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Abstract

Over the last decade, digital imaging has become ubiquitous. The advent of cheap

digital cameras, and the inclusion of cameras in almost all mobile devices, has made

photography one of the basic ways in which people record and communicate experi-

ences.

The ubiquity of cameras has imposed new constraints on their physical form. Cam-

era modules are expected to be thin, light, and cheap. These restrictions make the

production of high-quality images challenging. We turn to increasingly sophisticated

algorithmic tools to transform the raw data captured by a camera into a photograph.

This dissertation focuses on one such family of algorithmic tools: those expressible

as a Gauss transform. One popular technique in this family is the bilateral filter, which

smooths the fine detail in an image without crossing strong edges. It can be used

to isolate and control the sharpness, tone, and contrast of a photograph at various

scales. Its relatives, the joint-bilateral filter and the joint-bilateral upsample, allow

for the fusion of data from multiple images. Another popular technique in the same

family is non-local means, which denoises an image by replacing each pixel with the

average color of all other pixels in the image with a similar local neighborhood.

A naive implementation of these algorithms is prohibitively slow. This dissertation

unifies these algorithms under a common framework, describes a variety of applica-

tions of the transform in photographic image processing, and presents two new data

structures to accelerate the computation of such transforms: the permutohedral lat-

tice, and the Gaussian kd-tree.

The permutohedral lattice implements a Gauss transform as a resampling using

the lattice A∗, which tessellates space with uniform simplices. For n d-dimensional
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inputs, the permutohedral lattice performs a Gauss transform using O(d2n) time and

memory. The Gaussian kd-tree enacts a Gauss transform by clustering inputs at

the leaves of a space-partitioning tree, and performing importance-sampled queries

down the tree. It uses O(dn log n) time and O(dn) memory. Previous methods for

computing Gauss transforms are typically quadratic in n, or exponential in d.
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Chapter 1

Gaussian Filtering and its

Applications

A surprising number of photographic image processing operations can be expressed

by a single equation:

~̂vi =
∑
j

e−|~pi−~pj |
2/2~vj (1.1)

This is a Gauss transform, in which output values ~̂vi are a weighted sum over

input values ~vj, with the weights given by a Gaussian in the distance between two

associated positions ~pi and ~pj. Put simply, this equation mixes together values that

have similar positions.

For image processing, our values will almost always be pixel colors, so that ~vi

represents the color of pixel i. We use a homogeneous representation for color, so that

the weighted sum in Equation 1.1 performs a weighted average. This we describe as

Gaussian filtering. Thus a pixel with red, green, and blue components r, g, and b,

has a input value [r, g, b, 1], and an output value of [a, b, c, d] should be understood as

the color [a
d
, b
d
, c
d
].

The positions associated with these values will vary according to the task at hand.

For example, if we set the position vector of pixel i to be the (x, y) location of that

1
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Gaussian Blur: ~pi =
(
xi
σ

yi
σ

)
~vi =

(
ri gi bi 1

)

Figure 1.1: A Gauss transform mixes together values ~vi that have similar positions
~pi. The simplest use of this in image processing is the Gaussian blur, in which the
values are pixel colors, and the position of each pixel is its spatial location within the
image. Mixing values that have similar positions thus mixes together pixel that are
nearby in the image. We can set the standard deviation of the filter by scaling down
the position vectors by some constant σ. We use homogeneous coordinates for pixel
colors (in the projective geometry sense), which turns the Gauss transform’s weighted
sum into a weighted average.

pixel within the image, then Equation 1.1 expresses a Gaussian blur of standard

deviation 1. If we wish to perform a larger blur we could modify the equation, but it

is more convenient to instead scale down the position vectors (Figure 1.1).

1.1 The bilateral filter

While Gaussian blurs are common-place in image processing, they can already be

efficiently implemented using a wide variety of methods. A more interesting example

is the bilateral filter, which mixes together nearby pixels which also have similar

colors, producing a piecewise flattening of the image (Figure 1.2). The two notions of

spatially-nearby and similar-in-color can be combined into a single five-dimensional

notion of similarity; pixels are mixed with other pixels that are nearby in x-y-r-g-b-

space (this insight is due to Danny Barash [21]).
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Bilateral Filter: ~pi =
(
xi
σs

yi
σs

ri
σc

gi
σc

bi
σc

)
~vi =

(
ri gi bi 1

)

Figure 1.2: A bilateral filter mixes together pixels with other nearby pixels that have
a similar color. This can be expressed as a Gauss transform by setting the values ~vi to
be pixel colors, and setting the positions ~pi to five-dimensional vectors incorporating
both the spatial location and the color of the pixel. The scale terms σs and σc control
the size of the filter in space and color respectively.

The bilateral filter can thus be expressed by a Gauss transform in which the posi-

tion vectors are five-dimensional, containing the location of the pixel and also its color.

The pixel at x, y with color r, g, b has position vector [x/σs, y/σs, r/σc, g/σc, b/σc],

where σs and σc control the spatial and color-space extent of the filter.

A bilateral filter is a moderately effective way to denoise an image, as it smooths

an image without destroying strong edges. However, it is more useful as a means of

decomposing an image into multiple layers (Figure 1.3). By treating the bilateral-

filtered image as a base layer, we can subtract it from the input to obtain a detail

layer. The base and detail layers can be separated processed and recombined for a

variety of effects.

For example, a bilateral filter with small extent can be used to isolate the fine

detail in an image. Amplifying it and then adding back in the base layer will sharpen

the image. This sharpening method avoids the unwanted halos around strong edges

common to convolution-based sharpening, because the strong edges are represented

in the unchanged base layer. By changing the size of the bilateral filter (using σs and

σc) we can isolate tone and contrast at different scales, and independently manipulate
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= +

Figure 1.3: The bilateral filter can be used to decompose an image (top left) into
base (top middle) and detail (top right) layers. This isolates tone and contrast at
a particular scale. The layers can then be modified and recombined for a variety
of effects. In the bottom left we decompose the image using a large bilateral filter,
amplify the detail layer, and then recombine. The result is a amplification of coarse-
scale contrast. In the bottom center we apply the same process using a smaller
bilateral filter, which gives a sharpening effect. Using the a simple Gaussian blur for
the decomposition instead of the bilateral filter results in unwanted effects (bottom
right). Note for example the halo around the back of each dog’s head.

them, making this filter a very powerful tool for photographic image processing. For

a full exploration of this approach see Bae et al. [7].

A different use of a bilateral decomposition arises in tone-mapping high-dynamic-

range images to be displayed on low-dynamic-range displays [22]. Here we preserve

the detail layer as-is, and reduce the contrast of the base layer. This preserves local

detail while compressing global contrast into a viewable range.

The bilateral filter was independently invented by Tomasi and Manduchi [45],

Smith and Brady [42], and Aurich and Weule [6]. Apart from the applications above,

it has seen use in video denoising [9], abstraction and stylization [47], optical flow

regularization [48], smoothing photon density maps in rendering [46], and even mesh

denoising [29].
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1.2 The joint-bilateral filter

In some applications it is useful to smooth an image without crossing strong edges

in some other reference image. This is referred to as a joint- or cross-bilateral filter.

Such a filter can be expressed with a Gauss transform by deriving the value vectors ~vi

from the image to be smoothed, and the position vectors ~pi from the reference image.

The joint-bilateral filter was invented independently by Eisemann and Durand [23]

and Petschnigg et al. [39] and was used by each for combining images taken with and

without flash.

One simple yet effective application of a joint-bilateral filter is to reduce color

noise in a photograph (Figure 1.5). Three-dimensional color can be decomposed into

one-dimensional luminance (or brightness) and two-dimensional chrominance. Most

real objects have piecewise-constant chrominance, and so chrominance noise in a pho-

tograph is much more objectionable to humans than luminance noise. Furthermore,

the color matrices used in digital cameras to convert from the color space of the

sensor (in which the channels are highly correlated) to a standard color space often

amplify chrominance noise while reducing luminance noise. We can therefore improve

the appearance of a noisy digital photograph by smoothing the chrominance terms

without crossing strong edges in luminance, using a joint bilateral filter.

1.3 The joint-bilateral upsample

A variant of the joint-bilateral filter can also be used to increase the spatial resolution

of an image given a higher-resolution reference. This is done by interpolating the low-

resolution data in a manner that does not cross strong edges in the high-resolution

reference image. This technique was proposed by Kopf et al. [30]. It allows you to

compute any expensive but piecewise-smooth function of the image at low-resolution,

and then cheaply upsample the result. Kopf uses it for upsampling the results of

tone-mapping, colorization, and depth estimation.

We can model a joint-bilateral upsample as a Gauss transform by distinguishing

between the positions associated with the input values, and those associated with the
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Non-local Means: ~pi =
(
xi
σs

yi
σs

)
~vi =

(
ri gi bi 1

)

Figure 1.4: Non-local means reduces noise by mixing each pixel with other nearby
pixels that have a similar local neighborhood. To express non-local means as a Gauss
transform, we again set the values ~vi to homogeneous pixel colors. The positions ~pi
include two spatial terms, and also a description of the neighborhood around pixel
i. This description may simply be a list of the pixel colors in a local window, or it
may be some other descriptor such as the response to a bank of filters. By mixing
together values with similar positions, we mix together pixels that have similar local
neighborhoods.

output values. We will denote this distinction by replacing ~pj in our original Gauss

transform with ~̂pj:

~̂vi =
∑
j

e−|
~̂pi−~pj |2/2~vj (1.2)

Once again, the value vectors will be homogeneous color, and the position vectors

will encode color and spatial location. The input values ~vj come from the low resolu-

tion image to be upsampled. The corresponding input positions ~pj are derived from

an appropriately downsampled version of the high-resolution reference image. The

output positions ~̂pi come from the high-resolution reference image without downsam-

pling. This results in filtered output values ~̂vi at the same resolution as the reference

image.
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Figure 1.5: At the top is a crop of a photograph captured with a Canon 400D
at ISO 1600. This type of image poses problems for most denoising algorithms.
First, the noise is not Gaussian; it includes the effect of “hot pixels”, which, after
demosaicing, become small brightly colored blobs. Second, the fine fur texture is
difficult to algorithmically distinguish from noise. The second row shows the effect of
a bilateral filter. It is somewhat effective at removing the noise, but it destroys much
of the fine detail of the fur. The third row shows the effect of denoising chrominance
only using a joint bilateral filter. It retains the fur texture, but removes only the
color noise. The final row shows the effect of a non-local means filter, which retains
most of the texture, while removing much of the noise. For this image, non-local
means has likely made the largest improvement in terms of signal-to-noise ratio, but
the joint-bilateral filter produces a perceptually superior result.
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1.4 Non-local means

Noise is inherent to the physics of photography, and so denoising has been an active

area of research. One algorithm that has proved to be effective is non-local means

by Buades et al. [13]. Non-local means averages pixels together with other nearby

pixels that have similar local neighborhoods. In this way, pixels along an edge will

be averaged with other pixels along that edge, pixels in a flat region will be averaged

with all other pixels in that region, and pixels in a highly textured area will only be

averaged with pixels that exhibit the same local structure.

The attractive property of non-local means is that it does not enforce a local

smoothness prior on the image (as does a Gaussian blur, or a bilateral filter). Instead

it enforces self-similarity; similar patches in an image should have a central pixel

with a similar color. This lets us denoise without overly smoothing the image. It also

allows us to relax or even drop the notion of spatially-nearby, and search for matching

patches across the entire image, or an entire burst of images, or a multi-view set of

images, or any other potentially helpful image data. Of course with such a large set of

potential patches to examine, an exhaustive search at every pixel in an image would

take a prohibitive amount of time, and so accelerating non-local means is vital if it

is to be useful.

We can express non-local means as a Gauss transform by once again setting our

value vectors to be homogeneous pixel colors, and setting our position vectors to be

some compact description of the neighborhood around each pixel, and optionally the

spatial location of the pixel (Figure 1.4).

The simplest way to describe the local neighborhood of a pixel is to simply list

the colors of all pixels within some window around that pixel. However, this results

in a very high-dimensional position vector. For example, a 5x5 patch with three color

channels would result in a 75-dimensional position vector, which increases to 77 when

spatial terms are added.

A better approach is to use the output of a bank of filters. If we wish to use

the same notion of patch distance as the naive method above, we can reduce the

dimensionality of the space of image patches whilst best preserving distances between
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patches using principal components analysis (PCA). The eigenpatches with large

eigenvalues then form the filter bank.

This approach was explored by Tasdizen [43], who found that reducing patch-

space to 6 dimensions actually improves denoising performance on typical images.

The discarded eigenpatches with smaller eigenvalues tend to correspond to noise, and

including them does more harm than good.

