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Abstract

The majority of today’s digital designs are coded in hardware description languages

(HDLs) such as Verilog, VHDL, BlueSpec, SystemC, etc. HDLs provide useful ab-

stractions to facilitate the design of complex systems, and although they offer diverse

syntaxes for expressing hardware, they actually share similar module interface seman-

tics. These interfaces rely on hardwired, timing-dependent communication protocols,

and offer poor design-time parameterization of internal control logic, both of which

impede complex system design.

In this thesis, we describe a high-level interface abstraction that improves upon

the hardwired interfaces common to popular HDLs. These high-level interfaces cre-

ate logically asynchronous connections between modules, allowing module timings

to vary without breaking system functionality. This has a number of design advan-

tages, including better design exploration and easier module reuse. Moreover, high-

level interfaces abstract hardwired control logic as per-instance module elaboration

parameters[19], further enabling module reuse.

These generic, flexible interfaces are rarely used today because they lead to timing

and area overheads compared to hardwired, customized designs. To address this, we

present a reachability analysis framework that can be used to identify and remove

overhead from high-level interfaces in gate-level netlists[20]. This makes the synthe-

sis results of high-level interfaces comparable to typical hardwired approaches. We

use various examples from the Stanford Smart Memories project [14][31] to demon-

strate the use of high-level interfaces, and how they can be synthesized into efficient

implementations.

By building modules with high-level interfaces, system designers can both modify

v



existing designs (e.g., pipeline long paths) and reuse modules to compose new working

systems, without worrying about the timing of interface handshakes. Furthermore,

reachability analysis ensures high-level interfaces do not add any logic overhead com-

pared to a hardwired interface. Therefore, we believe high-level interfaces are a useful

abstraction for extending HDLs as design complexities continue growing into the fu-

ture.
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Chapter 1

Introduction

Digital VLSI systems are ubiquitous in our daily lives. Microprocessors have moved

beyond their traditional roles in personal computers and high-end servers, now playing

integral parts in the operation of a vast array of consumer products, ranging from

automobiles to mobile phones. This growth has been primarily facilitated by the

now popular Moore’s Law, which for decades has continued delivering twice as many

transistors per chip every 18-24 months[24]. Since each technology generation brings

more processing capability (for the same energy), consumers now expect new and

interesting applications of embedded VLSI technology to continue appearing on the

market. Cellular phones, once relatively simple analog transceivers, have now become

complex multi-core digital computers with embedded graphics and advanced image

processing capabilities. One can only imagine what functionality and applications

the next generation of technology products will bring.

Although Moore’s Law has been a blessing for consumers, in many ways it has

become a bane for designers. The exponential growth in transistors per chip has given

rise to exponentially growing design complexity, as modern chips now consist of over 2

billion transistors[35][27]. This sheer number of transistors makes design difficult, and

requires numerous levels of abstraction. Worse yet, this complexity makes it difficult

to understand and reason about designs, creating a verification nightmare. These

difficulties are reflected in the design and validation costs, where it is now estimated

that well over 80% of total ASIC cost is devoted to system design and verification

1
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RTL

synthesis

gate-level
netlist

GDS

physical design

Figure 1.1: A simplified depiction of RTL design flow. RTL is first synthesized into
a netlist of standard cell gates, which are then processed by physical design tools to
create a full chip description for manufacturing (GDS).

efforts[16].

These complexity issues are not new; historically, the integrated circuit (IC) in-

dustry has tackled them by continually moving to higher design abstractions, which

facilitate increased design complexity by hiding and/or re-using lower-level compo-

nents. Originally, circuit designers drew custom schematics and laid out transistors

by hand. Eventually, the common logic functions were encapsulated in standard cell

libraries, allowing designers to reason about individual logic gates in their schematics

rather than underlying transistors. This gave rise to hardware description languages

(HDLs) and register transfer level (RTL) abstractions, which describe designs in log-

ical code rather than schematics of gates and connections. Logic synthesis tools were

created to automatically convert the RTL descriptions into gate-level netlists of stan-

dard cells, once again freeing designers of lower-level details. Similarly, placement

and routing tools were created to convert these gate-level netlists into physical de-

scriptions of transistors and wires. Figure 1.1 depicts this modern design flow. For

context note that this work only focuses on improving RTL and synthesis.

Despite these advantages, the semantics of modern HDL interfaces lack flexibility

that would greatly facilitate the design and reuse of system components. Section 1.1

describes these shortcomings in more detail. Section 1.2 then introduces high-level

interfaces, a new proposed abstraction to overcome these limitations, and Section 1.3
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discusses related work that has been done in this area. Chapter 2 shows how to build

high-level interfaces with modern languages, and Chapter 3 discusses an optimization

technique to ensure they remain overhead-free. Chapter 4 demonstrates the use of

high-level interface abstractions on real designs taken from a chip-multiprocessor, and

Chapter 5 offers some concluding thoughts and possible future research directions.

1.1 HDL Interface Limitations

A common approach to building complex systems in many fields of engineering in-

volves partitioning the functionality into encapsulated design components (or mod-

ules). This modularization generally makes design easier since the components can

be built by different people, and also reused in various places. To maximize reuse, it

is important that modules be built with generic interfaces to allow them to work in

new environments.

In this section we highlight some shortcomings of typical HDL interfaces, moti-

vated purely by hardware design needs. Since this is a common engineering issue,

we also examine how software languages have approached it, gaining intuition about

interface engineering and motivating possible solutions to make them more flexible in

hardware.

The two most common HDLs that implement the register transfer level (RTL)

abstraction are Verilog and VHDL. Although these languages have different syntaxes,

they have similar expressivities and without loss of generality suffer from similar

shortcomings because they’re both just RTL descriptions. Hence, we will focus on

Verilog in our discussion of RTL.

1.1.1 Pain Points

Intermodule Communication

The lack of a flexible and robust communication abstraction in modern HDLs ul-

timately makes it difficult to both (1) alter an existing functional system, and (2)

reuse existing modules to compose a new functioning system. Indeed, designers will
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agree that most of the difficulty in building a large system is not in building/verifying

the individual components, but in getting the components to communicate properly.

This is particularly problematic when modules are built by different people, since this

requires making assumptions about the other’s behavior.

The conventional approach requires designers to agree on the behavioral specifi-

cation of interface signals, which describes both their ordering (i.e., in what order

are messages sent/received) and their logical timings (i.e., number of cycles for a re-

quest/response). The author of each module then designs them to operate according

to this specification, and they are able to communicate harmoniously.

We argue that this approach is too strict because of its dependence on strict logical

timings. For example, it is common in later design stages to close timing by adding

pipeline registers along critical paths. Since this alters a module’s latency, it is likely

to break communication functionality at its interface with neighboring modules that

were designed for the original logical timing. Similarly, it is common to have various

different implementations of a particular module to explore different architectures

and topologies, allowing wider flexibility in the energy-performance space. Again,

the lack of timing flexibility in RTL communication makes modules with different

timings incompatible with the original system. This ultimately limits and inhibits

the design-space exploration that is possible with conventional HDLs.

Control Logic

Since RTL does not have any specific notion of control logic, it is typically described

using a canonical finite-state-machine (FSM) style, where one RTL module encap-

sulates the entire FSM. A register element holds the state, and combinational logic

describes the next-state and output functions. This style is typically easily readable

by others, and can be recognized by synthesis tools to perform FSM-specific optimiza-

tions. However, this hardcoded style lacks parameterization. The typical approach

to reuse and tweak control logic for different environments would be to fork the code,

which creates maintainability issues. Instead, we want control logic that is parame-

terized and abstracted in interfaces, allowing the behavior of module instances to be

more easily varied.
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As we continue to build more advanced systems with HDLs, it will become more

common to desire changes in control logic to properly tune the design for the target

application. As an example, a flexible multiprocessing system might need to operate

with different cache-coherence protocols. While the underlying architecture remains

the same, the memory controller should perform slightly different operations depend-

ing on the specific coherence protocol being used. It would be far easier to perform

these modifications if control logic were parameterized in module interfaces, rather

than having forked hard-coded implementations.

1.1.2 Software Analogies

To better understand how HDL interfaces could be improved, it is useful to draw

comparisons with software design, which has had to deal with similar issues. We

now explore situations in software that are analogous to the interface and control

limitations described in Section 1.1.1.

For more than 30 years, compilers have facilitated the use of third-party code

by standardizing a set of calling conventions between functions. This protocol is

similar to intermodule communication in HDLs, in that it allows software modules to

communicate with each other. These calling conventions include details about various

register assignments for maintaining state on the stack (e.g., function arguments and

return values).

If the handshake isn’t unified across all functions, then code becomes incompatible

(e.g., this can occur when functions are compiled using different compilers). Worse

yet, if the compiler didn’t automate the stack preparation and register assignments,

each author would be responsible for implementing their own convention, and inter-

operability between functions would suffer significantly. Surprisingly, this scenario

is most similar to the current state of digital design, which leaves everything up to

module authors. Unfortunately, the most expedient solution is often an inflexible pro-

tocol, which works well for the immediate case but is generally timing-sensitive and

leads to future incompatibility in other environments. To ameliorate this problem,

module designers should agree on a latency-insensitive handshaking convention across
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interfaces. This will allow systems to function correctly despite changes in message

latencies.

Another useful software technique involves generic programming, such as tem-

plates in C++ that allow compile-time specialization and optimization. These tech-

niques allow the same code and logic to be reused and specialized in different use

cases. Note that template meta-programming in software closely resembles our desire

to parameterize control logic in HDL interfaces.

Furthermore, software compilers often convert generic programs into efficient, op-

timized code for its environment by utilizing compile-time information in interfaces.

Similarly, we want to produce efficient control logic from our parameterizations, and

efficient communication from more generic interfaces.

Although initial HDL specifications lacked generic programming capabilities, more

recent versions do have some limited support. For example, elaboration-time param-

eters in the Verilog 2001 standard [17] allow limited functional changes during com-

pilation, but also contain a variety of shortcomings in their expressivity and typing

[30]. More complex elaboration parameter types will be needed to facilitate better

compile-time flexibility in control logic.

1.1.3 Why Are HDL Interfaces Inflexible?

We have argued that HDL interfaces should be more generic to allow better module

reuse, and even noted that the software community has addressed and solved similar

issues. This begs the question as to why HDL interfaces have remained inflexible.

To address this, and to better understand why hardwired interfaces are still used in

HDLs, we now discuss fundamental differences in design constraints between hardware

and software.

Many software applications can tolerate a significant amount of overhead (as extra

instructions, wasted cycles, etc.) without any perceptible difference to the user-

experience. As computer hardware continues increasing in performance, software

can generally become less efficient without serious side-effects. Hence, higher-level

software languages are constantly being adopted, since designers are happy to trade
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design time for efficiency. Newer dynamic languages are often preferred for many

applications with acceptable performance, gladly sacrificing runtime efficiency for the

benefit of greater code flexibility and more reuse.

In contrast, hardware faces a renewed focus on energy-efficiency due to physical

limitations of technology scaling[32]. Moreover, many modern hardware applications

are battery-powered (e.g., mobile phones), and hence very sensitive to energy con-

sumption. For these reasons, hardware designers are more adverse to overhead than

software designers, and so they are less willing to adopt higher-level techniques that

sacrifice efficiency. Indeed, as we will show in Section 3.1, current logic synthesis tools

have limitations when compiling flexible designs, suggesting why hardware interfaces

have remained inflexible.

Naturally, this leads to the question of whether it is possible to use more generic

interface abstractions in our designs while reliably removing any overhead when they

are synthesized. The following section summarizes the properties that high-level

interfaces should possess. Later, Chapter 2 shows how to build them, and Chapter 3

addresses the removal of overhead from compiled high-level interfaces.

1.2 Proposal: High-level Interfaces

We now present high-level interfaces, built on top of RTL, as enhancements to over-

come the limited flexibility discussed in Section 1.1. Figure 1.2 highlights the differ-

ences between a conventional RTL design and one using high-level interfaces. Instead

of communication using fixed, rigid connections, modules should agree upon more flex-

ible communication protocols, allowing them to pass messages in a latency-insensitive

manner. This will greatly facilitate module reuse and refinements by decoupling in-

termodule timing dependencies that are commonplace in RTL.

Moreover, high-level interfaces abstract control-flow logic into interface elabora-

tion parameters. By facilitating compile-time control changes, modules can operate

more flexibly, covering a wider variety of conditions. Implementing different control

procedures no longer requires creating and maintaining separate RTL for each desired

implementation case. Instead, one generic control module can be used everywhere,
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(a) An example of a typical RTL design con-
sisting of 2 modules, X and Y.

X

Dx

C
Y

Dy

in

out

Cmx my

(b) The same design using high-level interfaces.
Note that control logic has been abstracted out,
so the same generic control block (C) can now
be used in place of specialized control blocks,
and programmed with elaboration parameters
mx and my. Thicker intermodule connections
indicate improved latency-flexibility.

Figure 1.2: Comparing a conventional RTL design to one augmented with high-level
interfaces. Logical blocks are separated into data-path (D) and control-path (C).

reducing RTL code complexity.

Although high-level interfaces offer a promising value proposition for designers in

terms of design-time flexibility, it is important that they don’t contribute overhead

compared to pure RTL (as discussed in Section 1.1.3, hardware designers tend to

be sensitive to overhead). Therefore, while high-level interfaces are a nice design-

time abstraction, we need to ensure that they synthesize to gate-level netlists that

are similar to handwritten RTL in terms of energy, area, and performance. In other

words, we want the designs in Figure 1.2a and Figure 1.2b synthesize to equivalent

netlists. By ensuring high-level interfaces introduce minimal overheads, we make a

much stronger value proposition and encourage their adoption.

