
CIRCUITBOOK: A FRAMEWORK FOR ANALOG DESIGN

REUSE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

James Mao

May 2013

This dissertation is online at: http://purl.stanford.edu/xq269sh7790

© 2013 by James Ji-Chao Mao. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

ii

http://purl.stanford.edu/xq269sh7790

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Ada Poon

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Bruce Wooley

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Analog IC design tools have not changed much during the past few decades. While the

models and simulation methods have greatly improved in accuracy and performance,

analog design still relies on manually constructed schematics and layouts. Each design

needs to carry its own test routine, and the quality of the entire system depends on

this custom-constructed test routine. It is common for circuits to be tested in an ad-

hoc manner through some combination of SPICE decks, MATLAB calculations, and

perl scripts. This test collateral is often brittle (i.e., tightly coupled to the process,

circuit, and simulation environment) and archived without sufficient documentation.

As a result, it is usually easier to recreate the test frame when the circuit is reused

in the future.

Languages like OCEAN try to address this by providing a common language that

both configures the simulation environment and performs calculations. While this

reduces the number of files required for a simulation and reduces the need for docu-

mentation, it does not solve the problem of tight coupling. Reuse of OCEAN scripts

generally means copy-and-paste, and this duplication of code makes the test routines

more difficult to debug later. We see an opportunity to improve the productivity

of analog design by raising the abstraction level, at least for test construction, used

by analog designers. In this work, we present the CircuitBook test framework and

repository that complement existing analog design flows.

Our test framework is a set of Python libraries that allow high-level specification

of analog tests and an associated tool chain that executes these tests. Circuits and

tests are defined against an hierarchical tree of interfaces. These common interfaces

allow the reuse of tests across different circuits as well as enable faster prototyping of

iv

circuits and tests. Tests defined using the CircuitBook test framework separate the

simulation directives from the results analysis. This separation of concerns avoids

code duplication by separating the reusable parts of the tests from the environment-

specific parts.

The CircuitBook repository stores circuits, tests, and simulation results to allow

designers to leverage existing circuits and tests in new designs. The objects in this

repository can browsed via the interface hierarchy or through property tags of the

tests. We leverage the high-level nature of the test framework and automatically

generate property tags by parsing the test structure.

v

Acknowledgements

I am grateful for the generous mentoring and support that my advisor, Prof. Mark

Horowitz, has provided over the years.

I would also like to thank for Prof. Ada Poon and Prof. Bruce Wooley for serving

on my Orals committee and reading this thesis, as well as Prof. Roger Howe for

chairing my Orals committee.

This thesis and the work described within contain the ideas and refinements of

many, including Prof. Elad Alon and Prof. Jaeha Kim, Metha Jeeradit, and Byong

Chan Lim. This list is by no means exhaustive.

This research was made possible by the generous support of Sony through the

Stanford Graduate Fellowships Program and by the corporate sponsors of the Re-

thinking Analog Design initiative.

Finally, this thesis would not be nearly as fun to read if it were not for my wife

Lillian’s mastery of the English language.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

2 Analog Circuit Design Process 3

2.1 Improvements in Designer Productivity 5

2.1.1 Faster Iterations . 5

2.1.2 Fewer Iterations . 6

2.2 The Role of Tests . 11

2.3 Ad-hoc Testing . 12

2.4 CircuitBook, an Approach to Reusable Tests 16

2.4.1 A Solution Stack for Analog Testing 16

2.4.2 Benefits . 20

3 Test Framework 22

3.1 Test Components . 22

3.2 Conceptual Interfaces . 25

3.3 Circuit Representation . 29

3.3.1 Problems with Template-Based Approaches 30

3.4 Interfaces . 32

3.5 Stimulus and Loading . 34

3.6 Measurement and Post Processing . 37

vii

3.7 Types of Tests . 38

3.8 Organizing Circuits and Tests . 39

3.8.1 Class Hierarchy . 41

3.8.2 Adapting Tests to Circuits . 41

3.8.3 Indexing / Searching . 43

3.9 Summary . 47

4 Framework Components 48

4.1 Circuit Representation . 49

4.1.1 Metadata . 49

4.1.2 Metadata as an Abstraction 51

4.1.3 Metadata Encoding . 52

4.2 Interface . 55

4.3 SimulationRun . 55

4.3.1 Mental Model . 56

4.3.2 Subtyping via Delegation . 57

4.4 Stimulus Generation . 61

4.4.1 Test Bench Semantics . 64

4.4.2 Stimulus Generators . 67

4.5 Simulation Execution . 71

4.6 Measurement . 73

4.6.1 Data Objects . 74

4.6.2 Simulation Results . 76

4.7 Logging with Epilog . 77

4.8 TestRun . 79

4.9 Test Loading and Execution . 83

4.9.1 Dynamic Test Class Loading 84

4.9.2 Circuit / Interface Loading . 85

4.10 TestSequence . 85

4.11 Repository . 86

4.11.1 Metadata Extraction . 87

viii

4.12 Summary . 88

5 Conclusion 89

5.1 Future Work . 91

Bibliography 93

ix

List of Tables

2.1 Landscape of Design Productivity Improvements 5

2.2 Comparison of Candidate Solution Stacks 20

3.1 Location of Various Test Components in Ad-hoc Tests and in Circuit-

Book Tests — Circled numbers indicate the corresponding conceptual

interface as labeled in Figure 3.1. 25

3.2 HSPICE Independent Input Functions 35

3.3 HSPICE Stimulus Elements . 35

3.4 Examples of Circuit Classes . 42

4.1 Comparison of Data Serialization Formats 53

4.2 Relative Merits of Various Test Bench Creation Methods 66

x

List of Figures

2.1 Overall View of Analog Circuit Design Task 4

2.2 Typical Analog Synthesis Process . 10

3.1 Decomposition of a Test — Circled numbers indicate the corresponding

conceptual interface as described in Table 3.1. 23

3.2 Elaboration Flow of the EmPy Template Engine 30

3.3 Example of a Differential Amplifier Implementation Abstracted by an

Interface . 34

3.4 Example of a Data Converter Hierarchy 40

3.5 Screenshot Showing Circuit Interface Browser 45

3.6 Screenshot Showing Test Dependencies 46

3.7 Screenshot Showing Test with Inferred Metadata 46

4.1 Test Partitioning . 48

4.2 SimulationRun Execution Flow — The #setup() is executed only

once when the SimulationRun instance is first created while the other

steps are executed for every simulation. 58

4.3 Call Flow in Inheritance-based Subtyping 62

4.4 Call Flow in Delegation-based Subtyping 62

4.5 Various Ways of Creating Test Benches — The user supplies the blocks

surrounded by dashed rectangles to a framework resulting in the cre-

ation of a netlist description of the test bench as well as metadata

about the test bench (e.g., a list of power supplies). 65

4.6 Operation of a Source-to-Source Compiler with Multiple Targets . . . 70

xi

4.7 Operation of a DSL-based Code Generation System with Multiple Tar-

gets . 71

4.8 Correlation of Test Results . 72

4.9 Screenshot Showing an Example of Epilog Output 80

4.10 TestRun Execution Flow . 83

xii

List of Listings

3.1 Example of SimulationRun#setup — This listing shows the setup of

a typical test by defining the interface that the test leverages, the

simulator to be used, the analysis mode, and what outputs to make

available in post-processing. 26

3.2 Example of SimulationRun#start run — In this example, we are

defining the test bench for an amplifier. We first calculate the desired

input common mode voltage from the supply voltage of the process cor-

ner being simulated. Next, we create power supplies and input stimuli

using stimulus generators. Finally, we add a load specified as a SPICE

snippet. 27

3.3 Example of SimulationRun#postprocess — This post-processing

routine shows how we extract the power of a voltage source from our

result objects and emit that to the logging system. 28

3.4 Example of TestRun — This listing shows a typical example of

TestRun where we want to run a particular SimulationRun against

all the corners of a particular process. Note that this is very short;

our framework tries to make these scripts as concise as possible since

TestRun code is more specific and less reusable. 28

3.5 Framework Source Code for PWLVoltageSourceStimulus — This stim-

ulus generator leverages AbstractSourceStimulus heavily; it sets the

appropriate options and passes control to the parent. This is a common

pattern that helps make stimulus generators more reliable by avoiding

duplicated code. 36

xiii

4.1 Circuit File Example for a Differential Amplifier with Current Bias . 50

4.2 Interface Example for a Differential Amplifier 54

4.3 Interface Example for a Differential Amplifier with Current Bias . . . 54

4.4 Example of Inheritance-based Subtyping 59

4.5 Example of Delegation-based Subtyping 59

4.6 Example of Result Extraction in SimulationRun#postprocess() . . 77

4.7 Example of Epilog that Plots a Spectrum and Produces a Summary

Table . 81

4.8 Example of TestRun — We use self.construct(’PllPNoiseSimulation’)

to build an instance instead of the normal PllPNoiseSimulation()

constructor call to allow for deferred loading of PllPNoiseSimulation.

This allows the system to load PllPNoiseSimulation before

PllPNoiseTest is in scope; this is described in Section 4.3.2. 82

4.9 Example of TestSequence . 86

xiv

Chapter 1

Introduction

We live in the age of the mixed-signal system-on-chip (SOC). Over 70% of new designs

in modern technology processes are now mixed-signal (i.e., at least 20% of the die

area is analog), primarily as a result of the need to integrate RF, high-speed I/O, and

multiple clocks on one chip. While the number of analog transistors on a mixed-signal

IC is small compared to the number of digital transistors, analog and digital circuits

require roughly the same amount of design effort and cause similar numbers of re-spins

due to design mistakes[1]. One reason for this difference in design productivity is that

analog and digital CAD tools are quite different today. Most modern digital design is

done by writing some code in a high-level hardware description language (HDL) and

then running that code through synthesis and place and route tools. Although these

digital flows may sometimes require magic incantations to work, the tools automate

many common tasks and allow the designer to focus on the overall systems and the

details of the trouble areas. On the other hand, analog design is primarily done using

manually constructed schematics and layouts. There is some automation in terms of

low level layout cell generators (e.g., PCells) but this automation works at the level

of macros (i.e., repeat a set of steps).

Both analog and digital chips started with full custom design processes (i.e., tran-

sistor level designs with SPICE simulations and custom layout) in the 1960s and

1970s. Digital tools quickly evolved over the past 40 years, but analog tools did not

change as much. As a result, today, analog design is done at a much lower level than

1

CHAPTER 1. INTRODUCTION 2

digital design. This disparity provides us an opportunity to improve the productivity

of analog designers by raising the level of abstraction they use to design.

In order to understand why analog design tools have lagged behind digital tools,

Chapter 2 describes the analog circuit design process and the challenges faced by ana-

log designers. From examining this processes, we note that many of these challenges,

and most of the design time, is focused on validation. Tests play an important part

in the circuit design process, but test collateral often is not reused due to the nature

of ad-hoc tests. Reuse of ad-hoc tests is hard because these tests intermingle reusable

pieces and non-reusable pieces. By breaking up tests into the basic constituent pieces,

we see that there is a way of structuring tests that will facilitate reuse.

In Chapter 3, we examine the basic components of a test (i.e., circuit represen-

tations, simulation directives, stimuli, measurement, and results analysis routines)

and the interaction between these components. We leverage the natural interfaces

between the various pieces of a test to define formal interfaces. By using these in-

terfaces, we are able to better segregate reusable test components from less reusable

pieces. We define circuit interfaces that completely separate circuits from the tests

that operate on them. These interfaces contain a set of physical and informational

ports that allow the design of circuit-independent tests. In addition, these interfaces

are hierarchical and allow tests to be pulled up (i.e., rewritten to work on a more

general class of circuits). Similarly, we also present our abstractions for stimuli and

measurement components. Once we establish these basic elements, we look at how

they allow us to construct a hierarchical repository for organizing circuits and tests.

Chapter 4 looks at the details of our test framework. It starts by discussing

the way circuits and interfaces are specified. Then, it examines the SimulationRun

scripts, which represent the reusable cores of tests written in our test framework, and

how these scripts handle stimulus generation, simulation execution, measurement,

and reporting. Next, we look at how TestRun and TestSequence capture the less

reusable parts of tests and how these tests are executed by our framework. Finally,

we examine how to extract metadata from test collateral for organization purposes.

Chapter 2

Analog Circuit Design Process

Analog circuit design is the process of connecting devices to each other such that the

resulting circuits meet a set of specifications while minimizing other metrics, such as

area, power, or yield loss. This process produces a circuit schematic and the corre-

sponding physical layout. The overall process is shown in Figure 2.1. In industry,

the specifications are generally created by examining the intersections of customer

demand, process capabilities, design expertise, and business goals. Academic specifi-

cations may be more exploratory in nature, investigating new architectures or method-

ologies. Not all specifications are explicitly stated; design groups may have internal,

unwritten rules reflecting best practices. The goal of a circuit designer is to create

a circuit that satisfies the specifications provided, within a certain time-to-market

window.

To accomplish this goal, the designer first performs some exploration of the de-

sign space using rough models to pick a circuit topology; this is typically done via

a combination of hand calculations and tools such as MATLAB[2], Simulink[3], or

Mathcad[4]. Once a topology candidate is selected, a circuit schematic is created us-

ing a schematic capture tool (e.g., Cadence Virtuoso Analog Design Environment[5]).

Values for the various circuit elements are initially determined by some rough back-

of-the-envelope calculations using analytic design equations. The circuit schematic

is then run through one or more circuit simulations on a tool such as SPICE[6] or

3

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 4

Specifications

Schematic CaptureNetlist Circuit Simulation

Test Framework

Layout CaptureImplementation Layout Verification

Layout Extraction

Figure 2.1: Overall View of Analog Circuit Design Task

Spectre[7]. Some post-processing is done to extract higher-level performance charac-

teristics. This combination of simulation and measurement tests whether the circuit

meets the specifications and can also be used to estimate optimization metrics.

Design is an iterative process. The test results from one iteration are used to

modify the circuit design and the updated schematic is resimulated. The process is

repeated until the circuit meets design goals; once that happens, the design is sent

to layout, which is the process of converting circuit elements to geometric shapes for

the fabrication process. Layouts are usually created using a tool such as Virtuoso

Layout Editor[5] from Cadence or Galaxy Custom Designer[8] from Synopsys. These

layouts are run through a verification step that performs a layout versus schematic

(LVS) comparison and design rule checks (DRC). LVS ensures that the connectivity

of nets in the layout matches the connectivity of nets in the schematic. DRC ensures

that the layout meets the foundry’s requirements for manufacturing the design in a

particular technology process. Once the layout passes LVS and DRC, the resistance

and capacitance of wires used in layout are extracted and back-annotated into the

schematic. Finally, the entire design is tested again with the more accurate schematics

to validate the design before shipping.

In the remainder of this chapter, we will explore the opportunity to improve the

circuit design process through an improved infrastructure for evaluating (testing)

circuit performance. To understand why we focus on testing, we first survey the

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 5

Faster Iterations Fewer Iterations

Faster simulators – AFS, UltraSim Circuit reuse – VCME, BAG
New analysis methods – PAC Design methodology – gm/ID
Better tool integration – Virtuoso Suite Better device models – BSIM4

Table 2.1: Landscape of Design Productivity Improvements

landscape of recent productivity improvements to the circuit design process. Next,

we will examine the role of tests in the circuit design process, showing the critical role

that it plays and the ad-hoc way in which tests are currently constructed. Finally,

we will present our approach to creating reusable tests.

2.1 Improvements in Designer Productivity

Since circuit design is an iterative process, there are two fundamentally different

approaches to improve designer productivity in the existing design flow. We can

either make each iteration faster or we can reduce the number of design iterations.

Some examples of each approach are shown in Table 2.1.

2.1.1 Faster Iterations

Often, electronic design automation (EDA) vendors supplying computer aided design

(CAD) tools develop improved tools to make each design iteration faster. In terms

of circuit simulation, this has led to the development of tools such as Analog Fast-

SPICE (AFS) from Berkeley Design Automation or Cadence’s Virtuoso UltraSim.

These modern circuit simulators combine fast solvers designed for modern multi-core

computing platforms with hierarchical decomposition and variable time step control to

provide orders of magnitude faster simulation than traditional SPICE with the same

or only slightly worse accuracy. For example, AFS is approximately 5-10x faster than

SPICE with the same accuracy (< 0.1%)[1] and UltraSim can be up to 100x faster

than SPICE with accuracy in the range of 1-5%[9]. In addition, AFS can handle

larger circuits (i.e., 10x the number of elements) than SPICE[1]. Recent research

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 6

shows the potential for even greater speedups using techniques such as applying the

latency insertion method to general circuit simulation[10]. Faster simulation times

reduce the time needed for circuit evaluation, which makes each iteration faster.

In addition to performing better on traditional simulation modes (i.e, DC, AC,

and transient analyses), modern circuit simulators like Spectre support new simu-

lation modes such as periodic small signal analysis, which can greatly reduce the

amount of computation required to evaluate the complex behavior of periodic cir-

cuits such as phase-locked loops (PLLs). Such periodic circuits often have one or

more inputs with a large periodic signal (e.g., clocks). Periodic small signal analysis

modes, including periodic AC (PAC), periodic steady state (PSS), and periodic noise

(Pnoise), work by first computing the circuit response with only the periodic inputs

and using that solution as an operating point for future analysis[11]. This can greatly

reduce simulation time by separating the large periodic inputs that are non-linear

from the linear input of interest.

Similarly, tools such as Cadence Virtuoso Layout Editor and Synopsys Custom

Designer help improve productivity in the layout phase of the circuit design pro-

cess through better user interfaces and better handling of hierarchy. EDA industry

consolidation has also led to better integration between tools which shortens total

iteration times by reducing friction between tools (e.g., Synopsys’ Galaxy Implemen-

tation Platform or Cadence’s Virtuoso Suite). Tool integration is a combination of

features that improve productivity: user interface integration (e.g., unified look-and-

feel makes it easy to learn related tools), data integration (e.g., common data formats

that eliminate the need for translation and processing), and control integration (e.g.,

tools communicate with each other)[12].

2.1.2 Fewer Iterations

In addition to improving the speed of each design iteration, there have been efforts

in industry and academia to reduce the number of iterations required. These efforts

mainly lie along one of two directions: better modeling and reuse.

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 7

The physical devices in today’s deep submicron technologies are becoming increas-

ingly complicated. Square law models used in the past for hand analysis are no longer

sufficiently accurate. Relying on those antiquated models results in large differences

between predicted behavior and simulated results, which then require more design

iterations to correct. Such a “SPICE monkey” approach is clearly unproductive.

There have been improvements in design methodology that address this issue. The

gm/ID methodology proposed by Silveira, Flandre, and Jespers[13] replaces square law

models with lookup tables of simulated or measured device characteristics. This natu-

rally leads to an increased use of computer solvers in the design process (i.e., use MAT-

LAB with gm/ID curves derived from simulations in lieu of hand calculations with

square law models). For example, when Flandre et al. uses the gm/ID methodology to

develop gain-boosted regulated-cascode operational transconductance amplifiers[14],

they use ISAAC[15], a symbolic simulator for analog circuits, in combination with

MATLAB to study the small-signal behavior. Such methodology changes address

the discrepancy between design equations and simulation models. Refining transistor

simulation models (e.g., UC Berkeley Device Group’s efforts on BSIM4) to minimize

the difference between simulation models and fabricated devices has also been critical.

In addition, there has been work on system-level modeling of mixed-signal systems

for synthesis[16, 17] and verification[18, 19]. These ideas allow designers to work at a

higher abstraction level when architecting mixed-signal systems. Combined with the

gm/ID methodology and improved device level modeling, these abstraction techniques

allow designers to work at the appropriate level to maximize productivity while main-

taining accuracy (i.e., building designs that work according to the models). When

successful, the resulting circuits are closer to meeting the specifications and require

fewer iterations.

