-level memory architecture. This chapter starts by describing the architecture of

a modern hierarchical memory system. This background makes it clear that our protocol

“program” consists of many concurrent threads working in parallel. Section 3.2 describes

the types of functions that these threads of control need to perform, then Section 3.3 gives a

quick overview of the architecture that these threads run on. Section 3.4 then describes the

hardware for the most complex thread, the protocol control, in more detail. This example

demonstrates how we make that controller programmable by composing flexible primitives

in a structured template.

3.1 A Hierarchical Memory System

A modern memory system is hierarchical. While there are many possible configurations,

and they could be flexible in a variety of ways, by setting a basic architecture template,

the protocol can be specified for many implementations of that architecture. Our basic

architecture consists of both on-chip and off-chip components. The on-chip components

consist of one or more units which originate commands (traditionally processors), some

local memory, and the communication between them. The on-chip components also include

23
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Figure 3.1: A simple memory system architecture. a) A single processor communicating
with an on-chip memory block by sending it requests and receiving data in reply. b) The
same system, but unrolled to show more detail. The processor on the bottom is the same
processor as the one at the top of the figure, but a reply handler actually interprets return
codes of the memory block, and is able to communicate to additional levels of the hierarchy if
necessary to satisfy requests. It is able to communicate with an on-chip protocol controller,
which in turn is able to communicate with both the off-chip components and the on-chip
memory blocks to take the steps necessary to satisfy the processor’s request.

a module for interfacing with off-chip components, which can include interfaces to other

chips, the network, or larger, slower memories. Section 3.3 describes this architectural

template in more detail.

Figure 3.1 shows an abstraction of a simple hierarchical memory system. Figure 3.1.a

shows the most basic concept, where a processor (CPU) sends requests to a local memory

and receives data or other replies back. Figure 3.1.b shows a somewhat more realistic

“unrolled” view of the complex system, where a CPU sends requests to the memory system,

which arrive first to a local memory block (often, a cache or scratchpad). A reply handler

analyzes the result from the memory block, either returning the data to the CPU to allow

it to continue to run, or stalling the processor before it tries to use the value returned from

the load, while the reply handler takes the steps necessary to satisfy the request.
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Figure 3.2: A chip multiprocessor memory system architecture, with heterogeneous proces-
sors and memory blocks.

Because not all of the data needed by an application or system can be stored on-

chip, modern memory systems must also interface with off-chip memory components. If

a processor request can not be satisfied locally, then the reply handler communicates with

a more powerful protocol controller. The protocol controller can query and update the

memory block, as well as communicate off chip to a memory controller which has access to

off-chip and/or networked memory.

This simple view of the hierarchical system becomes more complicated, in a system with

multiple processors, as shown in Figure 3.2. Multiple processors are capable of sending

different types of messages into the memory system. A network is now required to arbitrate

between the different processors to send their requests to the correct destination(s). The

memory blocks can be configured as caches of different sizes and capabilities, or entirely

different structures. Each reply handler is associated with a processor, so a reply network

reflects the request network to route the responses back to the originating processor. The

reply handlers again communicate to the protocol controller, which now must arbitrate

between the different requests from the reply handlers, enforce ordering between them, and
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Figure 3.3: One instance of a CMP template, including the components for the mem-
ory system. A parameterized number of processors connect to memory blocks through a
crossbar. The crossbar’s width is parameterized, but its structure is known. The memory
blocks implement caches and their behavior is specified in the higher level language. They
communicate back to the processors through reply handlers, which on some operations com-
municate to the Protocol controller through dedicated direct interfaces (each reply handler
has its own connection to the Protocol Controller). The protocol controller communicates
to the memory blocks in the same way as a processor, through the crossbars. In this in-
stantiation, the protocol controller has dedicated interface to the off-chip memory system,
which is implemented in SystemVerilog simulation testbench.
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send requests into the request network similar to the way the processors do. The protocol

controller still sends requests off chip but these may go into a more sophisticated network

with multiple memory controllers, and even other chips’ protocol controllers for a fully

hierarchical system.

To minimize complexity and increase clarity, we will use this architecture for the rest

of this thesis. For performance, many systems add additional levels of memory hierarchy.

For example, processors today have 2-3 levels of on-chip caching, with the level one caches

generally private and the 2nd or 3rd level shared. The hardware still fits into the template

in Figure 3.2, though we would need multiple, more complex controllers to manage the

interactions between the memories. For this purpose we would still describe these as memory

blocks, and introduce more controllers to send them requests and interpret their replies. The

result would look similar to the memory blocks and associated protocol controller shown

in Figure 3.2, but rather than communicating directly with the processing elements, these

controllers would communicate between the first level protocol controller and off-chip, and

with their own associated memory blocks which maintain the additional cache levels.

To understand what all these blocks are doing, the next section reviews how the whole

system works together to provide a simple view of the memory system from the processors’

perspective. This description is a known as a memory protocol.

3.2 Describing a Memory Protocol

One of the main advantages of a hardware system is that many things can be happening

in parallel. In order to maximize this concurrency and increase the locality of the system

(to make routing and wiring shorter and faster at all levels), we want to have several

blocks working relatively independently, rather than having one holistic controller which

orchestrates every interaction in the system. As we described in the previous section, those

blocks are macro-level entities like processors, memory blocks (caches), protocol controllers,

the off-chip network, and main memory. In the same way, these macro level entities may be

divided into micro level blocks, e.g. the different stages inside each of the larger controllers.

The protocol controller might have different subsystems to handle communication with main

memory vs. communication with memory blocks.

In our model, each block (or subblock) communicates with a subset of the other blocks.

This communication is done via generalized messages. A message could be as simple as
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Figure 3.4: A simple MSI memory protocol, demonstrating the basic components of a shared
memory protocol.

an instruction of what the neighboring block should do, or an acknowledgement that the

instruction has been completed, but the idea can be extended to include any number of

additional data or flag fields (Address, Data, State, and so on).

At the leaves of this hierarchical design, the internal behavior of each of these blocks

is not complicated, and is easily described with a finite state machine (FSM). Each block

tracks some number of operations and maintains the state and associated data for each of

these operations. In addition, it selects the correct operations to perform at a given time

based on an incoming message from another block, and the current state of the associated

operation. Local memories usually have state associated with each data entry to maintain

the state of a given piece of data. In order to determine the correct action(s) to take when a

message is received, the hardware can query the state. Once the current state is determined,

the hardware can update the state and perform zero or more actions.

The mechanism for the data’s state modification requires a number of fine grained

updates resulting determined by the received message and the actions performed. These

actions include receiving data, moving data around, translating the data, and composing

messages to send out to other blocks. A key capability of the hardware is the movement

of pieces of data (“blocks” or “lines”). The hardware provides mechanisms to move pieces
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of data around, such as allowing it to be copied from an interface or input buffer into an

internal storage structure, and again from the internal storage structure to output ports or

buffers. This action can be described at a large granularity, for example, by describing the

actions on an entire block of data, but the actual hardware may need to be able to serialize

this action in order to make it implementable.

To support and track this data motion, each entity maintains its own internal state.

Internal storage buffers data that is passing through and tracks outstanding operations,

because requests can not be satisfied in a single operation. Common structures of this type

include the Miss Status Handling Register (MSHR), which tracks a more complex state

than the simple line state (for example, which processors are waiting for the miss to be

satisfied), and the Line Buffer, which stores large blocks of data as they are pass through

the system and accumulate.

So far we have focused on control and sequencing operations, since that is the majority

of what these blocks do. Of course, some blocks also must manipulate the data fields, e.g. to

create the hashed cache index in ZCache or RPCache, or to compute the eviction candidate.

Our architectural template allows the protocol to specify arbitrary logical functions. In these

cases, the hardware generator provides a clean interface to attach functional units which

are controlled by the FSM.

The procedure for maintaining and updating state, and describing the actions performed

in a given state when certain events occur, is formally described with a memory protocol.

Figure 3.4 shows a toy memory protocol, which identifies the basic building blocks of a

shared memory protocol. First, cached addresses in the system (“cache lines”) have associ-

ated state. In this simple example, these states are Invalid, Shared, or Modified. The state

of an address gets modified based on certain events, such as messages coming from a pro-

cessor or from another chip via the network. These transitions depend on the current state

of the address and the observed event. Finally, while making the transition, the system

needs to perform certain actions in order to actually correctly make the transition.

What is hard about designing and implementing such a protocol is making sure that

all the pieces work together. Adding the special address hash for a new cache design is

not complicated. However, describing all the message actions for transactions, or cache

consistency, is where the errors are made. Therefore, we want to create primitives that

cover the communication and sequencing part of the controller hardware, and allow users

to add special hardware functional units for the tasks that are easier to describe. The next
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section will walk through the hardware constructed to build a generalized controller that

can not only implement this simple protocol, but is also flexible and programmable enough

to implement novel, more complicated, protocols.

3.3 High-Level System Template

To fully specify a hardware memory system, therefore, we need an overall abstract architec-

ture. We would first need to specify the number of levels in the hierarchy, and the sharing

patterns at each level. For shared caches we need to define the communication mechanisms

between the different controllers which access them, so that we can ensure the shared caches

remain in a consistent, coherent state. The protocol can assume an abstract way of passing

messages, but the actual mechanisms for interconnect (e.g. a direct, fully parallel interface,

a flit-based network protocol, or an arbitrated crossbar) need to be specified inside the

hardware template. Since communication networks are a well-studied problem, we can use

existing generators for those. However, each additional level of hierarchy requires new con-

trollers to implement their part of the protocol. Rather than building a new controller from

scratch for every level of the hierarchy (though they may have different possible actions and

tracking structures), we will create an abstract template for a controller and configure it

for the job it needs to do via the configuration program.

Therefore, the next section will focus on how to build a template for a single abstract

controller in the system, where the system is made up of multiple controllers connected by

interconnections of various types. We will discuss in detail the micro-templates which are

used as building blocks inside the protocol controller for a shared cache, and how the micro-

template is made programmable. For this purpose we will focus on the protocol controller

which interfaces between main memory and a number of shared caches, the same as the

protocol controller depicted in Figure 3.2 and Figure 3.3.

3.4 Generalized Protocol Controller

We’d like to build a memory system which can implement a protocol such as the one shown

in Figure 3.4. As we mentioned earlier, the system will be made up of a hierarchical system

of interacting, independent blocks. We are able to generate both the internal controller

hardware and the needed configuration of this hardware by leveraging a set of configurable
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Figure 3.5: A Generalized Protocol Controller, showing the different flexible components
which can implement an arbitrary protocol. These subcomponents are discussed in detail in
this section. 1© depicts an input interface on which a message is received from another block
in the system. 2© is a set of FIFO structures used to buffer the incoming messages. 3© is an
arbiter to select between incoming messages. 4© is a subunit which generates events based
on the incoming messages. 5© is a tracking unit to hold the current state of transactions in
the controller. 6© converts the triggered event and current state into a set of actions. 7©
depicts special blocks, in this case a Line Buffer and an MSHR, which can be controlled
or queried by the actions. 8© translates the actions and other input data into outgoing
messages. 9© shows the output buffers to blocks in other units.
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Figure 3.6: The hardware interface primitive provides an encapsulation of a set of signals
and widths, and provides a clean way to specify the interfaces between units. It is a pa-
rameterized version of a SystemVerilog interface, where the parameters describe the signals
and their widths. The crossbar can reference the same interface object to query about its
signal names and widths, in order to create the crossbar internal structure and interfaces.

building blocks. These building blocks lie at the core of most controllers, and are described

in the remaining part of this chapter. To help better understand where and why these blocks

are used, we will describe them in the context of creating a protocol controller that interfaces

caches to the next level in the memory system. To create the template for this controller,

we used Genesis [36, 35], which allows powerful, hierarchical parameterization of Verilog

modules and allows the template to be customized for many applications. Throughout

this section we explain how we parameterized each low-level hardware piece to provide this

flexibility. We start with the connections between each of the individual controllers.

3.4.1 Interfaces

In order to implement any protocol in a system like the one in Figure 3.2, the protocol

controller needs to interact with the reply handler(s), memory block(s), and the off-chip

memory system. The types of messages sent to and received from each neighboring block
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Figure 3.7: Additional uses of the hardware interface primitive, zooming in on 1©, 2©, and
3© of Figure 3.5. The same primitive is used to parameterize the FIFOs used to buffer the
incoming messages, as well as to build an arbitration mux specially sized for the incoming
data.

are different, and may also vary depending on the protocol, hierarchy, or data sizes/widths.

However, the basic idea of sending messages with a Type and associated data fields remains

the same, therefore we design a programmable interface primitive as one of the key parts

of a memory system generator and use it in many modules. Figure 3.6 shows the primary

use of the interface primitive. The interface primitive compiles to a SystemVerilog interface

(which encapsulates the connectivity between two or more modules), and allows Genesis to

control the name and width of each signal. Each interface describes the set of signals going

in one direction, and a separate interface can be used to describe signals flowing in the other

direction. This is the way to build the “message” specification primitive, but it is not the

only use of this hardware primitive. Aside from making it cleaner to instantiate inputs and

outputs (an inherent benefit of the SystemVerilog interface that is under the surface), the

interface provides a packaged way for modules to agree on how they will communicate. Both

sides can query the interface object’s parameter space to learn about the signals and widths

that they must provide or accept. In addition, since FIFOs don’t change the interface (they

just add delay element), the template can use the same interface specification but decide to

insert a FIFO between the communicating units. This FIFO depth decision is orthogonal to



34 CHAPTER 3. A PROGRAMMABLE HARDWARE ARCHITECTURE

the protocol specification so could be made for other optimization or performance reasons.

The parameters for the interface are :

• MSG NAME = name

• SIGNALS = [{name => ..., width => ...}, ...]

• LATE BIND SIGNALS = [{name => ..., width => ‘LATE BIND ...′}, ...]

• LATE BIND MODULE = module name

• LATE BIND PREFIX = prefix

The MSG NAME parameter allows an intuitive naming of the interface, such as “Pc2MbReq”.

The SIGNALS parameter is a hash of signal names and widths, and is optionally replaced by

the LATE BIND SIGNALS parameter. If the LATE BIND SIGNALS parameter is given

instead, then some widths inside the hash may be specified as LATE BIND * (for exam-

ple, LATE BIND DATA WIDTH). This indicates that the width of this signal should come

from another source, by default the parent module. If the parent module is not the de-

sired source of the width, then it can be overridden for this interface instance with the

LATE BIND MODULE parameter, and the LATE BIND PREFIX can be used to differ-

entiate signals with the same base name. For example, the parent module may contain

the calculation for the P2MB DATA WIDTH coming from the processors into the mem-

ory block, and also the calculation for MB2XBAR DATA WIDTH for the replies from the

memory blocks. LATE BIND PREFIX can used to distinguish which of these parameters

in the parent module should be used for LATE BIND DATA WIDTH.

Because the protocol controller is interacting with a number of different blocks, it will

need to buffer incoming messages and arbitrate between them. The interface primitive can

be re-used to create familiar hardware blocks, as shown in Figure 3.7. One is a FIFO queue

primitive, which can be used to buffer incoming messages into FIFOs of the correct widths1.

In order to arbitrate between the buffered inputs, the FIFO primitive can be coupled

with a parameterized multiplexer primitive to select among a set of input interfaces, and to

1 [24] has shown that there is great benefit to keeping these sorts of structures narrow, as it allows more
efficient state inference propagation across clock boundaries. The information contained in the interface
structure allows a set of FIFOs to be constructed in parallel, one for each field in the interface, rather than
blindly concatenating signals to be buffered as a single input to a FIFO. This allows more efficient synthesis
of the design.
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construct the multiplexer output interface as the union of the input signals. The multiplexer

also outputs an Id signal on the output interface (if it doesn’t already exist) to indicate

which input it came from.

When the protocol controller wants to compose an output message, it may compose

it generically but then only want to send it to a single destination. For example, it may

compose a generic reply but then send it only to the reply handler which originally sent

it a request. For this purpose, the interface primitive object can be passed around and

referenced when creating other hardware blocks. For example, it can compile down into

a SystemVerilog interface used to connect with a demultiplexer (demux), which sends the

input out onto a given output. Because of the more powerful parameterization of the output

interface objects, the demux template can query each of the interface objects to create the

parameters for the input interface (as the union of the set of all output signals). Then it

can instantiate the correct SystemVerilog (hardware) interfaces on each of its ports, and

also save the object reference so that the other blocks which want to connect to it can learn

about the signals for the input interface. Internally, a simple demux is instantiated for each

signal which makes up the interface, even though the control signals are the same, because

it is more efficient for synthesis to have narrow, understandable data paths.

Finally, for times when an input message may need to be delayed by a given number

of cycles, (for example, because looking up the current state of the line referred to in the

input message takes a fixed but non-zero number of cycles), the interface can be used in a

very simple fashion by a delay primitive template. The delay template takes as a parameter

a reference to an interface object, then will use that description to create SystemVerilog

interfaces at its input and output, then internally create the series of flops needed for each

field described in the interface object.

Having described the interfaces at the edge of the controller, we now describe how to

implement the flow of data and the control mechanisms within.

3.4.2 Events and Transitions

When the protocol controller receives a message, it should map that message to an event

(similar to the types shown in Figure 3.4) so that it can associate the event with its current

state and make the correct transition and actions. Therefore, we need to construct some

logic for determining the event from the incoming message. The high level goal is to map

a set of inputs onto a set of outputs. The logic will do this by comparing some or all of



36 CHAPTER 3. A PROGRAMMABLE HARDWARE ARCHITECTURE

the fields from the incoming message, and referring to status results from inside the system

(such as whether internal state is full or has space available to allocate). When the mapping

is very dense (all of the input values are used and each most combinations have a meaningful

output), a standard way of doing a translation of this type would be a Lookup Table (LUT).

When the mapping is more sparse (not all of the inputs are needed for each output case,

and not all the input values have unique outputs), a tertiary content addressable memory

(TCAM) is a more efficient structure.

A LUT is a widely used technique for building a simple logical function that translates

a single input into a single output. Values that aren’t specified in the mapping are “don’t

cares” or X. These structures can be used for simple things like translating opcodes, but

they are used internally to build more complex structures. The parameters for the LUT

are:

• LUT PARAMS = [{lookup val => ..., table val => ...}, ...]

• LOOKUP V AL SIZE = width

• TABLE V AL SIZE = width

The LUT PARAMS parameter gives the mapping from lookup val to table val. Note

that there does not need to be a table val for every possible value in the table. The

LOOKUP VAL SIZE parameter indicates the width of the input of the function, and the

TABLE VAL SIZE parameter gives the width of the output.

