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Abstract

Energy-e�cient computation is critical for increasing performance in power limited

systems. Floating point performance is of particular interest because of its impor-

tance in scienti�c computing, graphics and multimedia processing. For �oating-point

applications that have large amounts of data parallelism one should optimize the

throughput/mm2 given a power density constraint. We present a method for creating

a trade-o� curve that can be used to estimate the maximum �oating-point perfor-

mance given a set of area and power constraints. These throughput optimized designs

turn out to be di�erent from latency optimized ones and more energy e�cient. Look-

ing at �oating-point multiply-add units and ignoring register and memory overheads,

we �nd that in a 90nm CMOS technology at 1W/mm2, one can achieve a performance

of 27GFlops/mm2 single-precision, and 7.5GFlops/mm2 double-precision. Adding

register �le overheads reduces the throughput by less than 50% if the compute inten-

sity is high. Since the energy of the basic gates is no longer scaling rapidly, to maintain

constant power density with scaling requires moving the overall FP architecture to a

lower energy/performance point using lower supply voltage, shallower pipelines and

more relaxed gate sizing. A 1W/mm2 design at 90nm is a "high-energy" design, so

scaling it to a lower energy design in 45nm still yields a 7× performance gain, while

a more balanced 0.1W/mm2 design only speeds up by 3.5× when scaled to 45nm.

Performance scaling below 45nm rapidly decreases, with a projected improvement of

only 2-3 for both power densities when scaling to a 22nm technology.

On the other hand, some �oating point units employed for single threaded per-

formance such as CPU designs are latency sensitive. For such designs a di�erent

optimization in the implementation of fused �oating-point multiply-add operations
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can be utilized. By realizing that the average latency of all operations going through

the unit is what matters most, an optimized cascade design can reduce the accu-

mulation dependent latency by 2× over a fused design, at a cost of a 13% increase

in non-accumulation dependent latency. A simple in-order execution model shows

this design is superior in most applications, providing 12% average reduction in FP

stalls, and improves performance by up to 6%. Simulations of superscalar out-of-order

machines show 4% average CPI improvement in 2-way machines and 4.6% in 4-way

machines. This feat is achieved by a design architecture called cascade, where the

addition operation is cascaded after multiplication in comparison to traditional ar-

chitectures. The cascade design has the same area and energy budget as a traditional

FMA.
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Chapter 1

Introduction

Computer performance has been increasing exponentially in the last half century,

driven by improvements in architecture, circuit design and technology. Historically,

chip design was focused on maximizing performance within a constrained die area with

the niche of mobile and battery held devices focused on low power design. This decade,

even high-performance designs have transitioned from being transistor/complexity

limited to being power limited. This change in design constraints has had a signi�cant

impact on system design as increase in performance can come only from lowering the

energy of operations. This is now a serious issue since the energy savings o�ered by

scaling has slowed down dramatically in recent technology nodes.

Interestingly, the energy per operation depends on performance (ops/sec): as the

required performance increases, the energy to perform each operation also increases.

This energy-performance relationship is one of the factors driving the trend towards

chip multiprocessors. By reducing the peak performance of each processor, we can

decrease its energy/instruction. Thus for the same power, we can execute more in-

structions /sec. Of course, to make it more energy-e�cient each processor has lower

peak performance than before; so to achieve the power limited instruction issue rate,

we need to integrate more processors on to the die. The resulting machine, for paral-

lel applications, can deliver more performance at the same power than the previous

uniprocessor designs.

This dissertation explores how to optimize �oating-point (FP) functional units in

1



2 CHAPTER 1. INTRODUCTION

this energy constrained design space. Floating point unit designs have been studied

extensively and are the backbone of scienti�c computation and computer graphics.

This work looks speci�cally at �oating point units based on the fused multiply add

operation and its variants. Currently, FPUs exist in two large di�erentiated segments:

CPU's and GPU's. Ever since the integration of x87 �oating point coprocessor in the

Intel 486, the �oating point unit has been an integral part of CPU performance. The

design of an FPU for CPUs is highly latency sensitive as it is designed for single

threaded operation. On the other hand, recent GPUs employ thousands of FPU's

working together on highly parallel work loads. This high parallelism allows GPUs to

have generally superior energy e�ciency and higher �oating point performance than

CPUs. For such designs, the total throughput of the aggregate parallel units is more

important than the latency of each individual FPU since latency can be hidden by

interleaving of the execution of parallel threads. Both designs pose di�erent challenges

and design questions.

In the �rst part of the dissertation, we look at how to design an energy e�cient

throughput system. Chapter 3 introduces the rationale for optimizing throughput ma-

chines. For parallel systems, the latency or even the throughput rate per processor is

not the critical optimization parameter, since changing the design changes the num-

ber of units we can �t on the die. Instead we optimize the number of results/sec/mm2

remembering that very small, slower units might be the best solution. Thus, for par-

allel systems, the main tradeo� is between energy/op and ops/sec/mm2, so power

density becomes a critical design metric. Chapter 4 presents the tradeo�s in FPU

design for throughput and the overheads in area and energy for its associated register

�les. Finally, implemented designs for throughput tradeo�s in 90nm and 45nm show

interesting trends of uneven scaling of high power density and low power density de-

signs. This prompts an extended study of scaling of throughput tradeo�s down to

16nm in Chapter 5. The study explores how designs need to change with scaling to

track most energy e�cient designs.

In the second part of the dissertation, FPU design is approached from the angle

of applications that don't have enough parallelism and are latency sensitive such as

in CPUs. Here a quantitative study is presented that looks at the di�erent latencies



3

embedded with design choices in fused multiply add design. Based on this study,

a cascade implementation that favors very short accumulation latency over other

latencies o�ers almost 20% improvement in average latency over state of the art

design with no overhead in energy or area. Such a design pushes the envelope of

energy e�ciency tradeo�s by improving performance for same amount of energy.



Chapter 2

Background

2.1 It's a Power Limited World

In 1965, Gordon Moore famously noted that the number of transistors that can be

placed inexpensively on an integrated circuit doubles approximately every two years.

This trend has been holding remarkably well for almost half a century through the

downscaling of transistor dimensions. In 1974, Dennard outlined the theory for scaling

MOSFET transistors which the industry has followed consistently until recently [33].

The theory outlined in Table 2.1 stipulates that scaling all the transistor dimensions of

a circuit as well as the supply voltage with some scaling factor 1/κ maintains constant

electric �elds throughout the devices. This results in linear improvement in circuit

delay (1/κ) and quadratic improvement in power (1/κ2) while maintaining constant

power density. Moore's law and Dennard scaling have since de�ned technology scaling

and the whole electronics industry.

Despite the constant power delivered by classical Dennard Scaling, the power

of microprocessors has been continually rising. Power increased as designers used

an ever increasing transistor budget to build more sophisticated architectures, and

scaled operating frequencies even faster than Dennard scaling using deeply pipelined

architectures. However in the beginning of this decade, designs started hitting a

power wall around 130W where system design became increasingly hard in terms

of cooling and power delivery as shown in Figure 2.1. This means that not only low

4



2.2. ENERGY EFFICIENT DESIGN 5

Device or Circuit Parameter Scaling Factor
Device dimension tox, L,W 1/κ
Doping concentration Na κ
Voltage V 1/κ
Current I 1/κ
Capacitance εA/t 1/κ
Delay time/circuit V C/I 1/κ
Power dissipation/circuit V I 1/κ2

Power density V I/A 1

Table 2.1: Scaling results for circuit performance. κ is unitless scaling factor. repro-
duced from Dennard et al. [33]

power mobile designs are limited in their power dissipation but also high performance

designs have become power limited too. Making matters worse, the scaling of energy

per operation predicted by Dennard scaling started slowing down beyond 90nm as it

became increasingly hard to lower supply voltage without taking a big performance

or leakage current penalty. Scaling supply voltage down requires lowering transistor

threshold voltage to get acceptable transistor performance which in turn increases

leakage currents exponentially. The net result is that supply voltage is staying roughly

constant and the energy/op now only scales proportional to the scaling factor, and

consequently power limited performance scales linearly.

2.2 Energy E�cient Design

Since all designs are power limited and power is the product of performance (oper-

ations/second) and energy/operation, then the only way to increase performance is

to be more energy e�cient. First, energy waste in the design has to be eliminated.

For example, clock gating prevents gates in a logic block from switching during cycles

when their output is not used, reducing clock power and logic dynamic power. Power

gating shuts o� power supply from design portions when unused for longer periods

of time, reducing idle leakage power. Once the strategies for eliminating waste are

exhausted, reducing energy comes at the expense of performance as faster designs
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Figure 2.1: Processor power has hit a wall in the last decade.

require faster circuits that employ big transistors and operate at higher voltages, cre-

ating a tradeo� between performance and energy per operation. Such a tradeo� even

exists for historical data of processor energy and performance normalized for tech-

nology as shown in Figure 2.2. The goal of the designer is to choose the best designs

that lie on the e�cient frontier achieving least energy for a performance target, or

achieving maximum performance for a certain power budget.

2.2.1 Design Parameters Optimization

From among the set of all possible designs, designers need to choose those that lie on

the e�cient frontier of energy versus performance. To do that, they need to tune all

their design parameters carefully to get the minimum energy for their performance

target. As such, an optimization process is needed to guide the choice of design pa-

rameters to achieve a certain position on the e�cient frontier. A sensitivity analysis

of the di�erent design parameters to energy and performance can be used to assist
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Figure 2.2: Plot of historical processors in the energy-performance space. Designs
that maximize performance (to the right) and minimize energy (to the bottom) are
preferred, resulting in a trade-o� curve.



8 CHAPTER 2. BACKGROUND

in this design space search. The sensitivity for an optimization variable x for en-

ergy delay tradeo� is de�ned by Sx; the incremental percent energy (E) per percent

reduction in delay (τ) as given by equation (2.1).

Sx = −
τ

E

∂E
∂x
∂τ
∂x

(2.1)

In an optimal design, the sensitivities of all design parameters have the same value

(SVdd = SVth = ... = S) and minimize the weighted energy delay product EτS [43].

For example adjusting the design parameters of voltage, threshold and sizing to have

sensitivity of 1% increase in energy for every 1% decrease in delay will minimize the

product Eτ while optimizing parameters to have sensitivity of 10% increase in energy

for every 1% decrease in delay will minimize the product Eτ 10. Varying S allows the

traversal of the e�cient frontier from high performance points (large S) to low energy

designs (small S).

2.2.2 Push for Parallelism

The tradeo� between energy and performance is one of the factors driving the trend

towards chip multiprocessors. If a targeted application can be parallelized to run

on several processors instead of one, one can reduce the peak performance of each

processor, and consequently its energy/instruction. Thus for the same power, we can

execute more instructions per second. Of course, to maximize the power limited in-

struction issue rate, we need to integrate more processors on the die. The resulting

machine, for parallel applications, can deliver more performance at the same power

than the previous uniprocessor designs as illustrated in Figure 2.3. One such appli-

cation class consists of throughput oriented workloads such as the ones handled by

GPU. The inherent parallelism of these applications has allowed GPUs over the last

decade to have an order of magnitude higher �oating point performance than even

multicore CPUs as shown in Figure 2.4

Taking the argument of parallelism to its extreme, if the targeted application is

inherently parallel and can be divided between as many processors as possible, the
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Figure 2.3: Pushing the frontier by exploiting parallelism; if dropping performance by
2× increases e�ciency 5×, a 5× improvement in total performance at the same power
is achieved by having 10 parallel machines running at half original performance.

resulting e�cient design will be the absolute minimum energy design (the lowest to

the most left on the e�cient frontier of Figure 2.3) with sea of very slow processors

and huge area overhead. Such a design seems to be very uneconomical and as such

area e�ciency should be taken into consideration as well. Chapter 3 discusses how to

create energy e�cient designs in this highly parallel space for both resource limited

and performance limited designs.
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Chapter 3

Optimizing Throughput Machines

The last chapter introduced the tradeo� between delay and energy per operation.

Such a tradeo� suggests that backing o� the minimum delay design can yield signif-

icant saving in energy. Based on this tradeo�, Chandrakasan proposed the microar-

chitectural techniques of pipelining and parallel datapaths to achieve lower power

designs for a given throughput constraint [7]. Pipelining and parallelism allow the

same throughput to be achieved using lower clock frequency as illustrated in Figure

3.1. The increased delay of the circuits allows the use of lower supply voltage, higher

threshold voltage and reduced gate sizes resulting in energy savings of 40-70% [27].

Several studies investigated the optimal parallelism and pipelining parameters to

minimize total power given a throughput constraint and the limits of its applicability.

Using an analysis based on the NTRS technology roadmap parameter predictions,

Bhavnagarwala looked at parallel datapaths designs across di�erent technology nodes

and concluded that the optimal number of parallel datapaths for minimum power

will decrease from 4 in 0.25 µm technology to 2 in 0.05 µm node with power savings

shrinking from 80% to 20% [9]. The smaller reduction in total power and the fewer

required parallel datapaths required for such reduction are caused by the shallower

underlying energy-delay tradeo�s of smaller technologies due to their lower Vdd/Vth

ratios. Markovic also found parallelism to be only useful in minimizing total energy

for high performance targets above the minimum energy-delay (ED) product design

point (the point at which the marginal cost of energy and performance are equal)

11
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Figure 3.1: Throughput equivalent designs employing parallelism and pipelining

[27]. As for these high performance targets, energy savings due to parallelism are

substantial in comparison to the overheads. For optimal pipelining, Hartstein found

that unpipelined microprocessor designs are minimum E and minimum ED designs

while pipelined microprocessors with pipeline depth of 22.5 FO4 minimized the ED2

product [19].