Design reuse goes one step further and tries to eliminate some design iterations

completely. Even in a cutting-edge mixed-signal design, not all cells require novel

techniques; many cells in such a design have been designed before (e.g., LDO regu-

lator, biasing circuits, simple amplifiers, etc.). Design reuse can reduce or eliminate

the effort to design some of these supporting analog blocks as well as increase the

reliability of the resulting design.

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 8

Design reuse can be achieved in multiple ways, with different trade-offs between

effort needed to prepare the reusable collateral and effort needed to customize the

reusable collateral for a particular application. At one extreme, reuse can be achieved

by simply archiving old designs (e.g., a tar archive of all design files). At the other,

a design generator is created, which generates the desired circuit algorithmically.

Archiving a design requires only a small amount of effort in preparing the col-

lateral, but effectively using the archived designs is a challenge. Often the desired

circuitry has a slightly different specification, or uses a different technology than the

archived design. Thus, using the archived design is an instance of the general design

migration / porting problem – producing netlists and layouts in a new technology

from existing netlists and layouts in an old technology while maintaining or improv-

ing the performance of the design. The port needs to be faithful to the old design so

that new problems do not appear. Typically, the source design has been successfully

fabricated and tested, and an ideal migration process would preserve this correctness

in the new design.

Migrating digital designs captured in HDL between technology nodes is mostly a

matter of porting the design library and is relatively well understood[20, 21]. Mean-

while, for analog or mixed-signal designs, porting remains an area of continuing in-

vestigation: In 1998, Funaba et al. showed a manual, optimization-based method for

porting circuit designs. Francken and Gielen presented a semi-automatic method of

porting analog circuits and layouts across technologies[22] in 1999 with initial sizes

calculated by scaling and subsequently tuned via qualitative reasoning[23]; in this

method, layout migration starts by scaling the floorplan with semi-automatic rout-

ing – automatic routing at the lower levels with the top level manually routed. In

early 2000s, Neolinear developed a set of commercial tools (i.e., NeoCircuit and Neo-

Cell) that automatically sizes schematics based on designer supplied test benches

and constraints[24]. In 2006, Hammouda et al. presented Chameleon ART[25], a

knowledge-based design migration tool that identifies the structure of certain analog

blocks and uses the sizing rules methodology[26] developed by Massier, Graeb, and

Schlichtmann to set device sizes; layout migration in Chameleon ART is achieved

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 9

through scaling, followed by constraint based compaction. Finally, Weng et al. pre-

sented a methodology for migrating layouts in 2011 by extracting analog layout con-

straints and generating multiple layouts to allow the user to choose among vari-

ous aspect ratios, an option not available with scale and compact layout migration

techniques[27]. As the porting tools get more powerful, it becomes increasingly im-

portant that the critical constraints are codified so that the tools obey them.

While there has been progress made in porting designs between technologies, these

ideas only address a part of the problem. Simply resizing devices for a new technology

or application is often insufficient to achieve desired design metrics. The architec-

ture of the system or one of the sub-blocks may need to be changed. Making these

types of changes generally requires some design knowledge in addition to optimiza-

tion, which brings us to the other end of the reuse spectrum – generating circuits

algorithmically instead of trying to adapt design collateral. Since the late 1980s,

there have been many research tools focusing on synthesis of analog building blocks,

such as IDAC[28], OPASYN[29], BLADES[30], DSYN[31], CADICS[32], OASYS[33],

ASTRX/OBLX[34], and Anaconda[35]. In contrast to simply reusing old designs,

this approach requires lots of initial effort, but provides adaptation for each applica-

tion with little user intervention. The tools combine topology selection, parametric

optimization, and automatic layout generation to produce schematics and layouts for

analog building blocks. While the various tools introduce and leverage different tech-

niques for topology selection (i.e., heuristic or algorithmic), device sizing, parameter

estimation, or layout generation, the general methodology is similar. Figure 2.2 shows

this general strategy.

Earlier tools, developed around 1990, (e.g., IDAC, OPASYN) relied heavily on

designer knowledge encapsulated in circuit topology libraries and design plans, a pro-

gram written by the user, to guide the synthesis process. These tools also used design

equations for performance estimation instead of circuit simulations due to compu-

tational limitations. The initial effort of creating accurate design plans limited the

application of these tools[36]. As available computing power increased, analog synthe-

sis tools began to replace some knowledge-based topology selection and design plans

with algorithmic searches. This reduced the initial investment required to operate

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 10

Specifications

Topology SelectionCircuit Library

Sizing and BiasingEstimation Equation Circuit Simulation

Layout GenerationImplementation Layout Verification

Layout Extraction

Figure 2.2: Typical Analog Synthesis Process

such a system by reducing or eliminating the reliance on a design plan. The focus

of research shifted from building specific analog generators (e.g., earlier tools focused

on building data converters and their building blocks[37]) to a platform approach to

design reuse (i.e., design environments that enable circuit reuse by storing parame-

terized circuits). Examples of such tools include AMGIE[38], BAG[39], and VCME

(Virtuoso Characterization and Modeling Environment from Cadence).

The movement to general optimization frameworks again makes it essential to

capture all of the constraints on the design. Mathematical optimization has no “com-

mon sense,” so all implicit design rules need to be made explicit. However, these tools

do not provide a methodology to create the necessary constraints. The constraints

are generally codified as a test script, to measure the circuit’s performance, but these

scripts are created in an ad-hoc manner. This thesis addresses how to better capture

and archive these tests.

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 11

2.2 The Role of Tests

Reviewing the prior work makes clear the critical role that tests play in analog design

and the even more important role they will play if analog cell generators become

popular. Yet at the same time, there seems to be a lack of focus on the process of

creating and reusing this test collateral for circuits. Improving the productivity of

test construction has significant potential, since testing is integral to both the way

design is done today and possible paths to future automation.

Tests are created and executed to evaluate operational performance and verify

that the circuit meets certain invariants (e.g., current source devices in saturation).

The circuit design process is not complete until each desired specification is measured

through simulation. Testing also acts as a form of institutional memory. It is used to

capture the knowledge of mistakes that have caused respins or delays in the past and

tries to avoid that same class of errors in future designs by creating a specification that

prevents that kind of error from reoccurring. For example, if a chip comes back with

excess output noise and that is traced back to noise coupling on the bias line, a test

would be created to ensure that this coupling is small on future designs. Requiring a

certain test to pass is a concise way of transferring a set of learnings to other members

of the team. As a result, every member of the team should contribute checks to ensure

that their fears about a design do not occur in the current implementation. These

checks would be in the form of tests that run on the individual blocks or the entire

system.

Conceptually, a test is composed of four parts: a test bench, test vectors, simula-

tion directives, and result analyses. The test bench contains the set of all additional

elements added to the circuit, often called a device under test (DUT) in test contexts,

for simulation purposes. A typical test bench contains power supplies (e.g. ideal volt-

age sources or complex models representing the power distribution network), input

sources (e.g., sine waves or piecewise linear functions), output loading, and measure-

ments (i.e., measurement commands written in SPICE to extract the parameters of

interest). Parts of the test bench, such as the input sources, require configuration

that changes between runs. A test vector is a set of configuration values for a single

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 12

run and the expected outputs. For example, a data converter needs to be tested with

different input sequences to ensure that there is no hysteresis. In that case, a test vec-

tor may contain an input sequence and the expected measurement values or ranges.

Simulation directives tell the simulator (e.g. SPICE, or Spectre) which analyses to

perform, how long to simulate, and the desired accuracy. The output of the simula-

tor is run through a set of result analysis routines that perform the post-processing

necessary to extract the parameters of interest from the measured values. For ex-

ample, a result analysis script calculates various jitter metrics (e.g., absolute jitter,

period jitter, and cycle-to-cycle jitter) from a list of zero-crossing times produced by

simulating the test bench.

Writing this test collateral requires a significant amount of effort due to the large

number of specifications to extract, and the test itself represents significant design

knowledge. Given the value of these tests, it is wasteful if they are not reused.

However, reuse of ad-hoc tests can problematic. The next section looks at this issue

in more detail to understand what makes reusing tests hard.

2.3 Ad-hoc Testing

Ad-hoc testing is, as the name implies, ad-hoc; tests from different designers can be

constructed very differently, with different programming languages, different simula-

tors, and different post-processing techniques. The resulting diversity makes reuse

challenging for any application.

Verifying the correct operation of an analog circuit implementation typically re-

quires four kinds of source code: code provided to configure the simulator, code

to perform measurements (either during simulation or afterwards), code to extract

desired parameters from the measurement results and perform any post-processing

needed, and code to tie everything together. When a test is created, each of these

components can be expressed in a multitude of languages and styles based on designer

preferences, skills, and aesthetics.

A typical test constructed in this ad-hoc manner contains a variety of scripts

written in different programming languages. At the top level, there are shell scripts

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 13

that control the test flow, set up the simulation environment, and execute the simu-

lations. Measurement is generally done using a combination of hand-coded .measure

statements in the simulators, some selections in a GUI (e.g., Virtuoso ADE XL from

Cadence), and some post-processing Perl code to prepare the output for analysis.

Analysis of the measured results is often performed using a combination MATLAB

scripts and Excel spreadsheets.

Ad-hoc test collateral, as described above, is a complex software project written

in multiple languages. But even if there were a single unified language, some issues

would remain. Many designers see testing as an extension of the design work they

are already used to doing; they do not see it as a software project. More importantly,

their organizations do not see it as a software project, and, as a result, many practices

common in software engineering are not applied. For example, it is common for

software development organizations to enforce code standards, code reviews, and

version control systems. Code standards differ between organizations but generally

include guidelines on syntax, indentation, formatting, and nomenclature to make

code consistent and easier to understand. When it comes to testing, however, circuit

design teams may review the list of checks being run on a circuit, but may not actually

review the test code. In addition, while most design groups today use a version control

for their designs, these tools, sometimes a part of larger configuration management

suites, are geared toward the maintenance of design databases and may not be ideal

for source code, even if used for tests. Without these software engineering practices,

test collateral may not be traceable. That is, it may not be possible to identify the

test code responsible for producing a particular result. Old versions of test code may

be lost; bugs may get fixed and reintroduced later.

Ad-hoc test collateral is often simply an archive of the working directory. While

there is nothing inherently problematic with this approach, it is often accompanied

by several practices that should be avoided. First, problems arise when tests and the

files containing the tests are inconsistently named. For example, informal attempts at

versioning might involve duplicating certain files (e.g., test v1.m, test v2.m, etc),

but often these efforts do not prevent files ending up named like new test.m and

new test fixed.m. As such files proliferate, it becomes more and more difficult to

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 14

figure out which file to run. Second, in an ad-hoc approach, code reuse is generally

achieved through copy-and-paste. Often code is duplicated and slightly modified

rather than reused as a whole to avoid having to identify a common interface or

to avoid limiting the scope of internal variables. But when code is shared between

various tests (e.g., a startup sequence), it should ideally exist exactly once so it is

not possible for it to become out-of-sync. Multiple versions of duplicated code means

that it is harder to fix bugs later, as a single bug must be fixed in multiple locations.

Thus, while the test writer has avoided the work of maintaining a single, globally

applicable version of the code, extra effort becomes necessary elsewhere.

Sometimes these problems are not entirely the fault of the test writer; they may

stem in part from a limitation of the environment. For example, each MATLAB

script (i.e., .m file) can only contain a single function[40, p. 14-22]. This makes it

inconvenient to separate code into too many discrete functions. Finding a balance

between MATLAB script proliferation and code duplication may not be easy or a

priority for test writers. The problem is compounded when test writers apply informal

version control, as changing a file name changes the name of the function, which must

then be updated in all routines in which the function is called.

These common characteristics of ad-hoc test creation, which make code segments

difficult to reuse, also contribute to unexpected effects as code is changed and updated.

For example, programmers often find it convenient for all variables to have global

scope. Global scoping means that one does not have to pass many variables into a

function or a copy-and-pasted code segment. Then, there is a temptation to reuse

certain pre-calculated results (i.e., premature optimization). An example of this is

the use of loop indexes. We will present this example using MATLAB but similar

problems exist in most dynamic languages. Suppose we have an array, A, and we need

to iterate through that array. A common way of doing this is to iterate through this

array is by enumerating all the indexes.

for i = 1:size(A, 1)

...

end

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 15

Usually this array may need to be iterated through many times, so it may be

tempting to pre-compute the length of the array.

arr_len = size(A, 1)

for i = 1:arr_len

...

end

...

for i = 1:arr_len

...

end

This works fine as long as arr len is not changed out of sync with the array A.

Violating that covenant can result in subtle errors. Usually errors do not occur when

the code is first written, since all of the dependencies are fresh. Over time, or in

different reused contexts, errors pop up. These errors can be avoided with some best

practices1 but can be difficult to debug.

On a small contained project that involves only a few people over a few months,

the issues described above may be manageable. Indeed, many circuit designs may

start off like that. However, designs may get ported to new technology nodes or

derivatives may be introduced. Often these ports or derivatives may be assigned

to different, often more junior, people not familiar with the original design. That

is when serious problems can surface. The original designer used their skill set to

cobble together a test that worked. The new designer may not have the same skill

set, for a variety of reasons other than experience. For example, older designers may

be more familiar with Perl while newer designers may be more familiar with Python.

1Typically, it is good to use iterate through arrays without using indexes (e.g., for v in A). If
that is not possible, then it is usually a good idea to compute the length of the array in each for

loop. If the length function is slow enough to cause any noticeable performance degradation, then
there is a more fundamental data structure problem.

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 16

Similarly, some designers prefer HSPICE while others favor Spectre. This diversity

of skill sets is beneficial to teams as a whole because they can tackle a bigger set of

problems. However, it causes problems during the handover of test collateral.

This accumulation of small issues is often referred to as “technical debt” in soft-

ware engineering literature. Brown et al. provides an overview of the philosophical

discussion surrounding the management of technical debt[41].

2.4 CircuitBook, an Approach to Reusable Tests

To address these reuse issues, we built CircuitBook, which consists of a test framework

and associated repository. CircuitBook improves circuit and test reuse by taking a

test-driven approach to design that not only enables faster design with increased

predictability for individual blocks, but also increases the chances of success of the

overall design. A repository of reusable test collateral ensures that the different

circuit candidates for a block are evaluated using the same test procedure, which

drives predictability. Designs often fail due to an error that has been seen before.

When an error is found in a silicon revision, tests can be created to cover that class of

errors. If these tests are run on future revisions and derivatives, design success rates

are increased.

The rest of this section discusses the theoretical underpinnings of the framework

and how it addresses the issues associated with ad-hoc testing. The core concepts of

the CircuitBook test framework are presented in Chapter 3. Chapter 4 then provides

a detailed discussion of how each component of the framework works.

2.4.1 A Solution Stack for Analog Testing

As discussed previously in Section 2.2 and Section 2.3, test development in today’s

design and verification environments looks like software development. The process of

testing analog blocks is similar to unit testing in software: take a black box function

with inputs and outputs and determine whether that function works as expected.

The stimulus and post-processing routines are software programs that look like parts

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 17

of software unit tests. This similarity inspires us to evaluate and adopt techniques

from software engineering for the verification of mixed-signal systems.

Before addressing our testing problem, it will be helpful to understand why soft-

ware is often developed on common stacks of software tools — a solution stack. For

example, many web applications are built on top of LAMP[42], a solution stack com-

prised of the Linux operating system, the Apache web server, the MySQL database,

and the PHP programming language. Even if this LAMP stack is not the best set

of technologies for a desired application, it may still be efficient to choose LAMP for

practical reasons: it is well maintained and there are lots of knowledgeable program-

mers. An esoteric combination of technologies may seem to be a better framework,

but can lead to previously undiscovered errors due to a untested interaction. It also

may be difficult to hire engineers who understand an uncommon set of technologies.

LAMP may be popular because it is popular.

In contrast, ad-hoc tests are crafted by individual designers using clever combi-

nations of tools from the tools they know. As mentioned previously, testing circuits

often requires a variety of programming languages to handle the different parts of test-

ing (e.g., flow control, measurement, simulation, post-processing, etc.). To avoid the

resulting problems, CircuitBook is a set of Python libraries that allows high-level de-

scription of simulation and measurements and is designed to serve as a solution stack

for writing reusable, structured tests for mixed-signal circuits. We provide libraries

that allow users to describe tests in a high-level way, much like how the MATLAB

Aerospace Blockset[43] allows users to describe aerospace analysis problems.

A major advantage of the CircuitBook test framework is that the user is able to

describe all of the parts of a test (test bench, test vectors, simulation directives, and

result analyses, as identified in Section 2.2) in a single programming language.

Our main objective is to provide a simple solution stack that is optimized for

analog testing. This mantra serves as the guiding principle behind the development of

CircuitBook. Whenever possible, we opt for simplicity over complexity and specificity

over generality. In terms of simplicity, we mean simplicity for the user (i.e., the

framework itself is actually quite complex and uses a variety of programming tricks to

appear simple to the user). We chose Python as the language of the framework for its

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 18

versatility, which allows the user to write all of the various parts of the test in Python.

Solution stacks are often very general (e.g., the LAMP stack mentioned earlier can be

used for various classes of web-based applications, ranging from static sites to heavily

data-driven services) because that generality makes it accessible to a larger audience

and helps drive adoption. However, generality is not an advantage for the CircuitBook

test framework, which we want to customize to the task of designing reusable tests.

For example, generality means that many niche routines are independently rewritten

by different users of the system, which can lead to incorrect implementations. We are

able to avoid this generality by decomposing the testing problem and then providing

a set of basic elements that is tailored to each of the resulting problem domains. This

decomposition is discussed in Section 3.1.

Other Solution Stacks

Looking at the tools that are currently being used, there are several other candidate

solution stacks for test development. A comparison of CircuitBook and two other

solution stacks is shown in Table 2.2.

The most obvious alternative solution stack is a MATLAB, Python, and SPICE

stack. This is close to what many designers are already using for verification tools.

MATLAB is selected due to its ubiquity. Python is a versatile glue language that

can perform the necessary program instantiations, numeric calculations, and data

manipulation. Perl may also be a valid choice here, but the distinction is not that

important; the key is to standardize around a single programming language. Other

programming languages such as Ruby and shell scripts are less suitable: Ruby is

not widely used in scientific computing, so its computation libraries are not as well-

supported; and it is difficult to manipulate complex data structures in shell scripts,

and shells may be different between various environments (e.g., workstation versus

compute farm). For the last piece of the solution stack, SPICE is a good common

simulation platform because most circuit design tools work with SPICE netlists. The

disadvantages of this approach are the number of different programming languages

involved (e.g., MATLAB, shell scripts, Python) and the lack of structure (i.e., what

should be done in the Python code versus MATLAB code). CircuitBook takes a

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 19

similar approach but tries to eliminate these disadvantages (i.e., single language,

structured classes).

We can also imagine an alternative solution stack based on Cadence tools. Virtu-

oso can be scripted using SKILL[44], a dialect of Lisp. OCEAN[45] (Open Command

Environment for Analysis) from Cadence is a framework for SKILL that allows a user

to set up simulations, run those simulations, and analyze the results. This framework

allows designers to replay a set of interactions with the Virtuoso Analog Design Envi-

ronment without using a graphical user interface. Typically, the OCEAN scripts are

automatically generated by one of the Virtuoso tools as a way of saving simulation

configuration or analysis from the graphical environment. These scripts may then be

tweaked and used as a part of a test plan.

The main advantage of an OCEAN-based solution stack is that it is easy to gener-

ate OCEAN from Cadence tools. That is, a designer who is familiar with simulation

and analysis in the Virtuoso environment can quickly leverage OCEAN to repeat

simulations and analyses without knowing much about OCEAN or anything about

SKILL. However, this ease of use can be a double-edged sword. While it is possible

to take a snapshot of a simulation and analysis setup and repeat it, the automati-

cally generated code is somewhat messy and brittle. It may be difficult to use the

same automatically generated OCEAN script on a different circuit or for different

simulations. This trade-off is not surprising: by hiding the complexities of writing

source code, it makes writing simulation and analysis scripts easier, but it also relieves

one of producing code that is reusable, easy to communicate and understand, and

maintainable, which are important aspects of the art of programming. OCEAN is a

valuable part of the solution space because it enables automated regression testing,

which is better than manual testing, even if it may be brittle or otherwise less than

ideal. However, for our goal of promoting test reuse, an OCEAN-based solution stack

would present many challenges.