Unfortunately, for most cases, the LUT is not well-suited for mapping incoming messages

to events. This is because multiple fields can influence the type of event (for example, one

might want to consider the message type, the state of the target line, and the state of

the eviction candidate), and the consideration of those fields is not necessarily uniform or

complete. In many cases a “don’t care” value is required for some of the inputs, and the

outputs are not all fully specified either and should take default values. For this reason, we

introduce a programmable ternary content addressable memory (TCAM) primitive. The

TCAM is an extension of the LUT which maps multiple inputs onto multiple outputs,

but allows for very sparse mappings instead of the dense LUT mapping. It allows don’t

care values on the inputs, and default values for the outputs. It also implies a priority

value for statements, so can be used to generate if-then-else like constructs. In essence, it

allows almost arbitrary logic functions, as it allows the specification of all the inputs to the
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function, the outputs, and the mappings between them. The nomenclature used is that

the inputs are “Conditions”, the outputs are “Actions”, and the mapping between them

is a “Conditional Action List”. For each Conditional Action, any conditions not specified

are assumed to be “don’t cares”, or conditions can be specified partially as don’t care by

supplying a mask value. For each Conditional Action, any actions not specified take their

default value. The number of conditional actions can be arbitrary, and they are prioritized

by order so the highest order (“last one on the list”) that matches takes precedent. This

allows the construction of ‘if-then-else’ type logic, and means that only one line in the

TCAM will match. Any number of the output signals can be assigned values based on

the line which matches. The one disadvantage of the TCAM is that for sets of conditional

actions that may differ only in a single condition or single action, they must all be fully

specified. An intelligent compiler could optimize this (for example, by assigning values to

opcodes such that don’t-care bits can be utilized efficiently).

The parameters for the TCAM are:

• INPUT LIST = [{name => ..., width => ...}]

• OUTPUT LIST = [{name => ..., width => ..., default => ...}]

• CONDITIONAL ACTION LIST = [{condition list => [...], action list => [...]}]

The INPUT LIST parameter gives the names and widths of the input signals. The OUT-

PUT LIST parameter gives the names, widths, and default values of the output signals.

CONDITIONAL ACTION LIST gives the mappings from inputs to outputs. Each CON-

DITIONAL ACTION LIST array element corresponds to a line in the TCAM. The condi-

tion list can contain for each input a value and compare mask. If an input is not in the

condition list, its compare mask is all don’t-cares). The action list gives the list of outputs

and their values corresponding to a match of the condition list. Any outputs not specified

in the action list take their default values.

Having defined the mapping, we use a TCAM (Figure 3.8, Figure 3.5 3©) to map inputs

to events2. We use a second TCAM to map the current state and the triggered event to

the next state and actions to perform (which FSM arc to traverse). Figure 3.9 shows the

Transition TCAM in more detail, and its place in the generalized controller is shown in

Figure 3.5 4©. The structures, though they use the same TCAM primitive, differ in that the

2This mapping could be dense or sparse, but we use a TCAM to make it more broadly applicable.
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Figure 3.8: The Event Trigger TCAM, used to map fields from incoming messages and
other blocks in the system to a single triggered event.

event trigger TCAM outputs only a single numerical event as its action, while the transition

TCAM outputs a number of one-hot action signals and the numerical next state.

Once the protocol controller has used the Transition TCAM to determine which arc to

traverse on the protocol, it needs to actually perform those actions. While up to this point,

the structures used to construct the protocol controller are very generic and reusable, the

actions could be “anything”, so a variety of hardware might be needed to perform them.

We introduce a translation block to implement more flexible logic.

3.4.3 Translations

One common action that is easy to abstract is the sending of messages out to other blocks.

However, populating the fields of such a message could require arbitrary logic. For this

reason, we introduce the concept of a translation. A translation is a way to program fairly

arbitrary logic, but in a way that makes it cleanly translate from all its inputs to its outputs.

The internal microblocks used to implement that logic can be selected from a variety of

types. Rather than requiring that the outputs map to the inputs via only a single TCAM,

LUT, or similar structure, the translation allows the programming tool to select from and
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Figure 3.9: The Transition TCAM: used to generate the next state and actions to take
given an input event and current state.
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instantiate a variety of hardware structures in order to populate an outgoing message. It

is referred to as a translation because it exists to generically translate inputs into outputs.

The inputs and outputs are specified using interfaces, but these internal interfaces don’t

need to map exactly onto an interface between separate controller hardware. The generator

assembles the interfaces, pulling in signals which need to be incorporated into the translation

(logic) for the output interface signals. The translation block can generate either control or

data signals which connect through an interface at the output of a translation block.

In order to populate an outgoing message, signals may be provided by a variety of

methods. A simple one might be immediate, which would assign a constant value to

any valid message (a useful optimization if all outgoing messages assign the same value).

Another functionality would be to assign a field to the outgoing message by tying it to

an input, for example the Address or sequence number of the outgoing message could be

provided directly and consistently from another part of the system. For that the hardware

could directly wire an output to an input using a pass or rename strategy. However, the

logic could be more interesting. As an example, a REFILL request to off-chip memory may

need to include the number of bytes required to complete the REFILL (because memory

blocks use different line sizes). So, some mapping from requestor to that field in the output

message is needed, and in this case a LUT is a good candidate. For more complex situations

like the outgoing message type and validity, which depends on the actions needing to be

performed, a TCAM can be instantiated.

While translations can be arbitrary logic, some types occur often enough that we include

internal templates / generators for it. One such type is a TCAM mux, which uses the control

inputs to select which data input to send to the output. While a TCAM allows a mapping

from inputs to outputs, it does not perform well when one of the outputs should simply be

equal to one of the inputs, because that would require fully populating all of the possible

values of the inputs. For example, the protocol controller may be tracking the source of

data to write to the off-chip memory system. In some cases it should be copied from the

line buffer, while in others it might be copied directly from an incoming message to be

forwarded directly out of the system. To provide this functionality, the TCAM mux uses

a parameterized mux which is controlled by a specialized TCAM. The TCAM structure is

controlled by the same idea of a set of conditions, but the only output is which selection

to make. A separate set of inputs provides the possible selections to choose from. If some

inputs should be constants, they can simply be provided to the TCAM mux as possible
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inputs.

The parameters for the TCM Mux are :

• INPUT LIST = [{name => ..., width => ...}]

• DATA LIST = [signal, ...]

• DATA WIDTH = width

• CONDITIONAL SELECT LIST = [{condition list = [...], selection => signal}]

The INPUT LIST parameter is essentially the same as the INPUT LIST parameter for the

TCAM. The DATA LIST parameter provides the possible inputs that would be selected be-

tween, and the DATA WIDTH parameter describes the width of those signals. It is required

that all possible input signals have the same width, which will be the same as the output

signal’s width (there is no parameter to specify that as it uses the DATA WIDTH param-

eter as well). The CONDITIONAL SELECT LIST parameter is similar to the TCAM’s

CONDITIONAL ACTION LIST, except instead of the Action list, there is only a single

action, the selection, and is the name of the signal from DATA LIST which should be se-

lected when those conditions are true. Since the TCAM is the underlying structure, the

TCAM Mux also allows a priority to its outputs.

One final way the translation can map an input into an output is to decode it into

one-hot signals. This is useful for translating a destination id into the one-hot Valid signals

on the outgoing interfaces.

Putting it all together, the translation block shown in Figure 3.11 provides a way for the

hardware generator to select from a variety of hardware primitives rather than just program

a single set block. The parameters for the Translation are:

• IFC IN = interfaceObject

• IFC OUT = interfaceObject

• MAPPING TY PES = [{out sig => ...,map type => ...}]

The IFC IN object demonstrates the power of the interface primitive, by wrapping up

information about the input signals and their widths. The IFC OUT object does the same

for the output signals. The MAPPING TYPES parameter describes how each output signal

should be determined. If a signal from IFC OUT is not found in the MAPPING TYPES
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Figure 3.10: Action to Message Translation System, which converts action one-hot signals
and a variety of data inputs into output messages on an interface. The Translation internals
are shown in Figure 3.11.
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Figure 3.11: The Translation Primitive. This primitive maps actions and input data fields
into outgoing messages, using a variety of mapping techniques. For each output, the map-
ping type is specified using a parameter, then the primitive instantiates the correct inter-
nal hardware for the mapping. Further parameterization indicates the functionality of the
smaller internal blocks, such as the fields of a LUT or TCAM. The figure shows one mapping
of each type, but an actual translation could have any number of each type of mapping.
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array, then its mapping is assumed to be tied to zero. Otherwise, it can be explicitly

assigned using one of the variety of mappings:

• zero The default, tie the output to zero.

• pass This requires that there is a signal in IFC IN with the same name as IFC OUT.

The output signal is simply assigned to the input signal with the same name (its value

is passed). The signals do not have to have the same width, the output signal will be

truncated or padded with zeros accordingly.

• rename(in sig = signal) Take an input signal and rename it to the output signal

(useful for situations like where ‘data’ might get renamed to ‘returncode’). If the

output signal is not the same width as the input signal, it will be truncated or padded

with zeroes accordingly.

• immediate(val = value) Give an immediate value (such as 1 or 0) to a signal. This

is fixed and useful for debugging.

• decode The translation will instantiate a decoder and decode the value of the signal.

This is handy for converting a binary signal into a one-hot value.3

• lut(lut param = signal, [lut module = module]) This requires the additional informa-

tion of a signal to act as the input to a LUT. The Translation will instantiate a LUT,

where the input to the LUT is the signal specified as lut param. The LUT configura-

tion is parameterized internally, or an alternative is that an already instantiated LUT

object be passed in. In that case, the LUT will be cloned an instantiated, thereby

using the same internal parameterization as the LUT passed in as lut module.

• tcam (tcam params = [signals], [tcam module = module) This instantiates a TCAM

for a given output signal. The multiple inputs which control the TCAM are listed in

tcam params. Similar to the LUT, the translation will instantiate a TCAM, which will

have its CONDITIONAL ACTION LIST provided by its own internal configuration,

or it can clone a tcam which is passed into the tcam module parameter to duplicate

its internal configuration.

3There is not currently an encoder primitive though intuition tells us that would be a good idea, it just
never came up in our use cases.
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Figure 3.12: State Tracking Hardware, for tracking the state of multiple operations as they
pass through the controller. The hardware can have any number of fields in a single entry,
and can have any number of entries. One field in the entry is always ‘State’. The write
ports allow writing of an entire entry (identified by its index) at once, and read ports read
the entire indexed entry at once. A LookupBy< X > port allows looking up an entire
entry by a field X, rather than by its index. Free ports deallocate an index when it is no
longer needed. Update ports allow updating the individual fields of an entry (such as State)
without modifying its other fields.

• mux (tcam params = [signals], mux options = [signals]) The translation will inter-

nally instantiate a TCAM mux. The control signals to the TCAM mux are chosen

from the input signals by listing them in tcam params. The possible inputs are listed

in mux options.

3.4.4 State Tracking and Special Blocks

One of the key jobs of the protocol controller in implementing its portion of the memory

protocol has been neglected up to this point. That is, the protocol controller needs to be

able to track and update the current state of the system. The state transition diagram



46 CHAPTER 3. A PROGRAMMABLE HARDWARE ARCHITECTURE

in Figure 3.4 shows an abstract view of the state of a single line in the system. From

the protocol controller’s perspective, however, the actual state of a line is more fine-grained

because it cannot atomically perform all the actions which are needed to make the transition

valid. Therefore, the view of the protocol controller has many more than three states for

even this simple example. In addition, the protocol controller needs to track multiple

operations at a time, and have a way of associating or looking up the state whenever an

event is triggered. For this, we introduce a state tracking primitive, shown in Figure 3.12.

The State tracking primitive is used to build the tracking structures (eg, MSHR), and holds

at a minimum the State of each outstanding transaction in the controller. It also holds any

associated information needed to identify the transaction (such as Address or originating

processor) and can hold additional data (such as an index in the Line Buffer which is

accumulating the data for this request).

The parameters for the State primitive are:

• NUM ENTRIES = number

• STATE IFC = interfaceObject

• NUM READS = number

• NUM LOOKUPS = number

• LOOKUP SIGNALS = [signal, ...]

• NUM WRITES = number

• NUM FREES = number

The NUM ENTRIES parameter controls how many entries are available to track in the

State. STATE IFC parameter provides all the information about the signals contained in

each entry of the State. NUM READS, NUM LOOKUPS, NUM WRITES, and NUM FREES

indicate how many ports of each type should be allowed. Conflicts in priority are handled

externally (an index that is freed/allocated/written/updated at the same time is an er-

ror, and writes/updates are prioritized by the port number). The LOOKUP SIGNALS

parameter lists which signals should be included in the lookup ports. For example, if

LOOKUP SIGNALS = [‘Address’], then there will be an input ‘LookupBy Address 0’ (and

multiple of these if NUM LOOKUPS > 1). The state tracking primitive thereby provides
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Figure 3.13: Two Dimensional State Tracking Hardware, for tracking the state of multiple
operations as they pass through the controller, by allowing for an Offset field in addition to
a basic “LookupBy” field. This allows multiple items (pink squares) of specified sorts to be
stored with the indexing items (green squares), and to update them in a smaller granularity.

an understandable way of creating a small memory with entries that can be read, written,

or updated in a single cycle.

In some cases, the data that the protocol controller would like to store with the state

is too large to make updating it in a single cycle impractical. For example, when writing

a cache line into the line buffer, it could require several cycles to receive all the data from

the off-chip network. Therefore, a two dimensional state primitive (Figure 3.13) extends

the regular state primitive into something that looks like a two dimensional memory. You

can now specify a number of entries in a horizontal direction as well as a vertical direction.

There is no lookup capability in the 2D State, but you can still have multiple reads, writes,
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and frees. Reads and writes now specify an offset and only the entry at that offset is read

or written. A line in the state is Valid once one entry in the line is Written, and it goes

invalid once that line is explicitly freed. A good example is a LineBuffer structure, where

it is impractical to read and write the entire entry at once, and one would rather do it on

a word basis rather than a line basis.

In order to populate outgoing messages with data from the 2D structure (for example,

sending a line of data into a memory block), the generator for the Protocol Controller can

choose to instantiate a special message pipe primitive whenever it has to send some of these

“wide” data fields, which breaks wide signals into narrow, more practical ones. An example

is converting a single abstract message directing the memory to send an entire cache line

to a cache (e.g. on a refill). The message pipe (shown in Figure 3.14) is similar to the

translation in structure with all fields as “pass”, but it contains state in order to track

the messages flowing through it. It can be inserted between the translation block and the

outgoing interface (between 8© and 9© in Figure 3.5).

The message pipe saves the short, abstract command (e.g. “REFILL”), then outputs

several true messages with an associated offset to complete the full abstract operation. It

increments the offset on each of the true messages, and the number of messages needed to

complete the operation is provided by a lookup table indexed by the Type of the incoming

message. As an example, a message pipe would could be instantiated between the protocol

controller and the memory block (cache). Abstractly, the protocol controller could send a

single data write message containing an entire new cache line to refill the cache. The message

pipe intercepts that message, and handles sending several smaller data write messages to

the cache, incrementing an offset counter both to read from the line buffer and to indicate

the offset to the cache itself. This functionality is hidden from the user.

The parameters for the message pipe are:

• IFC IN = interfaceObject

• PIPED SIGNALS = [signal, ...]

• LUT PARAMS = [...]

• COUNT WIDTH = number

The IFC IN parameter describes both the input and output interface for this message. The

PIPED SIGNALS parameter lists the signals which need to be pipelined (the other signals
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Figure 3.14: Message Pipe Hardware, for allowing some wide fields of messages to be “piped”
over multiple cycles. When the input message is received on the interface, its Type field is
used to look up the total number of messages that it will need to be broken into, and (if
that is greater than 1) the offset counter is initialized, and the input message is saved. On
each cycle the offset counter is sent to both the receiving block and to the two-dimensional
structure holding the wide data. The value read from the two-dimensional structure is
received on the “piped input”, and incorporated into the message going on the output
interface along with the stored fields. When the counter decrements to zero, the message
pipe resets to the idle state.
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Figure 3.15: Hardware for generating control signals and inputs for the Special Blocks.

in IFC IN will just be saved and be the same for each output message). The LUT PARAMS

enables the Message Pipe to instantiate a lookup table and use it to look up the pipeline

depth for each ‘Type’ coming on IFC IN. The COUNT WIDTH just gives an upper bound

on the size of counter necessary to implement the maximum pipeline depth.

Finally, if the protocol controller has any state which it knows will be completed in order

(in our system’s case, the protocol controller does not have this restriction, but the reply

handler does), an in-order FIFO State can provide a more efficient tracking structure. The

FIFO state is very similar to the State, but it allows multi-ported FIFO-style reads and

writes rather than indexed reads and writes. This is useful for state entry trackers which

are allocated and deallocated in order.

Despite all these programmable hardware primitives, in order to fully implement a

protocol, the protocol controller and other blocks in the system will need some structures

and functions which are not fully specified by the programming parameters. These special

blocks and/or functions can be hardcoded, but in order to make the hardware flexible, they
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each satisfy a clearly specified interface. One example is the block which returns the best

eviction candidate in a cache when provided with a target address to find a home for. The

internals of the block are written in Verilog, but different blocks with the same interface

could be swapped using a parameter to select which to instantiate (this is a classic use of

Genesis). The control signals for these blocks face the same problems as sending messages to

other entities in the systems (in fact, one could view their interfaces as internal messaging

systems which need to be controlled in the same way). Figure 3.15 shows how actions

can be interpreted in order to provide inputs to the special blocks. Note the similarity to

Figure 3.10. By using the same paramterizable interface structure, we can build the control

logic for the special functional units in the same way as for sending messages to other blocks.

The state tracking primitives can be viewed as special cases of the special blocks, in

that they are highly specialized logic blocks that we know how to build. A useful approach

for special blocks in general is to create a parameterized Verilog module that can be reused

for different purposes, and has a clearly defined interface that can be used by the compiler.

This chapter has described a memory system architecture composed of controllers con-

taining a large number of small, simple building blocks. All of these pieces can be configured

to implement the types of memory protocols similar to the one shown in Figure 3.4. The

next challenge is to make the problem of configuring all the parameters in these blocks sur-

mountable, by moving the specification to a higher level. The following chapter describes

our specification language to make this a tenable task.
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Chapter 4

Programming the Hardware:

SLAMM

The previous chapter described how to build one of the controllers needed to implement

a memory protocol, and explained the flexible hardware blocks that are contained within

it which allow programmability of the system. By using parameters to specify the system

at design time and only building the hardware particular to that system, we are no longer

constrained by hardware that has to be manually connected between blocks, inputs to logic,

etc. However, we have only partially addressed the problems we had in earlier configurable

systems, because selecting the necessary values for the many parameters in the system is

a Sisyphean task. Therefore, this section describes a higher level language, and compiler

flow, that we have developed to make programming the system a more natural task for a

protocol developer. This language, Specification Language for Advanced Memory Modules

(SLAMM) provides a programming capability that is similar to C, but with strong ties to

the understood architectural model for which it is being programmed. Section 4.1 explains

the grammar and constructs of this language in detail, and runs through an example of

specifying a thread of control in that language. Section 4.2 explains how the compiler

for SLAMM integrates the parameters from the high level specification into the format

needed by our controller template. Section 4.3 gives a quick summary of the ways our

current templates use (or do not use) this high level input, to demonstrate how even a

partial specification with this language can be useful, and be integrated with already coded,

relatively inflexible blocks. Section 4.4 then discusses an example of extending a traditional

cache model with this specification language.

