
MODEL VALIDATION OF MIXED-SIGNAL SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Byong Chan Lim

December 2012

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/xq068rv3398

© 2012 by Byong Chan Lim. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/xq068rv3398

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Boris Murmann, Co-Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Bruce Wooley

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Today it is difficult to validate a mixed-signal System-on-Chip, i.e., one which con-

tains analog and digital components. The problem is that the analog and digital

subsystems are usually strongly intertwined so they must be validated together as

a system, but the validation approach for analog and digital blocks are completely

different. We address this problem by creating high-level functional models of the

analog components that are compatible with top-level digital system validation, and

then providing a method of formal checking to ensure that these functional models

match the operation of the transistor level implementations of these blocks.

The formal checking of the functional analog models is enabled by observing that

the result surface of an analog block is a smooth function of its analog inputs – that

is what makes it an analog block. This smooth result surface means it is not difficult

to “explore” the design space of an analog block. We use this insight to create an

equivalence checker between two analog descriptions: a SPICE netlist and its Verilog

model. This checker exploits the fact that most analog circuits have a linear intent.

Lastly we use this same insight to simplify statistical analysis of large mixed-

signal systems to ensure that the system is robust to process variations. We describe

a way to characterize the statistical behavior of circuits and to map the results to the

functional model so one can estimate the parametric yield of the system by running

system-level Monte Carlo simulations with analog models instead of circuit netlists.

iv

Acknowledgements

Looking back on the days at Stanford, I have been so lucky to get help from many

people. Without their help, this work would not have been possible. First and

foremost, I would like to thank my lovely wife, Sangmee Kim, for her endless love,

support, encouragement, and prayers.

I am fortunate to have had a dedicated advisor, Professor Mark Horowitz. Not

too much to say that he is a great mentor, researcher, and teacher, he has spared no

effort for me to focus on the research in various ways. I cannot express the depth of

my gratitude to him in words. Besides my advisor, I would like to thank Professor

Boris Murmann and Professor Bruce Wooley for their valuable knowledge, insightful

comments and questions. I am also grateful to Professor Yoshio Nishi who served on

my orals committee, and to my undergraduate and master degree advisor, Professor

Oh-Kyong Kwon, for continual encouragement and support.

I would like to acknowledge the guidance and expertise of Professor Jaeha Kim

who was like another advisor to me. Without his guidance, this thesis would not

have seen the light. I am grateful to everyone in VLSI research group, former and

present students of Mark — James Mao, Metha Jeeradit, and many others — for

their friendship and helpful discussions. Especially, I would like to thank James Mao

for his help and criticism on my thesis work. I would also like to thank wonderful

administrative assistants, Teresa Lynn and Mary Jane Swenson, for always making

things run smoothly.

Much of the research would not have been possible without the support of former

and current supporters of the Stanford Rethinking Analog Design initiative — TI,

ADI, Intel, Maxim, Mentor Graphics, Xilinx, TSMC, Toshiba, Rambus, LSI, and

v

NVIDIA.

Last but not least, I would like to thank my family, my parents and brothers, for

their unconditional love, support, and patience.

vi

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Challenges of Mixed-Signal System Validation 1

1.2 Mixed-Signal Design Errors . 3

1.3 Statistical Analysis of Mixed-Signal Systems 5

1.4 Organization . 6

2 Basis for Model Validation 7

2.1 Inconsistency between Analog Models 7

2.2 Previous Work on Analog Model Validation 9

2.3 Formal Analog Model . 10

2.3.1 Domain Translation . 12

2.3.2 Coupled Linear System Model 15

2.4 Summary . 19

3 Validating Analog Functional Models 20

3.1 Functional Equivalence of Analog Models 20

3.2 Analog Test Vector Generation . 22

3.2.1 Extracting a Completely Linear Model 23

3.2.2 Extracting a Weakly Nonlinear Model 25

3.2.3 Piecewise Modeling of Analog Response 27

vii

3.3 Port Classification . 29

3.3.1 Analog Port . 31

3.3.2 True Digital Port . 32

3.3.3 Quantized Analog Port . 34

3.3.4 Function Port . 35

3.4 Model Checking Procedure . 36

3.4.1 Oversampling of Response . 39

3.5 Equivalence Checker Implementation 40

3.5.1 Test Setup . 40

3.5.2 Labeling Ports . 44

3.6 Summary . 45

4 A 40-Way, Time-Interleaved ADC 47

4.1 Bias Generator . 50

4.2 Ramp Current Generator . 57

4.3 Comparator . 62

4.4 Input Sampler . 67

4.5 Phase Interpolator . 71

5 Process Variation in Mixed-Signal Systems 77

5.1 Failure in Mixed-Signal Systems . 78

5.2 Process-Aware Analog Model . 79

5.2.1 Parametric Model . 80

5.2.2 Linear Model Failure . 83

5.3 Parametric Yield Estimation . 84

5.4 Assertions on Model Failure . 87

5.5 Thoughts on Mismatch Model . 89

5.6 Example: Phase-Locked Loop . 90

5.6.1 Device Model for Process Variation 91

5.6.2 Block-Level Modeling . 92

5.6.3 Verification Results . 97

5.7 Summary . 101

viii

6 Conclusions 102

6.1 Future Work . 103

A Domain Translator Example 105

Bibliography 112

ix

List of Tables

3.1 Equivalence checking results of the duty-cycle adjuster shown in Figure

2.1 — gain matrices of various models. 21

3.2 Port classification in our linear system context. 29

3.3 Port specification. 41

4.1 Physical pin description of the bias generator. 51

4.2 Port classification of the bias generator. 52

4.3 Linear regression statistics of the bias generator: with the circuit netlist. 54

4.4 Model checking results of the bias generator. 55

4.5 Bitwise representation of system models for the circuit and Model 4 in

Table 4.4. 56

4.6 Physical pin description of the ramp current generator. 58

4.7 Port classification of the ramp current generator: For testing the sys-

tem in Equation 4.7, cfg I ramp is randomly sampled (e.g., ‘100000’)

in its valid values. For testing the system in Equation 4.8, I(Irampref)

is randomly sampled (e.g., 2.0 µA) in its valid values. 59

4.8 Physical pin description of the comparator. 63

4.9 Port classification of the comparator. 65

4.10 Model checking results of the comparator. 66

4.11 Physical pin description of the input sampler. 68

4.12 Port classification of the input sampler. 70

4.13 Model checking results of the input sampler. 70

4.14 Physical pin description of the phase interpolator. 73

x

4.15 Port classification of the phase interpolator: 1) sel iq and sel cap are

randomly sampled in valid values when testing the system in Equa-

tion 4.21, 2) Φ(clkq) is set to 1
4
π and sel cap is randomly sampled in

valid values when testing the system in Equation 4.22, and 3) Φ(clki),

Φ(clkq), and sel iq are randomly sampled in valid values when testing

the system in Equation 4.23. 74

4.16 Model checking results of the phase interpolator. 75

5.1 Range of device variation parameters for process variation analysis. . 92

5.2 VCO parametric model: variation of VCO gain matrix to process pa-

rameters. 96

5.3 Summary of parametric variation analysis: mean (µ) and standard de-

viation (σ) of the static phase offset TOS from the circuit and model

simulations. The distributions of device parameters are ∆VTH ∈ U [−50, 50] [mV]

and kc ∈ U [−0.1, 0.1]. U is a uniform distribution function. 99

5.4 Summary of parametric variation analysis with Gaussian distributions

of process parameters: mean (µ) and standard deviation (σ) of the

static phase offset TOS from the circuit and model simulations. The

distributions of device parameters are ∆VTH ∈ N [0, 50] [mV] and kc ∈

N [0, 0.1]. N is a Gaussian distribution function. 100

5.5 Results of functional failure analyses of the PLL shown in Figure 5.1. 101

xi

List of Figures

1.1 Mixed-signal design: (a) Analog/Digital system and (b) Mixed-signal

system [1]. 2

2.1 Duty-cycle adjuster: (a) circuit diagram with domain translators and

(b) response surface in duty-cycle domain. 14

2.2 Block diagram of a variable gain amplifier. 16

2.3 Coupled linear systems of the VGA in Figure 2.2: (a) linear system

from VIN to VOUT and (b) linear system from IBIAS to α of the system

(a). 16

2.4 Phase interpolator: (a) circuit diagram and (b) timing diagram. . . . 17

3.1 Digital response surface. 23

3.2 Standard deviation of residual errors, σres, of completely-linear models

of the duty-cycle adjuster circuit in Figure 2.1 vs. the number of test

vectors used in the model fitting. 24

3.3 Weakly nonlinear models of a VCO transfer curve: (a) VCO transfer

curve (b) standard deviation of the residual errors vs. fitting polyno-

mial order. 26

3.4 Piecewise modeling of LC-VCO output clock frequency response: (a)

LC-VCO response and (b) piecewise model of the LC-VCO response. 28

3.5 An example circuit to explain the type of port: (a) differential amplifier

and (b) current steering D/A converter for controlling the input offset

voltage in (a). 30

3.6 Voltage controlled oscillator. 32

xii

3.7 Circuit configurations of the differential amplifier shown in Figure 3.5,

enumerated by true digital ports: the combination of calib en and

/pwrdn are (a) ‘00’, (b) ‘01’, (c) ‘10’, and (d) ‘11’. 33

3.8 Transfer curve of the D/A converter in Figure 3.5b. 34

3.9 Procedure for functional equivalence checking. 37

3.10 Circuit structure causing false labeling of a quantized analog port. . . 40

3.11 Elements of the test setup. 41

3.12 Graph isomorphism test for identifying a quantized analog port. . . . 45

4.1 Concept of 40-way, time-interleaved A/D conversion: (a) simplified

block diagram of a converter (b) 40-way, time-interleaved sampling. . 48

4.2 A simplified single-slope ADC: (a) block diagram and (b) timing diagram. 49

4.3 Bias generator. 50

4.4 Ramp current generator. 57

4.5 Block diagram of a comparator. 62

4.6 Testing a comparator: (a) test circuit configuration and (b) transfer

curve. 64

4.7 Input sampler. 67

4.8 Phase interpolator: (a) Block diagram of a phase interpolator, (b) unit

cell of the phase mixer shown in (a), and (c) unit cell of a capacitor

array. 72

5.1 Deadlock example of a PLL. 79

5.2 Partial gains of VCO linear system model by randomly sampling pro-

cess parameters (Plot of both the circuit and the Verilog simulation

results). 80

5.3 Model errors of VCO: (a) residual errors of α and (b) residual errors

of β. 82

5.4 Procedure for generating a parametric model. 85

5.5 System-level Monte Carlo simulation flow. 86

5.6 Procedure for creating Verilog assertions. 87

5.7 Process variation model of a MOS transistor. 92

xiii

5.8 A simplified circuit diagram: (a) phase detector and (b) charge-pump

with loop filter. 93

5.9 A simplified circuit diagram of the VCO. 95

5.10 Distribution of TOS: (a) probability density function and (b) cumula-

tive distribution function. 98

5.11 Residual errors of TOS: model simulation results to circuit simulation

results. 99

xiv

Chapter 1

Introduction

Most of today’s VLSI systems are mixed-signal in nature; they have both analog

and digital components. Microprocessors, for example, have multiple phase-locked

loops for clock generation and high-speed serial interfaces for chip-to-chip commu-

nication [2–6]. To interface with the physical world, RF and data conversion cir-

cuits are integrated in various communication ICs [7–12]. The complexity of these

mixed-signal systems is increasing as technology scales down, and thus the complete,

system-level verification of the systems is becoming more important since any small

functional bug can cause a re-spin which is time consuming and expensive. However,

this mixed signal validation is difficult because validation methods and representa-

tions of analog/digital subsystems are not compatible. Separate validation of the

subsystems is also not possible because they are strongly intertwined.

1.1 Challenges of Mixed-Signal System Validation

As technology scales, power supply voltages also scale down while the circuit perfor-

mance requirements become more challenging. Moreover, many short-channel effects

of nanometer CMOS devices, e.g., DIBL, velocity saturation, surface scattering, have

a negative impact on the analog circuit performance which can counter balance the

improved device cut-off frequency [13]. To mitigate these issues, analog designers have

leveraged digital circuits by simplifying the analog circuit and then compensating for

1

CHAPTER 1. INTRODUCTION 2

(a)

(b)

Figure 1.1: Mixed-signal design: (a) Analog/Digital system and (b) Mixed-signal
system [1].

its non-ideal characteristics in digital domain. This strategy typically forms feedback

loops between analog and digital blocks [10, 14].

Validating mixed-signal systems gets harder as these analog/digital interactions

increase. If the interface between them is loosely coupled and the signal flow is

unidirectional as depicted in Figure 1.1a, the verification would be easy. One only

needs to check each subsystem separately and ensure that the interface is correct by

running co-simulation for a short period of time. Unfortunately, when two subsystems

are tightly coupled as shown in Figure 1.1b, it is necessary to check if the feedback

loops function correctly and are stable over the environmental variability, e.g., process,

temperature, and supply voltage. Therefore, the two subsystems should be validated

together as a single system.

Mixed-signal validation is time consuming mostly because of the different levels of

abstractions between analog and digital subsystems. A common practice for valida-

tion is to run co-simulation, e.g., a hardware description language (HDL) simulator for

a digital system and a circuit simulator for an analog system. In this case, simulating

analog components limits the simulation speed. A circuit simulator executes many

numerical iterations on each time step to maintain the simulation accuracy, which

makes the simulation slow. On the other hand, the simulator for digital systems is

event driven, i.e., no time integration, making its simulation speed much faster.

Moreover, long test vectors are needed to simulate the digital subsystems for the

system to settle because the overall system generally requires a boot-up sequence to

calibrate and configure the system. In addition, the number of test vectors to run

CHAPTER 1. INTRODUCTION 3

the system validation is usually very large since it should check all the functional

modes created by digital systems. This can even be the case for a small, analog-

intensive system because digital feedback loops have much lower bandwidth than

signal bandwidth such that it takes a long time for the digital loop to settle. As a

result, the length of the required simulation time can grow by orders of magnitude.

Compounding the simulation speed issue is the need to run regression tests. Designers

should validate the system functional modes whenever any part of a design is changed.

Thus simulating analog systems is often the limiting factor in speeding up the overall

system validation even though analog components only occupy a small portion of a

system.

To speed up mixed-signal system validation, avoiding time integration in simulat-

ing analog components is necessary. This means models should be functional; they

need to describe the overall function of the circuit and not the connection of the

individual devices. Once this transformation is done, one possible way to enable fast

system simulation is to use analog functional models written in an event-driven HDL,

e.g., (System)Verilog.1

Since a digital system is designed with a Verilog HDL model, there are strong

benefits to using an event-driven HDL, especially Verilog HDL, for analog model cre-

ation. In general, digital designers control chip validation because this validation is

mostly for checking digital system functions. By writing analog models in HDLs, it is

possible to seamlessly fit the analog subsystem into the verification flow of the digital

subsystem. SystemVerilog also contains features to make the generation of valida-

tion tests easier. One is able to leverage many features, e.g., class, randomization,

assertion, and coverage, of SystemVerilog test suites [15].

1.2 Mixed-Signal Design Errors

Creating an analog functional model does not completely solve the validation problem.

Unfortunately, the model is perceived very differently by analog and digital designers.

In modern digital system design, functional behavior is first written in a HDL such

1For the rest of this thesis, the term Verilog includes SystemVerilog if it is not explicitly addressed.

CHAPTER 1. INTRODUCTION 4

as Verilog or VHDL; this serves as the specification of the system. This model is then

expanded and debugged, and a set of regression tests is used to ensure new errors are

not introduced into the design. During this process, the HDL is automatically mapped

to digital standard cells for the targeted technology, and then placed and routed

to physical layout as well as gate-level netlist [16]. With the generated gate-level

netlist, other electrical rule checks such as timing analysis and power analysis are also

performed without relying on (fast-)circuit simulators. Since these physical designs

are derived from and are validated against the functional model, digital designers

trust the model.

However, for analog designers, the model is often viewed as an approximation

of the actual circuit. They verify the circuits, draw layouts, and then run another

circuit verification with parasitic extracted netlists. While they may write analog

models for system validation, the circuits are neither generated from nor validated

against the models. Thus the traditional design flow does not force designers to write

an accurate analog model. The models are often provided without checking if their

functional behavior matches that of the corresponding circuit implementations, which

leads to mixed-signal design errors.

As mentioned previously, digital designers control system validation and they trust

analog models because they believe the model is the specification. Thus, although the

chip validation with the models has passed, the real chip could fail because of inconsis-

tencies between analog circuits and their models. The cause of these errors is usually

not a subtle analog issue such as nonlinearity and noise — these are found through

circuit simulations. Rather, the problems are often trivial wiring mistakes: incon-

sistencies between circuits and models at the I/O boundary, which include missing

connections, mislabeled pins, signal inversion, bus-order reversal, and bus-encoding

mismatch. For example, the polarity of a signal might be inverted, e.g., active low vs.

active high for the reset signal, and a bus might be connected via different encoding

styles, e.g., big-endian vs. little-endian. Worse yet, these errors are often repeated,

which is extremely wasteful.

These types of errors between a model and its circuit do not occur for digital

systems since the implemented digital standard cells are simulated to ensure that they

CHAPTER 1. INTRODUCTION 5

match their functional models. We need a similar functional equivalence checking

between an analog circuit and its model to ensure the analog model matches the

circuit. The digital tools check the boolean function extracted from both the circuit

and functional model; the next chapter explains how a linear model serves the same

function for analog circuits, and uses this model to create equivalence checker.

1.3 Statistical Analysis of Mixed-Signal Systems

Another validation issue for mixed-signal systems is how to account for the effects of

process variations, both die-to-die and within-die variation, on circuit performance.

Ensuring the system is robust to the expected variation of process parameters is

becoming more important since the process variations are becoming larger as devices

scale down in size.

Currently, using circuit simulators to run process corner and Monte Carlo simula-

tions is common practice for statistical analysis, but it is computationally expensive

since a large number of samples are needed and the circuit simulation is slow. This

becomes worse as the circuit size and the number of variation parameters increase.

Moreover, while this can be done in most linear/nonlinear analog circuits, coupling

them to complex digital systems makes the problem much harder because of the dif-

ferent levels of abstractions between the analog/digital subsystems as mentioned in

Section 1.1.

The situation becomes even worse when a new process technology node is de-

veloped in parallel with circuit design. Tuning process parameters for better yield

involves many iterations between process engineers and circuit designers. Thus it

might be very expensive if each iteration is long, which is the case if one wants to run

Monte Carlo simulations with circuit netlists. Of course these simulations could be

run in parallel, but that is also expensive because of the cost of simulator licenses.

An alternative is to run Monte Carlo simulations with functional models instead of

circuit netlists if the models are accurate enough. With functional models, performing

Monte Carlo simulations at the system level runs much faster and since these are end-

to-end tests, the associated test vectors and measurement scripts already exist. As

CHAPTER 1. INTRODUCTION 6

we will show in Chapter 5, one gets an additional performance boost since there are

fewer parameters to vary in this case.

1.4 Organization

This thesis describes two key contributions on mixed-signal model validation: func-

tional equivalence checking between an analog circuit and its model and a statistical

simulation framework for large mixed-signal systems.

Chapter 2 provides our framework for creating and analyzing analog models.

“Analog” means that the response surface is smooth, which enables the lineariza-

tion of the surface for simpler analysis. The key challenge is to find the domain where

the response is smooth. We also show how this framework can be extended to tunable

circuits by decomposition into coupled linear systems.

Equivalence checking between two analog descriptions is described in Chapter 3.

We explain how we can exploit the linear intent of analog circuits for functional equiv-

alence checking and analog test vector generation. We first explore how to check the

functional equivalence between different analog models and how to generate analog

test vectors. Then, we describe the implementation of our equivalence checker. Chap-

ter 4 uses the analog cells in a 40-way, time-interleaved Analog-to-Digital Converter

(ADC) as examples of model equivalence checking.

Chapter 5 presents the statistical analysis of a large mixed-signal system to ensure

that the system is robust to process variation. We first investigate ways to abstract the

effect of the variation on circuit performance. From this abstraction, we create process

variation models of mixed-signal circuits, and provide a methodology to estimate

the parametric yield by running system-level Monte Carlo simulations with analog

functional models instead of circuit netlists. A Phase-Locked Loop (PLL) example is

shown to demonstrate the analysis methods.

Chapter 2

Basis for Model Validation

Over the past four decades, digital design methodology has changed dramatically.

Rather than designing a digital system at circuit level, the system is described by a

technology independent HDL model which is synthesized into a real implementation

using a set of cells for standard digital functions. The function of the system is then

verified by simulating the HDL model with functional simulators and many other rule

checkers such as static timing analysis and power analysis tools are available for the

chip-level verification.

A boolean abstraction for signal values and the synchronous nature of digital

systems, which provides a framework for a mapping between an abstract functional

model and its physical implementation, have enabled many of these tools. A similar

kind of abstraction is necessary for analog model verification. This chapter proposes

using a linear abstraction of analog circuits to serve the equivalent function for the

circuits. We begin by briefly reviewing the previous works on analog model validation

and then describe the background of our approach.