1.3 Related Work

There have been numerous prior efforts to improve the RTL abstraction and increase

designer productivity. This section explores some of this previous work, and describes

how it relates to our concept of high-level interfaces.
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1.3.1 Construction with Meta-Languages

Vanilla RTL lacks features for flexible compile-time module construction, so it did a

poor job at producing reusable code. To improve upon this, the Verilog 2001 standard

[17] introduced integer elaboration parameters and generate loops, allowing signal-

widths and sizes of data-path arrays to be varied at compile time. While this was

a great improvement for code reuse in certain cases, it does not allow more complex

elaboration parameter types (e.g., 2-dimensional bit arrays) and is still limited to

Verilog syntax within generate statements.

More recently, SystemVerilog [18] includes support for 2-dimensional bit arrays as

elaboration parameters. However, the syntax for specifying array values is cumber-

some. Moreover, tool support of this feature seems to be extremely limited.

To combat the limitations of this elaboration/generation, people have built tools

that allow RTL to be generated using meta-languages that are more flexible than Ver-

ilog. For example, Genesis2 [30][33] uses a Perl preprocessor to generate RTL, and

supports hierarchical complex parameter types, including 2-dimensional arrays and

associative arrays. Similarly, Chisel constructs RTL using Scala[3]. Since widespread

support for complex parameters remains limited in RTL languages, these meta-

language constructors are convenient for realizing the control-logic abstraction re-

quired in high-level interfaces.

1.3.2 High-Level Synthesis

In addition to using meta-language constructors, some have proposed entirely new

languages in which designs can be described. These high-level synthesis (HLS) lan-

guages are usually automatically compiled to RTL, and examples of these languages

include SystemC [1] and BlueSpec [26]. These are distinguished from meta-language

constructors because they move beyond flexible code generators, representing entirely

new languages designed to fully capture algorithm semantics.

By fully capturing algorithm behavior, HLS compilers can theoretically generate

required control logic that would otherwise need to be written explicitly. Examples

of this include logic for scheduling and sharing of resources. HLS has the potential
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to free designers from having to worry about low-level details (e.g., bits and wires) as

compared to RTL. In theory this not only makes it easier to code individual modules,

but also makes it easier to explore and compose new designs because of the increased

automation and higher abstraction.

Although HLS has many potential advantages over RTL, its adoption has been

slow and RTL remains the predominant design abstraction used in industry. Most

HLS work has been somewhat domain specific, focusing on describing flexible data-

path elements (e.g., for implementing signal processing algorithms), and the required

control logic to make them work. As HLS becomes more mainstream, however, there

will be a need for more general and flexible interfaces between modules, so the ideas

in this work are complementary to many of the potential HLS advantages. In the-

ory, HLS frameworks could automate the use of flexible communication protocols

by generating the required interface logic around modules1. Note that regardless of

whether high-level interfaces are embedded in HLS frameworks, or implemented man-

ually in RTL, the optimization strategy in Section 3.2 will still be required to compile

interfaces into efficient implementations.

1.3.3 SystemVerilog Interfaces

The recent introduction of SystemVerilog Interfaces allowed definitions and directions

of interface bits to be consolidated in one place, instead of requiring this information

to be redundantly stored in multiple module definitions. While this removes some

of the tedium in RTL module definitions by moving toward a don’t-repeat-yourself

(DRY) design pattern, it does not address the more important issue of the actual

communication protocol. High-level interfaces build upon these signal definitions,

allowing each signal to be sent as a latency-insensitive message. As we show in Section

2.1.1, our latency-insensitive handshake implies additional interface bits alongside

each module input and output signal.

1One unpublished demonstration of these automatic wrappers used BlueSpec[41].



Chapter 2

Building High-Level Interfaces

Hardware description languages (HDLs) and register-transfer level (RTL) logic and

have played crucial roles in the design of digital systems throughout the last 20 years.

They enable designers to work with higher-level logic representations instead of tran-

sistors or logic gates, which dramatically increases designer productivity. Since these

higher-level representations can be automatically converted into efficient lower-level

gates and wires (via synthesis, place, and route), their adoption has been ubiquitous.

Despite their widespread prevalence and continued success, conventional HDLs

have a number of shortcomings in their ability to produce flexible designs. Cross-

module communication is brittle, and correct system operation generally depends on

specific module timings. This makes it difficult to both refine a particular module

within a design and reuse a module in a different design. Moreover, control logic

within modules is fixed in the code, making it difficult to tweak functionality for

different use cases.

High-level interfaces are abstractions that provide additional timing and func-

tional flexibility in RTL1. Note that high-level interfaces do not represent specific

physical structures, but instead refer to two key properties that module interfaces

should have: (1) latency-insensitive handshaking, and (2) parameterized specializa-

tion (particularly control logic).

1Although this work focuses on RTL, these same ideas can be incorporated in high-level synthesis
frameworks, and will still benefit from the optimization techniques in Section 3

11
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To address the former, we present a latency-insensitive communication protocol,

whereby modules can pass messages in a timing-independent (logically asynchronous)

fashion. To address the latter, we can utilize microprogrammed controllers in lieu of

conventional hard-coded finite state machines[19]. By using these control structures,

we can pass the control program as a complex elaboration parameter, allowing per-

instance control flexibility. This chapter describes these design styles in more detail.

Chapter 3 will discuss the sources of overhead that arise from these techniques in

today’s design process and show how most of it can be removed.

2.1 Latency-Insensitive Handshaking

The goal of latency-insensitive handshaking is to decouple a module’s timing from

its functionality. Using handshaking protocols, a system will function if the modules

maintain the right order of the messages sent on the links, and not depend on strict

timing. The end result is two-fold: a system that is easier to modify since changes

in timing don’t affect functionality, and modules that are easier to use in different

environments, since they have fewer environmental assumptions.

Without strict latency-insensitive handshaking, it is all too easy for cross-module

timing dependencies to creep into designs (even inadvertently). In fact, this is what

most designers have been trained to do (and it’s currently the most energy efficient

approach). These dependencies are completely benign except that they lead to hard-

to-modify, timing-inflexible systems. By employing a strict latency-insensitive hand-

shaking protocol across interfaces, system designers can ensure these cross-module

timing dependencies do not inadvertently creep into the design.

There are a variety of ways to build systems with latency-insensitive interfaces,

from disciplined conventions in RTL to automatic high-level synthesis transforma-

tions. While these different approaches certainly have tradeoffs, this work focuses

on their similarities rather than differences. Compared to regular designs, latency-

insensitive designs generally require additional storage elements (e.g., FIFOs) as well

as modified control logic (e.g., stalls) to account for different latency behaviors. Re-

gardless of how the interfaces are constructed, these additional elements create timing,
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(b) Latency-insensitive inter-
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Figure 2.1: Converting the interface of module X to implement a latency-insensitive
handshake

area, and energy overhead as compared to a hand-optimized design. Section 4.4 will

show examples where this overhead from a single interface can affect an entire design’s

area by 20%.

Note that similar ideas of flexible communication are widespread at the macro level

of chip design. For example, complex SOCs often have buses or on-chip interconnec-

tion networks to facilitate connecting various IP blocks. Although these structures

usually require extra energy and/or cycles compared to a hard-wired approach, this

overhead is generally acceptable given the obvious design benefits.

In contrast, latency-insensitive handshaking protocols should also be used across

lower-level microarchitectural blocks, where their overhead can be significant. Pre-

vious work has proved that latency-insensitive IP blocks can be correctly composed

into complex digital systems [6] [5] [7] [42], but these works generally ignore imple-

mentation overhead. In Section 3.1 we will discuss this implementation overhead, and

in Section 3.2 we will show optimization techniques that can remove it.

There are many possible protocols to guarantee latency insensitivity. The follow-

ing subsections describe the one that we will use throughout this thesis.

2.1.1 Handshake Protocol

The protocol we will use adds two ports for each output port (a pulse-based output

enq and a level-based input stl), and two ports for each input port (a pulse-based
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output deq, and a level-based input rdy). Figure 2.1 depicts these additional interface

signals. This protocol requires a FIFO between modules to store messages when they

are not ready to be consumed, giving timing flexibility across interfaces.

enq (“enqueue”)

Each logical output should be accompanied by an additional 1-bit pulse-driven output

signal enq. Each enq pulse indicates that the associated output data is in a valid

state for that clock cycle, and is used as a write-enable by the FIFO. It is illegal

for a module to assert enq when the associated stl (backpressure) is active. This

mechanism ensures output data will be consumed downstream without requiring any

acknowledgement.

stl (“stall”)

Each module output should have an associated level-driven backpressure input stl,

which is driven by the FIFO. In the simplest case, stl can be a 1-bit “stall” signal to

indicate the FIFO is full. In general, it can be a multi-bit “credit” signal, indicating

the number of remaining enq pulses that can be safely produced until the FIFO is

full (requiring a stall). For the system to function correctly, a module must never

assert enq when its associated stl is active. This allows the system to function with

modules that consume more slowly, avoiding potential overflows of buffer space.

deq (“dequeue”)

Each logical input should include a 1-bit pulse-driven output signal deq. Each deq

pulse indicates to the FIFO that one token of input data is being consumed. It is

illegal for the deq signal to be high when rdy level is low.

rdy (“ready”)

Each logical input should include a 1-bit level-driven input rdy, driven by the FIFO.

When rdy is high, there is new data on the interface ready and waiting to be consumed.
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(b) Timing diagram for a relatively slow consumer.

Figure 2.2: Timing and transitions of a latency-insensitive handshake.

Timing

Figure 2.2a depicts the timing dependencies of these signals for a slow producer, and

Figure 2.2b depicts them for a slow consumer. If the depicted latencies represent

logical clock cycles (i.e., they are non-negative integers), then we require rdy2deq +

deq2rdy ≥ 1 and stl2enq + enq2stl ≥ 1 to prevent combinational feedback loops. All

other latencies may be 0 or more cycles.

2.1.2 Bypass FIFO

Assuming all modules have implemented the protocol modifications described above,

it is straightforward to connect them with bypass-enabled FIFOs. These FIFOs act as
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Figure 2.3: Connecting two modules X and Y with a bypass FIFO for latency-
insensitive communication.

distributed buffer space for messages between modules, and allow for desired latency

isolation. See Section A.1 for a reference Verilog implementation of such a bypass

FIFO.

The enq and deq pulses directly connect to the FIFO’s interface. The stl level

comes directly from the FIFO’s credit counter (or full) signal. Likewise, the rdy level

comes from the FIFO’s empty output. Figure 2.3 depicts this connection.

A bypass FIFO has a combinational path from input to output, and sets the la-

tency enq2rdy = 0. When converting a hard-wired interface to a latency-sensitive

handshake, this property ensures the handshake does not add extra cycles of over-

head. 2 This property proves useful when converting hard-wired links to be latency-

insensitive, since it is generally easier to debug a system when a cycle-accurate golden

model is available. Furthermore, the presence of a combinational bypass path facili-

tates reachability analysis: it allows the technique discussed in Section 3.2 to prove

when the bypass path will always be active, allowing FIFO overhead to be safely

removed.

2.1.3 Important Issues

The previous sections explored how to construct a functioning latency-insensitive

link between two modules. However, there are a number of important considerations

when modules with these interfaces are used to compose larger systems. Note that

2Note the combinational bypass logic does add cycle-time overhead, but that is ignored here.
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some issues are only relevant when modifying existing functioning hard-wired systems,

while others are more pertinent when composing systems from scratch. There is not

one universally superior approach to dealing with each of these issues. The various

ideas discussed in this subsection will give insight about possible approaches, but we

ultimately leave it to the designer to weigh the pros and cons of each approach for

their environment.

Combinational paths

Although latency-insensitive interfaces facilitate creating new systems by composing

existing modules in new ways, care must be taken not to inadvertently introduce

excessive or illegal combinational paths, particularly when composing new systems.

It is important to note that the interfaces do not force timing isolation between mod-

ules because of the combinational bypass paths. Hence, placing many combinational

modules in series will still create long combinational paths that may make timing

closure difficult. Moreover, connecting combinational modules in a feedback loop will

create combinational loops, which are illegal in standard-cell designs.

Designers can protect against these issues by adopting strict conventions to ensure

they never arise, or simply by solving them on a case-by-case basis. Note the long-path

issue is not new, and the same solution of adding internal pipeline registers applies.

Similarly, the feedback issue can only be solved by adding a register somewhere in the

loop. These observations suggest that all modules implementing latency-insensitive

interfaces may want to include optional internal pipeline registers, so that they can

be used if needed. This is similar to common system design conventions that require

modules to uniformly agree on registering all inputs (or all outputs).

Sizing FIFOs

It is important that the FIFOs are sized to have appropriate depth. If they are too

small, then they will quickly fill with messages, asserting backpressure stalls and caus-

ing system performance to suffer. Moreover, under-sized FIFOs can cause deadlocks

in some bounded dataflow networks[42]. Conversely, if the FIFOs are too large, then
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the implementation will contain unneeded FIFO space, contributing area and energy

overhead. In many practical situations, single-element FIFOs are sufficient.

As we will see, the reachability method in Section 3.2 can determine which registers

in a design are used and which are not, allowing unneeded ones to be removed. This

suggests an approach where a designer initially oversizes FIFOs, and then relies on

our optimization technique to prune them if possible.