53
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4.1 The SLAMM Constructs

SLAMM preserves the idea that we developed in the previous chapter, that in order to

make our system efficient and have a lot of parallelism, we should have a lot of smaller

controllers working independently, sending messages to each other. Therefore, the highest

level construct in the SLAMM language is the state machine, and a configuration program

contains one or more state machine descriptions, indicated with the machine keyword.

The state machine description describes the connections to other blocks in the system,

and contains all the information that would be in the controller’s internal state transition

diagram (a more complicated version of that shown in Figure 3.4). Each state machine

description has to describe the states that make up its internal protocol, events that it

recognizes, and actions that it can perform. It also needs to describe the transitions which

link those states, events, and actions. Again, while the states that the controller is tracking

is a property of the state machine, each of these (states, events, and transitions) are actually

occurring on a ‘line’ or Address granularity. So, as far as the description is concerned, the

specification is generally for a given line. For example, a MESI protocol would refer to a

‘line in the M state’, not a ‘cache in the M state’. Figure 4.2 shows the basic template for

a state machine code specification.

Figure 4.1 shows an example flow through our abstract controller, which we will revisit

throughout this chapter in order to show how the SLAMM language describes what should

happen in the system. The scope of a state machine file is the scope of the single controller

in Figure 4.1. In order to fully specify the behavior of a hierarchical, interconnected system

like the one in Figure 3.3, the user needs to write several such state machine files, then the

SLAMM program is composed of all of them, plus additional header file information. The

first and most important class of information in header files is the message descriptions.

4.1.1 Messages

As shown in the overall system architecture in Figure 3.6, we don’t get very far describing

only the internals of each state machine blocks, we especially need to specify and configure

the interfaces between them. What the hardware requires is a description of the signals

between each pair of blocks and their widths (or if those are not known, a pointer to where

to get the correct width). Therefore, a large part of the SLAMM language is devoted to

describing the interfaces between controllers, called Messages. These are declared separately
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Mb2PcReq:
Type: CACHE_MISS
Address: A1 Address: A
Requestor: 1

2

MbReqReadMiss3

I
Issue 

RequestForState

4

6

allocate 
Pc2MbReq:

Type: STATE_SEARCH

5

7Address: A
Requestor: 1

7

Figure 4.1: Flow through the Protocol Controller as specified by SLAMM. 1) The Protocol
Controller receives a valid Memory Block Request message on one of the interfaces, of type
CACHE MISS to address A. 2) The request is buffered and then arbitrated in structures
specially configured for holding requests of that type. 3) The request is examined by the
Event Trigger TCAM, and because of its message type an event of type MbReqReadMiss
is generated. 4) The current state of the line is looked up and seen to be Invalid. 5) By
combining the event and the current state, actions are generated by the Transition TCAM.
One action is to send a special allocate command to the MSHR special block. 6) At the
same time, another action is to issue RequestForState message. 7) The Output Message
Translation block turns the action into an output message, and also pulls in the Address
and Requestor signals from the original message.
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machine(ProtocolController, "MESI Protocol Controller (PC)") {

// Enumeration of STATES

// Enumeration of EVENTS

// Enumeration of internal messages (eg to MSHR)
// Enumeration of internal state structures

// Declaration of EXTERNAL (‘‘Special’’) BLOCKS/INTERFACES

// Primitives for STATE QUERY/UPDATE (not currently used by SLAMM!)

// OUTPUT PORT declarations

// INPUT PORT declarations and TRIGGER generation

// ACTION Descriptions

// TRANSITIONS (map from current state and trigger to next state and actions)

}

Figure 4.2: Code for a State Machine. A full SLAMM specification is composed of several
such blocks of code, and additional code to describe the messages between them.
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enumeration(Mb2PcReqType, desc="...") {
READ_MISS, desc="Read Miss (line was not present in cache)";
WRITE_MISS, desc="Write Miss (line was not present in cache)";
UPGRADE_MISS, desc="Upgrade Miss (line was present but not exclusive)";

}

structure(Mb2PcReqMsg, desc="...", interface="Message") {
Mb2PcReqType Opcode, desc="Type of request (CACHE_MISS, etc)";
Address Address, desc="Address for this request";
DataBlock Data, desc="data for the cache line";

}

//SLAMM looks for ports with specific names,
// like mb2cpu_rep, which match the architectural model
out_port(mb2cpu_rep, Mb2CpuRepMsg, mb2cpu);

in_port(cpu2mb_req, Cpu2MbReqMsg, cpu2mb, desc="Reqs from CPU to Cache"){
//EVENT GENERATIONS (See Below)
...
}

Figure 4.3: Code for Messages, which help configure the interfaces between controllers, as
well as interfaces between internal controller components. The message enumerations and
structures are described separately from an individual state machine so that they can be
shared, while the port declarations are coded within a specific state machine.
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for every physical interface in the system, using the structure keyword, but with a special

name which ends in ‘Msg’. For example, the interface from Protocol Controller back to

the cache is described with the Pc2MbReqMsg. Each *Msg structure has an associated

MessageType, which is a special case of the enumeration keyword.

In the previous example, Pc2MbReqMsg structure will have a Pc2MbReqType field. The

fields of the message structure define a given physical interface. While the width of some

signals on the interface are deduced by SLAMM (for example, the number of bits needed

to describe the message Type field), the other widths come from the type of data stored in

the field. Many of these widths are unknown and intentionally ignored by SLAMM.

The SLAMM compiler knows how to translate data types such as DataBlock and Address

into ‘late bound’ parameters, which are defined later by the hardware. In this way, SLAMM

does not need to be concerned with the width of signals, and the same specification can

be applied to an instruction cache with 64-bit instruction words and a data cache with

32-bit data words. For example, SLAMM will associate a message field variable with type

‘Address’ with a width LATE BIND ADDRESS WIDTH, then the hardware will find the

correct ADDRESS WIDTH parameter (by default, in the parent module), and throw an

error if it doesn’t exist. This helps keep SLAMM separate from the implementation, as the

protocol designer is not usually concerned about the value of these widths, but they must

be known when compiling real hardware.

Figure 4.3 shows the templates for the parts of the language associated with messages.

While Messages and Message Types are not necessarily affiliated with a given state machine

(their whole purpose is to connect up different state machines), Message Queues are defined

within a state machine as input and output ports, using the in port and out port key-

words, respectively. For a given architecture (for example, the hierarchical memory system

shown in Figure 3.2), the compiler actually looks for specific *Msg structures that describe

the interfaces. It also looks for the specific in port declaration in order to define event

triggers, and for out port declarations in order to populate outgoing messages. A differ-

ent architecture with additional levels of hierarchy would require additional SLAMM state

machine specifications for the new controllers at the new level, and the compiler would be

modified to know to look for the state machine specifications for controllers at the additional

levels, and for the interfaces between them.

Another important aspect of the message definitions is that SLAMM provides an ab-

straction that does not need to be obeyed literally by the hardware. Specifically, signal
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// STATES
enumeration(MbLineState, desc="Cache states") {
//Base States
I, desc="Not Present/Invalid";
S, desc="Shared";
E, desc="Exclusive";
M, desc="Modified";

R, desc="Reserved";
T, desc="Transient";

}

Figure 4.4: Code for States

widths do not need to be maintained if there is a marshalling/unmarshalling hardware

for wide interfaces. While the SLAMM specification may say “copy one cache line from

Memory System’s Reply into the line buffer”, the hardware can transparently marshall and

unmarshall such requests in order to make the connectivity consume fewer actual wires,

using the message pipe structure we described in Section 3.4.

In our example shown in Figure 4.1, the user defines two message types, Mb2PcReq and

Pc2MbReq. For each type they define fields Type, Address, and Requestor. Not shown are

the additional types for the replies and requests going out on other interfaces.

4.1.2 State and State Updates

Enumerating states of a “line” is simple, using the enumeration keyword with special type

State. The language automatically associates this with the containing State Machine, so

converts it to MemoryBlockState enumeration, for example. To specify the states, they are

simply listed, the SLAMM language assigns and tracks a numerical value for each.

Currently, the user has to list all the states and the transient states, which might be im-

plementation dependent. For example, if in the course of one state transition the controller

needs to send a message and get a reply back to decide what your next “real” state is, the

user has to specify a state for “message sent, waiting for reply”. If replies from multiple

different entities are required, (for example, waiting for the eviction state from the memory

block and the read data from the off-chip memory) then intermediate states need to be

constructed in order to capture this. This suboptimal behavior could be improved upon by
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building a special block which handles only this tracking to provide a single input to the

state tracking unit indicating when all replies have been received. Figure 4.4 shows how

to enumerate the States of a line. These are specifically for the line states controlled via

transitions (see below), other information is also used and tracked via an external type,

as described below.

It is notable that that the code the user has to write is not a one-to-one mapping from

the State Machine diagram. The first step is for the user to identify the states that the line

can be in inside the state machine of interest. In our example controller in Figure 4.1, the

line is either not present (I= Invalid), or it is (A = Active). A finer division of these states

is necessary as we handle the request. The user can use the SLAMM State construct to

enumerate the states.

4.1.3 Control Flow

In order to provide the parameters needed to populate the Event Trigger TCAM discussed

in the previous chapter, SLAMM uses Events. Events are described with the enumeration

keyword with the special type Event, and are automatically associated with the State

Machine that they are declared within.

To describe the actions which need to be performed and the next state when a given

event occurs in the current state, SLAMM uses the transition keyword, which takes the

initial state(s), and triggering event, and outputs the final state and actions to perform in

order to complete the transition. If the final state is not specified it indicates to keep the

state the same.

The actions which are to be performed are specified with the action keyword. As de-

scribed in the previous chapter, one major class of actions is those that send messages to

other controllers in the system via the output ports. These actions contain a description

which uses the enqueue special function keyword. The enqueue function specifies a desti-

nation output port and describes how to populate the outgoing message fields. The peek

special function keyword can be used to examine the message which triggered this action,

in order to copy fields from it or use them to look up other information throughout the

system. The SLAMM compiler must examine all possible sources of data for each field of

an output message interface. For each field, it selects the proper type of hardware structure

to instantiate inside that output message translation, and makes sure that any necessary

inputs are provided to the output message translation. Other actions, such as allocating or
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// EVENTS
enumeration(Event, desc="Memory Block Events") {
// From processor
Load, desc="Load request from processor";
Store, desc="Store request from processor";

//from PC (Search Access Gen)
StateUpdateChangeTagToM, desc = "Change tag to Modified";
...
//from PC (Data Pipe Acces Gen)
DataAccessRead, desc = "Read out data from a specific way";
...
//from PC (Responses)
EventCompletion, desc = "Event Completion response from the PC";

}

//TRIGGERS GENERATED FROM MESSAGES RECEIVED
in_port(cpu2mb_req, Cpu2MbReqMsg, cpu2mb,

desc="Reqs from CPU to Memory Block") {
peek(cpu2mb_req, Cpu2MbReqMsg) { // REquired...

if (in_msg.Type == CpuReqType:LD) {
trigger(Event:Load, in_msg.Address);

} else ...
//Other Events triggered based on in_msg fields

}
}

// ACTIONS
action(l_load_hit, "l", desc="Return data to the requesting processor") {
enqueue(mb2cpu_rep, Mb2CpuRepMsg){
out_msg.Data := cacheMemoryBlock[address].DataBlk[address];
out_msg.Type := Mb2CpuRepType:HIT;

}
}

// TRANSITIONS
transition({M,S,E}, Load) {
t_updateMru;
l_load_hit;
c_popCpu2MbReqQueue;

}

Figure 4.5: Code for Controlling the Flow of Activity. Each of these is coded within a state
machine.
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deallocating entries in the state tracking structures, don’t need a description of what they

do, because their action signals are used directly. In the SLAMM specification, actions have

a name (which maps directly to a wire in hardware) and a description of what they do.

The list of actions assumes atomicity: there is no meaning for something that happens

while those actions are being performed. Therefore, the hardware must enforce arbitration

such that only one such thing happens at a time (or provide pipelining primitives “behind

the scenes”). The pipeline insertion is beyond the scope of the SLAMM specification. The

message pipe division mentioned in the previous chapter is also orthogonal to the SLAMM

specification (the template may enforce that certain interfaces have a maximum width).

Figure 4.5 shows how to enumerate Events, describe Actions, and describe the Transitions

which hook everything together.

In our example in Figure 4.1, if the user’s controller receives a CACHE MISS and the

line is in the ‘I’ state, the protocol controller would issue a request back to the cache to

double check the state of the line. At the same time, it might inquire about a suitable

eviction candidate and get the data currently at the line if it is actually valid. Therefore

the user identifies an IssueRequestForState action and builds up the request with the

enqueue language construct. The protocol also updates the state from ‘I’ to ‘A’, but since

there are going to be multiple substates in “Active”, the user constructs some intermediate

states. In this case they create ‘AS’, as in “Active, waiting for State information”. Other

subsets of the Active state could be ‘AM’ or ‘AWD’, “Active, waiting for Memory System”

or “Active, writing data” respectively.

When the response from the Memory Block is received, the input port construct

again compares against fields in the message. This time the comparison is more com-

plicated, to compare both the message type (REPLY WITH STATE) and a field within

the message, LineState. Based on the value of the line state, we might issue a vari-

ety of events, such as stateReturnedActuallyValid or stateReturnedEvictionValid

or stateReturnedNoneValid. If it was the case that the event was actually stateReturned-

NoneValid, the controller needs to issue a request to the network for data, and also reserve

a space for the new line in the Memory Block. Therefore, two actions issue in parallel,

one to the Main Memory with a request for a line of data, and one to the memory block

to reserve the line. There is no guarantee or requirement concerning which of these will

complete first, so the transient state transitions are described in such a way that both are

completed before moving on.
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external_type(MshrTable){

//Commands
MshrEntry allocate(Address);
void freeByIndex(int);

//Inquiries
bool isAddressPresent(Address);
...
DataBlock getData(Address);
WayNum getWay(Address);
Address getAddress();
}

Figure 4.6: Example Code for “Special” (Externally Defined) Blocks

Once both actions have completed, the protocol controller can then copy the data that

is now in the line buffer into a message for the memory block. Again there is the problem

that the message is much wider than the physical interface, so unbeknownst to the SLAMM

programmer, the message pipe hardware is used to automatically read from the line buffer,

incrementing the offset counter and sending it along to the Memory Block, which also

understands offset. Because the offset is not zero, the state is not updated until the last

data write is completed.

At that point, the Protocol Controller updates the Tag by sending another message to

the Memory Block. Once that is acknowledged it completes the operation by sending the

critical word on the Protocol Controller to Memory Block Reply interface, which gets back

to the reply handler so it can unstall the processor and free its outstanding operation state.

4.1.4 Special Blocks

SLAMM cannot possibly describe all the capabilities of the hardware, and does not aim

to do so. The hardware expects and allows additional or replacement blocks for certain

functionality, such as a more sophisticated state tracking device, or a function for determin-

ing the eviction candidate. SLAMM provides a method for defining blocks without defined

internal functionality, using the external type keyword. Certain blocks, such as the Line

Buffer and Mshr Table, may be assumed to exist in a given template, but the user could
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Table 4.1: Using SLAMM To Provide Memory System Primitives
Required Language Primitive SLAMM Construct
Controllers (FSMs) State Machines
Interfaces between Actors Messages, Input/Output Ports
Micro-code Inputs Events(RX messages)
States States
Transitions/State updates Transitions w/ primitives for state update
Actions Actions/External Actions
Conditionals Conditionally Generated Events
Special Modules, Internal State Tracking External Types
Special Functions External Types

create a new external type as long as there was a corresponding Verilog module. These

blocks can contain methods, and complex data types can be declared using the structure

keyword. For our example in Figure 4.1, the MshrEntry structure can be defined with var-

ious fields, then the MshrTable can have a method MshrEntry getEntry(Address), which

SLAMM will be able to translate into a hardware interface. In fact, the get* method is a

special case which SLAMM can translate into a look up all or part of the field stored in

the table. Specialized methods such as getting the eviction candidate can also be described

with this construct. Figure 4.6 shows how to define an interface to a special block.

The external type construct can also be used to define special data types, such as

WayNum, or DataBlock. This requires that the compiler be provided the mapping from

this data type into the correct name for including with the LATE BIND method. For

example, the compiler can contain a mapping for the external type WayNum should map

to a width of LATE BIND WAY SIZE.

Table 4.1 gives a quick overview of how the hardware components described in the

previous chapter get their configuration values from the SLAMM constructs. Figure 4.7

shows the grammar used by SLAMM to describe the implemented constructs. This is a

summarized grammar showing the more interesting aspects such as keywords, supported

binary operations, etc. A full grammar is provided in Appendix B.

Once the user has described their protocol in this language, the SLAMM compiler

converts the description to the parameters described in the previous chapter. The next

section details this process.
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file: decl_list
decl: MACHINE_DECL ( ident pair_list ) { decl_list }

| ACTION_DECL ( ident pair_list ) statement_list
| IN_PORT_DECL ( ident , type , var pair_list ) statement_list
| OUT_PORT_DECL ( ident , type , var pair_list ) ;
| TRANSITION_DECL ( ident_list , ident_list , ident pair_list ) ident_list
| TRANSITION_DECL ( ident_list , ident_list pair_list ) ident_list
| EXTERN_TYPE_DECL ( type pair_list ) ;
| EXTERN_TYPE_DECL ( type pair_list ) { type_methods }
| GLOBAL_DECL ( type pair_list ) { type_members }
| STRUCT_DECL ( type pair_list ) { type_members }
| ENUM_DECL ( type pair_list ) { type_enums }
| type ident pair_list ;
| type ident ( formal_param_list ) pair_list ;
| void ident ( formal_param_list ) pair_list ;
| type ident ( formal_param_list ) pair_list statement_list
| void ident ( formal_param_list ) pair_list statement_list

pair : ident = STRING
| ident = ident
| STRING

statement: expr ;
| expr ASSIGN expr ;
| ENQUEUE ( var , type pair_list ) statement_list
| PEEK ( var , type ) statement_list
| if_statement
| RETURN expr ;

if_statement: IF ( expr ) statement_list ELSE statement_list
| IF ( expr ) statement_list
| IF ( expr ) statement_list ELSE if_statement

expr: var
| literal
| enumeration
| ident ( expr_list )
| expr . field
| expr . ident ( expr_list )
| type . ident ( expr_list )
| expr [ expr_list ]
| expr == expr
| expr != expr
| expr && expr
| expr || expr
| ( expr )

literal: STRING
| NUMBER
| FLOATNUMBER
| LIT_BOOL

enumeration: ident : ident
var: ident
field: ident

Figure 4.7: The SLAMM Grammar, summarized to highlight keywords, supported binary
operations, etc.
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Genesis2
<cg_cmp>

<Parameters>
<num_cpus>2</num_cpus>
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Figure 4.8: Illustration of the iterative process used by Genesis to customize designs by
refining the XML description of the parameters’ space. External tools can control the
generated hardware by just modifying the XML structures (without touching any RTL
descriptions).