2.1 Inconsistency between Analog Models

As mentioned in Chapter 1, any mismatch between a circuit and a model may cause

design errors and lead to a re-spin of the design. In many cases, this functional

discrepancy occurs at the I/O boundary, not in the detail function [17].

7

CHAPTER 2. BASIS FOR MODEL VALIDATION 8

A common mistake is polarity inversion of a digital control input since such an

input can be either active high or low. For example, the model enters power down

mode when the signal is asserted with a logic high signal but the circuit uses active

high to activate in normal operating mode. Another mismatch in communicating

digital signals between digital and analog blocks is reversal of bit ordering, i.e., big

endian vs. little endian. For instance, a digital block transmits a signal DATA[7:0]

while the receiving analog block assumes DATA[0:7]. It is also possible to miscom-

municate encoding protocol of digital buses, e.g., binary code vs. thermometer code,

when digitally controlling analog properties. Depending on the encoding protocol, the

range of adjustable analog properties may vary such that the actual controllability of

a circuit is not wide enough to meet the specifications.

Polarity inversion can occur in communicating analog signals as well. Differential

inputs can be swapped, and the polarity of a current source/sink can be inverted.

It is also possible that the sensitivity of analog response to an analog input is in

the opposite direction between two analog models. The analog type of a signal such

as voltage, current, and phase can also be confused. An analog signal in a model

is usually represented as a real number, which means that the intended type of the

signal is not checked. Thus, unlike digital signals which only have the “logic” type,

an analog block could send a voltage signal while its receiving block took a current

signal.

Another issue is that an analog functional model is often a simplified version of

the circuit, and may not be pin accurate to its circuit netlist. This can lead to another

class of errors since it is then hard to generate a correct, verified system-level netlist

to run through layout versus schematic (LVS) at the transistor level.

These errors are trivial and obvious mistakes, and many are easily identified

through manual checks. However, these errors still occur in practice since the docu-

mentation on the interface is often not updated and the analog model is not checked

against its circuit implementation. Frequently, at least one of these bugs escapes de-

tection in a complex system with an iterative design and verification process. There-

fore, a tool for detecting these errors would greatly improve analog validation.

CHAPTER 2. BASIS FOR MODEL VALIDATION 9

2.2 Previous Work on Analog Model Validation

Validating a model always raises a question about coverage. That is, how many input

patterns should be tried to explore all states in a system. In digital logic, boolean

abstraction answers this question easily as it assumes that each input is either ‘1’ or

‘0’. The number of possible input patterns is finite and one can completely explore its

outputs across all possible input patterns, at least for small number of inputs; this is

how digital standard cells are verified. On the other hand, the answer has remained

unclear for analog circuits since analog signals take on continuous values.

Recent efforts have taken different approaches to address this coverage question

for analog circuits, yielding different types of checking tools. One approach is hybrid

system verification [18–21]. The transfer function of a continuous-time analog circuit

is transformed into discrete z-domain by discretizing voltage and time. The states of

this new system form a finite grid and the circuit can be represented as a finite-state

machine (FSM). One of the established digital verification methods and its coverage

metric are then applied to the FSM. While this method enables formal checking of

analog circuits, the number of states to be explored is often very large even for a

small circuit, making this approach infeasible for large-scale circuits. In particular, it

is difficult to map strongly nonlinear analog circuits in voltage domain (e.g., a phase

locked loop and a class-D amplifier) to the framework.

Another approach is a top-down verification methodology, where a circuit com-

ponent is validated in the system-level context using the same simulation setup for

the model and circuit [22]. One of the important issues when using a higher-level

model is validating how well it reflects the behavior of a real circuit. In the top-down

verification methodology, one creates a number of testbenches and their test vectors,

which leverage the transistor-level simulation tests, to compare the results of differ-

ent models of the circuit to check fidelity. This method was created mostly to check

Verilog-AMS models with their circuit implementations; checking fully functional

models adds additional issues.

The first issue is that this methodology relies on the existing circuit test vectors.

These are created manually, with no guarantee that these vectors will be complete to

CHAPTER 2. BASIS FOR MODEL VALIDATION 10

ensure that the implementation matches the model. For example, the tests created to

measure the transistor level performance of the circuit might not test its operation for

all possible power modes or configurations. The second issue is that the correspon-

dence between the real circuit and the Verilog model is often weak; the behavioral

model may use representations of analog signals such as phase, frequency, or charge

as well as voltage and current. Since real circuits can only represent signals in terms

of voltage and current, some signal domain translation is necessary to compare the

two models.

To address these limitations, we need to create a higher level of circuit abstrac-

tion for analog circuit behavior. With such an abstraction, it is possible to create a

spanning set of test vectors and formally validate a design, enabling functional equiv-

alence checking between the circuit representations at the lower, different levels of

abstractions. In digital design, every digital standard cell is verified against its logic

function using boolean abstraction. With the boolean abstraction, all inputs, states,

and outputs only have two values, ‘1’ and ‘0’. Thus the boolean output of a digital

standard cell is compared to its logic function for all possible combinations of boolean

inputs. The abstraction of analog circuits used to compare the function of two analog

descriptions is discussed in the next section.

2.3 Formal Analog Model

“Analog” means that response surface is smooth. Since the smoothest function is

linear, we generally analyze analog response through linearization at an operating

point. This linearization is a powerful tool to simplify the analysis of analog response,

and we will use it as the base of our abstraction for analog circuits.

Linear abstraction means that we map the behavior of all analog circuits to a

linear (dynamic) system with corrections [1, 23–26]. The response of a linear system

to its inputs is completely specified by the system’s transfer function. Therefore, a

transfer function can serve as a formal model of a linear circuit. In a matrix form,

the system model is given by

Y = Ax (2.1)

CHAPTER 2. BASIS FOR MODEL VALIDATION 11

where Y is the system output vector, x is the system input vector, and A is called

either gain matrix if the system is frequency independent, or transfer matrix if the

system is frequency dependent. Particularly, the dynamical behavior of the system

can be described by a linear filter model such as the time-domain impulse response

or frequency-domain transfer function, which is often analyzed by small-signal AC

analysis in circuit simulators.

This abstraction seems plausible since most characteristics of analog circuits that

we care about are either the properties of a linear system such as gain and bandwidth,

or the quantities that describe the deviation of the circuit from the linear model such

as offset and distortion. In addition, most analog circuit specifications require that

nonlinear properties should be minimized. For example, one wants to minimize signal

distortion and input offset of an amplifier, the nonlinearity of a data converter (e.g.,

integral nonlinearity and differential nonlinearity), and signal distortion of a RF mixer

when shifting the frequency of a carrier signal with a local oscillator.

There are many possible problems with using a linear abstraction for analog cir-

cuits. The first, and most obvious, issue is that some analog circuits are grossly

nonlinear. These circuits, e.g., mixers, phase-locked loops (PLL), and delay-locked

loops (DLL), have transfer functions that cannot be approximated by a linear or even

slightly nonlinear function. We deal with these circuits by noticing that the intent of

the circuits is still smooth and nearly linear, but in a domain different from voltage

and time. For example, the role of a mixer is to shift and combine different frequency

spectrum, which can be described by a linear operator in frequency space. A PLL

may have square wave inputs and outputs, but the relationship between the phase of

the input clock and the phase of the output clock is smooth and nearly linear. The

use of domain translators to pull out the linear intent of circuits is discussed in more

detail in Section 2.3.1. The second issue is that many analog circuits are configurable.

For instance, the gain or bandwidth of an amplifier can be controlled by some control

inputs. These circuits cannot be represented by a linear model since superposition

does not hold; the cross product of inputs also significantly contributes to the output.

To fit these circuits to our linear system framework, we introduce the concept of a

coupled linear system by pointing out that the controlled property is generally slowly

CHAPTER 2. BASIS FOR MODEL VALIDATION 12

time varying not to disturb the signal path of the system that is carrying information.

This is discussed further in Section 2.3.2.

Linearization of analog responses does not prevent designers from creating models

with nonlinear effects. While all analog circuits show some nonlinearity, we rely

on the fact that the intent of the designer is for the circuit to be a linear system,1

so the realistic behavior of the circuit at worst can be well captured by a weakly

nonlinear system model [27–33], without having to resort to a more general, but

poorly understood, strongly nonlinear system model [34–37]. Given that the circuit

response is weakly nonlinear, possibly in a different variable domain, the residual error

after linearization is small. Therefore, the error can be fitted by a linear summation

of a few terms in a functional series expansion, i.e., a generalized linear model [38].

For example, the system response to inputs can be modeled by either Taylor series

without memory effect, or Volterra series to capture memory effect [39, 40]. This

approximation exactly coincides with how analog specifications are made. Often, the

distortion due to nonlinearity of a circuit is analyzed with a few orders of harmonic

distortion since most of the distortion is concentrated on the first few harmonics.

2.3.1 Domain Translation

When viewing voltage or current vs. time, many analog circuits are strongly nonlin-

ear — mixers and ring-oscillators are easy examples.2 For these nonlinear circuits,

however, it is often easier to understand the circuit function in another domain where

the circuits become linear such as phase and duty-cycle domain.

Through variable domain translation, the linear abstraction can be applied to

circuits which appear strongly nonlinear in electrical domains. In fact, almost all of

these circuits exhibit linear system behavior in some transformed variable domains

[23]. A representative example is a PLL which consists of a set of digital blocks:

phase detector, ring oscillator, clock buffers, and frequency divider. It takes a clock

signal as input and produces another clock, possibly with a different frequency, as

1The circuit is linear or weakly nonlinear over a certain range of inputs. We deal with the case
when the input range is too wide in greater detail in Section 3.2.3.

2Domains such as voltage, current, and time are referred to electrical domains in the thesis.

CHAPTER 2. BASIS FOR MODEL VALIDATION 13

output, which shows strongly nonlinear behavior in the voltage domain. As its name

implies, a PLL locks the output clock phase to the input clock phase. In the phase

domain of the input and output clocks, the PLL is fairly linear when it is operating

around its locking condition. Moreover, the frequency-domain transfer function of a

PLL from the input phase to the output phase is the key characteristic of interest,

which shows various properties of a PLL as a linear dynamic system, including loop

bandwidth, damping factor, poles, and zeros.

The transfer function of these strongly nonlinear circuits can be characterized by

an extended AC analysis with variable domain translators [23]. In most RF circuit

simulators, periodic AC (PAC) analysis is available to simulate the linear, periodically

time varying (LPTV) system response of RF circuits such as mixers and oscillators,

given that the circuit has periodic steady state (PSS) [41]. For instance, the linear

system model of a mixer is found by analyzing the signal spectrum around the fre-

quency shifted by the local oscillator clock frequency. This AC analysis technique

can be extended to strongly nonlinear circuits such as PLL and DLL with variable

domain translators since the resulting response surface can be smooth in the trans-

formed domain and thus PAC analysis can be performed in that variable domain. For

example, the transfer function of a PLL circuit is characterized with this extended

PAC analysis in the phase domain [23]. In a similar way, one can perform the analysis

of a DLL in the delay domain where its linear intent is exposed.

For various calibration or adaptation loops, the right domain is usually the quan-

tity being calibrated, e.g., gain for the adaptive gain loop, duty cycle for duty-cycle

correcting loop. The function of a circuit can be easily mapped to a linear system

model when one finds an appropriate variable domain where the circuit response is

smooth. For example, a duty-cycle adjuster and its response are shown in Figure 2.1.

The circuit adjusts the duty cycle of the output clock CLKo from the incoming clock

CLKi by controlling the voltage input Vctrl. While clearly nonlinear in voltage, the

response surface is nearly hyperplane in duty-cycle domain as shown in Figure 2.1b

through the domain translation with D -to-V and V -to-D translators.3 Thus its

3
D(·) means a signal in duty-cycle domain, and V(·) means a signal in voltage domain. Sys-

temVerilog code examples of D -to-V and V -to-D translators are listed in Appendix A.

CHAPTER 2. BASIS FOR MODEL VALIDATION 14

(a)

D(CLKi)

0.2
0.3

0.4
0.5

0.6
0.7

V(
V ctr

l)

0.4
0.6

0.8
1.0

1.2
1.4

D
(C

L
K
o)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(b)

Figure 2.1: Duty-cycle adjuster: (a) circuit diagram with domain translators and (b)
response surface in duty-cycle domain.

CHAPTER 2. BASIS FOR MODEL VALIDATION 15

function is simply formulated as the following linear equation

D(CLKo) = α ·D(CLKi) + β ·V(Vctrl) + γ (2.2)

where γ is the offset of the system, α and β are partial gains from D(CLKi) and

V(Vctrl) inputs, respectively. This simplification greatly reduces the complexity of

the circuit verification; one simply samples three responses to extract α, β, and γ.

Note that these domain translators should be used carefully in model validation.

To avoid errors in domain translators causing chips to fail, all translators should

contain inverse functions as well, e.g., a phase(Φ) to voltage(V) translator would

have a V -to-Φ translator. Prior to model validation, these translation functions are

validated by assuring that the concatenation of these two functions is the identify

function. Once the translators are checked, it is highly improbable that a translator

exactly cancels errors in a functional model.

2.3.2 Coupled Linear System Model

There is another kind of circuit which appears strongly nonlinear: a tunable analog

circuit. In many designs, some properties of a circuit are tunable to optimize the

circuit performance over the environmental variation such as process, voltage, and

temperature. The parameters are either adjusted by digitally stepping through quan-

tized values or adjusted continuously with control inputs. For example, a variable

gain amplifier (VGA) shown in Figure 2.2 is a voltage amplifier, where its voltage

gain α (the controlled parameter) is adjusted by the analog bias current input IBIAS.

This kind of circuit is strongly nonlinear at first glance. The gain control in the VGA

means that the output is related to the product of IBIAS and VIN since the gain is

also varying.

Most designers describe and reason about the circuit as the cascade of two coupled

linear systems ; one modifies a system parameter of the second. Generally speaking,

tunable parameters of a circuit are controlled either statically, or varying over time

with some control feedback loops. If the control is static, the circuit can be easily

decoupled into coupled linear systems: a system along the path carrying information

CHAPTER 2. BASIS FOR MODEL VALIDATION 16

Figure 2.2: Block diagram of a variable gain amplifier.

(a) (b)

Figure 2.3: Coupled linear systems of the VGA in Figure 2.2: (a) linear system from
VIN to VOUT and (b) linear system from IBIAS to α of the system (a).

and the other system from a control input to a controlled parameter. Even if the

circuit parameter is adjusted by a control feedback loop, the update rate of the

parameter is generally much slower than the information signal bandwidth in most

systems. Otherwise, the loop becomes unstable. This is because the feedback loop

needs to measure the average of the system response before updating the parameters.

This means that validating these systems as two coupled systems should not introduce

any holes for errors to slip in.

Going back to the VGA example in Figure 2.2, the nonlinear circuit can be de-

coupled into two coupled linear systems as shown in Figure 2.3: the system along

the path from the voltage input VIN to the voltage output VOUT which is carrying

CHAPTER 2. BASIS FOR MODEL VALIDATION 17

(a)

(b)

Figure 2.4: Phase interpolator: (a) circuit diagram and (b) timing diagram.

information and the other system from the bias current control input IBIAS to the

controlled parameter of the first system, α.

Another example shown in Figure 2.4 is a digital phase interpolator. It takes two

incoming clocks, CKA and CKB, and produces the phase-interpolated clock CKO.

The amount of phase interpolation is adjusted digitally with the digital input W. Its

function in phase domain, or equivalently in delay domain, is described as two simple

linear equations, which are given by

Φ(CKO) = G · (Φ(CKB) −Φ(CKA)) + φ0 + Φ(CKA) (2.3)

G = 1 −

3
∑

k=0

βk · Wk (2.4)

CHAPTER 2. BASIS FOR MODEL VALIDATION 18

Listing 2.1: Verilog model example for a variable gain amplifier

1 // Variable Amplifier with resistive load

2 // bias current is tunable

3 module VGA (

4 output real outp , outn ,

5 input real inp , inn , IBIAS);

6
7 parameter real vdd = 1.8; // supply voltage

8 parameter real R_load =1e3; // resisitve load

9 parameter real vin_os = 0.0; // input dc offset voltage

10
11 real VIN; // input differential voltage

12 real VOUT; // output differential voltage

13 real VOUT_CM; // output common-mode voltage

14 real gain; // variable gain of the amplifier

15
16 // VGA functional description

17 assign VIN = inp - inn;

18 assign gain = IBIAS*R_load; // Coupled Linear System 2

19 assign VOUT = gain*tanh(VIN -vin_os); // Coupled Linear System 1

20 assign VOUT_CM = vdd - gain/2.0;

21 assign outp = VOUT_CM + VOUT/2.0;

22 assign outn = VOUT_CM - VOUT/2.0;

23
24 endmodule

where φ0 is the phase (delay) offset of the system, G is the amount of phase interpo-

lation, and Wk is k-th bit of digital control input W. From the equations, there exist

two coupled linear systems: the linear system from Φ(CKA) and Φ(CKB) to Φ(CKO)

with a static G by pinning W to a constant value and the other system from W to G.

Once the system is decoupled, the formula for the second system remains unchanged

while the first system is formulated as follows.

Φ(CKO) = GW=constant · (Φ(CKB) −Φ(CKA)) + φ0 + Φ(CKA) (2.5)

It is noteworthy that decoupling into coupled linear systems is exactly how we

write a model of a tunable circuit. For instance, the functional Verilog model of

the VGA example can be written as shown in Listing 2.1. It shows that the second

system, gain vs. IBIAS, is separately described first in line 18, and coupled to the first

CHAPTER 2. BASIS FOR MODEL VALIDATION 19

system in line 19.

In summary, we have shown a way to expose the underlying linear intent of tunable

analog circuits. It turns out that the tuned parameters of a main linear system form

additional linear systems with their controlling inputs, which are loosely coupled to

the main linear system. We describe these multiple linear systems as coupled linear

systems, and show that linear abstraction still holds for these circuits. One remaining

question is how to explicitly expose the controlled parameters to validate the models

since the parameters are not the direct outputs of the circuits. The answer to this

question is explained in Section 3.3 when defining the port intent in our linear system

context.

2.4 Summary

In this chapter, we showed that a linear model captures the designer’s intent of analog

circuits and can serve as a formal model. The linear system model can be applied to

many kinds of circuits by transforming the variable domain of I/Os, and describing

a circuit as coupled linear systems. Also, the linear system model can be easily

extended to build an accurate analog model by describing the circuit as a weakly

nonlinear system.

In the next chapter, we discuss how functional equivalence checking of analog

circuits works within a linear abstraction, and the implemented prototype checker

tool.

Chapter 3

Validating Analog Functional

Models

The linear abstraction explained in Chapter 2 enables functional equivalence checking

between two analog representations: circuit vs. model.1 First, we address how to

formally check the equivalence of analog models by leveraging linear abstraction.

This checking requires the generation of test vectors for both models, so Section

3.3 describes how we classify I/O ports in mixed-signal circuits to guide test vector

generation. Section 3.4 and Section 3.5 explain how the prototype checker tool works.

Chapter 4 demonstrates the utility of our checker tool with the circuits from a high-

speed A/D converter.

3.1 Functional Equivalence of Analog Models

Functional equivalence checking of analog models is straightforward since the linear

abstraction formally defines the functional behavior of an analog circuit; the checking

is performed by extracting linear system models from both the circuit netlist and the

Verilog model, and comparing the extracted models. As explained in Section 2.3,

1The checking is not necessarily between a circuit netlist and a Verilog model. Any comparison
between two models is possible. For example, one can compare a Verilog-D model with a Verilog-
AMS model

20

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 21

Model Gain matrix G Relative error in [%] to Model 1

Model 1 (Circuit netlist)
(

−1.0 −0.026
)

N/A

Model 2 (Correct)
(

−1.0 −0.028
) (

0 8
)

Model 3 (CLKo is inverted)
(

1.0 0.028
) (

−200 −207
)

Model 4 (Vctrl is inverted)
(

−1.0 0.028
) (

0 −207
)

Table 3.1: Equivalence checking results of the duty-cycle adjuster shown in Figure
2.1 — gain matrices of various models.

the transfer (gain) matrix in Equation 2.1 completely specifies a linear system; it

describes how the system response (output) changes with the inputs. Once a circuit

and a Verilog model are mapped onto linear system models, their equivalence is

formally checked by comparing two gain matrices:

Gcircuit
?
= GVerilog (3.1)

where Gcircuit is the gain matrix of a circuit netlist and GVerilog is the matrix of a

Verilog model.

Most I/O port inconsistencies discussed in Section 2.1 can be detected by pairwise

comparison of the two gain matrices to see if either the signs or relative magnitudes

are different. A sign discrepancy shows that either a port is improperly connected to a

circuit or the signal polarity is inverted. Similarly, comparing the relative magnitudes

can detect whether a control bus is connected in a reversed order, or assumes a

different encoding style. Since these errors usually produce a large discrepancy in

value, they are easily detected with coarse comparisons.