It is not clear if this notion of patch distance is the optimal one. One could also

imagine using rotation- or scale-invariant local descriptors to exploit self-similarity

in an image across multiple orientations or scales. As this dissertation focuses on

accelerating the underlying Gauss transform, we leave such explorations to others.

1.5 This dissertation

The Gauss transform can express a rich and useful family of image processing algo-

rithms, but its use has been hindered by its computational complexity; in the naive

form every output value is a sum over all input values. We require, instead, approxi-

mate algorithms with the following key properties:

1. Scales well with respect to the number of input values, as images typically

involve many millions of pixels.

2. Scales well with respect to the dimensionality of the position vectors, as in many

applications we will want to use position vectors with 8 or more dimensions.

3. Scales well with respect to the size of the filter, so that we are not restricted to

filters with small spatial support.

4. Generalizes across all sizes and dimensionalities of Gauss transform, and requires

no particular structure to the input.

5. Produces output that is visually equivalent to that of an exact Gauss transform.

The primary contributions of this dissertation are two such accelerations of the

Gauss transform based on two novel data structures. Both data structures explicitly
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 1.6: The splat-blur-slice pipeline for acceler-
ating Gauss transforms. Gauss transforms mix to-
gether values that have similar positions. This can
be accelerated with an explicit sampling of the space
of position vectors.

In this example we smooth a one-dimensional
grayscale signal without losing the strong edge (a).
First we treat the input data as a point cloud in two
dimensions (b). Each pixel in the input becomes a
point with position given by its location in the in-
put and its brightness, and value given by brightness
alone.

We then splat these points onto our explicit sam-
pling of position-space (c). In this case we use a
regular grid to sample position space, and a nearest-
neighbor splatting filter. As we’re intending to blur
within this space, the sampling can be much lower
resolution than the input.

A good sampling of position-space makes it easy
to blur within that space (d). In the case of a grid
we can blur separately along each axis to construct
a full Gaussian blur.

Finally, we slice out our output, by sampling the
representation of position-space at the original po-
sitions (e). Here we use a nearest-neighbor recon-
struction. This gives us a piecewise smooth version
of the input, with the strong edge intact (f).

While this toy example uses nearest-neighbor fil-
ters, for real applications it is necessary to use some
kind of interpolation scheme to avoid artifacts. Un-
fortunately this makes a grid untenable for higher-
dimensional position vectors, as grid interpolation in
d dimensions costs at least O(2d) time and memory.
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sample the space of position vectors in a way that makes it easy to mix together values

with similar positions. Filtering can then be implemented with a three stage pipeline.

First we splat or resample our input data onto the chosen sampling of position-space.

Then we blur across this sampling, to mix together values with similar positions.

Finally we slice, or resample back onto the original position vectors. We can also

slice onto some other set of position vectors, for example to perform a joint-bilateral

upsample. Figure 1.6 illustrates this pipeline for the case of two-dimensional position

vectors sampled on a regular grid.

The first data structure described herein is the permutohedral lattice (Chapter

3). It samples position-space at the vertices of the lattice A∗, which tessellates space

with uniform simplices. Splatting and slicing are done with barycentric interpolation

within each simplex. Blurring is done by separately blurring along each lattice axis.

For n inputs with d-dimensional position vectors, filtering using the permutohedral

lattice takes O(d2n) space and time. The lattice out-performs a regular grid at dimen-

sionalities above three, making it preferable for all but the simplest Gauss transforms.

This data structure was first published as Fast High-Dimensional Filtering Using the

Permutohedral Lattice [1], which was joint work with Jongmin Baek and Abe Davis.

The second data structure is the Gaussian kd-tree, described in Chapter 4. The

Gaussian kd-tree aggregates the initial position vectors into a kd-tree with one sample

at each leaf. Splatting and slicing are then all done using randomized Gaussian

queries, which find samples around a query position with a probability proportional

to a Gaussian centered at that query position. The Gaussian kd-tree does not have an

explicit blur stage, but instead folds blurring into splatting and slicing. Filtering using

the Gaussian kd-tree has a time complexity of O(dn log n), and begins to out-perform

the permutohedral lattice as the dimensionality grows beyond 12. This data structure

was first published as Gaussian KD-Trees for Fast High-Dimensional Filtering [2],

which was joint work with Natasha Gelfand, Jennifer Dolson, and Marc Levoy.

Importantly, neither data structure has a time or space complexity that grows

with the filter size. In fact, the larger the filter size, the more coarsely we can sample

the space of position vectors, which means that this class of algorithms actually runs

faster as the footprint of the filter increases.
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In the following chapter we will review existing accelerations of the algorithms de-

scribed so far. Then, following our description of the permutohedral lattice (Chapter

3) and the Gaussian kd-tree (Chapter 4), we compare these two data structures and

benchmark them against existing work (Chapter 5). In Chapter 6 we will examine

some new applications of the Gauss transform made possible by these data structures,

and finally in Chapter 7 we lay out some future directions of research in this area and

conclude.



Chapter 2

Prior Work Accelerating Gaussian

Filtering

The techniques described in the previous chapter have seen widespread use in com-

puter vision, computational photography, and medical imaging. However, their naive

evaluation is quite slow; at each pixel, all of the above techniques require searching

for other pixels that have similar position vectors. Due to the rapid falloff of the

Gaussian, pixels with position vectors that are dissimilar can be omitted from the

summation with minimal effect. If the position vectors include spatial terms, the

search can thus be constrained to a local window, but for non-trivial window sizes

this is still quite expensive. For applications that use non-local means, in which

the spatial terms are often weak or absent (hence non-local) a naive evaluation is

intractable.

The computational expense of these methods limits their utility, and so a vari-

ety of attempts have been made accelerate them. Most accelerations only apply to

subclasses of the applications above, but are nonetheless instructive to consider.

2.1 Accelerating the bilateral filter

Most work on accelerating the bilateral filter considers the restricted case of filtering

grayscale images. In this case we average a pixel’s intensity with other nearby pixels

13
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with similar intensities. In the context of Equation 1.1 the corresponding position

vectors are three-dimensional, and contain two spatial terms and one brightness term.

Equation 1.1 then becomes:

~̂vi =
∑
j

Gije
−|Ii−Ij |2/2~vj

Where Ii is intensity at pixel i, and Gij is a Gaussian in the spatial distance

between pixels i and j. We use Gaussians of standard deviation one for simplicity. If

we fix a particular intensity level Ii = α, then the equation becomes:

~̂vi =
∑
j

Gij

(
e−|α−Ij |

2/2~vj

)
None of the terms in the parentheses depend on pixel i, so this is merely a Gaussian

blur of a modulated version of the image, with the modulation at pixel j given by

e−|α−Ij |
2/2. A Gaussian blur is cheap to compute using a variety of methods, and this

output will be accurate for pixels with intensity close to α.

One can compute intermediate filtered images for a range of different α and then

interpolate between the most appropriate ones for each pixel based on its intensity.

This is the approach taken by Durand and Dorsey [22]. The same fundamental

approach was taken by Porikli [40]. The two approaches differ only in how they

filter the intermediate images. Whereas Durand and Dorsey use a Fourier transform,

Porikli uses integral images of powers of the images to allow for the rapid computation

of any filter expressible as a low-order polynomial.

One can also reorder the computation slightly, and sweep through different values

of α computing intermediate images. Given the two most recent intermediate images

with α = αn and α = αn−1 we can compute the output at all pixels with intensities

between αn and αn−1. This requires multiple passes through the image, but only

requires storing two intermediate images at a time, and so uses less memory. This

approach was taken by Yang et al. [50].

Paris and Durand [35] address the issue of memory use in a different way. Given
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that we blur the intermediate images, it is sufficient to construct them at low-

resolution, use a small fixed-sized convolution to blur, and then linearly interpolate

the result both between intermediate images and within each image. The set of in-

termediate images then becomes a fairly compact three-dimensional volume, with the

output constructed via trilinear interpolation. This is precisely the splat-blur-slice

pipeline of Figure 1.6.

Chen et al. [15] then made an interesting observation. If we consider only the last

homogeneous coordinate of the value vectors, which in the input is the constant 1,

our expression becomes:

∑
j

Gije
−|α−Ij |2/2

As α varies, this expression gives a smoothed local histogram centered at pixel i,

with spatial falloff given by Gij, and a Gaussian reconstruction filter across intensities.

Chen calls the volume of Paris and Durand the bilateral grid, and treats it as a fast

local histogram transform for a variety of applications.

This family of work is all built around a single key idea: we can linearize the bilat-

eral filter by treating the input image as a 2D manifold embedded in the discretized

three-dimensional space x, y, α (or intensity). In this space the filter becomes a

three-dimensional Gaussian blur, which can be approximated and accelerated with a

variety of methods.

This family of accelerations hints at our more general approach for accelerating

Gauss transforms. The purpose of Equation 1.1 is simply to mix together values

that have similar position vectors. By discretizing the space of position vectors, and

embedding the input within that space by resampling (splatting), we can mix the

values with a conventional Gaussian blur (blurring). The output image can then be

extracted by resampling back into image space (slicing).
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2.2 Accelerating non-local means

Accelerations of non-local means have typically used different strategies. Naive non-

local means compares the m×m patch around each pixel x, y with every other such

patch in the image. m is typically between 3 and 9. The pixel value is then replaced

by a weighted average of every other pixel, with the weights given by a Gaussian in

the Euclidean distance between the corresponding patches. This is a Gauss transform

with the position vector for pixel i given by the m×m patch surrounding pixel i. For

input image I of size w × h, and equally-sized output image O:

O(x, y) =
w∑

x′=0

h∑
y′=0

e−d(x,y,x
′,y′)/2σ2

I(x′, y′)

d(x, y, x′, y′) =

m/2∑
i=−m/2

m/2∑
j=−m/2

[I(x+ i, y + j)− I(x′ + i, y′ + j)]2

The first acceleration most users of non-local means employ is to only search for

similar patches within a k×k spatial window, rather than searching across the entire

image:

O(x, y) =

k/2∑
α=−k/2

k/2∑
β=−k/2

e−d(x,y,α,β)/2σ
2

I(x+ α, y + β) (2.1)

d(x, y, α, β) =

m/2∑
i=−m/2

m/2∑
j=−m/2

[I(x+ i, y + j)− I(x+ α + i, y + β + j)]2 (2.2)

It is debatable whether or not this restriction hurts denoising performance for non-

trivial k (e.g. k > 15). Recall that non-local means enforces a self-similarity prior in

an image; pixels with similar neighbors are likely to be similar. While the restriction

to a k × k search window may cause the algorithm to miss out on globally repeated

structure in an image, local self-similarity (such as the self-similarity of patches along

an edge) is more common than global self-similarity.
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We can further accelerate non-local means with early termination of the summa-

tion in Equation 2.2. d(x, y, α, β) computes the square Euclidean distance between

the patch of pixels around (x, y) and the patch of pixels around (x+ α, y + β). This

sum is fed into the Gaussian expression e−d(x,y,α,β)/2σ
2
, so if the sum grows larger than

around 9σ2 it may as well be infinite; the patches don’t match, the Gaussian will be

near-zero, and this value of α, β will have minimal effect on the output at x, y and

can be skipped.

Mahmoudi et al. [32] explored some more sophisticated early termination criteria.

By precomputing the mean and average gradient direction of each patch, and com-

paring those before computing d(x, y, α, β), we can reject patches that are unlikely to

be similar in the Euclidean sense.

Darbon et al. [19] take a different approach, and instead move iteration over α

and β to the outer loop, computing entire slices of d(x, y, α, β) at a time. First note

that if α and β are constant, then Equation 2.2 is just the convolution of the image

[I(x, y)− I(x+ α, y+ β)]2 by a square filter of size m×m. This can be computed in

O(wh) time using integral images (as they do), or by recursive filtering. The result

is a slice of d(x, y, α, β) at a fixed (α, β), which we can then use to compute one term

in the summation in Equation 2.1. By refactoring non-local means to expose this

convolution, and then accelerating that convolution, they reduce the total cost from

O(whk2m2) to O(whk2).

Both of these acceleration strategies improve runtime with respect to patch size m,

but do not improve runtime with respect to the search window size k. Recall, however,

than m is typically small (3-9), and k is typically larger (> 15). So the benefit is

limited, and we still do not have a tractable truly non-local means. Furthermore,

these strategies are largely made moot by using a more compact description of a local

neighborhood, such as Tasdizen’s [43] PCA terms.

For the larger search windows we wish to use, treating every patch within that

window as a potential match is computationally wasteful. Only patches that are

similar have any effect on the output; for the others, the weight is too small to have

any influence. Brox et al. [12] take advantage of this by clustering all patches from

the input image into a patch-space-partitioning tree. The search for matching patches
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is implemented with a descent of this tree. During a descent, whole subtrees can be

ignored if they are known to be far from the query patch (either due to being far

away in the image, or being far away in patch-space).