4.2 Integrating SLAMM Parameters

In our implementation the hardware template described in Chapter 3 is written in Gen-

esis [36, 35]. Figure 4.8 shows Genesis’ parameterization loop. Genesis can take as input

an XML configuration (or none, relying on default parameters), configure the system, then

output an XML configuration file describing the system. The output XML (or the original

configuration file) can be modified by external tools to create new configurations. Thus for

this architecture, the job of a compiler is to generate the XML parameters for each of the

hardware primitives. Because the template is intelligent and is able to extrapolate many val-

ues from the provided parameters (for example, an interface only needs to be parameterized

in one place, then can be cloned repeatedly throughout the design), the set of parameters

can be fairly small, though Genesis parameters tend to be very deep (arrays of hashes of

hashes, for example). The parameters which specify the behavior of the memory system

(programming values inside of a LUT, for example) are only part of the configuration, so

the SLAMM compiler must work well with tools to set other memory system parameters,

such as a Graphical User Interface (GUI).
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Figure 4.9: SLAMM Compiler Flow
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4.2.1 The SLAMM Compiler

Similar to the way the GEMS SLICC project provided a compiler which took a SLICC spec-

ification to generate C++ simulator code, the SLAMM compiler can convert the SLAMM

specification into parameters expected by the architectural model in order to generate syn-

thesizable hardware. By retaining backwards compatibility with SLICC the simulation and

performance modeling capabilities of the language were maintained via the SLICC compiler.

SLAMM’s compiler flow is shown in Figure 4.9.

The compiler (written in Python) takes as input the SLAMM program, generally as a

collection of files. All of the files are lexed and parsed to create an Abstract Syntax Tree

(AST) of the design. Then, a series of visitors traverse the tree in order to extract the infor-

mation relevant to the given architecture. The TypesVisitor extracts information about the

different StateMachines in the system, the enumerations (including Events, MessageTypes,

Actions, and States), different structures and external types. Next, the InputsVisitor ex-

tracts information about what logic is necessary for generating Event triggers (because

event triggers are generated by messages arriving on the input ports). This is used to build

input interface logic for the Event Trigger TCAMs. Next, the TriggersVisitor generates the

actual logic contents for inside the TCAMs, the logic which controls the Event trigger gen-

eration. It also handles the logic related to Transitions, in order to configure the TCAMs

which determine the next state and actions to take based on current state and event. The

ActionsVisitor then generates the logic for each possible action. It determines whether a

given action sends a message, and if so, the destination and how to populate the fields of

that message.

When the visitors have traversed the AST in order to extract the necessary informa-

tion, the compiler then generates a number of XML parameters. These are complex data

structures which can include a hash of signal information to describe an interface, or all the

information needed to generate the inputs, outputs, and programmability of a TCAM. Pa-

rameters are output into a set of XML files, but are not quite ready to be input to Genesis.

A final step, the slamm insert script, takes the XML parameters and inserts them into the

correct place in the existing hierarchy.

The SLAMM compiler can not generate a full XML description from scratch, for sev-

eral reasons. First, SLAMM restricts its scope to describing the memory hierarchy, and

therefore parameters describing, for example, adder widths inside the FPU, are not rel-

evant or controllable through SLAMM. Other tools configure those parameters and the
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SLAMM flow allows the parameters to be merged together. Another reason the full XML

can not be generated by SLAMM is that SLAMM is agnostic to many aspects of the system,

such as Data and Address widths, line size, etc. The SLAMM specification uses abstract

Types for signals like Data and Address, and compiles them to parameters with widths like

DATA WIDTH. Only if SLAMM is specifically knowledgeable about a field does it extract

a width (enumerations for State, Event, etc. fall into this category).

The SLAMM inserter controls which parts of the system are configured with which

SLAMM specification. If there are multiple memory blocks in the system, the inserter puts

them into some or all of the blocks, without the SLAMM specification being aware of how

many blocks are in the system. If another block is to be specified as a scratchpad memory

and not a cache, then it does not get the Cache Coherency protocols inserted. The SLAMM

inserter script is a simple Python program which is easy to modify by hand to insert the

parameters into the desired modules. If another memory level was introduced, the inserter

script would need to be modified to ensure that the new parameters are inserted into the

new controllers.

A key role of the compiler in processing the states and message types is to assign values

to each, such that the different controllers in the system can agree on the meaning of a

certain value. Currently, the SLAMM compiler compiles these values down to raw numbers

in the parameters (rather than building something like a Verilog parameter out of them).

This has a negative impact on the readability of the code, but follows the Genesis model of

making sure that all parameters have clearly defined values at compile time. As a debugging

aid, therefore, the compiler also adds a parameter to the controller which is a hash of names

to values. The hardware template writer can query this information-only parameter to add

comments to their code using the actual name of the States, message types, etc.

We’ve described this high level language and a template to accept it. However, we

acknowledge that it may be inefficient or unnecessary to redesign a whole system in its

entirety to use this model. The flow we described works well even when some components

are not specified in this way, or are only partially specified. To illustrate this point, the

next section describes the aspects of our current system template that are controlled by the

SLAMM specification, and to what degree.
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4.3 Mapping SLAMM Constructs to the Architectural Model

The exact mechanism for the SLAMM constructs mapping onto the architectural model

differs depending on the specific part of the architecture. For example, inside the Memory

Block the state of a cache line is tracked very differently (in hardware) than in the Protocol

Controller. There is no intrinsic reason that this has to be the case, but for historical reasons

the system template used a lot of legacy architecture (e.g. a number of small memory mats

connected with a connection network) to construct a cache or other memory structure.

SLAMM is not concerned with the exact mechanism of state update, as long as the hardware

provides some way of describing the CurrentState and accepting the NextState. Therefore,

in our current hardware we have to provide mappings back and forth from the CurrentState

as stored in the cache line to the enumerations understood and used by SLAMM. In a system

designed from the ground up, this would not be the case. To demonstrate this point,

in contrast to the more legacy memory blocks, the reply handler and protocol controller

modules were architected while considering the input that could be provided from SLAMM

and the compiler, so their internal workings are almost entirely described by SLAMM,

except for the function of special blocks.

4.3.1 Interfaces Between Blocks

The SLAMM specification generates the information for each interface in the system, as

shown in Figure 3.6. It outputs parameters which describe Memory Block to Protocol Con-

troller Request and Replies, Protocol to Memory Block Request and Replies, and Protocol

Controller to Network Switch Request and Replies. It also outputs information for Net-

work Switch to Protocol Controller Request and Replies, though those are not currently

used because they are for multi-chip systems.

In the current chip generator, the hardware interfaces do not necessarily follow exactly

from the SLAMM specification. For example, the crossbar going between the protocol con-

troller and the memory block does not use SystemVerilog interfaces, so it does not naturally

accept the interface primitive that the SLAMM compiler knows how to parameterize and

that the protocol controller expects to export. However, even the legacy crossbar can make

use of the parameters extracted from the interface to pack and unpack the signals going

into and out of the crossbar.

Another example of the hardware using the information from the SLAMM compiler in
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a less literal way is that the actual hardware width of the Protocol Controller to Memory

Block interface should be restricted, whereas the protocol could specify some very large

signals (e.g. a cache line). The hardware uses the message pipe primitive to serialize such

wide interfaces, transparently to the protocol writer.

4.3.2 Protocol Controller

Figure 4.1 shows what happens inside the protocol controller on reception of a cache miss

message, in order to implement the protocol controller’s portion of the simple cache protocol

in Figure 3.4. The figure shows that inside the protocol controller, almost everything

is specified by SLAMM. The fields of the MSHR entry State primitive are described by a

special structure in the SLAMM program, are extracted by the compiler, and inserted into

the protocol controller’s XML configuration with the parameter MSHR ENTRY SIGNALS.

The hardware provides those to the state primitive which it instantiates as the MSHR.

The protocol controller’s events and states are provided by name and value to make it

easier to agree on these between blocks, since sometimes the State is also a field in a message

from another block. In a world fully controlled by SLAMM and the SLAMM compiler this

would not be a problem, but the reality is that outside of the core area, other user tools

want to refer to States by name rather than an opcode known only to the SLAMM compiler,

so providing this mapping helps eliminate errors in these cases.

In order to determine which event has occurred, the Protocol Controller instantiates an

Event Trigger TCAM, shown in Figure 3.8. This TCAM is entirely controlled by SLAMM,

including determining the inputs to the TCAM. The protocol controller template actually

first generates the TCAM, then requests from it the inputs that it needs to determine its

logic function. It then makes sure to connect the necessary input signals. The internal

configuration of the TCAM is fully specified by SLAMM and inserted hierarchically into

the configuration file, so the Protocol Controller does not need to configure it.

In order to determine the Next State and Actions to perform, the Protocol Controller

has another TCAM, the Transition TCAM, as shown in Figure 3.9. Its inputs are known:

the CurrentState and the TriggeredEvent, therefore the SLAMM compiler does not need

to specify the inputs as it does for the Trigger TCAM. Also, the outputs are known to be

all the Actions which have already been given to the Protocol Controller, so the Protocol

Controller can simply instantiate and connect to the TCAM, and let it handle its own

internal configuration.
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For each output interface in the Protocol Controller, a translation block is instantiated,

shown in Figure 3.11. The SLAMM compiler is responsible for generating both the input

interface to each translation block, and the internal logic. This also means that for any

structures inside the translation block (LUTs, TCAMs, TCAM Muxes), the SLAMM com-

piler has to insert parameters for them inside the XML. The input interfaces are extracted

by determining every possible driver of the fields of the output messages, by examining all

the enqueue actions in the protocol, and making sure that all necessary inputs are provided.

Also input are the actions which actually perform an enqueue for this output interface. One

thing to note is that one source of data for output messages can be from performing ac-

tions on message blocks. For example, calling getData(Address) on the LineBuffer object.

One thing notable is that SLAMM knows how to handle, for State instances, the get*(*)

method. In the above example, the compiler will know to do a lookup based on the Address

field of the State, and connect the Data field to the input to the Output Translation TCAM

(see Figure 3.15).

4.3.3 Memory Block

The Memory Block uses a legacy way of storing State and Data (in memory mats) and has

a highly parameterized design outside of the scope of SLAMM for specifying things like size

of cache or number of ways of associativity. However, in terms of receiving instructions from

the Protocol controller, determining what actions to take, and responding appropriately to

protocol controller requests, it is fully controlled by SLAMM. Its core structure is essentially

the same as that of the Protocol Controller, with the same TCAMs and Translations.

However, because the memory has a cycle latency to access its state (it must be read out

of a memory macro), different buffering and delay structures are included in the hardware

template for the memory block.

The Memory Block also has some issues where it needs to interface between the SLAMM-

controlled world and the hand (or other tool) generated code. Here the human-readable

mappings from State and Events come into play as users create the mappings from proto-

col controller opcode to low-level memory opcode. The SLAMM compiler does provide a

mapping from protocol controller operation to internal cache block operation (an identity

mapping, as the known protocol controller operations have been hand coded into the cache

template’s defaults).

Inside the Memory Block, the cache itself is currently handled as a highly specialized
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magic block, as it knows how to select an eviction candidate, defines aliases for getData,

getLineState, getEvicitionState, etc.

4.3.4 Reply Handler

Because the reply handler enforces that the transactions it tracks complete in order, it uses

the state FIFO primitive to track outstanding operations. It also uses a TCAM to describe

the messages it sends to the Protocol Controller. A separate unit which stalls the issuing

processors if there is a dependency in outstanding operations in the Reply Handler uses

the TCAM cloning capability to track the state in a similar fashion in order to determine

if there is an outstanding load which blocks on the current action. Otherwise, the reply

handler is configure with the GUI tool.

4.3.5 Off-Chip Memory

The off-chip memory which the protocol controller communicates with is currently hand-

coded. Structures inside the test bench translate the SLAMM-specified interfaces into the

interface used by the low level off-chip memory. In theory these are parameterized and

could be more flexible, there is just not currently interest in configuring these modules.

4.4 Extending a Protocol with SLAMM

In our simple example in Figure 4.1, we only described what would happen on a read miss,

though we can define a message type for an upgrade (write) miss. In order to specify the

path for a write miss, the user writes the cases in isolation, without regard to the previous

read-miss description, then merge the two files. That is, they should not conflict, except

for taking into account what happens if an upgrade miss comes in while a read miss is

being handled; in general it is easy for the SLAMM hardware to NACK or block if such

complications are not desirable. More states would be added as well as new sources to the

messages, but SLAMM will handle all this automatically.

What about a more interesting extension of the protocol, where we change the underlying

protocol somewhat? In Section 2 we described a cache, PLCache [47], which aimed to add a

“Lock” bit to the protocol in order to prevent cache timing attacks. Lines which were locked

could not be evicted (if all lines in a way were locked, then no evictions or refills could be

performed on that line). New processor opcodes are added to LOCK and UNLOCK cache
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lines, and lines with the Lock bit set should be considered in new states of LOCKED or

LOCKED MODIFIED. In addition, lines that are locked know who their Owner is because

it is recorded in their state (the Owner of the line is allowed to evict it regardless of its

locked state).

In order to implement this addition with SLAMM, first the user would add the new

states LOCKED and LOCKED MODIFIED. They would consider what events would cause

transitions to and from these new states, and update the transitions in their specification

accordingly. To the MSHR entry fields which get mapped to State structures, they should

add the Owner field. If the SLAMM compiler observes the State is being examined based

on the Owner field in addition to the Address field, it would do a lookup based on both.

Finally, the user would need to modify the internal eviction rules to consider the Locked

bit. This is not currently described in SLAMM, so the findEvictionCandidate function’s

interface is not really changed, except that it might fail entirely. Therefore, another signal

or reply type can be added which indicates that no eviction candidate was found (or that

the eviction candidate state was Locked), in which case the Protocol Controller would have

to return the data without refilling the line.

Although this seems like a lot of changes, consider what the user would have to do if

they did not have SLAMM. Simply adding a field to one interface in SLAMM (changing

one line of code) changes or adds over 450 lines of hardware Verilog code in 29 different

modules (over 10% of the modules in the system level design). Adding a condition based

on that interface (3 more lines of code if you like a lot of white space in your if-then-else

statements) changes over 60 additional lines of Verilog in 4 modules. A user would have to

make these changes by hand and handle them all correctly, a process which from experience

is painful, time consuming, and a matter of guesswork.

Even a protocol specified in SLAMM could contain errors at the Protocol Specification

Level (Figure 2.11). These errors could stem from programming errors in the specification,

or bugs in the underlying hardware template or compiler flow. Therefore, the next section

describes a tool to aid the verification of the output of the generator.



Chapter 5

Relaxed Scoreboard

The previous sections have described a flexible hardware architecture which can be pro-

grammed to implement different memory protocols by reprogramming basic primitive blocks

within a variety of controllers. Although the conversion from high level specification to pa-

rameters/microcode is automated, there are still plenty of opportunities to introduce errors

into the implementation. A programmer writing in SLAMM code could misunderstand

something about the way the architecture behaves, or make an error when writing their

protocol. In order to verify the protocol, the user can write a simulator which also compiles

the SLAMM code in order to run it (without a full hardware implementation). This is

exactly what was done by SLICC in order to run it through the GEMS simulator. However,

even if the hardware and simulator match, the user may have an error in the protocol. There

are many tools and techniques for formally verifying memory protocols at a variety of levels,

but tools for verifying their implementations (in hardware or software) are also essential.

In this chapter we describe one such tool for verifying memory system implementations at

a high level, the Relaxed Scoreboard1.

Most practical approaches to validation of complex systems have focused on a framework

based on either race-free diagnostics or pseudo random test suites combined with a golden

model (also known as a scoreboard) of the memory system behavior. While this method-

ology is widely used and works well, constructing the scoreboard for a modern system is a

difficult task. One of the factors that makes it complex is that memory consistency models

such as sequential consistency (SC) specify rules and axioms that are easier to describe by

a non-deterministic state machine—they do not completely specify the memory system’s

1The work presented in this section was done in conjunction with Ofer Shacham.
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behavior. As a result, a given consistency model may have multiple correct implementa-

tions that perform differently, and thus need different golden models. This coupling causes

two problems. First, one needs to create a new golden model for each implementation, and

second, it is hard to keep the validation model completely separate from the implementa-

tion, which can lead to correlated errors. This problem is only made more challenging for

a flexible hardware architecture such as the one proposed here, because a new reference

model would need to be constructed for every new configuration.

Recent attempts, such as TSOtool [19], take a different approach to the problem of

memory verification. Instead of dealing with the complexity of the implementation, TSO-

tool does a post-mortem analysis of the processors’ traces. This approach checks that the

observed trace values are logically correct with respect to the consistency model. Since

it does not specify what the output should be at each cycle, or even what the ordering

must be, it reduces the coupling between the verification model and the design details. The

key insight is that the undesirable verification-design coupling can be broken by creating a

checker that allows multiple output traces to be correct. We leveraged this insight to create

a new approach toward validating memory system behavior, the Relaxed Scoreboard.

The Relaxed Scoreboard is a verification methodology that attempts to come as close as

possible to verifying the temporal behavior of a CMP memory system implementation, while

avoiding exponential complexity. Like a traditional scoreboard, the relaxed scoreboard is

constructed to be an intuitive and simplified temporal model of the memory system, but

like TSOtool, it is not tied to a specific implementation. The decoupling of the relaxed

scoreboard from the implementation is achieved by having a set of multiple possible values

associated with each memory location, similar to earlier work by Saha et al [33] and TSOtool.

This set of values is constrained by rules specific to the implemented memory protocol, and

includes all values that could possibly be legally read from this address by any processor in

the system.

We find that by using this relaxation (keeping a set of possibly correct answers), a re-

laxed scoreboard methodology introduces a number of traits that are important for efficient

RTL design and verification. The construction of the scoreboard is derived directly from

the relevant consistency model properties. Each of those properties can be considered sep-

arately, allowing a protocol designer to re-use rules that apply to their protocol, remove

those that do not, and provide a clean interface for writing new rules.