Table 3.1 shows the extracted gain matrices of the duty-cycle adjuster shown in

Figure 2.1. It lists the matrices of a circuit, a correct Verilog model, and two broken

Verilog models when the system is mapped to the linear model in duty-cycle domain

as described in Equation 2.2. As summarized in the table, comparing partial gains

shows any discrepancy. When the netlist (Model 1) and the Verilog model (Model 2)

are matched, the difference in partial gain values is relatively small. However, there is

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 22

a clear discrepancy when they are not matched; the relative error is large. Therefore,

designers can easily recognize errors. Moreover, the cause of errors can be found by

observing the partial gain from each input to an output. When compared to Model

1, Model 4 has polarity inversion in the partial gain G2 from Vctrl, but no inversion in

the partial gain G1.
2 In contrast, the signs in both G1 and G2 are inverted in Model

3. Thus one is able to identify that there is polarity inversion from CLKi to CLKo in

Model 3 as well as the inversion from Vctrl.

On the other hand, as opposed to boolean comparisons, comparing gain matrices

is a bit vague since partial gains in a matrix are real numbers and any two real

numbers are not the same. It might be necessary to define the tolerance bounds for

assuring that two numbers are the same, i.e., two models are equivalent, so that the

checking is more complete. To avoid defining the right tolerance, we take a different

approach.

Rather than defining the tolerance bounds, we divide this model validation prob-

lem into two problems: one is to check any discrepancy between models at their I/O

boundary by comparing their extracted linear models, and the other is to characterize

the linear system model of a circuit netlist and force the linear system model of the

parameterized Verilog model to the circuit netlist. As shown in Table 3.1, coarse

comparison of the extracted models is sufficient to check if two models have any in-

consistency at their I/O boundary. Once this checking is complete, one is able to

plug the extracted gain matrix from the circuit netlist into the Verilog model. Then,

the updated Verilog model is used for the system-level verification.

3.2 Analog Test Vector Generation

Without an abstract model as a guide, it is impossible to know if a set of test vectors

for identifying a system is complete. Abstraction defines the space of possible outputs.

For digital combinational logic, since a signal takes only either ‘1’ or ‘0’, it requires

2N input vectors for N inputs to generate all possible combinations of inputs.

2G1 and G2 are partial gains of G in Table 3.1; G=
(

G1 G2

)

.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 23

000

001

010

011

100

101

110

111

Figure 3.1: Digital response surface.

At first glance, it seems that generating analog test vectors for extracting the

abstract model might be more difficult than digital vector generation since inputs

can take more than two values. However, the smooth nature of the analog response

surface makes the problem very simple. The unknown response to some inputs can

be inferred by interpolating the known responses.

The following subsections begin by describing the way to generate analog test

vectors for extracting a completely linear model, and then we generalize the method

to a weakly nonlinear system model and a system model with strongly nonlinear, but

still smooth response.

3.2.1 Extracting a Completely Linear Model

Linear abstraction simplifies the vector generation since it gets rid of any interac-

tion between inputs. In a linear system, superposition holds; inputs contribute to

outputs independently. The response of the system can be calculated by considering

each input independently and summing the individual responses to each input. Like

boolean abstraction for digital circuits, linear abstraction greatly reduces the possible

model complexity of analog circuits, but in an orthogonal way. While boolean ab-

straction collapses the value space into discrete binary values, it does not reduce the

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 24

0 5 10 15 20 25 30
Number of test vectors

−5

0

5

10

15

20

σ
re
s

[1
×1

0−
3
]

Figure 3.2: Standard deviation of residual errors, σres, of completely-linear models of
the duty-cycle adjuster circuit in Figure 2.1 vs. the number of test vectors used in
the model fitting.

dimensionality of the space. Since digital response is not smooth as shown in Figure

3.1, an output value generally cannot be predicted from another known outputs such

that all possible input combinations should be enumerated. In fact, the key problem

in digital verification is to efficiently explore a large number of states, which grows

exponentially with the number of inputs or internal registers.

A linear abstraction does not have this problem of a exponentially-growing state

space. As all inputs contribute to an output independently, one only needs to char-

acterize the effect of each input on the output to fully explore an analog circuit. For

instance, completely-linear system models of the duty-cycle adjuster circuit shown

in Figure 2.1 are extracted with increasing numbers of test vectors. The standard

deviation of the residual errors, σres, is calculated for 400 samples of each model.

This calculation is repeated one hundred times. Figure 3.2 shows how quickly the

collected residual errors decrease as the number of test vectors increases. As shown in

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 25

the figure, the maximum value of σres decreases dramatically as the number of vectors

increases, which means that the linear system model of the duty-cycle adjuster can

be extracted with a few test vectors and the extracted model is very accurate. The

superposition principle also applies in time, such that the output is a linear combi-

nation of not only the current inputs but also the inputs at previous times. This

leads to a well-known result that a linear system can be completely characterized by

its response to an impulse arriving at each of inputs [42]. In many practical circuits,

these impulse responses can be compactly expressed as a sum of a few exponentials,

rather than as a general continuous-time function. It is this concise representation of

a system that makes linear abstraction so powerful.

While extracting a completely linear model seems to require only N + 1 random

test vectors for N analog inputs, we need to sample the response with more than

N + 1 test vectors to ensure that the response actually fits well to a completely linear

system, i.e., the residual error of the fitted model is small. There are two main reasons

why the extracted linear model may be invalid: the circuit-under-test is inherently

nonlinear in any of variable domains or the test setup is wrong. To ensure that the

output response to any interaction between inputs is insignificant with a few test

vectors, we adopted an orthogonal array (OA) for the vector generation, which is

discussed in more detail in Section 3.4.1.

3.2.2 Extracting a Weakly Nonlinear Model

While comparing completely linear models ensures that two models are equivalent at

their I/O boundary, one also wants to create an accurate Verilog model and compare

the model with its circuit netlist. As mentioned previously in Section 2.3, the realistic

behavior of an analog circuit is often well modeled by a weakly nonlinear system, and

thus its extraction still requires a small number of vectors.

As we reviewed in Chapter 2, the analog response surface is smooth, which implies

that an unknown response can be estimated by interpolating the existing response

samples. Although a true analog response is not completely linear and thus not a

complete hyperplane, such a response is weakly nonlinear and can be formulated

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 26

0.3 0.4 0.5 0.6 0.7 0.8 0.9
VCTRL

0

500

1000

1500

2000

2500
fr
e
q
u
e
n
cy
 [
M
H
z]

(a)

0 2 4 6 8 10
Taylor series order

0

5

10

15

20

25

30

35

40

45

σ
re
s
[M

H
z]

(b)

Figure 3.3: Weakly nonlinear models of a VCO transfer curve: (a) VCO transfer
curve (b) standard deviation of the residual errors vs. fitting polynomial order.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 27

with a low-order series expansion such as Taylor series with relatively small residual

errors as explained in Section 2.3. Thus the gain matrix serves as an interpolating

function which reconstructs the response with reasonable accuracy. Figure 3.3a shows

the transfer curve of a ring oscillator circuit (output frequency vs. control voltage),

and Figure 3.3b shows how the standard deviation of the residual errors decreases

as the order of the fitted Taylor series increases. As shown in the figure, the weakly

nonlinear behavior of the circuit is well captured with a low order Taylor series.

In terms of test vector generation, a smooth analog response means that the

selection of analog vectors is not critical, and one can easily build a response model

with a few vectors. Since the interpolating function for the response construction is

at most a linear regression model with a low order series expansion, e.g., a third order

Taylor series, a gain matrix can be extracted by simply finding the coefficients of the

function, using only a few response samples.

3.2.3 Piecewise Modeling of Analog Response

The ability to compare small nonlinear effects is enough to ensure that the circuits

and models match for many analog circuits. In some cases, the functional model must

map the response of a circuit over an input range when there is a large change in the

transfer function. In these cases, the polynomial models do not work well, and using

a piecewise linear abstraction is a better approach.

All the models must contain specifications of the valid input range on all of its

inputs. This defines the space of possible input values that is used to generate the

output response. When the transfer curve of a circuit is strongly nonlinear within

valid input range, the input space can be partitioned into multiple regions and then

the linear model in each region can be extracted. With this piecewise segmentation,

one is able to build and check the model with high accuracy without resorting to a

complicated model.3

For instance, Figure 3.4a shows the transfer curve of a LC-VCO [43], i.e., output

3In our checker tool, the user needs to partition the input space manually, so the legal input
range information is provided for the tool. For each region, the tool checks if a linear system model
is valid.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 28

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VCTRL

8.5

9.0

9.5

10.0

10.5
fr
e
q
u
e
n
cy

 [
G
H
z]

(a)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
VCTRL

8.5

9.0

9.5

10.0

10.5

fr
e
q
u
e
n
cy

 [
G
H
z]

Region I Region II Region III

(b)

Figure 3.4: Piecewise modeling of LC-VCO output clock frequency response: (a)
LC-VCO response and (b) piecewise model of the LC-VCO response.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 29

❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵
❵❵

Data Type
Port Intent

Analog Digital Circuit

Real Analog -
Function

Boolean Quantized Analog True Digital

Table 3.2: Port classification in our linear system context.

clock frequency vs. input control voltage VCTRL, which has a strongly nonlinear

response as the input control voltage is away from the center of the input range.

When a PLL is built with this LC-VCO, the nonlinear behavior affects PLL locking

time which may need to be accurately modeled. Instead of a higher order model, one

can partition the control voltage input into a weakly nonlinear region (Region II) and

two compressed regions (Region I and III) as shown in Figure 3.4b, and model the

response in each region with less than third order Tayllor series.

3.3 Port Classification

If a circuit has only analog I/O ports, the vector generation for extracting its linear

system model is simple as explained in the previous section. However, digital I/O

ports must be considered in the test vector generation of mixed-signal circuits. We

have classified the port intent in our linear system model framework to guide the test

vector generation of mixed-signal circuits.

As shown in Table 3.2, ports are classified into analog ports, digital ports, quan-

tized analog ports, and function ports. A signal into/out of a circuit may be repre-

sented as either a real value, i.e., an analog signal, or a boolean value, i.e., a logic

signal. As will be explained later, a digital input could have two different intents

which need to be handled differently. A function port is a special type of port, which

is explained at the end of this section.

The following subsections explain the details of each port type with the ampli-

fier circuit example illustrated in Figure 3.5. This amplifier takes differential volt-

age signals as inputs from either VIN+/− or VCAL+/− depending on the digital input

calib en, and outputs an amplified differential voltage signal to VOUT+/−. The bias

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 30

(a)

(b)

Figure 3.5: An example circuit to explain the type of port: (a) differential amplifier
and (b) current steering D/A converter for controlling the input offset voltage in (a).

current IBIAS adjusts the gain of the amplifier while the input offset voltage is ad-

justed digitally by DP and DN.4 The digital input /pwrdn shuts down the circuit by

disconnecting the bias current, and VDD is the power supply input of the circuit.

4It is assumed that IBIAS adjusts the gain although it may adjust either output voltage swing,
bandwidth, or gain depending on the designer’s intent.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 31

3.3.1 Analog Port

Analog I/O ports are the inputs and outputs of a linear system model. The signals

on analog I/O ports are real values and analog information is carried from the input

port to the output port. An analog input port does not change any circuit’s property

and the response at the analog output port can be directly measured. In Figure 3.5,

VIN+/−, VCAL+/−, and VOUT+/− are such ports. For the amplifier, the intended linear

system is between the input and output differential voltages with specifications such

as gain and bandwidth. Of course VDD is also an analog input port as the signal on

VDD is amplified to VOUT+/−.

In coupled linear systems mentioned in Section 2.3.2, an input controls some

parameters of a circuit, and thus this input is named as an analog control input

port. The controlled parameter may depend on the designer’s intent which is usually

described explicitly in a Verilog model and/or a measurement script, i.e., a circuit

testbench. For example, IBIAS in Figure 3.5 is such an analog control input port as

it adjusts the gain of the linear system between analog I/O ports.

In such coupled systems, it is necessary to pull out the properties being controlled

as outputs since the properties are not the direct outputs of the system. Pseudo

output ports are explicit representation of such properties, and usually extracted by

measurement modules;5 pseudo outputs are the results of simulations which measure

the properties of interest. We assume that the simulation setup that measures these

properties is likely to be available from circuit designers since that setup is also

necessary for the circuit design and verification. From the test setup, one easily

recognizes which properties of a system are being controlled. For instance, the pseudo

output of the amplifier shown in Figure 3.5 is its gain.

It is noteworthy that signals on analog ports are not necessarily defined in electrical

domains. Sometimes, analog inputs and outputs of a linear system are defined in other

domains by translating the domain of circuit’s I/Os. For example, we observed that

the duty-cycle adjuster shown in Figure 2.1 is linear with the clock input and output

in the duty-cycle domain. To test the circuit, one drives a real-valued signal to the

5To do this, one may write a measurement module in HDLs, or extract the property by post
processing of simulation results.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 32

Figure 3.6: Voltage controlled oscillator.

input in duty-cycle domain rather than voltage domain, and measures a real-valued

response at the output in the same domain. Since the linear system model cannot

be constructed without a domain translator, the translator should be considered as a

part of a circuit

It is possible that the variable domains of I/Os are mixed. For instance, for

checking the voltage-controlled oscillator (VCO) shown in Figure 3.6, its linear system

model is between the input voltage VCTRL and the phase or frequency of the output

clock CLKo. Hence, the clock output of the VCO is regarded as an analog output

port in phase/frequency domain despite its binary waveform in voltage domain, and

VVCTRL is an analog input port in voltage domain.

3.3.2 True Digital Port

Some digital inputs change the functional mode of a circuit, generating different

circuit configurations. We call these inputs true digital ports since they control what

circuit configuration is formed. Since each circuit configuration can have a completely

different result surface, one needs to measure each configuration. Similar to the digital

vector generation, N true digital port inputs can create 2N different linear systems

and each system configuration must be verified for modeling checking. While this

exponential order seems troubling, the number of this type of input is usually small

in mixed-signal circuits. Thus the verification complexity from true digital inputs is

generally manageable.

In Figure 3.5a, the power down input /pwrdn and the signal select input calib en

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 33

(a)

(b)

(c)

(d)

Figure 3.7: Circuit configurations of the differential amplifier shown in Figure 3.5,
enumerated by true digital ports: the combination of calib en and /pwrdn are (a)
‘00’, (b) ‘01’, (c) ‘10’, and (d) ‘11’.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 34

DP (N)

IP (N)

Continuous

Quantized

Figure 3.8: Transfer curve of the D/A converter in Figure 3.5b.

controlling the switches are true digital ports. When /pwrdn is asserted, the circuit

is in a power down mode which operates on a completely different mode from the

normal operation when /pwrdn is de-asserted. The calib en configures the signal

flow — it selects inputs, either VIN+/− or VCAL+/−, to the amplifier. Since there

are two true digital inputs, there are 22 = 4 different linear circuit configurations as

enumerated in Figure 3.7. For each circuit configuration, one needs to check the

functional equivalence between the circuit and the model.

3.3.3 Quantized Analog Port

The dominant kind of digital port in mixed-signal circuits is a quantized analog I/O

or control port, i.e., quantized analog port. For these ports, the boolean value does

not change the circuit function, but acts as a quantized analog input or output of

the circuit. As stated in Section 1.1, it is quite common that digital inputs adjust

properties of a circuit in a quantized step or just add a quantized analog signal in

most digitally-assisted analog circuits. For example, the digital inputs of a digital-to-

analog converter (DAC) are essentially analog despite their data representation being

boolean.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 35

For instance, DP and DN in Figure 3.5a are quantized analog inputs which adjust

the input offset voltage of the amplifier. The inputs skew the differential currents

drawing on the amplifier’s outputs with the current steering D/A converter illustrated

in Figure 3.5b. The offset currents, IP and IN , are controlled in a quantized step as

shown in Figure 3.8 and the relationship to inputs is linear, which is given by

IP (N) =

2
∑

k=0

αk · DP(N)[k] (3.2)

where αk is the partial gain contributing to IP (N) from DP(N)[k], k-th bit of the

quantized input DP(N). Although these ports take on discrete values, their intended

functionality is essentially analog in nature. Also, since their circuit implementations

are often in regular, parallel structures, they can be automatically distinguished from

true digital ports via graph isomorphism which is discussed further in Section 3.5.

From a vector generation perspective, the most important feature of such ports is

that superposition holds, which can greatly reduce the number of test vectors needed

to extract a system model. The number of vectors for a quantized analog input

is linearly proportional to its bit width. This linear growth is in strong contrast

to the exponential growth with the bit width for true digital inputs. For example,

one only needs to toggle each bit of DP(N) once to extract αk’s in Equation 3.2.

This linear growth is especially important because the number of quantized analog

inputs increases as analog circuits exploit more digital calibration and compensation

loops. Furthermore, outputs adjusted by these quantized analog inputs are still analog

signals, e.g., IP (N) in Equation 3.2, so that quantized analog inputs can be tested

independently of other analog inputs.

3.3.4 Function Port

There is a special type of port that is essentially part of the system rather than an

I/O port of the system. These ports help enable the operation of the circuit. For

instance, the sequencing clocks in switched capacitor circuits, the local oscillator in

mixers, and the sampling clock of clocked comparators are signals of this type. These

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 36

ports do not carry any information at all and do not control any property of the

system. However, the circuit will not work unless these function ports are driven

correctly. From a model checking perspective, these ports are verified by checking if

the Verilog model is receiving the same signal patterns from the function ports during

system validation as the corresponding circuit under characterization, rather than if

it produces a consistent response to different input values. Therefore, there should

be proper assertions in a functional model to ensure that the patterns from the ports

are valid.

Function ports also arise in controlled systems. For instance, the VGA circuit

in Figure 2.2 is checked with two tests for each of coupled linear systems: from the

voltage input (analog input port) to the voltage output (analog output port) and from

the bias current input (analog control input) to the gain of the first system (pseudo

output port). In the first test, the bias current input is driven with a constant current

source to set the operating point of the circuit while this input is examined in testing

the second system. Thus the bias current input is a function port in testing the first

system.

3.4 Model Checking Procedure

Figure 3.9 provides an overview of how the model checking is performed given that

the port intents are labeled and the test setup for running simulations is prepared.

The detailed description of port labeling and test setup is discussed in Section 3.5.

Test vector generation is straightforward given the port labels. M-bit true digital

inputs generate 2M linear circuit configurations by enumerating all possible combi-

nations of such inputs. For each linear circuit configuration, the same test vectors of

N analog/quantized (control) inputs are generated and exercised. Ideally, N + 1 test

vectors are necessary for N analog/quantized (control) inputs to extract a completely

linear system model. Also, the sampling of input space could be random as analog

response is smooth and thus the choice of test vectors is not critical. For robustness,

however, we generate more than the minimum number of vectors, and perform design

of experiment (DoE) rather than sample the response with random vectors. This will

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 37

Test setup

Port labeling

Test Vector Generation

Generate multiple linear
circuit configuration

Get responses with
generated vectors

Linear regression: fit
response to linear model

Check statistics
(R2 and p-value)

Check equivalence

nonlinear

linear

For each configuration

Figure 3.9: Procedure for functional equivalence checking.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 38

be explained further in Section 3.4.1.

For each circuit configuration enumerated by true digital inputs, the generated

(quantized) analog vectors are run on the circuit netlist using an analog/mixed-signal

(AMS) simulator and on the Verilog model using a functional simulator. The gain

matrices of both models are then extracted by performing linear regression on the

response samples of analog/pseudo outputs to analog/quantized inputs.

After performing linear regression on response samples, the residual errors of the

fitted model are examined to check the fidelity of the model. This is mainly judged

by R2 which is given by

R2 = 1 −
σ2
res

σ2
Y

(3.3)

where σres and σY are the standard deviation of the residual errors and the output

responses, respectively [38]. Large fit errors, i.e., R2 far from 1 (e.g., 0.90), indicate

problems in the test setup such as incorrect analog input range, inappropriate domain

translator, or a digital input labeled as a quantized analog input. If R2 is low, an

error message is given and the designer must intervene. For the analysis, the number

of vectors is adaptively controlled while observing statistical results. Of course the

test vectors and their simulation results from the previous iterations are put together

with current data for the regression. If the number of iteration exceeds a certain

predefined value, the tool gives a warning that the sanity check has failed.

Another important statistical metric of linear regression is p-value of partial gains.

If the residual errors of a fitted model are large, some partial gains become statistically

insignificant, identified by a high p-value [38]. Intuitively, the p-value is inversely

proportional to the signal-to-noise ratio, where the signal is the response change

contributed by the partial gain and the noise is the residual error of the fitted model.

Thus, if p-value is high, one cannot reject a null hypothesis which postulates the

corresponding partial gain is zero. We treat the linear regression result statistically

insignificant if p-value of any partial gain is higher than 0.05 when performing case

studies.6

In checking the models, the sign and relative magnitude of the matrices (output

6In statistics, one rejects null hypothesis when the p-value is less than the significance level, which
is often 0.05 or 0.01.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 39

response vs. analog/quantized input ports) should be consistent for each circuit

configuration created by true digital inputs.