Deadlock

Deadlock in a network of latency-insensitive modules is a situation where one or

more modules are stalled indefinitely, either waiting for a new message to arrive (rdy)

or waiting for a downstream buffer to clear (stl). Note that we ignore other forms

of deadlock that can occur in systems without latency-insensitivity (e.g., protocol

deadlock), as they are beyond the scope of this work. Since deadlock often causes

a catastrophic system failure, it is important for designers to be aware of how it

can happen, and how it may be avoided. In practice, a number of approaches have

been used for avoiding deadlock, ranging from ad-hoc detection and prevention in

simulation to rigid design conventions that guarantee a network is deadlock free.

The necessary condition for deadlock in a system with latency-insensitive inter-

faces is a cycle, or loop, in intermodule communication. If there are no cycles, dead-

lock while waiting on the interfaces need not be considered. This situation commonly

occurs in pure dataflow pipelines (which have no feedback) that are constructed with

latency-insensitive modules, as well as in hard-wired systems where only 1 critical

interface is converted to be latency-insensitive (since a cycle requires at least 2 inter-

faces).

For other designs that do have circular interface dependencies, we know that dead-

lock can occur, but it is still not guaranteed. Prior work in bounded dataflow net-

works showed that deadlock cannot occur in a network of latency-insensitive modules,

as long as each module has no extraneous dependencies (NED) and is self-cleaning

(SC)[42]. The NED property dictates that each module output should only wait on

inputs that it needs (whereas a naive approach might make each output wait on all

module inputs). The SC property dictates that there must be a 1-to-1 correspondence
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between enqueued outputs and dequeued inputs. That is, given that an output has

been enqueued, the corresponding inputs must be dequeued at some point (either

before or after the output is produced). Typically, modules will dequeue inputs, do

their computation, and later produce outputs, satisfying the SC property.

Deadlock is a serious concern for all complex systems, regardless of whether they

use latency-insensitive interfaces. However, if a system with hardwired interfaces is

deadlock-free, then in our experience adding latency-insensitivity is unlikely to in-

troduce new deadlock situations. While enforcing all modules to obey the NED and

SC properties may guarantee deadlock-free operation, these constraints may not al-

ways be natural or practical in real settings (particularly when converting existing

RTL modules). One such example is shown in Figure 2.4b, where the simpler de-

sign choice violates NED. We believe the best approach for deadlock prevention is a

mixture of awareness, common-sense, and (as always) rigorous testing and validation.

Intermodule Forks

In most systems it is common for a module output to be used as input in more than

one module. In these intermodule forks, the simple interface depicted in Figure 2.3

is not applicable. Instead, there are two distinct approaches we can take, depicted in

Figure 2.4.

Figure 2.4a shows an example of sharing the FIFO among all modules. For this

to work properly, additional logic in GLUE is needed to combine the individual deq

pulses so that only one pulse ever reaches the FIFO. When only 1 (but not both) of Y

or Z has fired deq, it must be stalled (by setting rdy1 or rdy2 to 0) until the other has

fired deq as well. Note the GLUE module can be implemented by a 4-state FSM. In

contrast, Figure 2.4b shows how the FIFOs can replicated for each module input. In

this example, the full signals must be combined with a logical OR before producing

stl. Since it is generally simpler to combine levels than pulses, the full signals can be

combined using a simple OR and does not require an FSM.

These two possibilities offer different tradeoffs for designers. The shared FIFO ap-

proach uses less FIFO space, but requires considerably more glue logic. The separate

FIFO approach provides better timing isolation between Y and Z, which can offer
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Figure 2.4: Possible latency-insensitive interface implementations when 1 output forks
into 2 or more inputs.
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better system performance and flexibility at the cost of additional FIFOs. Note the

separate FIFO approach creates false dependencies between the outputs, which vio-

lates the NED property previously discussed, but it can still be advantageous in many

cases. Since our optimization method in Section 3.2 can remove unneeded FIFOs, we

favor the separate FIFO approach.

Intramodule forks

There can also be intramodule forks, where one input is used to generate two or

more outputs. Note that although this situation has similar constraints (and similar

solutions) to the intermodule forks previously discussed, we mention it separately

because it often arises differently. While intermodule forks typically appear appear

in system design when connecting latency-insensitive blocks, intramodule forks are

more likely to arise during module development, and may even influence module

organization.

These “shared input” cases require additional internal logic to ensure the latency-

insensitive protocol is obeyed. One simple approach is to stall until the logical OR of

all stl inputs is low. Although this violates the NED property previously discussed

(since outputs are then dependent on other outputs), it can still be useful in many

cases, and ensures the input is only dequeued once. Another approach is to introduce

complex pulse logic to ensure the input is only dequeued once, similar to the function

of the GLUE module in Figure 2.4a. In other cases, it can be better to reorganize the

larger module into separate modules of one output each, transforming the problem

into an intermodule fork.

Latency-insensitive handshaking protocols are useful because they yield intermodule

flexibility. This facilitates design-space exploration and application-specific refine-

ments by allowing different module instances to have varied timings, but does not

address how these instances should be built. A naive approach is to build indepen-

dent instances, but this is often overkill as these variations can sometimes be realized
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with simple modifications to control-logic. To address this, the following section

presents an abstraction to design flexible controllers, complementing the intermodule

flexibility of latency-insensitive protocols by providing intramodule flexibility.

2.2 Flexible Controller Design

Historically, microprocessor designers moved toward reconfigurable controllers to sim-

plify their lives. Instead of needing to create hardwired logic, they were able to fo-

cus on writing microcode, a series of simple microinstructions that are loaded into

a specialized memory at boot-up, and fetched, decoded, and executed during nor-

mal operation[43][40]. This improved abstraction simplified design and facilitated

changes late in the design process. Later implementations even had writeable control

stores, allowing in-situ modifications and bug-patching[28][15]. Although these micro-

programmed control-store implementations require more area and energy to operate

than their hardwired counterparts, microprocessor designers were (and continue to

be) willing to make this tradeoff.

In practice, many modern ASICs use a combination of microprogrammed and

hardwired control. The microprograms are generally used for higher-level tasks that

can accommodate more overhead (and that may require in-situ patching), while hard-

wired logic is used for lower-level control that demands more efficiency. Although it

is used for relatively simpler controllers, such hardwired logic in RTL is still difficult

to tweak and modify during the design process, making module reuse more difficult.

High-level interfaces allow this hardwired control to instead be expressed as micro-

programs that are still compiled into hardwired logic, providing the design-time bene-

fits of microprogramming without the runtime overhead. By utilizing the same micro-

program abstractions as microprocessor designers, high-level interfaces can leverage

the same prior work and tools that have been developed to write microcode. The

difference is that instead of loading a microprogram into a dedicated memory at

boot-up, the microprograms will be specified as elaboration parameters at the in-

terface, and compiled into efficient hard-wired logic during synthesis. This section

describes reconfigurable controller design in more detail to better understand these
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Figure 2.5: A generic finite state machine with m inputs, n outputs, and s states.
Output logic may or may not depend on the input according to style. Note required
storage element.

control abstractions.

2.2.1 Combinational Logic

We begin by quickly reviewing configurable combinational logic because (as detailed

in Section 2.2.2) it is the fundamental building block of reconfigurable controllers. An

arbitrary boolean function can be implemented by storing the function’s truth table

in a programmable memory, and addressing the memory using the function’s inputs.

In this setup, an arbitrary function with m inputs and n outputs can be implemented

in a memory of width n and depth 2m. We note that such structures are common

and can be found in designs under a variety of different names, such as programmable

decoders, ROMs, and lookup tables (LUTs) in FPGAs[44].

2.2.2 Finite State Machines

Finite state machines (FSMs) are a convenient abstraction that helps in the design

of simple controllers. These sequential control circuits are characterized by a finite

number of internal states, state transitions, and outputs. They are typically repre-

sented as finite state diagrams, which depict the various states and state transitions.

Fig. 2.5 shows a generic s-state FSM hardware implementation, in which state tran-

sitions depend on the current state as well as current inputs, and outputs depend on

the current state and (depending on style) inputs.

The ability to design flexible FSMs is particularly relevant for chip generators
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Figure 2.6: A 5-input, 4-state, and 3-output FSM implemented with asynchronously
readable memories.

because FSMs are the brains behind hardware operation, so flexible FSMs enable dif-

ferent operational modes within one larger framework. A reconfigurable FSM can be

realized by using programmable tables to implement its combinational logic bubbles

(both next-state and output). For example, Fig. 2.6 shows how a 4-state FSM with

5 inputs and 3 outputs can be implemented with two memory elements: a 2-bit-wide

next-state memory with 2+5=7 address bits (128 entries), and a 3-bit wide output

memory also with 2+5=7 address bits (128 entries).

Microcode sequencers are FSMs whose conceptual operation is described by mi-

croprograms instead of finite state diagrams. Microprograms are a series of simple

microinstructions, low-level operations that assert particular control signals on a given

cycle. We refer to the bit-level representation of microinstructions as microcode. Due

to their sequential nature (as well as their resemblance to assembly programming),

many designers find microprograms to be more convenient than finite state diagrams

for describing controllers, particularly as the design complexity grows. In practice,

microcode format varies from being inefficiently encoded (known as horizontal mi-

crocode) or efficiently encoded (vertical microcode), allowing a tradeoff in decoder

complexity. Many microprogramming systems employ horizontal formats to simplify

the paths between the controllers and the datapath units [29], using separate subfields

to control different units in the design.

Despite their different controller abstractions, the operation of programmable

FSMs and programmable microcode sequencers turns out to be similar. Figure 2.7
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Figure 2.7: A microcode sequencer supporting generic non-conditional dispatch func-
tions. Note the structure is similar to Figure 2.6, except the Next-State Memory has
been replaced with an incrementer and a Dispatch Memory to handle branches. This
alternative structure often leads to smaller implementations.

shows the hardware implementation of a typical microcode sequencer, which resembles

the FSM implementation in Fig. 2.6. Note the microcode memory performs similarly

to the output logic of FSMs, and the primary difference is the next-state logic. In

FSMs, the next-state logic is fully general, allowing direct transition from any state

to any other state. In microcode sequencers, on the other hand, the expected transi-

tion is a trivial increment to the next sequential microprogram counter. Other state

transitions (jumps) are flagged and handled by dedicated dispatch tables, which tend

to be small for many practical designs. For these reasons, microcode sequencers are

often a more efficient way to implement runtime reconfigurable controllers. For pur-

poses of pre-silicon (design-time) reconfigurability, however, we do not need to make

significant distinctions between FSMs and microcode sequencers, because they both

share the same underlying table-driven logical descriptions. For these reasons we will

use the terms “microcode sequencer” and “table-driven controller” synonymously.

The table-driven representation for controllers has a number of advantages. It fa-

cilitates patches late in the design cycle, and writeable control stores were shown early-

on be an effective tool for tuning processor performance in certain applications[4].

Sorin et al. argue that a single table-driven approach can be used in many design

phases, including specifying, documenting, and verifying cache coherence protocols[34].

Firoozshahian et al. go a step further and describe how programmable, table-driven

controllers can allow a memory controller to support different memory models and
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protocols within a CMP system[14]. However, these table-driven implementations

come with significant area and cycle-time costs from the added memories and address

decoding logic. Our desire to leverage many of the advantages of microcode-based

controllers, while achieving implementation efficiency, naturally leads to the question

of whether we can produce efficient controller implementations from these micropro-

grams. The optimization methodology that will help us achieve our goal is broadly

known as partial evaluation, and is discussed in Section 3.1.



Chapter 3

Removing Overhead From

High-Level Interfaces

Despite their advantages, high-level interfaces are not often used in HDL designs. As

we will see, the main issue is the implementation overhead associated with flexible

components. Intuitively, there is always a tradeoff between flexibility and efficiency: a

module that operates correctly across multiple conditions inherently has more states

and more logic than its customized counterpart. A system designer, knowing the

system timings, wants to build and use components tailored for that application,

and thus avoid paying for extra area, energy and performance overhead. But what

if the overhead could just “go away” all on its own? After all, in theory a logical

function doesn’t depend on the way it is coded. We begin this chapter by studying

the efficacy of modern VLSI tools at removing the overhead automatically. This

study reveals that, unfortunately, modern synthesis fails to propagate reachability

information across flop boundaries, thus preventing efficient removal. We then suggest

supplementary techniques to overcome this limitation, allowing most of the remaining

overhead to be identified and removed within the context of a standard tool flow.

27
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3.1 Partial Evaluation with Current Tools

To evaluate current synthesis tools, we measure how well they synthesize various

compile-time flexible structures (compared to equivalent inflexible/custom implemen-

tations). We do this by “programming” reconfigurable tables with constant values,

and allow the tool to infer additional optimizations based on these constants. Since

combinational logic optimization is a well-studied topic, we expect synthesis tools to

do this well (and, as we will see, they usually do).

This technique, broadly known as partial evaluation, has been used to specialize

generic software programs for years. It uses known information about program inputs

at compile-time to reveal new optimizations that were previously unavailable, allowing

the compiler to produce better code. This methodology lets programmers write broad

general-purpose programs that then compile into specific optimized code instances.

The C++ Standard Template Library (STL) is a common software implementation

that relies on partial evaluation [36].