This enables the verification environment to be developed incrementally along with the
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design, rather than requiring a complete model on day one. In contrast to static post-

mortem trace analysis algorithms, the relaxed scoreboard is designed to be a dynamic

on-the-fly checker, meaning that any error will be reported immediately, saving valuable

human and compute time. Furthermore, the combination of dynamic runtime analysis

plus the scoreboard’s incremental construction enables the user, at later design phases,

to incorporate key information from the design (such as exact arbitration time) into the

scoreboard. While at the beginning of the design/verification cycle the number of acceptable

results might be large, this set can become smaller as more sophisticated checks are added

to the scoreboard, and can, if needed, turn into a tight, accurate model.

The next section formally describes two different memory consistency problems: verify-

ing sequential consistency both with and without temporal information about the memory

operations. Section 5.2 then describes the basic approach for creating a relaxed scoreboard,

and demonstrates how it can be used to address the consistency problems described. Sec-

tion 5.3 extends the discussion to a real design example, where relaxed scoreboards were

used to verify the implementation of an actual CMP design, the Stanford Smart Memo-

ries Project, for both Relaxed Consistency and Transactional Coherency and Consistency

(TCC). The section also describes how modular rules were used for the different memory

protocols in Smart Memories and could be extended for new memory protocols.

5.1 Problem Definition

Verification of a shared memory system is in essence the attempt to prove that the hard-

ware complies with the mathematical definition of the coherence and consistency model

from a programmer standpoint. For example, deciding whether a set of processor execution

traces complies with sequential consistency is known as Verifying Sequential Consistency

(VSC) [13]. Similar definitions apply for other consistency models [8]. When dealing with

RTL/architectural verification, as opposed to post silicon verification, an attractive veri-

fication approach is to leverage not only the values observed on the system’s ports, but

also their temporal information—the time at which they were observed. By using temporal

information, a checker can also flag errors that obey the consistency model but should not

occur in real hardware. The temporal version of VSC is known as Verifying Linearizability

(VL) or Atomic Consistency [14].
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The following are the formal definitions of Verifying Sequential Consistency and Ver-

ifying Linearizability, as described by Gibbons and Korach [14]. In layman’s terms, each

definition describes a number of sequences of reads and writes to a set of addresses, and the

question is whether those sequences are legal given the memory consistency model.

Verifying Sequential Consistency is based on respecting program orders and the read/write

semantics, while ignoring the time at which transactions occur.

GIVEN: A set of addresses’ A, a set of data values D, a finite collection of sequences

S1, ..., Sp, each consisting of a finite set of memory operations of the form “read(a, d)”

or “write(a, d)”, where a ∈ A and d ∈ D.

QUESTION: Is there a sequence S, an interleaving of S1, ..., Sp such that for each

read(a, d) in S there is a preceding write(a, d) in S with no other write(a, d′) between

the two?

Informally, if we write each read/write operation on an index card, then make an ordered

stack for what each processor sees, sequential consistency requires that we should be able

to interleave the stacks from each processor, in some way, and still get a global ordering

that makes sense.

Verifying Linearizability adds the further constraint that the schedule S must respect

the time intervals for the operations.

GIVEN: A set of addresses A, a set of data values D, a set of finite collection of

sequences S1, ..., Sp, each consisting of a finite set of memory operations of the form

“read(a, d, t1, t2)” or “write(a, d, t1, t2)”, where a ∈ A and d ∈ D, and t1 and t2 are

positive rationals, t1 < t2, defining an interval of time such that all intervals in an

individual sequence are pairwise disjoint, and t1 and t2 are unique rationals in the

overall instance.

QUESTION: Is there an assignment of a distinct time to each operation such that 1) each

time is within the interval associated with the operation; 2) for each read(a, d, τ1, τ2),

there is a write(a, d, t1, t2) assigned an earlier time, with no other write(a, d′, t′1, t
′
2)

assigned a time between the two?

Informally, now the “index cards” for the protocol have start and end times written on

them. The interleaved stack must not only make sense, but it must be possible to spread

the cards out on a timeline so that each card lies on a point between its start and end time.
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Similar definitions can be applied to other consistency models such as Total Store Order,

Weak Ordering, etc. One should note that in practice, most CMP architectures would allow

non-blocking writes, and even multiple outstanding reads. This means that a black-box

verification environment will not have the end-of-interval time stamp for write operations,

and that all operations may not be pairwise disjoint. The practical implication is that a

checker may need to keep track of more than P concurrent accesses, where P is the number

of processors in the system. One such architecture is Stanford Smart Memories [40,12], on

which the relaxed scoreboard was evaluated.

Gibbons and Korach proved that VSC is NP-Complete [14]. Cantin, Lipasti and Smith

extended the proof to all other commonly used consistency models [8]. Moreover, the prob-

lem is NPC even when any of address-range/number-of-processors/accesses-per-processor

factors is bounded. Although VL was also shown to be an NPC problem, the limiting fac-

tor for VL is the number of processors that are accessing a shared address, rather than the

length of the trace.

In our goal of verifying a memory system, we want to have the tightest bounds on

correctness possible, in order to catch as many errors as possible. We argue that for the

purpose of hardware verification, VL is a stronger correctness criteria since any set of traces

that would violate a checker for VSC will also violate a checker for VL. Limiting verification

requirements to VSC only makes sense if there is no time information provided (for example,

in a highly distributed system where there is no reliable global timestamping). Even if there

are no time limits on an operation, with the timestamps assumed in VL, there is still the

information provided by the fact that time can not run backwards, and things that are

known to happen later in time can not influence things that happened in the distant past.

Because of this, there can be traces with errors that violate VL but do not violate VSC.

The following set of temporal sequences demonstrates such a scenario, which encourages us

to use VL if we have time information available to us.

Time S1 S2 S3
10 A:RD(a,5,10,11) D:WR(a,1,10,11) G:WR(a,2,10,11)
20 B:RD(a,5,20,21) E:WR(a,3,20,21) H:WR(a,4,20,21)
30 C:RD(a,5,30,31) F:WR(a,5,30,31) I:WR(a,6,30,31)

* Assume MEM[a]=5 at time 0
** This example illustrates a ’stuck-at’ error case;

despite multiple competing writes from other processors,
S1 only ever reads the value of ’5’ from address ’a’.
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In the counterexample above one can easily find a global ordering that complies with

SC (E.g.,{G,H,I,D,E,F,A,B,C}) . However, no ordering can be found that complies with

VL. This implies that a checker with temporal information will find more error cases than a

post-mortem checker without temporal information. The latter might not find errors that

violate causality as in this example. Section 5.2.1 will show another example of a property

violation (write atomicity) that can only be found by a checker that leverages temporal

information. Therefore, going forward we will assume we have temporal information when

creating our checker.

5.2 Relaxed Scoreboard

To verify the linearizability of a CMP implementation, the Relaxed Scoreboard is built as a

global online design checker. As the design is running other tests (for example, application

code), the scoreboard monitors all transactions going into the system, and all the transaction

output from the system. It not only checks whether these outputs are allowable, but it uses

the outputs to modify its internal tracking of what future results are allowable. As noted

before, the relaxed scoreboard does not compare an observed value to a single known correct

result. Instead, it keeps a set of possible results and ensures that the observed value is within

this bounded set. It is an oracle that can answer the following question: “Does the value

Val, that was observed at interface ifc of the design, exist in the group of allowed values for

that interface, at that given time?” In this sense, the relaxed scoreboard is simply a data

structure of groups, which can answer queries and receive updates.

In order to understand why a single value might be hard to predict but a bounded set is

not, one can think about a simple 4-input round-robin arbiter. In order to predict who would

win the arbitration, a golden model would have to “know” or imitate the internal state of the

arbiter. In contrast, in order to determine the set of possible winners, a relaxed scoreboard

only needs to know which inputs are asserting a request and which inputs have already been

granted (in previous rounds). It would then perform simple accounting operations to keep

the set of possible winners as tight as possible. Note that in addition to simply checking the

DUT outputs, the scoreboard uses those outputs to reduce the allowable future outputs.

Verification of a memory system in a shared memory multiprocessor is particularly

challenging because of the inherently non-deterministic and timing-dependent execution

of memory accesses, which inevitably produces race conditions. The sequence of memory
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Figure 5.1: Non-determinism of a CMP Memory System.

accesses from each processor might depend on how a prior race condition was resolved.

Figure 5.1 shows a simple example of a race condition in a four-processor system. Processors

1, 2 and 3 are initiating writes to address a while processor 4 is reading the value saved at

that address. The data is returned some time after the load started, as noted by the curved

arrow. Depending on the exact arbitration mechanism, each of the values 1, 2 or 3 might

be returned as the result of the load instruction.

In order for the relaxed scoreboard to be an efficient verification tool, we define two

requirements:

1. Bounded Uncertainty: The set of possibly correct answers must be kept bounded. If

this set grows in time, then the testbench as a whole loses efficiency. This is the most

important requirement of the relaxed scoreboard.

2. On-The-Fly: Errors should be detected on-the-fly, as close as possible (in time) to

their origin. Since the relaxed scoreboard is designed with big, complex designs in

mind, it must recognize the need of both designers and verification engineers for a

fast turnaround time.

Most directed tests use an approach in which there is only one known allowed result, by

using locks, long delays, or other mechanisms to remove the ambiguity in a test. On a test

of this nature, a relaxed scoreboard should be able to perform as well as a deterministic

checker, in order to be considered a useful tool. This means that the set of allowable

values should reduce to 1 for a test without ambiguity, once a sufficient number of checks

and updates are added to the scoreboard. Our results with this technique (discussed in

Section 5.3) show that in directed tests, the relaxed scoreboard does have a small set of
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allowed values, almost always 1. But, even in “interesting” test cases where there is a lot of

collisions on addresses, the set of allowed responses stays small and bounded. The reason

this is possible is the addition of updates to the scoreboard : using the observed outputs in

addition to the inputs in order to limit the size of the allowed set.

To meet the above requirements efficiently, the relaxed scoreboard implementation uses

an internal, easily searchable data structure. The main purpose of the scoreboard’s internal

data structure is to keep a set of possibly correct values, sorted by address and chronological

time. Each entry in the scoreboard’s data structure is associated with a sender ID, value, and

start and end time stamps, as observed during runtime on the relevant processor interface.

In addition, each entry contains a set of expiration times, one for each possible interface on

which this transaction may be observed. Upon arrival of a new transaction from a monitor,

the scoreboard performs a series of checks followed by a series of updates. The checks

produce the scoreboard’s oracle answer, based on the values stored in the data structure, of

whether that operation is possible. The updates use the DUT output to update the internal

data structure with the new information, reducing the set of answers that the scoreboard

considers as correct for future operations. Updates also reduce the uncertainty in the range

of time that an operation completed.

Updates reduce the set of possible values held in the data structure, but the scoreboard

can perform simple checks even before any updates are added. For example, the most

useful check is a check of causality (a value that is read from an address must have been

previously written to that address). In this very loose scoreboard, any stored value would

be considered as correct. Under such a simple scoreboard, the check would quickly become

ineffective and the data structure would explode in size. Thus, updates are the completing

and crucial part of the scoreboard. Updates use the rules of the implemented protocol to

reduce the set of possible values.

Updates and checks are independent and modular, so for a new or different protocol,

checks and updates can be swapped in and out, and new ones can be written. The new checks

and updates can be added to verify different aspects of the specification, or existing checks

and updates can be made more effective by considering more details of the implemented

system. This characteristic allows the verification effort to concentrate on the simplest

and easiest to detect errors first, and gradually move towards more sophisticated design

problems. This implies that while at the beginning of the design and verification cycle

the number of acceptable results might be large, this set later becomes smaller, evolving
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Figure 5.2: Write atomicity example.

towards a tight, accurate model. Overall, the relaxed scoreboard is essentially a set of

global protocol-level assertions. The assertions are constructed to verify that certain rules

of the protocol are followed at a high level, without actually relying on or examining the

implementation details.

Sections 5.2.1 - 5.2.3 show a few example properties that a user trying to verify their

protocol’s implementation may select. These demonstrate the use of the relaxed scoreboard

in verifying implementations of shared-memory protocols. In the examples, write(a,d) and

read(a,d) are used respectively to denote a write or a read of data d from address a. To make

the consistency problems easier to see in these examples, reads are assumed to complete in

less than 10 cycles, and nops indicate operations that are not relevant for the property in

question.
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5.2.1 Write Atomicity

As a run-time checker, the scoreboard needs to determine whether a given operation corre-

sponds to a legal transition in the machine state. As our first example, let us examine how

a relaxed scoreboard would check for write atomicity, which is part of many consistency

models [2]. In order to detect write atomicity violations, we convert the protocol property

into a check and update, and add them to the relaxed scoreboard:

Protocol property: All processors see writes to the same location in the same

order: that is, each write constitutes a single serialization point. If there is a store that

is observed by one processor, it should be observed as completed by all processors.

Update: When one processor loads a value from a certain location, mark all previously

committed stores to this location as invalid after the load completion time.

Check: A load can only return a value which was valid at some point between its

start-of-interval and end-of-interval.

The following is an observable write atomicity violation. P5 incorrectly reads a value of

a=1 after P4 has verified that the a=2 update definitively occurred by time t=30.

Time P1 P2 P3 P4 P5
10 WR(a,1) WR(a,2) nop nop nop
20 nop nop RD(a,1) nop nop
30 nop nop nop RD(a,2) nop
40 nop nop nop nop RD(a,1)

* Assume MEM[a]=0 at time 0
** Assume read operations complete in less than 10 cycles

In this example, Processors 3, 4, and 5 disagree on the ordering of the store to address a.

Figure 5.2 illustrates the operation of the relaxed scoreboard for the above code sequence.

The top part shows portions of the specification’s non-deterministic state machine that

correspond to the code above. It shows that one of two sequences can exist: either P1

wrote 1 and then P2 wrote 2 or vice versa—write atomicity is maintained in both cases. The

portion of the figure that is drawn in bold illustrates the corresponding implementation’s

state machine (which is deterministic). The bottom part of the figure shows the state of

the relaxed scoreboard with respect to the same code: The scoreboard identifies two writes

and marks both values as possible answers. This corresponds to the state machine being

in either state Init, A, B, C or D. When the first read is reported to the scoreboard,
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the scoreboard deduces that the design can be in either state A, B or D, and when the

second read is reported, the uncertainty window collapses to a single allowed value. In

this example, the scoreboard will immediately identify the read by processor 5 as an error

since the returned value is no longer in its list of allowed values for that address. It is

important to note that a trace analysis checker that does not use temporal information will

not identify this set of traces as erroneous. Without the time information, the read by P5

could be assumed to have taken place before the read by P4.

5.2.2 Transaction Isolation in TCC Memory Model

To provide another example of how to convert protocol rules into checks and updates we

examine transactional memory. Transactional coherence and consistency (TCC) is a mem-

ory model that has been proposed to simplify the development of parallel software [18]. In

TCC, the programmer annotates the code with start/end transaction commands, and the

hardware executes all instructions between these commands as a single atomic operation.

If a transaction conflict is detected, such as one transaction updating a memory word read

by another, the latter transaction is considered as violating and must be re-executed.

In order to track the state of a TCC system, the relaxed scoreboard must be able to

determine when transactions begin, commit or abort. Fortunately, as part of the software-

hardware contract, the timing of these events is determined by a TCC runtime system using

special marker instructions to signal the state of a particular processor and transaction. The

relaxed scoreboard can use this information for its own operation. The scoreboard’s data

structure also needs the ability to keep track of multiple transactions simultaneously; all

written values must be kept and associated with their initiating processor until the time of

commit. Similar to the example discussed in Section 5.2.1, the scoreboard does not need

to know the exact timing of the events in order to check for end-to-end properties. For

example, the scoreboard does not know when a store becomes visible to other processors;

it assumes that it happens sometime during commit.

The Transaction Isolation property means that when a processor is executing a trans-

action, the transaction’s intermediate state is hidden from other processors in the system.

They can only observe the transaction’s state before a transaction start or after a transac-

tion commit. As in the previous example, in order for the relaxed scoreboard to check for

transaction isolation, we convert the protocol property into an update:

Protocol property: A transactional store cannot be observed by other processors
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unless the transaction commits successfully.

Update: When a store is issued during a TCC transaction, leave it as invalid for all

but the issuing processor. Upon observing transaction commit, validate it for other

processors as of commit time.

Check: A load can only return a value which was valid at some point between its

start-of-interval and end-of-interval

The following sequence is an example of a violation of transaction isolation property:

Time P1 P2
10 START TRANSACTION START TRANSACTION
20 WR(a,1) nop
30 nop RD(a,1)
40 START COMMIT

* Assume MEM[a]=0 at time 0
** Assume read operations complete in less than 10 cycles

In this example, the scoreboard would not allow the value 1 for P2’s load, as it has not

observed the commit event from P1. Thus on P2’s load it would raise an error.

5.2.3 Store Ordering in a TSO Memory System

A design that implements Total Store Ordering (TSO) ensures that all stores from a pro-

cessor complete in program order, as seen by all processors (this is different from weak

consistency, which makes no guarantees about the ordering of stores to different addresses).

To facilitate verification of store ordering, we add another update to the scoreboard:

Protocol property: All stores by a processor must commit in issuing order, as seen

by all processors

Update: When a store by processor Pi is observed by a processor’s load, all previous

stores by Pi to all addresses should be marked as committed. If more than one store by

Pi exists for a given address, mark the latest as committed, and invalidate older ones.

To analyze the scoreboard actions when used for TSO, consider the following example

of a TSO violation:

Figure 5.3 illustrates the operation of the relaxed scoreboard for the above code sequence.

The top part shows the change in state of the machine given the TSO memory model. The
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Figure 5.3: Total Store Order Example.

Time P1 P2
10 WR(a,1) nop
20 WR(a,2) nop
30 WR(b,2) nop
40 nop RD(b,2)
50 nop RD(a,1)

* Assume MEM[a]=MEM[b]=0 at time 0
** Assume read operations complete in less than 10 cycles

relaxed scoreboard cannot deduce the exact state, but it can deduce a set of possibly correct

values, as illustrated in the bottom part of the figure. By observing the three writes one

can deduce that the state is Init, A, B or C. When the first read is reported to the

scoreboard, the design can only be in state C, therefore the uncertainty window collapses

to a single allowed value. Finally, as the second read by P2 is observed, the scoreboard will

immediately indicate an error since the returned value is no longer in its allowed list.

The three previous examples showed how it is possible to write simple updates and checks

for the scoreboard to verify different aspects of memory implementations. Appendix A

contains more implementation details, and for a more detailed analysis of the algorithmic

complexity and completeness of the Relaxed Scoreboard, the reader is referred to [37].
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One should also note that the relaxed scoreboard can be used to verify a subset of the

consistency model properties (thus obviously incomplete). Our experience shows that even

in those cases where not all axioms are translated into checks and updates, it was useful

in finding elusive bugs that could not have been found using race-free or self-checking test

vectors. The next section describes the results of using the relaxed scoreboard to verify

several memory models.