3.4.1 Oversampling of Response

As mentioned in the previous section, more than the minimum number of test vec-

tors for analog/quantized inputs are sampled. To get system responses for a circuit

netlist, our characterization method relies on circuit simulations through SPICE-like

simulators, which inevitably have simulation noise because of numerical integration

during transient simulations. This simulation noise is averaged out by sampling more

responses when running linear regression. It is also obvious that building a more

accurate model with Taylor series expansion requires more response samples to run

than simple linear regression. Doing so allows us to model the weakly nonlinear be-

havior of a circuit. Most importantly, we need to sample more responses to ensure

that the linear assumption is valid.

When the linear assumption fails, there are two main classes of causes: either the

test was not set up properly or the circuit structure is not what we assumed. There

are four typical examples: 1) the variable domain in the test setup is incorrect, 2)

some inputs are out of their legal region, 3) a tunable circuit is not properly decoupled

into coupled linear systems in the test setup, and 4) a false labeling of a quantized

analog port is possible for an unusual circuit. For instance, the output current IOUT in

Figure 3.10 is not a linear, weighted summation of D[0] and D[1] while our tool would

recognize them as a quantized analog port. In any of these cases, it is necessary to

sample the response enough, so that the tool checks whether the fitted linear model

is valid or not. Otherwise, the checker may result in a false negative.

There are various sampling methods to check this linear assumption. In the imple-

mented checker, orthogonal array (OA) testing is adopted to generate analog vectors.

OA testing is an efficient way of performing experiments to minimize the number

of experiments and to check any interaction between inputs which assumed to be

independent [44]. OA vectors with M-level, strength of two for N analog/quantized

analog inputs are examined to get the response. The number of level M is determined

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 40

Figure 3.10: Circuit structure causing false labeling of a quantized analog port.

by the user. One may want to select more levels to get more accurate models with

higher order polynomials and smaller residual errors. On the other hand, the vectors

with strength of two examine the interaction terms between any of two inputs either

to validate the system is linear or to get the cross product of inputs, which reduces

the overhead in the number of test vectors and performs the model comparison faster.

3.5 Equivalence Checker Implementation

This section describes the implemented checker tool, beginning by explaining how

the test setup is configured. Next, we describe how the port intents are labeled to

generate test vectors for comparing analog models.

3.5.1 Test Setup

This checker requires user inputs to set up tests. While generic tests are available

in digital circuits because of the unique domain for boolean abstraction and confined

boolean values, the intended linear system is often manifested in different variable do-

mains (e.g., phase domain for a PLL and duty-cycle domain for a duty-cycle adjuster)

and the system’s properties of interest are different. Therefore, proper tests should

be provided by users, which means that the checker is not completely automatic, but

is implemented to minimize user inputs.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 41

Figure 3.11: Elements of the test setup.

Data Type Property Data Type Property

real

port type

boolean

bit width

domain encode

range prohibited

Table 3.3: Port specification.

Figure 3.11 illustrates the elements of a required test setup.7 It is composed of

various information needed for building simulation testbenches and generating test

vectors. Some circuits require multiple tests. For instance, we decoupled a variable

gain amplifier exemplified in Section 2.3.2 into two coupled linear systems which need

separate testbenches.

First, port specifications should be provided for generating test vectors. The

attributes on port specifications are different depending on whether the port signal

is real or boolean, which is summarized in Table 3.3. A port with a real value signal

is an analog port and thus port type property can be analog I/O, control input, and

pseudo output port. It also has a domain property to define its variable domain.8

The legal input/output range during device operation is specified by range. On the

7In our implementation, a user also needs provide compilation, elaboration, and simulation op-
tions of simulators.

8A user chooses the value of this property among the reserved words such as phase, delay, voltage,
and so on.

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 42

other hand, a port with boolean signal is either quantized analog port or true digital

port. The bit width defines the number of wires in this port, and encode indicates

how data is encoded on these wires, e.g., binary or thermometer. This encoding

information is double-checked with the extracted gain matrix later. Sometimes, only

a subset of possible values is allowed for digital inputs so that prohibited defines a list

of prohibited values.

Since the output responses of a circuit/Verilog are collected through simulations,

designers need to find and create testbenches to measure the (pseudo) analog outputs

for given test vectors. Testbenches either directly measure the response or post-

process the simulation results depending on what is being measured. For example,

the output current of a current steering D/A converter can be directly measured. If

one wants to estimate the transfer function in the frequency domain from the impulse

response, a script for post-processing the transient simulation data (impulse response)

is required.

The setup also describes how components are connected. The components include

device under test (DUT), stimulus, variable domain translator, and measurement,

which are essential parts of a typical testbench. Each analog input must have a

domain translator to define the correspondence between the number in a functional

model and the analog signal in a circuit netlist. The translator is quite simple for

electrical domains, since it maps real numbers to voltages or currents, or can be

slightly more complex if the system is linear in other domains such as duty cycle and

phase. All these data except the domain translators should be available from the

circuit level block verification, so it should not require much additional effort.

Note that there could be mismatches between the testbenches of a circuit netlist

and a Verilog unless the testbenches are generated from the same source. To prevent

the mismatches, a common testbench description is embedded in the setup. Based

on this embedded description, testbenches for both models are generated from the

template shown in Listing 3.1.9 From the information relevant to the testbench in the

test setup, the tool elaborates the template so that it generates both a Verilog-AMS

testbench for simulating a circuit netlist and a Verilog testbench for running a Verilog

9The template is written in EmPy markup language [45].

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 43

Listing 3.1: EmPy template for generating a Verilog(-AMS) testbench.

1 @# Template for testbench

2 @[if model == ’ams ’]

3 ‘include " disciplines.vams"

4 ‘include " constants.vams"

5 @[end if]

6
7 @testbench[’pre_module_declaration ’]

8
9 ‘timescale @simulation[’timeunit_str ’]/ @simulation[’timeprec_str ’]

10 // //

11 // @testname testbench

12 // //

13 //module @testname;

14 module test;

15
16 // //

17 // declaration of wires

18 // //

19 @[for p,v in testbench[’wire ’].items()] @[for x in v]

20 @p @x;

21 @[end for] @[end for]

22
23 // //

24 // Custom code here

25 // //

26 @testbench[’custom_code ’]

27
28 // //

29 // instantiation of modules

30 // //

31 @[for p in testbench[’instance ’]]

32 @p @[end for]

33
34 // //

35 // instantiation of file dump statement

36 // //

37 @[for p,v in testbench[’response ’].items()]

38 @v[’verilog_str ’]

39 @[end for]

40
41 // //

42 // simulation time control

43 // //

44 initial

45 #(@(int(simulation[’sim_time ’]/ simulation[’sim_timeunit ’])))

46 $finish;

47
48 endmodule

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 44

model. For this to work, all the components used in the testbenches such as stimulus,

domain translator, and measurement module must exist in both Verilog-AMS and

Verilog HDL environments.

3.5.2 Labeling Ports

The tool starts the checking process by labeling ports. Although the ports are already

specified in the test setup, the tool checks the sanity of their specifications to detect

possible human errors. For example, a user may incorrectly specify a voltage input

to an amplifier as a true digital input port instead of an analog input port. Such

an error results in invalid vectors for the input. This port labeling checks whether

the port specifications from the user inputs match the underlying port intents in the

testbench.

It is trivial to distinguish analog ports from digital ports since all analog ports

require domain translators being attached to a DUT — it is necessary even for voltage

or current domains since no signal discipline exists for real numbers in HDLs. Thus the

tool checks if the variable domain of an analog port is connected to the corresponding

domain translator.

It is essential to distinguish a quantized analog port from a true digital port to

reduce the number of test vectors required during validation.10 Since a quantized

analog port has very regular, parallel physical structure in most cases, we apply a

simple graph isomorphism test to identify it.11 As depicted in Figure 3.12, the algo-

rithm simply checks whether the circuit structure is changed by removing each input.

If the circuit topology remains unchanged, implying that it has another structure in

parallel, the inputs are labeled as quantized analog inputs. The graph comparison

is done without device size information since the effect of different element size is

manifested in the gain matrix from each bit of a quantized analog input. While this

approach works on most inputs we have seen, it will fail in some circuits, like R-2R

10All ports except analog and quantized analog ports will be recognized as true digital ports.
11A circuit netlist is converted into an undirected graph; all devices and ports become labeled

nodes, and wires become edges. The graph isomorphism of converted graphs is checked using
NetworkX software library [46].

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 45

Figure 3.12: Graph isomorphism test for identifying a quantized analog port.

ladders where the topology does depend on inputs. In addition, our current tool is

not very sophisticated. One needs to manually strip off any digital gates driving the

quantized analog inputs. Otherwise, they will fail the isomorphism test.

3.6 Summary

In this chapter, we described a simple but efficient method to check the functional

equivalence between a mixed-signal circuit and its HDL functional model. This prob-

lem is made vastly simpler by leveraging the fact that most analog circuits are trying

to implement a linear function in some domain. Since superposition holds in linear

systems, the linearity assumption reduces the number of input test vectors needed

CHAPTER 3. VALIDATING ANALOG FUNCTIONAL MODELS 46

to be linear on the number of analog inputs. In most cases one would use slightly

larger number of input vectors than the minimum required, allowing the system to

check the modeling assumptions, as well as extract the needed partial gains. The only

complexity is with digital inputs that end up changing the underlying circuit. While

these inputs are rare, each potential circuit must be characterized and compared with

the functional model.

Chapter 4

A 40-Way, Time-Interleaved ADC

In this chapter, a sub-ADC and phase interpolator in a 40-way, time-interleaved ADC

are examined to demonstrate the utility of the model checking method explained in

Chapter 3. This ADC uses 40 sub-ADCs in parallel to increase the effective sampling

rate. The concept of this time-interleaved ADC is illustrated in Figure 4.1 [47]. The

40-channel sub-ADCs alternatively sample an input signal, so that the conversion

cycle of each sub-ADC is relaxed to 40 · TS, where TS is the sampling period of the

ADC.

A single-slope ADC is used for the sub-ADC implementation, which is shown in

Figure 4.2 [47]. The operation of the ADC during a single conversion cycle is as

follows. A differential input voltage on in+ and in− is first sampled onto a pair of

hold capacitors CH+ and CH−
by a sampling clock sclk. The current source from a

ramp generator is then used to charge CH+, so the voltage on node hold+ (Vhold+)

ramps up linearly. When Vhold+ crosses the voltage on node hold−, the comparator

fires and triggers a set of latches to latch the current counter value. Since the latched

counter state is proportional to the differential input voltage, the counter value holds

a digital representation of the ADC input.

The counter is driven by a set of clock signals from an integrated PLL which is also

the source of 40 phase sampling clocks. To ease the clock frequency requirement of

the PLL, the phase of two clocks, a clock and its quadrature clock from the PLL, are

interpolated instead of generating higher frequency clocks, so that the finely-spaced

47

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 48

(a)

(b)

Figure 4.1: Concept of 40-way, time-interleaved A/D conversion: (a) simplified block
diagram of a converter (b) 40-way, time-interleaved sampling.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 49

(a)

(b)

Figure 4.2: A simplified single-slope ADC: (a) block diagram and (b) timing diagram.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 50

Figure 4.3: Bias generator.

clocks from the phase interpolator drive the counter.

The sub-ADC was broken into circuit blocks, and a number of different design-

ers created the blocks and corresponding Verilog models. The model checking is

performed for each block with our checking tool.

4.1 Bias Generator

The circuit diagram of a bias generator is depicted in Figure 4.3. It generates multiple

currents that are distributed to the ramp generators and comparators in a sub-ADC.

A constant-gm bias circuit generates an adjustable reference current IREF . The two-

bit digital input cfg I controls the total resistance of the resistor array, and sets IREF .

The generated current is then amplified by the current mirrors, and the mirrored

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 51

Pin Name
Signal
Type

I/O
Bit

Width
Description

Irampref[0] Analog Output -
Current output to ramp
generator

Irampref[1] Analog Output -
Current output to ramp
generator

Icompref[0] Analog Output - Current output to comparator

Icompref[1] Analog Output - Current output to comparator

VDD Analog Input - Power supply voltage input

cfg I Digital Input 2
Adjust the reference current
IREF

cfg halfI Digital Input 1
Reduce the output currents by
half

Table 4.1: Physical pin description of the bias generator.

output currents are fed to the other circuit blocks. The currents flowing through

Irampref [1: 0] and Icompref [1: 0] outputs are reduced to half of their nominal values

when the digital input cfg halfI is set to ‘1’. Table 4.1 summarizes the physical pins

of the circuit.

Test Description

The intent of the circuit is easily understood in current domain since it generates

current sources. The output current through Irampref[0] from the inputs is modeled

as

I(Irampref[0]) =

(

1 −
1

2
· cfg halfI

)

·

(

1 +
1
∑

k=0

αk · cfg I[k]

)

· IBASE (4.1)

where I(Irampref[0]) is the output Irampref[0] in current domain, αk is the partial

gain from the cfg I[k] input, and IBASE is the current I(Irampref[0]) when cfg I and

cfg halfI are equal to ‘00’ and ‘0’, respectively. The other outputs are modeled in a

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 52

Port Name
Properties

Port Type Domain Range

Irampref[0]
Analog
Output

Current [0.0,10µ] [A]

Irampref[1]
Analog
Output

Current [0.0,10µ] [A]

Icompref[0]
Analog
Output

Current [0.0,10µ] [A]

Icompref[1]
Analog
Output

Current [0.0,10µ] [A]

Port Name
Properties

Port Type Bit Width Encoding Prohibited

cfg I
Quantized

Analog
Control Input

2 Binary -

cfg halfI
True Digital

Input
1 Binary -

Table 4.2: Port classification of the bias generator.

similar way.

From Equation 4.1, the intent of each physical pin, i.e., the port class in our linear

system model, can be identified, which is summarized in Table 4.2. The digital input

cfg I is labeled as a quantized analog control input because it adjusts the output

currents in a quantized step. The other digital input cfg halfI is a true digital input

port since it changes the functional mode of the circuit, i.e., nominal current output

mode vs. half current output mode, which generates two linear models given by

I(Irampref[0]) =

(

1 +

1
∑

k=0

αk · cfg I[k]

)

· IBASE (4.2)

where cfg halfI is equal to ‘0’, and

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 53

I(Irampref[0]) =
1

2
·

(

1 +

1
∑

k=0

αk · cfg I[k]

)

· IBASE (4.3)

where cfg halfI is equal to ‘1’. Based on these linear models, the test is configured

and the linear models of both the circuit and its Verilog model are extracted by the

checking tool.

Note that the test to measure the effect of the power supply input VDD on circuit

performance, e.g., power supply rejection, is not included because its effect is not

described in the original Verilog model. However, it should be included to build more

accurate model since the power supply is also an analog (control) input to the circuit.

Model Checking Result

Since Equation 4.1 is linear, a single test is prepared for sampling the response of

output currents to inputs. Given this test setup, the extracted linear system equations

of a circuit netlist are given by

I(Irampref[0])

I(Icompref[0])

=

1.17 1.22

4.39 4.21

1

cfg I

[µA] (4.4)

when cfg halfI equals to ‘0’, and

I(Irampref[0])

I(Icompref[0])

=

0.59 0.61

2.51 2.40

1

cfg I

[µA] (4.5)

when cfg halfI equals to ‘1’.1 Note that the ‘1’ in the column vector of inputs ac-

counts for the offset of the outputs. The results show only half of the outputs since

Irampref[1] is identical to Irampref[0] and so is Icompref[1] to Icompref[0]. The statis-

tics of the linear regression are shown in Table 4.3. The R2’s are close to 1, which

1In this example, cfg I is represented as a single number. However, the implemented tool checks
the gain from each bit of such digital bus input. The reason for this bitwise comparison is explained
at the end of this section and Section 4.2.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 54

Mode R2

cfg halfI = 0

0.999

0.999

cfg halfI = 1

0.999

0.999

Table 4.3: Linear regression statistics of the bias generator: with the circuit netlist.

means that the responses fit well into linear models.

In addition to the original Verilog model which had an error, a few Verilog models

with errors are manually created to demonstrate the comparison. All models are

tested with the same test vector. The checking results are summarized Table 4.4.

Several problems of the original Verilog model (Model 1) are detected by observing

the relative errors in partial gains. First, the offset current of the output was not

included in the model. Second, the partial gain from cfg I to Icompref[0] does not

change for different modes configured by cfg halfI. Lastly, the sign of G22, i.e., the

partial gain from cfg I to I(Icompref[0]), is different from that of the circuit netlist

because of the polarity inversion of the output current.2

After checking the original model, the model is revised manually by referring to

the gain matrix of the circuit netlist. The system model of the revised Verilog model

(Model 2) matches well with that of the circuit netlist.

Verilog models are further modified from the revised model. In Model 3, the gain

matrices of two modes are swapped since the polarity of cfg halfI is inverted. The

error in Model 4 and Model 5 is less obvious than the other cases, but the R2’s of

2Since it is possible that transmitting and receiving blocks of the current are designed by different
designers, the polarity convention of the current is important. For example, a current source with
PMOS device in a transmitting block is possibly connected to a diode-connected PMOS load in a
receiving block, which causes an electrical error. Thus we assume that the current flowing out of
a PMOS device is positive and the current flowing into a NMOS device is negative in sign. When
measuring the current in the checker, the current measurement module for a current sink, i.e., the
output of a circuit connected to a NMOS current source, changes the measured current. Thus all
the measured currents should have positive sign in the checker.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 55

Model Mode Gain Matrix
Relative Error of

partial gains in [%]
to Circuit

min(R2)

Model 1: Original
Verilog

cfg halfI=0

0.0 1.0

0.0 −4.0

−100 −18

−100 −195

1.0

cfg halfI=1

0.0 0.5

0.0 −4.0

−100 −18

−100 −267

1.0

Model 2: Revised
Verilog

cfg halfI=0

1.17 1.22

4.21 4.39

0 0

−4 4

1.0

cfg halfI=1

0.59 0.61

2.11 2.20

0 0

−16 −8

1.0

Model 3: cfg halfI
is inverted

cfg halfI=0

0.59 0.61

2.11 2.20

−50 −50

−51 −48

1.0

cfg halfI=1

1.17 1.22

4.39 4.21

190 100

75 75

1.0

Model 4: cfg I is
thermometer coded

cfg halfI=0

1.35 0.78

4.84 2.83

15 −36

10 −32

0.929

cfg halfI=1

0.67 0.39

2.42 1.41

14 −36

−4 −41

0.929

Model 5: cfg I is
thermometer coded
and cfg halfI is
inverted

cfg halfI=0

0.67 0.39

2.42 1.41

−43 −68

−45 −67

0.929

cfg halfI=1

1.35 0.78

4.84 2.83

129 28

93 18

0.929

Table 4.4: Model checking results of the bias generator.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 56

Model Mode Gain Matrix
Relative Error of

partial gains in [%]
to Circuit

Circuit
cfg halfI=0

1.17 2.43 1.21

4.39 8.40 4.20

 -

cfg halfI=1

0.58 1.21 0.61

2.50 4.79 2.40

 -

Model 4
cfg halfI=0

1.17 1.22 1.22

4.21 4.39 4.39

0 −50 0

−4 −48 5

cfg halfI=1

0.59 0.61 0.61

2.11 2.20 2.20

2 −50 0

−16 −54 −8

Table 4.5: Bitwise representation of system models for the circuit and Model 4 in
Table 4.4.

the two cases become lower, which means that the responses fit less well into linear

models. Moreover, if the partial gain from cfg I is expanded to cfg [1] and cfg [0],

the error becomes obvious. For example, Table 4.5 shows the bitwise gain matrices

of both the circuit netlist and Model 4 with the following relationship:

I(Irampref[0])

I(Icompref[0])

= G

1

cfg I[1]

cfg I[0]

[µA] (4.6)

As shown in Table 4.5, the bitwise comparison of partial gains to quantized analog

input clearly shows that the model errors are about -50%.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 57

Figure 4.4: Ramp current generator.

4.2 Ramp Current Generator

The next design is a ramp current generator shown in Figure 4.4. When the input

sampler is in hold mode, this ramp generator draws a current into the hold capacitor

in the input sampler to ramp up the voltage across the capacitor. The circuit takes a

reference current from the bias generator, and outputs a current to the input sampler.

The ramp current needs to be finely controlled because the gain of the ADC transfer

curve is primarily determined by the capacitance of the hold capacitor divided by this

ramp current. At the same time, the area overhead of the circuit is also a concern

because the circuit is replicated for every sub-ADC. To provide a wide range with

moderate area, a multistage current mirror circuit is used [48].

The reference current from Irampref input is amplified to produce currents of

the first and second current mirror stages, which are combined together to generate

the ramp current. The output currents of both mirror stages are digitally controlled

by cfg I ramp [5: 3] and cfg I ramp [2: 0], respectively. The current flow to the input

sampler is then controlled by the digital input vsw and its complementary input vsw.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 58

Pin Name
Signal
Type

I/O
Bit

Width
Description

Irampout Analog Output - Ramp current output

Irampref Analog Input - Reference current input

VDD Analog Input - Power supply voltage input

cfg I ramp Digital Input 6 Adjust ramp current

vsw Digital Input 1 Enable ramp current output

vsw Digital Input 1 Complementary input of vsw

Table 4.6: Physical pin description of the ramp current generator.