While energy savings from parallelism and pipelining are similar, parallel datap-

aths consume more area than pipelining. Markovic et al. introduced a methodology

for minimizing power and area given throughput and latency constraints that employ

parallelism, pipelining and time-multiplexing [26]. The latency constraints provide

an upper bound on the delay that allows the choosing of a minimum energy design

that meets the latency bound and then the microarchitectural alternatives are com-

pared to choose the design with the least area. We have also found that even for

latency optimization only, pipelining is a powerful tool for minimizing leakage energy

by dividing the leakage power cost across several operations. Figure 3.2 illustrates

how the minimum energy design for latency targets of 5ns in 90nm single-precision

�oating-point fused multiply add unit is actually a 3 stage pipelined design. While the

dynamic energy of such a design is increased due to the inserted pipelining �ip-�ops,
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unpipelined design for the 5ns latency target due to lower leakage energy.

the decrease in leakage energy due to sharing the leakage power across three opera-

tions outweighs such an increase and the total energy is lower than an unpipelined

design.

Given a throughput target and absent any latency constraints, one could try to

�nd the lowest power designs as has been illustrated in earlier works, however such

low power designs will be very slow designs that will be at the expense of total

design area. Similarly if one optimizes only for area, one will get deeply pipelined

fast-tick machines that would consume higher power. For example, a 1 TeraFlop

single-precision �oating-point throughput can be achieved in 90nm technology by the

following two ends of the design spectrum:

� Power e�cient design: using 2500 low power 4-stage FMA units operating at

200 MHz. The units use low 1V supply voltage and high threshold voltage

transistors to minimize consumed power. The total power is only 9W at the

cost of 132.5 mm2 of area.1

� Area e�cient design: employing only 294 high performance 10-stage FMA units

operating at 1.7GHz. The units use high 1.2V supply voltage and low threshold

1FMA operation is counted as 2 �oating-point operations
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single-precision FMA in 90nm. Throughput optimal designs are di�erent from latency
optimal.
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transistors to improve speed. The total area is only 35mm2 at the expense of

46W of power consumption.

So we have a 3-dimensional search space of throughput, power and area. Given

any two dimensions, one can optimize for the third. For example, given a certain

throughput target and area budget, one can minimize total power. Alternatively,

for a certain area and power budget, one can seek the maximum throughput design.

Luckily the power and area of parallel designs are to a �rst order a linear function of

throughput. Take for instance a design achieving throughput T at cost of total power

P and total area A, then using two such designs we achieve 2T throughput, and the

needed power and area are 2P and 2A respectively. Therefore, one can normalize

the power and area to be per unit of throughput, reducing the search space to a 2-

dimensional space of power e�ciency εP (P/T in W/GFlops which is also the energy

per operation) and area e�ciency εA (A/T in mm2/GFlops). Figure 3.3(a) plots

di�erent FMA designs with varying supply and threshold voltages, pipeline depth

and target frequency in this design space. The plot shows that there exists actually

an e�cient frontier for tradeo� between εP and εA. The area e�cient frontier is not

the same as the latency minimum frontier as shown in Figure 3.3(b). This shows the

need for di�erent design methodology for throughput designs than latency designs.

So in conclusion, for applications that have abundant parallelism (e.g. visual

computing, Internet routing and web search), the key performance metric is the ag-

gregate number of operations performed by the entire machine. Whether we have

5 or 20 processors does not matter; all we care about are the overall throughput,

power and area. For a given throughput, the true costs we are trying to optimize,

whether it is a chip or a server room, are chip area (or �oor space for a bigger ma-

chine) and power. By normalizing area and power cost to throughput, we �nd there

is a set of optimal designs that tradeo� power for area necessary to achieve a certain

throughput. However, we still need a criteria for choosing one design from this set.

We can �nd such criteria by looking at the hard constraints of a throughput system.

Some systems have hard resources constraints, while others have hard performance

constraints. The tradeo� curve of Figure 3.3(a) is su�cient in choosing the optimal

design for both resource and performance constrained throughput systems.
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3.1 Resource Constrained Throughput Systems

In designing resource constrained throughput systems, we are trying to maximize

throughput given a set of �xed power, area and thermal constraints. These are often

single chip systems such as GPU or mobile devices. In these systems the goal is to:

maximize T

subject to:

P/A < Dmax

P < Pmax

A < Amax

where T is total throughput in GFlops, P is total power in W, A is total area in

mm2, Dmax is maximum power density in W/mm2

Using an εP -εA trade-o� curve, we can easily �nd the optimal maximum through-

put that conforms to area, power, and power density constraints by substituting

P=εPT and A=εAT. The solution to this problem is the point(εA,εP ) on the e�cient

frontier satisfying the condition:

εP/εA=min(Pmax/Amax,Dmax)

Such a design achieves the maximum throughput of:

T=min(Amax,Pmax/Dmax)/εA

Figure 3.4(a) illustrates graphically how to �nd the optimal design using an exist-

ing εP -εA trade-o� curve for an example constraints of Amax = 2 cm2, Pmax = 60 W,

and Dmax = 50 W/cm2. The intersection of the Pmax/Amax constant power density

line with the tradeo� curve is the optimal design since Pmax/Amax in this example

is a tighter constraint than Dmax. The optimal FPU design is a 1.67 GFlops design
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with an area of 0.09 mm2 and power of 27 mW.2 Integrating 2,222 such FPUs on a

chip we achieve a total throughput of 3.7 TFlops at 60W and 2cm2.

Figure 3.4(b) views the data in a slightly di�erent way. First, we take the εP -εA

trade-o� and multiply the curve by several values of throughput (say 1, 2, 3, 4 TFlops)

generating the required chip area and chip power required for such throughputs.

Drawing these curves together in Chip Power versus Chip Area space gives us a

contour map of e�cient throughput designs for any value of chip power and area.

Overlaying the resource constraints on the graph (the red lines), we obtain the shaded

allowed design space with highest throughput design at the intersection of the area

and power constraints achieving 3.7 TFlops; the same as obtained previously using

Figure 3.4(a).

3.2 Performance Constrained Throughput Systems

The second class of systems has hard performance constraints, and these systems gen-

erally use many individual processing units in parallel to achieve their total through-

put requirement. As such, both system energy and total "chips" area are �exible, as

long as one can meet the throughput performance target. Minimizing the total cost

of ownership (TCO) is the optimization goal of such a system. Several studies have

looked at building a detailed cost model for datacenters that incorporates all the costs

of building, running and maintaining a datacenter [28, 11]. The model separates the

costs into two categories:

� Capital expenditures: including cost of real estate, buildings, datacenter ma-

chines, power delivery and cooling equipment. The compute equipment is usu-

ally amortized over 3 years while the building facilities are amortized over 15

years.

� Operational expenditures: including electricity cost for powering and cooling,

2The throughput, area, and the power of the building blocks can't be deduced using only the
trade-o� curve. It only says the optimal design has �gures of merit of εA of 0.054 mm2/GFlops and
εP of 0.016 W/GFlops. The throughput information is retrieved from the stored design information
for such a design point.
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personnel and software expenses

The total cost function is related to the area and power e�ciency metrics by the

prices of chip area and electricity respectively. The optimization problem can be

summarized as follows:

minimize φ(εA, εP )

subject to:

εP < DmaxεA

(where φ(εA, εP ) is the throughput cost e�ciency in $/GFlops per year as a

function of energy/op (εP ) in W/GFlops and area e�ciency (εA) in mm2/GFlops,

Dmax is maximum power density in W/mm2)

In minimizing the cost of throughput constrained systems, two extreme cases are

easy to see:

� System energy is free: In this case, all we care about is a design that maxi-

mizes the throughput per chip area. This is exactly how chips were designed in

the early days of scaling where area e�ciency was the overriding design goal.

� Chip area is free: In this case, all we care about is minimizing energy con-

sumption. We then choose the most power-e�cient system, which generally

leads to systems with a large number of very slow units. Numerous studies have

shown that minimum energy solutions generally operate at low Vdd, which cause

the units to operate in the subthreshold region and have very low performance

per unit area.

In real situations, however, neither energy nor area is free so both need to be

considered in the context of minimizing the total cost of ownership. Eq. (3.1) shows

an example cost function that incorporates di�erent possible cost components: a
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power cost φpower as function of energy e�ciency, a hardware cost φhardware as function

of area e�ciency, and a cooling cost φcooling as function of power e�ciency and power

density.

φ(εA, εP ) = φhardware(εA) + φpower(εP ) + φcooling(εA, εP ) (3.1)

At the optimal point, the marginal cost of incremental energy and area will match,

since if they were not the same, we could lower cost by "selling" the expensive one,

and "buying" the cheaper one. If the hardware and power cost are linear on area

and energy, the ratio of the $/mm2 and $/W sets the constant cost curves which are

straight lines in the W/GFlops versus mm2/GFlops space. If the costs are nonlinear,

the constant cost curves will still exist, but will no longer be straight lines. The point

where the trade-o� curve is tangent to the constant cost curve will minimize the total

cost of the system as illustrated in Fig. 3.5.

φ(εA, εP ) = cAεA + cP εP + constant (3.2)

If the marginal energy and area costs are relatively constant, we can use the

simpli�ed linear cost equation (3.2) employing area cost cA (¢/mm2 per year) and

power cost cP(¢/W per year). A such, the slope of the constant cost lines becomes

cA/cP. We can then convert the minimum TCO problem to �nding the optimal

design at a given power density by relating the slope of the trade-o� curve at each

point to the power density at this point. Fig. 3.6 shows the result for the trade-o�

curves in 90 and 45nm. As intuitively expected, higher energy prices (low cA/cP ratio)

results in low-energy designs with low performance/mm2 and low-power density, while

high hardware cost (high cA/cP ratio) results in high-energy high-performance/mm2

designs with higher power density and less energy e�ciency. It is notable that the

optimal power density for 45nm is twice the optimal power density of 90nm designs

which indicates that energy e�ciency is scaling slower than area e�ciency from 90nm

to 45nm. Another interesting observation is the quadratic relation between power

density and slope of tradeo� curve. This quadratic relation can be used to derive an

approximation model for the tradeo�s to better understand its properties by noticing
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Example cost model assumptions:

� Hardware cost: assume to be proportional to the area (e.g. 100 mm2 chip
costs $100 while 200 mm2 chip cost $200)

� Area cost = 1 $/mm2

3 years depreciation period
= 33 ¢/mm2 (per year)

� Electricity cost: assume an electricity price of 10 ¢/KWh

� Power cost = 10 ¢

KWh
24 hours
1 day

365 days
1 year

1 KWh
1000 W

= 87.6 ¢/W (per year)

� Power delivery and Cooling cost is signi�cant cost as well

� 0.5W consumed for every 1W of operation power

� High power density designs require more expensive cooling systems

� Throughput cost = Area cost Area
Throughput

+ (Power & Cooling costs) Power
Throughput
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GFlops.Year
= ¢
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+ ¢
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Figure 3.5: Power/throughput versus area/throughput trade-o� overlaid on example
constant TCO contours in ¢/GFlops per year. The minimum cost design achieves
TCO of 3.85¢/GFlops per year. The cooling costs of the system are proportional to
power density which accounts for the nonlinearity of the constant cost contours.
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that:

dεP
dεA

+ c

(
εP

εA

)2

= 0

dεP
εP 2

+ c
dεA
εA2

= 0

1

εP
+

c

εA
= d

So the FMA tradeo� curve can be approximated by two degrees of freedom:

the minimum achievable W/GFlops (εPmin) and the minimum mm2/GFlops (εAmin).

They determine the approximation curve and its slope as given by Eqs. (3.3) and

(3.4). The knee of the curve which balances the power and area e�ciency occurs at

the point (2εAmin, 2εPmin) with the characteristic power density of that point being

εPmin/εAmin

εPmin
εP

+
εAmin
εA

= 1 (3.3)

dεP
dεA

= −εAmin
εPmin

(
εP

εA

)2

= − εAminεPmin
(εA − εAmin)2

= −(εP − εPmin)2

εAminεPmin
(3.4)

Figure 3.7 shows that Eq. (3.3) provides a good approximation to the FMA

throughput tradeo�s between mm2/GFlops and W/GFlops. The minimum achiev-

able mm2/GFlops (εAmin) scales 10.76× from 0.114 mm2/GFlops in 90nm to 0.0106

mm2/GFlops in 45nm. The minimum achievable W/G�ops (εPmin) however scales

by only 2.37× from 17.6 mW/GFlops in 90 nm to 7.4 mW/GFlops in 45nm. This

results in the characteristic power density increasing from 0.16 W/mm2 in 90nm to

0.7 W/mm2 in 45nm.

3.3 Sensitivity Analysis of Throughput Tradeo�s

Having generated tradeo� curves for throughput, now we look closely at how to make

the di�erent design choices to achieve the optimal designs on the e�cient frontier. In
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Figure 3.7: Floating point FMA, adder and multiplier designs for 90 and 45nm pro-
cesses with their e�cient frontiers �tted through the relationship εPmin

εP
+ εAmin

εA
= 1.