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 20

Solution Stack Languages Libraries Simulators

MATLAB, Python, SPICE MATLAB, Python, SPICE MATLAB SPICE
OCEAN SKILL OCEAN built-in Spectre
CircuitBook Python, SPICE CircuitBook HSPICE, Spectre

Table 2.2: Comparison of Candidate Solution Stacks

2.4.2 Benefits

Using the CircuitBook framework to specify and run tests has several benefits. First,

test descriptions tend to be shorter and easier to comprehend because CircuitBook

provides a high level DSL (domain specific language) for test descriptions. Second,

we try to separate the circuit specific2 portions of test code from the application

specifications. That is, the code that tells the system what stimulus to inject, what

analysis to perform, how to measure the output, and how to analyze the results is

separated from the code that configures the test framework for a particular instance

of a circuit (e.g. port name mappings, process technology, etc.). This separation

increases the potential for reuse because reusing entire tests is hard due to the need

for some circuit-specific parts in every test; if we separate the circuit-specific parts of

the test, then the remainder is much more reusable.

Third, by standardizing on a solution stack, productivity improves due to shared

test collateral. This is already done to some extent at the workgroup level inside

IC design houses for these reasons. However, that is just scratching the surface.

Most of the sharing at the workgroup level constitutes test collateral for a particular

design and its derivatives. There are many additional benefits to adopting a standard

solution stack division-wide or company-wide. A standardized solution stack would

naturally lead to common skills among engineers in various groups, which leads to

better intra-company mobility, which in turn enables more efficient use of human

capital. In addition, we believe that there is an opportunity to share parts of the

test collateral (e.g., a particular way of measuring harmonic distortion) that would

be applicable across different types of designs.

The second part of CircuitBook, the test repository, has additional benefits. A

2This is an application of the separation of concerns design principle in computer science.

CHAPTER 2. ANALOG CIRCUIT DESIGN PROCESS 21

global repository of test collateral will be a useful set of learning tools for people

seeking to be better designers. Tests capture knowledge about the potential issues

that can affect a design — tests are often created in response to surprise problems in

a design. The CircuitBook repository, described in Section 4.11, helps users find cir-

cuits similar to the circuit they are trying to design. It also provides a way to discover

test collateral that can serve as a basis for a new test. The challenge is in populating

this repository. The repository becomes more valuable as it becomes bigger. Initial

contributions are likely to come from universities and other groups without a direct

profit motive. Once some basics exist, companies, EDA vendors, and industry con-

sultants may be willing to improve and add on to the collection. MATLAB Central

File Exchange is an example of this collaboration model. It contains over a thou-

sand user-submitted Simulink models ranging from small components (e.g. models

representing various modulation schemes) to complete systems (e.g., a three-phase

induction motor drive).

In the next chapter, we will describe the CircuitBook framework and test reposi-

tory in greater detail.

Chapter 3

Test Framework

The previous chapter provided an overview of analog circuit design and the ad-hoc

manner in which testing is done today. This chapter introduces the CircuitBook test

framework and associated repository as well as the supporting infrastructure. Our

main goal in developing these tools is to make it easier to reuse tests by addressing

the shortfalls of ad-hoc testing identified in Chapter 2. Users face two challenges

when reusing tests: how to find test code to reuse and how to apply that code once

it is found. CircuitBook addresses both issues. The CircuitBook repository helps

users to find test code to reuse, and by defining a set of clean interfaces between test

components, it makes repository code easier to apply to test new circuits.

In this chapter, we first review the circuit validation process and identify the

natural interfaces in that process. These natural interfaces lead to a convenient

decomposition into a set of tasks. Each of these tasks is in a different domain, so

their natural forms are slightly different. We leverage the natural interfaces and the

resulting decomposition in creating CircuitBook; these partitions allow us to create

a domain-specific language (DSL) tuned for each task.

3.1 Test Components

Conceptually, each test consists of several parts: circuit representations, simulation

directives, stimuli, measurement, and results analysis routines. This decomposition

22

CHAPTER 3. TEST FRAMEWORK 23

−

+

Circuit Representation

V

Test Bench

Circuit Simulator

Stimulus

Simulation Directives

Post Processing

Results

Measurement

À

Á

Ã

Ä

Â

Figure 3.1: Decomposition of a Test — Circled numbers indicate the corresponding
conceptual interface as described in Table 3.1.

CHAPTER 3. TEST FRAMEWORK 24

is shown in Figure 3.1. We use this decomposition because each part has a different

function, a different natural expression form, and a different set of reusable com-

ponents. When constructing a DSL for writing tests, we want to provide different

commands for each part to capture these differences. For the circuit representation,

we need ways of describing circuit elements and the connections between them. This

is traditionally expressed graphically in a schematic. Simulation directives are a com-

bination of analysis type and simulator-specific options (e.g. the Gear integration

method in HSPICE) that configure the simulator to perform the desired circuit anal-

ysis. The stimuli describe the inputs that will drive the circuit during the analysis.

These input waveforms are generally specified by either their time or frequency wave-

forms. Simulator analysis of the circuit driven by the correct inputs results in the

raw simulator outputs, which must be processed into the desired outputs.

The test process described so far, and depicted by Figure 3.1, shows a single test

setup. For any real circuit, there are many of these test setups, often with only minor

differences. For example, in testing an ADC, we want to drive the DUT with different

sources for different measurements – a single sine wave for a code histogram, two-

tone sine waves for measuring intermodulation distortion, and a ramp for evaluating

non-linearity. The challenge in effective test reuse is to manage all these different test

setups.

In an ad-hoc testing paradigm, as discussed in Section 2.3, the numerous test

setups are often managed manually and written with no concept of distinct compo-

nents. For example, consider how one would change the stimuli and measurements

in an ad-hoc paradigm. One common approach is to have all of the necessary sources

in a single file with all but one source commented out and likewise for the measure-

ments. The relevant lines of code are often scattered throughout the file. Depending

on the metric that needs to be measured, the appropriate combination of commands

are uncommented. Another approach is to duplicate the entire set of test files and

use a different set for each measurement. Neither of these approaches is ideal. For

example, while each test component may only have a few variants, the combination

of the components is exponential, resulting in a multitude of duplicate test sets or

CHAPTER 3. TEST FRAMEWORK 25

Component Ad-hoc Test CircuitBook Test

Circuit À Circuit Netlist Circuit Netlist with Metadata
Simulation Directives Á Test Bench Netlist SimulationRun#setup

Stimulus Â Test Bench Netlist SimulationRun#start run

Measurement Â Test Bench Netlist SimulationRun#start run

Post Processing Ã MATLAB Script SimulationRun#post process

Run Control Shell Script TestRun / TestSequence

Table 3.1: Location of Various Test Components in Ad-hoc Tests and in CircuitBook
Tests — Circled numbers indicate the corresponding conceptual interface as labeled
in Figure 3.1.

constant commenting and uncommenting. As can be seen in Table 3.1, each compo-

nent in CircuitBook can be isolated, and changes need only be made in one portion

of the code.

3.2 Conceptual Interfaces

In our test framework, we define a set of conceptual interfaces to provide structure

to the test process and enforce the appropriate partitions. Each test component

is specified using a DSL for describing that component type. This combination of

DSL and interface forces users to decompose tests into pieces based on function and

reusability.

Each of the numbered arrows in Figure 3.1 between components represents a

conceptual interface. The interface labeled À between the test bench and circuit sim-

ulator is the SPICE netlist. In the CircuitBook framework, we use SimulationRun

scripts to model a single run of the underlying simulator. Simulation directives, la-

beled Á, are specified using a DSL in the setup function of SimulationRun. An

example of this DSL is shown in Listing 3.1: the set simulator and analyze dc

commands configure the type of simulator and the type of analysis. Similarly, the

user describes stimulus and measurement via a DSL in SimulationRun#start run.

An example of this interface, labeled Â in Figure 3.1, is shown in Listing 3.2: the

CHAPTER 3. TEST FRAMEWORK 26

Listing 3.1: Example of SimulationRun#setup — This listing shows the setup of a
typical test by defining the interface that the test leverages, the simulator to be used,
the analysis mode, and what outputs to make available in post-processing.

1 class DiffampDCSimulation(SimulationRun):
2 def setup(self):
3 self.intent = "Check saturation margin and power

consumption of the Differential Amplifier"
4 self.description = "Run a DC operating point simulation to

obtain saturation margin and power consumption"
5
6 # Set the interface we expect
7 self.attach to interface(’diffamp’)
8
9 # Load the HSpice simulator
10 self.set simulator(HspiceSimulator())
11
12 # Run a DC analysis
13 self.analyze dc()
14
15 # Specify which nodes and devices to save
16 self.save output(vsources=[’vvdd’], nodes=[’in p’, ’in n’, ’

out p’, ’out n’])

add stimulus and add stimulus block library functions instantiate a stimulus gen-

erator and a SPICE format stimulus block, respectively. For post processing, labeled

Ã, we provide objects, accessible as fields of sim results, that encapsulate the sim-

ulation data; an example can be seen in Listing 3.3.

Using SimulationRun scripts to model a single simulator run has several key ad-

vantages. It separates the SimulationRun from environmental settings (e.g., process

and corner parameters). This shared nothing architecture means that it is trivial to

parallelize simulations. It also maximizes the reuse of these scripts because most of

the information specific to a particular design are passed in, either explicitly (e.g.,

user-provided configuration in the TestRun object) or implicitly (e.g., site-wide con-

figuration in the CircuitBook framework).

TestRun objects are a mechanism to run multiple simulations. Listing 3.4 shows

a simple example that binds a technology process and runs a SimulationRun (i.e.,

the one described by Listings 3.1, 3.2, and 3.3) in each process corner.

CHAPTER 3. TEST FRAMEWORK 27

Listing 3.2: Example of SimulationRun#start run — In this example, we are defin-
ing the test bench for an amplifier. We first calculate the desired input common
mode voltage from the supply voltage of the process corner being simulated. Next,
we create power supplies and input stimuli using stimulus generators. Finally, we add
a load specified as a SPICE snippet.

1 class DiffampDCSimulation(SimulationRun):
2 def start run(self):
3 # Use the supply voltage from process corner
4 supply voltage = self.corner.supply()
5 vincm = 0.6 ∗ supply voltage
6 voutcm = 0.6 ∗ supply voltage
7 itail ideal = 1e−3
8 rval = 2 ∗ (supply voltage − voutcm) / itail ideal
9
10 self.clear stimulus()
11
12 # Power Supply Stimulus
13 self.add stimulus(PowerSupplyStimulus(supplies = {’vdd’ :

supply voltage}, grounds = [’gnd’]))
14
15 # Input Stimulus
16 self.add stimulus(DCVoltageSourceStimulus(pnode=’in p’, nnode=’

gnd’, value=vincm))
17 self.add stimulus(DCVoltageSourceStimulus(pnode=’in n’, nnode=’

gnd’, value=vincm))
18 self.add stimulus(DifferentialToSingleEndedConverter(inp=’in p’,

inn=’in n’, outnode=’indiff’))
19 self.add stimulus(DifferentialToSingleEndedConverter(inp=’out p’

, inn=’out n’, outnode=’outdiff’))
20 self.add stimulus(SingleEndedToDifferentialConverter(innode=’

indiff’, outp=’out2’, outn=’out2b’))
21
22 # Add loading
23 self.add stimulus block("""
24 rldp vdd out p {rval}
25 rldn vdd out n {rval}
26
27 Cld out p 0 {cldval}
28 Cldb out n 0 {cldval}
29 """.format(rval = rval, cldval = 100e−15));

CHAPTER 3. TEST FRAMEWORK 28

Listing 3.3: Example of SimulationRun#postprocess — This post-processing rou-
tine shows how we extract the power of a voltage source from our result objects and
emit that to the logging system.

1 class DiffampDCSimulation(SimulationRun):
2 def postprocess(self):
3 # Get the object that holds the simulation results
4 dcres = self.sim results.dc()
5
6 # We saved the data for a voltage source named ’vvdd’.
7 # dcres[’vvdd’] returns a ComponentData object. Voltage
8 # sources have a current() and a power() method. In this
9 # case, we are using the power() to get the power as a
10 # scalar.
11 power = abs(dcres[’vvdd’].power())
12
13 # Create a new Epilog section
14 with self.epl section() as epl:
15 # Print the power to stdout as well as the Epilog
16 epl.println("Power: %.2fmW" % (power/1e−3))
17
18 return {’power’ : power}

Listing 3.4: Example of TestRun — This listing shows a typical example of TestRun
where we want to run a particular SimulationRun against all the corners of a partic-
ular process. Note that this is very short; our framework tries to make these scripts
as concise as possible since TestRun code is more specific and less reusable.

1 class DiffampDCTest(TestRun):
2 def setup(self):
3 # Load the Synopsys 90nm process model
4 models = [SAED90ProcessModel(scale=0.050e−6)]
5
6 # Instantiate the SimulationRun objects
7 self.dct = self.construct(’DiffampDCSimulation’, models)
8
9 def test(self):
10 # Run the simulations across all corners
11 for corner in self.act.corners():
12 print "Corner: %s" % corner.name
13 self.simulate(self.dct)

CHAPTER 3. TEST FRAMEWORK 29

Now that we have provided an overview of the conceptual interfaces in our test

framework, the next sections provide a more detailed description of these interfaces.

3.3 Circuit Representation

The circuit is the center of any test setup, and how it is represented drives the design

of the rest of a test framework. In our system, circuits are stored as their netlist

representations. A circuit object is essentially a parameterized SPICE .subckt that

we treat as a black box. The main reason for this black box approach is predictability.

We want it to be easy for designers to infer the operation of a particular circuit block,

and this level of design is what they work with today. It also means that these circuit

blocks can be used in other tool flows, since our representation of the circuit is its

natural representation (i.e., how a circuit block interfaces with other circuit blocks).

By describing circuits in this manner (i.e., only allowing parameterization through

the standard SPICE convention for parameters), we implicitly assume that circuit

topologies are fixed.

While we use the standard SPICE .subckt notation to create our black box

representation, the black box abstraction we use is stronger than that of SPICE.

We do not allow the user to look inside the box and probe nodes or measure devices

directly, whereas SPICE allows this through its dot notation. This is an application of

a design principle commonly used in object-oriented software development — the Law

of Demeter. Having this isolation means that all values of interest (i.e., parameters

or nodes) must be defined as ports. Resulting test code is cleaner because it cannot

contain circuit specific code, since circuit elements are not visible except through

ports. Circuit specific checks are kept with the circuit. For example, it is common to

check whether the devices of a particular circuit are in the proper operating regions.

Traditionally, this is done by probing the devices at the top level using dot notation

to peek inside. In our approach, the circuit contains assertions that check whether

devices are operating in the appropriate regions and exposes the result of those checks

as a value through a port of the interface.

CHAPTER 3. TEST FRAMEWORK 30

EmPy Source EmPy Engine Netlist

Bindings

Context

Figure 3.2: Elaboration Flow of the EmPy Template Engine

3.3.1 Problems with Template-Based Approaches

During the development of the CircuitBook test framework, we considered making

the circuit description more flexible, by using EmPy[46], a general-purpose Python-

based templating system, as the representation format for the circuit and test bench

netlists. A general-purpose template system takes an input file that contains specially

delineated regions and produces an output file where those regions are replaced with

the appropriate text. When run, EmPy replaces occurrences of @(var) in the input

with the value of the variable var. The collective set of these variables are the

bindings. This flow is illustrated in Figure 3.2. For example, running the text,

Good @(part_of_day), @(name).

through EmPy with bindings of name = "James", part of day = "morning" yields

Good morning, James.

In addition to this basic string replacement, template engines usually also support

conditionals and loops. For example, in EmPy, @[if condition]...@[end if] is

quietly removed from the source text if the condition does not evaluate true. Similarly,

@[for ...]...@[end for] denotes a loop in EmPy.

CHAPTER 3. TEST FRAMEWORK 31

Some template engines, including EmPy, provide evaluation support — the abil-

ity to embed a dynamic programming language such as Python inside the template.

EmPy provides evaluation of Python expressions, that is, in addition to simple substi-

tutions of variables, it will accept and evaluate a Python expression inside the @(...)

construct.

These advanced template features are useful in two ways. First, they provide

a more flexible way of handling circuit parameters in lieu of the SPICE .subckt

parameter passing mechanism. For example, this allows Python expressions as values

for device sizes in addition to SPICE expressions. Second, we can leverage these

features in test bench construction. In the earlier version of CircuitBook, we used

EmPy as a means of constructing the top-level test bench. We required that the

user provide the circuit as an EmPy template ready for HSPICE simulation with

some fixed placeholders (e.g., we required a @(stimulus includes) line before the

circuit and a @(measurement includes) line after). To create the test bench, the

framework expanded the user-provided template and replaced the placeholders with

the generated output (i.e., @(stimulus includes) is replaced with the output of the

instantiated stimulus generator outputs).

Eventually we outgrew the benefits. In the process of making the framework

easier to use and adding additional simulator support, we stopped requiring the user

to provide the top level test bench template. In order to support both HSPICE and

Spectre, we needed to abstract the analysis commands and simulator options, so we

built a test bench generator as part of the system. This process of generating the test

bench is described in Section 4.4.1. Automatic test bench generation was a clear win,

since it made it simpler for the user and allowed us to be simulator agnostic while

eliminating our dependence on the template engine.

At that point, the only use for templating was to customize circuit parameters.

While that use seemed like a good idea in the beginning, it quickly proved otherwise.

Designers ended up abusing this mechanism and writing SPICE netlists that contain

lines that look like:

R1 input 0 @(load_res*1000)K

CHAPTER 3. TEST FRAMEWORK 32

Note that the unit for load res is actually MΩ since its value is multiplied by 1000

in Python and then scaled by the K unit in SPICE. The abuse did not end there. In

our experience, designers sometimes overused the evaluation feature of the template

engine and a large amount of test code ended up being written inside the template,

which made the test and cell hard to reuse.

Dynamic evaluation is very powerful and when used incorrectly it is hard to reason

about the behavior of a particular template. It takes discipline and best practices to

avoid such improper use. Since designers are not programmers by trade, it is particu-

larly unreasonable to expect them to follow best practices regarding the separation of

templates and code. When isolation between templates and code is not maintained,

subtle syntax errors can create errors that are difficult to debug.

After using templating, we determined that the additional flexibility made the

system more difficult to learn and to use. On balance, it seemed that removing this

templating capability made the methodology more robust by allowing only a single

canonical way of performing a certain task. As a result, we use parameterized SPICE

.subckt blocks as the basic unit of circuit representations. These blocks allow device

parameters to be changed but constrains each parameter to a single token and thus

avoids most of the issues discussed earlier with the use of templates.

Now that we have laid the foundation for our circuit representation, we will explain

our method for categorizing circuits and how this representation is useful for archiving

tests.

3.4 Interfaces

In the previous section, we presented our approach to representing circuits (i.e., as a

black box). In combination with this black box approach we define a notion of circuit

interfaces that allows the design of circuit-independent tests. An interface is a set of

ports and associated metadata. Ports are either physical or informational. A physical

port is a pin or a set of pins. An informational port can be the parameters of the

circuit, assertions, or measurements.