Physical pins of the circuit are summarized in Table 4.6.

Test Description

The ramp generator is linear in the current domain of the output Irampout for a

similar reason as the bias generator is. However, in contrast to the bias generator,

this circuit has an analog input I(Irampref) that propagates to the output while the

current gain is controlled by two current mirror stages. This relationship is given by

I(Irampout) = vsw ·G · I(Irampref) (4.7)

G =
5
∑

k=0

αk · cfg I ramp[k] + g0 (4.8)

where G is the current gain of this circuit, αk is the partial gain from each bit of

cfg I ramp, and g0 is the offset term of G.

The system is a tunable circuit, which could be nonlinear from Equation 4.7 and

4.8. Thus the system is decoupled into two coupled linear systems: a linear system

from analog input I(Irampref) to analog output I(Irampout) and the other linear

system from control input cfg I ramp to pseudo output (G) which is the gain of the

first system. Therefore, two tests are necessary to check both coupled linear systems.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 59

Port Name
Properties

Port Type Domain Range

Irampout
Analog
Output

Current [0.0,10µ] [A]

Irampref Analog Input Current [0.0,10µ] [A]

Port Name
Properties

Port Type Bit Width Encoding Prohibited

cfg I ramp
Quantized

Analog
Control Input

6 binary None

vsw
True Digital

Input
1 binary None

vsw
True Digital

Input
1 binary None

Table 4.7: Port classification of the ramp current generator: For testing the system
in Equation 4.7, cfg I ramp is randomly sampled (e.g., ‘100000’) in its valid values.
For testing the system in Equation 4.8, I(Irampref) is randomly sampled (e.g., 2.0
µA) in its valid values.

Table 4.7 summarizes the ports for testing the systems. Note that G is indirectly

measured by observing I(Irampout) rather than calculated by post-processing script.3

Given this setup, coupled linear systems used in the checking are given by

I(Irampout)1 = vsw ·Gcfg I ramp=constant · I(Irampref) (4.9)

I(Irampout)2 = vsw ·G · I(Irampref)Irampref=constant (4.10)

It is also noteworthy that the checker fails to perfectly recognize the quantized port

3Given that I(Irampref) is pinned, the change in G to cfg I ramp can be indirectly measured by
observing I(Irampout). As long as one is interested in comparing two analog models, not extracting
the parameters, this indirect measurement gives the same checking result.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 60

cfg I ramp by pattern matching due to the irregular circuit structure. The tool suc-

cessfully identifies the quantized ports for two subsets of cfg I ramp, cfg I ramp [5: 3]

and cfg I ramp [2: 0], because each subset has a regular structure, but it fails to rec-

ognize the quantized port for the whole bits of cfg I ramp [5: 0] because these two

groups are not regular to each other. However, this does not increase the number of

test vectors since two subsets of cfg I ramp still contribute to G linearly.

Model Checking Result

Linear system models are extracted for two modes created by the true digital input

vsw, which are given by

I(Irampout)

GI(Irampref)=2 µA

=

0 0 −

0 − 0

1

I(Irampref)

cfg I ramp

µA

A/A

(4.11)

when vsw equals to ‘0’, and

I(Irampout)

GI(Irampref)=2 µA

=

0 1.24 −

0.99 − 0.013

1

I(Irampref)

cfg I ramp

µA

A/A

(4.12)

when vsw is ‘1’. When vsw equals to ‘1’, the R2 of the linear regression is
(

1.0 0.985
)T

.

In testing quantized analog ports, bitwise comparison of the partial gains is im-

portant. This is not only because the error in the model becomes more obvious as

exemplified in Section 4.1, but also the error caused by a single bit of a quantized

analog port can be smeared out if the response change contributed by the bit is small

compared with the residual errors of fitted model. Consider the case of a Verilog

model where the least significant bit (LSB) of cfg I ramp is inverted. If one runs

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 61

linear regression on GI(Irampref)=2 µA to cfg I ramp, its partial gains are 0.0132 A/A

for the circuit netlist and 0.0131 A/A for the Verilog model, respectively. The rel-

ative error is only about -1% such that it appears to have no error in the model.

The reason for this failure is that the residual errors of the linear regression on the

circuit response are much larger than the response change contributed by the LSB

cfg I ramp [0]; the standard deviation of the residual errors is 0.037 A/A, which is

much larger than the partial gain from the LSB, 0.0132 A/A.

Comparing the partial gains from each bit of cfg I ramp makes the error de-

tectable. The following two equations show the system equations GI(Irampref)=2 µA of

both the netlist and the model in order when vsw is set to ‘1’.

GCircuit,I(Irampref)=2 µA =

0.949

0.027

0.052

0.102

0.097

0.194

0.387

T

1

cfg I ramp [0]

cfg I ramp [1]

cfg I ramp [2]

cfg I ramp [3]

cfg I ramp [4]

cfg I ramp [5]

[A/A] (4.13)

GV erilog,I(Irampref)=2 µA =

0.975

−0.027

0.052

0.102

0.097

0.194

0.387

T

1

cfg I ramp [0]

cfg I ramp [1]

cfg I ramp [2]

cfg I ramp [3]

cfg I ramp [4]

cfg I ramp [5]

[A/A] (4.14)

In this case, the standard deviation of the residual errors is lowered to 0.003 A/A.

From these extracted equations, one is able to easily detect that the polarity of the

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 62

Figure 4.5: Block diagram of a comparator.

partial gain from cfg I ramp [0] is inverted. Also, the bitwise gain matrices show

that cfg I ramp is not a single binary code, and this is the reason why the standard

deviation of the residual errors is lowered when performing linear regression with

individual bits of cfg I ramp as predictor variables. In Equation 4.13, the partial

gain from cfg I ramp [2] and the gain from cfg I ramp [3] are close because the size of

current mirror devices contributing to these partial gains are the same.

4.3 Comparator

A simplified block diagram of a comparator is shown in Figure 4.5. It compares the

differential voltage inputs from two input samplers, triggering a latch to hold the

current value of a global counter. The comparator in this example is a continuous-

time, multistage amplifier, which compares two analog voltage inputs, inp and inn,

and outputs the digital signal out. The bias circuit in the comparator takes a reference

current Icompref from the bias generator, generating and distributing bias signals to

the amplifiers. The digital input cfg offset adjusts the input offset voltage of the

circuit. Table 4.8 summarizes physical pins.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 63

Pin Name
Signal
Type

I/O
Bit

Width
Description

out Digital Output 1 ‘1’ if V(inp) ≥ V(inn), else ‘0’

inp Analog Input - Positive-going voltage input

inn Analog Input - Negative-going voltage input

Icompref Analog Input - Reference current input

VDD Analog Input - Power supply voltage input

cfg offset Digital Input 3 Adjust input offset voltage

Table 4.8: Physical pin description of the comparator.

Test Description

Testing a comparator is difficult because its output is quantized. The discrete response

makes it impossible to directly measure the linear intent of the circuit. Instead of

directly observing the digital output, a virtual feedback network is implemented to

convert the digital signal output to an analog signal as shown in Figure 4.6. It is

essentially a unity gain feedback. The digital output is converted into a small voltage

step by 1-bit, D/A converter which is clocked by a virtual clock. The feedback would

be stuck at infinite loop in simulating a Verilog model unless the D/A is clocked. To

make the loop negative feedback and pass through an integrator, the user sets the

scale factor of the D/A output to either -1 if the comparator is non-inverting, or +1

if the comparator is inverting in the test setup. If the user incorrectly sets up the

scale factor, the ouput is stuck at a value and thus the output response does not fit

well to a linear model. To speed up the convergence of the loop, the gain of the D/A

converter is adaptively controlled.4

The linear response of the circuit is now exposed with the virtual output vout,

which is depicted in Figure 4.6b. The analog voltage output V(vout) is a linear

function of analog voltage inputs, V(inp) and V(inn), making it easy to analyze the

4This virtual feedback loop is written in HDLs, and its SystemVerilog example is listed in Ap-
pendix A.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 64

(a)

(b)

Figure 4.6: Testing a comparator: (a) test circuit configuration and (b) transfer curve.

system. The slope of the transfer curve shows whether the polarity from the inputs

to the output is inverted or not, and the y-intercept, i.e. the point at which the line

crosses the V(vout)-axis, is the input offset voltage VOS of the circuit.

Table 4.9 summarizes ports used in testing the comparator. Note that the digital

output pin out is not the port of the circuit in this linear system model. Instead,

V(inp) and V(inn) are analog input ports of the system and V(vout) is the system’s

analog output port. Also, the input offset voltage adjusted by cfg offset is extracted

together with analog I/O ports since the quantized analog input cfg offset and the

analog inputs independently contribute to the analog output.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 65

Port Name
Properties

Port Type Domain Range

vout
Analog
Output

Voltage [-0.4,0.4] [V]

inp Analog Input Voltage [0.0,0.3] [V]

inn Analog Input Voltage [0.0,0.3] [V]

Icompref
Analog

Function
Input

Current [7,7] [µA]

VDD
Analog

Function
Input

Voltage [1.0,1.0] [V]

Port Name
Properties

Port Type Bit Width Encoding Prohibited

cfg offset
Quantized

Analog Input
3 Binary None

Table 4.9: Port classification of the comparator.

Note that two other analog inputs, VDD and Icompref are not tested in the

example since the effect of these two inputs are not modeled in the original Verilog

model. Input signals on VDD and Icompref ports are set to their typical values in

testing the circuit, working as function ports of the system.

Model Checking Result

In checking this comparator, two functions are of interest; one is whether the polarity

from two inputs, inp and inn, to the output out is correct, and the other is how the

input offset voltage is adjusted with the quantized analog port cfg offset.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 66

Model Gain Matrix
Relative Error of

partial gains in [%]
to Circuit

min(R2)

Model 1: Original
Verilog

(

0.022 −0.006 0.961

)

(

4 0 0
)

0.996

Model 2: Inverting
output

(

0.0 0.0 −1.285

)

(

−100 −100 −234
)

0.741

Model 3: cfg offset
is inverted

(

−0.022 0.006 0.961

)

(

−200 203 0
)

0.996

Table 4.10: Model checking results of the comparator.

The extracted linear system equation of the circuit netlist is given by

V(vout) = Gx =

(

0.021 −0.006 0.962

)

1

cfg offset

V(inp) −V(inn)

[V] (4.15)

where the R2 of the fitted model is 0.996. The relationship from the analog inputs

to the analog output is non-inverting because G3 is close to +1. Also, G2 represents

the gain of the controlled input offset voltage.

Two incorrect Verilog models are created and checked against the circuit netlist.

One model is producing an inverting digital output, and the other model adjusts the

input offset voltage by cfg offset in the opposite direction to what the circuit does.

As shown in Table 4.10, the errors can be detected by comparing the gain matrices.

In testing Model 2, the extraction results in an abnormal gain matrix since the test

assumed that the comparator should be non-inverting such that the scale factor after

the D/A converter is set to -1, which causes the virtual feedback loop in Figure 4.6a

to be positive feedback in this incorrect Verilog model. The input offset voltage is

not affected by cfg offset since the output V(vout) is already stuck because of the

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 67

Figure 4.7: Input sampler.

positive feedback loop. This abnormal result can also be identified by observing the

low R2 value which means that the response does not fit well into a linear model.

4.4 Input Sampler

The analog input of the ADC is sampled on the hold capacitor using the circuit shown

in Figure 4.7. For each sub-ADC, two identical samplers form a pseudo-differential

circuit, which first tracks and then holds the differential input signal. The track and

hold (T/H) modes are controlled by a clock input sclk. The output voltage vout

tracks the input voltage vin when sclk is ‘1’ while vin is disconnected from vout

when sclk goes to ‘0’. When the circuit is in hold mode, a constant current from the

ramp generator is drawn through the Iramp input to the hold capacitor CH , so that

vout voltage is ramping up for the rest of a conversion cycle. Table 4.11 summarizes

physical pins.

Test Description

Unlike other circuits examined, this circuit has states due to the hold capacitor. In

addition to checking the transfer function of the circuit in both states, we also need

to check the state transition when sclk changes. To verify the state transition as well,

a slight modification in driving the sclk input is necessary. For other circuits, we

treated a true digital input as a static input, i.e., a circuit is already configured by

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 68

Pin Name
Signal
Type

I/O
Bit

Width
Description

vout Analog Output - voltage output

vin Analog Input - voltage input

sclk Digital Input 1
the sampler is in track mode if
sclk=‘’1’, and in hold mode if
sclk=‘0’

Iramp Analog Input - Ramp current input

Table 4.11: Physical pin description of the input sampler.

true digital inputs before testing a circuit or a model. However, sclk in this circuit

is triggered during simulations while all possible state transitions are enumerated.

Thus one test is needed to check a linear system between analog I/O ports when sclk

switches from ’0’ to ‘1’, and another test is needed to check the other linear system

between ports when sclk changes from ‘1’ to ‘0’.

It is also interesting that this circuit has time as an analog input or an analog

control input, coupled with the current flowing through Iramp input because the

ramp-up voltage across the hold capacitor is a product of the input current and the

duration of the current integration. Therefore, the linear system models of this circuit

are given by

V(vout) = V(vin) (4.16)

when the circuit is in track mode,5 and

V(vout) = I(Iramp) · δt + α ·V(voutp) + Vfeed (4.17)

when the circuit is in hold mode. Vfeed is an offset voltage caused by clock feedthrough

when the circuit switches to hold mode. The charge injection error depends on the

5We assume that the output impedance of driving source for vin is very low such that the output
voltage V(vout) in track mode is not affected by the ramp current although the sampling switch
has finite impedance.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 69

previous state of the voltage on vout (V(voutp)), which is the tracked voltage by the

sampler. Table 4.12 summarizes the ports for checking models. It is noteworthy that

the system is decoupled into two coupled systems by assuming that δt is an analog

control port.

Model Checking Result

The extracted linear system equations of the circuit netlist are given by

V(vout)1

V(vout)2

 =

−27.4m 0.0 87.1k − 9.97m

−23.1m − − 104.1M −

1

V(vin)

I(Iramp)

δt

V(voutp)

[V] (4.18)

when sclk changes from ‘1’ to ‘0’, and

V(vout)1

V(vout)2

 =

0.0 1.0 0.0 − 0.0

0.15 − − 0.0 −

1

V(vin)

I(Iramp)

δt

V(voutp)

[V] (4.19)

when sclk changes from ‘0’ to ‘1’. The first row, the output is V(vout)1, of the

matrices is the system between analog I/Os while δt is set to 2.5 ns, and the second

row, the output is V(vout)2, is the indirect measurement of the system’s gain by

observing V(vout) to δt while I(Iramp) and V(vin) are set to 3.0 µA and 0.15 V,

respectively.

The system equations of a Verilog model is summarized in Table 4.13. The result

shows that the Verilog model does not match with the circuit netlist as pedestal

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 70

Port Name
Properties

Port Type Domain Valid Range

vout
Analog
Output

Voltage [0.0,0.4] [V]

vin Analog Input Voltage [0.0,0.3] [V]

voutp Analog Input Voltage [0.0,0.4] [V]

Iramp Analog Input Current [2.0,4.0] [µA]

δt
Analog

Control Input
Time [1,4] [ns]

Port Name
Properties

Port Type Bit Width Encoding Prohibited

sclk
True Digital

Input
1 Binary None

Table 4.12: Port classification of the input sampler.

Model Mode Gain Matrix
Relative Error of

partial gains in [%]
to Circuit

min(R2)

Model 1:
Original
Verilog

sclk:
‘1’ → ‘0’

0.0 0.0 87.9k − 0.0

0.0 − − 105.4M −

−100 0 2 − −100

−100 − − 2 −

1.0

sclk:
‘0’ → ‘1’

0.0 1.0 0.0 − 0.0

0.15 − − 0.0 −

0 0 0 − 0

0 − − 0 −

1.0

Table 4.13: Model checking results of the input sampler.

error is not modeled in the Verilog model. The offset values, -27.4 mV and -23.1

mV, in Equation 4.18 caused by clock feedthrough are not considered in the Verilog

model. The Verilog model does not include the charge injection error dependent on

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 71

the previous state of vout.

4.5 Phase Interpolator

The last example is the phase interpolator shown in Figure 4.8. It takes a clock and its

quadrature clock as input signals. The output clock is generated by interpolating the

phase of the two input clocks. The circuit is composed of a phase mixer, a capacitor

array, and a buffer chain. The phase mixer consists of 12 identical copies of the unit

cell shown in Figure 4.8b, and interpolates the phase of two incoming clocks, clki

and clkq. The amount of phase interpolation is determined by the relative driving

strength of the clki and clkq clock signals at the phase mixing node NMIX . The

driving strength is controlled by the 12-bit digital input sel iq. Given that the clki

phase leads the clkq phase, the phase of the interpolated clock is earlier if sel iq has

more ‘1’s than ‘0’s, and vice versa; sel iq is a thermometer-coded bus signal. The rise

time of the signal at NMIX also affects the circuit performance. Thus the rise time is

adjustable by a capacitor array with the 4-bit digital input sel cap, making the circuit

robust to process, temperature, and supply voltage variation. Finally, a buffer chain

is used for driving a capacitive output load. Table 4.14 summarizes physical pins of

the circuit.

Test Description

Testing the phase interpolator is split into two tests. One is to test a system from

two clock inputs to the clock output with sel iq. The other is to check the rise time

of the signal at the node NMIX with sel cap.

The underlying linear system model of the first system is built in phase domain.

The system model of the circuit is given by

Φ(clko) =

(

11
∑

k=0

αk · sel iq[k]

)

· (Φ(clkq) −Φ(clki)) + Φ0 + Φ(clki) (4.20)

where αk is the partial gain from sel iq[k], Φ0 is the phase offset, and Φ(·) represents

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 72

(a)

(b)

(c)

Figure 4.8: Phase interpolator: (a) Block diagram of a phase interpolator, (b) unit
cell of the phase mixer shown in (a), and (c) unit cell of a capacitor array.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 73

Pin Name
Signal
Type

I/O
Bit

Width
Description

clko Digital Output - Phase interpolated clock output

clki Digital Input - In-phase clock input

clkq Digital Input - Quadrature clock input

VDD Analog Input - Power supply voltage input

sel iq Digital Input 12 Adjust clko phase

sel cap Digital Input 4
Adjust rise time of internal
signal

Table 4.14: Physical pin description of the phase interpolator.

a clock in phase domain. Since the inputs, Φ(clki) − Φ(clkq) and sel iq, do not

contribute to the output independently, this nonlinear system is decoupled into two

coupled linear systems as follows.

Φ(clko) = G1 · (Φ(clkq) −Φ(clki)) + Φ0 + Φ(clki) (4.21)

G1 =
11
∑

k=0

αk · sel iq[k] (4.22)

These coupled linear systems require two tests. One is to check the relationship

between analog I/Os, i.e., Φ(clki), Φ(clkq), and Φ(clko) in Equation 4.21. Another

test is to validate how the pseudo output G1, i.e., the amount of phase interpolation,

is varying with quantized analog input sel iq.

The last test is to check the rise time of the internal node NMIX to sel cap input.

Since NMIX is not observable, the delay (phase offset) of the circuit, Φ0 in Equation

4.21, is measured instead since the change of the rise time affects the propagation

delay through the circuit. This relationship is given by

Φ0 =
3
∑

k=0

βk · sel cap[k] + φ0 (4.23)

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 74

Port Name
Properties

Port Type Domain Valid Range

clko
Analog
Output

Phase [-π,π] [rad]

clki Analog Input Phase [0.0,0.0] [rad]

clkq Analog Input Phase
[−1

4
π,1

4
π]

[rad]

Port Name
Properties

Port Type Bit Width Encoding Prohibited

cfg iq
Quantized

Analog
Control Input

12 thermometer None

cfg cap
Quantized

Analog
Control Input

4 thermometer None

Table 4.15: Port classification of the phase interpolator: 1) sel iq and sel cap are ran-
domly sampled in valid values when testing the system in Equation 4.21, 2) Φ(clkq)
is set to 1

4
π and sel cap is randomly sampled in valid values when testing the system

in Equation 4.22, and 3) Φ(clki), Φ(clkq), and sel iq are randomly sampled in valid
values when testing the system in Equation 4.23.

where βk is the partial gain from sel cap[k] and φ0 is the intrinsic phase offset. The

port specifications for testing the above three tests are summarized in Table 4.15.

Model Checking Result

The system equations of the phase interpolator are extracted with the implemented

checker tool. When testing the circuit, Φ(·) domain requires frequency information

of a clock, an implicit variable to the domain translator. Thus the frequency of all

clocks are set to 5 GHz which is the system specification of the ADC. Also, the phase

spacing between clki and clkq is set to 50 ps, quadrature phase difference of a 5 GHz

clock when extracting G1 and Φ0.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 75

Model Gain Matrix
Relative Error of

partial gains in [%]
to Circuit

min(R2)

Model 1: Original
Verilog model

3.02 0.50 − −

4.89 − −0.17 −

3.66 − − 0.06

29 0 − −

21 − −4 −

25 − − 51

0.937

Model 2: sel iq is
inverted

3.021 0.500 − −

2.91 − 0.17 −

3.66 − − 0.06

29 0 − −

−28 − 204 −

25 − − 51

0.937

Model 3: sel iq is
binary coded

2.58 0.50 − −

5.29 − −0.11 −

3.03 − − −0.01

11 0 − −

31 − 28 −

4 − − −115

0.333

Table 4.16: Model checking results of the phase interpolator.