The 45nm process has higher characteristic power density (εPmin/εAmin) of 0.7W/mm2

vs 0.16W/mm2 for 90nm due to limited scaling of power e�ciency
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this section, we look at sensitivity analysis for the optimization variables of through-

put tradeo�s to choose the values of optimization knobs. We derive energy marginal

costs of mm2/throughput from energy marginal costs of latency which were intro-

duced in Section 2.2.1.

In the case of throughput, the tradeo� is between energy per operation (E) and

area per throughput (τA/N) where τ is the latency delay, A is the area and N is the

pipeline depth of the design. We de�ne the sensitivity for the throughput case (Ux)

of an optimization variable x as:

UX = − τA

NE

∂E
∂x

∂( τA
N

)

∂x

(3.5)

In the following sections we derive the sensitivities for our four optimization vari-

ables: supply voltage Vdd, threshold voltage Vth, pipeline depth and transistor sizing.

3.3.1 Supply and Threshold Voltage Sensitivities

Supply voltage and threshold voltage neither a�ect the area (A) nor the pipeline

depth of the circuit (N). Therefore
∂( τA

N
)

∂x
reduces to A

N
∂τ
∂x

and Eq. (3.5) reduces to

Eq. (2.1) and their throughput sensitivities are the same as their latency sensitivities

which are derived in detail in [27].

UVdd = SVdd (3.6)

UVth = SVth (3.7)

3.3.2 Circuit Sizing Sensitivity

For circuit sizing we only consider the sizing of the overall circuit and not of an

individual component of the circuit. That is because the sensitivities of all internal

circuits are equal to the sensitivity of the containing block in an optimal design. So

Eq. (3.8) de�nes sizing sensitivity to the sizing parameter W as:
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UW = − τA

NE

∂E
∂W

∂( τA
N

)

∂W

= − τA

NE

∂E
∂W

A
N

∂τ
∂W

+ τ
N

∂A
∂W

= −
∂E
∂W

/E
∂τ
∂W

/τ + ∂A
∂W

/A

UW = − 1

1
SW
− E

A

∂A
∂W
∂E
∂W

(3.8)

However if we look closely to the denominator in Eq. (3.8) we �nd that the second

term (E
A

∂A
∂W
∂E
∂W

) is around 1 from experimental data as energy and area are proportional

to each other given that all other parameters unchanged. This basically means that

percent increase in area almost matches percent increase in energy per operation

if only circuit sizing is changed. We can use this fact to approximate throughput

sensitivity UW in terms of energy-delay sensitivity SW to be

UW ≈
SW

1− SW
(3.9)

This relationship is interesting because it says that the circuit sizing knob saturates

when energy-delay sensitivity SW reaches 1 which is the ED minimum design point.

Therefore for throughput e�cient designs with sensitivities greater than 1, the circuits

should not be sized as aggressively as possible, since parallelism can yield better

results than increased sizing of the building block, and other knobs such as supply or

threshold voltage should be used further as tuning knobs. Therefore minimum delay

sizing which may be e�cient for high performance latency designs is never e�cient

for throughput e�cient designs.
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3.3.3 Pipeline Depth Sensitivity

Pipelining is another important knob for throughput. To understand the e�ects of

pipelining on throughput, area and energy, we model the total area, delay and energy

for a system with N-stage pipeline in Eqs. (3.10-3.14). We start with an unpipelined

design with delay τunpipelined, area Aunpipelined and energy Eunpipelined. We make the

simplifying assumption that we can take an average datapath width to represent the

overhead, although the number of registers in every pipeline stage could be di�erent

from one stage to another. Therefore a pipeline stage can be modeled to have a delay

τstage, an average area Astage, and energy Estage.

τ = τunpipelined +Nτstage (3.10)

A = Aunpipelined +NAstage (3.11)

Edynamic = Eunpipelined_dynamic +NEstage_dynamic (3.12)

ELeakage = Pleakage ×
τ

N

= (Punpipelined_leakage +NPstage_leakage)(
τunpipelined

N
+ τstage) (3.13)

E = Edynamic + Eleakage

= Eunpipelined_dynamic + Punpipelined_leakageτstage + Pstage_Leakageτunpipelined

+N(Estage_dynamic + Pstage_leakageτstage) +
Punpipelined_leakageτunpipelined

N
(3.14)

Adding the Nth pipeline stage to such a design leads to interplay of several e�ects

on the delay, area and energy:

� Increases latency by stage timing overhead (τstage)

� Decreases cycle time by τunpipelined
N−1 − τunpipelined

N
=

τunpipelined
N2−N

� Increases area by pipelining area overhead (Astage)

� Increases dynamic energy by the switching and clocking energy needed for the
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extra stage (Estage_dynamic)

� Decrease leakage energy consumed per operation on combinational logic because

of decreased cycle time by
Punpipelined_leakageτunpipelined

N2−N

� Increases leakage energy by
Pstage_leakageτ

N

So it is clear that pipelining improves throughput (N
τ
), and degrades area (A), however

it is not clear how it a�ects the energy because it has both positive and negative

e�ect on the energy per operation (E). Investigating this further we will �nd out that

pipelining indeed improves energy e�ciency for low values of N and then saturates as

an optimization knob for throughput when the throughput improvement of pipelining

is matched by the area overhead of pipelining.

Having modeled the system delay (τ) in Eq. (3.10), area (A) in Eq. (3.11)

and energy per operation (E) in Eq. (3.14), we derive the marginal costs and the

throughput sensitivity (UN) as a function of pipeline depth (N) in Eqs. (3.15-3.17).

These equations are plotted for empirical 90nm single precision FMA data in Figure

3.8.

∂( τA
N
)

∂N
= τstageAstage −

τunpipelinedAunpipelined
N2

(3.15)

∂E

∂N
= Estage_Dyn + Pstage_leakageτstage −

Punpipelined_leakageτunpipelined

N2
(3.16)

UN = − τA

NE

∂E
∂N

∂( τA
N

)

∂N

(3.17)

The minimum number of pipeline stages for throughput e�cient designs is 5 stages

in Figure 3.8. As unpipelined designs su�er from big leakage energy component,

adding a pipeline stage adds a small energy cost but achieves bigger savings in leakage

energy. The minimum pipeline depth Nmin occurs when the marginal energy cost of

adding a pipeline stage is zero, i.e. when ∂E
∂N

= 0 (savings in leakage energy matches

pipelining energy overhead) and is given by Eq. (3.18). Similarly Eq. (3.19) gives

an upper bound Nmax on the utility of pipelining when the increased throughput
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Figure 3.8: Pipelining sensitivity and marginal costs for single-precision 90nm FMA
designs: green bars indicate useful area of tradeo�

achieved through pipelining is matched by the area overhead, i.e. when
∂( τA

N
)

∂N
= 0.

Table 3.1 illustrates the useful tradeo� interval (Nmin<N<Nmax) where the throughput

sensitivity of pipelining UN is positive and increased computational density comes at

the cost of energy e�ciency.

Nmin = N(where
∂E

∂N
= 0) =

√
Punpipelined_leakageτunpipelined

Estage_Dyn + Pstage_leakageτstage

∣∣∣∣∣
U=0

(3.18)

Nmax = N(where
∂( τA

N
)

∂N
= 0) =

√
τunpipelined
τstage

Aunpipelined
Astage

∣∣∣∣∣
U=∞

(3.19)

Optimal Logic Density

It is more useful to look at pipelining in terms of logic depth in fan-out-of-fours

(FO4) between pipeline stages rather than the number of pipeline stages N , since the

number of pipeline stages depend on the function while the logic depth can give an

insight if another function other than our canonical FMA example is used. To do this

we model the design using the model parameters of the basic gate of the technology
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Area /

throughput

marginal

cost

(
∂( τAN )

∂N )

Energy /

op

marginal

cost ( ∂E∂N )

Pipelining

Depth

Sensitivity

(UN )

Notes

N<Nmin - - -

Pipelining reduces both en-
ergy per operation and area
per throughput so it is never
energy e�cient to have an
unpipelined design

Nmin<N<Nmax - + +

The useful tradeo� area
of pipelining where in-
creased pipelining reduces
area/throughput at the
cost of increased energy per
operation

N>Nmax + + -

Additional pipelining hurts
performance as the im-
provement in throughput
is less than the increase in
the area thereby increasing
area/throughput.

Table 3.1: Pipeline Depth Sensitivity Intervals. Green shading denotes improvement
through reduction in energy or area per throughput, while red color denotes increase
in energy or area per throughput.
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assuming a design where every pipeline stage uses W gates in parallel cascaded H

times and pipelined using W registers. Eq. (3.20) summarizes the model parameters.

W : Logic width (3.20a)

H : Logic depth (3.20b)

N : Pipeline depth (3.20c)

τunpipelined = NHτgate (3.20d)

τstage = τregister (3.20e)

Tclk =
τ

N
= Hτgate + τregister (3.20f)

Aunpipelined = NWHAgate (3.20g)

Astage = WAregister (3.20h)

Eunpipelined_dynamic = NWHEgate_dynamic (3.20i)

Estage_dynamic = WEregister_dynamic (3.20j)

Punpipelined_leakage = NWHPgate_leakage (3.20k)

Pstage_leakage = WPregister_leakage (3.20l)

Using the model parameters and Eqs. (3.18), (3.19), we can estimate the maxi-

mum clock period for least energy designs (Tmax) and the minimum clock period for

maximum computational density designs (Tmin) as done in Eqs. (3.21), (3.22) respec-

tively. Tables 3.2, 3.3 calculates the maximum and minimum clock periods for 90nm

and 45nm xor gates and standard �ip �ops library parameters. The maximum clock

period for 90nm is 98 FO4 while for 45nm, it is 170 FO4, which closely matches the

empirical tradeo� data from table 4.2 of 111 FO4 for 90nm and 146 FO4 for 45nm.
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90nm (Vdd=0.9, Vth=high) 45nm (Vdd=0.72, Vth=high)
τgate (ns) 0.18 0.17
τregister (ns) 0.43 0.29
Eregister_dynamic (fJ) 18 3
Pgate_leakage (nW) 207 17
Pregister_leakage (nW) 267 21
FO4(ps) 44.5 34.2

Tmax (FO4) 98 170

Table 3.2: Maximum Logic Density for 90nm and 45nm Technologies using low supply
voltage and high threshold voltages based on Eq. (3.21)

90nm (Vdd=1.08, Vth=low) 45nm (Vdd=0.9, Vth=low)
τgate (ns) 0.095 0.051
τregister (ns) 0.2 0.086
Agate (µm2) 8.8 1.8
Aregister (µm2) 16.5 3.5
FO4(ps) 25.3 13.5

Tmin (FO4) 15.4 13.4

Table 3.3: Minimum Logic Density for 90nm and 45nm Technologies using high supply
voltage and low threshold voltages based on Eq. (3.22)

Tmax =
τ

Nmin

= τregister +

√
τgate

Pgate_leakage
(Eregister_dynamic + Pregister_leakageτregister)

∣∣∣∣
U=0

(3.21)

Tmin =
τ

Nmax

= τregister +

√
τgateτregister

Aregister
Agate

∣∣∣∣∣
U=∞

(3.22)

3.3.4 Optimization Parameters: Putting it All toghether

Having derived their sensitivities and the expected behavior, Figure 3.9 summarizes

the trends of the optimal values of the optimization knobs discussed in this section

(Vdd,Vth, N, sizing) for progressing power density requirements for double precision

FMA in 90nm. As expected, the range of useful pipelining is between 3 and 12 and
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the FO4 per stage is between 30 and and 140.

3.4 Summary

For throughput applications with abundant parallelism, pipelining and parallelism can

be used to achieve high-throughput energy-e�cient designs. Without hard latency

constraints, energy-e�cient designs exhibit a high area cost with a marginal improve-

ment in energy e�ciency. As such, the trade-o� between energy/op, measured in

W/GFlops and computational density measured in GFlops/mm2 is the correct trade-

o� for throughput designs. It allows balancing out power e�ciency (W/GFlops) and

area e�ciency (mm2/GFlops) to achieve the optimal design that minimizes the total

cost of operation (TCO). Sensitivity analysis of di�erent design parameters shows

that throughput optimal designs are distinct from latency optimal ones and that only

performance gains that can't be achieved more cheaply using parallelism are useful

for throughput optimal designs. For example aggressive circuit sizing for a latency

minimum design is not optimal for throughput where parallel units of moderately

sized circuits can provide more throughput for the same power and area budgets.
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Chapter 4

FPU Design Evaluation for

Throughput

4.1 Floating Point Background

Floating point (FP) numbers are a computer approximation of real numbers. They

are similar in concept to normalized scienti�c notation which takes the form of a×10b

where the exponent b is an integer, and the mantissa coe�cient a is a real number

between 1 and 10. For example, the number 4335.34 is represented by 4.33534 ×
103 in normalized scienti�c notation. In contrast, binary �oating point numbers

represent (−1)s2e(b0.b1b2...bp−1) where s is the sign bit, bi ∈ {0, 1} and e is any

integer where emin ≤ e ≤ emax. Therefore �oating point numbers represent a

subset of real numbers characterized by precision and exponent range. Floating point

arithmetic was incorporated in the earliest computers [16, 8]. While initially each

manufacturer had their own standard for �oating point number representation, in the

1980s the IEEE standardized the �oating-point format and operations in the IEEE

754 standard [5]. This standard included a number of di�erent rounding modes to

enable one to bound round-o� errors, and also de�ned denormal numbers (denorms),

representations for numbers that are smaller in magnitude than what would otherwise

be the smallest valid FP number (2emin). For normalized numbers (e > emin), b0 = 1

and therefore only the fractional part f of the remaining bits (b1b2...bp−1) is stored

35
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Figure 4.1: Single and double precision format according to IEEE754

to represent the number (−1)s2e(1.f). However for denormal numbers (e = emin),

b0 = 0 and the resulting number is (−1)s2emin+1(0.f). The standard also de�nes

32-bit single precision and 64-bit double precision formats as shown in Figure 4.1.