Despite its prevalence in software, partial evaluation (PE) methodologies in hard-

ware design have been primarily limited to data-path optimization in domain-specific

frameworks. McKay et. al. apply PE to FPGA synthesis of generic data-path ele-

ments for DSP chips [22]. Leonard and Mangione-Smith apply PE to a DES algorithm

where the secret key is known and fixed [21]. Mukherjee and Vemuri use PE to op-

timize DSP data-path elements at the transistor level [25]. Our work extends this

strategy to include control-path elements as well as data-path elements. Not only

do we want efficient functional (data-path) units, but we want to efficiently control

them in different ways, and by doing so we enhance our ability to build useful flexible

modules.

Figure 3.1 depicts partial evaluation of a 4x4 array, an optimization that will be

performed by most modern tools. Note that for simplicity only the asynchronous

read logic is shown and the write logic is ignored. If the array values are fixed, then

not only are the state flops and the addressing write logic removed, but the 4-to-1

read multiplexers are simplified. Assuming the array is fixed with the values in Table

3.1, the read logic is simplified substantially to that shown in Figure 3.1(b). In other
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(a) A 4x4 LUT implemented as an addressable
flip-flop array. The address bits, ai, determine
what line to assert on the output, y.

(b) Optimized with the values in Table
3.1

Figure 3.1: Partial evaluation example of a 4x4 lookup table (LUT)

Table 3.1: An example set of values for a 4x4 array

Address b3 b2 b1 b0

00 1 0 0 0
01 1 0 1 1
10 1 0 1 0
11 1 0 0 1

words, the lookup table is converted back to the logical function it implements.

In general, for partial evaluation of reconfigurable controllers to be effective, we

desire the optimized controller to approach the area and timing efficiency of a directly

implemented (non-programmable) controller (similar to the example in Figure 3.1).

Our hand-tuned results in the following subsections explore this tradeoff between

full-custom and automatically-optimized circuits. In our experience, a synthesis com-

piler needs a few key optimization techniques before it can properly perform partial

evaluation of table-based structures. Beyond standard logic reduction methods, these

techniques include the ability to identify any known restrictions that might simplify

a signal state (thus, a non-optimally encoded signal), propagate these restrictions

downstream, and perform typical logic optimizations using this state information.
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We note that it is not uncommon in large designs to find signals that are not encoded

optimally, either intentionally, for instance to reduce the need for decoding logic by

storing fully decoded fields in horizontal microcode, or unintentionally, such as occurs

when reusing generic modules. We will refer to the downstream propagation of signal

restrictions as state propagation, and the logic optimizations that use this information

as state folding. Note that these terms are analogous to the familiar software compiler

terms constant propagation and constant folding.

More formally, an n-bit signal y has k = 2n possible states in a physical design:

y ∈ {0, 1, 2, 3, ..., 2n − 1}. If we know of any restrictions on y, then k < 2n. For

example, if we know that y is one-hot encoded, then we know y ∈ {1, 2, 4, 8, ..., 2n−1}
and k = n. If y is used in a downstream ones-counter circuit, the compiler can

evaluate all n values of the circuit and infer that the output is a constant 1, allowing

the ones-counter logic to be removed altogether. This technique reduces to constant

propagation and constant folding when k = 1.

We now turn to the practicality of design by partial evaluation; that is, we explore

the efficacy of modern synthesis tools to produce optimized controller implementa-

tions from generic microcode specifications. We first compare optimized table-based

implementations with fixed non-programmable implementations to confirm expected

logic optimizations and the practicality of using microprogram specifications (or, more

generally, tables) with high-level interfaces. We then highlight some limitations of this

approach that affect both non-optimally encoded wide microinstruction formats and

specialized controllers with unreachable states. We conclude by evaluating these tech-

niques on the Smart Memories protocol controller PCtrl, a large microcoded design.

We chose Synopsys Design Compiler D-2010.03 to synthesize our designs as it is

an industry standard tool, but we have observed similar results with other tools. The

designs were coded in SystemVerilog and the synthesis library used a 90nm TSMC

process.
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Figure 3.2: An area comparison of combinational logic synthesis results for various
random designs. Note the horizontal equal-area line.

3.1.1 Constant Propagation and Folding

We start with the reconfigurable control structures described in Section 2.2 and

demonstrate how closely they synthesize to their ideal directly-implemented coun-

terparts when relying on simple constant propagation and folding. We wrote re-

configurable versions of each component using SystemVerilog. Python scripts then

generated random configuration parameters for these reconfigurable designs, as well

as the corresponding direct Verilog implementation for each. We then synthesized

these pairs of designs over a sweep of achievable timing targets to generate synthesis

results for a wide variety of design sizes and topologies. Note that we only compare

areas of cycle-equivalent designs that are synthesized to identical clock periods.
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Table-Based Combinational Logic

Fig. 3.2 compares the area synthesis results for many different combinational logic

functions (tables of depth d ∈ {2, 8, 16, 32, 64, 256, 1024} and width w ∈ {2, 4, 16, 32, 64}).
Note that d refers to the number of entries in a fully decoded table. The “direct”

(hand-optimized) implementations were written using sum-of-product assignments

for each output bit. In the ideal case all points would lie on the horizontal y = 1

line because there would be no difference between the partial evaluation of tables and

the direct implementations. However, the discrete nature of the standard cell library

coupled with the “bumpy” nature of the tool’s optimization surface leads to various

local minima, causing the tool to find similar (but not identical) designs when start-

ing from widely different (albeit logically equivalent) RTL descriptions. In fact, we

sometimes observe slightly better results for table-based representations, especially

for larger functions, suggesting sum-of-product representations are not always ideal

for the tool. These observations confirm our expectation that the synthesis tool is

effective at partial evaluation of combinational logic tables via constant propagation

and folding.

Table-Based Controllers

Fig. 3.3 compares the synthesis results for many different FSMs (inputs m ∈ {2, 8},
outputs n ∈ {2, 8, 16}, and states s ∈ {2, 3, 8, 16, 17}). The direct implementation

was written using a series of case statements, the style recommended by the tool

vendor for automatic detection and optimization of the FSM states. The flexible

implementation used combinational tables as in Section 2.2.2 to describe next-state

and output logic. This change in coding style prohibited the synthesis tool from

automatically detecting the FSM state encodings, leading to some variance in the

synthesized areas as compared to the preferred implementations (especially for s ∈
{3, 17} cases, which are not efficiently coded in binary). In a second experiment we

used DesignCompiler options set fsm state vector and set fsm encoding to manually

annotate the state signal of the controller for the generic designs [38]. The plot

demonstrates that providing the tool with this extra information resulted in nearly
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Figure 3.3: An area comparison of FSM synthesis results for various random controller
designs. Note the horizontal equal-area line.
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Figure 3.4: An example design to investigate state propagation and folding opti-
mizations. Note the mux before the output is unnecessary if the signal y is one-hot
encoded.

identical synthesis results between the annotated and direct implementations. It is

fairly straightforward to automatically determine these state annotations from the

FSM tables (or, equivalently, microcode), and so we do not see this as a real issue for

abstracting state machines as elaboration parameters in high-level interfaces. Hence,

we can use a flexible table-driven controller style but still achieve the synthesis benefits

of a direct implementation.

3.1.2 State Propagation and Folding

Although we have demonstrated that we can achieve good implementation efficiencies

for isolated controllers, we must also consider logic optimizations downstream of the

controller outputs where the outputs are not fully encoded signals (e.g. horizontal

microcode). This section explores the optimization of designs with k states, 1 < k <

2n, by examining the synthesis results of the small example design in Fig. 3.4. The

one-hot decoder Dec allows us to specifically focus on cases where k = n, but we

expect these results to generalize to other values of k. Note that when the signal y

is one-hot, the mux on the output becomes redundant because the bitwise-AND gate

should always evaluate to 0. This is the key optimization that we expect the synthesis

compiler to make for this example. Although this is a relatively simple design, its

synthesis properties demonstrate a number of interesting features that are consistent

with our experiences on more complex designs.

We synthesized this design for a variety of different bus widths n ∈ {2, 4, 8, 16, 32, 64, 128}
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with easily achievable timing constraints. Fig. 3.5 plots the comparative synthesis re-

sults of the generic and direct versions. The purely combinational examples (no flops)

always synthesized to the ideal case, suggesting the tool correctly infers state propa-

gation and folding in purely combinational logic. However, in the presence of flops,

all of the synthesized designs failed to achieve ideal areas.

These observations suggest the synthesis compiler does not perform state propa-

gation across flop boundaries, and cannot be trusted to consistently perform state-

related optimizations. Note that we already encountered a similar situation with the

states of table-driven controllers because the tool is unable to automatically recog-

nize FSM states from tables alone. Using a hook in the synthesis tool similar to that

used in the previous section, we manually annotated the states of signal y after the

flop boundary, and plotted these results with filled markers in Fig. 3.5. It is clear

that this state annotation allows synthesis to perform the necessary optimizations in

cases where n ≤ 32 1. Although horizontal microcode can be hundreds of bits, the

independent subfields that drive different units tend to each be smaller than 32 bits,

and so manual annotation of each subfield can still be effective. In principle, these

annotations can be determined directly from controller microcrode (assuming the de-

sign has been structured properly), but in practice this can be cumbersome. Section

3.2 presents a more general approach for determining these annotations across a wide

variety of designs and structures.

3.1.3 Optimizing Smart Memories PCtrl

We now examine these synthesis techniques on PCtrl, which is described more fully

in Section 4.3 as an example of a large table-driven controller design. Storing all the

microcode for this controller takes area, as do the associated multiplexers/decoders.

To understand this overhead, we compare its original flexible design (“Full”) to a par-

tially evaluated design (“Auto”) for two different memory configurations: “Cached”

(a controller for local memory used as cache) and “Uncached” (a controller for lo-

cal memory used as private/scratchpad memory space with no backing store). We

1This specific boundary at n = 32 is likely just a limitation of our tool.
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Figure 3.5: A comparison of synthesis results for the design shown in Figure 3.4. The
horizontal equality line is shown.
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Figure 3.6: Combinational (C) and sequential (S) area usage for PCtrl instances.

further compare these with hand-optimized controller instances (“Manual”) to un-

derstand the optimizations missed by automatic synthesis. Fig. 3.6 summarizes the

area consumption of each design (separated into combinational and sequential logic).

All designs were synthesized using TSMC 90nm technology with a 5ns clock.

The automatically optimized (via partial evaluation) controller instances halved

the non-combinational area of the full design by removing all configuration memories,

and halved the combinational area by simplifying access logic and propagating con-

stants. These reductions in the controller alone represented a 7% reduction in overall

chip area, which also included 8 Tensilica processors. These large area reductions re-

flect the conventional wisdom that runtime-reconfigurability requires significant over-

head.

The differences between “Auto” and “Manual” reflect overhead missed by auto-

matic synthesis. The manually-tuned versions include optimizations that would occur

if the tool properly supported state-propagation across flop boundaries. Primarily,
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these optimizations involve identifying and removing unnecessary (i.e., unreachable)

addresses for specific memory modes. Since cache memory requires almost all of the

original controller states, the gains from manual optimization in cached modes were

minimal. In contrast, supporting uncached memory requires far fewer control states,

leading manual optimization to find an additional 16% in area and power savings in

the controller.

While synthesis tools worked well for this design, the results do indicate a po-

tential issue of one moves to more generic interfaces. The Smart Memories Protocol

Controller study exposed some weaknesses in the tools, which left overhead from mi-

crocode in some instances that was not accessed nor needed by the rest of the system.

The following subsection explores how high-level interfaces contribute similar types

of overhead. Then, in Section 3.2 we present an automated technique to overcome

these issues.

3.1.4 Understanding sources of overhead

By their very nature, high-level interfaces can add many of these unreachable states

to designs. As the simple example of Figure 3.4 showed, synthesis tools do not

propagate state reachability information across sequential boundaries, thereby losing

any potential downstream optimizations. As controllers are made more flexible to

work correctly under more conditions, state-spaces grow to encompass a superset of

all possible conditions. When instantiated in a particular environment, some of these

states may never be reached, resulting in overhead. The rest of this section describes

how the properties of high-level interfaces can contribute to specific unreachable state

overhead. Section 3.2 discusses how this overhead can be automatically discovered

and removed from designs.

Latency-Insensitive Communication

As discussed in Section 2.1, the implementation of a latency-insensitive communi-

cation protocol involves additional control states on both sides of the interfaces to

handle the various possible latencies for each signal (e.g., 0 cycles, 1 cycle, or more
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Figure 3.7: Proposed design flow modifications.

than 1 cycle), as well as the added bypass-FIFO storage element. In simple cases, a

0-cycle combinational bypass path will always be used, causing the FIFO itself and

some control states to become unreachable overhead. Put another way, we don’t want

to pay for something that we’re not using. In less trivial cases the FIFO is required,

but is oversized and contains extra entries that will never be needed.

Flexible Controllers

Similarly, flexible controllers also cause overhead in modern synthesis, as shown in

the experiments of Section 3.1. Overhead from unreachable controller states often

manifests in downstream logic involving controller outputs. In the PCtrl protocol

controller example in Section 3.1.3, we observed this phenomenon as some lookups

were queued and used to address memories in other controllers in the design.

3.2 Reachability Analysis

As we showed, current synthesis methods ignore the reachability of sequential ele-

ments (flip flops). Since high-level interfaces have extra states (by design), we expect

these states to be a primary source of overhead (as confirmed by the results in Chap-

ter 4). This section demonstrates an algorithm that can identify unreachable states
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in a gate-level netlist, scaling to very large designs[20]. It then shows how to anno-

tate this information into current synthesis to improve its results. Since it operates

on gate-level netlists, it can be used with either conventional HDL designs flows or

high-level synthesis. Figure 3.7 depicts how our reachability technique fits into a

conventional tool flow. This technique enables designers to use high-level interfaces

at design-time while avoiding the current synthesis inefficiencies.