Note that G1 and Φ0 are indirectly inspected by measuring Φ(clko). Thus the

output responses measured for the model checking are labeled as Φ(clko)1, Φ(clko)2,

and Φ(clko)3 for the three tests, respectively. Given this setup, the extracted linear

system equation of a circuit netlist is given by

Φ(clko)1

Φ(clko)2

Φ(clko)3

=

2.33 0.50 − −

4.04 − −0.16 −

2.92 − − 0.09

1

Φ(clkq) −Φ(clki)

sel iq

sel cap

(4.24)

where sel iq and sel cap are variables encoded as specified in the port description. For

example, sel cap is thermometer-coded such that a binary vector ‘0011’ is encoded to

a decimal number ‘2’ when running linear regression. The R2 of the linear regression

is
(

0.994 0.947 0.926
)T

due to weakly nonlinear behavior of the circuit.

CHAPTER 4. A 40-WAY, TIME-INTERLEAVED ADC 76

In addition to the original Verilog model, a few Verilog models with errors are

created manually for the comparison, which are tested with the same test vector run

for the circuit netlist. The checking results are summarized Table 4.16.

An invalid test setup can be detected by observing R2 and p-value of partial

gains. For example, an experiment is performed to measure Φ(clko) of the circuit

netlist without decoupling the systems in Equation 4.20, i.e., a single test is run with

varying Φ(clkq) −Φ(clki) and sel iq together. In the experiment, the response does

not fit well into a linear model. The linear regression result shows that the R2 is

0.916, but the partial gain from sel iq is statistically insignificant; p-value is 0.613

which is much higher than 0.05.

Chapter 5

Process Variation in Mixed-Signal

Systems

Monte Carlo simulation of a mixed-signal circuit is often performed to predict the dis-

tribution of the circuit performance due to process variations. However, Monte Carlo

simulations of a system at the transistor level are very time consuming. Moreover,

running the simulations at the system-level is extremely difficult because analog and

digital subsystems should be validated together, but the digital subsystem in a chip

contains billions of transistors. In this chapter, we discuss a way to run system-level

Monte Carlo simulations using analog functional models for faster evaluation.

In Chapter 3, we showed how the linear abstraction of analog circuits enables

the equivalence checking of analog functional models. The underlying linear intent

of analog circuits is formally mapped into a gain matrix, and the checking is done

by comparing the gain matrices of two analog models. In this chapter, we describe

how to create a functional model with process variations by again leveraging the

linear abstraction. With such functional models, one is able to rapidly run process

corner simulations for worst-case analysis and system-level Monte Carlo simulations

for parametric yield estimation.

When verifying a mixed-signal system with analog functional models, it is im-

portant to ensure that all input signals are within the range where the models were

verified. This is checked during simulations by assertions written into the models.

77

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 78

As process parameters vary, the valid input range changes, leaving us with two op-

tions. One is to create assertions that hold for all process parameters, which yields a

conservative bound. The other option is to parameterize the assertions with process

parameters. Section 5.4 describes how one can use a support vector machine (SVM)

to generate these parametric assertions.

5.1 Failure in Mixed-Signal Systems

Circuit performance varies as process parameters change. Sometimes, these process

variations only change the overall parameters of the circuit such as gain and band-

width, but there are times when these process variations can cause the circuit to

functionally fail, especially if the circuit is linear in a transformed domain. For in-

stance, a frequency divider that is linear in phase can suffer from this type of failure.

If the delay of the divider with these process parameters is greater than the clock

cycle time minus the flop timing overhead, the circuit will not divide the frequency

correctly. This is a functional failure. On the other hand, it is called parametric

failure when the circuit is still functioning properly, but some of the performance

specifications are out of the normal operating range. For example, leakage power in

standby mode may be beyond the specified limit because the threshold voltage of the

transistors is too low.

The PLL shown in Figure 5.1 is used to illustrate both types of failures. If the

output clock frequency of the voltage controlled oscillator (VCO) is too high for the

frequency divider to operate in a divided-by-two mode, it might stop transitioning

its output (or divide at a different ratio); in this case, since the feedback clock is

too slow, the feedback loop tries to increase the frequency, pushing it further in the

wrong direction.1 This is often called a deadlock situation. This is a functional

failure because the system operates in a completely different mode from the expected

mode. On the other hand, if the up and down currents in the charge-pump circuit

1This could be understood as global convergence problem due to uncertain initial states of the
system [49]. However, the scope in the thesis is limited to the case where it occurs because of the
malfunction of circuit blocks due to process variation.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 79

Figure 5.1: Deadlock example of a PLL.

are unequal due to device mismatches, the static phase offset of the system will be

nonzero. While the system still operates as intended, it might fail to meet the system

specification on the static phase offset; this would be a parametric failure.

Since the occurrence of these failures depends on the fabricated chip’s process pa-

rameters, exploring a circuit over this space is of great interest. The following sections

explain how we exploit our functional models to perform this analysis efficiently.

5.2 Process-Aware Analog Model

When creating a process-aware analog model, we handle functional failures separately

from parametric failures. For parametric failures, the circuit’s behavior is still spec-

ified by a gain matrix G, so the effect of process variation can be mapped onto a

variation in G. On the other hand, since functional failures break the model, we need

to find how this functional boundary depends on process parameters. The following

subsections describe each of these two cases. The procedures for model creation and

simulation are discussed in Section 5.3 and 5.4.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 80

−2600 −2500 −2400 −2300 −2200 −2100 −2000
α [MHz]

4500

5000

5500

6000

6500

β
 [

M
H

z/
V

]

β vs α

Circuit

Verilog

Figure 5.2: Partial gains of VCO linear system model by randomly sampling process
parameters (Plot of both the circuit and the Verilog simulation results).

5.2.1 Parametric Model

Given that the underlying linear assumption of an analog circuit is valid, process

variations only modify the properties of the circuit, rather than change its function.

In other words, the effects of process variations are manifested as a change in a

gain matrix G. When process parameters vary, the parametric variation of a gain

matrix is likely to be smooth because the overall analog response is smooth. In

this case, G’s dependence on process parameters can be fitted as a low order Taylor

series such as a linear or quadratic function by extracting G from a few number of

circuits with different process parameters. The remaining step is to create a Verilog

model that corresponds to the given process parameters. Once the mapping function

of functional parameters in a Verilog model onto the gain matrix is known from

equivalence checking, it is an inverse problem to find the Verilog parameters which

represent the circuit function (gain matrix) for a given set of process parameters. The

detailed procedure is explained in Section 5.3.

For instance, the process variation of the VCO circuit shown in Figure 3.6 is

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 81

characterized to see how accurate the model is. The intended function of the circuit

is to generate a clock output whose frequency fCLKo is adjusted by the control voltage

input VCTRL, and it is modeled as a linear function as follows.

fCLKo = α + β · VCTRL (5.1)

where α and β are partial gains of the system. With this linear model, the partial gains

of the real circuit are then extracted by randomly sampling the process parameters.

By running linear regression on the extracted partial gains with respect to the sampled

process parameters, each partial gain is fitted to a third order Taylor series function of

process parameters including the first order interaction term between the parameters.2

With this parametric model, both circuit simulations and functional simulations are

performed with the same set of randomly sampled process parameters.3 As shown

in Figure 5.2, the responses from the circuit and the model are well matched. To

quantify the modeling error, the residual errors of the partial gains are plotted in

Figure 5.3. The R2 of α and β are 0.9998 and 0.9991, respectively.

The way we model the process variation is very similar to the way that circuit

performance is modeled using the response surface model and its variants [50–55].

However, the computational cost of our approach is not high. Since the conventional

modeling is generally done by running end-to-end tests, the computational cost is

high for a system with a large number of components. Moreover, it is very time

consuming to run a system-level verification of mixed-signal systems at the transistor

level, particularly when analog and digital subsystems are tightly coupled. We create

variation models for smaller blocks where the number of parameters is manageable.

The created analog models are then seamlessly integrated with digital RTL models,

so one is able to run parametric yield analysis of a strongly coupled mixed-signal

system with fast, event-driven Monte Carlo simulations.

2Initially, the maximum order of Taylor series is set to 5, and the response is fitted to that
function. A stepwise linear regression is then performed to reduce the order by removing some
insignificant terms, resulting in third order Taylor series [38].

3The Verilog parameters in the functional model are obtained from the extracted parametric
model. The simulation procedure is discussed in Section 5.3.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 82

−2600 −2500 −2400 −2300 −2200 −2100 −2000
α [MHz]

−15

−10

−5

0

5

10

R
e
si

d
u
a
l
E
rr

o
r

[M
H

z]

µ=0.0 [MHz], σ=2.283 [MHz]

(a)

4600 4800 5000 5200 5400 5600 5800 6000 6200 6400
β [MHz/V]

−20

−15

−10

−5

0

5

10

15

20

R
e
si

d
u
a
l
E
rr

o
r

[M
H

z/
V

]

µ=0.0 [MHz/V], σ=3.885 [MHz/V]

(b)

Figure 5.3: Model errors of VCO: (a) residual errors of α and (b) residual errors of
β.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 83

5.2.2 Linear Model Failure

All circuits constrain some of their operating parameters, e.g., input amplitude,

common-mode range, power supply voltage, and frequency, to ensure their proper

operation. These constraints are a part of the circuit, and ensure that the environ-

ment is within the valid operating range of that circuit [56]. The assumption of the

parametric model is that the circuit remains operating as its intended linear system.

However, process parameters also change the valid operation range of the circuit, and

it is possible that the model we are using breaks down for some process parameters.

This is especially true when circuits consume or produce large signals, e.g., clocks.

The response of such circuits tends to change abruptly when the operating parame-

ters are out of their expected range. For the response to be linear, the large signal

inputs/outputs of the circuits may need domain translators, e.g., Φ -to-V and its

inverse function for the clock input/output of a PLL, or they are serving as function

ports, e.g., clock inputs of a switched-capacitor circuit when constraints on these sig-

nals fail. Rather than incrementally changing the transfer function of the circuit, the

linear model can be completely broken, leading to functional failure.

An example is a frequency divider model in phase domain, which is given by

ΦO =
ΦI

M
+ φ0 (5.2)

where M is the dividing ratio, φ0 is the phase (delay) offset, and ΦI and ΦO are phase

input and output of the divider, respectively. The model also has implicit variables

that should be set for the domain translators Φ -to-V and V -to- Φ: the frequency of

the input and output clock signals. Their relationship is given by

fO =
fI
M

(5.3)

where fI and fO are the frequency of the input and output clock signals, respectively.4

4To explicitly represent the underlying linear intent of the circuit, one may write the model
by inserting two domain translators: Φ -to-V at the clock input and V -to-Φ at the clock output.
Conversely, the two domain translators should be switched when making the model compatible with
other blocks in voltage domain. For V -to-Φ domain translator, we can write its model in a way
that the frequency is also extracted from the voltage signal rather than declaring the frequency as

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 84

This divider model is broken if it receives an input clock running at a frequency

higher than the divider circuit can operate. When testing the divider in the phase

domain, the linear model is valid only when the input clock frequency is not too high.

If the input clock is too fast, the divider’s output will not be at the right frequency

and the model fails. Since both the input frequency from the previous VCO block and

the maximum operating frequency of the divider itself depend on process parameters,

process variations can cause functional failures.

Note that this failure does not occur for linear circuits in electrical domains. For

these circuits, linear (AC) analysis is possible in any case since the DC operating

point always exists and the response is always smooth around the operating point.

For example, even if some of MOS transistors in a voltage amplifier enter into the

triode region, the circuit is still operating as an amplifier, but now it just has a small

voltage gain which changes smoothly.

To prevent designers from running the functional simulation with a broken linear

model, the functional Verilog model should have assertions which monitor its input

conditions and warn the designers if the operating conditions are out of the valid

range. Process parameters must be considered in these assertions since the valid

range of the operating parameters depends on process parameters. We demonstrate

the use of a support vector machine classifier to create parameterized assertions that

depend on process parameters and input conditions in Section 5.4.

5.3 Parametric Yield Estimation

With the parametric model described in Section 5.2.1, process variation effect on a

system can be estimated by performing Monte Carlo simulations using process-aware

Verilog models. First, the system is hierarchically decomposed into small blocks. The

parametric model for each block is generated by characterizing how the gain matrix of

a circuit netlist GCKT varies with process parameters p. This characterization process

the model parameter. However, for Φ -to-V , the frequency is an implicit variable of the translator
although the variable actually sets the operating point of the circuit. To resolve this issue, there
are two ways: 1) attach the inverse domain translator ahead of Φ -to-V and drive the input with a
voltage pulse or 2) take the frequency input as well as the phase in Φ -to-V .

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 85

Random sampling of
process parameters p

Extract the circuit
gain matrix GCKT

Build parametric
model: GCKT = f(p)

Figure 5.4: Procedure for generating a parametric model.

is depicted in Figure 5.4. The process begins by randomly sampling p. For each p

vector, the corresponding device model is used for circuit simulations from which

GCKT is extracted. Note that all the tests for extracting GCKT already exist. Since

we are observing the variation in GCKT, we reuse the tests used for the equivalence

checking described in Chapter 3. This means that we also use the equivalence checker

for this characterization.

The parametric model, i.e., GCKT = f(p), is generated by running linear regres-

sion from the extracted samples. To judge the accuracy of the model, the R2 metric

used in the equivalence checker is adopted again. The order of the fitting polynomial

function along each axis of p and the order of the interaction terms may vary depend-

ing on the nonlinearity of the response. Our case studies show that R2 of the fitted

model is usually larger than 0.999 using less than fifth order polynomial function and

the first order interaction terms.

After building the parametric models of all subcircuits, parametric yield analysis

is performed with the procedure shown in Figure 5.5. The column vector of the

process parameter p is supposed to have some distributions and statistics, which are

usually provided by process engineers. For given distribution functions, p is sampled

to generate the corresponding Verilog models by solving the inverse of GCKT = f(p),

i.e., pVerilog = f−1(GCKT), and plugging pVerilog into the parameterized Verilog

models. The functional Verilog models should be parameterized to map the circuit

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 86

Sampling p with given
distribution function

Retrieve Verilog pa-
rameters (pVerilog)

from GCKT = f(p):
pVerilog = f−1(GCKT)

Run Verilog simulation

Figure 5.5: System-level Monte Carlo simulation flow.

gain matrix to the Verilog parameters to run Monte Carlo simulations. To ease the

mapping, the Verilog model should be written to give a one-to-one correspondence

between the partial gains of the gain matrix and the Verilog parameters. That is,

each Verilog parameter in the functional model represents the partial gain of the

corresponding GCKT. Then, Verilog parameters for each block-level Verilog model are

easily retrieved by calculating GCKT from the parametric model, which instantiates

the Verilog models corresponding to the sampled p.

One can build a system model by connecting the instantiated Verilog models.

Simulating this is trivial because all test vectors and measurement scripts are already

available for measuring the system performance metrics. By running Monte Carlo

simulations for those system tests, the distributions and statistics of the metrics are

estimated.

In addition to yield analysis, designers sometimes want to quickly estimate the

feasible process parameter space for the circuit to meet system specifications. This is

especially useful for process parameter tuning. Rather than characterizing the circuit

first, one can perform reverse engineering to explore the feasible device parameter

space from the Verilog parameter space by running the model simulation, and then

use this information to tune the process parameters.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 87

Random sampling of process parame-
ters p and operating parameters x

Label PASS/FAIL by
checking circuit assertions

Build a SVM classifier

Write assertions in Verilog
model with the SVM classifier

Figure 5.6: Procedure for creating Verilog assertions.

5.4 Assertions on Model Failure

As noted in Section 5.2.2, one needs to ensure that the linear models are valid for

the operating parameters when running the system-level simulation. Since the valid

region depends on process parameters, we learn this relationship by using circuit

simulation results to train a classifier and then use this classifier to predict failures in

the Verilog model as shown in Figure 5.6.

For each block, the classifier is built based on training data which are obtained

through circuit simulations of a circuit netlist. By sampling different set of operating

parameters x and process parameters p for each simulation, the simulated responses

are labeled as ‘PASS’ if the circuit is working properly or ‘FAIL’ if the circuit is not.

The assertions to label ‘PASS’ or ‘FAIL’ on the circuit simulation result should be

provided by the user because the user knows the intended function of a circuit.

From the training data, we build the prediction model which essentially does bi-

nary classification. For simplicity, a support vector machine (SVM) classifier with

Gaussian radial basis kernel function is adopted for the modeling, and the existing

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 88

Listing 5.1: Verilog code example with model failure assertion

1 import "DPI -C" function int dpi_failure

2 (input string line_input ,

3 input string modelfilename ,

4 input string rangefilename) ;

5
6 parameter string svm_model = "train.dat.model.div2";

7 parameter string svm_model_scale = "train.dat.scale.div2";

8
9 always @(vdd or freq_cki) begin

10 // SVM input from operating/process parameter

11 str = build_svm_str(vdd , freq_cki , nmos_dvth_norm , pmos_dvth_norm

,

12 nmos_dkc_norm , pmos_dkc_norm);

13 // check if the model is broken

14 // returns 1 if pass , 0 else

15 pass_div2 = dpi_failure(str , svm_model , svm_model_scale);

16 end

LIBSVM C library is used for the implementation [57, 58]. The prediction model pa-

rameters are found and optimized by grid search and cross validation.

The assertion is then inserted into the Verilog model, which calls the prediction

model (SVM classifier) via SystemVerilog direct programming interface (DPI) [15].

When the event occurs in any of operating parameters during the simulation, the

assertion checks if the model is valid. For example, Listing 5.1 shows part of the code

for the assertion in the frequency divider model. The files assigned by svm model and

svm model scale variables store the trained classifier of the frequency divider. When

either the input clock frequency freq cki or the power supply voltage vdd is changed,

the function dpi failure calls the prediction model with the operating parameters

(freq cki and vdd) and the process parameters (nmos dvth norm, pmos dvth norm,

nmos dkc norm, and pmos dkc norm), which returns either 1 (PASS) if the model is

valid or 0 (FAIL) if the model is invalid. All PASS/FAIL flags in the block models

are collected and monitored during the system simulation for the functional failure

detection.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 89

5.5 Thoughts on Mismatch Model

For device mismatch analysis, we measure the statistical variation over the collected

set of gain matrices from the circuit netlist and map the distribution to the Verilog

parameters by performing linear sensitivity analysis. In case of parametric variation

model (global variation model) explained in Section 5.2.1, the range of process pa-

rameters is usually large such that the nonlinear response should be considered; we

model this nonlinear effect with a Taylor series. However, the mismatch analysis is

often done with linear analysis, especially for analog circuits since the device size of

the circuits is usually large enough for the circuit variation to be approximated by a

linear function. Moreover, the linear sensitivity analysis requires much smaller set of

samples for modeling device mismatch.5

For block-level modeling, we collect the gain matrices of a circuit netlist for ran-

dom device parameters chosen according to the statistics of the parameter variation.

Then we calculate the statistical distribution over the collected gain matrices. We

directly calculate the distribution of the corresponding Verilog parameters from the

gain matrix distribution.

For generating Verilog model with device mismatch effect, we change the model

parameters instead of changing device parameters. Assuming that the device pa-

rameter variation is small, the response change is small so that linear perturbation

analysis is possible for calculating Verilog parameter variation. Given that linear

perturbation analysis holds, we can model the effect of the parameters on the gain

matrix as follows:

GMDL = SMDLpMDL (5.4)

where GMDL is the gain matrix of the Verilog model, SMDL is the sensitivity matrix,

and pMDL is a column vector of Verilog model parameters. Since the number of

Verilog parameters is modest, we can directly find the above relationship by sampling

a few Verilog parameters.

5In the mismatch model, all devices in a circuit have different set of process parameter values,
and thus the number of device parameters becomes unmanageable as the circuit size grows. If one
wants to model the device mismatch effect with Taylor series, it requires a huge number of samples
to fit the response.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 90

Given that we know the distribution of the circuit gain matrix GCKT and SMDL,

we can obtain the distribution of pMDL by solving the inverse of Equation 5.4 with

matching the distribution of GCKT and GMDL. The Verilog parameters can be

calculated as follows.

pMDL = S−1
MDLGCKT (5.5)

Usually, the distribution functions of device parameters are supposed to be Gaus-

sian when running Monte Carlo simulations for circuits such that the distribution

function of GCKT shows the same distribution function because we assume the linear

approximation is valid. Thus, if the distribution function of GCKT is Gaussian and

pMDL contains only independent random variables, pMDL is also Gaussian random

variable with its mean and variance are linear combination of GCKT by S−1
MDL. With

the known distribution of pMDL, one is able to run Monte Carlo simulations with the

analog models for mismatch analysis.