Floating point arithmetic is crucial to computer performance. It forms the back-

bone of scienti�c computation. Additionally it is used extensively for graphics and

media applications. Graphics Processing Units (GPUs) exploit parallelism inherent

in graphics applications and have thousands of �oating point units processing parallel

streams of data. For such applications, latency is not the most critical parameter.

Optimizing �oating point throughput per mm2 for such designs maximizes perfor-

mance. Traditionally, FPU designs have used separate �oating point adders and

multipliers. However, recent designs incorporate combined �oating-point multiply-

add instructions that implement the (A × C) + B operation; these units o�er better

accuracy and improved performance. We present the two most common multiply-

add implementations, which we use to explore the energy/performance space of these

units. The fused multiply-add (FMA) design performs operand alignment in parallel
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with the multiplication, which leads to the shortest overall latency, but to accomplish

this parallelism, it requires a very large variable shifter and large intermediate result

datapath width. The cascade multiply-add (CMA), on the other hand, performs the

multiply �rst, and then aligns the operands for the FP adder. While the overall la-

tency of this structure is longer, it requires a less wide datapath, so it might be better

for throughput applications. While these architectures are by no means exhaustive

of all the possible multiply-add architectures, these were the "best" architectures we

tested when energy becomes a �rst-order issue. The reason is that they don't in-

corporate any speculative hardware for improving latency, and no energy is wasted

on pre-computed results that get discarded. In addition to these designs, we imple-

mented many other designs that claimed some performance advantage. All of these

were much worse when area and energy were considered. We also compared designs

that conformed to the IEEE standard, supporting all rounding modes and denorms

versus those without this support.

4.2 Fused Multiply Add

Since its introduction in IBM's RS/6000 FPU in 1990 [20], the fused Multiply add

(FMA) unit has become a common implementation in recent FP multiply-add designs

[38] [21]. This operation has been recently added to the IEEE �oating-point arith-

metic standard, IEEE741-2008. The standard de�nes fusedMultiplyAdd(A, C, B) as

the operation that computes (A × C) + B initially with unbounded range and pre-

cision, rounding only once to the destination format. As a result, fused multiply-add

has lower latency and higher precision than a multiplication followed by an addition.

This design has the shortest latency compared to any other design, with aggressive

designs such as the Cell Processor achieving a single precision latency of around 60

FO4. Since this base design o�ers the shortest latency, many innovations have been

proposed to shorten its latency further, however, they have large area and power

overheads that would not be appropriate when trying to optimize FLOPs/mm2 or

FLOPs/W. This design achieves its short latency by aligning the addend signi�cand

(SA) in parallel with multiplication of SB and SC . This removes the conventional
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Figure 4.2: Block diagram for a single precision fused multiply-add unit. A is shifted
to align it to the result of the multiply.

alignment step from the critical path of the FMA. However, since the exponent of

the addend might be smaller or larger than the sum of multiplicands exponent, the

addend signi�cand can be shifted from all the way to the left of the multiplier result

to all the way to the right, resulting in a wide 72 bit shifting operation in the case

of single precision operation. Therefore, the datapath width for the adder and nor-

malize stages are around 72 bits for single precision. Figure 4.2 shows the data�ow

of traditional FMA, with the dashed lines showing the forwarding paths. For more

detailed information on FMA design and implementation issues, please see the article

by Schwarz [35].
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4.3 Cascade Multiply Add

Some recent designs still prefer a cascaded design of an FP multiplier followed by an

FP adder over the FMA design, especially in embedded graphics application [9][10].

In a cascade design, the partial products coming from the multipliers are combined

using an adder before being fed to the aligner. The aligner then swaps its two inputs

based on which signi�cand has a smaller exponent and then shifts it to align the

numbers. Finally, the aligned results are added and normalized. The datapath width

for single precision CMA is around 48 bits for the aligner, adder and normalizer.

Figure 4.3 illustrates the datapath of a CMA design, with the dashed lines showing

the forwarding path for a dependent accumulate operation, which is shorter than the

forwarding path for an operation that is using the multiplier (the dotted lines). The

latency of the forwarding path for dependent accumulation is, in fact, even smaller

than in the FMA design. For certain operations such as dot products, the total

latency of the operation might be shorter in a CMA design than a FMA design.

4.4 Optimization Flow

Since both metrics we are studying, energy/op and ops/s/mm2, are dependent on

circuit and architecture parameters, we consider both issues by constructing di�erent

circuit level designs for the datapath portion, and use a memory simulator for esti-

mating the register �le energy and area costs. For datapath optimization, we start

by synthesizing a design using standard cell libraries. The standard �ow minimizes

power and area for a certain delay target. The results of such latency optimized de-

signs are not usually throughput optimal as well. This di�erence requires us to iterate

over a wide range of frequencies, pipeline depths, and supply and threshold voltages

to measure many di�erent solutions. We can guide our exploration by understanding

how each of our basic knobs a�ects the area, power and throughput of the design.

� Supply and threshold voltages: these knobs tradeo� throughput against

energy/op without a�ecting area which leads to a straightforward tradeo� be-

tween energy/op and area/throughput.
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Figure 4.3: Block diagram for a single precision cascade multiply-add unit. In this
design the multiply is performed �rst, and then the smaller of the accumulator or the
product is shifted and added to generate the result.
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� Pipelining: adding a pipeline stage (without circuits resizing) leads to an

interplay of several e�ects on performance, energy and area, as was explained

in Section 3.3.3

� Circuit sizing: the sizing of the circuits is controlled indirectly by setting the

frequency and the pipeline depth of the design. Increasing sizing increases all

throughput, area and energy/op of the design. The ability to change the en-

ergy/throughput trade-o� by circuit sizing is usually smaller than in the latency

optimized designs, since the relative increase in throughput due to aggressive

sizing is partially o�set by the increase in area the larger transistors require.

This area increase reduces the improvement in ops/s/mm2.

The datapath optimization �ow starts by synthesizing a design for a certain tim-

ing constraint, inserting pipeline registers and doing register retiming to pipeline the

design. Then the resulting design is placed and routed and the required clock network

is generated. After the design is routed, the design is reoptimized and parasitics are

extracted and annotated to the netlist. Activity factors for dynamic power calcu-

lations are derived using random input vectors and assuming full utilization of the

FPU. The timing and power of the design are then reported using the Primetime tim-

ing tool. This procedure is repeated over a wide range of supply voltages, threshold

voltages, clock periods and pipeline depths. After generating the data, the points on

the e�cient frontier are extracted from data points to generate tradeo�s as shown in

Figure 3.3.

As intuitively expected, deeply-pipelined high-voltage high-frequency designs max-

imize computational density (ops/s/mm2), while shallow-pipelined low-frequency low-

voltage designs maximize energy e�ciency (ops/s/W). Designs that mixed these

traits, for example high Vdd and shallow pipelines, were never e�cient choices, since

we could decrease the voltage and increase the pipelining to maintain the same per-

formance, while reducing the energy. We have used this �ow with 90 nm standard

cell libraries operating at Vdd values of between 1-1.2V and 45 nm libraries with

0.8-1V operating points. We have experimented with a larger voltage range as well

as shown in Figure 4.4, but found that it is only helpful for extreme power densities
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that are not practical for most applications; therefore, we think that these voltage

ranges satisfy most of the desired power density ranges.

4.5 Exploring Multiply-Add Architectures

We started exploring the multiply-add unit by trying to determine the most e�cient

architecture among cascade and fused designs. Initially, we started with designs that

left out IEEE denormals and supported only truncation rounding as done in many

designs used for multimedia processing. Building these two designs, it turned out that

both have very similar power area tradeo�s as shown in Figure 4.5. While both de-

signs achieve the same performance metrics in terms of W/GFlops and mm2/GFlops,

the cascade design has longer latency. For example, 3.2 GFlops throughput can be

achieved by both designs at 0.036 mm2/GFlops and 0.046 W/GFlops, but the cascade

design will have a latency of 12 cycles while the fused design will take only 10 cycles.

IEEE compliance requires support for more rounding modes and input and output

of denormal numbers. For support of di�erent rounding modes an extra incrementer

is added at the output of the normalizer resulting in 20% degradation in latency but

only 5% degradation in energy. For supporting denormal numbers, the unit has to

be modi�ed to accept denormal number inputs and produce correct denormal results

when needed. Traditionally denormal number calculations have been implemented

using software traps but recent research has shown the feasibility of hardware imple-

mentations [34]. For supporting denormal inputs, the exponent di�erence has to be

slightly modi�ed to calculate the shift amount for the aligner correctly. The exponent

�eld of a denormal number is 0 while the implied biased exponent of that number is

1, similar to the smallest normal number. Therefore the exponent di�erence needs to

be modi�ed to be incremented by +/-1 depending on which operands are denormal.

Such calculation can be easily done by using carry-in signals in the exponent dif-

ference adders and therefore does not need additional energy. Supporting denormal

outputs is a little bit more involved. It requires modifying the leading zero anticipa-

tor (LZA) responsible for determining the shift amount for normalization. For results

that become denormals the normalization should not shift beyond what would be



44 CHAPTER 4. FPU DESIGN EVALUATION FOR THROUGHPUT

0.001 

0.01 

0.1 

1 

0.01 0.1 1 

W
/G

Fl
o

p
s 

mm2/GFlops 

CMA (without IEEE support) 

FMA (without IEEE support) 

FMA (with IEEE support) 

Figure 4.5: Comparison between two di�erent FP single precision multiply-add de-
signs, fused and cascade multiply-add. As the graph shows there is little di�erence
between the two di�erent designs. Also shown is an IEEE compliant unit as well.
The overhead for IEEE compliance is small.
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lower than the lowest exponent Emin. To achieve that without a�ecting latency an

encoder produces a string of zeros whose count is equal to the maximum shift amount

followed by ones. This encoded signal is "OR"ed with the original LZA string that

gets fed to the leading zero detector, adding only one gate delay to the latency. Fig-

ure 4.5 shows the total cost of IEEE compliance for throughput. An IEEE compliant

implementation has an overhead of 5-10% over the range of di�erent power densities

in terms of throughput performance.

Examining the e�ect of precision on performance, we found that double precision

required approximately 3X more resources than single precision as illustrated in Fig-

ure 4.6; the area and power of the multiplier trees grow quadratically with the size

of the operands (a 4X increase) while the rest of the datapath grows linearly (a 2X

increase). This results in the multiplier share of area and power growing from 31%

in single precision design to 45% in the double precision design.

4.6 The Energy Cost of the Fused Operation

The fused multiply-add operation requires unlimited range and precision for interme-

diate results between multiplication and addition. However, this increased precision

increases the energy because the addition has almost 3x wider datapath than nor-

mal addition operation. Therefore a sequence of separate multiplication and addition

consumes around 1.5-2X less energy than fused multiply-add as shown in Figure 4.7.

4.7 Storage Overhead

To consider register �le overhead e�ects on FMA performance, we start by assuming

that there are enough parallel threads that can be interleaved for execution to achieve

full throughput, and that the interleave factor is equal to the pipeline depth so each

thread does not see any data dependencies. For example, a 6 stage datapath has to in-

terleave at least 6 threads to keep the FPU busy all the time. Therefore the minimum

register �le size is proportional to pipeline depth, a size su�cient for applications that
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Figure 4.6: Scaling of FMA single and double precision designs from 90nm to 45nm.
The performance gain depends on the power density allowed.
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Doing multiplication and addition in separate units exhibit around 50% less energy per
operation than FMA due to lower intermediate precision. Note that FMA operation
is counted as 2 Flops while multiplication and addition are counted as one.
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have large arithmetic intensity - a large number of �oating point operations per mem-

ory load or store. Applications with higher memory demands require larger register

�les to hide the latency of the memory fetch, and we explore these situations as well.