Reachability analysis is the process of identifying all legal states in a design. We

use the term sequential reachability to emphasize our focus on sequential elements

(flip flops) in designs. Reachability-related methods have been developed at many

levels of abstraction, typically for formal verification of digital circuits. For example,

the Murphi system uses explicit state reachability to facilitate protocol verification

[12]. Other work focuses more directly on reachability in gate-level netlists for formal

verification of sequential circuits [11][39][37]. Since these gate-level techniques are only

concerned with proving equivalence between two designs, they can rely on symbolic

equivalence checking (implicit methods) to avoid explicitly enumerating all states. In

contrast, our goal is to explicitly determine the reachable design states (more similar

to the Murphi approach). Implicit methods allow verification techniques to scale to

larger designs because they do not need to hold a combinatorial number of states in

memory. We will use conservative partitioning heuristics to overcome this common

limitation.

By their nature, unreachable states are “don’t-care” conditions, and so they can

be used to inform logic synthesis about additional optimizations. Our experiments

have shown that modern commercial synthesis tools already do some form of reach-

ability analysis in combinational logic, but do not propagate this information across

sequential boundaries. We note there have been many prior efforts to enhance syn-

thesis by identifying these types of optimizations. Most recently, the ABC synthe-

sis/verification research tool utilizes a combination of simulation and SAT-sweeping to

merge sequentially equivalent nodes in designs, and despite ignoring non-equivalence

node relationships, has demonstrated promising area reductions on many benchmark

circuits [23]. Our sequential reachability analysis will use conservative approxima-

tions to capture more node relationships and thus help eliminate waste in instances
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Figure 3.8: High-level depiction of reachability algorithm. The main steps are shaded.
The loop (dotted-line) repeats until the set of reachable states reaches a fixed-point
solution.

produced from more flexible module generators.

3.2.1 Algorithm

All sequential reachability algorithms tend to take a similar high-level approach: they

start from a set of known reachable states and search for any new reachable states,

iterating until no new states are reachable. The reset state is a common starting

point. While our algorithm does not differ significantly, we include a brief discussion

here for completeness. Figure 3.8 graphically depicts our algorithm. The rest of this

section describes the main shaded steps in more detail. Sections 3.2.2, 3.2.3, and

3.2.4 present heuristic modifications, unique to our implementation, that allow the

algorithm to be practical on real designs with high-level interfaces.

As depicted in Figure 3.7b, our algorithm accepts a gate-level netlist as input,

and returns the reachable states for all sequential elements in the design. Generally

we found it simpler to parse a gate-level netlist rather than full RTL, so we begin by

doing a quick synthesis of our RTL to get a flattened gate-level netlist. The flattened
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Figure 3.9: An example of cutting cycles in a sequential netlist (directed graph) to
form a directed acyclic graph (DAG). Circular nodes represent combinational stan-
dard cells, and square nodes represent sequential standard cells. Note that the new
input PI∗ and new output PO∗ are related.

gate-level netlist is then parsed into a logical directed graph. There are 3 types of

nodes in our directed graph: primary inputs (PI), standard cells, and primary outputs

(PO). The wires connecting these nodes form the edges of the graph. This graph data

structure facilitates logical simulation as well as satisfiability (SAT) analysis.

1. Cut cycles to create a DAG

We first isolate all combinational logic from the sequential elements (flip flops) in the

graph, by cutting all edges that are outputs of sequential elements. Figure 3.9 depicts

a simple example of this procedure. We connect the output of each sequential element

to a new PO node and connect the original fanout of each sequential element to a

new PI node. We maintain a lookup table to relate each new PO and PI. The result

of these modifications is a directed acyclic graph (DAG), since 1) we have severed all

sequential connections and 2) combinational feedback loops are forbidden in standard

cell designs.
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2. Simulate reset states

Our algorithm requires internal register states (which correspond to some PIs) to

be initialized with legal values. We rely on the fact that well-constructed designs

have a global reset signal that sets the machine to a known state. We do a logic

simulation of all POs, asserting the global reset PI and allowing all other PI nodes

to be “don’t-care,” to automatically determine this initial legal state. Note that this

input-to-output simulation is straightforward because we know the logical function

of each node (each standard cell), and so it can be accomplished with a single pass

through the graph.

3. SAT sweeping

Each main loop iteration starts by seeing if the set of reached PIs has changed. If

so, then we do a sweep of SAT calls, one for each of the unreached POs, using

the difference in PIs as SAT problem assumptions2. Any new satisfiable states are

recorded; the loop continues until no new states are found. Note that the number of

reachable (unreachable) states will monotonically increase (decrease) as the algorithm

runs. For convenience, pseudo-code of this algorithm is included in Appendix B.1.

By default, design inputs are assumed to reach all values. However, external states

from the environment can be limited by additionally setting the reachable states of

these PI nodes to reflect the desired constraints (not depicted in Figure 3.8).

3.2.2 Heuristic: State Partitioning

The primary concern with the algorithm so far is that the SAT sweeping of unreached

states has exponential complexity with the number of POs, so the sweep will have

difficulty completing even modestly sized designs (currently, problems arise when a

design has more than 20 flop elements). To combat this exponential complexity, we

developed conservative heuristics, which we found to work extremely well in practice.

The first such heuristic involves intelligent state partitioning: instead of treating

all flops in the design as one large state machine, they can be separated into smaller

2See Appendix C for an example of how to formulate a SAT problem.
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Table 3.2: Various partitioning examples for a given 4-state, 4-bit FSM.

Scheme Partitions (by bit) # partitions # SAT calls States reached
A |3210| 1 16 1,2,13,14
B |32| |10| 2 8 1,2,13,14
C |30| |21| 2 8 0-15
D |3| |2| |1| |0| 4 8 0-15

state machines and treated independently. There are two computational advantages

to this approach. First, treating POs independently simplifies their corresponding PI

constraints in the SAT problem3, resulting in faster individual SAT calls. Secondly,

and more importantly, the number of required SAT calls is drastically reduced. Imag-

ine the larger problem involves sweeping 10 bits, or 210 = 1024 total sweeps. Instead,

if we break it into 2 different subgroups of 5 bits and sweep each subgroup indepen-

dently, we only require 25 = 32 sweeps per group, for a total of 64 sweeps instead

of 1024. Partitioning in this manner assumes the design reaches the set product of

states between the groups while doing a fraction of the work.

Note that any independent grouping of bits in this manner gives a legal conserva-

tive result. Since the ultimate goal is to find and remove useless logic associated with

states the design cannot reach, it is perfectly okay to think some states are reachable

when they are not. In fact, note that synthesis tools inherently assume all states are

reachable. Hence, this heuristic allows us to trade off sweep time versus efficacy of

logic reduction.

Table 3.2 explores partitioning a small 4-bit FSM, using different bit grouping

schemes. Scheme A reflects the true partioning while Schemes B, C, and D reflect

various smaller paritionings that, for this particular FSM, require fewer SAT calls to

sweep. Note that, as expected, all schemes give conservative reachability results (that

is, they’re all supersets of Scheme A). Also, although Schemes B and C had the same

size and number of partitions, B resulted in the optimal reachable set while C did

not.

The intuition for this phenomenon is that since this partitioning method will as-

sume the groups are independent, we will get the best quality of results by actually

3See Appendix C for details.
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picking independent groups. In Table 3.2, the groups in Scheme B are actually in-

dependent while in Scheme C they are not. In a generic netlist, it can be difficult

to discover these optimal bit groupings without a sophisticated structural analysis.

Fortunately, however, this knowledge tends to be embedded within designs already

through signal types at the RTL-level (e.g., “reg” or “logic” in Verilog), and can also

be identified by instance names at the gate level (assuming the synthesis tool does

not obfuscate names). While certainly not perfect, grouping based on signal names

intuitively works because they come directly from the designer’s intent, and typical

“best practice” encourages semantically different signals to be grouped separately for

improved clarity and readability.

Once we’ve identified and partitioned the various sequential groups (SGs), we

number the SGs {1, 2, 3, ..., g}, and determine the set of fan-in PIs for each. We then

determine the ideal ordering of SGs that will minimize the total iterations required

in the main loop. This step isn’t strictly necessary but allows faster convergence of

iterative maximum fixed-point solutions [2]. To do this we create a dependency graph

among the SGs. The graph has g nodes, one for each group, as well as a root node

that represents the original circuit inputs. The directed edges indicate dependencies,

i.e., we create an edge AB if an input to SG B is driven by an output of SG A. A

reverse postorder traversal of this graph gives us our ideal SG ordering. We note

that this is but one approach of partitioning and traversing FSMs, and that there

are a number of well-studied variations, of which our described method most closely

resembles Cho’s MBM method [9].

3.2.3 Heuristic: Sliding Window Algorithm

Despite using the groupings inspired by signal names, we are still likely to end up

with some relatively large groups which will be difficult or impossible to sweep (recall

more than 20 bits becomes a challenge in our current setup). For example, pipeline

registers on data-paths are commonly 32 or 64 bits, and even wide decoded state

registers on control-paths can be too large. Although it is easy to either ignore them

(assume they reach all states) or arbitrarily divide them into smaller subgroups, both
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Table 3.3: Sliding window algorithm results for a sparse example with n = 8 and the
following 6 reachable states: 0x0F, 0xF0, 0x5A, 0xA5, 0x00, and 0xFF. The algorithm
begins with the most significant bit (MSB).

w s Max #SAT (per iter) # Iters # Candidate states Total #SAT
8 1 256 1 6 256
6 2 64 2 6 88 + 6 = 94
4 4 16 2 16 32 + 16 = 48
4 2 16 3 6 48 + 6 = 54
2 2 4 4 256 16 + 256 = 272
2 1 4 7 256 28 + 256 = 284
1 1 2 8 256 16 + 256 = 272

of these methods return unsatisfactory results for large control registers with many

unreachable states.

The sliding window algorithm attempts to reduce the total work of these large

sweeps by first eliminating many states from consideration with little effort, so that

the total number of required SAT calls remains low. As an example, let’s again

consider a 10-bit register that has been divided into two 5-bit groups. If both groups

are found to only reach 2 states, then we know the larger group can reach at most 4

states (their set product). We can then just do a final SAT pass over those 4 candidate

states to find the actual reachable states of the larger group. In this example, we

have found the correct answer (with no approximations) using 68 SAT calls instead

of 1024. If we generalize this idea beyond mutually exclusive subgroups to a series

of overlapping subgroups we get a “sliding window”. Each window has size w and

step size s, with w ≥ s. In the example above, w = s = 5. A group of size n

therefore requires 1 + ceil
(
n−w
s

)
iterations to sweep over all bits. At most, each

iteration requires 2w SAT calls; however, when w > s (i.e., there there is overlap

between each iteration), the number of required SAT calls per iteration can be reduced

whenever there is sparsity in the overlap region. See Appendix B.2 for a pseudo-code

implementation of the sliding window algorithm.

Table 3.3 presents the results of running the sliding window algorithm on a sparse

8-bit example. Note that the case of w = 8, s = 1 represents the full sweep, requiring

256 SAT calls to find the 6 reachable states. As suggested, there are combinations of
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(w, s) that reduce the number of candidate reachable states using far fewer SAT calls.

For example, w = 4, s = 4 yields 16 candidate states with only 32 SAT calls. The 6

reachable states could then be found by explicitly checking those 16 candidate states,

requiring a total of 32 + 16 = 48 SAT calls. Note that small values of (w, s) fail to

reduce the size of the candidate set beyond 256, and so the sliding window algorithm

fails to provide any benefit. It is worth pointing out that this example was chosen to

be small with n = 8 for simplicity and readability. For larger sparse examples (e.g.,

n > 20), the difference in SAT calls between the full sweep and a good sliding window

can be many orders of magnitude.

Note that the efficacy of the sliding window heuristic certainly depends on the

order in which state bits are grouped (as well as the direction in which the window

moves). We observed favorable results in our designs by simply using the bit-orderings

defined in the original design, but it is easy to imagine “high-effort” modes that

attempt other orderings as well. Furthermore, the optimal values of (w, s) certainly

vary on a per-design basis. In practice, we achieved good performance across different

designs using w = 16, s = 8. All of our examples and implementations start at the

most significant bit (MSB).

The sliding window heuristic is only useful when a group’s reachable state space

is sparse. If the group’s state space is more densely populated, then the candidate set

obtained from the sliding window algorithm may be fully populated. In this case, we

are not willing to actually sweep the full space so we abort, conservatively assuming

it reaches all states (allowing us to remove associated SAT assumptions). Intuitively,

this is practical for our needs because we are generally interested in understanding

control state in flexible designs. Since wide control registers tend to be sparse (e.g.,

state machines rarely have greater than 220 states), this method lets us solve the

groups of interest while ignoring other less-interesting groups.

3.2.4 Heuristic: State-Partitioning for FIFOs

We next turn to removing unused flexibility from generic interfaces. As described in

Section 2.1, latency-insensitive interfaces contain both additional control states and
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Figure 3.10: Example control state for a simple producer-consumer link implementing
a latency-insensitive communication protocol. Note that the consumer can consume
at the same rate as the producer can produce, so the FIFO storage isn’t necessary.