CHAPTER 3. TEST FRAMEWORK 33

An interface separates a circuit from its tests by defining the structure of interac-

tion between them, which allows us to write tests only using the abstraction of the

circuit. A similar concept, symbols, is used in traditional schematic capture flows

to manage complexity. Figure 3.3 shows this abstraction. There are a couple of dif-

ferences. First, symbols typically only contain physical wires whereas our notion of

interface also include information (e.g., error flags). Second, symbols are closely asso-

ciated with a single circuit (i.e., a symbol is a just another view of the circuit) which

makes the symbol subordinate to the circuit. Our definition of interfaces reverses

these roles. We see the interface as the primary view. In our framework, tests do not

see circuits at all; tests only interact with an interface. There are several implications

of this stance:

• Test reuse across different circuit implementations exposing the same interface

is trivial since the test does not know anything about the circuit and cannot

access any of the circuit’s internals during simulation.

• Tests can be lifted to higher level interfaces. For example, a test measuring the

distortion of a particular amplifier interface can be separated into the theoretical

calculations and the drivers and monitors for that interface. The first part is

a test that works on all amplifiers and is defined at higher level interface. The

second part is the mapping between the higher level interface and the lower

level interface. Interface hierarchies are described in Section 3.8.

Interfaces provide these benefits by restricting what a designer can do in a test

(i.e., they cannot probe the inside of the circuit). This makes writing a test a bit

more complex. Designers must think about the information they need from a circuit

and declare those as a part of the interface. This extra work is not wasted – it is very

useful in creating a clean definition of the requirements of a test that can be used

when testing actual silicon. The visibility restrictions avoid the unfortunate scenario

of not being able to debug a chip because there are some nodes that are not visible.

Any nodes needed for testing are captured by the interface definition created while

constructing simulations.

CHAPTER 3. TEST FRAMEWORK 34

−

+v p

v n
v o

(a) Interface

ib

v p v n

v o

(b) Circuit Implementation

Figure 3.3: Example of a Differential Amplifier Implementation Abstracted by an
Interface

3.5 Stimulus and Loading

Designers usually create a test bench for testing circuits. These test benches contain

input sources and output loads. Input sources drive the circuit, and output loads

simulate the next stage and measure parameters of interest. While there are many

ways to connect up these stimuli, loads, and measurement instruments, there are only

a limited number of fundamental building blocks. This allows us to create abstracted

representations that isolate the designer from the simulator, which then allows us to

be simulator agnostic.

First, let us look at stimuli. It is easy to identify the basic building blocks; we

need to look no further than the HSPICE Reference Manual[47]. We will use HSPICE

as an example simulator for our discussion since its syntax is also compatible with its

main commercial competitors (e.g., Spectre[7] and Eldo[48]). Circuit simulators gen-

erally provide three types of sources: independent sources, dependent sources, and

miscellaneous sources. Independent sources are voltage sources or current sources

that generate a time-series of voltage or current values based on a programmable

expression. Table 3.2 shows the functions available in HSPICE. Dependent sources

CHAPTER 3. TEST FRAMEWORK 35

Function Command

Pulse PULSE

Sinusoidal SIN

Exponential EXP

Piecewise linear PWL

Single-frequency FM SFFM

Single-frequency AM AM

Table 3.2: HSPICE Independent Input Functions

Source Element

Independent Voltage Source V

Independent Current Source I

Voltage Dependent Current Source G

Current Dependent Current Source F

Voltage Dependent Voltage Source E

Current Dependent Voltage Source H

Digital Files and Mixed Mode U

Table 3.3: HSPICE Stimulus Elements

are voltage or current sources that are controlled by another voltage or current mea-

surement. Other sources typically include sources which load values from an external

source, such as a waveform from a digital simulator. These different types of sources

are summarized in Table 3.3.

The CircuitBook test framework provides a set of generators that abstract these

basic sources. For example, DCVoltageSourceStimulus generates an independent

voltage source with a DC value and PWLVoltageSourceStimulus generates that

same source with a piecewise linear input function. We try to explicitly define

each combination of stimulus element type and input function as a separate class.

DCVoltageSourceStimulus and PWLVoltageSourceStimulus both map to V ele-

ments in HSPICE notation. These explicit definitions capture design intent, and

we leverage that intent to produce metadata about each test, which are then used in

the rest of the tools. In particular, this is very important in helping us organize tests

in our repository. It may seem burdensome to produce so many different generators,

CHAPTER 3. TEST FRAMEWORK 36

Listing 3.5: Framework Source Code for PWLVoltageSourceStimulus — This stim-
ulus generator leverages AbstractSourceStimulus heavily; it sets the appropriate
options and passes control to the parent. This is a common pattern that helps make
stimulus generators more reliable by avoiding duplicated code.

1 class PWLVoltageSourceStimulus(AbstractSourceStimulus):
2 """ PWL voltage source to be instantiated between ∗pnode∗ and ∗nnode

∗.
3 Parameters are:
4 − wave : an array of time−value pairs given in a string e.g.,

"[1n 0 1.1n 1]"
5 """
6
7 def init (self, pnode, nnode, wave, name = None):
8 super(PWLVoltageSourceStimulus, self). init (pnode, nnode, ’V’

, name = name, wave = wave, type=’pwl’)

but it is not. There are only a few commonly used input functions (i.e., a subset of

those listed in Table 3.2) and two independent source types (i.e., voltage and cur-

rent), so the number of combinations is small. Since each generator is only a couple

of lines of code, it is easy to write and maintain. See Listing 3.5 for a example of such

a generator declaration; that code simply defines PWLVoltageSourceStimulus as a

subclass of AbstractSourceStimulus and handles some parameter mapping. The

heavy lifting is performed in AbstractSourceStimulus, which is shared by many

stimulus generators.

Independent sources are often used to represent inputs in the real world, while

dependent sources are often used as glue in simulations. For example, dependent

sources are used to construct a single-ended to differential converter to make it

easier to describe the stimulus. Instead of writing the functions for a pair of

differential inputs, it is common to use a pair of independent voltage sources

to represent the differential and common mode voltages and then convert these

into different inputs using some dependent sources. Again, we provide abstrac-

tions for these types of blocks (e.g., DifferentialToSingleEndedConverter and

SingleEndedToDifferentialConverter), in addition to abstractions for basic

dependent sources, to allow the users to declare their intent.

We built these generators as users needed them, so there are probably additional

CHAPTER 3. TEST FRAMEWORK 37

generators that may be useful. Instead of trying to write every stimulus generator, we

focused on building the infrastructure to facilitate user-built generators. Our stimulus

generation framework, described further in Section 4.4, allows users to easily make

larger generator blocks by composing smaller generators and provides many helper

functions that can be used in writing stimulus generators (i.e., there is a DSL for

writing generators). These stimulus generators decouple the declaration (i.e., the

what) from the implementation (i.e., the how) and allow us to construct tests that can

work on many different back-ends: simulators (e.g., Verilog, SPICE), test equipment,

and automatic testers.

We use these same concepts in handling loads. Loads are simply compositions

of circuit elements and can be built on the same generator DSL that is used to

make stimulus generators. While we currently do not provide any predefined load

generators, the process of creating them is straightforward. We have observed users

construct their own load generators to share across their tests.

3.6 Measurement and Post Processing

The basic measurement commands provided by circuit simulators are usually very

simple. In HSPICE, the .PROBE command saves, and optionally plots, various simu-

lation variables. However, the measurement apparatus created by users are often very

complex. This disconnect creates problems in reuse. When users are forced to build

complex systems from simple primitives without good abstractions and interfaces,

the result is chaos: measurements for different performance metrics are intermingled,

making it hard to pull out a particular measurement to reuse. Furthermore, there

is not a well-defined interface between measurement and post processing in ad-hoc

testing. One designer calculates duty cycle via a SPICE expression in a .PROBE

statement, whereas another designer extracts the raw waveform and processes it in

MATLAB.

To avoid these problems, we define a very clear interface between measurement

and post processing. Users specify the data they are interested in (e.g., via a call to

save node, save vsource, save isource, or save transistor), and the framework

CHAPTER 3. TEST FRAMEWORK 38

automatically provides those results as objects in the post processing routine. All data

traditionally available in a SPICE simulation are available through the appropriate

save call, including node voltages, device currents and parameters, and voltages and

currents of sources. However, any internal nodes or values used must be declared and

visible on the interface as we mentioned in Section 3.4.1 When stimulus generators

are used, the results are automatically associated with the appropriate objects. For

example, a PowerSupplyStimulus will automatically load the relevant voltages and

currents and provide that data in a special results object for power supplies. These

special objects keep the meaning of the data with the data. As a result, specialized

calculation functions can be defined on these objects (e.g., a function to calculate

settling time) and these objects can be also passed to Epilog, our logging system

described in Section 4.7.

This process is simulator agnostic; our result objects abstract away the differences

in data formats between various simulation engines and provide a consistent interface

to the user. Essentially, the user focuses on writing post processing routines without

having to worry about how to get the data. The only measurement tasks the user

has to do is to indicate the nodes of interest. This helps us in two ways: it ensures

optimal performance by minimizing data transfer, and it serves as another source of

metadata. Section 4.6 describes the process in detail and discusses the programming

interface.

3.7 Types of Tests

Before we dive into how tests are organized, we need to separate tests into two types:

performance tests and assertions.

Performance tests represent design specifications for the circuit. For an ADC,

we would like to measure, at a minimum, the signal-to-noise ratio, total harmonic

distortion, differential non-linearity, integral non-linearity, and noise power ratio[49,

1While this is generally true, we have a debug mode where this constraint is relaxed so as to
make it easier for users to experiment. In that debug mode, commands such as save transistor

will accept a dotted path to the device (e.g., amplifier.M5).

CHAPTER 3. TEST FRAMEWORK 39

50, 51, 52, 53]. Since these performance tests are relevant to any ADC, they would

be attached to the ADC class and thus available to all ADCs. Depending on the

application of the circuit, additional performance metrics of interest may apply. For

a flash ADC in a radar application, we might also want to measure the transient

response to a square wave input[54]. Such a test would be attached to the flash ADC

class.

The other type of test is assertions. Assertions are tests that verify whether

constraints are met. Like assertions in software, these are pass/fail checks inside a

test that guarantee assumptions are met. For example, a certain port may be a LVDS

(low-voltage differential signaling) input, and the voltages on that port should always

fall within the range provided by the LVDS standard (i.e., ANSI/TIA/EIA-644-A).

Failure to meet the standard may lead to performance tests passing but the circuit

failing in production. In general, the fidelity of performance tests is compromised

when assertions fail. Another example of a common assertion is a check that a

particular device stays in some operating region. A failure in such an assertion may

represent a marginal design, and the degradation is likely visible in the results of the

performance tests. Assertions are useful here because they make it easy to figure out

the root cause.

3.8 Organizing Circuits and Tests

Given our circuit representation, a key reuse problem is how to find tests to reuse.

While there might be a circuit similar to yours, you have no idea what the other

designer called it. To address this issue, we leverage the notion that circuits belong

to a tree-based classification system. This categorization is important for two main

reasons. First, it allows the automatic adaptation and reuse of tests. Second, this

classification is a natural way to browse the repository for tests and for designers to

discover circuits or tests that they may wish to reuse.

We categorize circuits into tree structures based on the circuit function. The root

of each tree represents a class of circuits and the leaf nodes are individual circuits. For

example, the path from a particular implementation of a flash ADC to the root of its

CHAPTER 3. TEST FRAMEWORK 40

Data Converters

DAC

String · · ·

R-2R · · ·

R Ladder · · ·

Delta-Sigma · · ·

Current Steering · · ·

ADC

SAR · · ·

Pipeline · · ·

Modulator · · ·

Flash 6-bit 1.3-GHz ADC

Dual-Slope · · ·

Digital Filter · · ·

Figure 3.4: Example of a Data Converter Hierarchy

tree may look like this: Flash ADC to ADC to Data Converters. This is illustrated

in Figure 3.4. While it is possible for a single circuit to map to several leaf nodes,

that is not the common case.

In order for the tree structure to be intuitive, a designer must be able to quickly

identify the properties of a certain class of circuits. One can imagine this happening

in one of a few ways. This can be done by looking at that circuit class and its

description; if needed, the designer can also explicitly examine the tests attached to

that particular class. The designer can also gain insight into the properties of a circuit

class by looking at the circuits that belong to that class. The end result is that a

circuit class in an intuitive hierarchical categorization system must have a defining set

of properties at each level. These properties then can be checked by tests at this level

which allow us to “lift” some tests to higher levels in the hierarchy; this is discussed

next.

CHAPTER 3. TEST FRAMEWORK 41

3.8.1 Class Hierarchy

Clearly, any property that is relevant for a circuit class must be relevant for all

subclasses as well as any circuits belonging to that class or a subclass of that class.

Similarly, any test defined on a circuit class must also be relevant for any circuits

belonging to that class or one of its subclasses. This relationship logically leads to

test reuse.

Consider an inner node in the classification tree (e.g., the data converter hierarchy

shown in Figure 3.4). Such a node represents a certain class of circuits. All of the tests

attached to this node are related to a property relevant to the circuit class and should

be evaluated on all circuits under this node (i.e., leaf nodes that are descendants of

this node). In addition, each of these tests should be executable on any of the circuits.

That is, these tests should be written in a way that allows them to be reused across

different circuits. The key to doing so is defining the boundary of interaction between

the test and any devices under test. This boundary is the interface described in

Section 3.4. Tests are attached to circuit classes through these interfaces. Table 3.4

shows an example of the classes in such a classification.

3.8.2 Adapting Tests to Circuits

By using formal interfaces, we can automatically generate the plumbing required to

make a test work with any circuit that implements an interface lower in the tree. A

test defined on the interface of the ADC class can be run with a circuit that supports

an interface attached to a subclass of the ADC class (e.g., flash ADC). We use the

circuit metadata, described in Section 4.1.1, that describe the mapping between the

circuit and the interfaces it directly supports. This allows us to construct a circuit

with the formal interface of the test. Interfaces have similar metadata mapping them

to their parent interfaces. That is, a flash ADC interface must provide a mapping to

the interface for its parent class (i.e., ADC).

Concatenating these connections mean that test collateral can be lifted in the

hierarchy. When a test is initially developed, it is written at an interface associated

with the circuit being tested. Reuse is limited because a different circuit likely has

CHAPTER 3. TEST FRAMEWORK 42

Class Subclass

Amplifiers and Comparators
Clock and Timing Clock and Data Recovery/Retiming

Clock Generation and Distribution
PLL Synthesizers/VCO

Data Converters ADC
DAC
Switches and Multiplexers

Interface Level Translators
LVDS

Power Management Current Sources
Linear Regulators
Switching Regulators

Reference Current Reference
Series Voltage Reference
Shunt Voltage Reference

RF/IF Downconverting Mixers
I/Q Demodulators
I/Q Modulators
Upconverting Mixers

Table 3.4: Examples of Circuit Classes

CHAPTER 3. TEST FRAMEWORK 43

a different interface. We lift the test by re-writing it so that it conforms to a higher

level interface. This makes the test reusable on a wider range of circuits. Lifting need

not be performed on an entire test; it can be done on a part of a test, since tests

can be written as compositions of smaller tests. Once lifted, a test is run on all the

circuits below it. This means that a newly discovered bug, captured in a test, is now

screened for whenever any child circuit is tested.

Interfaces allow us to connect circuits with tests elsewhere in the hierarchy by

providing metadata that allows the system to construct the necessary bridges. Each

interface definition contains metadata that define mappings to other higher level inter-

faces. Often, this is simply a list of port mappings, but sometimes a little additional

circuitry is needed. For example, a circuit may need a converter that converts a

common-mode single-ended input into a differential input or something to set the

correct common-mode voltage of the differential output.

3.8.3 Indexing / Searching

The circuit hierarchy also allows our repository to provide a couple of different mech-

anisms for locating the desired test: hierarchical browsing, metadata-based browsing,

and tag-based browsing. Hierarchical browsing is quite straightforward – circuits

and tests are defined against interfaces, which means that tests can be browsed by

browsing the hierarchy of interfaces. Figure 3.5 shows the interface browser in the

CircuitBook repository. The circuit class hierarchy is visible on the left and the de-

tails of the selected circuit class is presented on the right. As we discussed in the

previous subsection, a circuit conforming to interface X can be tested with any test

written against the interface X or one of its parents. Therefore, given that a user has

a particular class of circuit to test, all compatible tests can be quickly retrieved.

Figure 3.6 shows the different SimulationRun objects and their associated inter-

faces called by a particular TestRun. The graph shows TestRun objects as rectangles,

SimulationRun objects as rounded rectangles, and interfaces as ovals. The top level

test is a TestRun called DiffAmpTest which calls four SimulationRun objects which

are defined against two different interfaces, diffamp and diffamp bias. From this

CHAPTER 3. TEST FRAMEWORK 44

view, we can quickly determine that this DiffAmpTest can be run on any circuit that

can support the diffamp bias and diffamp interfaces.

Earlier in this chapter, we discussed the various test components and how they are

supported by our test framework through the use of DSLs and that those DSLs are

designed for ease of metadata extraction. When tests are loaded into the repository,

we parse the test to generate metadata and use that metadata as an index to tests.

Figure 3.7 shows some of this metadata for a SimulationRun object. Any analyses

used or stimulus generators invoked are identified and listed. Clicking on a listing

queries the system for other tests with the same property. Low-level metadata (e.g.,

the data related to which library functions were used) are analyzed through heuristic

rules to infer higher level metadata (e.g., tags).

Tag-based browsing relies on the notion that each test is tagged with a variety of

metadata tags derived from test class. These tags are automatically generated when

certain framework features are used (i.e., by inspection of the abstract syntax tree

of the test code after it is loaded into Python). The user is able to manually add

tags by specifying intent, but the system does not rely on the user’s diligence for

operation. There are several methods to browse by tags. The user can search for all

tests containing certain tags (e.g., all tests that work in the frequency domain) or

look for similar tests to a particular seed test (e.g., the user has a test for a particular

circuit class and wants to find a test that measures similar specifications for a different

class). From Figure 3.7, we see that this particular test has three tags attached to it:

Technique: Frequency Domain, Measurement: Frequency Domain, and Application:

Amplifier.

In the machine learning sense, the problem of finding similar tests is a recommen-

dation problem – that is, we wish to predict which tests would interest a user when

they are looking to pick a test to reuse[55]. Our tag-based browsing is a straightfor-

ward implementation of a recommendation system. First, we build a feature vector

for each test. In our tag-based system, the feature vector is simply a boolean vector

with all the possible tags, where each position indicates whether the test is tagged

with that tag.

When the user performs a search, the search query is first mapped to a feature

CHAPTER 3. TEST FRAMEWORK 45

Figure 3.5: Screenshot Showing Circuit Interface Browser

vector and that query feature vector is compared to all the tests in the system using

a similarity metric to find the most closely related tests. Search queries can be text

strings (i.e., keywords or phrases) or a test (i.e., find other tests similar to a selected

test). The latter case is straightforward; the feature vector of the selected test is the

query feature vector. In the text query case, we first perform a full-text search on

the name and description fields of tests to find some candidate tests and then use a

weighted average of those candidates’ feature vectors as the query feature vector.

Once we have the query feature vector, we want to find closest tests in vector

space. A simple implementation would simply calculate the distance between the

query feature vector and the feature vector of each test, which works well for small

repository sizes. For large number of tests, there are many probability approaches

which can complete much faster (e.g., a locality sensitive hashing technique such as

Simhash[56]). However, we do not currently have the number of tests to necessitate

such techniques.

CHAPTER 3. TEST FRAMEWORK 46

Figure 3.6: Screenshot Showing Test Dependencies

Figure 3.7: Screenshot Showing Test with Inferred Metadata

CHAPTER 3. TEST FRAMEWORK 47

3.9 Summary

This chapter focused on the use of formally defined interfaces to create reusable tests.

We use the natural boundaries in a test, shown in Figure 3.1, to define interfaces be-

tween test components in our framework. By defining formal interfaces that separate

tests and circuits, it is easy to reuse tests, since they are written against an interface

instead of directly against a circuit. Interfaces are classified in a hierarchy and we

can map between such interfaces, which then allows us to reuse tests at different

levels of the interface hierarchy. In addition, by leveraging clean interfaces, we foster

separation of concerns resulting in more modular code and produce metadata for use

in test discovery.