The algorithms described in this dissertation use an approach more similar to the

accelerations of the bilateral filter, in which we discretized space and intensity and

resample onto that representation. However, to apply the same technique to non-local

means we’ll have to discretize the space of all image patches, which is of significantly

higher dimensionality.

2.3 Accelerating general Gauss transforms

Accelerating Gauss transforms in the general case has also been of interest outside

of image processing, as Gauss transforms occur frequently in many other domains,

including computer vision [24], artificial intelligence [37][18], physics [28], and fi-

nance [10].

A popular method for accelerating Gauss transforms is the fast Gauss transform

of Greengard and Strain [28], which is a fast multipole algorithm of the type described

earlier by Greengard [27]. The fast Gauss transform is based on the idea that the

influence of values with nearby position vectors can be aggregated into a function

centered at a single position. Greengard and Strain place boxes around clusters of

position vectors and aggregate their influence into a single function centered at the

center of the box. More formally, given a cluster of positions ~pj, with values ~vj, and

bounding box centered at ~pc, the influence of those values at at a far-away output

position ~̂p is a sum of Gaussians:

∑
j

e|
~̂p−~pj |2/2~vj

We can pull the exponential term outside the summation, and treat it as a single

Gaussian centered at ~pc. To account for the error thereby introduced we replace each

constant ~vj with a function fj which depends on ~pj, ~pc, and ~vj:
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∑
j

e|
~̂p−~pj |2/2~vj = e|

~̂p−~pc|2/2
∑
j

fj(~̂p)

where fj(~̂p) =
~vje
|~̂p−~pj |2/2

e|~̂p−~pc|2/2

Greengard and Strain show that we can safely replace fj with its Taylor expansion

about ~pc truncated after a small number of terms. The summation of polynomials can

be simplified to a single polynomial by summing coefficients, so we can precompute

a single polynomial for each cluster Fc:

∑
j

e|
~̂p−~pj |2/2~vj ≈ e|

~̂p−~pc|2/2Fc(~̂p− ~pc)

The coefficients of each polynomial approximation to fj take O(1) time to com-

pute, and so for a cluster of m points, the coefficients of Fc can be computed in O(m)

time. Each point belongs to one such cluster, so for n total inputs, precomputing the

entire set of polynomials Fc costs O(n) time.

The fast Gauss transform then proceeds as follows. First, cluster the position

vectors into boxes. Greengard and Strain do this by simply dividing space into a

regular grid of hypercubes, each sized proportionally to the standard deviation of

the Gaussian. Then compute the coefficients of Fc for each box. For n total input

values this takes O(n) time. Next, for each position we compute the output value

by evaluating the influence of some fixed number of nearby boxes. This also takes

O(n) time, reducing the algorithm to linear for low-dimensional cases. Unfortunately

this algorithm scales poorly as the dimensionality increases. For d dimensions, O(2d)

terms are required in each polynomial Fc, and O(2d) boxes are nearby to each query

position.

The fast Gauss transform is also far more accurate than is necessary for image

processing. In fact, if we simply set fj = ~vj, we obtain:

∑
j

e|
~̂p−~pj |2/2~vj ≈ e|

~̂p−~pc|2/2
∑
j

~vj
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This is in fact the approximation used by the bilateral grid described earlier [35].

Both algorithms divide position-space into a regular grid of cubes, accumulate the

value of the points contained within each cube (a process which we earlier termed

splatting), and then produce the output by sampling the value of nearby cubes us-

ing a Gaussian reconstruction kernel. The bilateral grid approximates this last step

with two stages – a separable Gaussian blur across the grid (blurring), followed by

multilinear interpolation (slicing). Both algorithms also have the same exponential

scaling with dimensionality, making them slow for dimensionalities above 3, and not

useful for dimensionalities above 5.

Yang et al. [49] introduced the improved fast Gauss transform, which address the

fast Gauss transform’s scaling problems in two ways. First, they use an alternative

expansion for fj that truncates after a number of terms that grows only polynomi-

ally with dimensionality. Second, they cluster position vectors using a more general

clustering algorithm: farthest-point clustering [25]. Locating nearby clusters during

slicing is done by iterating over all clusters, or by storing the cluster centers in an

approximate-nearest-neighbor tree [5].

Unfortunately large numbers of clusters result from the sizes of Gauss trans-

form used in image processing, so we cannot simply iterate over clusters. Using

an approximate-nearest-neighbor tree introduces an extra factor of log n and reintro-

duces an exponential dependence on dimension.

There is a strong parallel between these two approaches and the two data struc-

tures described in this dissertation (see Figure 2.1). The permutohedral lattice (Chap-

ter 3) operates similarly to the fast Gauss transform and the bilateral grid, but solves

the dimensionality dependence by dividing position-space into simplices instead of hy-

percubes. The resulting time complexity is quadratic in dimensionality rather than

exponential: O(d2n). The Gaussian kd-tree (Chapter 4) uses a tree of aggregated val-

ues much like the improved fast Gauss transform, but uses randomized tree queries

to splat and slice, while incurring only a linear cost in dimension, resulting in a time

complexity of O(dn log n).



CHAPTER 2. PRIOR WORK ACCELERATING GAUSSIAN FILTERING 21

Bilateral Grid

Fast Gauss
Transform

Improved Fast
Gauss Transform

Permutohedral
Lattice

Gaussian
KD-Tree

Naive Gauss
Transform

Figure 2.1: In the naive Gauss transform, each output (the red dot) gathers data
from every input (the blue dots). The fast Gauss transform accelerates this with
a uniform grid (the green crosses), where every input contributes to a polynomial
approximation about the nearest grid point. The output then gathers from every
grid point within some Gaussian-weighted window. This approach scales poorly with
dimensionality, and so the improved fast Gauss transform instead clusters inputs,
computing a polynomial approximation at each cluster. The output gathers from
all nearby clusters using Gaussian weights. The bilateral grid is similar to the fast
Gauss transform; it accumulates input values on a grid. However, it trades accuracy
for speed by only accumulating constant values rather than polynomial coefficients,
and factoring the Gaussian-weighted gather into a separable Gaussian blur followed
by multilinear sampling. The permutohedral lattice operates similarly, but uses the
lattice A∗ instead of a grid. Barycentric weights within each simplex are used to
resample into and out of the lattice. Finally, the Gaussian kd-tree clusters inputs
using a kd-tree. Each input contributes to randomly-selected nearby cluster centers.
Each output then similarly gathers from randomly-selected nearby cluster centers.



Chapter 3

The Permutohedral Lattice

The permutohedral lattice has several key properties that make it effective for fast

approximate Gauss transforms using the splat-blur-slice pipeline (Figure 1.6):

1. The lattice tessellates position-space with uniform simplices, so we can use

barycentric interpolation to splat the input onto the lattice vertices.

2. It is cheap to compute the vertices of the simplex enclosing any query position,

including barycentric coordinates (O(d2) time). This makes the splatting and

slicing stages fast.

3. A Gaussian blur on the lattice can be performed separately along each axis, and

the neighbors of a lattice point are trivial to compute, so the blur stage is fast.

In this chapter we describe the lattice and its properties, state the algorithms by

which we splat, blur, and slice, analyze the resulting Gauss transform, and discuss

implementation details for CPU and GPU.

3.1 Definition

The d-dimensional permutohedral lattice is the projection of the scaled regular grid

(d + 1)Zd+1 along the vector ~1 = [1, . . . , 1] onto the hyperplane Hd : ~x.~1 = 0, which

22
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Figure 3.1: The d-dimensional permutohedral lattice is formed by projecting the
scaled grid (d + 1)Zd+1 onto the plane ~x · ~1 = 0. This forms the lattice (d + 1)A∗d,
which we call the permutohedral lattice. Lattice points have integer coordinates
with a consistent remainder modulo d + 1. In the diagram above, which illustrates
the case d = 2, points are labeled and colored according to their remainder. The
lattice tessellates space with uniform simplices, each simplex having one vertex of
each remainder. The simplices are all translations and permutations of the canonical
simplex (highlighted), which is defined by the inequalities x0 > x1 > . . . > xd and
x0 − xd < d+ 1.
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is the subspace of Rd+1 in which coordinates sum to zero. It is hence spanned by the

projection of the standard basis for (d+ 1)Zd+1 onto Hd:

Bd =


d −1 . . . −1

−1 d . . . −1
...

...
. . .

...

−1 −1 . . . d


Note that each of the (d + 1) basis vectors (columns of Bd) has coordinates that

sum to zero, and that each coordinate of each basis vector has a consistent remainder

modulo d + 1. Both of these properties are preserved when taking integer combina-

tions, so points in the lattice are those points with integer coordinates that sum to

zero and have a consistent remainder modulo d + 1. For example when d = 3, one

lattice point is [2,−10, 6, 2], as its integer coordinates all have the same remainder

modulo d+ 1, and they sum to zero.

We describe a lattice point whose coordinates have a remainder of k as a “remainder-

k” point. In Figure 3.1 we show the lattice for d = 2, and label each lattice point by

its remainder.

3.2 Key properties

3.2.1 The permutohedral lattice tessellates space with uni-

form simplices

Consider the d-dimensional simplex whose vertices ~s0, . . . , ~sd are given by:

~sk = [k, . . . , k︸ ︷︷ ︸
d+1−k

, k − (d+ 1), . . . , k − (d+ 1)︸ ︷︷ ︸
k

]

We call this simplex the canonical simplex. For example, when d = 4 the vertices

are the columns of:
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

0 1 2 3 4

0 1 2 3 −1

0 1 2 −2 −1

0 1 −3 −2 −1

0 −4 −3 −2 −1


Note that ~sk is a lattice point of remainder k (i.e. its coordinates are all congruent

to k modulo d+1), and the simplex includes one point of each remainder. The vertices

of this simplex are the boundary cases of the inequalities x0 ≥ x1 ≥ . . . ≥ xd and

x0 − xd ≤ d + 1, and a point lies within the simplex if and only if it obeys these

inequalities.

Now consider any permutation ρ of the coordinates of the canonical simplex. Each

ρ induces a corresponding ordering of the coordinates xρ(0) ≥ xρ(1) ≥ . . . ≥ xρ(d), and

the inequality xρ(0) − xρ(d) ≤ d + 1. Taking the union of these inequalities across

all (d + 1)! simplices results in the set {xi|maxi xi − mini xi ≤ d + 1} (the central

hexagon in Figure 3.2), which is in fact the set of all points which have the origin as

their closest remainder-0 point:

Proposition 3.2.1. Given ~x ∈ Hd, the following two statements are equivalent:

1. The closest remainder-0 point to ~x is the origin.

2. maxk xk −mink xk ≤ d+ 1.

Proof. The closest remainder-0 point has the form (d + 1)~z for some ~z ∈ Zd+1. Fix

two distinct indices i, j ∈ {0, . . . , d} and define ~z′ where

z′k :=


zk + 1, k = i,

zk − 1, k = j,

zk, otherwise.
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Figure 3.2: When using the permutohedral lattice to tessellate the subspace Hd, any
point ~x ∈ Hd is enclosed by a simplex uniquely identified by the nearest remainder-
0 lattice point ~l0 (the zeroes highlighted in red at the center of each hexagon) and

the ordering of the coordinates of ~x − ~l0 (the triangles within each hexagon). The
nearest remainder-0 lattice point can be computed with a simple rounding algorithm,
and so identifying the enclosing simplex of any point and enumerating its vertices is
computationally cheap (O(d2)).
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By choice of ~z, it must be that (d+ 1)~z is closer to ~x than is (d+ 1)~z′. Therefore,

0 ≤ ‖(d+ 1)~z′ − ~x‖2 − ‖(d+ 1)~z − ~x‖2

=
d∑

k=0

(d+ 1)2(z′k
2 − z2k)− 2(d+ 1)xk(z

′
k − zk)

= (d+ 1)
d∑

k=0

[(d+ 1)(z′k + zk)− 2xk] (z′k − zk)

= (d+ 1)
[
((d+ 1)(z′i + zi)− 2xi)− ((d+ 1)(z′j + zj)− 2xj)

]
= (d+ 1) [((d+ 1)(2zi + 1)− 2xi)− ((d+ 1)(2zj − 1)− 2xj)]

= 2(d+ 1) [(d+ 1)(1 + zi − zj)− (xi − xj)]

Dividing both sides of the last inequality by 2(d + 1) and rearranging the terms, we

obtain

xi − xj ≤ (d+ 1)(1 + zi − zj). (3.1)

(1⇒2) Condition (1) implies ~z = ~0. Then (3.1) becomes,

xi − xj ≤ d+ 1.

Since this holds for all i, j, we obtain maxi xi −mini xi ≤ d+ 1 as desired.