Table 3.4: Reachable states proved by different state partitionings of the interface in
Figure 3.10. Note incorrect enumeration of states E-I, I-D for Scheme A.

Scheme Partitions States reached
A |P | |C| I-I, E-I, I-D, E-D
B |PC| I-I, E-D

bypass-FIFO storage elements. Figure 3.10 is a simple example of such a producer-

consumer link. Note that the 2-state consumer FSM C always keeps pace with the 2-

state producer FSM P , so the FIFO will always be bypassed (making it unnecessary).

However, the state partitioning scheme proposed in Section 3.2.2 fails to identify

this relationship because it will analyze the producer and consumer states indepen-

dently, resulting in extra apparent reachable states. Scheme A in Table 3.4 summa-

rizes the reachability analysis results with this partitioning for this link. Specifically,

it finds the “E-I” and “I-D” states are reached, which causes the FIFO to be instan-

tiated instead of bypassed.

Instead, if all producer and consumer states for a given interface are merged into

one partition group, our reachability analysis algorithm can prove that the FIFO is

never written. This is reflected as Scheme B in Table 3.4, where the “E-I” and “I-D”

states are never reached. Since these states are never reached, the FIFO storage states

(not shown in Figure 3.10) will never be built.

This simple example suggests a modification to the state partitioning in Section

3.2.2 where the producer-consumer states are merged across a latency-insensitive
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interface. This is straightforward if the designer calls out the bypass-FIFO control

state (typically a counter), since the producer-consumer states will be fan-in nodes

in the state dependency graph.

3.2.5 Logic Optimization

Our algorithm enumerates the reached states of sequential elements, but to use this

information we need to either do our own logic optimization and mapping, or annotate

those states back into the synthesis tool and leverage its combinational optimization

and mapping strengths. Unfortunately, modern tools as yet provide no good way to

do this annotation.4

To circumvent these issues, we developed a suboptimal solution that demonstrates

the value of reachability information for instantiating flexible designs while often

reducing the majority of overhead. We manually instantiate pass-through decoders

on the outputs of all flop groups in the gate-level netlist, and “program” the pass-

through values with the determined reachable states. These pass-through decoders

only let certain values appear on the outputs, treating all other conditions as don’t-

cares. When put through another flattened top-down synthesis flow, the tool will

perform the reachability-related logic optimizations within the fanout combinational

logic at the expense of the added pass-through decoder.5 In theory, the pass-through

decoders should simply synthesize as wires, and shouldn’t add any area. However,

some synthesis tools fail to optimally handle the don’t-cares, which causes additional

logic to be synthesized. If the reductions in logic exceed the added decoder area, the

synthesized design will be smaller.

As an example of this method, Figure 3.11a depicts a design with a one-hot

decoder, but this one-hot reachability is lost after the flop boundary. By instantiating

an additional one-hot pass-through decoder, as in Figure 3.11b, we can force the

4Synopsys DesignCompiler’s set fsm state vector is intended for FSMs with clean feed-
back logic and often fails on larger designs; moreover it only works with one group at a
time. There is planned support for a certain subclass of SystemVerilog assertions, but this
is not yet functional and does not allow arbitrary states.

5Some synthesis tools ignore decoders wider than 32 bits. We handled these these rare
cases by manually injecting the key property that was proven by the reachable states.
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(a) A sample design containing
a one-hot flopped signal. Note
the unneeded multiplexer logic
on the output.
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switch(in)
  case 4'b0001: 
    out = in;
  case 4'b0010: 
    out = in;
  case 4'b0100: 
    out = in;
  case 4'b1000: 
    out = in;
  default: 
    out = x;

(b) The design with an additional pass-through
decoder, programmed to pass one-hot signals.

Dec out
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42
in out

switch(in)
  case 4'b0001: 
    out = in;
  case 4'b0010: 
    out = in;
  case 4'b0100: 
    out = in;
  case 4'b1000: 
    out = in;
  default: 
    out = x;

(c) The design with combinational
logic optimizations. The pass-
through decoder still remains.

Figure 3.11: Using a programmable decoder to annotate a design with reachability
information.
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synthesis tool to make the desired combinational logic optimizations (Figure 3.11c).

To force synthesis to do the desired logic optimizations we must flatten the design,

obscuring the boundaries of this decoder module, which could otherwise be removed.

The area result in Figure 3.11c represents an upper bound for this design, because

the pass-through decoder contributes overhead.

3.2.6 Selective Stage Fusion

In Chapter 2, we showed how to design high-level interfaces by building a superset of

state logic to flexibly handle a variety of use-cases. In this chapter, we have presented a

reachability analysis technique to remove unused states from design instances, which

is always safe because it guarantees cycle-accurate state reachability. In practice,

however, this cycle-accurate limitation can be too restrictive. This section discusses

common cases where strict reachability analysis can lead to suboptimal results, and

proposes a semi-automated workaround.

Consider the multi-stage design in Figure 3.12a. Assume that modules X and

Y produce and consume at equal rates (similar Figure 3.10’s producer/consumer

relationship), such that in isolation the interface between them should be optimized.

Additionally, assume the shaded module Z consumes at a much slower rate than

Y produces, causing the FIFO between Y and Z to eventually fill up. This applies

backpressure to Y, causing the FIFO between X and Y to fill up as well. As it should,

reachability analysis will observe all of these states, leaving all interface overhead

intact.

In contrast, a hand-tuned design can be built without flexibility on the XY inter-

face (i.e., the designer can fuse the X and Y modules). Clearly, the fused design is

not cycle-accurate with the generic flexible design, but this limitation of reachability

analysis does not generally apply for a manual designer. In fact, it is possible that

the new fused XY design is superior to the optimized generic design, highlighting a

potential shortcoming of our proposed latency-insensitive design approach.

To remedy these cases, we propose a targeted “peephole” optimization to assist a

designer in performing this fusion. First, a designer must identify an interface as a
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(a) A 3 stage pipeline where modules X and Y operate with identical throughputs, and module Z consumes
more slowly. Backpressure causes all FIFOs to eventually fill up, preventing reachability analysis from
optimizing any interface.

clk

A B
nm

A_rdy

B_enqA_deq

B_stl

FIFO
in

enq

full

out

deq

!empty

X
clk

A B

A_rdy

B_enqA_deq

B_stl

Y

FIFO
in

enq

full

out

deq

!empty

clk

A B

A_rdy

B_enqA_deq

B_stl

Z
pn p q

+

(b) After a designer identifies the interface XY as a fusion candidate, the design is modified by ORing the
downstream backpressure from Y directly into the backpressure at X (dotted line).
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(c) Running reachability analysis on the modified design correctly optimizes (fuses) the
XY interface, leaving the YZ interface intact.

Figure 3.12: Proposed method to perform selective stage fusion using reachability
analysis.
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fusion candidate. Second, the design is structurally modified in a systematic manner

around the interface (changing the cycle-by-cycle behavior). Third, reachability anal-

ysis is run on the modified design. If the final optimized modified design is superior

to the optimized generic design, then the modified design should be kept. Otherwise,

we conclude that the interface cannot be fused and the change should be reverted.

Figure 3.12b shows the proposed structural modification, assuming the designer

has identified the XY interface as a fusion candidate. The modification involves

augmenting the backpressure (stall) signal into X with the analogous backpressure

signal downstream of Y via a logical OR. This ensures that X will never assert enq

once the YZ FIFO is full, so the XY FIFO will never be used. Hence, reachability

analysis on the modified design is able to optimize (fuse) the XY interface (Figure

3.12c).

This approach has a few obvious limitations. First and foremost, the designer

must carefully verify the modified design and ensure potential deadlock conditions

(as described in Section 2.1.3 have not been introduced. Moreover, it relies on a de-

signer to choose fusion candidates and the order in which the algorithm is run; poor

choices will give poor quality of result. Lastly, it relies on an unmodified downstream

backpressure signal, which can prematurely stall and result in increased latency com-

pared to a hand-tuned implementation.

3.2.7 Assumptions and Limitations

The reachability analysis framework presented in this section provides a powerful tool

for finding and removing synthesized overheads related to high-level interfaces. How-

ever, the framework is subject to a number of known assumptions and/or limitations,

which are worth summarizing.

Clock Domain

The algorithms described assume all sequential elements are on the same single global

clock domain, and will not work otherwise. Although the following workaround has
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not been thoroughly explored, it should be possible to extend to multiple clock do-

mains by running reachability independently on each clock domain, and passing reach-

ability dependencies across domains.

Good Design Practices

As mentioned in Section 3.2.2, our partitioning heuristic relies on the designer to

provide meaningful and unique names to sequential elements. For example, bundling

semantically different signals onto the same wide bus or register should be avoided.

If registers aren’t appropriately named, then it is likely that reachability analysis will

fail to find any meaningful design optimizations.

Moreover, the algorithm in Section 3.2.1 relies on all sequential elements to have a

global reset signal to determine initial states. Note that elements without any explicit

reset state (e.g., pipeline registers) are okay, since any initial value can be safely used.

Designs with more than one reset domain are generally discouraged by good design

practice, and so they haven’t been explored with reachability analysis.

Conservative Heuristics

It is worth re-emphasizing that we rely on a number of conservative heuristics to

make the reachability algorithm practical and scalable (Sections 3.2.2, 3.2.3, 3.2.4.)

Fortunately, these methods are all designed to be conservative by nature, so they

will never result in a functionality-incorrect, broken design. However, since they are

heuristics, they have merely been observed to work well in practice and we can make

no guarantee about optimality or quality of results on new designs.



Chapter 4

High-Level Interfaces in Practice

Chapter 2 explained how to build designs with high-level interfaces, and Chapter 3

showed how existing logic synthesis can be augmented to reduce any resulting im-

plementation overheads. This chapter demonstrates the applicability of these ideas

on real-world examples drawn from the Stanford Smart Memories project. We be-

gin with a brief overview of Smart Memories to give better context for our example

designs. We then review the individual examples in more detail and explain how

each uniquely leveraged high-level interfaces. We then present synthesis results that

demonstrate our reachability method can remove most of their overheads, and con-

clude by analyzing the scalability of our technique.

4.1 Stanford Smart Memories

Stanford Smart Memories is a chip multiprocessor with a memory system flexible

enough to support traditional shared memory, streaming, and transactional memory

programming models on the same hardware substrate[14][31]. The system was de-

signed to be a multiprocessor whose user could program not only the processors, but

the memory system as well.

Figure 4.1 illustrates the Smart Memories hierarchical architecture, which inte-

grates a large number of processors and memory blocks on a single chip. Figure 4.1(c)

shows that rather than having explicit instruction and data caches connect to each

55
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Figure 4.1: Stanford Smart Memories architecture. The mesh (a) is composed of
individually fabricated chips called Quads (b). Each Quad contains 4 Tiles (c) and
a Memory Protocol Controller (not to be confused with the chip-level Memory Con-
troller, which handles traffic to and from off-chip memory).

processor, the system consists of several memory blocks and a crossbar connecting

the memories to the processor cores. In addition to the data arrays, the memories

also contain meta-data bits and hardware for implementing particular functionality

in the memory systems (e.g., synchronization and cache management). Two VLIW

cores and 16 memories are placed in a Tile, and Tiles are placed in groups of four to

form Quads (Figure 4.1(b)). The shared Memory Protocol Controller in each Quad

provides support for the Tiles by moving data in and out of the local memory blocks

and implementing memory protocols (such as cache coherence) in different execution

modes. Figure 4.1(a) shows that Quads are then connected to each other and to

the off-chip interfaces using Network Routers to form a mesh-like network. External

memory controllers are connected to these off-chip interfaces as well.

Our work looks at the effect of flexible interfaces and reachability analysis as

applied to each of two major blocks: the Network Router and the Memory Protocol

Controller.

4.2 Network Router

The router that was used for chip-to-chip communication in multi-Quad topologies

in the Smart Memories project uses both elaboration tables and latency-insensitive
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Figure 4.2: A flexible network router design. Note how the RoutingTable interacts
with the Scheduler and, indirectly, the Fabric.

interfaces to provide significant design-time flexibility.

The m-by-n input-queued virtual channel router is designed to operate on variable-

length packets divided into flits. The minimum-size packet is 1 flit. It forwards flits

using cut-through flow control, and supports fanout-splitting multicast. We chose this

example because, while not too complex, it demonstrates a number of ways high-level

interfaces can be used to increase design flexibility in a practical setting. Figure 4.2

shows a block diagram for the Network Router, and the following subsections describe

the microarchitectural units in more detail.
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InputPort

The InputPort module queues incoming flits per virtual channel, and holds them until

ready to send across the Fabric. It uses a priority-matrix elaboration parameter to

arbitrate among virtual channels, allowing a flexible prioritization scheme.

RoutingTable

The RoutingTable unit uses a flexible lookup-table elaboration parameter to deter-

mine routing destinations from packet headers. This flexibility allows all combina-

tions of unicast and multicast routing requests from incoming packets. It can also be

uniquely programmed per InputPort, allowing different routing schemes for different

sources.

Scheduler

The Scheduler unit arbitrates among requests, determining which inputs are granted

access to the Fabric. Since it is designed to be flexible, it must support all combi-

nations of unicast and/or multicast requests. To prevent system deadlock, it must

first arbitrate among overlapping multicast requests so that circular wait dependen-

cies do not occur. If the routing tables are programmed for a unicast-only system,

however, this extra arbitration logic is unnecessary and thus becomes an example of

logic over-provisioning.

Fabric

The Fabric unit is a full crossbar that allows every input to route to every output.