5.3 Evaluation

We applied the relaxed scoreboard to the verification of the Stanford Smart Memories

chip multiprocessor architecture and evaluated its effectiveness based on the number and

complexity of the design errors that it could reveal, in addition to the impact that it had

on the overall verification/simulation environment.

5.3.1 Scoreboard Design for Smart Memories

A relaxed scoreboard was used to help verify the design of the Smart Memories chip de-

scribed in Section 2.2. When configured as a shared memory CMP, the Smart Memories

system implements a hierarchical version of the MESI protocol. The shared memory con-

sistency model [2] is a variation of Weak Ordering (WO), which maintains write atomicity.

Processors are allowed to issue non-blocking writes to memory, which can be overlapped

and completed out of program order. On the other hand, reads are treated as blocking

operations and stall the processor until the data is returned. When configured as a trans-

actional memory CMP, the Smart Memories system implements the TCC protocol [18],

briefly described in Section 5.2.2.

A relaxed scoreboard was used to aid in the verification of Smart Memories. It was

implemented as an object oriented programming class using OpenVera. Vera’s Aspect Ori-

ented Programming (AOP) capability was leveraged to connect the scoreboard into the ex-

isting verification environment, which already included code to monitor key interfaces. For

cache coherency, the scoreboard’s data structure contained an associative array of queues,

one queue per writable address in the system. For TCC, the scoreboard also maintained

a queue for each processor, containing pointers to the transaction’s read and write sets,

and flags to indicate the state of the current transaction. Checks and updates, a super-

set of those shown in Sections 5.2.1 and 5.2.2, were written based on the protocol rules
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of [2] and [18] respectively.

Due to the scoreboard’s black-box nature, it was usable without modification across

25 different cache-coherent configurations and 15 different TCC configurations. Moreover,

it was applied to both single-quad (8 processors) and four-quad (32 processors) testing

environments, where the only difference was the number of monitor instances that fed the

scoreboard with information.

In order to demonstrate the flexibility of the system, we configured the scoreboard to

check for (depending on the hardware’s configuration), Cache Coherency, Transactional

Coherency and Consistency, and Total Store Ordering. For example, adding Total Store

Ordering checking to the Cache Coherency checks and updates required writing a single

new update for the scoreboard, only 100 lines of Vera code. While this initial version was

correct, the data structure was rather inefficient, so we also introduced a second lightweight

data structure to track outstanding stores and a short update to populate it.

5.3.2 Quality of Results

To demonstrate error cases that can be revealed by using a relaxed scoreboard, Table 5.1

summarizes classes of errors that the relaxed scoreboard found in the Stanford Smart Memo-

ries design. One should note that the errors described in Table 5.1 were found after multiple

runs of self checking diagnostic tests were used to identify “simple” errors.

Given the complexity of the errors described in Table 5.1, and the fact that some of

the errors would have evaded previous verification methodologies, we found the relaxed

scoreboard to be a useful debugging tool and another weapon in the arsenal against memory

system errors. Using the scoreboard simplified test generation, as tests no longer had to

be entirely self-checking. This allowed the test suite to include truly random tests, where

before it was limited to tests with only false sharing or strictly synchronized accesses between

processors. The random tests revealed subtle bugs, such as erroneous ordering of back-to-

back stores to the same address. Moreover, the efficiency of the self-checking tests increased

because the relaxed scoreboard was able to detect intermediate errors, even when the final

output was correct.

For Cache Coherence we were able to detect many problems related to memory ordering

and corruption. These errors existed in many parts of the design: the Cache Controller,

Load Store Unit, Memory Controller, and in configuration of our programmable hardware.

In the TCC mode, the scoreboard was able to detect errors such as faulty commits and
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Figure 5.4: Histograms of uncertainty for applications running on 32 processors.

violations. These included a very subtle case where a transaction violated unnecessarily

due to an error in the manipulation of state bits. Since this was a performance error, it

would have otherwise remained undetected by any self checking test. Another type of error

that the scoreboard detected in TCC mode was runtime sequencing problems (software

library errors). These included cases in which two start transaction markers were observed

without an end/violate transaction marker in between.

The same basic approach served to validate very different memory system models, as

well as different implementations of each model. This generality was enabled by the flexible

and incremental addition of checks and updates. Table 5.2 lists the checks and updates

currently available, while Appendix A provides more information.

5.3.3 Performance and Overheads

A useful measure of the effectiveness of the relaxed scoreboard is the size of the set of

possibly correct values (referred to as the uncertainty window). Figure 5.4 shows the size

of the uncertainty window for several test-runs on 32 processors. Each subfigure shows
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Table 5.1: Classes of errors found by the relaxed scoreboard (LSU=Load-Store Unit;
PC=Protocol Controller; MC=Memory Controller; Net=Network)

Error Description Error Location
Cache Coherency and Consistency

Program order violation: processor writes new value, then
reads the old value from the same address

LSU

Program order violation: later store value is overwritten by
older store from the same processor

LSU

Soft processor stall doesn’t work LSU
Back-to-back loads from the same processor return different
values

LSU

Coherence violation: load from a different processor returns
zero instead of valid data

PC

Instruction fetch returns incorrect value LSU
Instruction fetch returns incorrect value Boot sequence
Load returns a no-longer valid data MC
Load returns incorrect data LSU
Load returns incorrect data MC
Load returns incorrect data PC
Load returns incorrect data Compiler
load returns X during boot/setup Boot sequence
Synchronized load returns incorrect data MC
Synchronized load returns incorrect data PC and PC config

Transactional Coherency and Consistency
START TRANSACTION command called twice TCC runtime
Missing COMMIT command TCC runtime
Unnecessary TCC violation PC
TCC coherent load returns stale data Net Config
TCC committed value is lost Net Config
TCC transaction is not violated, missed dependence PC
TCC coherent load returns wrong data PC
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Table 5.2: Checks and Updates for Memory Protocols, as implemented in the Relaxed
Scoreboard for the Smart Memories project.
Name Description

Checks
Check Last Received For loads, check that the last observed value exists in

the set of allowed values. Special cases for the first
observed access to an address.

Check Count Valid A Bookkeeping check which tracks the size of the un-
certainty window each time the checks are run.

Updates
Update Simple When a processor N stores a value to address A, no

earlier stores to A are valid for processor N .
Update After Read When a value written by processor N is observed by

a different processor, then no processor can later read
any values written earlier by N .

Update After Read for Others Finalizes the ordering of committed stores from differ-
ent processors by tracking the order in which they are
observed.

Update Add to Store Queue An update for TSO to make the data structure more
efficient

Update After Read TSO Any store (to any address) by processor N is completed
once a later value stored by processor N is observed.

Update After Store Time Based Rough assumption that a store initiated some time af-
ter a previous store will commit later. “Some time” is
a parameter that can be adjusted in the case of false
positives.

Update After Sync Store Upon Completion of a synchronous store operation, set
the known commit time

Update Remove Read Remove or garbage collect reads which no longer have
relevant information for the scoreboard

Update After Read TCC Tracks whether a given TCC read could lead to a vio-
lation

Update TCC When in TCC mode, save operations to a special struc-
ture

Update After TCC Commit Upon TCC Commit, invalidate earlier stores by other
processors, check for violations
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a histogram of the number of possibly allowed values for every simulated load in the test.

Figure 5.4.d shows the results for a real application, in which there is very little uncertainty.

This example shows two things. First, the scoreboard only occasionally needs to maintain

more than one value, which shows the scoreboard is essentially equivalent to a deterministic

checker in this case. Second, the test is not really stressing the design, because it is not

inducing all the arbitration and conflict cases that could arise. Figure 5.4.a shows that for

a random test, limited to 10 addresses for all 32 processors, the average uncertainty is 35

values and never exceeds 81. Figures 5.4.b and 5.4.c show that as there is less contention

for the addresses there is also less uncertainty.

One conclusion we draw from Figure 5.4 is that the size of the set of possibly correct val-

ues is always bounded, even when the test focuses on a very small address range. In fact, for

a self-checking diagnostic such as matrix multiplication (Figure 5.4.d), a relaxed scoreboard

behaves almost identically to a golden reference model. In addition, it is important to note

how much more stressful a random test with true sharing is (Figure 5.4.a) in comparison to

a deterministic self-checking diagnostic (Figure 5.4.d). The latter rarely induced any races.

This emphasizes the initial motivation for creating an end-to-end reference model that can

be used with random tests, for a more efficient verification environment.

5.4 Relaxed Scoreboard Conclusions

The advantages of having a scoreboard or a golden model for validation are well known,

as are the difficulties of creating this model. One approach to mitigate these difficulties is

to allow a degree of flexibility in the reference model. Leveraging this flexibility and non-

determinism to construct a relaxed scoreboard—a reference model that tracks a tight set of

possible “right” answers and is therefore decoupled from implementation decisions—greatly

simplifies the construction of the model. Since the possible set is almost always small, it

does not change its effectiveness in finding errors in the design implementation.

The relaxed scoreboard creates a good framework for building chip multiprocessor mem-

ory checkers, since one can incrementally convert memory ordering or protocol properties

into update rules for the scoreboard. A user creating a new protocol can include or exclude

already existing rules, and easily add new checks and updates for their own protocol. This

modularity is demonstrated by the Smart Memories verification effort, where the relaxed

scoreboard was very effective in detecting errors in the implementation of multiple protocols.
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Chapter 6

Conclusions & Future Work

This thesis has described a method for building hardware implementations of the complex

memory protocols for modern multiprocessor systems. To enable the flexibility required

to experiment with new techniques, we learned from the experience of building hardware

programmable systems and moved instead towards a system that is “programmed” be-

fore tapeout. We defined an abstract hierarchical architecture, and constructed a flexible

abstract template for a protocol controller between coherent caches. This template had

an overall fixed structure composed of many smaller templates which were programmable

versions of look up tables, TCAMs, memories, and more. An entire memory system is com-

posed of several of these independent controllers, so our template also includes the interfaces

between them in a separate description.

The resulting parameterized system is extremely complicated and detailed, which makes

manually generating the parameters an extraordinarily difficult task. We therefore intro-

duced SLAMM, a higher level language for generating the needed configuration for a desired

memory protocol. SLAMM allows programming in C-like constructs, then our compiler ex-

tracts the necessary information from the specification to generate the XML format required

by our template to configure it. The SLAMM compiler works well with other tools that con-

figure other aspects of the overall system, so there is no problem with a designer adjusting

other parameters of the system. These could include parameters for sizing, optimizations,

and the number of units and the hardware structures which connect them.

We predicted and planned for the fact that no matter how powerful the SLAMM system

is, inevitably there will be some blocks that it will need to interface to that were are not

controlled by SLAMM. Therefore, there has to be a good mechanism for translating the

95
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SLAMM system’s internal decisions back to higher level concepts to allow designers to

connect into the generated system. In addition, these mechanisms provide the possibility

to debug the generated system or specification if there are errors in the resulting hardware.

Concretely, this could be as simple as maintaining the information about enumeration

mappings from higher-level names to values, rather than discarding the name information

once the decision has been made.

This platform has the capability to allow modification of existing protocols to leverage

modern protocols like those discussed in Chapter 2. The generic hardware template we

have described is very good at implementing the control flow, as shown by the re-use of

the structure in various controllers of our current system. The caveat here is that any new

protocol will inevitably require the addition of some new hardware templates or blocks that

didn’t exist before. However, with our previous experience in building flexible systems, we

expected this and planned for it by allowing clean ways to interface with them. To illustrate

this point we briefly touch on a few of the protocols we mentioned earlier and consider how

they could be described and implemented with this system.

ZCache [34] is a variation on cache coherency that aims to decouple ways and asso-

ciativity. Its ways are mapped using a variety of hash functions to prevent lines from

colliding across multiple ways. When looking at this from a SLAMM programming per-

spective, this means that the function inside of the Memory Block (cache) for doing this

mapping is different internally. SLAMM does not describe the Tag mapping; it relies

on a lookupByAddress(Address) primitive. By default, the hardware implements the

slamm state hardware which just does a basic lookup, but this hardware could be swapped

out with a hardware implementation of the ZCache way mapping functionality.

To increase associativity, ZCache uses a sophisticated eviction candidate selection al-

gorithm. It determines which eviction candidate is optimal from a large set. Using the

multiple way functions, it creates and traverses a tree of eviction candidates. While a single

line may map into only a few ways (such as three), the possible eviction candidates grows

exponentially, so the best candidate can be selected from a much larger group. The result is

that once the eviction candidate is selected, several data moves must be made to swap data

around to their new homes. While traversing the tree to find the best eviction candidate

fits well inside the function primitive (where eviction candidate selection currently resides),

the process of moving data is more complex. SLAMM can describe this data movement as

a series of transient states and associated internal messages.
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Another of our modern memory system examples was the DataSafe [9] architecture.

This introduced interface of Secure Data Compartments (SDC) managed by the hardware,

special processor instructions to track them, and tag bits which are stored along with the

data in the compartments in memory. DataSafe adds special off-core tracking structures,

the sdc list and mem map. These are accessed explicitly by DataSafe-specific opcodes,

for example sdc add and sdc del which add and delete elements from the hardware SDC

list. Our SLAMM-programmed system template could incorporate these structures in a

variety of ways. They could be incorporated into a memory block to change its behavior

when accessed, or they could be described as entirely different memory blocks that must

be accessed in addition to the cache (eg, processor checks the sdc list before accessing the

cache).

Our current whole system template contains a request network (Figure 3.3) which al-

ready supports an address map structure to determine which memory block to send an

operation to, based on the address. For example, it would send the access to the instruction

cache or the data cache depending on the address/processor port it comes out of (this can

also depend on the operation). With DataSafe, loads to the SDC address region of memory

are treated differently, but the SDC list is dynamic so this region is not fixed. Looking up

whether a block is in this special region can be done if the SDC list is implemented as a

specialized memory block or sophisticated state tracking structure.

Overall, when mapping new protocols onto our current system, we note that SLAMM

focused on describing actions which result in sending messages out on wires to other state

machines. SLAMM also addressed the issue of pulling in data from a variety of sources

to send out on these interfaces, and automatically making sure that the necessary data is

physically in place in order to be sent out. For other actions, SLAMM makes use of a clean

interface of function calls with known inputs, and using the same methodology as sending

out messages to provide the input data to the function input fields. Special function names

(get*) allow the automatic use of prewritten hardware primitives, without preventing a

user from writing their own.

Looking forward, there are two clear research directions to explore using this system as

a starting point. First, we can use the SLAMM language in its current form and focus on

creating a better hardware design output. Second, we can use the fact that we know how to

generate hardware from a SLAMM specification, and come up with an even simpler, higher

level specification that compiles down into a SLAMM specification.
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First we can consider directions towards a more efficient hardware design. We have

created a system that works, where the SLAMM compiler does some rudimentary opti-

mization in the configuration for the hardware, but there is much more that it could do.

The compiler could be enhanced to execute additional optimization passes, both at a local

level or at a more global level. One example is the an optimized mapping between enumer-

ation names and values. While enumerating states in SLAMM is straightforward, SLAMM

does not provide an intrinsic way of describing a mapping between bits and states. An

optimal mapping could exist which would greatly reduce the lines of code needed in the

many TCAM structures. For example, an optimizing compiler could recognize that various

STORE-like messages result in a similar set of actions, distinct from the actions taken from

LOAD-like messages. It could then assign message type enumerations in such a way to

make the comparisons in the TCAM more efficient.

We can also leverage the power of the generator’s ability to take input from other

specification tools to make the hardware more efficient. The generic template we described

for a controller could be extended to support pipelining internally, similar to the protocol

controller in Smart Memories. While this doesn’t change the SLAMM specification of

the protocol, it allows parameters such as pipeline depth to be chosen with optimization

techniques such as those described by Azizi et al [6, 7]. Similar techniques can determine

the optimal number of units or the structure of the interconnect.

The second direction for future work is to make it easier to specify protocols: SLAMM

specifications are still quite detailed and require a good deal of user consideration of the

system interactions. For example, SLAMM does not infer any intermediate states. When

sending messages and waiting for a reply, the user must specify Wait states for each sort

of message sent out. If multiple requests are sent out in parallel and then the replies are

gathered before moving to the next state, the user has to carefully consider the possible

orderings of the replies to make sure the appropriate intermediate states and transitions

are all in place. While these interactions are complicated to describe, they follow similar

patterns of request-response, scatter-gather. Future research can focus on ways on reducing

this complexity by automatically mapping the protocol’s true states (specified in an even

higher level language) onto intermediate SLAMM states, with the associated transitions

and messages.

Overall, our SLAMM-driven system serves as a good foundation on which future memory

system generators can be built. The hardware is generic, programmable, and allows clean
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interaction with custom hardware blocks, and provides many opportunities for expansion.

The specification language significantly reduces the complexity of generating the required

configuration data. Together they greatly reduce the effort required to create new memory

systems.
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Appendix A

Relaxed Scoreboard Details

A.1 Introduction

“The Relaxed Scoreboard” is a verification tool used for the Stanford Smart Memories

Project, although whenever possible it tries to remain a general tool for verifying any

memory system. The purpose of The Relaxed Scoreboard is to verify memory systems

in which there may be many “right” answers, such as in a shared memory multiprocessor

system.

In a single processor system:

Store A, 10 Load A

should always return 10. It is therefore simple to use an array or some other structure

to represent the memory in software, and check against it as the program runs in hardware

or hardware simulation. However, in a multiprocessor system, it is not so easy to determine

what the correct answer for a Load should be, if many processors are writing to the same

address. The Relaxed Scoreboard is an attempt to work around this problem.

A.2 Internal Structure of The Relaxed Scoreboard

The Relaxed Scoreboard is written in Vera. It is essentially an array of queues, with one

queue for each address in the memory system. Because of masking, writes can be done on

a byte level, so addresses are at the byte level. Thus, there is a queue for each byte address

in memory. There are a few additional structures for handling things like Transactional

Cache Consistency (TCC) and Total Store Ordering (TSO), and specifying address ranges

101
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over which the Scoreboard should operate.

A.3 Relaxed Scoreboard Classes Summary

The relevant files and classes for The Relaxed Scoreboard are:

• Scoreboard.vr :

The main Relaxed Scoreboard class which executes checks, updates, garbage collec-

tion, error reporting, and logging for the system

• Trace trans.vr :

Transaction class which is the element added to The Relaxed Scoreboard queues

• Trace trans Q.vr:

A wrapper class around a verilog queue of Trace trans to easily manage an array of

queues.

• Scoreboard aop links.vr :

Code to link The Relaxed Scoreboard into the rest of the verification environment:

this is what actually makes calls to add transactions to The Relaxed Scoreboard.