The large number of required threads to hide the datapath latency makes the size

of the required register �les much larger than traditional CPU latency-optimized de-

signs. This can make a straightforward 3-read 1-write register �le (required for FMA

designs) unwieldy both in terms of energy and area. Fortunately, since every thread

accesses only its own subset of the register �le, the multiported register �le is usually

implemented as a multibanked memory made of single ported or 1-read 1-write banks

connected to the read and write ports through a crossbar [23] [25] [41]. Many memory

parameters such as pipelining, hierarchical bitlines and the number of banks are part

of the optimization setup. For modeling a multibanked memory system, we use the

HP labs developed CACTI, a cache and memory model for estimating timing, power

and area [37]. Using memory designs generated by CACTI, we augment our datapath

data to generate tradeo�s that include register �le accesses as well.

The FMA unit requires a multiported register �le that holds enough register state

for at least the number of threads equal to the datapath latency. The number of

ports of the register �le is equal to the product of the number of datapath ports and

the ratio of the register �le cycle time to the datapath cycle time. Unhooking the

two clocks allows the register �le to trade parallelism versus pipelining of register �le

access to achieve the least energy solution. In building our multibank register �les,

we constrain the number of banks to be at least equal to the number of ports of

the register �le. Additionally we explore the possibility of SIMD (single instruction

multiple data) execution, which allows the use of wider words in the construction of

the register �le, which can result in more compact register �les. Using all these design

parameters we generate design space of all possible combinations using the CACTI

modeling tool. Once the required number of threads and thread storage is determined

from application characterization, we search the register and datapath design space

to �nd the most optimal designs in terms of energy/op and ops/s/mm2.

Regardless of the application characteristics however, the minimum storage needed

for utilization of the FPU is dictated by the latency of the datapath itself. Assuming
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datapath Parameters
pipeline depth 4 5 5 6 8 8

Vdd 0.72 0.81 0.81 0.81 0.81 0.9
Clock period (ns) 3.04 1.78 1.53 1.05 0.82 0.48

Area (mm2) 0.035 0.037 0.039 0.042 0.049 0.059
Energy (pJ) 16.8 18 25.4 27.9 31.1 60.4

Register �le parameters
Size (bytes) 512 1024 1024 1024 1024 1024

clock period (ns) 0.75 0.44 0.37 0.26 0.2 0.24
Access cycles 1 2 2 2 2 2
# of ports 1 1 1 1 1 2
# of banks 1 1 1 1 1 4
Area (mm2) 0.006 0.011 0.011 0.011 0.011 0.026
Energy (pJ) 3.07 4.38 4.38 9.95 9.58 17.7

Total system metrics
mm2/GFlops 0.062 0.043 0.038 0.028 0.024 0.021
W/GFlops 0.011 0.015 0.016 0.02 0.023 0.039
W/mm2 0.169 0.346 0.422 0.735 0.952 1.9

Table 4.1: Design parameters for the e�cient frontier of 45 nm double precision FMA
with register �le.

a minimum of 16 registers required per thread, the 45 nm single and double precision

FMA with latencies of 3-6 cycles is well served using 512 and 1024 bytes register �les

respectively. Due to the relatively small size of the register �le, the access time is

very small and therefore a single ported RAM operated at higher frequency than the

datapath is most e�cient. Table 4.1 illustrates the parameters of throughput e�cient

designs for the double precision FMA. These designs are di�erent from the e�cient

designs identi�ed when studying the FMA without the register �le. Registers add

an energy and area overhead of around 25% for single precision and 20% for double

precision in 45 nm design, as illustrated in Figure 4.8. The overheads are larger for

90nm design, since the number of pipeline stages is larger to obtain the same power

density.

Of course, this is the minimum overhead and assumes that all references �t into

the register �le. We estimate the e�ects of the memory system by looking at how the

performance of a FMA changes with the arithmetic intensity of the application, using
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Figure 4.9: Example register �le size vs. arithmetic intensity relationship for a double
precision 5 stage 2 GFlops system with 100 ns of memory latency.

a very simple single level memory model. Assuming that the arithmetic intensity

represents the average number of FP operations between memory fetches, Figure 4.9

shows how the size of the register �le - required to feed the �oating point unit with

enough work - changes with arithmetic intensity; at lower arithmetic intensity levels,

one needs more contexts to keep the FMA units busy. Probably more important is the

energy cost of a DRAM access. Current high performance graphics DRAM (GDDR5)

run around 1 nJ per double precision word fetch [3]. Given our estimates of around

25pJ/Flop in 45nm, it means one needs a ratio of over 40 Flops/double word load for

the memory not to dominate the overall system energy. This is in line with current

graphic systems which support over 500 GFlops of double-precision computation with

150 GB/s (19 GW/s) of memory bandwidth [1].
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4.8 E�ects of Technology Scaling

This analysis can be used to explore the expected gains in �oating-point performance

with scaling. We �rst compare the results of using 90 nm technology with the re-

sults using a 45 nm library, and Table 4.2 shows the detailed results of the e�cient

frontier data points. Figure 4.10 illustrates how throughput scales for resource con-

strained throughput and how minimum TCO cost scales for performance constrained

throughput:

Resource Constrained Throughput Scaling If the power and area constraints

remain the same, we should look at how the designs change for a �xed power

density. The combination of shrinking area per functional unit and constant

power density means that each functional unit must dissipate less energy. Since

the energy consumed by logic gates does not scale fast enough due to slower

Vdd scaling, we see that the architectures move to simpler, less pipelined de-

signs. This means that the performance gain depends on the performance cost

for moving to more energy-e�cient designs. For example, 1 W/mm2 e�cient

designs achieve 7× improvement since the trade-o� curve was steep at this point

in the 90 nm technology, so the required energy savings did not cost much in

performance. Scaling designs at 0.1 W/mm2 improve only 3.5× , since they

reside on a �atter part of the trade-o� curve. Unfortunately, in 45 nm even the

1 W/mm2 designs are on a less steep part of the curve, indicating that further

technology scaling will yield smaller performance gains.

Performance Constrained Throughput Cost Scaling The design that minimizes

the total cost of ownership is the one which is tanget to the constant cost curves.

For cost assumptions of 1 $/mm2, electricity cost of 10 ¢/KWh and power de-

livery and cooling cost of 0.5W overhead for every Watt of computation, the

optimal design moves from being 0.2W/mm2 design achieving a TCO of 11.6

¢/GFlops per year in 90nm to the 45nm design with the double power den-

sity of 0.4W/mm2 achieving 4.8× reduction in cost to 2.42 ¢/GFlops per year.

The reason for the di�ering optimal power density is that the 45nm tradeo� is



4.8. EFFECTS OF TECHNOLOGY SCALING 53

P
ip
e-

V
th

V
d
d

F
re
q
-

A
re
a
(µ
m

2
)

P
ow

er
(m

W
)

F
O
4

C
y
cl
e

L
a
t-

W
/

m
m

2
/

W
/

li
n
e

u
en
cy

C
o
m
b
in
-

T
ot
al

L
ea
-

D
yn
-

(p
s)

T
im

e
en
cy

G
�
o
p
s

G
�
o
p
s

m
m

2

D
ep
th

(G
H
z)

a
ti
o
n
a
l

ka
ge

am
ic

(F
O
4
)

(F
O
4
)

9
0
n
m

S
in
g
le

P
re
ci
si
o
n
F
M
A

12
lo
w

1.
08

1.
54

66
30
3

11
73
25

80
.1

72
.2

25
26

30
8

0.
04
77

0.
03
81

1.
25

10
no
rm

al
1.
08

1.
2

68
57
8

11
32
88

13
.3

55
.5

29
28

28
3

0.
02
77

0.
04
7

0.
59

8
hi
gh

1.
08

0.
66

53
20
7

91
20
6

1.
5

7.
4

35
46

36
9

0.
01
42

0.
06
89

0.
21

6
hi
gh

0.
9

0.
2

44
06
3

62
92
5

0.
54

2.
63

42
11
1

66
5

0.
00
79

0.
15
54

0.
05

9
0
n
m

D
o
u
b
le

P
re
ci
si
o
n
F
M
A

14
lo
w

1.
08

1.
43

21
92
94

34
42
75

29
0

20
0

25
28

38
7

0.
16
15

0.
12
05

1.
34

11
no
rm

al
1.
08

1.
03

21
16
45

31
18
74

37
16
9

29
33

36
3

0.
08
55

0.
15
13

0.
57

9
no
rm

al
1.
08

0.
75

17
52
47

25
38
32

35
.7

58
.4

29
45

40
8

0.
06
17

0.
16
88

0.
37

7
hi
gh

1.
08

0.
39

15
91
32

21
36
89

4
19
.2

33
78

54
5

0.
02
91

0.
27
25

0.
11

7
hi
gh

0.
9

0.
28

14
72
18

19
52
43

3.
6

10
45

79
55
5

0.
02
39

0.
26
3

0.
09

4
5
n
m

S
in
g
le

P
re
ci
si
o
n
F
M
A

6
lo
w

0.
9

2.
08

11
25
8

16
07
7

1.
2

30
.9

13
36

21
4

0.
00
72

0.
00
39

1.
88

5
lo
w

0.
81

1.
32

99
45

14
24
1

0.
55

12
.9

16
48

23
9

0.
00
5

0.
00
54

0.
93

4
lo
w

0.
81

0.
98

97
15

12
67
0

0.
58

8.
09

16
64

25
7

0.
00
43

0.
00
65

0.
67

3
no
rm

al
0.
72

0.
5

94
15

12
11
7

0.
16

3.
16

25
81

24
2

0.
00
33

0.
01
22

0.
27

3
hi
gh

0.
72

0.
2

77
35

10
61
9

0.
03
6

0.
95

34
14
4

43
1

0.
00
25

0.
02
61

0.
09

4
5
n
m

D
o
u
b
le

P
re
ci
si
o
n
F
M
A

6
lo
w

0.
9

1.
81

38
44
4

49
83
9

4.
6

95
.9

13
41

24
7

0.
02
53

0.
01
45

1.
75

6
lo
w

0.
81

0.
95

30
96
4

42
01
9

1.
8

29
.2

16
66

39
6

0.
01
55

0.
02
21

0.
70

4
no
rm

al
0.
72

0.
33

28
25
2

35
05
8

0.
4

5.
6

25
12
2

48
6

0.
00
9

0.
05
33

0.
17

4
hi
gh

0.
72

0.
2

29
61
0

36
74
7

0.
13

3.
23

34
14
6

58
2

0.
00
84

0.
09
14

0.
09

T
ab
le
4.
2:

Su
m
m
ar
y
of

Sc
al
in
g
R
es
ul
ts
fo
r
F
M
A
U
ni
t



54 CHAPTER 4. FPU DESIGN EVALUATION FOR THROUGHPUT

�atter for the same power density and therefore it is cheaper to move to lower

mm2/GFlops without a�ecting the energy e�ciency much thereby minimizing

the total cost of the system while increasing the design power density.
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Figure 4.10: Scaling of FMA double-precision designs from 90 to 45 nm. For resource
constrained designs, the performance gain depends on the power density allowed. For
performance constrained designs, the minimum TCO design moves to higher power
density due to �atter tradeo� curve. The cost equation is φ(εA, εP ) = 32εA + 128εP



Chapter 5

Scaling of Throughput

As mentioned earlier, classic Dennard scaling provides linear scaling of circuit delay

and quadratic scaling of power while maintaining the power density constant. That

translates to cubic improvement in power e�ciency (W/GFlops) and area e�ciency

(mm2/GFlops). However, as we found out in the last chapter, scaling designs from

90nm to 45nm, the power density of scaled designs increases and scaling of through-

put performance varied between 7× for high power density designs to 3.5× for low

power density designs instead of the 8× expected by the theory. This is because

voltage scaling has slowed down from the 2× factor suggested by ideal scaling to

1.25× lowering the energy scaling to 3.125×. This is a consequence of the stalling

of threshold voltage scaling due to unacceptable leakage power and underlying sub-

threshold slope. To estimate how the throughput tradeo�s will scale for technology

nodes beyond 45nm for which we don't have standard cell libraries, we created a

technology independent model of FMA with delays expressed in FO4, area expressed

in λ2 and energy normalized by CV 2. We then mapped these technology indepen-

dent parameters to real performance area and energy using technology parameters

extracted from SPICE simulations to generate tradeo�s. Section 5.1 introduces the

parameters of technology independent FMA model and section 5.2 introduces how

the technology metrics are extracted from SPICE simulation.

56
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5.1 Modeling of technology independent FMA unit

The basic model for an FMA unit is composed of:

� An unpipelined design: which can be sized for di�erent target delays. An un-

pipelined FMA design was synthesized for di�erent target delays using di�erent

Vdd, Vth and gate sizing. All these designs are then normalized and plotted in

Figure 5.1. By normalizing the area of the design to the max area and the delay

to the delay of FO4 inverter, all the designs follow the same tradeo� curve. The

delay is calculated using the minimum achievable unpipelined delay τmin given

in FO4, the area Amax given in feature size area λ2, and the extracted shape

function f which relates delay to area intensity (A/Amax) in equation (5.1).

τ = τminf(
A

Amax
) (5.1)

� N pipeline stages: inserted at equal delay intervals D/N to the unpipelined

design to increase clock frequency and improve throughput. However each ad-

ditional pipeline stages add area overhead (Astage) and delay overhead (Dstage)
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Figure 5.2: Leakage power and dynamic energy are roughly proportional to area for
same supply and theshold voltages in synthesized FMA unit

which are model parameters.