5.6 Example: Phase-Locked Loop

To demonstrate the feasibility of this model-based approach for process variation

analysis, the PLL circuit shown in Figure 5.1 is examined. The PLL generates a 1

GHz clock CKO, where its phase is aligned to the 500 MHz reference clock CKI. The

loop filter in the PLL is simply an integrator with a zero implemented by a passive

resistor and capacitor.

For the analysis, the PLL is divided into three sub blocks: 1) voltage controlled

oscillator, 2) frequency divider, 3) phase detector/charge pump/loop filter. Phase

detector, charge pump, and loop filter are analyzed together for two reasons: 1) test-

benches at the circuit-level verification were ready for these combined blocks to get the

transfer function, and 2) the loop filter and charge-pump must be analyzed together

for writing the Verilog model. For each block, the parametric model is extracted

for parametric failure analysis, and the SVM classifier is trained to detect functional

failures. Using the parametric model and the classifier, Monte Carlo simulations are

performed on the complete PLL model to estimate the parametric variation of the

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 91

PLL performance, and detect PLL deadlock.

In this example, we first explore the statistical distribution of the static phase offset

for given distributions of process parameters. There are many causes for this offset.

One example is that the finite output impedance of transistors causes the UP/DN

current mismatch in the charge-pump circuit even without device mismatches. We

also use the SVM classifiers to explore functional failures. Failures may occur because

either the input clock frequency of the feedback divider is too high, the phase detector

is too slow to generate correct UP/DN pulses for given phase difference, or the level-

shifter in the VCO is too slow to convert a low-swing clock to a full-swing clock. We

show how accurately the SVM classifier-based assertions in Verilog models capture

these functional failures by comparing the model simulation with circuit simulation

results.

5.6.1 Device Model for Process Variation

For the experiments, we use a simple corner model for both NMOS and PMOS tran-

sistors, shown in Figure 5.7.6 We add a threshold voltage variation ∆VTH and scale

factor kc of the drain current IDS to a 65 nm PTM (Predictive Technology Model)

transistor [60]. These parameters are independently set for nMOS and pMOS devices,

giving us four process parameters to vary. While this is a very simple fabrication

model, it allows us to demonstrate how the modeling framework works. For both

parametric and functional failure analysis, only global variation is considered; all the

transistors of the same type in a circuit have the same characteristics.

The range of device parameters for the circuit characterization is summarized

in Table 5.1. At the block-level modeling, the device parameters within the range

specified in the table are randomly sampled for the circuit characterization while some

distribution functions of the parameters are given in running Monte Carlo simulations

at the top level.

6This model is similar to Pelgrom’s device mismatch model [59]. We slightly modify the model
for this global variation analysis.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 92

Figure 5.7: Process variation model of a MOS transistor.

Parameter Range

∆VTH,NMOS [−50, 50] [mV]

kc,NMOS [−0.1, 0.1]

∆VTH,PMOS [−50, 50] [mV]

kc,PMOS [−0.1, 0.1]

Table 5.1: Range of device variation parameters for process variation analysis.

5.6.2 Block-Level Modeling

We first write a Verilog model for each sub block of the PLL, and then characterize

the impact of process variation.

Phase Detector/Charge Pump/Loop Filter

Figure 5.8 shows the phase detector and the charge-pump circuit with the loop filter.

The phase detector (PD) measures the phase difference between the reference and

feedback clock inputs, CKR and CKF, at their rising edge, which generates UP and

DN pulses. The difference in UP/DN pulse width is the same as the phase difference

between the two clocks. In the charge-pump (CP) circuit, these two pulses control

the current flow into/out of the loop filter. The CP injects a current onto the filter

when UP pulse is asserted while a current is flowing out of the filter when DN pulse

is asserted.

This is the most important block for the verification because it mainly affects

the static phase offset among sub blocks in the PLL. The charge injection onto the

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 93

(a)

(b)

Figure 5.8: A simplified circuit diagram: (a) phase detector and (b) charge-pump
with loop filter.

loop filter from the charge-pump circuit should be zero on average when the PLL is

locked. A phase offset exists between the reference clock and the feedback clock if

up/down currents into/out of the loop filter are not equal. In the circuit examined,

since the signal paths for generating UP and DN pulses are symmetric and only global

variation of device parameters is modeled, it is unlikely that the PD causes the static

phase offset. Instead, the offset is mainly caused by two mismatch sources in the

charge-pump circuit: different time constants of UP and DN pulse propagation and

up/down current, IUP and IDN , mismatch. First, DN pulse directly controls the IDN

current flow while IUP controlled by UP pulse is mirrored by PMOS devices. The

pulse width of two currents are different although the pulse width of UP and DN

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 94

from the PD circuit are the same. Second, IUP and IDN values are different due to

the finite output impedance of PMOS and NMOS current sources. In addition, the

difference also depends on the output voltage vreg of the circuit for the same reason.

Therefore, these effects should be considered when generating the model.

To build a simple, but accurate model for emulating the CP current mismatch,

we write a test to see how the accumulated charge Qtot on the filter changes to the

phase difference ∆φerr of input clocks and the loop filter voltage V(vreg), of which

relationship is given by

Qtot = α0,cp + α1,cp · ∆φerr + α2,cp ·V(vreg) (5.6)

where
(

α0,cp α1,cp α2,cp

)

is the gain matrix of the system. From the equation, the

incremental change of the filter voltage ∆V(vreg) is given by

∆V(vreg) = Qtot/C1 (5.7)

where C1 is the capacitance of the filter capacitor. Based on these models, the process

variation effect on the gain matrix is extracted with the checker tool.

For functional failure analysis, we sweep the clock frequency of input clocks and

check whether the circuit is too slow to generate UP/DN pulses for given environ-

mental parameters, i.e., supply voltage, the frequency of input clocks, and device

parameters. Given two in-phase clock inputs with the same frequency, the circuit is

labeled as ‘FAIL’ if the frequency of either UP or DN is different from the input clock

frequency.

Voltage Controlled Oscillator

The VCO shown in Figure 5.9 consists of a differential ring oscillator with weakly

cross-coupled inverters and a level-shifter to recover a full-swing clock from a low-

swing clock generated by the oscillator.

The VCO generates a clock whose instantaneous frequency fCK and phase Φ(CK)

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 95

Figure 5.9: A simplified circuit diagram of the VCO.

are given by

fCK(t) = α0,vco + α1,vco ·V(vreg)(t) (5.8)

Φ(CK)(t) = 2π ·

∫

fCK(t)dt (5.9)

where α0,vco is a free-running frequency and α1,vco is the gain of VCO in Hz/V. Thus

the intended system of interest is Equation 5.8, and its gain matrix,
(

α0,vco α1,vco

)

,

of a circuit netlist is characterized with the equivalence checker for randomly sampled

device parameters. For example, the variation of the gain matrix to process parame-

ters is fitted with hundred sets of the parameters, resulting in 0.9991 of R2, and the

parametric model is shown in Table 5.2. Note that accurate modeling of the VCO

is also important for estimating the static phase offset. The control voltage of the

VCO at locking condition varies with process parameters, and this voltage affects the

mismatch current of the charge-pump circuit.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 96

α0,vco

α1,vco

 =

−2.332 5.673

−0.394 −5.743

0.000 −8.077

75.177 −119.603

372.791 0.000

−1.050 2.540

0.582 −1.439

0.276 4.432

−5.540 0.000

−40.423 78.604

−0.320 0.770

0.674 −1.595

0.854 −2.476

−55.644 61.510

−0.749 −1.380

0.695 2.774

−0.699 1.677

−0.680 0.000

−19.770 19.453

−7.985 0.000

T

1

∆VTH,NMOS

∆V 2
TH,NMOS

∆V 3
TH,NMOS

kc,NMOS

k2
c,NMOS

∆VTH,PMOS

∆V 2
TH,PMOS

∆V 3
TH,PMOS

kc,NMOS

k2
c,NMOS

∆VTH,NMOS · kc,NMOS

∆VTH,NMOS · ∆VTH,PMOS

∆VTH,NMOS · kc,NMOS

kc,NMOS · ∆VTH,PMOS

kc,NMOS · kc,NMOS

∆VTH,PMOS · kc,NMOS

∆VTH,NMOS · kc,NMOS · ∆VTH,PMOS

∆VTH,NMOS · ∆VTH,PMOS · kc,NMOS

GHz

GHz/V

Table 5.2: VCO parametric model: variation of VCO gain matrix to process param-
eters.

The circuit data is also used to train a SVM classifier. For given set of process

parameters, the level-shifter in the VCO may fail to function correctly if the frequency

of its input clock from the ring oscillator is too high or the supply voltage of the level

shifter is too low or too high. To build the classifier, transient simulations for a short

period of time (e.g., 20 ns) are performed to measure the VCO output clock frequency

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 97

with respect to sets of process parameters, VCO control voltage, and supply voltage.

The measured results are labeled as either ‘PASS’ if the output clock oscillates, or

‘FAIL’ if it fails to oscillate.

Frequency Divider

The frequency divider is less interesting for parametric yield analysis. The propaga-

tion delay only changes the feedback loop dynamics slightly. While the delay adds

additional phase shift in the loop, it does not affect the phase offset.

Functional failure is more interesting since the PLL may be stuck at deadlock

condition if the divider fails. When testing the divider in phase domain, the output

frequency of the circuit should be what is supposed to be in the V -to- Φ domain

translator; the response is labeled as ‘FAIL’ if the following condition does not hold:

fO =
fI
2

(5.10)

where fI and fO are input and output clock frequency, respectively.

5.6.3 Verification Results

After characterizing each sub block, parametric yield and functional failure analysis

are performed with a complete Verilog model of the PLL. For each set of process

parameters, the corresponding Verilog parameters are retrieved from the parametric

models, and the Verilog model simulation is performed through a functional simulator.

Meanwhile, the same analyses are performed with the circuit netlist through a circuit

simulator to compare the results to the model simulation results.

To extract the static phase offset TOS distribution, Monte Carlo simulations are

performed by sampling sets of process parameters with given uniform distribution

functions. As summarized in Table 5.3, the mean and standard deviation of TOS dis-

tribution are well matched between the results from the circuit and model simulation.

Figure 5.10 shows the probability density function (PDF) and the cumulative

distribution function (CDF) of TOS. The distribution profile is very similar for the

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 98

−20 −10 0 10 20
TOS [ps]

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
P
ro

b
a
b
ili

ty
 D

e
n
si

ty
 F

u
n
ct

io
n

Circuit

Verilog

(a)

−20 −15 −10 −5 0 5 10 15
TOS [ps]

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 D

is
tr

ib
u
ti

o
n
 F

u
n
ct

io
n
 (

C
D

F)

CDF

Circuit

Verilog

−4

−2

0

2

4

6

8

10

C
D

F
d
e
v
ia

ti
o
n
 [

%
]

CDF deviation

(b)

Figure 5.10: Distribution of TOS: (a) probability density function and (b) cumulative
distribution function.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 99

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Statistics
Model

Circuit in [ps] Verilog in [ps] Relative Error in [%]

µ -3.00 -2.82 -6

σ 6.78 6.85 1

Table 5.3: Summary of parametric variation analysis: mean (µ) and standard devia-
tion (σ) of the static phase offset TOS from the circuit and model simulations. The
distributions of device parameters are ∆VTH ∈ U [−50, 50] [mV] and kc ∈ U [−0.1, 0.1].
U is a uniform distribution function.

−20 −10 0 10 20
TOS [ps]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

R
e
si

d
u
a
l
e
rr

o
r

[p
s]

Figure 5.11: Residual errors of TOS: model simulation results to circuit simulation
results.

two models; the maximum deviation in CDF between the circuit and model simulation

is only 2.9%.

Figure 5.11 shows the residual errors of the model simulation results compared

to the circuit simulation results. The mean and standard deviation of the errors are

-0.18 ps and 0.16 ps, which are negligible in comparison with the statistical results of

TOS.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 100

❳
❳
❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Statistics
Model

Circuit in [ps] Verilog in [ps] Relative Error in [%]

µ -2.31 -2.16 -6.5

σ 11.97 12.04 0.6

Table 5.4: Summary of parametric variation analysis with Gaussian distributions of
process parameters: mean (µ) and standard deviation (σ) of the static phase offset
TOS from the circuit and model simulations. The distributions of device parameters
are ∆VTH ∈ N [0, 50] [mV] and kc ∈ N [0, 0.1]. N is a Gaussian distribution function.

With the same parametric models, one is able to estimate the statistics of TOS for

different distributions of process parameters. Table 5.4 summarizes the statistics of

TOS distribution with Gaussian distributions of process parameters. The simulation

results between the circuit and model match well.

Note that the Verilog simulation ran about 400 times faster than the circuit sim-

ulation for this analysis; a simulation runs in three seconds with the Verilog model,

but needs 1200 seconds with the transistor netlist.

The functional failure simulation is performed with the assumption that the loop

filter voltage initially starts at 0.8 V.7 When running the simulation, we were not

able to find a deadlock condition for the given range of process parameters shown in

Table 5.1. Thus we insert a faulty capacitor CF at the output of the feedback divider

to make the circuit to fail for some process parameters. Of course the classifier model

of the divider is regenerated with CF .8 The ‘PASS/FAIL’ flags from all the sub blocks

are checked after running the simulation for a few cycles of the reference clock. If any

of the flags is labeled as ‘FAIL’, the PLL is not working as its intended system.

The results of the functional failure analysis is summarized in Table 5.5.9 For

each of the swept CF ’s, the confusion matrix and performance of the classifier is

summarized. In the confusion matrix, ‘Prediction’ is the result from the Verilog

simulation and ‘Measurement’ is that from the circuit simulation. As shown in the

7The upper bound of the control voltage vreg is set to 0.8 V as a specification.
8When generating the classifier, one can include CF in the environmental parameters of the

classifier, instead of having a fixed value.
9Denote true positive, true negative, false positive, and false negative as tp, tn, fp, and fn,

respectively. Precision = tp

tp+fp
, Recall = tp

tp+fn
, Accuracy= tp+tn

tp+tn+fp+fn
.

CHAPTER 5. PROCESS VARIATION IN MIXED-SIGNAL SYSTEMS 101

CF

❳
❳

❳
❳
❳
❳
❳
❳
❳
❳
❳❳

Prediction
Measurement

PASS FAIL Precision [%] Recall
[%]

Accuracy
[%]

25 fF
PASS 407 20

93.4 74.0 95.1
FAIL 4 57

30 fF
PASS 132 16

95.7 95.4 93.7
FAIL 15 332

35 fF
PASS 18 9

98.8 97.9 97.0
FAIL 5 427

Table 5.5: Results of functional failure analyses of the PLL shown in Figure 5.1.

table, the accuracy of the prediction model is very high, i.e., over 90%. Although

there are some false positive/negative results, these circuits are on the border of

functionality, i.e., they are marginal circuits. A small fraction of errors on some of

these circuits will not cause a significant error in our yield estimation.

5.7 Summary

In this chapter, we showed how the system-level models written in HDL can be

leveraged to rapidly evaluate the effect of process variation on the overall system —

essentially running Monte Carlo simulations at the Verilog level. Running Monte

Carlo simulations at this level has two advantages: performance, since the Verilog

simulations take much less time than the equivalent SPICE simulation, and the capa-

bility of measuring the system-level performance metrics with integrated digital logic.

The latter is very important since designers often use digital correction to deal with

many device effects (e.g. offset correction, gain/bandwidth control, etc.).

A linear abstraction is leveraged to build Verilog models with process variation,

and to check if these models are valid for given operating parameters. We showed how

the Verilog assertions for this check can be generated using support vector machine

classifiers.

Chapter 6

Conclusions

Modern mixed-signal designs need accurate analog models to accelerate the verifica-

tion as well as to make the verification more complete. Running system-level verifi-

cation with these models creates many challenges in the verification flow, which we

have addressed in this thesis. In particular, based on the insight that analog response

is smooth, we have made two main contributions on the model-based verification:

I. We have developed a tool that formally checks if an analog functional model

matches its real circuit implementation. We accomplish this checking by using a

linear abstraction to define the functional space of analog circuits and to classify

the intent of I/O ports in mixed-signal circuits. Using this information, complete

and efficient analog vector generation is possible for the system identification.

Checking the equivalence of analog models allows designers to run the system-

level verification with trusted analog models.

II. We enabled a method to run statistical analysis of process variations using ana-

log functional models. By running fast, system-level Monte Carlo simulations

with our functional models, we are able to quickly estimate the parametric vari-

ation of system performance so that the iteration cycle between circuit design

and process parameter tuning is accelerated.

102

CHAPTER 6. CONCLUSIONS 103

6.1 Future Work

As can be seen in Chapter 3 and Chapter 4, the main deficiency in our checker

tool is inability to automatically generate testbenches. An interesting challenge in

generating testbenches is determining what functions need to be measured and how to

generate the corresponding testbenches automatically. The circuit parameters being

measured often depend on the circuits, which requires design expertise. One way to

mitigate this issue is to build a circuit test repository, e.g., Stanford’s CircuitBook

repository [61]. If the tests already exist in the repository, one can simply pull out

and plug the existing tests into the model checker. A more general approach to

this testbench generation is to build a generic test. The formal space of our model

checking method is a linear system model. Once the proper variable domain for

the circuit is selected by the user, the test is simply to explore the linear system’s

properties (e.g., gain, bandwidth) and the circuit’s deviations from the linear system

model such as distortion. Since these properties can be calculated from the circuit’s

impulse response and a Fourier analysis of transient simulation results, the testbench

for extracting these responses can be generic and automated.

Another interesting avenue of future exploration related to model validation is

assertions between analog cells, i.e., intermodule assertions. A mixed-signal system

can have certain bugs if the effect of interconnecting wires between analog cells is not

considered, although the analog model of each cell is created and checked against its

circuit netlist. Because cells are often created by different designers and models are

created before drawing the corresponding layouts, the properties of the connecting

wires such as resistance and capacitance are sometimes not considered. This may lead

to design mistakes. Consider the bias generator in Section 4.1 that feeds currents into

the ramp generator in Section 4.2. If the wire resistance connecting the two modules is

too high, the voltage drop across the wire is large, making the PMOS current output

device in the bias generator operate in the triode region. This might cause the ramp

generator to operate improperly, such that either parametric or functional failures

occur in the A/D converter. If proper assertions on pin constraints of a module are

embedded in the Verilog models, the interconnection between modules can be checked

CHAPTER 6. CONCLUSIONS 104

by monitoring the assertions. We believe that mixed-signal validation with functional

models is more complete with this analysis.

Finally, the next step in this work is to improve the robustness and usability of our

checker tool. While our work in this thesis addressed a fundamental problem in analog

model validation, the implemented tool is only a prototype intended to demonstrate

the concept. One way to improve the tool is by looking at additional case studies,

which help to identify problems with the current test setup. Some circuits may require

the modification of a test setup to make the linear abstraction valid. Another benefit

is that we can build more test library components essential for generating the tests

such as stimulus, measurement, and domain translator modules. We believe that case

studies help to improve the checker tool as well as make designers more confident that

our approach leveraging the linear abstraction works for their analog circuits.

Appendix A

Domain Translator Example

The following listings show some examples of domain translator written in SystemVer-

ilog. These domain translators can be easily ported to other HDLs such as Verilog-

AMS.