(2⇒1) Condition (2) implies that for all i, j,

−(d+ 1) ≤ xi − xj

Combined with (3.1), this implies

−(d+ 1) ≤ (d+ 1)(1 + zi − zj)

⇒ zj − zi ≤ 2

Because (d + 1)~z ∈ Hd, the components of ~z must sum to zero, so if there are any
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strictly positive components there must also be at least one strictly negative compo-

nent. This combined with zj − zi ≤ 2 implies each component of ~z is -1, 0 or 1.

Suppose nonzero components exist, i.e. zi = −1, zj = 1. For these particular

values of i, j, (3.1) must hold as equality, meaning that ~z′ and ~z are equidistant from

~x. Thus we can continue adding 1 to a negative component and -1 to a positive

component, until we reach the origin, without altering the distance to ~x. So the

origin must be the closest remainder-0 point to ~x, or at least tied for the closest.

Lattices are translation invariant, so in general the above proposition tells us that

if the closest remainder-0 point to some point ~x ∈ Hd is ~l, then ~x belongs to the union

of the simplices that touch ~l. Which simplex in particular is given by the ordering of

the coordinates of ~x−~l (Figure 3.2). Thus every point belongs to a unique simplex,

which is a permutation and translation of the canonical simplex, so Hd is tessellated

by uniform simplices.

3.2.2 The vertices of the simplex enclosing any point can be

computed in O(d2) time

The vertices of the simplex containing some point ~x ∈ Hd can be generated by first

computing the closest remainder-0 point ~l0, and then sorting the difference ~l0−~x. This

takes O(d log d) operations. The inverse of the resulting permutation and translation

can then be applied to the canonical simplex to compute the simplex vertices in O(d2)

operations. This property will be useful for the splat and slice stages.

The closest remainder-0 point can be found by first rounding each coordinate of ~x

to the nearest multiple of (d+ 1), and then, if the result is outside the subspace Hd,

greedily walking back to Hd by identifying the coordinates that moved the farthest,

and rounding them in the other direction instead. The sub-lattice formed by the

remainder-0 points is called Ad+1, and this is the algorithm given by Conway and

Sloane ([17] pp 446) for finding the closest point in that lattice.
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Figure 3.3: To perform a Gauss transform using the permutohedral lattice, first the
position vectors ~pi ∈ Rd are embedded in the hyperplane Hd using an orthogonal
basis for Hd (not pictured). Then, each input value splats onto the vertices of its
enclosing simplex using barycentric weights. Next, lattice points blur their values
with nearby lattice points using a separable filter. Finally, the space is sliced at each
input position using the same barycentric weights to interpolate output values.

3.2.3 The nearest neighbors of a lattice point can be found

in O(d2) time

The basis vectors given by Bd above are those of minimal length, so the nearest

neighbors of a lattice point ~lk are those separated by a vector of the form

±[−1, . . . ,−1, d,−1, . . . ,−1]. The are 2(d+ 1) such neighbors, and each is described

by a vector of length d + 1, and so the neighbors can be fully enumerated in O(d2)

time. This property will be useful during the blur stage.

3.3 Computing Gauss transforms using the lattice

There are four main stages in using the permutohedral lattice for fast Gauss trans-

forms, illustrated in Figure 3.3. We describe each in turn.

3.3.1 Generating position vectors

First, the position vectors ~pi must be generated and embedded in Hd. Generating

the positions is application dependent (see Chapter 1). For a color bilateral filter,
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we generate 5-D position vectors of the form [ xi
σp
, yi
σp
, ri
σc
, gi
σc
, bi
σc

], by augmenting the

input image with two extra channels encoding spatial location, and then scaling each

channel by the inverse of the desired standard deviation. For non-local means we

would instead either extract local windows around each pixel, or compute some bank

of filters around each pixel and record the responses. Typically we do the latter, using

PCA to determine the optimal filter bank, as proposed by Tasdizen [43].

We must then scale the position vectors by the inverse of the standard deviation

of the blur induced by the remaining steps, which totals
√

2
3
(d+1) in each dimension

(derived below). Next we embed the position vectors in the subspace Hd. The basis

for Hd given above is unsuitable for this task because it is not orthogonal, so we

instead use the orthogonal basis:

E =



1 1 . . . 1

−1 1 . . . 1

0 −2 . . . 1
...

...
. . .

...

0 0 . . . −d




1√
2

0 . . . 0

0 1√
6

. . . 0
...

...
. . .

...

0 0 . . . 1√
d(d+1)


We choose this basis because it allows us to compute E~x in O(d) time using the

recurrence:

(E~x)d = −αdxd−1
(E~x)i = −αixi−1 + xi/αi+1 + (E~x)i+1

(E~x)0 = x0/α1 + (E~x)1

where αi =
√
i/(i+ 1)

3.3.2 Splatting

Once each position has been embedded in the hyperplane, we must identify its en-

closing simplex and compute barycentric weights. The enclosing simplex of any point
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can be described by the permutation and translation that maps the simplex back to

the canonical simplex, which can be computed in O(d log d) by using the rounding

algorithm described earlier to find the nearest remainder-0 point, and then sorting

the residual.

Therefore, to compute barycentric coordinates for a point E~pi in an arbitrary

simplex, we can apply the translation and permutation to map E~pi to some ~y within

the canonical simplex. Barycentric coordinates~b for ~y are then given by the following:

Proposition 3.3.1. Let ~y be an arbitrary point inside the canonical simplex, and let

b0, . . . , bd be its unique barycentric coordinates in the simplex, i.e.

~y =
d∑

k=0

bk~sk and
d∑

k=0

bk = 1

then,

bk =


yd−k − yd+1−k

d+ 1
, k 6= 0,

1− y0 − yd
d+ 1

, k = 0.

Proof.
∑d

k=0 bk = 1 is clearly true, thus it suffices to show that ~y =
∑d

k=0 bk~sk:

∀j

[
d∑

k=0

bk~sk

]
j

=

[
d−j∑
k=0

bkk

]
+

[
d∑

k=d−j+1

bk(k − (d+ 1))

]

=

[
d∑

k=0

bkk

]
−

[
(d+ 1)

d∑
k=d−j+1

bk

]

=

[(
yd−1 − yd
d+ 1

)
+ 2

(
yd−2 − yd−1

d+ 1

)
+ · · ·+ d

(
y0 − y1
d+ 1

)]
−

[
d∑

k=d−j+1

yd−k − yd+1−k

]

=
−yd − yd−1 − · · · − y1 + dy0

d+ 1
− (y0 − yj)
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=
−yd − yd−1 − · · · − y1 − y0

d+ 1
+ yj

= yj,

as required.

Barycentric interpolation is invariant to translation and commutes with permuta-

tion, and so these barycentric coordinates for ~y within the canonical simplex are also

the (permuted) barycentric coordinates for E~pi within its simplex. Once the barycen-

tric weights are computed, bk~vi is added to the value stored at the remainder-k lattice

point in the enclosing simplex of ~pi (recall that ~vi is the homogeneous value associated

with position ~pi). The lattice point values are stored in a hash table. Lattice points

that do not yet exist in the hash table are created when they are first referred to

during the splat stage, and start with an initial value of zero.

There are two ways to identify each lattice point for use as a hash table key. One

can apply the inverse permutation and translation to the remainder-k point of the

canonical simplex to compute the lattice point’s position, and use that as a key. Each

key is a vector of length d + 1, and so this results in a memory complexity of O(dl)

for l lattice points.

In rare cases where l > n, we can alternatively achieve a memory complexity

of O(dn) for n input values by separately storing the simplex enclosing each input

position ~pi, as a simplex can be identified uniquely in O(d) memory by its remainder-0

point and its permutation. We then identify a lattice point using its remainder and

a pointer to any simplex it belongs to, for an additional O(dn) memory. One lattice

point belongs to many simplices, so key comparison is done by using the simplex and

remainder to compute the lattice point’s coordinates on the fly.

l is loosely bounded by O(dn), as each input value creates at most d+1 new lattice

points. However, filters near this bound correspond to very small filter sizes and are

not very useful, as no shared lattice points means very little cross-talk between pixels,

and hence very little filtering. In practice, we find that l is less than n, so we prefer

the first, faster scheme, which has worst-case memory complexity of O(d2n). In either

case, each hash table access costs O(d) time for key comparison. Splatting each input
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pixel accesses the hash table O(d) times, and so the time complexity of splatting is

O(d2n).

Barycentric interpolation in the permutohedral lattice is equivalent to convolution

by the projection of a uniformly-weighted (d+1)-dimensional hypercube of side length

d + 1 onto Hd, and the variance of the resulting kernel is d(d + 1)2/12, as shown by

the following proposition.

Proposition 3.3.2. The variance of the splatting kernel is
d(d+ 1)2

12
.

Proof. A lattice is translation invariant, so without loss of generality, we can compute

the splatting kernel by considering the barycentric weight b0 given to the lattice point

at the origin, for a query position ~x whose closest remainder-0 point is the origin.

Recall that first we sort the coordinates of ~x into decreasing order to obtain ~y, and

barycentric weights are then given by:

b0 = 1− y0 − yd
d+ 1

⇒ b0 = 1− maxi xi −mini xi
d+ 1

Now consider taking an integral projection of the uniformly-weighted hypercube

[0, d+ 1]d+1 onto Hd. For each ~x ∈ Hd, the points which project onto ~x have the form

~x+ k~1. Since ~x+ k~1 must fall in the hypercube, we have:

∀i 0 ≤ xi + k ≤ d+ 1

⇒ ∀i −xi ≤ k ≤ d+ 1− xi
⇒ −mini xi ≤ k ≤ d+ 1−maxi xi

This indicates that the mass of points that are projected onto ~x is proportional

to d + 1 − (maxi xi − mini xi), which in turn is proportional to the splatting kernel

given by b0 above. Therefore, the variance of the splatting kernel equals that of the

projected uniformly-weighted hypercube. We can compute this by integrating the

second moment of the projected point over the hypercube:
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Variance =

∫
[0,d+1]d+1

∥∥∥∥~y −
∑

j yj

d+ 1
~1

∥∥∥∥2 d~y∫
[0,d+1]d+1 d~y

=
1

(d+ 1)d+1

∫
[0,d+1]d+1

∑
i

(
yi −

∑
j yj

d+ 1

)2

d~y

=
1

(d+ 1)d+1

∫
[0,d+1]d+1

∑
i

(
y2i +

(∑
j yj

d+ 1

)2

− 2

∑
j yiyj

d+ 1

)
d~y

=
1

(d+ 1)d+1

∫
[0,d+1]d+1

(∑
i

y2i

)
+

(
∑

j yj)
2

d+ 1
− 2

∑
i,j yiyj

d+ 1
d~y

=
1

(d+ 1)d+2

∫
[0,d+1]d+1

(d+ 1)
∑
i

y2i −
∑
i,j

yiyj d~y

=
1

(d+ 1)d+2

∫
[0,d+1]d+1

d
∑
i

y2i −
∑
i 6=j

yiyj d~y

=
1

(d+ 1)d+2

[∑
i

d

∫
[0,d+1]d+1

y2i d~y

]
−

[∑
i 6=j

∫
[0,d+1]d+1

yiyj d~y

]

=
1

(d+ 1)d+2

[∑
i

d(d+ 1)d
∫ d+1

0

y2i dyi

]
−

[∑
i 6=j

(d+ 1)d−1
∫ d+1

0

∫ d+1

0

yiyj dyi dyj

]

=
1

(d+ 1)d+2

[
d(d+ 1)d+1

∫ d+1

0

t2dt

]
−
[
d(d+ 1)d

∫ d+1

0

∫ d+1

0

st ds dt

]
=

1

(d+ 1)d+2

[
d(d+ 1)d+1 (d+ 1)3

3

]
−

[
d(d+ 1)d

(
(d+ 1)2

2

)2
]

=
d(d+ 1)2

3
− d(d+ 1)2

4

=
d(d+ 1)2

12
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3.3.3 Blurring

Now that we have resampled our input onto the lattice, we perform the next step

of the Gauss transform by blurring along the lattice. To do this we convolve by the

kernel [1, 2, 1] along each lattice direction of the form ±[1, . . . , 1,−d, 1, . . . , 1] (Figure

3.3). Each such convolution has a variance of d(d+1)/2, so the combined effect of the

d+ 1 convolutions is an approximate Gaussian kernel with total variance d(d+ 1)2/2.

Note that we are ignoring scale in our choice of kernel. We have this luxury because

we always filter homogeneous values, which are scale-invariant.

The blur stage spreads energy from each lattice point to O(3d) neighbors. If

we created hash table entries for new lattice points reached during the blur then

the memory use would grow quite large. We therefore do not create new lattice

points during the blur phase, which incurs some accuracy penalty relative to a naive

Gauss transform, as points that may have transferred energy could instead belong to

disconnected regions of the lattice.