• Scoreboard Address.vr :

A class just used as a container to specify an address range within the scoreboard

(usually used to specify address ranges which the scoreboard should ignore).

• Store Queue.vr :

A class used for TSO to maintain pointers to a processor’s store set within the main

Scoreboard data structure.

• TCC Transaction.vr :

A class used for TCC to maintain pointers to a processor’s R/W set during a TCC

transaction within the main Scoreboard data structure, along with other TCC book-

keeping information.
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A.3.1 Trace trans Class

The element of the queue is a Trace trans object, which stores the basic information about

a transaction. Most values are set with the AssignValues function before the transaction is

added to the Scoreboard, but others are dynamically updated as the Scoreboard operates.

// protected integer active;

// protected integer my_ID; // the ID of the instance

// protected string comment;

// protected integer my\_creation\_time;

/*ID of sender entity (a processor or other part of the system),

* as defined in

* Quad\_def.vrh */

integer senderID;

/*This is the physical byte address of this transaction,

* translated by The Relaxed Scoreboard.*/

bit [31:0] destinationAddr;

/*The write data if this is a write operation, or data returned on a load*/

bit [7:0] data;

/*The global cycle when this transaction started*** */

integer timeStart;

/*The global cycle when this transaction ended *** */

integer timeEnd;

/*What operation was this (currently only Load or Store are supported*/

integer operation;

/*For each CPU, what is the last clock cycle that a CPU can be

* influenced by this transaction *** */
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bit [63:0] is_valid_for_cpu[*];

/* How many CPUs are currently active in the Scoreboard*/

int num_cpus;

/* Indicates whether this is part of a non-committed TCC transaction*/

bit transactional;

/* Indicates that this transaction is locked and should not

* be Garbage Collected*/

bit locked;

}

***The timeStart, timeEnd, and is valid for cpu[*] are dynamically adjusted as the

scoreboard makes decisions and assumptions based on observed transactions.

A.3.2 Trace trans Q Class

The Trace trans Q is essentially a wrapper around a queue of Trace trans structures. How-

ever, it also has some other functionality, such as being responsible for maintaining an idea

of a locked address (meaning that an address has an outstanding operation pending and

this queue should not be garbage collected).

class Trace_trans_Q

{

/*The queue which represents all the transactions to a current address.*/

Trace_trans ttQ[$];

/* A lock for each processor in the design (if a processor is

* using this address, it can lock it to prevent garbage collection. */

integer locks[*];

}
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A.3.3 TCC transaction Class

This class represents a TCC transaction. A transaction has numerous state flags and an

associated list of Trace trans which were executed under the transaction.

class TCC_Transaction

{

/* Pointers to transactions completed under this TCC transaction*/

Trace_trans ttQ[$];

/*this represents a transaction which is underway*/

bit valid;

/* this represents a transaction which is committing*/

bit committing;

/* this represents whether a transaction CAN complete.

* If a transaction is violated (according to the

* scoreboard), it will be cleared. But, just because it is

* 1 does not mean that this MUST commit.*/

bit can_commit;

/* this represents whether a transaction CAN be violated.

* this means that it has read an address that was written

* by another transaction. The ultimate violation will

* happen depending on the order of commits. Just because this

* flag is set does not mean that the transaction MUST violate.

*/

bit can_violate;

/*processor issuing this transaction*/

integer proc;

}
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A.3.4 Scoreboard Class

The Scoreboard class implements most of the functionality of the Relaxed Scoreboard as

well as contains its major data structures. The functionality will be explained in later

sections, here I just give an explanation of its data structures.

class Scoreboard extends GENERIC_master

{

/*Control variables */

protected integer active;

protected string my_agent_name;

protected integer my_agent_ID;

protected string my_prefix;

protected integer _DEBUG_;

/*Count how many transactions were actually added to the scoreboard.

protected integer transaction_counter;

/*semaphore for protecting the scoreboard when adding a transaction. */

protected integer semID;

/**Queues**/

/* The main Data Structure: holds a Trace_trans_Q for each active

* address in the Scoreboard.*/

protected Trace_trans_Q Trace_Q_Array[];

/* We do not use Vera’s garbage collection of the Trace_trans_Q’s,

* so put allocated queues onto a freelist for re-use */

protected Trace_trans_Q Trace_Q_Freelist[\$];

/* We do not use Vera’s garbage collection of the Trace_trans,

* so put allocated trans structures onto a freelist for re-use */
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protected Trace_trans Trace_trans_Freelist[$];

/*Structure for holding the addresses which the scoreboard should ignore

* (these are specified on the command line) */

protected Scoreboard_Address ignoreAddress;

/* Structure for holding the address which the scoreboard should

* consider to be operating under a TCC memory model

* (these are specified on the command line) */

protected Scoreboard_Address tccAddress;

/* Array of TCC Transactions (one per pair of processors in the

* Smart Memories implementation). */

protected TCC_Transaction Tcc_Array[*];

/* Array of Pointers to current store set, for use with TSO

* memory model. One per processor. */

protected Store_Queue Store_Queues[*];

/* Lightweight structure to handle bookkeeping on addresses where

* an entire Trace_trans structure is not needed, ie, addresses

* for which there is no ambiguity. */

protected bit[8:0] BackupMem[];

...

}

A.4 Interfacing with The Relaxed Scoreboard

There are several ways in which transactions can be added to The Relaxed Scoreboard.

• Transactions added by Scoreboard aop links

The common-case way for transactions to be added to The Relaxed Scoreboard is

by the processor trace, in Scoreboard aop links.vr which monitors the signals coming
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from each processor. When a load or store is detected (from either the data or

instruction port), a transaction is sent to The Relaxed Scoreboard for each byte of

data. Thus, if a masked data write only writes a single byte, only one transaction will

be sent to The Relaxed Scoreboard. If a write affects the entire word of data, then

four transactions will be added to The Relaxed Scoreboard.

• Transactions added by the Test Environment

The test environment can add things to The Relaxed Scoreboard by using writes to the

MainMem structure. This is mostly used when the environment is being initialized,

so that matching values can be put into The Relaxed Scoreboard.

• Transactions added by the Scoreboard

The Relaxed Scoreboard can add values to itself. For example, if a processor issues

a load from an address that has never been written, The Relaxed Scoreboard can

add an initial dummy store transaction before the load to handle this case (this is

described in more detail in the Update section below).

A.5 Relaxed Scoreboard Operation

There are 3 main steps when a transaction is added to The Relaxed Scoreboard.

1. Address Translation

2. First, the CHECK step makes sure that this transaction was valid.

3. Next, the UPDATE step makes changes to The Relaxed Scoreboard, using the infor-

mation learned from this transaction.

There are additional functions which interface with the scoreboard outside of these

functions, both external and internal functions.

task Scoreboard::AddTransToSB(Trace_trans trac)

{

/*************************************************************************

* 1. Check the validity of the transaction. **************************

*************************************************************************
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* 2. Translate the address and add the transaction to the queue

************************************************************************/

/* Check for SPEC_CMD (TCC flags) and handle them if necessary*/

/* translate the address : some opcodes do not require translation */

/* Find the corresponding queue in the Trace_Q_Array.

* If it does not exist, allocate one.*/

/* Add the transaction to the correct queue. */

/************************************************************************

* 3. Start the checking mechanism

************************************************************************/

/*HACK: set the transactional (TCC) flag here so CHECK can use it.*/

/*log the transaction to the Scoreboard log file*/

/* Execute CheckScoreboard -- CHECK step */

/*************************************************************************

* 4. Start invalidation of old transactions mechanism

************************************************************************/

/* Execute UpdateScoreboard UPDATE step*/

}

A.5.1 Address Translation Step

The address translation is done using a TranslateAddress Vera function, which directly

examines the segment table for each processor to translate the given address. This happens

for each added transaction, which means that if the segment table is changed, The Relaxed

Scoreboard can keep up.

/* TranslateAddress: translates the address from virtual to physical

*/

function bit[31:0] TranslateAddress(integer src_ID,

bit[31:0] addr_in,

integer op)

{

/*Translates the address if the ’op’ requires it, by using the hardware
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* segment table, and returns the translated address.*/

}

A.5.2 The CHECK Step

Most of the work in checking is actually done by the Update Step. Checking is currently

fairly straightforward. Currently, the only function used is CheckLastReceived. This also

incorporates some extra complexity for handling TCC operations.

This does the following for a transaction issued by processor N:

1. If the last transaction is not a load, return PASS.

2. For all earlier transactions t to this address, starting with the latest:

(a) If t was a store

(b) if t’s is valid for cpu[N] is greater than the last transaction’s start time

(c) if t’s data matches the last transaction’s data

(d) return PASS.

3. If all the earlier transactions are checked and there is no match, then

(a) If this is the first transaction to this address, then it is allowed. return PASS

(b) If this is the first read to this address, then this is also allowed. return PASS

4. return FAIL

CheckLastReceived

function integer Scoreboard::CheckLastReceived(Trace_trans last_trans,

Trace_trans_Q added_to_q){

integer jdx = 0;

integer q_size = 0;

bit[31:0] last_addr = last_trans.destinationAddr;

Trace_trans trac_to_compare_with;

integer value_was_not_stored;
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/*keep track if this processor has done a store here,

* in case this is the first load. If the processor

* has not done a store and this is the first load,

* then allow it.

*/

bit this_proc_stored_here = 0;

// Initial return value is 1 (as in data not found)

if (last_trans.operation is not a LOAD)

return PASS;

for (all earlier transactions t to this address)

if (t was a store

AND t’s is_valid_for_cpu[N] > the last_trans’s start time

AND t’s data matches last_trans’s data)

return PASS;

if (last_trans was transactional and read a 0)

return PASS;

ERROR( Matching value was not found for the load,

print all values the Scoreboard would have

considered as correct).

return FAIL;

}

CheckCountValidXactions

This check is simply for bookkeeping, to give an idea of how much ambiguity there is in

the scoreboard for each load. The return value is always PASS, this check simply updates
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and logs some internal counter information. This check was used to generate graphs for the

paper about uncertainty window sizes.

function integer Scoreboard::CheckCountValidXactions(Trace_trans last_trans,

Trace_trans_Q added_to_q)

{

integer num_valid_values = 0;

if (last_trans.operation was not a load)

return PASS;

for (all earlier transactions t to this address)

if (t was a store

AND t’s is_valid_for_cpu[N] is greater than the last_trans’s start time

AND t’s data matches last_trans’s data)

num_valid_values = num_valid_values +1;

LOG (last_trans.destinationAddr, num_valid_values);

return PASS;

}

A.5.3 The UPDATE Step

There are many updates to The Relaxed Scoreboard. Some are designed for TCC or TSO

specifically. TCC updates are run transparently to the caller (they simply do not get

called because no transactions are identified as transactional) but TSO updates must be

commented out/added manually currently.

UpdateSimple

If processor N does the following at the same address:

Store A Store B

Then any subsequent reads by processor N must return either B or something written by

another processor, but not A. UpdateSimple is invoked when a store transaction is added
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to The Relaxed Scoreboard. It will invalidate the previous store by the same processor,

setting its is valid for cpu[N] time to be the finish time of the current store. Because of

inductance, all earlier stores will also be invalidated.

function Scoreboard::UpdateSimple(Trace_trans store_trans,

Trace_trans_Q added_to_q)

{

integer senderID = store_trans.senderID;

bit [31:0] addr = store_trans.destinationAddr;

integer q_size = 0;

integer idx = 0;

Trace_trans old_trans;

if (store_trans.operation is not a store)

return;

for (all transactions t to this address)

if (t is a store

AND t.senderID == store_trans.senderID

AND neither is transactional)

t.is_valid_for_cpu[N] = min(t.is_valid_for_cpu[N],

store_trans.timeStart)

}

UpdateAfterRead

Suppose we have the following transactions, all to the same address:

Time ----------------->

p0: store A - store B - store C

p1: store D - store E - store F

p2: store G - store H - store I
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Now, suppose we do a read with p0. Of course we know from the earlier check Up-

dateSimple that A and B are not acceptable. However, if the read returns I, then we know

that I has committed and no earlier writes from p2 should be allowed for ANY proces-

sor. Therefore, this update will go through the transaction queue, and for any store by

p2, it will invalidate p2’s earlier stores for ALL processors, by setting its is valid for cpu[i]

to be the timeEnd of the current Load. It will actually do the minimum of the current

is valid for cpu[i] and timeEnd, in case the store has already been invalidated for some

processors.

Note, that we can’t really say anything if there were two stores of value ’I’. So, this

update also makes sure that there is no ambiguity in the satisfying store before executing

updates on the scoreboard.

TCC reads do not affect other processors so for transactional loads we skip this update.

function Scoreboard::UpdateAfterRead(Trace_trans read_trans,

Trace_trans_Q added_to_q)

{

Trace_trans trac_to_compare_with;

bit found_match = 0;

bit found_more_than_one_match = 1;

integer matching_sender = 0;

if (read_trans is not a load OR if read_trans is transactional)

return ;

//if this didn’t come from a processor, return

if (read_trans.senderID < 0 || read_trans.senderID > num_cpus-1){

UpdateAfterRead = 0;

return;

}

/*Using the same mechanism as CheckSimple, find a matching_store.

* If there is no matching store, error out. If there is more

* than one matching store, we can’t do anything, so return.
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*/

/*since we have read this value, we know that it has definitely

* committed. So we should update its commit time.

*/

matching_store.timeEnd = min (matching_store.timeEnd,

read_trans.timeEnd);

/*now start searching from where you stopped and invalidate

*the earlier stores for all processors*/

for (all earlier stores t earlier than matching_store)

for (each processor n)

t.is_valid_for_cpu[n] = min(t.is_valid_for_cpu[n],

read_trans.timeEnd);

}

UpdateAfterReadForOtherProcs

Suppose we have the following transactions, all to the same address:

Time ----------------->

p0: store A - store B - store C

p1: store D - store E - store F

p2: store G - store H - store I

If pX reads ’C’, then we know the value ’C’ has already committed. If at some later

time pX reads ’H’, then we know that H committed after C. Therefore, we can invalidate

’C’ at the time of the read ’H’ completed.

This update does not make sense for TCC loads because they do not affect other pro-

cessors.

function Scoreboard::UpdateAfterReadForOtherProcs(Trace_trans read_trans,

Trace_trans_Q added_to_q)
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{

if (read_trans is not a LOAD

OR read_trans is transactional)

return;

/* Using the same mechanism as CheckSimple, find a matching_store.

* If there is no matching store, error out. If there is more

* than one matching store, we can’t do anything, so return.

*/

For (all transactions t to this address)

if (t is the matching_store) continue;

if (t is a STORE

AND t.timeEnd < read_trans.timeStart

AND t is not transactional)

for (all processors n)

t.is_valid_for_cpu[n] = min(t.is_valid_for_cpu[n],

matching_store.timeEnd);

}

UpdateAddToStoreQueue

This update is only used in the TSO model. It adds outstanding stores to a supplementary

data structure for each processor. The stores can be removed from this structure in various

ways. This structure facilitates operations that need to update outstanding stores for a

processor, such as memory barriers or UpdateAfterReadTSO (used only for TSO)

function Scoreboard::UpdateAddToStoreQueue(Trace_trans last_trans){

if (last_trans.operation is not a store)

return;

Store_Queues[last_trans.senderID].push_back(last_trans);

}
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UpdateAfterReadTSO

In the TSO memory model, there is a known total ordering of all stores to all addresses by

a processor. Therefore, once the scoreboard can conclude that a single store has completed,

any earlier stores by that processor to any address is known to also be completed.

function Scoreboard::UpdateAfterReadTSO(Trace_trans read_trans,

Trace_trans_Q added_to_q){

if (read_trans is not a LOAD)

return;

/*Using the same mechanism as CheckSimple, find a matching_store.

* If there is no matching store, error out.

* If there is more than one matching store, we can’t do anything,

* so return.

*/

for (each store s in Store_Queues[matching_store.senderID])

if (s.timeStart < matching_store.timeStart)

s.timeEnd = min(s.timeEnd, matching_store.timeEnd);

}

UpdateAfterStoreTimeBased

Although the hardware makes no guarantees about how long operations will remain out-

standing, we can make assumptions to limit uncertainty in the scoreboard. For example:

P0 : store X at time 0

P1: store Y at time t > MAX_STORE_TIME

We can conclude that X will commit before Y.

Of course, if these assumptions are violated then the scoreboard will give false positives

on errors, but this means simply adjusting the MAX STORE TIME time limit on how

long operations will remain outstanding. In our implementation this has a default value of

1500 cycles, but can be adjusted with a command line parameter for tests which are known
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to have long commit times (eg, where there is a lot of contention on a limited number of

addresses).

function Scoreboard::UpdateAfterStoreTimeBased(Trace_trans store_trans,

Trace_trans_Q added_to_q) {

if (store_trans.operation is not a non-blocking store

OR store_trans is transactional)

return;

for (all transactions t to this address)

if (t is a non-blocking STORE

AND t.timeStart + MAX_STORE_TIME <= store_trans.timeStart)

for (all CPUs n)

t.is_valid_for_cpu[n] = min(t.is_valid_for_cpu[n],

store_trans.timeStart

+ MAX_STORE_TIME);

}

UpdateAfterSynchStore and CompleteTransInSB

This Update is not actually called as part of the usual update chain. Instead, it is called

from the CompleteTransInSB function, which is used by the scoreboard for synchronous

operations (known completion times). The Scoreboard aop links first send the store as

usual when it is first observed at the interface (in order to allow other loads to see it).

Scoreboard aop links then waits until it sees that its processor is unstalled (the store has

completed) before calling CompleteTransInSB.

task Scoreboard::CompleteTransInSB(Trace_trans trac){

bit UpdateScoreboard_error = 1’b0;

if (trac is not a blocking store)

return;

UpdateAfterSynchStore(trac);

}
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This is a function that invalidates synch stores. Because a synch store is guaranteed

to have already completed, then a second synch store to the same address will invalidate

all earlier synch stores. Unfortunately, this doesn’t QUITE work... some synch stores may

complete close together. So this should simply set the completion time of a synch store.

UpdateAfterRead should invalidate things that have already completed. For now we leave

this with the MaxStoreTime condition in place.

function Scoreboard::UpdateAfterSynchStore(Trace_trans store_trans){

if (store_trans is not a blocking store)

return;

for (all other transactions t to this address)

if (t is a blocking store

AND t.timeEnd + MAX_STORE_TIME < store_trans.timeEnd)

for (all processors n)

t.is_valid_for_cpu[n] = min(t.is_valid_for_cpu[n],

store_trans.timeEnd);

}

UpdateConsiderReadStartTime

function UpdateConsiderReadStartTime(Trace_trans last_trans,

Trace_trans_Q added_to_q);

UpdateRemoveRead

With most memory models there is no reason to store reads, because we save the information

given to us by the read in the store transactions. So if the last operation was a read, just

remove it from the queue. If it is not removed here, it will be removed by the garbage

collector.

function Scoreboard::UpdateRemoveRead(Trace_trans last_trans,

Trace_trans_Q added_to_q){
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/*leave transactional loads*/

if (last_trans is not transactional

AND last_trans is a load){

remove last_trans from its queue and return it to the freelist.