As for leakage power and dynamic energy, they are roughly propotional to design

area for same supply and threshold voltages as seen from synthesized designs in �gure

5.2. The �nal dynamic energy is decided by the CV 2
dd decided by optimization and

capacitance parameters as well as activity factor parameters αunpipelined and αstage.

Leakage power is scaled by design area after being calculated in the optimization

phase from Vdd, Vth and technology parameters.

5.2 Modeling of Technology Parameters

We used predictive technology models for planar CMOS technology from 180nm to

16nm, including high K gate technologies, high performance (HP) technologies and

low power (LP) technologies [4, 42]. The SPICE models are based on predictions

from the ITRS roadmap of 2007 [6]. Spice test circuits were used to extract the key

technology metrics.
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5.2.1 Leakage, Subthreshold Current and DIBL

Drain leakage in modern CMOS technologies depends on many factors. The drain

leakage current is a subthreshold conduction current that is exponentially related to

threshold voltage. The inverse slope of this exponential relationship S is an impor-

tant parameter for measuring the e�ect of changing threshold voltage (e.g. decreasing

threshold voltage by S increased leakage current 10x). Additionally for short chan-

nel CMOS transistors, threshold voltage is dependent on drain voltage and is lower

for high voltages by a phenomonen called DIBL (Drain Induced Barrier Lowering).

Equation (5.2) models the leakage drain current based on these factors. The inverse

subthreshold slope S is estimated from simulation data in Figure 5.3(a) and used to

estimate the DIBL parameter η in conjunction with leakage drain voltage dependence

graphs of Figure 5.3(b).

IDrainLeakage = Id010
Vgs−Vth

S = Id010
Vgs−(Vth0−ηVds)

S = Id010
−(Vth0−ηVdd)

S (5.2)

The other component of leakage current is gate leakage. Gate leakage due to

tunneling exhibits an exponential dependence on gate voltage as shown in 5.3(c).

The data is used to estimate base gate leakage current (IG0) and exponential gate

voltage leakage dependence slope (A) in equation (5.3).

IGateLeakage = Ig0e
agVgs = Ig0e

aVdd (5.3)

5.2.2 FO4 Delay

Fanout of 4 inverter chains are simulated at di�erent power supply voltages to extract

FO4 delay plots of Figure 5.4. The mobility is modeled using the accurate BSIM

model Eq. (5.4) [17]. Velocity saturation model is used to estimate tFO4 using a

�tting parameter tFO40 in Eq. (5.7). The resulting approximation �ts the SPICE

data very well as seen in Figure 5.4.
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Figure 5.4: FO4 dependence on Vdd is approximated well by short channel model

µeff =
µ0

1 + Ua(
Vgs+Vth
TOX

) + Ub(
Vgs+Vth
TOX

)2
(5.4)

(forNMOS : Ua = 6E − 10m/V, Ub = 1.2E − 18(m/V )2

forPMOS : Ua = 2E − 9m/V, Ub = 5E − 19(m/V )2)

Esat =
2υsat
µeff

(5.5)

Vth = Vth0 − ηVdd (5.6)

tFO4 = tFO40

Vdd(Vdd − Vth + EsatL)

(Vdd − Vth)2
(5.7)

5.2.3 Capacitance

Dennard scaling expects capacitance per transistor to scale linearly with device scaling

making the capacitance per unit width of the device constant. However in recent

modern technologies, as thickness of transistor gates reached just few atomic layers,
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Figure 5.5: E�ective gate Capacitance

scaling of gate thickness has slowed down due to increased gate tunneling. This results

in the gate capacitance per µm of width dropping from around 2.5 fF/µm to around

1.5 fF/µm as shown in Figure 5.5. The scaled capacitance values are used to give a

more accurate prediction of dynamic energy of the design.

Here is a summary of the scaling model design and technology parameters and

how the equations tie them together to estimate scaled designs.

Optimization Parameters:

� Vdd: supply voltage

� Vth0: long-channel threshold voltage

� N : number of pipeline stages

� IA: area intensity or ratio of logic area to maximum logic area Amax

FMA Parameters:

� τmin: minimum logic delay in FO4's

� Amax: maximum logic area associated with τmin in λ2 's

� τstage: pipelining stage delay in FO4's

� Astage: pipelining stage area in λ2 's

� αlogic: activity factor for logic circuits

� αstage: activity factors for pipeline stage
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Technology Parameters:

� λ: feature size

� µ0: low �eld mobility

� υsat: saturation velocity

� η: DIBL

� Cµm: capacitance per µm

� S: inverse subthreshold slope in mV/decade

� Ig0: base gate leakage current

� ag: gate leakage exponential voltage slope

� Id0: base drain leakage current when Vth0=Vth0TECH

� Vth0TECH : technology Vth0

Model:

A = (IAAmax +NAstage)λ
2 (5.8)

µeff =
µ0

1 + Ua(
Vgs+Vth
TOX

) + Ub(
Vgs+Vth
TOX

)2
(5.9)

Esat =
2υsat
µeff

(5.10)

Vth = Vth0 − ηVdd (5.11)

tFO4 = tFO40

Vdd(Vdd − Vth + EsatL)

(Vdd − Vth)2
(5.12)

τ = (τminf(Aintensity) +Nτstage)tFO4 (5.13)

EDyn ∝ (αlogicIAAmax + αstageNAstage)CµmλV
2
dd (5.14)

PLk ∝ AVdd(Id010
Vth0TECH−Vth

S + Ig0e
agVdd) (5.15)

E = EDyn + PLk
τ

N
(5.16)
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Figure 5.6: Double Precision FMA scaling from 180nm down to 16nm

5.3 Planar CMOS scaling

Using an optimization framework in Matlab, the technology and design parameters

of the model were used to extract throughput e�cient designs for di�erent technology

nodes. The results are shown in Figure 5.6. We notice that for bulk technologies the

tradeo�s of smaller technology nodes keep going more to the left implying that energy

scaling is slower than area scaling. This necessitate moving to lower energy technolo-

gies. This transition �rst happens around 45-32nm from bulk technologies to hi-K

gates and later from high performance technologies (HP) to low power technologies

(LP) around 16nm. One also notices that the distance between the tradeo� curves

are getting smaller as gains from scaling keep getting smaller. Figure 5.7 shows the

incremental improvement over previous generation to shrink from 2.57× in scaling

from 180nm to 130nm to 1.44× in scaling from 22nm to 16nm.
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and 0.1W/mm2 optimal designs
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Looking at optimal designs for 1 W/mm2 we notice the stalling of supply voltage

scaling. While designs scale linearly from 1.712V to 1.232V in transition from 180nm

to 130nm, it stays roughly constant around 0.7V for 22nm and 16nm. This results

in energy scaling cubically from 180n to 130nm and linearly from 22nm to 16nm.

In the intermediate interval between 90nm and 32nm, for higher energy 1W/mm2

designs, additional scaling results from moving to lower energy designs resulting in

an intermediate quadratic scaling. First the optimal voltage can be slowly scaled

at the expense of slower scaling of intrinsic technology speed at ∼40ps FO4 delay.

Additionally, optimal designs move to shallower pipelines and more logic per stage

to decrease energy at the expense of area e�ciency. On the other hand, 0.1 W/mm2

designs are already operating at the shallow part of the tradeo� curve between area

and power e�ciency (low sensitivity for changing design parameters), and as such

the voltage does not scale and stays around 0.7V while the designs stay relatively the

same or move slowly to shallower designs as well. In e�ect the scaling of 0.1W/mm2

designs is always less than 1W/mm2 designs as shown in Figure 5.7(b).

Supply voltage scaling is highly dependent on threshold voltage scaling which in

turn depends on the subthreshold slope of the transistor, which indicates how much

voltage is needed for a decade change in subthreshold conduction current. To ensure

low enough o� leakage, Vth must be at least 3× (4×) the subthreshold slope for

1W/mm2 ( 0.1W/mm2 ) as shown in Figure 5.8(b). This setting of Vth results in

leakage energy of about 20-30% as shown in Figure 5.8(d).

Under classical Dennard scaling, no design changes are needed for optimal through-

put designs. Supply voltages and technology speed (FO4) scales linearly while energy

per operation scales cubically. That allows a 2× scaled down designs to run unchanged

at 2× higher clock speeds while operating at the same power density. However when

supply voltage is slowly scaling due to leakage issues, the energy per operation scales

slower than area. Thus design changes are required for a design to stay within the

same power density. Therefore optimal logic per stage increases from 25 FO4 in

180nm to around 30 FO4 in 16nm for 1W/mm2 designs which results in savings in

dynamic energy of around 20% as shown in Figure 5.9 (a) and (f).
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Figure 5.9: Timing Scaling Parameters for 1W/mm2 and 0.1W/mm2
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Figure 5.10: Aggressive Physical Gate Length Scaling. Reproduced from Intel[15]

5.4 Future Scaling

In the past few years physical gate length scaling has deviated from traditional Den-

nard scaling trends and has been more aggressively scaled than the rest of the dimen-

sions. For example Intel 65nm technology features 35nm physical gate length [10].

Figure 5.10 illustrates Intel projection for physical gate length scaling extracted from

[15]. The ITRS roadmap for scaling of 2007 took the same projections for HP tech-

nologies down to the 16nm which predicted a physical gate length of 6.3nm. Clearly

the generated tradeo�s for such technology nodes has unacceptable energy e�ciency

such that it is more throughput e�cient to use LP technologies with physical gate

length of 16nm rather than using HP technologies even for high power density of

1W/mm2 as shown in Figure 5.6. This is due to the poor electrostatics of these tech-

nologies as they su�er from high subthreshold slope. The high ratio between e�ective

oxide thickness (EOT) and e�ective gate length (Leff ) induces a high subthresh-

old slope as illustrated in Figure 5.11. HP 16nm has a subtheshold slope of 0.145

V/decade while LP 16nm has a subthreshold slope of 0.115V/decade. This translates
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Figure 5.11: E�ect of aggressive Le� Scaling on Subthreshold Slope

to e�ective threshold voltages of 0.42 and 0.33 for 1W/mm2 optimal designs with the

reduced leakage making the LP design 20% more energy e�cient. Recent studies have

shown similar prediction for need to back down from aggressive gate length scaling

for future scaling [14] [22]. Also the ITRS roadmap of 2009 now has a prediction

of 12.8nm for 15nm technology in departure of the early aggressive target of 6.3nm

from 2007. So in a nutshell aggressive gate length scaling is dead and move to lower

energy technologies is needed in the short term consistent with the trends of moving

to lower energy designs.

Another attempt at addressing these scaling issues is through the use of ultra thin

silicon layers, which have better electrostatics. Intel has announced �nFETs that

have improved transistor operation by having 3D structure of the gate that better
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Figure 5.12: FINFET technologies impact on scaling

control the channel conductivity. Using details extracted from Intel �nFET disclosure

[24], the technology seems to have an advantage for throughput scaling illustrated in

Figure 5.12. An optimal FINFET design in 16nm can run on 0.6V supply voltage

in comparison of 0.7V in 16nm LP bulk technology shaving 20% dynamic energy.

Additionally leakage energy goes down from 28% to 5% of total energy. All in all, it

provides 1.75× energy scaling over traditional CMOS technology for 1W/mm2 power

density.

5.5 Summary

While feature size and area per function continues to scale as expected by Moore's

law, the energy per operation scaling is slowing down from cubical to linear. The

implications of this change in scaling nature are that design and process changes

across technology generations are needed to achieve the throughput optimal designs
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for a given area and power budgets. Lower energy designs with shallower pipelines,

slower clock frequency and longer channel length are needed to eke out some extra

energy savings to the ones supplied by scaling. Technology innovations to produce

transistors with better electrostatics and subthreshold slopes such as the �nFET

technology are key to continued scaling of throughput.



Chapter 6

Latency Sensitive FMA Design

Having explored throughput designs in the previous chapter, in this chapter we focus

on optimizing the design of FPUs in CPUs, which are more latency sensitive than

GPU designs. We evaluate the design alternatives using the SPEC CFP2000 �oating

point benchmark suite [2]. To understand how FP latency a�ects these applications,

we classify FMA dependencies according to where the result is used in a subsequent

instruction, as shown in Figure 6.1:

� Accumulation Dependency: the result is accumulated in a subsequent FADD

or FMADD instruction (bypass through fB).

� Multiply-Add Dependency: the result goes through a fused multiply and

then an add (bypass through fA or fC).

� Other Dependencies: the dependent instruction is not FMADD, FADD or

FMUL.

A tuple notation is used to indicate the latency for the di�erent kind of depen-

dencies to compare di�erent designs. For example, a (3,7,8) design has a 3 cycle

accumulation latency, 7 cycle multiply-add latency and an 8 cycle latency for other

non-FMA dependent instructions.