Chapter 4

Framework Components

In the previous chapter, we explored the rationale behind our decomposition of the

test collateral. Now, we will examine how the CircuitBook test framework operates.

We will start with an overview, and then we will take an in-depth look at the various

components.

As Chapter 3 described, a basic CircuitBook test consists of several parts: a

circuit representation, an interface definition, a SimulationRun object, and a TestRun

object.

InterfaceCircuit SimulationRun

TestRun

Figure 4.1: Test Partitioning

48

CHAPTER 4. FRAMEWORK COMPONENTS 49

4.1 Circuit Representation

Circuits are represented in the CircuitBook framework as a SPICE subcircuit de-

scribed by a netlist combined with some serialized metadata (i.e., metadata formatted

in a way such that it is machine readable). An example of a complete circuit file is

presented in Listing 4.1. The SPICE .subckt format is interoperable with almost all

circuit simulators. Using this format helps to avoid any possibility of circuit mangling

as previously discussed in Section 3.3.

We store a variety of metadata along with the circuit netlist; the metadata is

serialized and prepended to the netlist. This metadata contains details about the

circuit, such as name, parameters with default values, and ports, as well as the

interfaces with which this circuit can interact.

4.1.1 Metadata

At the top level, the metadata is essentially a single dictionary with key-value pairs.

These straightforward fields define the device-under-test (DUT). The name, params,

and ports keys define the black box represented by the subcircuit in the netlist.

These fields should match the .subckt defined in the netlist. The name field takes a

string that is the name of the block. The params field is an array of dictionaries that

define the parameters of the subcircuit; each such definition has a name field with a

string for the name of the parameter and default field with a string for the default

value of the parameter. Similarly, the ports key points to an array of dictionaries

that define each port. Each dictionary has a single name field with a string for the

name.

The metadata also contain information on how this circuit conforms to different

interfaces, as explained in Section 3.4. Here, we are describing the details of how

such metadata is specified in our framework. The implements key refers to an array

of implementations of interfaces. Each implementation is defined by a dictionary.

In this dictionary, there is a name field that specifies the interface that this imple-

mentation targets, a via field that specifies the mechanism to perform the actual

implementation, and an implementation field that provides the parameters for the

CHAPTER 4. FRAMEWORK COMPONENTS 50

Listing 4.1: Circuit File Example for a Differential Amplifier with Current Bias

1 −−−
2 name: diffamp
3 params:
4 − {default: ’200’, name: wnt}
5 − {default: ’200’, name: wns}
6 − {default: ’120’, name: wn0}
7 − {default: ’2.0’, name: ln0}
8 − {default: ’2.0’, name: lns}
9 ports:
10 − {name: vdd}
11 − {name: in}
12 − {name: inb}
13 − {name: out}
14 − {name: outb}
15 − {name: bias}
16 implements:
17 −
18 name: diffamp bias interface
19 via: port map
20 implementation:
21 ports:
22 vdd : vdd
23 in : in p
24 inb : in n
25 out : out p
26 outb : out n
27 bias : ibias
28 params:
29 wnt : w
30 −
31 name: diffamp interface
32 via: adapter
33 implementation: |
34 xadaptee vdd in p in n out p out n bias diffamp wnt=w
35 ibias vdd bias 1e−3
36 −−−
37 .subckt diffamp vdd in inb out outb bias wnt=200 wns=200 wn0=120 ln0=2.0

lns=2.0
38
39 mn0 outb in tail 0 NMOS w=’wn0’ l=’ln0’ m=’1’
40 mn1 out inb tail 0 NMOS w=’wn0’ l=’ln0’ m=’1’
41
42 mnt tail bias 0 0 NMOS w=’wnt’ l=’lns’ m=’1’
43 mns bias bias 0 0 NMOS w=’wns’ l=’lns’ m=’1’
44
45 .ends

CHAPTER 4. FRAMEWORK COMPONENTS 51

implementation. We can think of the via field as the name of a constructor to call

and the implementation field as the data passed to that constructor. Currently, we

have two such constructors implemented. There is a port mapping constructor (via:

port map) and an adapter constructor (via: adapter).

The port mapping constructor simply renames each of the ports and parameters

of the block to match those of the interface. The implementation section for this

constructor take a ports field with a dictionary of port mappings and a params field

with a dictionary of parameter mappings. The keys in these mapping dictionaries

correspond to the names used in this circuit definition, and the values correspond to

the names that the ports and parameters should have to conform to the interface.

In the example provided in Listing 4.1, the mapping for the diffamp bias interface

shows that the out and outb ports of this circuit are mapped to the out p and out n

ports in the interface definition. When a test is executed, the framework will use this

information to automatically create the instantiation of the DUT.

The adapter constructor allows the manual specification of a DUT instantiation.

Our circuit example shown in Listing 4.1 is a differential bias amplifier with a current

bias input. Some tests may not care about this bias input and may simply want to

run the DUT with a fixed bias. In such a case, we can use the implementation field of

the adapter constructor to provide an augmented circuit that includes additional test

bench components. It first creates an instantiation of the DUT with the subcircuit

called xadaptee. In our current example, we perform a simple port mapping and add

an ideal current source to bias the circuit in order for it to conform to the diffamp

interface.

The interfaces used in this example are provided Listings 4.2 and 4.3.

4.1.2 Metadata as an Abstraction

We have chosen to store all of the critical circuit information needed by the tools

in the metadata; our entire suite of tools uses this information to interact with the

circuit. Note that some of this information is also available in the circuit netlist, so we

duplicate it in the metadata. While it may seem that duplicating this information in

CHAPTER 4. FRAMEWORK COMPONENTS 52

the metadata is bad, there are several advantages to this approach. We are essentially

adding a level of abstraction between the framework and the raw netlist. This reduces

the coupling of our tools, which makes it more flexible.

Suppose we did not have this information in the metadata. In that case, each tool

that needs to interact with the circuit file must parse and extract the information

needed from the circuit representation. If we did not have a reusable component to

provide this functionality, we would have duplicate parsers in the framework, which

would cause maintenance issues. To avoid this, we would extract the functionality

into a separate module to enable reuse of this common function. This solves the

code reuse problem, but now we are running this parser repeatedly in every tool

unnecessarily; we only need to extract the information once. In short, storing the

information in the metadata can be understood as a way of caching the information.

Efficiency aside, there is an even more important reason to store the circuit con-

nection information in the metadata: to enable inspection and verification. That is,

by having this information in the metadata and using an appropriate human-readable

serialization method for the metadata (explained below), users of the framework are

able to make sure that the connections are being interpreted correctly. This removes

a key source of uncertainty. It frees us from worrying about the correctness of parsing

the netlist. This separation of the tools from the raw netlist also makes it easier to

use different simulation back-ends. That is, the tools are more flexible and applicable

in a wider set of use cases by allowing us to use alternative circuit representations

(e.g., Verilog model or actual silicon connected via test equipment).

4.1.3 Metadata Encoding

We combine the netlist and metadata together in one file to ensure that the two

are never out-of-sync. While the synchronization of metadata and netlist can be

maintained using a configuration management tool such as IC Manage[57] or a source

code management tool such as Git, SVN, CVS, or Perforce, a simple misconfiguration

can cause the files to become not synchronized. If we keep the metadata and netlist

in one file, then the user does not need to worry about this potential problem.

CHAPTER 4. FRAMEWORK COMPONENTS 53

Name Text-based Schema References

XML Yes Yes Yes
YAML Yes No1 Yes
JSON Yes No1 No

Table 4.1: Comparison of Data Serialization Formats

Since our circuit is stored as a SPICE netlist, a text-based format, the metadata

must also be text if it is to be stored in the same file. We chose to use YAML[58] as

the data serialization method for our metadata.

YAML is one of three common text-based data serialization formats; the other

two are XML and JSON. All three formats are widely supported: there are libraries

for serializing and deserializing these formats in most of the popular programming

languages. More importantly, these formats are supported with syntax highlighting

and formatting by many text editors (e.g., Vim, Emacs, UltraEdit, Sublime Text).

We chose YAML for our application based on ease of use. Generally, users may

want to inspect and modify the metadata for a circuit design. In the case where circuit

blocks are being reused, most users may want to read and understand the metadata,

while only a small portion of users need to edit the metadata. Hence, ease of use,

and particularly ease of reading the metadata, is an important concern. YAML and

JSON are easier to read and write by hand, whereas XML is more verbose and does

not map directly into the data structures commonly used in software (i.e., arrays and

dictionaries). The choice between YAML and JSON is easy because JSON is a subset

of YAML 1.2. The main difference is that YAML allows for references.

Note that, while our framework uses YAML libraries to read the metadata, we

do not currently use any YAML specific features, so technically the metadata is also

JSON compatible.

CHAPTER 4. FRAMEWORK COMPONENTS 54

Listing 4.2: Interface Example for a Differential Amplifier

1 format: v1
2 version: 1
3 name: diffamp
4 ports:
5 − name: vdd
6 − name: gnd
7 − name: in p
8 − name: in n
9 − name: out p
10 − name: out n
11 params:
12 − name: w
13 default: 432

Listing 4.3: Interface Example for a Differential Amplifier with Current Bias

1 format: v1
2 version: 1
3 name: diffamp bias
4 ports:
5 − name: vdd
6 − name: gnd
7 − name: in p
8 − name: in n
9 − name: out p
10 − name: out n
11 − name: ibias
12 params:
13 − name: w
14 default: 432

CHAPTER 4. FRAMEWORK COMPONENTS 55

4.2 Interface

In Section 3.4, we presented the idea of formal interfaces that define the connection

(i.e., ports and parameters) between tests and circuits which increase the reusability

of tests by decoupling tests from circuits. Now, we will explain how these interfaces

are described in the CircuitBook test framework.

Interfaces are specified in a YAML-encoded .interface file with a single dictio-

nary. This dictionary is similar to the dictionary used for circuit metadata described

in Section 4.1.1. The name, ports, and params fields have the same meanings as in

the circuit metadata with the exception that the name field now refers to the name of

the interface instead of the name of the circuit. The top-level dictionary contains two

additional fields: a format field that specifies the format of the interface definition

for backward compatibility purposes and a version field that specifies the version

of this interface definition. The format field is currently forced to be v1 but may

change in the future. This field allows future framework versions to understand older

interface definitions. The version field is for handling interface changes, which allows

for future framework versions to be backward compatible. This is important, since

interfaces are globally shared across all circuits in a repository.

Listings 4.2 and 4.3 show two different, albeit very similar, examples of interface

definitions.

4.3 SimulationRun

Having defined the circuits, and the narrow interface that tests can access, we now

describe SimulationRun, the place where the specifics of a test are encoded. The

SimulationRun script can be viewed as a collection of code snippets, which the user

creates to control the flow of the simulation. These snippets of Python code supply the

core of tests in the CircuitBook framework. One or more such scripts can be combined

with TestRun scripts (see Section 4.8) to perform complex system-level simulations.

1Although there is no schema support for YAML or JSON in the standard libraries, there are some
third-party attempts at creating tools to validate schema. The most popular of these are Kwalify

and Rx. While both packages seem functional, the packages are not widely used or maintained.

CHAPTER 4. FRAMEWORK COMPONENTS 56

There are two required snippets that perform setup and post-processing, called setup

and postprocess respectively. In addition, there are some optional snippets (e.g.,

start run and end run) that are executed in various parts of execution flow.

In this section, we will first provide a simple mental model that is sufficient for

most users of the system. The technical details of how SimulationRun scripts work

is complex and will be explored in depth later. These details are primarily used by

developers who want to extend or modify the system internals.

4.3.1 Mental Model

Since SimulationRun is automatically called by the framework, we will focus this dis-

cussion on what gets executed, rather than how to execute it. First, a SimulationRun

instance is constructed in Python using the standard object construction mechanics.

After that, the setup snippet is executed to provide the created object with its

configuration information. Once that is done, the object is ready to execute simula-

tions. For each simulation run performed, the start run and end run snippets are

called before and after the actual underlying simulator is run, respectively. Finally,

postprocess is called with objects representing the output of the simulation. This

execution flow is presented in Figure 4.2.

setup is used for framework configuration that do not change between executions

of the same simulation, whereas start run is used for setting configuration for each

run. A typical setup snippet specifies the type of simulator to run (e.g., HSPICE

or Spectre), the type of analysis desired (e.g., DC, AC, transient, PSS), the outputs

that should be saved, and the interface used, along with any user annotations about

intent. start run can be used to construct, programmatically, the test bench (i.e.,

it specifies the stimulus and loading for the DUT). end run is usually not needed,

but the callback is provided by the framework in case the user has required clean-

up. For example, such a mechanism is helpful if the user needs to acquire and release

simulator licenses manually; in that case, the license can be acquired in start run and

released in end run. The postprocess snippet contains the bulk of the measurement

code to transform the Python objects containing simulation output into a simple

CHAPTER 4. FRAMEWORK COMPONENTS 57

data structure with the results, usually a Python dict. This postprocess routine is

executed once for each simulation run. Results from multiple simulation runs can be

aggregated in the TestRun instance (described in Section 4.8).

In the simple, single-run execution flow shown in Figure 4.2, setup and start run

are run back-to-back, as are end run and postprocess. There are several reasons

why these pairs of snippets are not merged. The setup routine is only called once

after the instance is created, whereas the start run is called every time a simulation

is run. This allows us to perform potentially expensive operations only once if those

operations do not depend on test configuration. The reasoning for separating end run

and postprocess is similar. In the typical use case, those two snippets are always

executed together. However, separation is good from an technical perspective. By

separating the two, this makes it easy for the framework to execute the different steps

on separate machines if needed. That is, postprocess and end run are essentially

independent and can be run concurrently. There is also another general reason for the

separation of code into various snippets: to make the test writer’s intent clear. The

code in postprocess is typically more modular and reusable than the code in end run,

since the former contains measurements whereas the latter contains support code (e.g.,

clean-up code that constitutes a best practice but is not absolutely necessary). As

noted above, end run is not used in general; it provides an additional callback to

make a particular site’s environment more customizable.

4.3.2 Subtyping via Delegation

Often, we want to create derivatives of code that are mostly similar with a few

differences. We may want to reuse a test in a another context (e.g., leverage an

amplifier linearity test to perform a loopback test on an ADC / DAC pair[59]) or

provide a custom definition of a measurement function (e.g., run an existing test

but with a modified figure-of-merit). This subtyping can be implemented in several

different ways, such as inheritance in class-based systems or delegation in prototype-

based systems.

CHAPTER 4. FRAMEWORK COMPONENTS 58

#setup()

#start run()

Execute Simulation

#end run()

#postprocess()

SimulationRun Instance

setup()

start run()

end run()

postprocess()

...

Figure 4.2: SimulationRun Execution Flow — The #setup() is executed only once
when the SimulationRun instance is first created while the other steps are executed
for every simulation.

In Python, the object oriented programming language used in CircuitBook, sub-

typing is usually achieved through inheritance. In earlier versions of the CircuitBook

framework, inheritance was used in subtyping of SimulationRun. In that system,

each user-provided SimulationRun script contained a subclass (either direct or in-

direct) of SimulationRun. A basic template for the deprecated inheritance style

subtyping is shown in Listing 4.4.

A cursory look at the template does not seem very interesting; it is simply a

standard Python class definition with inheritance. However, there are a couple of

subtle issues with this mechanism of reuse: visibility of the parent class in scope and

the use of super.

The template defines a class, MySimulation, as a subclass of the class

AnotherSimulation. This means that the token AnotherSimulation has to be

in the scope of the Python interpreter when the MySimulation class is loaded. In

most Python scripts, this is not a problem; it simply means that there is an import

statement required at the top of this script. This does pose a problem for a test

CHAPTER 4. FRAMEWORK COMPONENTS 59

Listing 4.4: Example of Inheritance-based Subtyping

1 class MySimulation(AnotherSimulation):
2 def setup(self):
3 super(MySimulation, self).setup()
4
5 # CUSTOM CODE HERE
6
7 def start run(self):
8 super(MySimulation, self).start run()
9
10 # CUSTOM CODE HERE
11
12 def end run(self):
13 super(MySimulation, self).end run()
14
15 # CUSTOM CODE HERE
16
17 def postprocess(self):
18 results = super(MySimulation, self).postprocess()
19
20 # CUSTOM CODE HERE
21
22 return results

Listing 4.5: Example of Delegation-based Subtyping

1 class MySimulation(SimulationRunProxy):
2 def delegate to:
3 return ’AnotherSimulation’
4
5 def setup(self):
6 # CUSTOM CODE HERE
7
8 def start run(self):
9 # CUSTOM CODE HERE
10
11 def end run(self):
12 # CUSTOM CODE HERE
13
14 def postprocess(self):
15 # CUSTOM CODE HERE

CHAPTER 4. FRAMEWORK COMPONENTS 60

repository. In general, we want to leverage existing tests without downloading an

explicit copy and making that copy available in the local filesystem. We assume

that any unresolved references to superclasses will be eventually resolved (e.g., via

a lookup in the repository). Therefore, we do not want to throw any errors at load

time. Instead, we want to try to locate the superclass at run-time and only throw

an exception if that fails. This means that we should avoid any direct references to

superclasses.

super is used to access the superclass of the current class. In the inheritance-

based template, super is used to ensure that the code in the superclass is correctly

executed. The super construct can be confusing to many novice programmers and

can be a source of errors even for experienced Python programmers. In Python, super

requires the current class to be explicitly passed. This forces the name of the class to

be repeated throughout, which makes it more difficult to change. Ideally, we would

like to avoid the need for super to make the system more accessible to users and

more robust against hard-to-debug errors. Generally, errors involving inheritance

mechanisms, such as super, are tricky, as such errors are usually very subtle. A

missing super invocation, as used in our inheritance template, would not raise any

explicit exceptions; it would simply cause some code not to be executed. This may

cause the simulation results to be wrong (e.g., due to a missing stimulus) without

any obvious indicators. For robustness and ease of debugging, we want the system to

be fail-fast[60]. This means that we should avoid the types of subtle errors in results

due to misuse of super as mentioned above.

By using a delegation approach to subtyping, we avoid the issues associated

with inheritance-based reuse without significantly changing the mental model of the

system. Instead of making MySimulation a subclass of AnotherSimulation, the

SimulationRun that is being reused, we set AnotherSimulation as a delegate. In

Listing 4.5, we show how to define the MySimulation class as delegating to the

AnotherSimulation class in our framework. This template behaves the same as the

template presented in Listing 4.4. However, it is much simpler, as it solves the is-

sues we discussed by removing direct references to the AnotherSimulation class and

removing super calls.

CHAPTER 4. FRAMEWORK COMPONENTS 61

Consider the #setup() step in the SimulationRun execution flow as depicted in

Figure 4.2. In that simplified mental model, the setup step is shown as a single piece

of code that is executed. Now, let us examine this in practice using the hierarchy

we described above (i.e. MySimulation being derived from AnotherSimulation).

Figure 4.3 shows how the setup code at various levels of the hierarchy are executed

in a classic inheritance scheme (i.e. through the use of super). Figure 4.4 shows the

execution of setup code for the same hierarchical test construction using delegation.

A linked list of the various test instances are constructed by following delegate to

return values. Then this linked list is used to call the setup routines of the various

test instances starting from the top.

Delegation does not allow a class to override methods in a parent class, which

breaks the model of object-oriented programming. However, this disadvantage does

not apply due to the limited way we use classes. SimulationRun test code is declar-

ative – when executed, it informs the CircuitBook framework what steps need to

be performed to run a test but does not perform any tasks as it is executed. This

means that the basic operations are idempotent (i.e., repeating the operation does

not change the result). Post-processing methods are chained — the output of the

parent is passed as an input to the child and ignoring that input achieves the same

result as method overriding. Therefore, we do not need to override the methods in

the parent class.