This “error” may actually be advantageous depending on the application. For

example, when bilateral filtering, the absence of these “stepping-stone” lattice points

will prevent energy transfer from a white pixel to a black pixel across a hard edge,

but will allow energy transfer between a black pixel and a white pixel on either side

of a smooth gradient.

The blur step involves looking up O(d) neighbors for each lattice point. Each

lookup takes O(d) time for hash table key comparison, and so the blur step has time

complexity O(d2l). In the worst case, this expression is bounded by O(d3n). However,

let us consider the extreme cases. If the splat positions are spaced very densely, we

expect l < n, and so the time complexity of blurring is O(d2n).

If the positions are very sparse, then each input position creates its own simplex,

far from any other. In this case, for each lattice point, all but 2 hash-table lookups

fail during blurring. By inspecting the axes used to blur, we can see that for a point

of remainder r, we look up 2(d + 1) adjacent points of remainders r + 1 and r − 1.

For a lone simplex, there is only one point of each remainder. Therefore in the sparse

case each of our dn lattice points performs O(1) successful hash-table lookups and

O(d) failed hash table lookups. A failed hash-table lookup will incur O(1) failed key
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comparisons before it detects failure for a well-spaced hash table. Each failed key

comparison detects failure after O(1) coordinates are compared, so the total time

complexity is again O(d2n).

So for small filters (resulting in a very sparse cloud of position vectors) our runtime

is bounded by O(d2n) because most hash-table lookups fail cheaply. For large filters

(resulting in a dense cloud of position vectors) we are similarly bounded by O(d2n)

because few lattice points are created. It is possible to construct pathological cases

in between. If these occurred in practice we would see a runtime that was non-

monotonic with respect to filter size. We have never observed this — the time taken

by blurring always decreases as filter size increases and the total number of lattice

points decreases.

The absence of these pathological cases in practice is due to the fact that the

position vectors usually lie on some lower-dimensional manifold in position-space,

(typically 2-dimensional if the input data comes from an image) and so the probing

in d + 1 different directions done by blurring reaches into empty space for all but a

few of those directions. That is, the density argument applies for directions that lie

along the manifold, and the sparsity argument applies for all other directions.

3.3.4 Slicing

Slicing is identical to splatting, except that it uses the barycentric weights to gather

from the lattice points instead of scattering to them. It produces the same total

variance of d(d+ 1)2/12, which brings the total variance induced by the algorithm to
2
3
d(d+ 1)2, which is equivalent to a standard deviation in each dimension of

√
2
3
(d+

1). Slicing can be accelerated by storing the barycentric weights and pointers to

lattice point values computed during splatting. This “slicing table” is a sparse matrix

representation of slicing, which is linear in the values, and is the transpose of splatting.

It can be scanned through in O(dn) time to slice. The entire algorithm thus has a

time complexity of O(d2(n+ l)).
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3.4 Implementation

To recap, performing a Gauss transform using the permutohedral lattice can be broken

into the following steps:

1. Splat. For each position vector ~pi and value ~vi:

(a) Elevate ~pi into Hd using the rotation matrix E.

(b) Compute the lattice points ~lj of the simplex enclosing E~pi, and the corre-

sponding barycentric weights bj.

(c) For each ~lj:

i. Look up its value ~uj in the hash table, creating a new zero-valued

entry if it does not already exist.

ii. ~uj ← ~uj + bj~vi.

iii. Store bj and a reference to ~uj in the slicing table at location (i, j) so

we need not look them up again during slicing.

2. Blur. For each dimension j:

(a) For each lattice point ~li with value ~ui:

i. Look up the values ~uj−, ~uj+ stored at the two neighbors of ~li:

~li ± [−1, . . . ,−1︸ ︷︷ ︸
j

, d,−1, . . . ,−1︸ ︷︷ ︸
d−j

].

ii. Compute a new value for this lattice point: ~̂ui = ~uj− + 2~ui + ~uj+.

(b) Assign to each lattice point its updated value: ~ui ← ~̂ui.

3. Slice. For each position vector ~pi compute the output value ~̂vi:

(a) ~̂vi ← ~0.

(b) For each dimension j:

i. Look up the lattice value ~u and barycentric weight b in the slicing

table at location (i, j).

ii. ~̂vi ← ~̂vi + b~u.
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3.4.1 Efficient CPU implementation

A straightforward implementation of the lattice can be found in Appendix A. There

are several ways to optimize this algorithm for modern CPUs. First, the dimension-

ality of the value vectors is often four (red, green, blue, and a homogeneous weight).

This makes four-wide SIMD floating-point units such as SSE well-suited to the arith-

metic which deals with summing values during splatting, blurring, and slicing (Steps

1(c)ii, 2(a)ii, and 3(b)ii). The arithmetic which computes nearby lattice points (1b)

involves sorting, branching, and some iterative algorithms, and so is much harder to

parallelize in this way.

The algorithm is fairly simple to run in parallel across multiple CPU cores. Splat-

ting and slicing are data-parallel across input positions, and blurring is data-parallel

across lattice vertices. Slicing and blurring are trivial to parallelize. However, two

issues arise during splatting. First, contention on hash table buckets may occur when

newly-found lattice vertices are being inserted into the hash table (1(c)i). This is eas-

ily solved by attaching a lock to each bucket. Second, the additions performed while

accumulating values at each lattice vertex (1(c)ii) must be atomic. The performance

of the resulting code scales fairly well with available hardware resources (see Figure

3.4).

3.4.2 Efficient GPU implementation

The algorithm is also fairly straightforward to parallelize on a GPU. We constructed

an implementation using NVIDIA’s CUDA [14], and achieve typical speedups of 9×
on a GeForce GTX 465 compared to the single-threaded CPU implementation on an

Intel Core i7 950. Note that this is only 2× faster than the multi-threaded CPU

implementation.

The main point of difference between the CPU and GPU versions is related to

the creation of hash table entries during splatting. In the CPU version we attach

locks to hash table entries and synchronize all accesses to a given entry to prevent

erroneously inserting one key in multiple places. In the GPU version it is faster to

break the splatting stage into three. First, we compute the slicing table, recording
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Figure 3.4: This graph shows the speedup attained by parallelizing the permutohedral
lattice on an Intel Core i7 950 CPU. This CPU has four physical cores that each run
two hardware threads. The splatting and slicing stages of the algorithm are data-
parallel across pixels, and the blurring stage is data-parallel across lattice vertices.
Splatting and blurring both rely on hash table lookups to query the values stored at
lattice points. This is fairly cache-incoherent, and so the extra hardware threads are
necessary to hide the memory latency and achieve the full 4x speedup.

which lattice points each input pixel splats to, and with what weights. While doing

this, we insert the lattice points found into the hash table in a way which permits

individual keys being inserted in multiple locations. Specifically, while we still lock

each hash table entry before insertion, other simultaneous hash table insertions simply

skip over locked entries while looking for a free spot rather than waiting on the lock

to see if the key matches. This means we never have data dependencies involving one

query reading the key that another query has written, so we can write the keys using

faster non-atomic writes, and only the smaller array of locks needs to be coherent.

Next, we rehash the entries of the slicing table and update it so that every reference

to a lattice point refers to the unique earliest instance of that lattice point in the hash

table. Finally, we use the corrected slicing table to splat, additively scattering onto

lattice points as usual.
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Figure 3.5: The permutohedral lattice generates output value using linear interpola-
tion in the high-dimensional space of position vectors. This does not pose problems
for typical uses of the Gauss transform, such as the aggressive color bilateral filter
(center) of this input image of a bison (left), as any artifacts are obscured by the
mapping back down from the space of position vectors to the output image. If we use
the permutohedral lattice to perform a conventional 2D Gaussian blur (right), the
effect of the linear interpolation is readily apparent, and is objectionable.

3.5 Conclusion

The permutohedral lattice offers a simple, fast method for computing approximate

Gauss transforms. It works especially well for problems with dimensionalities between

5 and 8, which encompasses color bilateral filters, low-dimensional non-local means,

and other related filters.

The main source of inaccuracy for the permutohedral lattice is that it computes

the output using barycentric interpolation, which may produce a piecewise-linear

output image. For typical image processing problems this effect is not visible in the

output, as the mapping back from high-dimensional position space to output pixels

obscures any resulting artifacts. It does, however, make the permutohedral lattice

inappropriate for any filtering tasks that might devolve into a simple Gaussian blur

for significant regions of the input; in this case the mapping from position-space to

output pixels is direct, and artifacts are preserved (Figure 3.5).

Performing a Gauss transform using the permutohedral lattice constructs a sim-

plicial scaffold around the input, using an amount of memory that scales quadratically
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in the dimension of the underlying space. Performance is acceptable up to around

12 dimensions; beyond this, the runtime and memory use become objectionable. The

following chapter describes the Gaussian kd-tree, which is slower than the lattice for

low-dimensional cases, but scales linearly with dimensionality in time and memory.



Chapter 4

The Gaussian KD-Tree

The Gaussian kd-tree groups the input positions into clusters stored at the leaves of

a kd-tree, and places one sample at the center of each cluster. We can then factor a

Gauss transform into two stages: First we splat by scattering the input values onto

the clusters nearby to each input position. Then, we slice by gathering values from

the clusters nearby each output position.

Fixing the positions, a Gauss transform is a dense linear transform in the values.

The Gaussian kd-tree acts as a low-rank factorization of this transform, with the

values stored at the clusters acting as the intermediate space.

Both splatting and slicing use the same Monte-Carlo algorithm based on im-

portance sampling. Given a query position, the algorithm returns a short list of

randomly-chosen cluster centers. The probability of a cluster center belonging to the

list is roughly proportional to a Gaussian centered around the query position evalu-

ated at the cluster center. Because the proportionality is only approximate, we also

return a weight with each cluster center to correct for any bias introduced.

The Gaussian kd-tree allows us to perform Gauss transforms of n input values

in d dimensions with a time complexity of O(dn log n), and a memory complexity of

O(dn).

42
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4.1 Constructing a Gaussian kd-tree

The Gaussian kd-tree stores a cloud of m clusters in d dimensions, one cluster per

leaf. Each node of the tree η represents some d-dimensional rectangular cell, which

may extend to infinity in one or more dimensions. Inner nodes subdivide this cell into

two child cells, separated by an axis-aligned cut. An inner node therefore stores a

dimension ηd along which it cuts, a value ηcut at which to cut, the bounds of the node

in that dimension ηmin and ηmax, and pointers to its children. Leaf nodes contain only

a d dimensional point, which lies somewhere within the cell it represents. The only

difference between this tree and a conventional kd-tree is that we store the bounds of

a cell (ηmin and ηmax) as well as the value at which it cuts (ηcut). ηmax is computed

as the minimum ηcut of all ancestors which cut along the same dimension and have a

larger ηcut. ηmin is similarly the maximum ηcut of all ancestors which cut along the

same dimension and have a smaller ηcut.

The goal when building a kd-tree is usually to minimize the expected time taken

by a query. In ray tracing, for example, this means it can be advantageous to have a

highly unbalanced tree which carves off empty space and commonly hit areas early.

However we typically slice at the same positions as we splat, which means we never

sample in unpopulated areas, so how we deal with empty space is irrelevant. Further-

more, for typical data each of our leaf nodes is as likely to be reached as any other,

so the tree should be balanced.

To recursively turn a list of positions ~pi into a tree, we first compute their bounding

box. If the bounding box has maximum side length length less than some threshold ρ

we create a leaf node, and an associated cluster center at the center of the bounding

box. Otherwise, we split halfway along the longest bounding box dimension, partition

the input list into two over the split, and continue recursively. This scheme descends

to cells that have a small maximum side-length as quickly as possible. See Figure 4.1

for an illustration of this tree building algorithm.
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Figure 4.1: The Gaussian kd-tree groups the input data (in orange) into clusters at
the leaves of a kd-tree. We build a Gaussian kd-tree by computing the bounding box
of the input (in light blue), splitting it halfway along its longest edge, partitioning the
input over the split, and continuing recursively on the children until the maximum
edge length of the bounding box drops below some threshold ρ. In the finished tree
on the right, each cluster stores a single sample at its center (the blue points).

4.2 Splatting and slicing

A query into the Gaussian kd-tree is designed to facilitate gathers from (or scatters

to) values around a given query position, for the purpose of computing an importance-

sampled approximation of a Gauss transform. Figure 4.2 illustrates the process. A

query takes as input a query position ~q in the space, a standard deviation σ around

that position, and a number of query samples s, and returns a list of at most s

cluster centers ~pi with corresponding weights wi. If the number of query samples is

set to infinity, the list returned will include all points within a fixed radius about the

query, with weights proportional to a Gaussian kernel of the given standard deviation

(wi = e−|~q−~pi|
2/2σ2

). If the number of query samples is set to one, the list will contain

a single cluster center, probabilistically chosen from all nearby cluster centers, such

that repeatedly asking for a single sample and merging the resulting lists will produce

the same result in the limit as asking for an infinite number of samples from a single

query.