Traditional FMA design does not make a distinction between the latency of ac-

cumulation and multiply-add, resulting in designs that have equal latencies for all

73
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1: fmadd f4 , f3 , f2 , f1

2: fmadd f7 , f6 , f5 , f4 

3: fmadd f10 , f9 , f7 , f8

Accumulation 
dependency

Multiply-Add 
dependency

Syntax:        fmadd fT , fA , fC , fB

Symantics:  fT = fA × fC + fB

4: fdiv f12 , f11 , f10

Other 
dependency

++

×  ×  

CA B

Accumulation 
dependency

Multiply-Add 
dependency

Other 
dependency

Figure 6.1: FMA Latency Types showing on the left the types of dependencies as
they occur in instruction sequences and their corresponding data feedback path on
the logical implementation

dependencies. For example, the IBM Power5 FMA is a (6,6,6) design, but the Power6

FMA is (6,6,7), because the design is optimized to handle forwarding of dependent

instructions before the rounding stage [38]. We review such a design in Section 6.1.1

and use it as a reference for a state of the art FMA design. We then introduce our

cascade implementation of the FMA instruction (CMA) which has been optimized

for accumulation dependencies with a small e�ect on the other latencies. CMA allows

the accumulation operand fB to enter the pipeline much later than in a traditional

FMA implementation, allowing for shorter accumulation latency. We then optimize

this path by introducing overlapping bypass paths for exponent and signi�cand to

make the accumulation dependent latency as short as possible. We demonstrate how

a CMA can achieve a (3,7,8) latency at the same clock rate of an FMA(6,6,7). Figure

6.2 shows the FMA and CMA pipelines and their bypass paths and how these bypass

paths reduce the e�ective latency of the instructions
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6.1 Evaluated FMA Design Variations

In this section, di�erent design variations of FMA are presented that have di�erent

microarchitectures and latency tradeo�s. These designs are evaluated for overall

performance and energy consumptions in later sections.

6.1.1 Traditional FMA Architecture FMA(6,6,7)

The Power6 FMA is a recent IEEE-compliant 7 cycle 13 FO4 design with a 6 cycle

latency for dependent instructions (Figure 6.3). It achieves the reduced dependency

latency by forwarding the unrounded results with special control signals to indicate

if the result is to be incremented. Special terms added in the multiplier tree are

used to generate the correct product. For example, if A is forwarded and Increment

signal is asserted, an additional A term is added in the multiplication tree to produce

A×C+A = (A+1)×C. Such a design has (6,6,7) latency by the metrics introduced
earlier. This FMA design is used as the standard design for comparison because it is

IEEE-compliant and has the shortest latency of FMA architecture for the least area

and energy.
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Figure 6.3: Power6 FMA Signi�cand Datapath (reproduced from [38])



6.1. EVALUATED FMA DESIGN VARIATIONS 77

6.1.2 Cascade Multiply Add architecture CMA(3,7,8)

One can compute a multiply add by simply cascading the addition operation after

multiplication. However because of the requirement of unlimited precision for in-

termediate results of FMA instructions, the multiplier and adder are di�erent from

traditional �oating point adders/multipliers. For example, a double precision CMA

design contains the following stages:

� A multiplier that takes 2 double-precision operands A,C to generate the result

A× C in "quad" precision (106 bit mantissa, 13 bit exponent)

� An asymmetric adder that takes a double precision operand B and the "quad"

precision multiplier output to produce a double-precision result (A× C) +B

Thus, CMA is just an implementation variant of FMA that produces exactly

the same result for FMADD instructions with unlimited intermediate precision and

rounding only once at the end.The add portion can be optimized to be very fast

using parallel paths algorithms where either alignment or normalization steps are

saved [18] which might make up for the slight increase in overall latency. The overall

latency increases because the multiplier tree outputs are combined using an adder

before being fed to the cascaded adder. Since the add operations start "late" in the

overall pipeline, forwarded results cause less stall time than would occur in a normal

FMA. Figure 6.4 illustrates the datapath of the signi�cand of the CMA design we

have developed. It employs an adder with far path datapath for calculating the sum

or di�erence when the exponent di�erence is greater than 1 and a close path datapath

that calculates the di�erence when the exponent di�erence is ≤ 1, which is the only

case where there could be massive cancellation and a need for a big normalizing

shifter. The design has been optimized to shorten accumulation latency and handle

forwarding of unrounded results (with increment signals) to shave a cycle o� the

accumulation and multiply-add latencies as was done in the FMA design. The next

two sections discuss the details of these optimizations.
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Removing Rounding Latency Overhead

To reduce the overall latency of dependent instructions, our CMA design implements

a bypass path for dependent instructions that forwards the unrounded result and an

increment signal. Implementing the bypass for the multiplier inputs A , C is similar

to the Power6 design. We modify the multiplier tree to have one extra term that can

be either SA if IncA signal is asserted, or SC if IncC is asserted. As for the input

B, the adder part has been modi�ed to accept the inputs SB, IncB and SA×C . The

idea is to merge the incrementation of B with the addition to A×C using carry save

adders. The implementation of the close path and far path adders that support the

increment signal is done as follows:

Close Path The close path handles the subtraction case of SA×C (106 bits) and

SB (53 bits) which are aligned on the MSB. The absolute di�erence of two binary

numbers x, y is usually calculated as follows:

abs(x− y) =

x− y = x+ y + 1 , y < x

−(x− y − 1)− 1 = x+ y , y ≥ x
(6.1)

Therefore, the operation can be implemented using a compound adder fed by x

and y to produce (x+ y) and (x+ y+1), which are muxed out to produce the correct

absolute di�erence based on the adder carry out from (x+ y).

Additionally, SB needs to be incremented before the absolute di�erence operation

if IncB is asserted. It is straightforward to merge the incrementation of SB with the

absolute di�erence operation by introducing a half adder at the input to produce sum

and carry vectors for the compound adder and leaves a bit position at LSB where

IncB is inserted as shown in Figure 6.5.

Far Path The far path handles addition and subtraction when the exponent dif-

ference is greater than 1 (Figure 6.6). The addend with the bigger exponent (Sbig)

can be as wide as 106 bits for double precision inputs. The addend with the smaller

exponent (Ssmall) is shifted right by the amount of exponent di�erence and becomes
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159 bits wide after shifting. In case of subtraction, Ssmall is inverted before being

fed to the adders. A compound adder of 106 bits summing Sbig and Ssmall[158:53]

produces sum and sum+1 which is su�cient for calculating the sum and di�erence

[35]. Finally, only the uppermost 53 bits of the result is retained after normaliza-

tion (possible right shift in case of addition and left shift in case of subtraction) and

guard and sticky bits are calculated. To support incrementation of SB, the design

is modi�ed by having an adder that produces sum, sum+1, and sum+2. Choosing

between the three results gives the equivalent result of incrementing SB before the

add operation. The correct result is chosen according to the following rules:

� When ExpB > ExpA×C (Figure 6.6(a)): SB is right padded with IncB. and:

Sbig = SB, {(53){IncB}}
Ssmall = {SA×C , 53′b0} >> (ExpB − ExpA×C)

If IncB is asserted, the result of addition becomes sum+1, while the result of

subtraction becomes sum+2.

� When ExpA×C > ExpB (Figure 6.6(b)): SB is the smaller fraction, and in case

of incrementation, we need to add 1 to the LSB of SB which is then fed to

the alignment shifter. To combine the incrementation with alignment and add

operation we pad the lower bits with IncB so that after shifting, adding 1 to the

LSB is still equivalent to incrementing SB before shifting. Logically for Ssmall

we will create a 159 operand to feed into the adder, and we will add the carry

at the LSB. So

Sbig = SA×C

Ssmall = {SB, (106){IncB}} >> (ExpA×C − ExpB)

Since Sbig is zero for the 53 LSBs, carry-in to the 106 bit adder is generated by

carry-in ANDed with the lower 53 bits of Ssmall which is used to choose between

sum and sum+1 in the case of addition. This handles all the shift cases.

As for subtraction, Ssmall is inverted before being fed to the adder. Since Ssmall =

Ssmall + 1 , then the result of subtraction is always sum if IncB is asserted.
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Figure 6.7 is a block diagram illustrating the above-described combining of shifting

and addition in the far path.

Optimizing the Accumulation Loop

The accumulation loop can be reduced by noticing that the result exponent is known

to within ±1 in advance of the result mantissa in carry save format as an output of the
adder. In the near path, the exponent is the di�erence between the larger exponent

and the leading zero anticipator (LZA) count. In the far path, the exponent is just

the bigger exponent of the two addends, but might be incremented if a late right shift

is needed in case of addition or decremented if a late left shift is needed in case of

subtraction. Figure 6.9 illustrates the exponent datapath implementation to achieve

reduced accumulation latency. An exponent di�erence unit takes as input Enow, LZA,

and EAC(next). It computes: abs(Enow + LZA − EAC(next) + x) , where x = −1, 0, 1.
corresponding to the exponent di�erence if the last result is normalized to the left,

not shifted or normalized to the right. A late select based on normalization of the

mantissa is used to select the correct exponent di�erence for next stage.

The mantissa datapath is architected to start operation after the exponent dif-

ference is found, resulting in overlapping bypass loops of the exponent datapath and

mantissa datapath, as shown in Figure 6.8. This late mantissa datapath design has

several advantages. First, the exponent di�erence is done in parallel with the mul-

tiplication, removing the exponent di�erence stage from the critical path between

the multiplier and adder; thereby shortening the total latency of CMA design and

making it roughly the same as FMA one. Second, the critical path for an accumula-

tion dependent instruction is improved from 4 cycles to 3 cycles without noticeably

a�ecting the latency of independent instructions. Finally, since exponent di�erence is

performed �rst, power optimizations such as �ne-grained clock gating of the far/near

path of the adder based on exponent di�erence can be introduced, although no such

optimization was implemented in the presented power �gures.
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Figure 6.7: Far path addition implementation of mantissa datapath with support for
incrementation signal IncB
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Figure 6.8: Block diagram of CMA mantissa and exponent datapaths showing the
staggered timing of the exponent and mantissa

6.1.3 Cascade Multiply Add architecture with multiplier out-

puts in Carry Save format CMA2(4,6,7)

Several other design modi�cations to improve latency have been proposed. Paral-

lel path designs that compute di�erent datapaths in parallel and select the correct

answer based on di�erent cases have been proposed, but have large area overhead

[32, 36]. Some FMA designs also aim to improve the accumulation latency as well.

Intel demonstrated an 80-core throughput chip that employed an 11-stage multiply-

accumulate unit with single cycle accumulation latency [40] [39]. Unfortunately, this

design is not an IEEE FMA operation, because it does not preserve intermediate pre-

cision. A Bridge FMA design has been proposed to add FMA functionality by adding

a bridge unit to slightly modi�ed adder and multiplier designs [31]. The area of this

bridge FMA unit is nearly as large as a separate FMA and adder units, which makes

this approach less appealing. Energy e�cient implementation of fused operation has

been proposed employing shifting one multiplicand before multiplication based on the

exponent di�erence with the addend. However the shifted out bits results in loss of

precision for intermediate results. Therefore it is not an IEEE compliant implemen-

tation and is more suitable for signal processing applications that can tolerate such

rounding errors [30, 29].
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Figure 6.9: Simpli�ed exponent datapath indicating the feedback loops. Since we
don't know the output of the �nal normalization (ShiftExpB) we take the output
of the current operation (Enow) and the output of the LZA and combine them
with the next multiplier output (EAC(next)) to compute the next exponent di�er-
ence (ExpDiffnext). Since Enow + LZA can be o� by one, we need to compute both
options, and we need to compute the absolute value of the result (the 2-1 mux driven
by Cout)
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Another FMA design tries to improve the latency of additions by separating addi-

tion cases into two groups. One, where the exponents are far apart, does not require

normalization, and the alignment is done after multiplication. The other, where the

exponents are close, skips the shifter, which gives time for post addition normal-

ization [13]. That design also keeps the multiplier output in carry save format to

shorten the total latency. However this comes at the expense of added energy and

the accumulation latency is degraded because of the extra carry save adder and wider

datapath required. This design has roughly (4,6,7) latency. Figure 6.10 illustrates the

datapath of the signi�cand of the this design which we denote by CMA2 because it

is conceptually very similar to cascade design with the only di�erence that multiplier

outputs are kept in carry save format.

6.2 Application Study

The e�ect of the di�erent instruction dependencies in FPU design and their respec-

tive latencies is application dependent, since for applications with parallelism, data

dependencies can be hidden by interleaving execution of parallel (non dependent)

work to keep the machine busy during the "stall" time. For example, on a 6 stage

FPU, interleaving the execution of 6 threads will keep the unit busy and hide any

data dependencies. This technique is used in GPU designs. For such parallel work-

loads, W/GFlops and mm2/GFlops are the critical parameters to optimize as was

shown in Chapter 3. For applications with less parallelism, the performance e�ect of

these latency changes are important, and depend on the amount of parallelism that

the processor can extract from the application: only when FP operations are on this

critical path will the latency changes matter. We �rst studied a simple single-issue,

in-order model to quickly explore the frequencies of the di�erent dependency paths,

and to gain intuition for the types of trade-o�s that might exist. To provide this

information, we modi�ed the M5 architecture simulator [12] built for the PowerPC

architecture to count the three di�erent FP latency stalls. The modi�ed simulator

stored the total number of stalled cycles for every design and calculated the average
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latency penalty by dividing by the total number of FMADD, FMUL and FADD in-

structions. Finally, we calculated the average time penalty by dividing the average

latency penalty by the clock frequency.