4.4 Stimulus Generation

In the previous section, we outlined the SimulationRun object that contains the main

test code. Now, we will describe how our test framework supports stimulus generation,

typically a major part of the setup() and start run() snippets of SimulationRun

scripts.

2When the SimulationRun needs to set up the test, it calls SimulationRun#delegated setup()

regardless of whether classic inheritance or delegation is used for subtyping. The delegated setup

function acts as the entry point. If there is a chain of SimulationRunProxy subclasses connected
via their delegate to functions, then it calls them each individually. Otherwise, it simply calls the
appropriate setup function.

3The pass statement is a null operation in Python.

CHAPTER 4. FRAMEWORK COMPONENTS 62

SimulationRun#delegated setup()2

MySimulation#setup():

super(...)

...

AnotherSimulation#setup():

super(...)

...

SimulationRun#setup():

pass3

Figure 4.3: Call Flow in Inheritance-based Subtyping

AnotherSimulation MySimulation

SimulationRun#delegated setup()

MySimulation#setup():

...

AnotherSimulation#setup():

...

Figure 4.4: Call Flow in Delegation-based Subtyping

CHAPTER 4. FRAMEWORK COMPONENTS 63

In order to properly evaluate circuits under test, these circuits must be appropri-

ately driven and loaded. On a high level, this breaks into two types of tasks: test

bench generation and test vector generation. First, we need to connect some circuit

elements to the unit under test for it to operate properly and for the simulation to

be a faithful representation of the real-world performance. These elements include

power supplies, expected loading, and input drivers. Once we add these pieces, the

circuit is capable of operating correctly given the correct configuration, calibration,

and inputs. The second group of tasks is to generate these inputs to the system.

Note that these two types of tasks are separated based on their domains. The

primary output of test bench generation is a netlist representation of the test bench.

The goal of test vector generation is to create data that can be fed into the test

bench. Different primitives are needed for the two groups. For the first group of tasks,

we provide stimulus generators which output the appropriate SPICE commands for

various sources; these are described in Section 4.4.2. The other group of tasks is

to generate the vectors for testing the system and is generally done using NumPy

primitives. Sometimes, as in SPICE, these two tasks are intermingled. However, the

distinction is important in other contexts: in the lab, the first task relates to the

connections between different test instruments and the second tasks relates to the

configuration on those instruments.

Today, the user provides the test bench as a SPICE netlist, which is appended to

the circuits under test and simulated. The inputs are either implicitly given by the

type of source used or provided as a time-series test vector for each input required.

Our goal in designing the stimulus generation system is not to replace these basic

mechanisms but to provide extensions. In fact, maintaining this low-level input allows

users to be productive with the framework before they learn the more advanced

abstractions. This is a concept that is used in many programming environments.

For example, for loops are sufficient for effectively manipulating data despite the

availability of more powerful concepts such as iterators and collections.

CHAPTER 4. FRAMEWORK COMPONENTS 64

4.4.1 Test Bench Semantics

It is very useful for the test framework to understand the meaning of the circuit

elements used in constructing the test bench. Users can use this data in their test

scripts, and the test framework can behave more intelligently through inference. Sup-

pose the test framework had a list of all the voltage sources used in the test bench with

appropriate annotations as to the intent of these sources (i.e., power supply versus

biasing). For example, we can leverage an annotated list to create a reusable power

supply rejection ratio (PSRR) test. Given a base test (e.g., a working functional test

that applies power, initializes with appropriate configuration, and runs some input

vectors) and an output of interest, a reusable PSRR test would replace one of the

power supply sources with a power supply source having noise injection capabilities

and evaluate the change in output.

There are several ways that the test framework can create this annotated list:

users can supply this information directly via annotations[61], the test framework

can extract the structure by parsing the provided inputs and infer annotations auto-

matically (e.g. using rules or machine learning techniques), or this annotated list can

be created by the generator generating the test bench. These different mechanisms

are shown in Figure 4.5.

No method is clearly dominant when robustness is considered. There are trade-

offs between user effort required, difficulty of learning how to use the system, and

framework complexity. The relative merits of these different methods of test bench

creation are summarized in Table 4.2.

Automatic metadata inference requires the least user effort and is the easiest to

learn since the user needs only to provide the netlist. The main drawback to this

method is the complexity of such automatic inference, which results in robustness

issues. Fundamentally, any such system requires a parser to convert the user-provided

netlist into a graph and some machine learning techniques to make educated inferences

about that graph. This process is statistical and occasionally will produce inaccurate

metadata. When that occurs, the resulting error may be difficult to identify and

troubleshoot. The problem is unavoidable because the mechanism making the error

is not visible to the user. The user only has the netlist, so it is the only means for

CHAPTER 4. FRAMEWORK COMPONENTS 65

DSL Framework

Netlist

Metadata

(a) DSL-based Test Bench Creation

Netlist

Annotation Framework Metadata

(b) Annotation-based Test Bench Creation

Netlist Framework Metadata

(c) Test Bench Creation with Automatic Metadata Inference

Figure 4.5: Various Ways of Creating Test Benches — The user supplies the blocks
surrounded by dashed rectangles to a framework resulting in the creation of a netlist
description of the test bench as well as metadata about the test bench (e.g., a list of
power supplies).

CHAPTER 4. FRAMEWORK COMPONENTS 66

Method User Effort Learning Required Framework Complexity

DSL 33 33 33

Inference 3 33 333

Annotation 333 333 3

Table 4.2: Relative Merits of Various Test Bench Creation Methods

the user to troubleshoot. The system is a blackbox, so it is hard to invert (i.e., a

error at the output may have multiple causes at the input). This can quickly become

an exercise in frustration for the user. We believe that predictability is important,

since users need to trust their simulations and predictability contributes to that trust.

Thus, for this domain, inference is not a good solution.

Annotation-based test bench creation requires the user to supply annotations with

the test bench netlist. The framework required for this system can be incredibly

simple, since the annotations are specified in a manner chosen by the framework’s

authors. For example, these annotations can be in a DSL that maps directly to the

metadata, which makes the process predictable. The cost of this predictability is the

effort required to annotate each test bench and learn the annotation DSL.

If we extend the DSL used in the annotation-based test bench creation to include

operations that define the test bench, we can reduce the effort required to create

the test bench. Instead of having the user provide a netlist and annotations and

using the annotations to create metadata, we can have the user supply code in a DSL

that creates both the circuit elements in the test bench and the metadata required.

Obviously, this DSL will be slightly more complex than the annotation-only DSL, but

by incurring this additional upfront cost, the per test bench cost is reduced. Thus, a

DSL achieves the best balance of minimizing per test bench effort while maintaining

predictability. Accordingly, we chose to use a DSL to create both the test bench and

the needed annotations. The stimulus generators described next use this DSL.

CHAPTER 4. FRAMEWORK COMPONENTS 67

4.4.2 Stimulus Generators

Minimally defined, a stimulus generator is a class that creates parts of a test bench

when invoked. A trivial implementation of this is a class that takes no inputs in its

constructor and always generates the same circuit element.

Consider a generator that produces a single 1.8 V power supply between vdd

and gnd. When invoked, this generator simply injects a single voltage source into

the netlist to be simulated. By using this generator instead of inserting the SPICE

commands manually, we have provided the system with an annotation as to the

purpose of this voltage source (i.e., it is a power supply). At simulation time, there

is a list of all the stimulus generator instances available to the framework. The

user and the framework can both leverage this metadata. For example, we can use

this information to automatically evaluate the current draw of each power supply and

produce an plot of the supply noise. We can also use this to sweep the nominal voltage

of the power supply and look at the results. While such a simple generator does not

save much time in terms of test bench creation, it provides a way of annotating the

intent of the particular supply and it is this annotation concept that enables time-

saving automation.

Practically speaking, a class as described above is not very useful since it is ar-

tificially limited in applicability (i.e., this class only works for a power supply of a

particular voltage with a particular naming convention for power rails). These limita-

tions can be addressed by parameterized generators — generators with parameterized

constructors.

In fact, the CircuitBook framework provides a power supply stimulus generator

that is parameterized by power supply rails and voltages called PowerSupplyStimulus.

An example instantiation of this stimulus generator to create a single 1.8 V power

supply between vdd and gnd is as follows.

1 PowerSupplyStimulus(supplies = {’vdd’ : 1.8}, grounds = [’vss’, ’gnd’])

In this example, the vss and gnd nodes are both tied together to the same negative

terminal of the power supply.

CHAPTER 4. FRAMEWORK COMPONENTS 68

While one of our main goals in using stimulus generators is to create metadata

to simplify test automation, there are several additional benefits to using generators.

For example, this approach is the most easily adaptable to different simulation en-

gines. Looking at the various methods presented in Fig. 4.5, we note that stimulus

generators do not require netlists unlike the other two methods. This is an important

distinction because, as a result, DSL-based stimulus generators are easier to adapt to

netlist-free simulation methods (e.g., Verilog, Modelica, or Simulink).

The general problem here is that we want to use a common representation for

stimulus code on multiple simulation platforms. There are several ways this can be

achieved, but these approaches fall into two categories: convert stimulus code to the

language that the main simulator uses and then run in that simulator, or co-simulate

with two different stimulation engines.

The conversion from the stimulus code to the language of the desired simulator

can be done using a source-to-source compiler (i.e., a transcompiler). An example of

a transcompiler is the Simulink HDL Coder[62] which converts Simulink models to

Verilog or VHDL code. While, there are many previous works on manual behavior

modeling of circuit elements in MATLAB / Simulink[63, 64, 65], for this applica-

tion, we need automatic model generation (e.g., recent work on generating behavioral

SystemVerilog models using labeled Petri nets[66]).

In theory, transcompilers solve the problem at hand. However, in practice,

transcompilers can be complex and may not work well. The original stimulus code

may be efficient in the source language, but, if translated, the stimulus code may not

be efficient in the target language due to differences in stimulation paradigms (e.g.,

time-driven versus event-driven). This automatic translation may miss insights such

as that a stimulus source need not be accurate at every tick of the simulator. These

insights typically allow for better performance in manually ported stimulus blocks.

Instead of converting the simulation into a single language so that it can be run in

a single paradigm simulation engine, co-simulation is another way to create portable

stimulus code. Many of the commercially available co-simulation setups pair a higher

level verification-centric language / simulator with a lower level language. For exam-

ple, Simulink can co-simulate with Spectre using the Cadence Virtuoso AMS Designer

CHAPTER 4. FRAMEWORK COMPONENTS 69

Simulator and can co-simulate with ModelSim using the Mathworks HDL Verifier.

Co-simulation avoids some of the issues faced by translation-based methods. Since

it does not require code translation, a complex transcompiler is avoided. Similarly, no

additional models have to be created, since the original stimulus code can be run in

its own simulation engine, separate from the rest of the system. The main downside

to co-simulation is the communication between simulation engines. Bi-directional

information flow can be problematic. For example, it is tricky to load a circuit being

simulated in SPICE with a load that is modeled in Verilog-AMS code. Successful

co-simulation requires the selection of the right boundaries between blocks.

The CircuitBook simulation framework takes a translation-based approach. How-

ever, by using a higher level of abstraction, we avoid some of the complexity associ-

ated with a transcompiler. Figure 4.6 show the architecture of a theoretical netlist

transcompiler (i.e., it is based on the architecture of the LLVM compiler infrastruc-

ture project[67]). Figure 4.7 shows how our framework handles stimulus generators.

The obvious difference is that using a DSL avoids having a complex front-end to

translate the netlist into an intermediate language since the DSL can serve that role.

This means that our implementation is able to more easily produce code for different

targets.

It is easy to see how the PowerSupplyStimulus mentioned earlier can be trans-

lated to the lab bench or a production environment. We simply produce some com-

mands to be sent directly over a test bus (e.g., GPIB[68]) or through an common

instrument interface (e.g., VISA or IVI[69]) to the lab power supplies. Similarly,

we can produce equivalent output in a format for the automated test equipment in

production test (e.g., OPTL[70]).

One of our goals with the CircuitBook test framework is to enable correlation of

tests across various test platforms: model level, circuit level, lab test, and production

test. This correlation makes it easier to trace a bug discovered in production to the

root cause. Such an idea is obviously not new; it is the same reason why symbolic

debuggers are more productive than machine-language debuggers. Figure 4.8 shows

how the use of declarative DSL-based generators makes this correlation possible. The

use of generators ensures that the same tests are being performed on the various

CHAPTER 4. FRAMEWORK COMPONENTS 70

Netlist

Lexical Analyzer

Syntax Analyzer

Semantic Analyzer

Intermediate
Code Generator

Intermediate Code

Code Optimizer

Code Generator

Back-End 2

Code Optimizer

Code Generator

Back-End 1

Code Optimizer

Code Generator

Back-End 3

Front-End

Figure 4.6: Operation of a Source-to-Source Compiler with Multiple Targets

CHAPTER 4. FRAMEWORK COMPONENTS 71

DSL-based Code

Code Optimizer

Code Generator

Back-End 2

Code Optimizer

Code Generator

Back-End 1

Code Optimizer

Code Generator

Back-End 3

Figure 4.7: Operation of a DSL-based Code Generation System with Multiple Targets

platforms.

4.5 Simulation Execution

At the center of any test framework is the ability to actually execute the simulation.

The architecture of the CircuitBook framework makes this process very straightfor-

ward. The overall execution flow for a SimulationRun instance is shown in Figure

4.2. In the context of that figure, we are now focusing on the Simulation Execution

step.

First, we generate the wrappers necessary to flatten the netlist being simulated by

recursively traversing through any nested interfaces and constructing the adapters,

described in Section 4.1.1. Next, we elaborate all the stimulus — we call a generate

function in each of the stimulus generators instantiated, passing it the current context

(i.e., technology process, circuit simulator, and other environment variables). Each

stimulus generator has a set of elaboration routines for each simulator it supports. If

the current simulator is not supported, an error is raised. Otherwise, the underlying

simulator is executed with the flattened netlist as input; this is done by generating a

4Standard Test Data Format

CHAPTER 4. FRAMEWORK COMPONENTS 72

Specification

Declarative Test

GPIB Back-EndSPICE Back-End STDF Back-End

Test
Framework

Simulation (SPICE) Lab (GPIB) ATE (STDF4)

Results Results Results

Figure 4.8: Correlation of Test Results

CHAPTER 4. FRAMEWORK COMPONENTS 73

command line statement (e.g., hspice test top.sp) and sending that to the shell.

The simulation results are read into CircuitBook data structures, which will be

described in Section 4.6. Other output streams, such as logger output on stderr, are

captured, parsed, and translated into Python exceptions in the simulation framework.

This entire simulation process looks like a single function call to the user. With such

an abstraction, we can transparently add features to the execution. For example,

the CircuitBook framework has an optional caching feature that stores the result of

simulations in a global cache, reducing the time it takes to iterate a test.

Since the test framework abstracts away the details of how the underlying simula-

tor is called (e.g., path to the simulator binary), the actual execution process can also

be modified for the needs of a particular site or group. The framework can be easily

modified in the future such that simulations are parallelized to maximize throughput

and minimize simulation time or placed into a queue to optimize resource usage (e.g.,

to minimize cost by efficiently using simulator licenses). Due to the callback style test

scripts, users do not need to call any functions to invoke the simulator and so there is

no visible interface that needs to be changed to enable additional functionality. For

example, parallelism can be implemented by using any of the standard Python mech-

anisms, such as the multiprocessing library, in the TestSequence script described

in Section 4.10.

4.6 Measurement

The CircuitBook test framework provides a set of analysis routines acting on the

output data structures that the SimulationRun creates. Users can leverage these

fundamental building blocks in the post processing routines of their SimulationRun

or TestRun code.

As discussed in Chapter 2, we want to enable reuse by providing a common lan-

guage for measurement and analysis through standardization. We first considered

using MATLAB for this function, since MATLAB is the industry standard for post-

processing of simulation results. Along with Simulink, MATLAB is also widely used

in system-level simulations; this makes reuse of calculations and correlation of results

CHAPTER 4. FRAMEWORK COMPONENTS 74

between modeling and simulation more convenient. However, we decided against

MATLAB because code organization in MATLAB is minimal and MATLAB licenses

are expensive.

Instead, we provide a Python based toolkit to address some of these shortcomings,

while maintaining most of the benefits MATLAB provides. In particular, we want the

performance of MATLAB with better code organization and no licensing costs. To

achieve this, we constructed a Python-based measurement library based on NumPy

and SciPy[71]. We use NumPy as the core primarily due to its use of LAPACK[72].

Originally, MATLAB was conceived as an easy way to interact with the LINPACK[73]

and EISPACK[74] linear algebra libraries. LINPACK and EISPACK have been su-

perseded by LAPACK, which is used by modern versions of MATLAB. This means

that we expected, and found in practice, that numerical performance of NumPy and

MATLAB are similar.

While NumPy provides many of the basic linear algebra functions, SciPy adds

additional capabilities such as regressions. The combination of NumPy and SciPy is

designed to reproduce most of MATLAB’s functionality with similar semantics[71].

By leveraging the NumPy and SciPy packages, we are able to focus on testing specific

features rather than building fundamental math routines. In addition, the use of

common math libraries prevents subtle calculation errors. That is, errors in linear

algebra solvers are much harder to detect and remediate than errors in higher level

functions (e.g., phase margin calculation). This is primarily due to the complexity of

fast numerical routines versus the complexity of convenience functions.

4.6.1 Data Objects

Numerical data in the CircuitBook framework is stored as Python objects. There

are four such fundamental data storage objects: Vector, PairedVector, Signal, and

Spectrum.

The Vector class represents an array of numbers. Internally, the data is stored

using NumPy’s multidimensional arrays. By using the NumPy library to do the

heavy lifting, we get memory efficiency and numerical performance similar to other

CHAPTER 4. FRAMEWORK COMPONENTS 75

computational packages (e.g., MATLAB) while keeping the class definitions for data

objects simple. This abstraction hides some of the complexity of the NumPy arrays

and allows the use of a different numerical back-end instead of NumPy in the future.

Vector instances support basic arithmetic operations as well as functions that return

some property about the list (e.g., max / min, argmax / argmin5, standard deviation,

or mean).

Our other data structures are internally constructed using Vector objects. That

is, a PairedVector and its derivatives, Signal and Spectrum, are simply repre-

sentations of a vector of ordered pairs stored as two Vector instances of the same

length. The difference between the PairedVector and its derivative classes is that

a PairedVector does not maintain any context about the units for the vectors it

stores while Signal objects have a vector of time values (i.e., Signal represents a

time series) and Spectrum objects have a vector of frequency values.

Essentially, we are introducing a notion of types to the vector of ordered pairs.

This allows us to leverage type checking as a way of eliminating user errors. Note

that Python is a dynamic language and does not have static types and we are using

the object-oriented paradigm to provide ‘type checking’. Certain methods are only

defined on Signal instances and not on Spectrum instances and vice-versa. This

prevents silly errors such as taking the Fourier transform of a frequency domain

waveform.

All PairedVector objects and its derivatives have methods that provide basic

manipulation such as subsetting, slicing, crossing detection, and regressions. In addi-

tion to these base methods, Signal objects have methods which provide integration,

discrete differences, pulse measurements, frequency measurements, rise / fall time

calculations, and resampling. Similarly, Spectrum objects have additional methods

which provide gain and bandwidth calculations.

These data objects are specialized containers, rather than the general containers

provided by standard programming libraries. General containers can contain any type

and can be nested, whereas these typed containers can not be nested. For instance,

5argmax and argmin return integer indexes to the largest and smallest elements of the Vector,
respectively.

CHAPTER 4. FRAMEWORK COMPONENTS 76

it is possible to have an array of Vectors (e.g., resulting from a sweep), but a Vector

of Vectors is not allowed since Vectors can only contain numbers.