We can think of our query samples as a cloud of points normally distributed

around the query position with the given standard deviation, although we do not

explicitly represent them as such. At each inner node η we compute the expected

number of query samples that lie within the left and right child by computing the

area of the Gaussian, truncated to within ηmin and ηmax, that lies on either side of
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Splatting Slicing

Figure 4.2: The Gaussian kd-tree groups the input data (in orange) into clusters at
the leaves of a kd-tree. Each cluster stores a single sample at its center (the blue
points). Querying the tree is done by simulating the descent of a Gaussian cloud of
samples (in green) down to the leaves. The expected number of samples that arrive
at a leaf node is proportional to the Gaussian integrated over that node, which is
approximately proportional to the Gaussian evaluated at the (blue) cluster centers.
Each query returns a weighted list of the leaf nodes reached, with the weight given
by the number of samples that reached that node multiplied by a term that corrects
for the approximation involved. The same type of query is used to first scatter data
to each leaf node (splatting), and then gather data from them (slicing).

ηcut. The Gaussian is separable, so decisions already made by nodes that split in other

dimensions are irrelevant; this is why we use a tree that makes only axis-aligned cuts.

The expected number of samples that split each way are rounded down to the nearest

integer, and that many samples are assigned to the left or right child respectively.

The final sample omitted by the rounding, if there is one, is probabilistically assigned

to either the left or the right child.

This splitting scheme is cheaper than creating an explicit cloud of query samples

and individually simulating the descent of each. The runtime is sub-linear in the

number of query samples, and bounded by the number of cells overlapping a query.

It also stratifies the sampling, avoiding cases in which a large number of query samples

descend to the same leaf node by chance. This results in less noise in the output for

a given number of query samples.
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We arrive at a given leaf node with a probability proportional to the integral of the

Gaussian over the corresponding cell. This is not the correct probability, however, as

our tree does not store values at cells; it stores values at the cluster center within each

cell. To correct for this, during our descent of the tree we keep track of the probability

of one sample reaching each node using our approximation. At the leaf we compute

the correct probability of reaching that cluster center by evaluating the Gaussian at

it. The latter divided by the former gives us a corrective weight to apply to each

sample. See Algorithm 4.1 for a C++ implementation. This algorithm is essentially

weighted importance sampling, as described by [8] in the context of radiosity. This

correction allows us to use a piecewise cubic approximation to the Gaussian (given

by the convolution of four identical rectangular filters) while descending the tree:

g(x) =



0 : x ≤ −2

(2 + x)3 : −2 < x ≤ −1

−3x3 − 6x2 + 4 : −1 < x ≤ 2

3x3 − 6x2 + 4 : 0 < x ≤ 1

(2− x)3 : 1 < x ≤ 2

0 : 2 < x

This function closely approximates a scaled Gaussian with variance 1
3
. x can

be rescaled to achieve a Gaussian of any desired variance. Its (scaled) integral is

significantly cheaper to evaluate than that of a true Gaussian:

G(x) =



0 : x ≤ −2

(2 + x)4 : −2 < x ≤ −1

−3x4 − 8x3 + 16x+ 12 : −1 < x ≤ 2

3x3 − 8x3 + 16x+ 12 : 0 < x ≤ 1

24− (2− x)4 : 1 < x ≤ 2

24 : 2 < x

To splat, we query around each input position with σ =
√
2
2

and additively scatter

to the returned clusters with the returned weights. To slice, we perform an identical
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Algorithm 4.1 Looking up samples in a Gaussian kd-tree.
// A quartic approximation to the integral of a Gaussian of standard deviation one.

float cdfApprox(float x);

// A uniform random float between zero and one.

float urand();

// The Euclidean distance between two points.

float distance(vector<float> a, vector<float> b);

class InnerNode : public Node {
int d;

float min, max, cut;

Node *left, *right;

void Query(vector<float> q, float sigma, int samples, vector<Result> &results, float p=1) {

float cdfMin = cdfApprox((min - q[d])/sigma);

float cdfMax = cdfApprox((max - q[d])/sigma);

float cdfCut = cdfApprox((cut - q[d])/sigma);

float pLeft = (cdfCut - cdfMin)/(cdfMax - cdfMin);

float expectedSamplesLeft = pLeft*samples;

int samplesLeft = floor(expectedSamplesLeft);

int samplesRight = floor(samples - expectedSamplesLeft);

if (samplesLeft + samplesRight < samples) {
if (urand() < expectedLeft - samplesLeft)

samplesLeft++;

else

samplesRight++;

}

if (samplesLeft > 0)

left->Query(q, sigma, samplesLeft, results, p*pLeft);

if (samplesRight > 0)

right->Query(q, sigma, samplesRight, results, p*(1-pLeft));

}
};

class LeafNode : public Node {
vector<float> position, value;

void Query(vector<float> q, float sigma, int samples, vector<Result> &results, float p) {
float d = distance(q, position);

float correctP = exp(-d*d/(2*sigma));

results.push back(Result(&value, samples*correctP/p));

}
};
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query but instead additively gather from the returned clusters with the returned

weights. The combination of the two stages effects an approximate Gauss transform

of variance one.

Note that even if we use an infinite number of samples, the Gaussian kd-tree does

not compute an exact Gauss transform of variance one. The splatting step acts as

one discrete Gauss transform from the input positions to the cluster positions, and

the slicing step performs a second discrete Gauss transform from the cluster positions

to the output positions. These two discrete transforms each have a variance of one

half, but they do not compose into a single larger Gauss transform as a continuous

Gauss transform does.

We could use the Gaussian kd-tree to perform a single large Gauss transform

by setting ρ to zero (not clustering), and then either skipping splatting or slicing.

However, we would then lose the speed benefits of the low-rank approximation that

the clustering provides.

Despite this difference, the result of two successive Gauss transform has all the

same desirable properties for our applications as a single larger Gauss transform (and

may be superior in some cases). Therefore, the best way to evaluate parameter choices

for the Gaussian kd-tree is to compare the output to that produced by a pair of naive

Gauss transforms with variance one half. This gives us a clearer picture of what we

sacrifice by using larger clusters or smaller sample counts, as it disambiguates the

error due to sampling and clustering from the difference between one large discrete

Gauss transform and the composition of two small discrete Gauss transforms.

4.3 Parameter selection

There are three parameters of the Gaussian kd-tree that trade off between perfor-

mance and accuracy:

1. The number of samples used when splatting

2. The number of samples used when slicing
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3. The threshold size ρ at which a cluster of input positions is treated as a single

leaf node

The parameter choices that reliably give good accuracy and performance are 4

splatting samples, 64 slicing samples, and ρ =
√

2. We can visualize this by fixing

two of the parameters and varying the third to show that these choices are reasonable

(Figures 4.3, 4.4, and 4.5). These choices are surprising in two ways.

First, far more slicing samples than splatting samples are used. Recall, however,

that splatting maps from a large number of input pixels to a smaller number of cluster

centers. This averaging down reduces the required sample count. Furthermore, noisy

values at the cluster centers may not have a visible effect on the output, or may

appear as hard-to-detect low frequency variations. In contrast, the noise produced

by a small number of slicing samples is visible in the output as high-frequency image

noise, which is extremely apparent in the output of an algorithm designed to smooth

or denoise.

Second, the choice of ρ =
√

2 is quite large. Recall that splatting and slicing

both effect Gauss transforms of standard deviation
√
2
2

. We are thus sampling once

every two standard deviations of our Gaussian filters. This value was chosen because

using fewer clusters makes the algorithm faster, and also because a smaller number of

clusters can actually result in a more accurate output, as the cluster values are less

noisy for a fixed number of splatting samples (see Figure 4.5).

4.4 Implementation

Performing a Gauss transform of variance 1 with the Gaussian kd-tree can be broken

into the following three stages:

1. Tree building

(a) Compute the bounding box of the input positions ~pi.

(b) If the maximum side length of the bounding box is less than ρ =
√

2,

create a leaf node and terminate.
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RMS
Error

Splatting
Samples Time

0.011

0.010

0.009

0.012 10.3 s

10.6 s

11.1 s

12.2 s

1

2

4

8

Exact Gauss Transform

Figure 4.3: For three different sizes of a non-local-means Gauss transform (the
columns), we show the effect of changing the number of splatting samples while
holding the slicing sample count constant at 64 and the clustering threshold ρ constant
at
√

2 (twice the standard deviation of the splatting and slicing filters). The algorithm
is fairly insensitive to the number of splatting samples in terms of both accuracy and
time. We conservatively choose 4 as the default.
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RMS
Error

Slicing 
Samples Time

0.026

0.013

0.010

0.058 1.86 s

2.71 s

5.13 s

11.1 s

1

4

16

64

Exact Gauss Transform

Figure 4.4: For three different sizes of a non-local-means Gauss transform (the
columns), we show the effect of changing the number of slicing samples while holding
the splatting sample count constant at 4 and the clustering threshold constant at

√
2.

Low slicing sample counts produce a noisy result. Depending on the problem size and
accuracy requirements, between 16 and 64 samples are sufficient. We conservatively
use 64 as the default.
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RMS
Error

Cluster
Size Time

0.013

0.010

0.013

0.018 16.3 s

14.6 s

11.1 s

6.09 s

σ/2

σ

2σ

4σ

Exact Gauss Transform

Figure 4.5: For three different sizes of a non-local-means Gauss transform (the
columns), we show the effect of changing the threshold ρ at which input positions are
grouped into clusters, while holding the splatting and slicing sample counts constant
at 4 and 64 respectively. σ is the standard deviation of the splatting and slicing filters
(typically

√
2
2

). ρ = 2σ gives the best accuracy. Smaller values are slower. They also
result in less averaging down during splatting, so they produce high-frequency noise.
Larger values can be used for additional speed, but they begin to introduce low-
frequency errors.
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(c) Otherwise, partition the input positions by splitting halfway along the

longest bounding box edge and repeat the tree building algorithm recur-

sively on each partition.

2. Splat the inputs onto the leaves of the tree. For each input position ~pi and

corresponding value ~vi:

(a) Query the tree about ~pi with a standard deviation of
√
2
2

and 4 samples.

This returns a list of references to leaf values ~lj with weights wj.

(b) Update each leaf value: ~lj ← ~lj + wj~vi.

3. Slice at the output positions. For each output position ~pi:

(a) Query the tree about ~pi with a standard deviation of
√
2
2

and 64 samples.

This returns a list of references to leaf values ~lj with weights wj.

(b) Compute the output value at ~pi as: ~̂vi =
∑

j wj
~lj.

4.4.1 Efficient CPU implementation

A C++ implementation of the Gaussian kd-tree can be found in Appendix B. Several

optimizations can be applied to this to accelerate it on a modern CPU. They are quite

similar to those performed on the permutohedral lattice. At the small scale, updating

each leaf node during splatting (2b), and summing the returned leaf node values

during slicing (3b) can both be vectorized across the dimensions of the value vector.

Value vectors are typically four-dimensional (red, green, blue, and a homogeneous

weight), which well suits the four-wide SIMD vector operations found in most current

CPUs.

At the larger scale each stage can be distributed across CPU cores. Tree building

(1) exhibits task parallelism after the first few partitions; each building task can

operate entirely independently. It is also possible to compute bounding boxes (1a)

in parallel, and to use a parallel partitioning (1c) algorithm, but there is less benefit

to be had here; the number of building tasks grows exponentially and can quickly

saturate any number of cores.
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Figure 4.6: This graph shows the speedup attained by parallelizing the Gaussian
kd-tree on an Intel Core i7 950 CPU. This CPU has four physical cores that each
run two hardware threads. The splatting and slicing stages of the algorithm are
data-parallel across pixels, and building the kd-tree is task-parallel after the first
few splits, so significant speed gains are realized. However, kd-tree descent is fairly
cache-incoherent, so the algorithm is highly sensitive to memory latency. Fortunately
hardware threads (hyper-threading) excel at hiding memory latency; eight threads
are sufficient to achieve a full 4x speedup on this four-core machine.

Splatting (2) can be parallelized across input positions. The update step (2b)

must then be made atomic. Alternatively, for a small number of threads, each leaf

can maintain a separate value per thread, which can be summed in an extra stage

between splatting and slicing (parallelizing across leaves).

Slicing (3) is trivially parallelizable across output positions. It would also be

possible to parallelize splatting and slicing using task parallelism within each query, or

by parallelizing across the individual samples (giving up on our stratification scheme).

However, the number of input and output positions is typically in the millions, which

provides sufficient parallelism for any current CPU architecture.