This study revealed the importance of the accumulation latency, so we focused on

creating a design which maximized the overall performance (at small power changes)

using asymmetric latencies. In the end we compared FMA (6,6,7), CMA (3,7,8),

and CMA2(4,6,7). We simulated the reference set of CFP2000 benchmarks using

the gcc PowerPC cross compiler with the -O3 optimization directive. The PowerPC

architecture was chosen because it has had the FMA instruction for a long time and

has more mature FMA compiler support. The compiler optimizes for a 6 cycle FPU,

which matches our base FMA architecture. Figure 6.2 shows the in-order model

results. On average, FMADD, FMUL and FADD instructions make up around 20%

of these application's instructions, but are much smaller in three (mesa, facerec, and

sixtrack). We ignore these applications in the averages in Figure 6.2(b) and (c) since

FP performance is not critical for them. Figure 6.2(b) shows the average latency

penalty for each application. CMA(3,7,8) achieves an average latency penalty of 1.81

cycles across the benchmark which is 13% lower than the 2.07 average latency penalty

incurred by the FMA(6,6,7) design. CMA2(4,6,7) achieves a slightly better average

latency penalty of 1.73, but in this simple model, the change in the two latencies

essentially balances out. Figure 6.2(c) shows the performance loss from FP stalls.

FMA(6,6,7), CMA(3,7,8) and CMA2(4,6,7) incur total performance penalties of 41%,

33.7% and 33.1% respectively. Therefore, CMA(3,7,8) and CMA2(4,6,7) architectures

will be 5-6% faster than an FMA(6,6,7) architecture at the same clock frequency, if

the average instructions per cycle (IPC) of all non-FP instructions is one.

An in-order machine is very latency sensitive, as any subsequent dependent in-

structions stalls the pipeline execution until the �oating point instruction has �nished.

Out of order superscalar designs are less latency sensitive because they exploit instruc-

tion level parallelism (ILP) to �nd non-dependent instructions to issue while waiting

for executing instructions, resulting in higher IPC. However, long FPU latency still

a�ects performance when the available ILP is not enough to keep the functional units

busy, resulting in stalls. To test the e�ectiveness of the proposed cascade design in out
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Figure 6.11: CFP 2000 benchmark on a simple single-issue in-order model. (a) Float-
ing point instruction mix as percentage of total number of instructions. (b) Average
latency penalty (c) Total performance overhead (assuming IPC=1 except for FP op-
erations) for FMA(6,6,7), CMA(3,7,8) and CMA2(4,6,7) designs.
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of order machines, we modi�ed the scheduler of the out of order model of the M5 sim-

ulator to support the FMA(6,6,7) and CMA(3,7,8) architectures. For the CMA(3,7,8)

design, the scheduler was modi�ed to allow fadd and accumulation-dependent fmadd

instructions to issue up to 5 cycles earlier if the critical operand was produced by

preceding fmadd, fmul or fadd instructions and up to 3 cycles earlier if produced by

other instructions. Additionally, dependent fmul and multiply-add dependent fmadd

are issued up to one cycle earlier. On the other hand, for the FMA(6,6,7) scheduler,

any accumulation dependent or multiply-add dependent FMADD, FMUL or FADD

instructions are issued up to 1 cycle earlier. Using the modi�ed model, the CFP 2000

benchmarks were run with 1-FPU, 2-FPU and 4-FPU con�gurations to see how the

performance improvement scales with increased number of functional units, which

should increase the sensitivity to FPU latency. The results of the �oating point rich

benchmarks are summarized in Table 6.1. The CMA design shows an average reduc-

tion in cycles per instruction (CPI) over FMA of 3.97% for the 2-FPU case and 4.62%

for the 4-FPU machine as illustrated in Figure 6.12. As for the single FPU design

case, the machine turns out to be not latency sensitive as the function unit turns out

to be busy most of the time and is resource limited.

If the results are normalized by the percentage of �oating point component in the

benchmark, we �nd that we have on average 4% improvement in the 2-FPU and

4.6% for the 4-FPU because they are more latency sensitive. On the other hand, no

improvement at all happens in the case of single FPU because performance there is

limited by the number of FPUs rather than the latency of the FPU. For example

in the 173.applu application, the busy rate of the FPU (the proportion of times an

instruction was not issued because the FPU was already fed another instruction) in

the single case was 58% while the rate was 16% and only 1.4% for 2-FPU and 4-FPU

respectively.

In summary, the proposed CMA(3,7,8) design achieves an average performance

improvement of 4-6% for a wide spectrum of designs that are latency sensitive ranging

from simple in-order single issue designs to out of order superscalar designs. We

proceed next to analyze the area and power cost of such design in comparison to

traditional FMA design.
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Instruction Mix CPI (Cycles Per Instructions)
Total 1-FPU 2-FPU 4-FPU

Benchmark fma fadd fmul Floating CMA FMA CMA FMA CMA FMA
168.wupwise 9% 7% 10% 25% 1.404 1.393 1.301 1.358 1.282 1.355
171.swim 8% 19% 9% 36% 1.698 1.692 1.479 1.536 1.425 1.487
172.mgrid 3% 42% 3% 48% 1.166 1.217 1.061 1.219 1.04 1.22
173.applu 11% 9% 22% 41% 2.045 2.004 1.689 1.715 1.625 1.654
178.galgel 45% 3% 5% 53% 2.374 2.379 2.311 2.375 2.312 2.374
179.art 9% 2% 0% 11% 4.211 4.181 4.196 4.177 4.19 4.177

187.facerec 6% 10% 4% 19% 1.003 0.986 0.975 0.99 0.969 0.991
188.ammp 7% 5% 7% 19% 1.732 1.691 1.689 1.665 1.701 1.66
189.lucas 3% 13% 5% 22% 1.640 1.647 1.568 1.639 1.559 1.638
301.apsi 6% 15% 12% 33% 2.351 2.313 1.823 1.796 1.605 1.607
Aveage 11% 13% 8% 31% 1.96 1.95 1.81 1.85 1.77 1.82

Weighted Average Performance Improvement
-0.07% 3.98% 4.74%

Table 6.1: Out of order performance results for CFP2000 benchmark

FMA CMA CMA2
Accumulation Latency (ns) 2.14 1.03 1.29
Multiply-Add Latency (ns) 2.14 2.4 2.28
Average Latency (ns) 2.14 1.715 1.785
Area (µm2) 33149 36660 41429
Energy/op (pJ) 17.9 19.3 21.864

Table 6.2: Unpipelined Latencies for Di�erent FMA Designs

6.3 Timing, Power and Area

An FMA, a CMA design and a CMA2 with multiplier outputs in carry save format

have been implemented and veri�ed using SystemVerilog and synthesized using TSMC

45nm technology libraries. To determine the relative latencies, unpipelined versions

of the designs were synthesized. Table 6.2 summarizes the result. CMA has the least

accumulation latency while FMA has the least multiply-add latency. These latencies

were the basis for choosing the latency cycles we evaluated in our application study.

For comparing the delay and energy of the designs, the FMA design and the

CMA2 were synthesized using a 7-stage pipeline while for the CMA design an 8-stage
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Figure 6.13: Energy e�ciency tradeo� curves of di�erent fused multiply-add archi-
tectures.

pipeline was synthesized. The datapath optimization �ow starts by synthesizing a

design for a certain timing constraint, inserting pipeline registers and doing register

retiming to pipeline the design. Then the resulting design is placed and routed and

the required clock network is generated. After the design is routed, the design is re-

optimized and parasitics are extracted and annotated to the netlist. Activity factors

for dynamic power calculations are calculated for random input vectors and assuming

full utilization of the FPU. The timing and power of the design are then reported

using Primetime timing tool. This procedure is repeated over a wide range of supply

voltages, threshold voltages, and clock periods to choose the most energy e�cient

designs. After generating the data, the points on the e�cient frontier of minimum

energy/op designs for a certain performance targets are extracted from data points

and are plotted in Figure 6.13. Table 6.3 provides the power, area and design param-

eters of these e�cient frontiers. Examining the data, FMA(6,6,7) and CMA(3,7,8)

have very similar energy and area cost, while CMA2(4,6,7) requires roughly 20% more

energy and area.
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Vdd Vth Freq- Area Power (mW) FO4 Cycle W/ mm2/
uency (µm2) Dyn- Lea- (ps) Time G�ops G�ops

(GHz) amic kage (FO4) (FO4)

FMA(6,6,7)
0.72 standard 0.62 47269 17.9 0.9 24 67 0.038 0.014
0.81 low 0.93 43651 30.5 2.3 17 64 0.024 .016
0.9 low 1.92 71089 204 7 14 37 0.018 0.032

CMA(3,7,8)
0.72 standard 0.65 49571 17.4 0.9 24 64 0.038 0.014
0.8 low 0.99 44950 28 2.2 17 59 0.023 0.015
0.9 low 1.72 54578 96.7 4.7 14 41 0.016 0.026
0. low 1.85 61133 134 6.1 14 39 0.017 0.028

CMA2(4,6,7) with multiplier outputs in Carry Save format
0.72 standard 0.65 58990 20.9 1.1 24 64 0.045 0.016
0.81 low 0.93 52357 32.9 2.7 17 64 0.028 0.018
0.9 low 1.56 63530 110.2 6.4 14 46 0.02 0.03
0.9 low 1.67 81944 64.3 5 14 43 0.025 0.035

Table 6.3: E�cient Frontier Designs (Energy/Op vs. Frequency) for Di�erent Double
Precision FMA Architectures in 45nm TSMC technology

6.4 Summary

When optimizing an FMA design, it is critical to understand that the e�ective latency

of the operation depends on which unit (multiplier or adder) will consume the output,

and whether latency matters at all. For applications with abundant parallelism, the

latency penalty will be zero and throughput oriented metrics such as W/GFlops and

mm2/GFlops should be the optimization target. For more latency sensitive applica-

tions, a cascade design provides a number of parameters that can be optimized, and

in particular it allows one to create a design with very low e�ective latency between

operations with a sum dependence. The reduction in latency depends on two main

optimizations: forwarding of unrounded results and tightening the accumulation by-

pass path by staggering the exponent and mantissa datapath of the adder. Building

and synthesizing the design reveals it does not incur area or energy overheads over

existing FMA designs. Using an architectural simulator and SPEC2000 FP bench-

mark we found the CMA design to have 6% performance gain for a simple single issue



96 CHAPTER 6. LATENCY SENSITIVE FMA DESIGN

in-order designs and 4-4.5% gain for out of order superscalar designs with Multiple

FPUs.



Chapter 7

Conclusion

With modern scaling where we get more gates but not with low enough energy,

power has become the problem that needs to be addressed. Floating point operations

are critical for many applications and are running into energy limits today. This

dissertation explored FP units and created methods to create both throughput and

latency optimized designs.

For throughput designs, the �oating point application has a lot of parallelism that

allows one to reduce energy and increase performance by duplicating many low energy

cores; Latency then becomes just an optimization parameter instead of hard perfor-

mance target. However, extra parallelism comes at a high area cost and marginal

energy improvement. Therefore, a tradeo� between energy/op and computational

density (ops/s/mm2) ties all energy, area and throughput parameters. As such,

power density becomes the critical design choice. For example high performance

designs might use 1W/mm2 design target while low power mobile GPU might use

0.1W/mm2 design. Even better, the target power density might be calculated from a

larger optimization to minimize the total cost of operation which balance system cost

(mm2) with energy costs. Since energy is scaling slower than area scaling, design must

change to lower energy point to maintain constant power density scaling. Table 7.1

illustrates 2× energy savings from throughput optimal design over latency optimal

one and another 2× bene�ts from optimized scaling from 90nm to 45nm. More trou-

ble lies ahead for future scaling beyond 45nm as the throughput performance scales

97
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90nm
Latency
Optimal

90nm
Throughput
Optimal

90nm
Throughput
Optimized
Design Scaled
to 45nm

45nm
Throughput
Optimal

Clock Frequency 580 MHz 660 MHz 1.37 GHz 500MHz
Pipeline Depth 3 8 8 3
Area 0.078 mm2 0.091 mm2 0.0185 mm2 0.012 mm2

Latency 5.13 ns 12.08ns 5.84ns 6.06ns
mm2/GFlops 0.067 0.069 0.0067 0.012
W/GFlops 0.031 0.014 0.0065 0.0033
Power Density 0.46 0.21 0.96 0.27

Table 7.1: Double Precision FMA Design Recap: throughput optimized 90nm design
(third column) is more than 2× more energy e�cient than latency optimized design
(second column) for the same area and throughput. When this throughput optimal
design is scaled down to 45nm (fourth colunmn) it is 2× less energy e�cient than
design reoptimized for 45nm process

linearly instead of cubically. Technologies for reducing the leakage energy component

by using longer channel lengths or using transistors with better electrostatics such as

�nFETS are some of the proposed mitigations.

On the other hand, when applications don't have enough parallelism, latency be-

comes again the traditional performance bottleneck. Simple in-order designs for ex-

ample are more latency sensitive than out of order designs as out of order designs can

exploit instruction level parallelism. For FPU designs based on fused multiply add,

one has to closely look at the di�erent latencies of the di�erent operation sequences

to realize that optimizing for accumulation latency using our proposed cascade archi-

tecture can give total system performance increase of up to 6% in latency sensitive

designs. The cascade design as such proves to be a viable alternative to traditional

design.
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