Listing A.1: SystemVerilog code of D -to-V domain translator

1 // Duty cycle to Logic domain translator

2 // for time -domain simulation only

3 // user specifies ‘freq ’ when instantiating this module

4

5 ‘timescale 1fs/1fs

6 module duty2ck (

7 input real dcin , // duty cycle input

8 output reg cko // clock output

9);

10

11 parameter TIME_UNIT = 1e-15; // verilog time unit

12 parameter real freq = 1e6; // clock frequency

13

14 real thigh; // high pulse duration

15 integer period; // clock period in verilog time unit

16

17 initial cko = 1’b0;

18 initial period = $rtoi (1.0/ freq/TIME_UNIT);

19

105

APPENDIX A. DOMAIN TRANSLATOR EXAMPLE 106

20 always begin

21 thigh = $rtoi((dcin/period)/TIME_UNIT);

22 cko = #(thigh) 1’b1;

23 cko = #(period -thigh) 1’b0;

24 end

25

26 endmodule

Listing A.2: SystemVerilog code of V -to-D domain translator

1 // Logic to Duty cycle domain translator

2 // for time -domain simulation only

3 // frequency information is extracted from cki

4

5 ‘timescale 1fs/1fs

6 module ck2duty (

7 input cki , // logic clock input

8 output real dcout // duty cycle output

9);

10

11 real t_pos , t_pos0 , t_neg;

12 real period;

13

14 always @(posedge cki) begin

15 t_pos = $realtime;

16 if (t_pos0 > 0.0) // discard the first rising edge

17 period = (t_pos - t_pos0);

18 dcout = (t_neg -t_pos0)/period;

19 t_pos0 = t_pos;

20 end

21

22 always @(negedge cki) // check cki falling edge time

23 t_neg = $realtime;

24

25 endmodule

APPENDIX A. DOMAIN TRANSLATOR EXAMPLE 107

Listing A.3: SystemVerilog code of Φ -to-V domain translator

1 // phase to clock converter for transient simulation

2

3 ‘timescale 1fs/1fs

4 module phase2ck (

5 ‘input_real phin ,

6 output reg ckout);

7

8 parameter TIME_UNIT = 1e-15; // verilog time unit

9 parameter M_PI = 3.141592; // pi

10 parameter freq = 1.0; // ckout frequency

11

12 reg timer_clk; // timer for detecting phase exceed first or ckout

transition first

13 real phin_by_M_PI; // phin normalized by 2*pi

14 real ph0; // accumultaed phase

15 real t0, t1; // time stamps

16 real ph_transition; // constant to define when ckout flips

17 real half_delay; // half delay for timer

18 real phin_prev;

19

20 // some initialization

21 initial begin

22 ph0 = 0.0;

23 phin_prev = 0.0;

24 ph_transition = 0.5;

25 ckout = 1’b0;

26 timer_clk = 1’b0;

27 #1 timer_clk = 1’b0;

28 end

29

30 // normalize phin by 2*pi

31 always @(phin) phin_by_M_PI = phin/M_PI;

32

33 // this code is adopted from ringosc.v for PLL monte -carlo

simulation

34 always @(phin_by_M_PI or timer_clk) begin

APPENDIX A. DOMAIN TRANSLATOR EXAMPLE 108

35 t1 = $realtime*TIME_UNIT;

36 ph0 = ph0 + freq*(t1 -t0) - (phin_by_M_PI - phin_prev)*

ph_transition ; // accumulate phase

37 if (ph0 > ph_transition) begin // flip clock if phase exceed some

degree (e.g., 180 if ph_transition=0.5)

38 ckout = ~ckout;

39 ph0 = ph0 - ph_transition ;

40 end

41 half_delay = $rtoi((ph_transition -ph0)/(freq/ph_transition)/

TIME_UNIT);

42 if (half_delay < 1.0) // in case half_delay goes negative at the

initial start -up

43 half_delay = 1.0;

44 timer_clk <= #(half_delay) ~timer_clk; // schedule a timer_clk

flip

45 t0 = t1;

46 phin_prev = phin_by_M_PI;

47 end

48

49 endmodule

Listing A.4: SystemVerilog code of V -to-Φ domain translator

1 // clock to phase converter for transient simulation

2

3 ‘timescale 1fs/1fs

4 module ck2phase (

5 input ckin ,

6 input real vdd ,

7 output real phout);

8

9 parameter TIME_UNIT = 1e-15; // verilog time unit

10 parameter M_TWO_PI = 2.0*3.141592 // 2*pi

11 parameter freq = 1.0; // ckin frequency in Hz

12

13 real UI_abs, UI_diff , UI_out;

14

15 integer i; // check this is the first rising edge

APPENDIX A. DOMAIN TRANSLATOR EXAMPLE 109

16 initial i = 0;

17

18 always @(posedge ckin) begin

19 if (i == 0) begin // initialize UI_out with the first rising edge

of ckin

20 i = 1;

21 UI_out = $realtime*TIME_UNIT*freq;

22 end

23 else begin

24 UI_abs = $realtime*TIME_UNIT*freq - UI_out;

25 UI_diff = UI_abs - $rtoi(UI_abs + 0.5) ;

26 UI_out = UI_out + UI_diff;

27 phout = M_TWO_PI*UI_out;

28 end

29 end

30

31 endmodule

Listing A.5: SystemVerilog code of the domain translator for checking A-to-D circuit

1 // Module for checking A-D ciircut

2

3 module check_a2d (

4 input real inp , // comparator +input

5 input real inn , // comparator -input

6 input comp_out , // comparator ’s digital output (feedback to this

block)

7 input virclk, // clock input for running recursive 1-bit DAC

8 output real vcomp_inp , // comparator ’s actual input(positvely

going)

9 output real vcomp_inn , // comparator ’s actual input(negatively

going)

10 output real vout , // extacted analog output (differential)

11 output real vos // extracted a2d circuit offset

12);

13

14 import "DPI -C" pure function real fabs (input real x);

15

APPENDIX A. DOMAIN TRANSLATOR EXAMPLE 110

16 parameter integer inverting = 0; // 1 if non - inverting

17

18 real vcomp_diff; // actual differential input for comparator

19 real dv,dv_prev; // delta V and its previous state for voltage step

(dv) of vcomp_diff

20 real dv_sign ; // dv_sign should be -1 if the comparator is

noninverting , i.e., inverting != 1

21 real vin_diff; // input difference

22 real vin_cm; // input common-mode

23

24 parameter vin_diff_high = 0.2; // allowable max vin_diff to

comparator

25 parameter vin_diff_low = -0.2; // allowable min vin_diff to

comparator

26

27 assign vcomp_inp = vin_cm + vcomp_diff/2.0 + vin_diff/2.0;

28 assign vcomp_inn = vin_cm - vcomp_diff/2.0 - vin_diff/2.0;

29 assign vout = -1.0* vcomp_diff ;

30

31 initial dv_prev = (vin_diff_high -vin_diff_low)/2.0;

32

33 always @(inp or inn) begin

34 vin_diff = inp -inn;

35 vin_cm = (inp+inn)/2.0;

36 end

37

38 always @(posedge virclk) begin

39 // inverting/non -inverting

40 if (inverting == 1) dv_sign = 1;

41 else dv_sign = -1;

42 // 1-bit dac

43 if(comp_out) dv = dv_sign*dv_prev/2.0; // vcomp_diff should be

decreased

44 else dv = -1.0* dv_sign*dv_prev/2.0; // vcomp_diff should be

increased

45 // integrator

46 vcomp_diff = vcomp_diff + dv;

APPENDIX A. DOMAIN TRANSLATOR EXAMPLE 111

47 dv_prev = fabs(dv);

48 vos = vcomp_diff + vin_diff;

49 end

50

51 endmodule

Bibliography

[1] Jaeha Kim, M. Jeeradit, Byongchan Lim, and M.A. Horowitz. Leveraging de-

signer’s intent: A path toward simpler analog cad tools. In Custom Integrated

Circuits Conference, 2009. CICC ’09. IEEE, pages 613 –620, sept. 2009.

[2] N.A. Kurd, S. Bhamidipati, C. Mozak, J.L. Miller, T.M. Wilson, M. Nemani, and

M. Chowdhury. Westmere: A family of 32nm ia processors. In Solid-State Cir-

cuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International,

pages 96 –97, feb. 2010.

[3] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar,

S. Siers, I. Stolero, and A. Subbiah. A 22nm ia multi-cpu and gpu system-on-

chip. In Solid-State Circuits Conference Digest of Technical Papers (ISSCC),

2012 IEEE International, pages 56 –57, feb. 2012.

[4] F. O’Mahony, J. Kennedy, J.E. Jaussi, G. Balamurugan, M. Mansuri, C. Roberts,

S. Shekhar, R. Mooney, and B. Casper. A 10gb/s 1.4mw/(gb/s) parallel interface

in 45nm cmos. In Solid-State Circuits Conference Digest of Technical Papers

(ISSCC), 2010 IEEE International, pages 156 –157, feb. 2010.

[5] D.M. Fischette, A.L.S. Loke, M.M. Oshima, B.A. Doyle, R. Bakalski, R.J. De-

Santis, A. Thiruvengadam, C.L. Wang, G.R. Talbot, and E.S. Fang. A 45nm

soi-cmos dual-pll processor clock system for multi-protocol i/o. In Solid-State

Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE Interna-

tional, pages 246 –247, feb. 2010.

112

BIBLIOGRAPHY 113

[6] K. Iwata, T. Irita, S. Mochizuki, H. Ueda, M. Ehama, M. Kimura, J. Take-

mura, K. Matsumoto, E. Yamamoto, T. Teranuma, K. Takakubo, H. Watanabe,

S. Yoshioka, and T. Hattori. A 342 mw mobile application processor with full-hd

multi-standard video codec and tile-based address-translation circuits. Solid-

State Circuits, IEEE Journal of, 45(1):59 –68, jan. 2010.

[7] C.P. Lee, A. Behzad, B. Marholev, V. Magoon, I. Bhatti, D. Li, S. Bothra,

A. Afsahi, D. Ojo, R. Roufoogaran, T. Li, Yuyu Chang, K.R. Rao, S. Au,

P. Seetharam, K. Carter, J. Rael, M. Macintosh, B. Lee, M. Rofougaran,

R. Rofougaran, A. Hadji-Abdolhamid, M. Nariman, S. Khorram, S. Anand,

E. Chien, S. Wu, C. Barrett, Lijun Zhang, A. Zolfaghari, H. Darabi, A. Sarfaraz,

B. Ibrahim, M. Gonikberg, M. Forbes, C. Fraser, L. Gutierrez, Y. Gonikberg,

M. Hafizi, S. Mak, J. Castaneda, K. Kim, Zhenhua Liu, S. Bouras, K. Chien,

V. Chandrasekhar, P. Chang, E. Li, and Zhimin Zhao. A multistandard, multi-

band soc with integrated bt, fm, wlan radios and integrated power amplifier. In

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, pages 454 –455, feb. 2010.

[8] A. Hadjichristos, M. Cassia, H. Kim, C.H. Park, K. Wang, W. Zhuo, B. Ahrari,

R. Brockenbrough, J. Chen, C. Donovan, R. Jonnalagedda, J. Kim, J. Ko,

H. Lee, S. Lee, E. Lei, T. Nguyen, T. Pan, S. Sridhara, W. Su, H. Yan, J. Yang,

C. Conroy, C. Persico, K. Sahota, and B. Kim. Single-chip rf cmos umts/egsm

transceiver with integrated receive diversity and gps. In Solid-State Circuits Con-

ference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International,

pages 118 –119,119a, feb. 2009.

[9] Xin He and J. van Sinderen. A 45nm low-power saw-less wcdma transmit mod-

ulator using direct quadrature voltage modulation. In Solid-State Circuits Con-

ference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International,

pages 120 –121,121a, feb. 2009.

[10] A.M.A. Ali, A. Morgan, C. Dillon, G. Patterson, S. Puckett, M. Hensley, R. Stop,

P. Bhoraskar, S. Bardsley, D. Lattimore, J. Bray, C. Speir, and R. Sneed. A 16b

BIBLIOGRAPHY 114

250ms/s if-sampling pipelined a/d converter with background calibration. In

Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE

International, pages 292 –293, feb. 2010.

[11] D.C. Daly, P.P. Mercier, M. Bhardwaj, A.L. Stone, Z.N. Aldworth, T.L. Daniel,

J. Voldman, J.G. Hildebrand, and A.P. Chandrakasan. A pulsed uwb receiver

soc for insect motion control. Solid-State Circuits, IEEE Journal of, 45(1):153

–166, jan. 2010.

[12] R. Bagheri, A. Mirzaei, S. Chehrazi, M.E. Heidari, Minjae Lee, M. Mikhemar,

Wai Tang, and A.A. Abidi. An 800-mhz ndash;6-ghz software-defined wireless

receiver in 90-nm cmos. Solid-State Circuits, IEEE Journal of, 41(12):2860 –

2876, dec. 2006.

[13] R.S. Muller and T.I. Kamins. Device Electronics for Integrated Circuits. Wiley,

1986.

[14] Boris Murmann. Digitally assisted analog circuits. IEEE Micro, 26:38–47, 2006.

[15] Chris Spear and Greg Tumbush. SystemVerilog for Verification: A Guide to

Learning the Testbench Language Features. Springer, 3rd ed. 2012 edition, Febru-

ary 2012.

[16] M.J.S. Smith. Application-Specific Integrated Circuits. VLSI Systems Series.

Prentice Hall, 2008.

[17] R.O. Peruzzi. Verification of digitally calibrated analog systems with verilog-ams

behavioral models. In Behavioral Modeling and Simulation Workshop, Proceed-

ings of the 2006 IEEE International, pages 7 –16, sept. 2006.

[18] W. Hartong, L. Hedrich, and E. Barke. Model checking algorithms for analog

verification. In Design Automation Conference, 2002. Proceedings. 39th, pages

542 – 547, 2002.

BIBLIOGRAPHY 115

[19] S. Gupta, B.H. Krogh, and R.A. Rutenbar. Towards formal verification of analog

designs. In Computer Aided Design, 2004. ICCAD-2004. IEEE/ACM Interna-

tional Conference on, pages 210 – 217, nov. 2004.

[20] Thao Dang, Re Donz, and Oded Maler. Verification of analog and mixed-signal

circuits using hybrid systems techniques. In In FMCAD, LNCS, pages 21–36.

Springer, 2004.

[21] Mohamed H. Zaki, Sofiene Tahar, and Guy Bois. Formal verification of analog

and mixed signal designs: Survey and comparison. In Circuits and Systems, 2006

IEEE North-East Workshop on, pages 281 –284, june 2006.

[22] H. Chang and K. Kundert. Verification of complex analog and rf ic designs.

Proceedings of the IEEE, 95(3):622 –639, march 2007.

[23] Jaeha Kim, K.D. Jones, and M.A. Horowitz. Variable domain transformation for

linear pac analysis of mixed-signal systems. In Computer-Aided Design, 2007.

ICCAD 2007. IEEE/ACM International Conference on, pages 887 –894, nov.

2007.

[24] Jaeha Kim, M.A. Horowitz, and Jihong Ren. Stochastic steady-state and ac

analyses of mixed-signal systems. In Design Automation Conference, 2009. DAC

’09. 46th ACM/IEEE, pages 376 –381, july 2009.

[25] M. Horowitz, M. Jeeradit, F. Lau, S. Liao, ByongChan Lim, and J. Mao. Forti-

fying analog models with equivalence checking and coverage analysis. In Design

Automation Conference (DAC), 2010 47th ACM/IEEE, pages 425 –430, june

2010.

[26] Byong Chan Lim, Jaeha Kim, and M.A. Horowitz. An efficient test vector gener-

ation for checking analog/mixed-signal functional models. In Design Automation

Conference (DAC), 2010 47th ACM/IEEE, pages 767 –772, June 2010.

[27] Peng Li and L.T. Pileggi. Compact reduced-order modeling of weakly nonlin-

ear analog and rf circuits. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 24(2):184 – 203, feb. 2005.

BIBLIOGRAPHY 116

[28] Joel R. Phillips. Projection frameworks for model reduction of weakly nonlinear

systems. In Proceedings of the 37th Annual Design Automation Conference, DAC

’00, pages 184–189, New York, NY, USA, 2000. ACM.

[29] J.R. Phillips. Projection-based approaches for model reduction of weakly non-

linear, time-varying systems. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 22(2):171 – 187, feb. 2003.

[30] Jinghong Chen and Sung Mo Kang. An algorithm for automatic model-order

reduction of nonlinear mems devices. In Circuits and Systems, 2000. Proceedings.

ISCAS 2000 Geneva. The 2000 IEEE International Symposium on, volume 2,

pages 445 –448 vol.2, 2000.

[31] W. Sansen. Distortion in elementary transistor circuits. Circuits and Systems

II: Analog and Digital Signal Processing, IEEE Transactions on, 46(3):315 –325,

mar 1999.

[32] P. Wambacq, G.G.E. Gielen, P.R. Kinget, and W. Sansen. High-frequency dis-

tortion analysis of analog integrated circuits. Circuits and Systems II: Analog

and Digital Signal Processing, IEEE Transactions on, 46(3):335 –345, mar 1999.

[33] A. Buonomo and A. Lo Schiavo. Perturbation analysis of nonlinear distortion

in analog integrated circuits. Circuits and Systems I: Regular Papers, IEEE

Transactions on, 52(8):1620 –1631, aug. 2005.

[34] Micha lRewieński and Jacob White. A trajectory piecewise-linear approach to

model order reduction and fast simulation of nonlinear circuits and microma-

chined devices. In Proceedings of the 2001 IEEE/ACM international conference

on Computer-aided design, ICCAD ’01, pages 252–257, Piscataway, NJ, USA,

2001. IEEE Press.

[35] B.N. Bond, Z. Mahmood, Yan Li, R. Sredojevic, A. Megretski, V. Stojanovi,

Y. Avniel, and L. Daniel. Compact modeling of nonlinear analog circuits us-

ing system identification via semidefinite programming and incremental stability

BIBLIOGRAPHY 117

certification. Computer-Aided Design of Integrated Circuits and Systems, IEEE

Transactions on, 29(8):1149 –1162, aug. 2010.

[36] Ning Dong and J. Roychowdhury. General-purpose nonlinear model-order re-

duction using piecewise-polynomial representations. Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, 27(2):249 –264, feb.

2008.

[37] S.K. Tiwary and R.A. Rutenbar. Scalable trajectory methods for on-demand

analog macromodel extraction. In Design Automation Conference, 2005. Pro-

ceedings. 42nd, pages 403 – 408, june 2005.

[38] Douglas C. Montgomery, Elizabeth A. Peck, and Geoffrey G. Vining. Intro-

duction to Linear Regression Analysis (4th ed.). Wiley & Sons, Hoboken, July

2006.

[39] V. Volterra, L. Fantappiè, and M. Long. Theory of functionals and of integral

and integro-differential equations. Blackie & Son Limited, 1930.

[40] S. Narayanan. Transistor distortion analysis using volterra series representation.

Bell Syst. Tech. J, 46(3):991–1024, 1967.

[41] K. Kundert. Simulation methods for rf integrated circuits. In Computer-Aided

Design, 1997. Digest of Technical Papers., 1997 IEEE/ACM International Con-

ference on, pages 752 –765, nov 1997.

[42] P.J. Antsaklis and A.N. Michel. A Linear Systems Primer. Birkhäuser Boston,

2007.

[43] B. Razavi. Design of Integrated Circuits for Optical Communications. Wiley,

2012.

[44] A.S. Hedayat, N.J.A. Sloane, and J. Stufken. Orthogonal Arrays: Theory and

Applications. Springer Series in Statistics. Springer, 1999.

BIBLIOGRAPHY 118

[45] Erik Max Francis. Empy 3.1. http://www.alcyone.com/software/empy, Oc-

tober 2003.

[46] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Exploring network

structure, dynamics, and function using NetworkX. In Proceedings of the 7th

Python in Science Conference (SciPy2008), pages 11–15, Pasadena, CA USA,

August 2008.

[47] Valentin Abramzon. Analog-to-digital Converters for High-speed Links. PhD

thesis, Stanford University, 2008.

[48] J.G. Maneatis, J. Kim, I. McClatchie, J. Maxey, and M. Shankaradas. Self-biased

high-bandwidth low-jitter 1-to-4096 multiplier clock generator pll. Solid-State

Circuits, IEEE Journal of, 38(11):1795 – 1803, nov. 2003.

[49] Sangho Youn, Jaeha Kim, and M. Horowitz. Global convergence analysis of

mixed-signal systems. In Design Automation Conference (DAC), 2011 48th

ACM/EDAC/IEEE, pages 498 –503, june 2011.

[50] R.H. Myers, D.C. Montgomery, and C.M. Anderson-Cook. Response Surface

Methodology: Process and Product Optimization Using Designed Experiments.

Wiley Series in Probability and Statistics. Wiley, 2009.

[51] K.K. Low and S.W. Director. An efficient methodology for building macromodels

of ic fabrication processes. Computer-Aided Design of Integrated Circuits and

Systems, IEEE Transactions on, 8(12):1299 –1313, dec 1989.

[52] Zhuo Feng and Peng Li. Performance-oriented statistical parameter reduction of

parameterized systems via reduced rank regression. In Computer-Aided Design,

2006. ICCAD ’06. IEEE/ACM International Conference on, pages 868 –875,

nov. 2006.

[53] Xin Li. Finding deterministic solution from underdetermined equation: Large-

scale performance variability modeling of analog/rf circuits. Computer-Aided

BIBLIOGRAPHY 119

Design of Integrated Circuits and Systems, IEEE Transactions on, 29(11):1661

–1668, nov. 2010.

[54] Xin Li, Jiayong Le, L.T. Pileggi, and A. Strojwas. Projection-based perfor-

mance modeling for inter/intra-die variations. In Computer-Aided Design, 2005.

ICCAD-2005. IEEE/ACM International Conference on, pages 721 – 727, nov.

2005.

[55] F. Schenkel, M. Pronath, S. Zizala, R. Schwencker, H. Graeb, and K. Antreich.

Mismatch analysis and direct yield optimization by spec-wise linearization and

feasibility-guided search. In Design Automation Conference, 2001. Proceedings,

pages 858 – 863, 2001.

[56] D. Liu, S. Sidiropoulos, and M. Horowitz. A framework for designing reusable

analog circuits. In Computer Aided Design, 2003. ICCAD-2003. International

Conference on, pages 375 – 380, nov. 2003.

[57] Stephen Marsland. Machine Learning: An Algorithmic Perspective. Chapman

& Hall/CRC, 1st edition, 2009.

[58] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector

machines. ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

[59] M.J.M. Pelgrom, A.C.J. Duinmaijer, and A.P.G. Welbers. Matching properties

of mos transistors. Solid-State Circuits, IEEE Journal of, 24(5):1433 – 1439, oct

1989.

[60] Wei Zhao and Yu Cao. Predictive technology model for nano-cmos design explo-

ration. J. Emerg. Technol. Comput. Syst., 3(1), April 2007.

[61] James Mao. CircuitBook: A Framework for Analog Design Reuse. PhD thesis,

Stanford University, 2013.