4.4.2 Efficient GPU implementation

Implementing this algorithm on a modern GPU is somewhat more challenging, both

due to the higher degree of parallelism, and also because building, splatting, and

slicing are all recursive algorithms, which must be converted to iterative ones to run

effectively on a GPU.
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We implemented the algorithm in CUDA [14] and ran it on an NVIDIA GeForce

GTX 465. We observed a typical speedup of 8× over the single-threaded CPU im-

plementation running on an Intel Core i7 950 running at 3.06 GHz, and a speedup of

2× compared to the multi-threaded implementation on the same CPU.

In our GPU implementation of the Gaussian kd-tree we separate tree building into

two stages. Near the root of the tree we build nodes serially on the CPU, but using

parallel GPU algorithms for computing bounding boxes and partitions. Rather than

using a recursive algorithm to build the tree, which effectively stores pending work in

the function-call stack, we explicitly maintain a queue of pending node-building jobs.

Once this queue grows to at least 1024 elements we have sufficient task parallelism

available to switch to building on the GPU. Now we parallelize across the building

jobs and use a serial algorithm within each thread to compute bounding boxes and

partitions.

The splatting and slicing algorithms described earlier are similarly recursive, so

they must be transformed for efficient implementation. The simplest way to do this is

to abandon the stratification scheme and switch to individually simulating each query

sample. For a single sample we can descend to a single leaf using a simple while loop.

Accumulating values at the tree leaves while splatting must be done using atomic

floating-point adds to memory, which recent versions of CUDA provide. Gathering

values from leaves during slicing could similarly use atomic operations, but instead

we group all the samples that gather to a particular output value into a single thread

block, and use shared memory to coordinate the sum over samples using a binary

reduction tree.

4.4.3 Out-of-core implementation

For some applications (such as denoising volume data), we may not be able to fit all

of the positions and values in memory at once. Splatting and slicing can be done in

a streaming fashion, but tree building must be modified. We load a large random

subset of the position vectors into memory, and build a kd-tree using only those. We

then stream through all of the position vectors, sending each to the leaf node that
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contains it, and locally extending the tree if necessary. If the initial random subset

selected covers the space well, we will see only a small growth of the tree.

4.5 Conclusion

The single most attractive property of the Gaussian kd-tree is that it scales linearly

with the dimensionality of the position vectors. For n input positions in d dimensions,

and m < n leaf nodes, constructing a Gaussian kd-tree takes O(dn logm) time: At

each of the logm levels of the tree, for each of the n input values, we consider each

of the d dimensions once to compute a bounding box.

Querying the tree (Algorithm 4.1) using s samples takes O(sn(logm + d)) time:

For each input, we descend through logm inner nodes, doing a single comparison at

each. Once we reach a leaf node we compute a d-dimensional Euclidean distance to

compute a weight. Though samples will often be grouped together, in the worst case

a query can split into s independent queries, so we have a linear dependence on s.

Typically s is a small constant, and m is bounded by n, so the time complexity of

performing a Gauss transform using the tree is best expressed as O(dn log n). The

memory complexity of the Gaussian kd-tree is dominated by the size of the input

data, and so is O(dn).

4.5.1 Comparison of the Gaussian kd-tree and the permuto-

hedral lattice

Input position vectors usually lie on a low-dimensional manifold in a d-dimensional

underlying space. The Gaussian kd-tree places samples within this manifold, while the

permutohedral lattice builds a simplicial scaffold around the manifold. This difference

provides a key benefit to the Gaussian kd-tree.

In many higher-dimensional cases some coordinates of the position vectors may be

low variance and provide little useful information. For example, we may have added

a potentially useful term to each position vector which happens to be low-variance for

a particular set of input data. The Gaussian kd-tree will not split on the low-variance
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term, so it gracefully ignores the useless term. The permutohedral lattice will instead

construct many more vertices, use more memory, and run more slowly. In general the

memory use of the Gaussian kd-tree grows with the dimensionality of the manifold,

while the memory use of the permutohedral lattice grows with the dimensionality of

the underlying space.

4.5.2 Limitations

While it performs better than the permutohedral lattice in this regard, the Gaussian

kd-tree does not conform to arbitrary input manifolds. Consider the case where

many terms in the position vector are correlated. This may happen, for example, if

our position vectors come from simply reading out patches of an image; neighboring

pixels are highly correlated. The Gaussian kd-tree only makes axis-aligned splits, so

it cannot recognize and adapt to this correlation.

This is particularly problematic in high-dimensional cases. If the maximum num-

ber of levels of the tree is similar to the dimensionality of the space (d ≈ log n),

and all dimensions have a high-variance, we may only be able to split once in each

dimension before we reach a leaf node. This means our leaf nodes are typically long

and skinny, reaching out to ±∞ in many dimensions. Our assumption while querying

the tree was that a Gaussian integrated over a leaf node was roughly proportional

to the Gaussian evaluated at the cluster center within that leaf node. For leaf nodes

with such extreme aspect ratios this is unlikely to be true, and our sampling becomes

inefficient.

Performing PCA on the input positions as a preprocess can help, by decorrelating

the dimensions and discarding useless ones ahead of time. However this is a global

operation, and so if the manifold has varying local correlations a kd-tree cannot

conform to them and may sample the manifold poorly.

In such cases it may be possible to instead use a tree based on non-axis-aligned

splits (such as the random projection trees described by Dasgupta and Freund [20]).

However, this would substantially complicate our query algorithm. At a split node,

to compute the probabilities of descending to each child we integrate a Gaussian over
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each child. If all cuts are axis-aligned we can exploit the separability of the Gaussian

and consider each dimension separately. This makes the integral easy to compute and

maintain during tree descent. If we introduce non-axis-aligned cuts we would have to

integrate a Gaussian over a pair of arbitrary polyhedra at each inner node.

Fortunately, for the cases we find in image processing PCA serves quite well at

reducing dimensionality and decorrelating position vector terms without losing any

useful information. In the following chapter we will put hypotheticals aside, select a

suite of typical problems, and empirically compare the Gaussian kd-tree to the per-

mutohedral lattice and other methods of computing approximate Gauss transforms.



Chapter 5

Evaluation

In this chapter we compare the performance of the algorithms discussed so far on

a suite of sample applications spanning filter sizes and dimensionalities. We are

concerned mainly with runtime, but also with memory use. We compare only single-

threaded CPU implementations, as those are more widely available. Most of these

algorithms have comparable scaling properties when parallelized, as they are all data-

parallel across pixels.

We include algorithms that meet the following criteria:

• C or C++ source code is available, so that all methods can be compiled with

the same compiler with the same compiler flags on the same operating system.

This is also necessary for us to be able to instrument algorithms to accurately

record time and memory used.

• Can be tuned to achieve a typical RMS error under 0.01 with respect to a naive

evaluation of a Gauss transform.

• Takes less than 1000 seconds to run and uses less than 4 gigabytes of memory

for at least some of the test suite.

While effort has been made to include all relevant algorithms, there are many

ways of accelerating our test applications. We believe that the algorithms included

here are the best-in-class open-source algorithms for these applications.

59
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5.1 Methodology

The machine used for testing is a typical high-end desktop machine (at the time of

writing). It includes an Intel Core i7 950 CPU, and 6 gigabytes of RAM. Programs

were compiled using gcc version 4.4.5 with all relevant optimization flags turned on.

In our tests the clock starts once data has been loaded from disk and is stored in

memory as an array of single-precision floating-point numbers. It stops when the

output is available as a similar array. Memory use is counted as all memory allocated

beyond the space required to store the input and output.

Many algorithms can be modified to be faster at the expense of accuracy, often

with explicit tuning parameters. We tuned each algorithm to achieve a typical RMS

error of around 0.01 with respect to a naive evaluation of the Gauss transform. This

corresponds to a PSNR of 40db. This limit should give output that is visibly equiva-

lent to that of the naive Gauss transform. There are ways to make an RMS error of

0.01 objectionable (for example by adding a high-frequency repeating pattern to an

otherwise smooth image), but no instances of this occur for the algorithms tested.

5.2 Test Applications

Our test suite includes four sample applications of the Gauss transform, with a range

of filter sizes for each. Filter sizes were chosen so that the low values are slightly too

small to achieve a useful effect, and the high values are slightly too large. We should

therefore pay most attention to the filter sizes in the middle. Our test suite includes:

• 3-dimensional grayscale bilateral filtering of a 1.5 megapixel image. This filter

would be used to manipulate sharpness, tone, and contrast in a grayscale image,

or to manipulate the same in the luminance channel of a color image. The spatial

standard deviations of these filters are powers of two ranging from 1 to 64 pixels.

This corresponds to filter footprints that range from 7 × 7 pixels to 385 × 385

pixels. The corresponding intensity standard deviations are also powers of two,

ranging from 1
32

to 2, where intensity is scaled to between zero and one.



CHAPTER 5. EVALUATION 61

Figure 5.1: The grayscale image of the tree on the left is used for testing grayscale
bilateral filter algorithms, the colorful canyon in the center is used for testing 5-
dimensional color bilateral filters, and the noisy desert scene on the right is used for
testing 8- and 16-dimensional denoising.

• 5-dimensional color bilateral filtering of a 1.5 megapixel image. This would

typically be used to manipulate sharpness, tone, and contrast in color images.

The spatial and color-space standard deviations used here match those used for

the 3-dimensional case.

• 8-dimensional non-local means of a 1.5 megapixel image. In this application

an image is denoised using 7 × 7 patches weighted with a Gaussian mask of

standard deviation 1. Patches are reduced to 6 dimensions using PCA, and two

spatial terms are added to make up the 8 dimensions. The spatial standard

deviations range from 8 to 512, which correspond to filter footprints from about

50× 50 pixels to about 3000× 3000 pixels (i.e. a truly non-local means). The

patch-space standard deviations range from 1
32

to 2.

• 16-dimensional non-local means of the same 1.5 megapixel image. This appli-

cation is similar to the above, except the patches used are 9× 9 weighted with

a Gaussian of standard deviation 1.4. The patches are reduced to 14 dimen-

sions using PCA, to which the two spatial dimensions are added. The standard

deviations used are identical to the 8-dimensional case.

The input images for each application are shown in Figure 5.1. Crops of the input

and ideal outputs for each application are shown in Figures 5.2, 5.3, 5.4, and 5.5.

These were produced with a naive evaluation of the Gauss transform.
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Figure 5.2: These crops of the tree in Figure 5.1 show the effects of a grayscale
bilateral filter. Such a filter would be used to isolate tone and contrast at different
scales. The input is at the top left, and the standard deviations used to filter increase
to the right and downwards.
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Figure 5.3: These crops of the canyon in Figure 5.1 show the effects of a color bilateral
filter. The input is at the top left, and the standard deviations used to filter increase
to the right and downwards.



CHAPTER 5. EVALUATION 64

Figure 5.4: In these crops of the desert scene in Figure 5.1, we see the effects of 8-
dimensional non-local means. The input is at the top left, and the standard deviations
used to filter increase to the right and downwards.
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Figure 5.5: In these crops of the desert scene in Figure 5.1, we see the effects of 16-
dimensional non-local means. The input is at the top left, and the standard deviations
used to filter increase as we move right and down. The results are quite similar to those
of 8-dimensional non-local means (Figure 5.4). In fact, eight dimensions are usually
enough for non-local means, as demonstrated by Tasdizen [43]. We include this
case nonetheless to test the scaling performance of the algorithms as dimensionality
increases.



CHAPTER 5. EVALUATION 66

5.3 The algorithms

Naive: This algorithm computes a naive Gauss transform, considering all pixels

within three spatial standard deviations of each input pixel. This is a standard naive

implementation of the bilateral filter or non-local means. While this algorithm scales

linearly with dimensionality, it scales quadratically in filter size. It is a plausible

choice only for very small filter sizes.

Bilateral grid: This is the bilateral grid of Paris et al. [36], using multi-linear splat-

ting and slicing, and a separable blur kernel of [1, 2, 1] in each dimension. It scales

exponentially with dimensionality, but is simple to implement, easy to parallelize,

and very fast for low-dimensional cases.

Permutohedral lattice: This is the permutohedral lattice described in Chapter 3.

It scales quadratically with dimensionality, but performs more arithmetic than the

bilateral grid for lower dimensional cases. We should expect it to perform well at

moderate dimensionalities.

Sparse grid: The two major differences between the permutohedral lattice and the

bilateral grid are the choice of lattice, and also the fact that the permutohedral lattice

implementation stores values sparsely in a hash table. In order to disambiguate these

two effects, we also benchmark a sparse bilateral grid algorithm that uses the same

hash table implementation. However, the time and memory complexity still grow

exponentially with dimensionality.

Gaussian kd-tree: This is the Gaussian kd-tree described in Chapter 4. It scales

linearly with dimensionality, but with a fairly high constant, so we should expect to

see it perform well in the higher-dimensional cases. We use 4 splatting samples and

64 slicing samples, which are the conservative values we recommended earlier.