In addition to the methods available on the instances of these data objects, these

data objects enable the framework to infer some information about the intent of the

user. For example, a test that involves a transient simulation and some Spectrum

based post-processing is likely to be doing frequency domain analysis.

4.6.2 Simulation Results

After a simulation is run, the framework provides a SimulationResult object that

holds the results of any executed analyses. This object has methods such as #dc()

or #tran() that return the result corresponding to a particular analysis. Since the

actual simulator output may be both large and remote (i.e., it may be on a simulation

cluster), this abstraction allows us to lazily load only the results of interest as well

as cache the loaded results. Each analysis is represented by a ResultProxy object,

which is returned when the appropriate SimulationResult method is called. For

example, a ResultProxy object representing the DC analysis results can be accessed

in SimulationRun#postprocess() with self.sim results.dc().

ResultProxy can be accessed like a Python dictionary. Suppose we wanted to

access data about a voltage source named vbias. This is available via the vbias

key of the ResultProxy object. This mechanism can be used to access data about

any visible elements – those instantiated as a part of the test bench (e.g., a stim-

ulus generator or a load) or those declared in an interface. The data for various

simulation results are provided as specialized data objects (e.g., TransistorData,

VoltageSourceData, or NodeData). These data objects are similar in purpose and

operation to ResultProxy (i.e., loosely wrap the underlying data and allow dictionary

style access). Collectively, these result proxy objects are designed to standardize the

data returned by different simulators and to provide type checking and convenience

methods. Time series data are returned as Signal objects and frequency series data

are return as Spectrum objects. Circuit voltages in a transient simulation can be

extracted by a call to ResultProxy#signal for() that returns a Signal with the

CHAPTER 4. FRAMEWORK COMPONENTS 77

Listing 4.6: Example of Result Extraction in SimulationRun#postprocess()

1 def postprocess(self):
2 # Get the object that holds the simulation results
3 acres = self.sim results.ac()
4
5 # Create the output transfer function as a spectrum
6 output = acres.spectrum for(’outdiff’).magnitude()
7
8 # Extract the DC gain and −3 dB bandwidth from the transfer function
9 gain = output.dc gain()
10 bw = output.bandwidth(1 / sqrt(2))

appropriate node voltages and time steps. There is a ResultProxy#spectrum for()

that performs a similar function for AC simulations. These functions make it easy

for the user to retrieve data in the form of data objects.

Listing 4.6 shows an example of a SimulationRun#postprocess() that extracts

the gain and bandwidth of an output. First, we get a ResultProxy object represent-

ing the AC analysis results and store that in acres. Then we call the spectrum for

method on that result object to get a Spectrum object of the waveform of the node

outdiff. We transform it with a call to magnitude(), which converts a complex

Spectrum into a real Spectrum of the magnitude, before storing it into output. Fi-

nally, we extract the DC gain and -3 dB bandwidth by calling the appropriate methods

defined on the Spectrum object.

4.7 Logging with Epilog

Ultimately, simulation results are used to make decisions. Some of these decisions

are made by users and some are made algorithmically. The use of structured data

(i.e., data objects and result proxy objects) make it easy for machine consumption

of simulation results. Clearly, there is a similar need for human readable data. In

the CircuitBook framework, we address this need through the Epilog module, a set

of library functions and associated tools that focus on producing data for human

analysis.

There are many stakeholders in any integrated circuit design project and these

CHAPTER 4. FRAMEWORK COMPONENTS 78

various stakeholders are interested in different projections of the underlying simulation

results. Furthermore, the reporting needs of a particular stakeholder changes over

time based on the current stage of the design. To serve these diverse needs, a test

framework should provide reliable summaries that faithfully represent the underlying

data while providing access to the data when necessary.

In the initial phase of crafting a circuit, designers need access to the detailed

information about the particular block being designed. This may mean that the

simulation report should contain the cross product of test vectors with measurements

(i.e., everything). At this stage, the designer needs and wants to look at all the

measurements to identify any unexpected behavior, which by definition cannot be

automatically identified. As a design gets more stable, the designer may want to

reduce the information that needs to be reviewed by summarizing. For example, in

the initial stage of a link design, the actual eye diagram needs to be examined but

later on, only the specifications of that eye diagram (e.g., vertical eye opening, jitter

measurements, quality factor) need to be checked. Once a design is mostly finalized

and being tweaked, the designer may be instead interested in the changes in various

specifications across iterations. From a project management or testing perspective,

the data of interest is whether specifications are met by a block, that is, a checklist

of pass or fail marks.

These needs are very similar to those faced by users of software logs[75]. The

different detail levels of simulation results required are analogous to the verbosity

levels in software logs. Software logs are often neglected because they are sometimes

perceived to be secondary to the main function of the software, and this neglect often

makes troubleshooting a nightmarish task. Similarly, the outputs of simulations are

often neglected. The typical work-product of a set of tests may be a few values and

some messages printed to the consoles and the raw simulation outputs. This may

work fine when the test writer initially uses the test because the entire context is

available. The lack of documentation slowly becomes a problem over time. It is

often unclear whether the printed values are the most important metrics or simply

what the test writer was most recently tuning. The messages printed may be for

debugging purposes or actual errors (i.e., violations in some assumptions). Even

CHAPTER 4. FRAMEWORK COMPONENTS 79

messages specifically labeled as errors may not be so serious. Often, certain error

messages are expected and ignored during some non-normal operating conditions such

as start up. The problem can be even worse when dealing with the raw simulation

output. There may be little to no documentation as to which nodes to probe and

when those nodes need to be observed.

As elsewhere in the CircuitBook framework, we apply the same techniques and

principles to address this issue of ad-hoc reporting without documentation of intent.

We invert the problem. Instead of trying to figure out the nodes of interest in a large

waveform dump, we force the users to identify the nodes of interest and only expose

those nodes. Since the measurements are written using our library of functions and

the data is stored in our data objects, we have a lot of metadata about the intent of

the user and the nature of the data that can be leveraged to automate and simplify

reporting. For example, there are plotting methods attached to Signal and Spectrum

with reasonable defaults that produce nice looking graphics out of the box.

Epilog is essentially a DSL for writing test reports. Listing 4.7 shows a small

example of an Epilog snippet that plots a Spectrum object and emits some summary

information. It highlights some of the basic functionality (i.e., plots and tables)

provided by the libraries. When the test is executed some of this information is

output to the standard output and a report is generated and saved to disk. The

verbosity of the report can be customized in the test script by changing Epilog

parameters. In our current implementation the report is produced in HTML, but due

to the modular design, other output formats should also be easy to implement. An

example of the output corresponding to Listing 4.7 is shown in Figure 4.9.

4.8 TestRun

In the previous section, we focused on how SimulationRun objects capture the

test collateral for a single simulation. Now, we will look at TestRun objects that

control the execution of SimulationRun scripts and aggregate measurement results

and Epilog reports across those executions. Listings 3.4 and 4.8 show examples of

TestRun scripts.

CHAPTER 4. FRAMEWORK COMPONENTS 80

Figure 4.9: Screenshot Showing an Example of Epilog Output

CHAPTER 4. FRAMEWORK COMPONENTS 81

Listing 4.7: Example of Epilog that Plots a Spectrum and Produces a Summary
Table

1 # Create a new Epilog section
2 with self.epl section() as epl:
3 # Plot the transfer function
4 output.plot(ylabel=’Voltage [V]’,
5 title=’Diff Amp AC Transfer Function’,
6 filename=epl.imagefile(’outdiff vs freq’))
7
8 # Emit a summary line
9 epl.println("gain: %.3f, bandwidth: %.3fG" % (gain, bw/1e9))
10
11 # Add a summary table
12 with epl.table() as t:
13 with t.header row() as r:
14 r.add cell(’Gain’)
15 r.add cell(’Bandwidth’)
16 with t.row() as r:
17 r.add cell(’%.3f’ % gain)
18 r.add cell(’%.3fG’ % (bw / 1e9))

We use TestRun objects to encapsulate the less reusable parts of the test collateral.

As we discussed previously in Chapter 3, some parts of a test setup are specific

to a particular circuit instance (e.g., an industrial part has different temperature

ranges for simulation compared to a MIL-SPEC part). If we only had SimulationRun

objects, then the user needs to make a choice between writing reusable tests or writing

practical tests. Clearly, test reuse does not have a chance in such a contest.

TestRun scripts are primarily used to run multiple SimulationRun or run a single

SimulationRun multiple times. These scripts rely on native Python constructs for

control flow. Examples of uses include running a simulation over process corners,

automatic circuit optimization, and running interconnected simulations (e.g., a PLL

simulation generally requires some block level simulation to extract parameters such

as Kvco and then running system level simulations with those parameters). TestRun

are connected to a single interface which is bound to a circuit at runtime.

The conceptual model for TestRun is analogous to that of SimulationRun as

described in Section 4.3 and its execution flow, shown in Figure 4.10, is similar to

the SimulationRun execution flow (Figure 4.2). In each TestRun script, the user

CHAPTER 4. FRAMEWORK COMPONENTS 82

Listing 4.8: Example of TestRun — We use
self.construct(’PllPNoiseSimulation’) to build an instance instead of
the normal PllPNoiseSimulation() constructor call to allow for deferred loading
of PllPNoiseSimulation. This allows the system to load PllPNoiseSimulation

before PllPNoiseTest is in scope; this is described in Section 4.3.2.

1 class PllPNoiseTest(TestRun):
2 def setup(self):
3 model = PTM065ProcessModel(scale=0.035e−6)
4 self.pn = self.construct(’PllPNoiseSimulation’, model)
5 self.ref freq = 1e9
6 self.div ratio = 2
7
8 def test(self):
9 """ Perform phase noise simulation"""
10 for corner in self.pn.corners():
11 print ’Performing %s corner simulation’ % corner
12
13 # Set some variables in the simulation
14 self.pn.set variable(’vdd noisevector’,’[1k 1e−20 1M 1e−20

100M 1e−20]’)
15 self.pn.set variable(’ref freq’, self.ref freq)
16 self.pn.set variable(’div ratio’, self.div ratio)
17
18 # Execute the simulation
19 self.simulate(self.pn, corner)

CHAPTER 4. FRAMEWORK COMPONENTS 83

#setup()

Initialize Epilog

#test()

#postprocess()

TestRun Instance

setup()

test()

postprocess()

...

Figure 4.10: TestRun Execution Flow

provides code for the setup(), test(), and postprocess(). The setup() snippet

is usually used to configure the technology process. test() is the main snippet that

contains calls to execute different SimulationRun scripts. postprocess() is optional

and allows results from multiple TestRun scripts to be collected in a TestSequence,

discussed in Section 4.10.

Users call TestRun#construct with the name of a SimulationRun subclass as

a string to get an instance of that class. For example, to get an instance of the

MySimulation class, a user calls TestRun#construct(’MySimulation’).6

4.9 Test Loading and Execution

In the previous sections, we discussed the SimulationRun and TestRun scripts written

by users. In this section, we look at how the framework runs those tests.

In our system, we provide a command-line executable that automatically runs a

TestRun subclass by calling the user-provided callback at the appropriate time. The

user runs a test by executing the following command at a shell.

6This is done in lieu of the normal constructor method (i.e., MySimulation()) because the
MySimulation class may not be in scope when the calling TestRun is loaded since the dynamic
loading order is arbitrary. Being agnostic to the load order avoids a dependency resolution problem,
as there may be circular dependencies.

CHAPTER 4. FRAMEWORK COMPONENTS 84

1 run.py MyTest.py my circuit

The example shown above will cause the test framework to read the file

MyTest.py and run all the TestRun subclasses contained within against a circuit

called my circuit. Now, let us take a look at this is achieved.

4.9.1 Dynamic Test Class Loading

While our example shows a file being loaded, the run.py command accepts any

resource (i.e., a file, an URL to a file, or a name of a class in the repository). We grab

the code from the resource and dynamically load that code into the running Python

instance. The dynamic loading is done by leveraging the Python import internals as

exposed via the imp module in Python — we call imp.load source to load the source

file and it returns a handle to the module. This is handled by our ObjectLoader class.

We use Python’s dynamic introspection abilities to examine the loaded module

for classes of interest. In Python, dir() returns a list of names defined by a module,

getattribute () returns a reference to an object by its name as a string, and

inspect.isclass() tests an object to see if it is a class. By combining these features,

we are able to get a list of all the classes in the module that we dynamically loaded

(i.e., use dir() to get a list names in the module, use getattribute () to convert

those names into object references, and then check if each name refers to a class via

inspect.isclass()).

Now that we have a list of classes, we iterate through them to find subclasses

of TestRun and SimulationRun. We store a pointer to each of the SimulationRun

classes indexed by its name for later use in a class cache. For each of the TestRun

objects, we call its run function with the name of the circuit to test. This run

function is usually not extended by the user and resolves to TestRun#run (i.e., the

same function on the framework provided base class). In TestRun#run, we essentially

call setup(), test(), and postprocess() on the user-provided TestRun subclass in

order.

CHAPTER 4. FRAMEWORK COMPONENTS 85

4.9.2 Circuit / Interface Loading

In order to provide the SimulationRun class with the appropriate circuits and in-

terfaces, we need to load those resources either from the local file system or the

repository. Since these are simply text files, the actual loading process is simple. The

main challenge here is dependency resolution. Circuits can connect to multiple in-

terfaces and each interface can also adapt to other interfaces higher in the hierarchy.

Circuits can also instantiate other subcircuits through interfaces. When loading a

circuit, we also need to load all the circuits and interfaces that it relies upon. This is

an instance of a dependency resolution problem.

The dependency requirements can be viewed as a directed acyclic graph (DAG),

and dependency resolution is simply a topological sort of this graph — this can

be visualized as all the edges of the DAG pointing in the same general direction.

Once this sort is complete, the graph provides the order in which resources need to

be loaded. The general problem can be complicated to perform efficiently for large

graphs or version ranges (i.e., the version of a dependency requirement accepts a range

of values), but it is actually relatively simple for us, since the number of resources is

small, and we do not allow version ranges in interface specifications. We implement

this by chasing down all the dependencies via a depth first search while keeping track

of visited vertices. We use NetworkX[76], a Python library for working with complex

networks, to store the underlying graph data structures.

4.10 TestSequence

The combination of TestRun, SimulationRun, and run.py allows the user to write

and execute tests against a single circuit. Users may want to run tests against different

circuits and aggregate the results in a useful way. A common example of this is

comparing performance between iterations of a circuit. Users wanted to leverage the

graphing and data presentation facilities provided by Epilog in comparing different

iterations of a circuit.

While this can be achieved using only the constructs we have mentioned above, it

CHAPTER 4. FRAMEWORK COMPONENTS 86

Listing 4.9: Example of TestSequence

1 class MultiDiffAmpTestSeq(TestSequence):
2 def sequence(self):
3 d1 = self.execute(’DiffAmpTest’, ’diffamp1’)
4 d2 = self.execute(’DiffAmpTest’, ’diffamp2’)
5
6 # Compare results here...
7 print d1[’power’], d2[’power’]

is not very user friendly. Users had to use shell scripts to execute a TestRun multiple

times against different circuits and then export and process that data. This seemed

reminiscent of the ad-hoc testing method that we discussed in Chapter 2. This moti-

vated us to add a TestSequence class to provide additional flexibility. TestSequence

avoids this by allowing the user to execute TestRun scripts from within Python. It is

essentially a programmatic interface (i.e., an API) to the internal framework compo-

nents that load and execute tests. An example is shown in Listing 4.9.

Both the concept and implementation of TestSequence are very simple. There is a

single sequence() method where users can provide code, and that method is executed

when the TestSequence is provided as an argument to run.py, the command-line

tool discussed in Section 4.9.

4.11 Repository

The first step to reusing something is finding it, so a system for locating circuits and

tests is a natural companion to a test framework. We constructed the CircuitBook

repository to serve as a companion to the CircuitBook test framework. This repository

stores and indexes circuit instances, interfaces, and test classes. It allows the user to

quickly find a test to use in or adapt to a particular situation.

In Section 3.8, we discussed the hierarchical classification system for organizing

circuits and tests. It is implemented using the Ruby-on-Rails framework as a web ap-

plication. Data is stored in a combination of a git repository and a MySQL database.

CHAPTER 4. FRAMEWORK COMPONENTS 87

The test collateral is stored in the git repository for traceability (i.e., nothing is over-

written); it also allows a quick way for the circuits and tests to be backed up. The

database handles the metadata for searching and indexing.

In addition to search features, the repository also organizes circuits and results

generated by the Epilog module (described in Section 4.7).

4.11.1 Metadata Extraction

One of the key features of the repository is to present the user with a window into the

relationships between test collateral. In order to do this, we must extract metadata

from the test files. As shown in Figure 3.6, we provide diagrams of relationships

between test classes and with circuit interfaces. When a test class is loaded into the

repository, we load it through dynamic loading mechanisms similar to that described

in Section 4.9. Once this is done, we use the built-in ast module in Python to access

the abstract syntax tree (AST) of the test code. The AST is a graph representation

of all the functions, expressions, and statements in the code, where each element is

represented as an object. With this AST, we are able to derive meaning from the

code.

To extract relationships, we parse through the AST and look for calls to a function

called construct. For each call, we verify that the object it is being called on is a

derivative of TestRun in case the user has a construct function. Then, we examine

the arguments passed to these TestRun#construct calls, and this tells us which

SimulationRun was instantiated in a particular test. This information is output as

metadata and stored in our database. When a user browses a test in the repository,

we render the DAG of the relationships using Graphviz[77]. Laying out graphs so

that they are visually pleasing is a long-studied problem with a complex solution. We

leverage the many decades of research into this by using Graphviz, a graph drawing

program.

In additions to relationships, we can extract other information about a test, such

as the analysis types used and the stimulus generators invoked, through the AST.

This metadata is used to enable help users find a test to reuse and is described in

CHAPTER 4. FRAMEWORK COMPONENTS 88

Section 3.8.3.

4.12 Summary

In this chapter we explored the test framework in detail to show how each component

work and how these components come together. First, we showed how to specify

circuits and interfaces. Then, we examined the various classes (e.g., SimulationRun,

TestRun) that hold the test scripts. Next, we looked at how the run.py script runs

and executes the test scripts. Finally, we discussed how the repository extracts meta-

data from tests.

Chapter 5

Conclusion

Tests play an important role in the circuit design process, which means that the

collateral files generated to perform the test have significant value. These files codify

some of the requirements for the circuit being tested. Given its importance, test

collateral should be archived in a way that facilitates reuse. Unfortunately, given the

ad-hoc nature of test generation, there is neither a discipline to archive these tests

nor a set of standard interfaces/sockets to plug saved tests into.

To address this issue, we separate each test into its constituent parts: circuit repre-

sentation, simulation directives, stimuli, measurement, and results analysis routines.

These components have different natural expression forms. For example, stimuli are

described by a time-series, whereas post-processing is a function that takes a time-

series and returns some parameters of interest. We provide a different DSL to allow

the user to better express the description of each block. Once we separate the test

code in this way, natural interfaces appear between these components (e.g., the inter-

face of a stimulus is that it exports a time-series). This decomposition was presented

in Section 3.1 and shown in Figure 3.1. We believe that this decomposition separates

the reusable and less reusable components of a test to make it easy to reuse.

Our use of interfaces to decouple tests and circuits resulted in a cleaner separation

of test code and circuits. It is easy to determine a test’s goals from looking only at

the test code and the associated interface without actually looking at the specifics

of the circuit. This suggests that circuit interfaces effectively abstract the details of

89

CHAPTER 5. CONCLUSION 90

the underlying circuit. In ad-hoc test generation, users often access internal node

voltages and currents and device operating points without any explicit declaration.

This kind of cheating can make it difficult to understand the operation of a test. For

example, a test for an differential amplifier may want to check the tail current. In

an ad-hoc test this may simply be specified as I(M15) where M15 is the tail device.