}

UpdateAfterReadTCC

This check, relevant only for the TCC memory model, does violation checking on loads.

Consider the following trace:

initial condition: Addr a = y

Time P0 P1

0 START START

1 store x a ...

2 START_COMMIT ...

3 ... load y a

4

At this point, the scoreboard knows only that P1 saw a value that COULD lead to a

violation. Since the scoreboard tracks both whether a transaction could violate as well as if

it should, the above is a case in which P1’s transaction could violate but does not have to.

Note that we do not bother to check the value returned in the check below, since different

processors could store the same value (ie, x == y) but the hardware would not distinguish

this case, so the scoreboard does not either.

function Scoreboard::UpdateAfterReadTCC(Trace_trans read_trans,

Trace_trans_Q added_to_q) {

if (read_trans is not transactional

OR read_trans is not a load)

return;

for (each transaction t to this address)

if (t is transactional
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AND t is a store

AND t.is_valid_for_cpu[read_trans.senderID] >= 0) /*committing store*/

AND t.senderID != read_trans.senderID)

TccArray[read_trans.senderID/CPUS_PER_TILE].can_violate = 1;

}

UpdateTCC

When transactions come on the processor interface, the scoreboard must internally decide

whether they are transactional or not. This is based on the state of the SPEC CMD flags

that the scoreboard has observed, as well as the address ranges which are specified at the

command line to be TCC addresses. When the scoreboard sees a memory transaction at

the interface, it uses this update to handle TCC bookkeeping if appropriate.

function Scoreboard::UpdateTCC(Trace_trans last_trans,

Trace_trans_Q added_to_q){

TCC_Transaction tcc;

/*First, we only care about this if the sender is in a transaction*/

if (!(Tcc_Array[last_trans.senderID/CPUS_PER_TILE].valid)){

return;

tcc = Tcc_Array[last_trans.senderID/CPUS_PER_TILE];

if (last_trans.destinationAddr is not in the TCC coherent/buffered region)

return;

if (tcc is committing)

ERROR(shouldn’t see transactional loads or stores during commit).

/*Set this as invalid for all other processors until after commit.*/

for (all processors n)

if (n != last_trans.senderID)

last_trans.is_valid_for_cpu[n] = 0;

/* Set this load as invalid for all procesors
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* (use this field as a ’dirty’ bit)*/

if (last_trans is a Load)

for (all processors n)

last_trans.is_valid_for_cpu[n] = 0;

/*add this transaction to the processor’s transaction queue*/

last_trans.transactional = 1;

last_trans.locked = 1; /*don’t allow gcing*/

tcc.push_back(last_trans);

}

UpdateAfterTCCCommit

When a TCC transaction fully commits and we observe the special memory transaction

END COMMIT, then for each store in the transaction we must:

• Set its end time

• invalidate any stores with earlier end times, for all processors.

• Check for violations

Violation checking here is somewhat tricky. If we see a transactional load to this address,

the simple assumption is that it has read a stale, non-committed value and should definitely

violate. However, it may be that the load occurred after the START COMMIT operation,

in which case it is possible for the transactional load to have seen this committed data,

which is correct behavior and should not lead to a violation. So, we must handle this

case. What we do is to use dirty bits for transactional loads: if they occurred before the

START COMMIT flag was seen, then they must violate. If their dirty bits aren’t set (see

UpdateAfterTCC) then we also check the data returned by the load. If it matches the

committed value here, then we allow the transaction to either violate or commit. If the

data doesn’t match, then we must also consider the case that the value was written by its

own transaction (SW as well as SR). So we also check for that case.

function Scoreboard::UpdateAfterTCCCommit(Trace_trans store_trans){
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if (store_trans is not a store)

return;

store_trans.timeEnd = current time;

for (each other transaction t to this address)

if (t is a store

AND t is not transactional

AND t.timeEnd < store_trans.timeEnd)

for (each processor n)

t.is_valid_for_cpu[n] = min(t.is_valid_for_cpu[n],

store_trans.timeEnd);

else if (t is a transactional load)

/*invalidate the corresponding TCC transaction

* - it has been violated!*/

*IF the dirty bit is set! If it is not, then this load happened

* AFTER TccCommitStart,

* so it should be allowed.

*/

if (t.senderID == store_trans.senderID)

continue;

if (! old_trans.is_valid_for_cpu[store_trans.senderID/CPUS_PER_TILE])

/*not dirty, no need to violate automatically.

*Check the value received.*/

if (old_trans.data == store_trans.data)

/*This one has already read the committed data. It’s OK.*/

continue;

else

/*need to consider whether this word was not really SR,

* because it had already been SM.

*/

bit spec_modified = 0;

for (each transaction k to this address older than t)
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if (t.senderID == k.senderID

AND k is a store

AND k wrote the same data t read)

spec_modified = 1;

if (spec_modified)

continue to next t;

tcc = Tcc_Array[t.senderID/CPUS_PER_TILE];

tcc.can_commit = 0;

/*finally, there may be outstanding loads that have not been seen by the

* scoreboard. Invalidate those as well.*/

for ( each cpu n)

/*if the address is locked for that CPU, and the corresponding

* TCC transaction is

* valid, mark it as possibly violated.

*/

if (Trace_Q_Array[addr].isLockedFor (n))

TCC_Transaction tcc = Tcc_Array[n/CPUS_PER_TILE];

tcc.can_violate = 1;

}

A.5.4 Additional Scoreboard Functions

CompleteTransInSB

This function is called by Scoreboard aop links (see UpdateAfterSynchStore above).

SetMemBarInSB

Certain operations define a Memory Barrier as part of their functionality (eg, blocking

loads and stores). Since these are known at certain cycles after operations begin, the

Scoreboard aop links is responsible for defining memory barriers. Rather than using a full

Trace trans transaction structure, we use a simple function since most of the fields in that



A.5. RELAXED SCOREBOARD OPERATION 125

case are irrelevant.

task Scoreboard::SetMemBarInSB(bit[63:0] cycle, integer senderID){

lock Scoreboard;

for (each address a in the Scoreboard)

bit latest_for_this_sender = 1;

for (each transaction t at address a)

if (t.senderID = senderID AND t is a store)

if (t is a blocking store and t.timeEnd == INFINITY)

/* this is a sync-op that is still going, probably the one

* that caused this membar. */

latest_for_this_sender = 0;

continue;

if (t is transactional)

continue;

t.timeEnd = min (t.timeEnd, cycle);

if (latest_for_this_sender)

latest_for_this_sender = 0;

else

for (each processor n)

t.is_valid_for_cpu[n] = min (t.is_valid_for_cpu[n], cycle)

unlock Scoreboard;

}

A.5.5 Scoreboard TCC Tasks

When the scoreboard observes a memory transaction with the opcode SPEC CMD, it does

not go through the usual check and update steps. Instead, it uses the arguments of the

SPEC CMD command as flags indicating special operations, specifically for TCC. This

section describes the functions called when the scoreboard observes these flags.
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HandleSpecCmd

Called from AddTransToSB when the scoreboard sees that the operation is SPEC CMD, a

speculative command.

function bit Scoreboard::HandleSpecCmd(Trace_trans specTrans){

bit err = 0;

case(specTrans.destinationAddr)

START_TRANSACTION:

err = HandleTccStart(specTrans);

END_OVERHEAD_START_TRANSACTION:

err = HandleTccStart(specTrans);

START_COMMIT:

err = HandleTccCommitStart(specTrans);

END_COMMIT:

err = HandleTccCommitEnd(specTrans);

VIOLATE_TRANSACTION:

err = HandleTccViolation(specTrans);

END_TRANSACTION:

err = HandleTccEnd(specTrans);

END_COMMIT_END_TRANSACTION:

err = HandleTccCommitEnd(specTrans);

err |= HandleTccEnd(specTrans);

if (err)

ERROR(HandleSpecCmd failed)

}

Handle TccStart

This function initiates a transaction in the scoreboard. It will fail if the processor already

has a transaction (because SM does not support nested transactions.) Otherwise, it simply

sets the transaction to be VALID.

function bit Scoreboard::HandleTccStart(Trace_trans specTrans){
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if (Tcc_Array[specTrans.senderID/CPUS_PER_TILE].valid){

ERROR(The TCC transaction was already valid in call to HandleTccStart.

Probably START_TRANSACTION spec_cmd was called twice before

a VIOLATE_TRANSACTION or COMMIT_TRANSACTION\n");

Tcc_Array[specTrans.senderID/CPUS_PER_TILE].valid = 1;

return 0;

}

HandleTccCommitStart

When the Scoreboard observes the COMMIT START flag, then it means that all the com-

mitting stores in the transaction can be observed by other processors, and sets their start

time.

function bit Scoreboard::HandleTccCommitStart(Trace_trans specTrans){

TCC_Transaction tcc;

integer ii, jj;

tcc = Tcc_Array[specTrans.senderID/CPUS_PER_TILE];

if (!tcc.valid)

ERROR(Transaction needs to be valid in order for it to commit)

/* If this is already committing, then this shouldn’t get called

* again. */

if (tcc.committing)

ERROR(Committing transactions can’t begin to commit again)

if (!tcc.can_commit)

MSG(Doing nothing because this transaction is not expected to

successfully commit.)

return;

/*This transaction may begin committing at this point.

* so, we should set the valid times for the other procesors now.

* but. this doesn’t affect any other stores. One thing

* to note is that there may be multiple stores to the
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* same address. We only want the first one (most_recent_store),

* which is noted by seeing if this is valid for this CPU until

* infinity.

*/

for (each transaction t in tcc)

bit most_recent_store = (t.is_valid_for_cpu[specTrans.senderID]

== INFINITY);

/*it is possible to call start/endCommit more than once for a transaction*/

if (!t.transactional)

continue;

/*This store really begins at this time.*/

t.timeStart = specTrans.timeStart;

t.timeEnd = INFINITY;

if (most_recent_store)

for (each processor n)

t.is_valid_for_cpu[n] = INFINITY;

for (each other transaction k at t.destinationAddr)

if (k.transactional AND k is a load)

/*flag that the corresonpding transaction COULD be violated.*/

Tcc_Array[k.senderID/CPUS_PER_TILE].can_violate = 1;

/*Set a "dirty" bit.*/

k.is_valid_for_cpu[t.senderID/CPUS_PER_TILE] = 1;

tcc.committing = 1;

}

HandleTccCommitEnd

The purpose of this function is to handle the completion of a TCC transaction. The outcome

of this is that:

• The committed stores should be visible to all processors (this already happened in

the first part of commit. But now, any earlier stores are invalid for all processors).
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• The loads should be removed (invalidated so the GC picks them up)

• Any loads made by another TCC transaction to any address which we are writing to

need to be flagged as unable to commit. This actually happens in the UpdateAfterTC-

CCommit function.

function bit Scoreboard::HandleTccCommitEnd(Trace_trans specTrans){

integer ii;

TCC_Transaction tcc;

tcc = Tcc_Array[specTrans.senderID/CPUS_PER_TILE];

if (!tcc.committing || !tcc.can_commit)

ERROR(Scoreboard thinks this transaction should have VIOLATED.)

for (each transaction t in tcc)

bit most_recent_store;

/*it is possible that this transaction has already committed

* due to overflows. Skip it if so */

if (!t.transactional)

continue;

most_recent_store = (t.is_valid_for_cpu[specTrans.senderID]

== INFINITY);

if (most_recent_store AND t is a store){

t.timeEnd = specTrans.timeStart;

UpdateAfterTCCCommit(t);

t.transactional = 0;

tcc.committing = 0;

}

HandleTccViolation

In a Tcc violation, the main function is to delete the transactions from the scoreboard. This

is done by invalidating them and letting the GC take care of them.

function bit Scoreboard::HandleTccViolation(Trace_trans specTrans){

TCC_Transaction tcc;
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tcc = Tcc_Array[specTrans.senderID/CPUS_PER_TILE];

if (!tcc.valid){

ERROR(VIOLATE called before START_TRANSACTION)

/*There shouldn’t be a violation for no reason.*/

if (tcc.can_commit & !tcc.can_violate){

ERROR(Performance Bug: Transaction violated unnecessarily

/*Clear dirty bits*/

if(tcc.committing){

for (each transaction t in tcc)

for (each other transaction k at t.destinationAddr)

if (k is transactional load )

k.is_valid_for_cpu[t.senderID/CPUS_PER_TILE] = 0;

for (each transaction t in tcc)

t.is_valid_for_cpu[specTrans.senderID] = 0;

t.transactional = 0;

t.locked = 0;

tcc.reset();

}

HandleTccEnd

The purpose of this function is to handle the completion of a TCC Transaction. This marks

the end of the transaction and retires the tcc structure. There may be multiple commit

pairs before this.

function bit Scoreboard::HandleTccEnd(Trace_trans specTrans){

TCC_Transaction tcc;

tcc = Tcc_Array[specTrans.senderID/CPUS_PER_TILE];

if (!tcc.valid)

ERROR(END_TRANSACTION called before START_TRANSACTION)

if (tcc.committing)

ERROR(END_TRANSACTION called before END_COMMIT)
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for (each transaction t in tcc)

t.locked = 0;

tcc.reset();

}

A.6 Garbage Collection

Garbage collection is an integral part of the Scoreboard, as it is responsible for reclaiming

parts of the data structure that are no longer considered valid or relevant to the current

state of the design. Every 1000 cycles or so, the garbage collector task iterates over the

entire scoreboard and removes any transactions whose latest valid time is less than the

current time. It bypasses any locked addresses or transactions.

task Scoreboard::GarbageCollector(){

while (active){

wait 1000 clock ticks or so

lock Scoreboard;

invalidate_time = current time;

/*Remove any completed stores from store queues (TSO)*/

for ( each store_q q)

for (each transaction s in q)

if (s.timeEnd < invalidate_time)

remove s from q;

for (each address a in the scoreboard)

if (Trace_Q_Array[a] is locked)

continue;

for (each transaction t at address a)

if ((t is a store

AND max(t.is_valid_for_cpu[n]) <= invalidate_time)
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OR t is a load)

AND t is not transactional

AND t is not locked )

remove t from address a

reset t

return t to the freelist.

/*If there is only one, old, transaction at this address,

use the smaller backup structure instead.*/

if (there is only one transaction t at address a)

if (t.timeStart + MaxStoreTime < invalidate_time){

BackupMem[a] = t.data;

return the queue at address a to the freelist.

unlock Scoreboard ;

}

A.7 Scoreboard Output and Error Reporting

The Relaxed Scoreboard is currently activated in the test environment if the -sb option is

used. The Relaxed Scoreboard creates an output file, Quad Scoreboard.log, which shows

The Relaxed Scoreboard’s view of all the transactions that are added to it. Any errors

thrown by The Relaxed Scoreboard generally cause the environment to FAIL and an error

message will show up in Quad Scoreboard.log and the QshimLog*.log file.
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Full SLAMM Grammar

The full SLAMM grammar is provided below:

file: decl_list

decl_list: decls

decls: decl decls

| NULL

decl: MACHINE_DECL ( ident pair_list ) { decl_list }

| ACTION_DECL ( ident pair_list ) statement_list

| IN_PORT_DECL ( ident , type , var pair_list ) statement_list

| OUT_PORT_DECL ( ident , type , var pair_list ) SEMICOLON

| TRANSITION_DECL ( ident_list , ident_list , ident pair_list ) ident_list

| TRANSITION_DECL ( ident_list , ident_list pair_list ) ident_list

| EXTERN_TYPE_DECL ( type pair_list ) SEMICOLON

| EXTERN_TYPE_DECL ( type pair_list ) { type_methods }

| GLOBAL_DECL ( type pair_list ) { type_members }

| STRUCT_DECL ( type pair_list ) { type_members }

| ENUM_DECL ( type pair_list ) { type_enums }

| type ident pair_list SEMICOLON

| type ident ( formal_param_list ) pair_list SEMICOLON

| void ident ( formal_param_list ) pair_list SEMICOLON

| type ident ( formal_param_list ) pair_list statement_list

| void ident ( formal_param_list ) pair_list statement_list

type_members: type_member type_members

133
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| NULL

type_member: type ident pair_list SEMICOLON

| type ident ASSIGN expr SEMICOLON

type_methods: type_method type_methods

| NULL

type_method: type_or_void ident ( type_list ) pair_list SEMICOLON

type_enums: type_enum type_enums

| NULL

type_enum: ident pair_list SEMICOLON

type_list : types

| NULL

types : type , types

| type

type: ident

void: VOID

type_or_void: type

| void

formal_param_list : formal_params

| NULL

formal_params : formal_param , formal_params

| formal_param

formal_param : type ident

ident: IDENT

ident_list: { idents }

| ident

idents: ident SEMICOLON idents

| ident , idents

| ident idents

| NULL

pair_list: , pairs

| NULL

pairs : pair , pairs

| pair
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pair : ident = STRING

| ident = ident

| STRING

statement_list: { statements }

statements: statement statements

| NULL

expr_list: expr , expr_list

| expr

| NULL

statement: expr SEMICOLON

| expr ASSIGN expr SEMICOLON

| ENQUEUE ( var , type pair_list ) statement_list

| PEEK ( var , type ) statement_list

| COPY_HEAD ( var , var pair_list ) SEMICOLON

| CHECK_ALLOCATE ( var ) SEMICOLON

| CHECK_STOP_SLOTS ( var , STRING , STRING )SEMICOLON

| if_statement

| RETURN expr SEMICOLON

if_statement: IF ( expr ) statement_list ELSE statement_list

| IF ( expr ) statement_list

| IF ( expr ) statement_list ELSE if_statement

expr: var

| literal

| enumeration

| ident ( expr_list )

| THIS DOT var [ expr ] DOT var DOT ident ( expr_list )

| THIS DOT var [ expr ] DOT var DOT field

| CHIP [ expr ] DOT var [ expr ] DOT var DOT ident ( expr_list )

| CHIP [ expr ] DOT var [ expr ] DOT var DOT field

| expr DOT field

| expr DOT ident ( expr_list )

| type DOUBLE_COLON ident ( expr_list )

| expr [ expr_list ]
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| expr STAR expr

| expr SLASH expr

| expr PLUS expr

| expr DASH expr

| expr < expr

| expr > expr

| expr LE expr

| expr GE expr

| expr EQ expr

| expr NE expr

| expr AND expr

| expr OR expr

| expr RIGHTSHIFT expr

| expr LEFTSHIFT expr

| ( expr )

literal: STRING

| NUMBER

| FLOATNUMBER

| LIT_BOOL

enumeration: ident : ident

var: ident

field: ident
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