Again, depending on the specific routing table configurations, this fully-connected

crossbar may be over-provisioned.

To study latency-insensitive interfaces, we created two versions of this router. The

first version had fixed timing interfaces, while the second version had a latency-

insensitive interface between the InputPort and Scheduler. Figure 4.3a depicts a
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Figure 4.3: Creating a latency-insensitive interface between the InputPort and Sched-
uler modules of the NetworkRouter.

simplified interface and the relevant FSM control logic for the interaction of the

two modules in a base design where the Scheduler is purely combinational. The

InputPort state machine transitions between Idle, Route, and Schedule states. The

0-cycle latency of the Scheduler block is implicitly assumed in this FSM, and so a

Scheduler with different latency characteristics will surely break this design.

To decouple these inter-module assumptions, we build control logic to account

for latency behavior between blocks. Figure 4.3b depicts the modified interface. The

additional Wait state in the InputPort and the extra valid bits account for a Scheduler

with greater latency. Note that the Scheduler cannot start on a new request until the

previous grants have been determined (this ensures the network protocols are adhered

to, since continuing flits have priority over new flits). Hence, pipelining the operation

of the Scheduler is not straightforward in this design, and was not explored. A bypass

FIFO queues requests until the FSM in the Scheduler is ready.1 The InputPort can

never produce more than one outstanding scheduling request, so a FIFO of depth one

is sufficient here. In general, however, an explicit backpressure mechanism would be

needed to prevent overflow.

The Scheduler can start an allocation (dequeue FIFOs) only if all expected con-

tinuing requests have been received, and must stall otherwise. This is important

1The 3 distinct Wait states account for different possibilities of Scheduler latency (0 cycles or
1+ cycles) and packet size (single-flit and multi-flit). The packet size distinction allows the network
protocol to give continuing flits preference over new flits.
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because continuing flits are given priority over new flits in our network. Hence, we

use a global stall structure to maintain order among the FSMs from all ports. This

structure is notable because it causes the bypass FIFO in each Scheduler port to not

only depend on its producer and consumer, but on the producers and consumers from

all other ports as well.

4.2.1 Parameterized Routing

To study the effects of table-based elaboration parameters, we built two versions of

the network router. The first version had unicast routing tables, and a hand-tuned

unicast Scheduler. The second version had unicast routing tables, and a generic

Scheduler that supported any routing scheme.

4.3 Memory Protocol Controller

The Memory Protocol Controller (PCtrl), previously mentioned in Section 3.1.3 to

demonstrate the overhead of runtime configurability, is an example of a complex

configurable state machine: shared among four two-processor tiles, it moves data in

and out of local memory blocks and implements different memory protocols (such as

multiprocessor cache coherence) based on the execution mode. The PCtrl consumes

14% of Quad area, with roughly 200k standard logic cells.

Figure 4.4 shows a high-level view of the PCtrl. It achieves its flexibility through

a series of table-based (microprogrammed) controllers. Each of these units has a

superset of the functionality required to support a given memory configuration. In

most memory configurations, one or more of these tables will be over-provisioned. For

example, if all memories are configured in uncached modes, then all microprogram

lines and state involving cache operations go unused. Likewise, in cached modes,

transactional operations will never be needed.

Unlike the Network Router design in Section 4.2, it is not possible to determine

the PCtrl’s required functionality based solely on its internal logic. Rather, the types

of messages that the PCtrl receives on its ports imply the required functionality. For
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and uncached configurations.
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example, an uncached configuration is distinguished by the fact that the processor

will never send a “cache miss” request, and the network interface will never send or

receive any coherence messages. Therefore, to eliminate unnecessary microcode and

structures, the legal states of all inputs have to be considered and propagated through

all of the controllers (which are separated by message queues and arbiters). This is

similar to analyzing “don’t-care” states of inputs imposed by the design environment

[10][8].

4.4 Synthesis Results

A graph of all synthesis results for our various designs is presented in Figure 4.5.

We performed synthesis experiments on the flexible Network Router described

in Section 4.2 to demonstrate how reachability analysis can remove overhead from

flexible design instances. The design was configured with m = 8 inputs, n = 8

outputs, 6 virtual channels, and 72-bit flits, consuming approximately 30,000 standard

logic cells (ignoring large memory queues at the inputs). As mentioned, the Network

Router was intentionally forced into an over-provisioned case by using unicast routing

tables but keeping all other blocks the same. Figure 4.5 shows the results. For a

design targetting a 4.2ns cycle time, these results indicate that the flexible Network

Router has a 21% area overhead, but the remaining overhead (after annotation with

programmable pass-through decoders) was reduced to 3%.

The IFCx results of Figure 4.5 examine a Network Router with a latency-insensitive

interface between the InputPort and Scheduler modules, as described in Section 4.2,

and synthesized to a 4.0ns2 clock. IFCx represents a router with x total ports (phys-

ical and virtual). The routers were configured using a combinational Scheduler (from

the original custom design) so that the additional interface logic would be unwanted

overhead. The areas are normalized to the corresponding custom router with no

flexible interface. We are able to remove nearly all of the overhead in these exam-

ples because the bypass-FIFO becomes an unused constant and the decoder on the

2Note that this Network Router experiment used a more aggressive timing target than the pre-
vious one
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Table 4.1: Design sizes and algorithm runtimes. Max refers to the largest sparse
group that exists in each design (number of reachable states / total states).

Design Gates Groups Max SAT calls Time
Router 28,512 353 23/28 1.9M 49.7min
IFC2 611 35 24/212 73.3k 3.7s
IFC4 2,362 69 28/224 279.4k 17.3s
IFC8 3,470 137 216/248 868.7k 23.6min
IFC10 4,802 171 220/260 2.6M 21hr
IFC12 6,973 205 224/272 NA NA
PCtrl 209,376 5,166 28/29 2.5M 34hr

Scheduler renders the extra control states unnecessary after the tool re-optimizes

the logic. Our algorithm failed to optimize IFC12 because the number of merged

producer-consumer states exceeded 220.

After looking at the Network Router, we performed similar experiments on the

Protocol Controller (PCtrl), which was configured to only handle uncached memory

requests at the inputs, making the original design (which also handles cached and

transactional requests) over-provisioned. The PCtrl synthesis results show that the

extra area added by the pass-through decoders was insignificant compared to the

entire design, so nearly all of the overhead was able to be recovered with our method.

4.5 Scalability of Reachability Algorithm

We implemented our reachability algorithm in Python, using MiniSat-2.2[13] to solve

SAT problems. We intended our implementation as a simple proof-of-concept to

demonstrate the feasibility of our algorithm, and so it was only optimized until the

Python program’s runtime was dominated by MiniSat calls. Table 4.1 presents mea-

surements from our code on the various example designs. Runtimes were recorded on

a 3GHz Core2 Duo machine with 8GB RAM3. Although we used a fixed set of sliding

window parameters over all examples, in practice these can be tuned per-design to

improve runtimes.

3The PCtrl required more RAM than Router or IFCx ; its runtime was measured on a 2.8GHz
Opteron with 32GB RAM.
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Figure 4.6: A depiction of the interface between InputPort and Scheduler for a 4-port
Router (IFC4). The relevant control logic for each port (see Figure 4.3b for details)
is shown.

The runtime numbers demonstrate that our reachability algorithm is feasible for

many designs; we found the times were often comparable to that of top-down synthe-

sis.4 The algorithm takes longer on designs with more groups because these require

more SAT calls; furthermore each SAT call takes longer on more complex designs.

The “Max” column refers to the largest sparse group that exists in each design

(number of reachable states / total states), which is the most important metric for

understanding the limits of our algorithm. Designs with more than 220 reachable

states in a sparse group are not feasible to explore, so we cannot remove any overhead

associated with that group. However, since it is uncommon to find FSMs with greater

than 220 states, we believe this approach is practical on most high-level functionally

flexible structures, as evidenced when our algorithm scaled to the 200,000 gate PCtrl.

Latency-insensitive interfaces present an additional challenge because they require

artificially merging a port’s producer and consumer state machines together into one

group. Our method in Section 3.2.4 is a simple way to do this, but can quickly break

down with global stall structures like the one described in Section 4.2, particularly

since the ports in a router behave independently. This independence causes the reach-

able space of grouped port states to grow exponentially, quickly becoming infeasibly

large. Instead, if additional information could correctly associate states with ports

4In fact, the PCtrl example is one of the largest designs we’ve been able to reliably synthesize in
a top-down flow, even without adding our reachability algorithm into the mix.
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Table 4.2: Control state groupings for the interface shown in Figure 4.3b. Scheme
A represents our automated grouping, while Scheme B represents user-guided parti-
tioning that separates control state per-port. Max refers to the largest sparse group
that exists in each case (number of reachable states / total states).

Scheme Groups Max
A |CI1CI2CI3CI4CS1CS2CS3CS4| 28/224

B |CI1CS1|CI2CS2|CI3CS3|CI4CS4| 22/26

(generally difficult given a flattened gate-level netlist, but often trivial for a designer),

we could group states per-port instead of naively grouping all ports, resulting in far

fewer required SAT calls (this is similar to the grouping heuristic discussed in Sec-

tion 3.2.2). Table 4.2 illustrates this concept for IFC4 shown in Figure 4.6. The

user-guided partitioning shown in Scheme B separates logic on a per-port basis. This

partitioning creates many smaller groups, so that the most reachable states of any

group remains constant (for any size router). This heuristic gives the correct result in

this case because the ports in the Network Router behave independently (by defini-

tion, since they are attached to external network sources). Note that this user-guided

partitioning solves the otherwise infeasible IFC12 design in under 5 minutes.



Chapter 5

Conclusions

5.1 Overview

We are at a unique period in the evolution of digital system design. The thirst for

component flexibility and reuse has never been greater, as these are the best known

techniques for managing ever-increasing design complexities. As intuition suggests,

many of these techniques sacrifice efficiency (either area, power, or performance) for

the benefit of flexibility. Historically, the community has adopted such techniques as

long as the design benefits outweigh these costs. One such example was the tran-

sition of full-custom design to standard-cell based designs: although standard cell

designs are generally inferior to custom designs, they were still adopted because they

made designing easier, and designers were typically willing to pay the increases in

energy per operation. Unfortunately, since technology scaling has pushed us against

a power-wall, energy efficiency is now a primary design constraint. For many modern

applications we are less willing to sacrifice energy efficiency to achieve more flexibility

in our designs.

High-level interfaces offer a promising solution to this impasse, giving designs

greater flexibility without adding implementation overhead. We showed that latency-

insensitive communication protocols between modules facilitates system-level design

exploration, and reduces the manual tuning required to compose modules into func-

tioning systems. Furthermore, parameterized control-logic offers an efficient approach
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to manipulating state machines using simple microprogram modifications. Although

these techniques result in overhead using current logic synthesis tools, we demon-

strated that automated reachability analysis can remove most (and often all) of this

overhead. Hence, high-level interface abstractions can now safely be used in modern

designs.

5.2 Future Work

Sections 3.2.2 and 3.2.4 describe simple heuristic methods for partitioning a design

into independent machines. Fundamentally, these methods use designer-intent (via

register names) to determine independent state groupings, and work well as long as

designers adhere to “best-practices”. Note that this is similar to the approach taken

by current synthesis tools, which require designers to use a specific design style before

the tool can identify and perform special FSM synthesis optimizations. However, it

would be interesting to explore structural approaches to this problem as well, which

wouldn’t depend on design styles. Specifically, it might be possible to use feedback

relationships in the DAG described in Section 3.2.1 to reliably identify independent

state machines.

Another follow-on improvement would be to eliminate the pass-through decoders

to inform synthesis about don’t-care states, discussed in Section 3.2.5. The decoders

were attractive because they work with any modern synthesis tool and don’t rely

on any special hooks. However, the downside is that tools don’t always correctly

remove the decoders themselves, occasionally leaving overhead as seen in Section

4.4. A better solution would be explicit directives or hooks in the synthesis tool

itself, designed specifically for internal don’t-care optimizations, avoiding the need to

modify netlist logic.

Although our algorithm for reachability analysis was developed and studied only in

the context of optimizing high-level interfaces, it is potentially useful to more general

design cases. It would be interesting to explore a wider class of designs and logical

structures, since our algorithm should benefit any design that contains unreachable

states and wide, partially-encoded signals and buses.
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Additionally, modern design “best-practices” encourage designers to liberally uti-

lize RTL assertions (e.g., SystemVerilog includes many complex assertions). Although

currently ignored by synthesis, this information could be used to enhance synthesis

results, similar to how we use reachability analysis to infer don’t-care states.

In the process of this work we found explicit reachability analysis to have interest-

ing (and admittedly unexpected) verification-related side-benefits. Occassionally, the

reachable states discovered did not coincide with designer expectations. This gener-

ally happened for two different reasons: either the system was actually more complex

than the designer anticipated (causing a surprise), or there was a bug somewhere in

the design. In both cases the explicit set of reachable states provided valuable insight

to designers that would have been otherwise unavailable.

Moreover, as mentioned in Section 3.2.1, our breadth-first reachability analysis

algorithm has a lot of similarities with those typically used in formal verification.

Although formal verification typically avoids explicitly enumerating states, there still

may be possible ways to synergistically combine these two steps to reduce the com-

putational effort required across the overall design flow.