It is difficult to surmise what M15 refers to from only looking at the test code. In a

CircuitBook test, this device needs to be declared at the interface and hopefully it

is declared with a meaningful name (e.g., Mtail). This adds a little overhead to the

testing process — choosing the appropriate abstraction (i.e., what information and

wires to expose and how to name them) for a circuit takes effort.

We developed the CircuitBook test framework to allow users to write test code

using our partitioning and run tests constructed from those building blocks. In our

experience with the tool and from talking to users, our test framework appears to

deliver on its promises — there is minimal code duplication and it is easy to make

derivative tests. After building a few tests, users seem to have little trouble with

understanding the value of the test framework and constructing complex reusable

tests with limited guidance.

Users did not use multiple-level hierarchical interfaces – most users used our test

framework for a single project and did not have a need for multiple levels of hierarchy.

However, two-level hierarchical interfaces were used to perform comparisons between

different versions of a circuit.

As mentioned in Chapter 4, we used SimulationRun, TestRun, and TestSequence

classes to separate the different code blocks in a test. This separation worked well and

was picked up by users surprisingly easily. We thought there would be some confusion

on where various parts of the test should be written. However, in practice, this was

not that difficult. Users placed the majority of the test code in the SimulationRun

scripts and only used TestRun and TestSequence as necessary to aggregate results

across SimulationRun scripts and bind technology processes. This is the desired

behavior, as the SimulationRun classes are the most reusable.

Overall, the DSLs we provided were not too difficult to learn. The biggest barrier

in terms of learning to write test code (i.e., not including the choice of an appropriate

CHAPTER 5. CONCLUSION 91

interface) was learning Python. We started this project with a belief that Python

was a very popular programming language, especially amongst the scientific and en-

gineering communities. While we still believe that to be true, we were surprised at

the lack of adoption in our limited sampling of the circuit design community. Many

users did not want to expend the effort to learn a new language regardless of the ac-

tual difficulty; the perceived difficulty may have been a bigger barrier than the actual

difficulty.

5.1 Future Work

We have found that one of the main challenges with the CircuitBook test framework

has been convincing users to adopt the system. We believe this can be attributed

to the initial learning required to be productive. The CircuitBook test framework

does not significantly speed up the time required to make a new test for first time

when the time to learn the framework is included. The productivity gains come from

reusing the resulting test collateral for future variants. Users are often concerned

more about the task at hand than future benefits, so our current test framework may

not be attractive to time-constrained designers.

The user onboarding challenge can potentially be addressed in several ways: re-

duce the effort to required to be minimally productive and facilitate learning and

debugging.

1. For a prospective user, learning our test framework and how to use it to create

a working test from scratch will take more effort than building the same test

in the current ad-hoc methodology. If we fill our repository with reusable test

components, then the effort to build the first test from reusable components may

be less than building the test in an ad-hoc manner. Obviously, it is challenging

to build a comprehensive collection of reusable test components.

Instead of such a gargantuan task, it may be sufficient to focus on a particular

class of circuits (i.e., a branch on the hierarchy) and provide building blocks

that allow users to quickly construct tests for that circuit class. For example,

CHAPTER 5. CONCLUSION 92

we can provide building blocks for testing amplifiers or data converters.

2. We provide a reference manual that shows the arguments of each library func-

tion, what that function returns, and a basic description. It may be useful to

expand this such that there is a link to an example code snippet showing that

function in use. Doing so may help to provide users context and allow them to

better understand how these functions can be composed to build larger blocks.

3. Our error handling can be improved to be more robust. Because Python is a

dynamic language, a simple mistake can be parsed as a “valid” program that

creates an error at runtime. This means that users might become frustrated

by a long stack traceback. It may be worthwhile to build a lint type tool that

can quickly check a test script to see if it violates any best practices or looks

suspicious.

While we believe the CircuitBook test framework is ready for prime-time, these

suggestions will make it more user friendly.

Bibliography

[1] Ravi Subramanian. Verification of nanometer mixed-signal ICs with the Analog

FastSPICE platform. Berkeley Wireless Research Center Seminar, 2009.

[2] MATLAB. Version 7.10.0 (R2010a). The MathWorks Inc., Natick, Mas-

sachusetts, 2010.

[3] Simulink. Version 7.5. The MathWorks Inc., Natick, Massachusetts, 2010.

[4] Mathcad. Version 15.0. Parametric Technology Corporation, Needham, Mas-

sachusetts, 2010.

[5] Virtuoso Analog Design Environment. Version 6.1. Cadence Design Systems,

Inc., San Jose, California, 2009.

[6] T. Quarles. The SPICE3 implementation guide. Technical Report UCB/ERL

M89/44, EECS Department, University of California, Berkeley, 1989.

[7] Spectre Circuit Simulator. Version 5.0. Cadence Design Systems, Inc., San Jose,

California, 2003.

[8] Galaxy Custom Designer. Version 2009.06. Synopsys, Inc., Mountain View,

California, 2009.

[9] AMSUltra: Virtuoso AMS Simulator with Virtuoso UltraSim FastSPICE Solver.

Cadence Design Systems, Inc., 2004.

[10] Patrick Kuanlye Goh. A fast multi-purpose circuit simulator using the latency

insertion method. PhD thesis, University of Illinois at Urbana-Champaign, 2012.

93

BIBLIOGRAPHY 94

[11] K.S. Kundert. Introduction to RF simulation and its application. Solid-State

Circuits, IEEE Journal of, 34(9):1298 –1319, sep 1999.

[12] Bob Gautier, Chris Loftus, Edel Sherratt, and Lynda Thomas. Tool integration:

experiences and directions. In Proceedings of the 17th international conference

on Software engineering, ICSE ’95, pages 315–324, New York, NY, USA, 1995.

ACM.

[13] F. Silveira, D. Flandre, and P.G.A. Jespers. A gm/ID based methodology for the

design of CMOS analog circuits and its application to the synthesis of a silicon-

on-insulator micropower OTA. Solid-State Circuits, IEEE Journal of, 31(9):1314

–1319, sep 1996.

[14] D. Flandre, A. Viviani, J.-P. Eggermont, B. Gentinne, and P.G.A. Jespers. Im-

proved synthesis of gain-boosted regulated-cascode CMOS stages using sym-

bolic analysis and gm/ID methodology. Solid-State Circuits, IEEE Journal of,

32(7):1006 –1012, jul 1997.

[15] G.G.E. Gielen, H.C.C. Walscharts, and W.M.C. Sansen. ISAAC: a symbolic

simulator for analog integrated circuits. Solid-State Circuits, IEEE Journal of,

24(6):1587–1597, dec 1989.

[16] A. Doboli and R. Vemuri. Behavioral modeling for high-level synthesis of analog

and mixed-signal systems from VHDL-AMS. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 22(11):1504 – 1520, nov.

2003.

[17] R.A. Rutenbar, G.G.E. Gielen, and J. Roychowdhury. Hierarchical modeling,

optimization, and synthesis for system-level analog and RF designs. Proceedings

of the IEEE, 95(3):640 –669, march 2007.

[18] Waisum Wong, Xiaofang Gao, Yang Wang, and S. Vishwanathan. Overview

of mixed signal methodology for digital full-chip design/verification. In Solid-

State and Integrated Circuits Technology, 2004. Proceedings. 7th International

Conference on, volume 2, pages 1421 – 1424 vol.2, oct. 2004.

BIBLIOGRAPHY 95

[19] M. Horowitz, M. Jeeradit, F. Lau, S. Liao, B. Lim, and J. Mao. Fortifying analog

models with equivalence checking and coverage analysis. In Design Automation

Conference (DAC), 2010 47th ACM/IEEE, pages 425 –430, june 2010.

[20] S. De Sirkar, R. Tupuri, C.S. Madhuri, G. Rajagopalan, K.D. Mehta, C.G. Mad-

hukar, and G. Bajpe. Design migration across technology - making it work. In

VLSI Design, 1992. Proceedings., The Fifth International Conference on, pages

68 –72, jan 1992.

[21] M. Knieser, M. Lucak, F. Wolff, and C. Papachristou. SoC gate level design

migration. In ASIC/SOC Conference, 2002. 15th Annual IEEE International,

pages 155 – 159, sept. 2002.

[22] K. Francken and G. Gielen. Methodology for analog technology porting including

performance tuning. In Circuits and Systems, 1999. ISCAS ’99. Proceedings of

the 1999 IEEE International Symposium on, volume 1, pages 415 –418 vol.1, jul

1999.

[23] C.A. Makris and C. Toumazou. Analog IC design automation. II. Automated

circuit correction by qualitative reasoning. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 14(2):239 –254, feb 1995.

[24] Lou Prado Kazuhiro ODA and Anthony J. Gadient. A new methodology for

analog/mixed-signal (AMS) SoC design that enables AMS design reuse and

achieves full-custom performance. In The Ninth IEEE/DATC Electronic De-

sign Processes Workshop. EDP-2002, 2002.

[25] S. Hammouda, H. Said, M. Dessouky, M. Tawfik, Q. Nguyen, W. Badawy, H. Ab-

bas, and H. Shahein. Chameleon ART: a non-optimization based analog design

migration framework. In Design Automation Conference, 2006 43rd ACM/IEEE,

pages 885 –888, 0-0 2006.

BIBLIOGRAPHY 96

[26] T. Massier, H. Graeb, and U. Schlichtmann. The sizing rules method for CMOS

and bipolar analog integrated circuit synthesis. Computer-Aided Design of In-

tegrated Circuits and Systems, IEEE Transactions on, 27(12):2209 –2222, dec.

2008.

[27] Yi-Peng Weng, Hung-Ming Chen, Tung-Chieh Chen, Po-Cheng Pan, Chien-Hung

Chen, and Wei-Zen Chen. Fast analog layout prototyping for nanometer design

migration. In Computer-Aided Design (ICCAD), 2011 IEEE/ACM International

Conference on, pages 517 –522, nov. 2011.

[28] M.G.R. Degrauwe, O. Nys, E. Dijkstra, J. Rijmenants, S. Bitz, B.L.A.G. Goffart,

E.A. Vittoz, S. Cserveny, C. Meixenberger, G. van der Stappen, and H.J. Oguey.

IDAC: an interactive design tool for analog CMOS circuits. Solid-State Circuits,

IEEE Journal of, 22(6):1106 – 1116, dec 1987.

[29] H.Y. Koh, C.H. Sequin, and P.R. Gray. OPASYN: a compiler for CMOS oper-

ational amplifiers. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 9(2):113 –125, feb 1990.

[30] F. El-Turky and E.E. Perry. BLADES: an artificial intelligence approach to

analog circuit design. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 8(6):680 –692, jun 1989.

[31] R.R. Neff, P.R. Gray, and A. Sangiovanni-Vincentelli. A module generator for

high-speed CMOS current output digital/analog converters. Solid-State Circuits,

IEEE Journal of, 31(3):448 –451, mar 1996.

[32] G. Jusuf, P.R. Gray, and A.L. Sangiovanni-Vincentelli. CADICS-cyclic analog-to-

digital converter synthesis. In Computer-Aided Design, 1990. ICCAD-90. Digest

of Technical Papers., 1990 IEEE International Conference on, pages 286 –289,

nov 1990.

[33] R. Harjani, R.A. Rutenbar, and L.R. Carley. OASYS: a framework for analog

circuit synthesis. Computer-Aided Design of Integrated Circuits and Systems,

IEEE Transactions on, 8(12):1247 –1266, dec 1989.

BIBLIOGRAPHY 97

[34] E.S. Ochotta, R.A. Rutenbar, and L.R. Carley. Synthesis of high-performance

analog circuits in ASTRX/OBLX. Computer-Aided Design of Integrated Circuits

and Systems, IEEE Transactions on, 15(3):273 –294, mar 1996.

[35] R. Phelps, M. Krasnicki, R.A. Rutenbar, L.R. Carley, and J.R. Hellums. Ana-

conda: simulation-based synthesis of analog circuits via stochastic pattern search.

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions

on, 19(6):703 –717, jun 2000.

[36] G.G.E. Gielen and R.A. Rutenbar. Computer-aided design of analog and mixed-

signal integrated circuits. Proceedings of the IEEE, 88(12):1825 –1854, dec 2000.

[37] G.G.E. Gielen and J.E. Franca. CAD tools for data converter design: an

overview. Circuits and Systems II: Analog and Digital Signal Processing, IEEE

Transactions on, 43(2):77 –89, feb 1996.

[38] G. Van der Plas, G. Debyser, F. Leyn, K. Lampaert, J. Vandenbussche, G.G.E.

Gielen, W. Sansen, P. Veselinovic, and D. Leenarts. AMGIE - A synthesis envi-

ronment for CMOS analog integrated circuits. Computer-Aided Design of Inte-

grated Circuits and Systems, IEEE Transactions on, 20(9):1037 –1058, sep 2001.

[39] John Crossley, Hanh-Phuc Le, Rachel Nancollas, Alberto Puggelli, and Elad

Alon. Berkeley Analog Generator. Poster, May 2012.

[40] The MathWorks Inc., Natick, Massachusetts. MATLAB Programming Funda-

mentals - R2012a, 2012.

[41] Nanette Brown, Yuanfang Cai, Yuepu Guo, Rick Kazman, Miryung Kim,

Philippe Kruchten, Erin Lim, Alan MacCormack, Robert Nord, Ipek Ozkaya,

Raghvinder Sangwan, Carolyn Seaman, Kevin Sullivan, and Nico Zazworka.

Managing technical debt in software-reliant systems. In Proceedings of the

FSE/SDP workshop on Future of software engineering research, FoSER ’10,

pages 47–52, New York, NY, USA, 2010. ACM.

BIBLIOGRAPHY 98

[42] G. Lawton. LAMP lights enterprise development efforts. Computer, 38(9):18 –

20, sept. 2005.

[43] The MathWorks Inc., Natick, Massachusetts. Aerospace Blockset User’s Guide,

Version 1 edition, 2004.

[44] T.J. Barnes. SKILL: a CAD system extension language. In Design Automation

Conference, 1990. Proceedings., 27th ACM/IEEE, pages 266 –271, jun 1990.

[45] OCEAN Reference. Product Version 5.1.41. Cadence Design Systems, Inc., San

Jose, California, 2004.

[46] Dinu Gherman. Empy, a python templating system. Presented at EPC 2003,

European Python and Zope Conference in Charleroi, Belgium, June 2003.

[47] Synopsys, Inc. HSPICE Reference Manual: Commands and Control Options,

Version B-2008.09 edition, 2008.

[48] Mentor Graphics Corporation. Eldo User’s Manual, Software Version 6.6 1 Re-

lease 2005.3 edition, 2005.

[49] J.A. Mielke. Frequency domain testing of ADCs. Design Test of Computers,

IEEE, 13(1):64 –69, spring 1996.

[50] M.F. Wagdy and S.S. Awad. Determining ADC effective number of bits via

histogram testing. Instrumentation and Measurement, IEEE Transactions on,

40(4):770 –772, aug 1991.

[51] M.F. Wagdy and M. Goff. Linearizing average transfer characteristics of ideal

ADC’s via analog and digital dither. Instrumentation and Measurement, IEEE

Transactions on, 43(2):146 –150, apr 1994.

[52] IEEE standard for terminology and test methods for analog-to-digital converters.

IEEE Std 1241-2010 (Revision of IEEE Std 1241-2000), pages 1–139, 14 2011.

BIBLIOGRAPHY 99

[53] T.E. Linnenbrink, S.J. Tilden, and M.T. Miller. ADC testing with IEEE Std

1241-2000. In Instrumentation and Measurement Technology Conference, 2001.

IMTC 2001. Proceedings of the 18th IEEE, volume 3, pages 1986–1991 vol.3,

2001.

[54] W. Kester. AN-215 — Designer’s Guide to Flash-ADC Testing. Analog Devices,

Inc., 1990.

[55] Francesco Ricci and Bracha Shapira. Recommender systems handbook. Springer,

2011.

[56] Caitlin Sadowski and Greg Levin. Simhash: Hash-based similarity detection.

Technical report, Technical report, Google, 2007.

[57] S. Sikand. High performance scalable hardware configuration management. 2003.

[58] Oren Ben-Kiki, Clark Evans, and Ingy döt Net. YAML Aint Markup Language

(YAML) Version 1.2, 2009.

[59] Xuan-Lun Huang and Jiun-Lang Huang. ADC/DAC loopback linearity testing

by DAC output offsetting and scaling. Very Large Scale Integration (VLSI)

Systems, IEEE Transactions on, 19(10):1765–1774, 2011.

[60] J. Gray. Why do computers stop and what can be done about it? Technical

Report TR 85.7, Tandem Computers, 1985.

[61] Dean Liu. A Framework for Designing Reusable Analog Circuits. PhD thesis,

Stanford University, 2003.

[62] Integrating Xilinx System Generator with Simulink HDL Coder. The MathWorks

Inc., 2008.

[63] K.W. Current, J.F. Parker, and W.J. Hardaker. On behavioral modeling of

analog and mixed-signal circuits. In Signals, Systems and Computers, 1994.

1994 Conference Record of the Twenty-Eighth Asilomar Conference on, volume 1,

pages 264–268 vol.1, oct-2 nov 1994.

BIBLIOGRAPHY 100

[64] V.F. Pires and J.F.A. Silva. Teaching nonlinear modeling, simulation, and control

of electronic power converters using MATLAB/SIMULINK. Education, IEEE

Transactions on, 45(3):253–261, aug 2002.

[65] P. Malcovati, S. Brigati, F. Francesconi, F. Maloberti, P. Cusinato, and

A. Baschirotto. Behavioral modeling of switched-capacitor sigma-delta mod-

ulators. Circuits and Systems I: Fundamental Theory and Applications, IEEE

Transactions on, 50(3):352–364, mar 2003.

[66] Satish Batchu. Automatic extraction of behavioral models from simulations of

analog/mixed-signal (AMS) circuits. Master’s thesis, University of Utah, 2011.

[67] Chris Lattner. LLVM. In Amy Brown and Greg Wilson, editors, The Architecture

of Open Source Applications, volume 1. 2011.

[68] Anthony J Caristi. IEEE-488, General Purpose Instrumentation Bus Manual.

Academic Press, Inc., 1990.

[69] D. Cheij. A software architecture for building interchangeable test systems.

In AUTOTESTCON Proceedings, 2001. IEEE Systems Readiness Technology

Conference, pages 16 –22, 2001.

[70] A. Pramanick, R. Krishnaswamy, M. Elston, T. Adachi, Harsanjeet Singh,

B. Parnas, and L. Chen. Test programming environment in a modular, open

architecture test system. In Test Conference, 2004. Proceedings. ITC 2004. In-

ternational, pages 413 – 422, oct. 2004.

[71] Travis E. Oliphant. Python for scientific computing. Computing in Science &

Engineering, 9(3):10–20, 2007.

[72] Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford, James

Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum, Sven Hammar-

ling, Alan McKenney, et al. LAPACK Users’ Guide, volume 9. Society for

Industrial Mathematics, 1987.

BIBLIOGRAPHY 101

[73] Jack J Dongarra, Jim R Bunch, GB Moler, and George W Stewart. LINPACK

Users’ Guide. Number 8. Society for Industrial Mathematics, 1987.

[74] Brian T Smith, James M. Boyle, and Jack J Dongarra. Matrix eigensystem rou-

tines — EISPACK guide. Lecture Notes in Computer Science, Berlin: Springer,

1976, 2nd ed., 1, 1976.

[75] Adam Oliner, Archana Ganapathi, and Wei Xu. Advances and challenges in log

analysis. Commun. ACM, 55(2):55–61, February 2012.

[76] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,

dynamics, and function using NetworkX. Technical report, Los Alamos National

Laboratory (LANL), 2008.

[77] John Ellson, Emden R Gansner, Eleftherios Koutsofios, Stephen C North, and

Gordon Woodhull. Graphviz and dynagraph — static and dynamic graph draw-

ing tools. In Graph Drawing Software, pages 127–148. Springer, 2004.