In this work we have shown that it is possible to design RTL components with more

generic interfaces without incurring implementation overheads. While our formulation

of these high-level interfaces is certainly a useful abstraction for RTL designers, they

still require additional effort to implement in each module. An interesting next step

would be to embed these concepts into an HLS framework, so that more flexible

interfaces could be automatically generated around modules. This is generally difficult

using RTL and related meta-languages, since the latency-insensitive protocol often

requires modifying internal module control logic. However, since HLS fully captures a

module’s behavioral rules, it might be possible to modify these rules in a standardized

way, automatically generating the new internal control logic. Furthermore, if interface

control logic is being automatically generated, it should be possible to also provide

automatic partitioning hints to our reachability analysis, improving on the heuristics

we developed. For these reasons, we believe high-level interfaces may be even more

advantageous in an HLS framework, making future system design even easier.



Appendix A

Verilog Implementations

This appendix presents Verilog implementations of various concepts used throughout

this thesis.

A.1 Bypass FIFO

This bypass-capable FIFO can be used to create latency-insensitive interfaces, as

described in Section 2.1.

module FIFOBypass #(parameter width=8, depth=1)

(input clk, input reset, input enq, input deq, input [width-1:0] i,

output logic full, output logic empty, output [width-1:0] o,

output logic [utils::clog2(depth+1)-1:0] capacity);

// note: this implements the integer ceiling of the log function (base2)

parameter clogDepth = utils::clog2(depth);

logic [width-1:0] entry [depth-1:0];

// read from head address, write to tail address

logic [clogDepth-1:0] head, tail, nextHead, nextTail;

parameter depthM1 = depth -1;

wire incTail;

wire incHead;
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// tell the world we’re empty if we’re empty AND no data arriving

assign empty = (capacity == depth) && (~enq);

assign full = (capacity == 0 );

// write state iff we have space, and we’re not bypassing

assign incTail = enq && (capacity != depth && capacity != 0 ||

capacity == 0 && deq ||

capacity == depth && !deq);

// read state iff we have stuff to read and we’re not bypassing

assign incHead = deq && capacity != depth;

// bypass routing logic

assign o = (capacity == depth)? i : entry[head];

generate

if (clogDepth == 0) begin

assign nextHead = ’0;

assign nextTail = ’0;

end

else begin

assign nextHead = (head == depthM1[clogDepth-1:0]) ? ’0 : head + 1’b1;

assign nextTail = (tail == depthM1[clogDepth-1:0]) ? ’0 : tail + 1’b1;

end

endgenerate

// store data if queue isn’t full OR if deq is active

always @(posedge clk) begin: queue_data

if (!reset && incTail)

entry[tail] <= #1 i;

end

// queue capacity register tells how much space is free

always @(posedge clk) begin: cap_logic

if (reset)

capacity <= #1 depth;

else begin

if (incTail && !deq) begin

capacity <= #1 capacity - 1;

end

else begin

if (incHead && !enq) begin

capacity <= #1 capacity + 1;

end

end

end

end
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// synchronously-resettable D-flip flops (with synchronous write-enable)

FlopSync #(.width(clogDepth)) headReg

(.clk(clk), .reset(reset), .en(incHead), .d (nextHead), .q(head));

FlopSync #(.width(clogDepth)) tailReg

(.clk(clk), .reset(reset), .en(incTail), .d (nextTail), .q(tail));

endmodule
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A.2 FSM Styles

This section shows different coding styles for the same 2-input, 1-output, 3-state

FSM. Note in A.2.2 and A.2.3 how all unique logic is contained in the elaboration

parameters (outside of the module body).

A.2.1 Hardwired

module FSM (input clk,

input reset,

input start,

input stop,

output logic out);

enum {IDLE, PULSE, WAIT} state, nextstate;

// state register

always @(posedge clk)

if (reset)

state <= IDLE;

else

state <= nextstate;

// next-state logic

always_comb begin:ns

unique case(state)

IDLE:

if (start)

nextstate = PULSE;

else

nextstate = IDLE;

PULSE:

nextstate = WAIT;

WAIT:

if (stop)

nextstate = IDLE;

else

nextstate = WAIT;

default:

nextstate = IDLE;

endcase // unique case (state)

end // block: ns

// output logic

assign out = (state == PULSE);

endmodule // FSM
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A.2.2 Elaboration Microcode (SystemVerilog)

Note the 2-D elaboration parameters in this implementation are not currently sup-

ported by all tools.

module FSM #(nStates = 3,

nInputs = 2,

nOutputs = 1,

resetState = 0,

bit [clog2(nStates)-1:0][nInputs+clog2(nStates)-1:0] NEXTSTATE =

{2’b00, 2’b00, 2’b10, 2’b01, 2’b00, 2’b10, 2’b10, 2’b01,

2’b00, 2’b00, 2’b10, 2’b00, 2’b00, 2’b10, 2’b10, 2’b00},

bit [nOutputs-1:0][nInputs+clog2(nStates)-1:0] OUTPUT =

{1’b0, 1’b0, 1’b1, 1’b0, 1’b0, 1’b0, 1’b1, 1’b0,

1’b0, 1’b0, 1’b1, 1’b0, 1’b0, 1’b0, 1’b1, 1’b0})

(input clk,

input reset,

input [nInputs-1:0] in,

output logic [nOutputs-1:0] out);

logic [clog2(nStates)-1:0] state, nextstate;

logic [nInputs + clog2(nStates) - 1:0] addr;

// state register

always @(posedge clk)

if (reset)

state <= resetState;

else

state <= nextstate;

// address is determined by concatenating inputs and state

assign addr = {in, state};

// use elaboration parameters as lookup tables

assign nextstate = NEXTSTATE[addr];

assign out = OUTPUT[addr];

endmodule // FSM
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A.2.3 Genesis2 Implementation

//; my $NINPUTS = $self->define_param(’NINPUTS’ => 2);

//; my $NOUTPUTS = $self->define_param(’NOUTPUTS’ => 1);

//; my $NSTATES = $self->define_param(’NSTATES’ => 3);

//; my $NS_MEM = $self->define_param(’NS_MEM’=>[0,2,2,0,0,2,0,0,1,2,2,0,1,2,0,0]);

//; my $OUT_MEM = $self->define_param(’OUT_MEM’=>[0,1,0,0,0,1,0,0,0,1,0,0,0,1,0,0]);

//; my $RESET_STATE = $self->define_param(’RESET_STATE’ => 0);

module FSM

(input clk,

input reset,

input [‘$NINPUTS-1‘:0] in,

output logic [‘$NOUTPUTS-1‘:0] out);

logic [‘clog2($NSTATES)-1‘:0] state, nextstate;

logic [‘$NINPUTS + clog2($NSTATES)-1‘:0] addr;

logic [‘clog2($NSTATES)-1‘:0][‘$NINPUTS+clog2($NSTATES)-1‘:0] ns_mem;

logic [‘$NOUTPUTS-1‘:0][‘$NINPUTS+clog2($NSTATES)-1‘:0] out_mem;

// initialize memories with constants

//; my $idx = 0;

//; foreach my $val (@NS_MEM){

assign ns_mem[‘$idx‘] = ‘$val‘;

//; $idx++; }

// $idx = 0;

//; foreach my $val (@OUT_MEM) {

assign out_mem[‘$idx‘] = ‘$val‘;

//; $idx++; }

// state register

always @(posedge clk)

if (reset)

state <= ‘$RESET_STATE‘;

else

state <= nextstate;

// address is determined by concatenating inputs and state

assign addr = {in, state};

// use constant tables to do lookup

assign nextstate = ns_mem[addr];

assign out = out_mem[addr];

endmodule // FSM
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Pseudo-code

B.1 Reachability analysis: main loop

updated = true;

while (updated) {

updated = false;

foreach grp in ordered-group-list {

// inputs are outputs of other groups

currIn = dag.getInputs(grp, reached);

// check for any updates

if (prevIn[grp] != currIn) {

// we only care about new input states

newIn = diff(currIn, prevIn[grp]);

prevIn[grp].add(currIn);

// unreached states are complement

unreached = ~reached[grp];

// do a SAT analysis on the unreached states

// using the sliding window algorithm to avoid

// sweeping large groups

newReached = dag.swSAT(grp, unreached, newIn);

// only update if new states were reached

if (newReached.size() > 0) {

updated = true;

reached[grp].add(newReached);

}

}
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}

}

B.2 Reachability analysis: sliding window
// find the reachable states of grp in dag

// using the sliding-window algorithm

// unreached are the states to be explored

// inputs are the reachable states of inputs

function swSAT(dag, grp, unreached, inputs) {

// set algorithm parameters

group = dag.getGroup(grp);

n = group.size();

w = min(n,16);

s = 8;

MAX_STATES = 2**19;

// initialize variables

candidates = group.states;

nWindows=1+(n-w)/(s);

num_states = 0;

for (i=0; i < nWindows; i++) {

// list of bits in this window

bits_i = group.bits(i*s, i*s+w-1);

// list of bits not in this window

bits_i_c = group.bits() - bits_i;

// unreached states for this window are the

// complement of the subset of possibly reached states

unreached_i = ~candidates.subset(bits_i);

// run SAT sweep on this window over unreached states

reached_i = group.sweepSAT(bits_i, unreached_i, inputs);

// retrieve reached states outside of this window

reached_i_c = candidates.subset(bits_i_c);

// count the number of new candidate states

// (it will be the set-product)

num_states += reached_i_c.size() * reached_i.size();

// abort if we ever exceed our state limit

if (num_states > MAX_STATES) {

return null;



78 APPENDIX B. PSEUDO-CODE

}

// keep the newly reached states

candidates.add(reached_i);

}

// now do a final pass over all remaining candidate states

return group.sweepSAT(group.bits(), candidates, inputs);

}
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Using SAT Solver

C.1 SAT Solver Input

Our SAT solver accepts input in conjunctive normal form (CNF). CNF consists of a

conjunction (logical AND) of many “clauses”, where each “clause” is a disjunction

(logical OR) of variables. Individual variables can be inverted within each clause.

This section describes an efficient process for converting a logical expression into a

product-of-sums (CNF).

File Format

Each line in a CNF file is a clause, containing variable names separated by spaces.

Additionally, each clause ends with a special “0” token. Inversion is indicated with a

“-” character preceding a variable name.

Conversion Procedure

Our procedure consists of traversing our DAG (see Section 3.2.1) in a reverse depth-

first manner, starting at the flip flops of interest (this is similar to walking the parse

tree of a logical boolean expression). Each newly visited node is converted to CNF

clauses. When finished, the combination of all CNF clauses from all nodes describes

the logical behavior of our circuit.
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To convert each node (logic gate) to CNF, we first parse the node’s Boolean logic

to create an abstract syntax tree (AST) consisting of unary and binary operators. The

unary operators we support are assignment and inverse, and the binary operators are

AND and OR. Note that these are sufficient to support any Boolean logic expression.

One simple way of parsing an expression into an AST is to express the logic of each

node as a Boolean expression in Python, and then use the built-in ast module to

create the tree. The following subsections show the CNF clauses that are generated

for these simple operators.

Note that all node outputs (as well as circuit inputs) are given unique variable

names in the final CNF. Additionally, we generate temporary variables as needed for

complex gates.

assignment: y := a

-y a 0

-a y 0

inverse: y :=!a

-y -a 0

a y 0

AND: y := a ∗ b

a -y 0

b -y 0

-a -b y 0

OR: y := a + b

-a y 0

-b y 0

a b -y 0
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Input/Output Constraints

Additionally, our SAT solver accepts optional variable constraints (or assumptions) in

disjunctive normal form (DNF). DNF consists of a disjunction (logical OR) of many

“clauses”, where each “clause” is a conjunction (logical AND) of variables. Individual

variables can be inverted within each clause.

It is straightforward to use variable assumptions for constraining inputs to known

reachable states, since each reachable state is simply a new DNF clause (with each

variables represting an input).

Before running SAT on the CNF in Section C.1, we must constrain the output

variables to reflect the state being queried. Fortunately, these output constraints are

easy to add to the CNF, since each bit in a particular state will become a new clause.

For example, if variables {1, 2, 3, 4} are variables that represent register outputs,

and we wish to query whether state 0xd is reachable, then we would add the following

4 output clauses to the CNF:

1 0

2 0

-3 0

4 0

C.2 Example

Figure C.1 shows an example DAG circuit that will illustrate our SAT problem for-

mulation..

A CNF representation of Figure C.1. Note the addition of an extra variable t0 to

handle the complex gate g2.

g2 -y1 0

rb -y1 0

-g2 -rb y1 0

-g2 -t0 0

g2 t0 0
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a b

c

d
r

y1 y0

bb

rb

g1

g2
g3

Figure C.1: An example DAG circuit with 4 inputs (a, b, c, d, r) and 2 outputs (y0
and y1 ). All gate output labels are shown as well.
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-g1 t0 0

-c t0 0

g1 c -t0 0

a -g1 0

bb -g1 0

-a -bb g1 0

-bb -b 0

bb b 0

-rb r 0

rb r 0

g3 -y0 0

rb -y0 0

-g3 -rb y0 0

g1 -g3 0

d -g3 0

-g1 -d g3 0

To sweep the 4 potential output states, we would append the following new clauses

to the CNF in the previous section before running the SAT solver. SAT results are

shown.

{y1,y0} == 2’b00

-y0 0

-y1 0

result: SATISFIABLE

{y1,y0} == 2’b01

y0 0

-y1 0

result: SATISFIABLE
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{y1,y0} == 2’b10

-y0 0

y1 0

result: SATISFIABLE

{y1,y0} == 2’b11

y0 0

y1 0

result: UNSATISFIABLE
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