Improved fast Gauss transform: This is the fast method of evaluating the Gauss

Transform of C. Yang et al. [49]. It is a fully general method capable of extremely
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high accuracy, but even when tuned for speed, it is not particularly fast compared to

the more approximate methods used in image filtering. The implementation used is

the open-source figtree library [33] described by Morariu et al. [34]. We set the sole

accuracy parameter to 0.1, which reliably provides an RMS error below 0.01 in our

tests. The figtree library automatically selects all other parameters.

Its main competitor in the artificial intelligence literature is the dual-tree method

of Lee, Gray, and Moore [31]. Using an implementation published by the authors as

part of mlpack [26], the dual-tree method was found to be extremely slow for the large

filter sizes used in image processing; even with parameters tuned for maximum speed

(given our accuracy requirement), in no cases did the algorithm terminate within

1000 seconds, so it was disqualified from this comparison.

Real-time O(1) bilateral filtering: This is the method of Yang et al. [50]. It

targets only the three-dimensional case, for which it sweeps through the intensity

levels, computing intermediate filtered images for each level, and filling in output

pixels as their intensities are reached. We modified the implementation provided

by the authors to work on arbitrary floating-point input, as all the other methods

benchmarked here do.

5.4 Results

Figures 5.6 and 5.7 show the results of runtime, memory, and error tests for our

algorithms on each of the four tasks. Our analysis is broken up by problem.

5.4.1 Grayscale bilateral filtering (d = 3)

Several algorithms are well-suited to grayscale bilateral filtering. The real-time bi-

lateral filter of Yang et al. [50] uses a consistently low amount of memory and is the

fastest. However it filters using only linear interpolation in the intensity dimension,

whereas the bilateral grid performs an explicit blur as well. For very large intensity

standard deviations linear interpolation begins to cause inaccuracies in the output.
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Figure 5.6: This graph shows the runtime, peak memory use, and RMS error of
various algorithms when performing grayscale (left column), and color (right column)
bilateral filters, each as a function of the spatial size of the filter. The real-time O(1)
bilateral filter [50] (pink) and the bilateral grid [36] (blue) are both fine choices for
grayscale filtering. For color bilateral filters, the fastest method is the permutohedral
lattice (red). However, if memory use is a concern, either the Gaussian kd-tree (green)
or the bilateral grid (blue) is preferable, depending on filter size.
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Figure 5.7: This graph shows the runtime, peak memory use, and RMS error of
various algorithms when performing 8-dimensional (left column), and 16-dimensional
(right column) non-local means. At 8 dimensions, the permutohedral lattice is fastest.
At 16 dimensions the Gaussian kd-tree may be faster depending on filter size. How-
ever, note that in both cases the Gaussian kd-tree consistently uses ten times less
memory.
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These inaccuracies do not render the output useless; merely different to that of the

naive Gauss transform. Furthermore such large filters are rarely used in practice, so

this is unlikely to cause problems for most applications. If it is a concern one could

switch to the bilateral grid for larger filter sizes, or modify Yang’s method to store

more than two intensity slices at once and perform higher-order interpolation.

5.4.2 Color bilateral filtering (d = 5)

For color bilateral filtering the permutohedral lattice is the fastest. It does however

use a lot of memory for small to moderate filter sizes (over 100 MB for our 18 MB

input). If memory use is a concern, the Gaussian kd-tree may be a better choice. A

five-dimensional bilateral grid is also feasible for larger filter sizes, though for smaller

filters it requires too much memory to be practical (and too much memory to be

benchmarked; hence the missing data for the bilateral grid for smaller filter sizes).

5.4.3 8-D non-local means (d = 8)

At 8 dimensions the permutohedral lattice is still roughly 10 times faster than the

Gaussian kd-tree, but uses 10 times as much memory. The other methods either use

too much time or too much memory to be benchmarked for all cases. For typical

denoising applications then, the choice of algorithm should come down to whether

there is enough memory available to use the permutohedral lattice. If there is not,

the Gaussian kd-tree is the best alternative.

5.4.4 16-D non-local means (d = 16)

At 16 dimensions, the permutohedral lattice is still competitive in terms of speed,

but its memory use has become exorbitant. For this 18 MB input the permutohedral

lattice is consuming over a gigabyte of memory for small to moderate filter sizes.

Recall that the permutohedral lattice constructs a simplicial scaffold around the input

position vectors. The number of lattice points thus constructed grows linearly with

the dimensionality, d. As each lattice point stores its location as a vector of length d
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(to use as a hash table key), memory use grows quadratically with d. The Gaussian

kd-tree is the superior algorithm in this regime.

5.4.5 Which algorithms shouldn’t be used at all?

Some algorithms were not competitive for any test. First, even for the smallest spatial

standard deviation tested, σ = 1, which corresponds to a filter footprint of 7×7 pixels,

the naive windowed implementation of these filters is slower than using one of our

acceleration structures.

Second, the sparse bilateral grid, which uses the same hash table as our permu-

tohedral lattice but tessellates space with hypercubes instead of simplices, is always

inferior to the dense bilateral grid. This demonstrates that it is the choice of lattice,

rather than the sparsity, which makes the permutohedral lattice faster than the bi-

lateral grid. The reason is simple. For d dimensions, during splatting and slicing the

permutohedral lattice touches d+ 1 vertices. For each vertex one floating-point mul-

tiply and accumulate must be done per color channel. A grid touches 2d lattice points

during splatting and slicing. At d = 5, for example, this means a grid requires about

5 times as many floating-point operations to splat and slice. This factor dominates

the overhead involved in computing lattice vertices and looking them up in the hash

table.

Finally, the improved fast Gauss transform fared quite poorly in our comparisons.

This algorithm is ill-suited to these applications two reasons. First, the improved fast

Gauss transform is better equipped to handle tasks requiring higher accuracy, and

incurs a lot of overhead in order to achieve this. Second, operating with homogeneous

coordinates covers many sins. The bilateral grid, the permutohedral lattice, and the

Gaussian kd-tree are all fairly inaccurate for non-homogeneous Gauss transforms,

which is the intended application domain of the improved fast Gauss transform. We

will return to this issue in Section 7.3.
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5.4.6 Which algorithm should I use?

The tests above give us an indication of which algorithm to use for a few specific

dimensionalities. We can expand this picture to the full range of dimensionalities

we might encounter by modifying our denoising task to preserve between 1 and 18

dimensions after PCA.

Figure 5.8 shows which algorithm is fastest as a function of dimensionality and

filter size for this task. A reasonable conclusion to draw is that we should use the

permutohedral lattice for dimensionalities below 12, and the Gaussian kd-tree after

that. This threshold can be moved up or down based on the memory available. If

three-dimensional filters are of particular interest, it is also worth switching to the

bilateral grid or the real-time bilateral filter for those cases.
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Figure 5.8: This contour plot shows the fastest method for each dimensionality and
spatial filter size, and how many times faster it is than the second fastest method. The
bilateral grid [15] is best for three-dimensional filters. The Gaussian KD-Tree [2] is
best for high dimensionalities and small filter sizes. The permutohedral lattice is the
fastest method for dimensionalities from 4 up to around 12, depending on the filter
size. Runtimes were sampled at the colored dots and interpolated. Only methods
capable of arbitrary-dimensional filters were compared.



Chapter 6

Applications

In Chapter 1 we discussed basic applications of Gauss transforms in photography. In

this chapter we examine two more applications in photography, and one application

of the Gauss transform in the related field of medical imaging.

6.1 Burst denoising

Lack of light is usually the most significant limiting factor in photography. Pho-

tographs taken with insufficient light require a high analog gain, which amplifies noise.

There are two conventional methods for acquiring more light: lengthening the expo-

sure time, or adding additional light with a flash. Either method creates artifacts.

Lengthy exposure times create motion blur, and a camera flash destroys desirable

ambient illumination, introduces hard shadows, over-brightens nearby objects, and

causes a “red-eye” effect.

A third method for acquiring more light has recently become popular: take many

noisy photographs and combine them. For a static scene, a noisy burst of photographs

need merely be aligned and averaged to substantially reduce the noise (Telleen at

al. [44]). Averaging n photographs reduces noise by a factor of
√
n. Noise scales

roughly linearly with analog gain, and so a burst of 256 photographs at an ISO of

1600 can be averaged to produce an effective ISO of 100. However, averaging large

numbers of photographs is not a panacea. The storage and processing costs incurred
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by large bursts are considerable, and most interesting scenes (e.g. humans) contain

some internal motion.

Bennett and McMillan [9] address a similar problem: denoising video. They

average pixels either across space or time using a bilateral filter. Their temporal

“bilateral” filter computes distance using small local patches, and so it is in fact what

we would call non-local means along the temporal axis.

However, the algorithm of Bennett and McMillan cannot denoise areas in motion.

For still photography, we can deal with motion using optical flow to warp all input

images to some single reference frame. Modern optical flow algorithms are moderately

robust to noise, and even if the flow vectors are incorrect in some frames, the resulting

artifacts tend to average away in the output (see Figure 6.1). If we also apply a

denoising method to the burst before averaging, we can substantially reduce the

number of frames required to produce a noise-free photograph.

In this application, we compute a single noise-free output photograph from a noisy

burst using the following pipeline:

1. Perform a joint bilateral filter of chrominance with respect to luminance to

ameliorate the effects of hot pixels. These manifest as brightly colored dots

in the input. This is a three-dimensional Gauss transform, and so we use a

bilateral grid. We use a spatial standard deviation of 4 pixels, and a luminance

standard deviation of 0.25.

2. Select one image from the burst to be the reference. This is usually the one

with the best composition.

3. Compute the flow field from the reference to each input image. We use the

algorithm of Brox et al. [11].

4. Denoise the entire burst using non-local means. Each patch will search for

matching patches across the burst about the flow vectors. We can implement

this by simply subtracting the optical flow vectors from the spatial component

of our position vectors. Note that this results in position vectors that no longer

lie on a uniform grid, so we must use a method that can tolerate this. This
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is an advantage over other methods shared by the permutohedral lattice and

the Gaussian kd-tree. We use 13 × 13 patches weighted with a Gaussian of

standard deviation 2, reduced to 10 dimensions using PCA. We search about

the flow vectors using a spatial standard deviation of 4 pixels, and a patch-

space standard deviation of 0.2. The input burst of photographs consumes a

large amount of memory, so we use the Gaussian kd-tree to perform the Gauss

transform to minimize the memory overhead.

5. Warp all the images to match the reference using the optical flow vectors, and

then average the sequence across time.

6. Add simulated photon-shot noise. Averaging large numbers of frames tends to

over-smooth flat areas of the image. We expect to see some amount of noise in

any photograph due to the physical properties of light. Adding a small amount

of noise also masks any loss of sharpness caused by non-local means and by

averaging along imperfect flow vectors.

This pipeline (along with several alternatives) is illustrated for two example scenes

in Figures 6.3 and 6.2. Both scenes were captured using a Casio EX-F1 operating at

ISO 1600 with an exposure time of 1/60s. The captured images were averaged down

by a factor of two in each direction, and then further digitally amplified. In Figure

6.3, pixel values were doubled; in Figure 6.2 they were tripled.

Combining multiple frames in this way is a promising direction for casual pho-

tography. Small cameras have small apertures that let in very little light. However,

during aiming and focusing the image sensor is running continuously. These images

are currently discarded, and so their light is wasted. It would be better to save them,

and use them to denoise the image acquired when the shutter button is pressed. In

this way the shutter button merely marks a moment in time. Images acquired during

the surrounding 10 to 20 seconds can be combined to create the actual photograph.

The major barrier to adopting this technique is the amount of computation required.

This dissertation makes non-local means computationally cheaper, but high-quality

optical flow is still very expensive. In both of the cases illustrated here, computing

optical flow takes about 90% of the total runtime.
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Figure 6.1: The top row shows crops of 5 frames from a 27 frame burst. To combine
these photographs into a single noise free image, we first perform optical flow, and
denoise using non-local means along the flow vectors (second row). We then use
the flow vectors again to warp each frame to align to the frame with the desired
composition (third row). Note that the warping has introduced artifacts where there
were occlusions (the blinking eyes and the moving hand). By averaging these frames
we remove the residual noise and hide the optical flow artifacts (bottom left). Finally,
we add simulated photon shot noise to correct for the over-smoothed look of the
averaged frame (bottom right).
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Figure 6.2: In this example, we combine 27 noisy photographs into a single output.
The top left shows the noisy input frame with the desired composition. We first
perform a joint bilateral filter of chrominance with respect to luminance to remove
some chrominance noise (top right). If we globally align and average the result across
time we introduce blur due to the movement of the subjects (middle left). Warping
the frames using optical flow and then average produces better results (middle right),
but does not remove all the noise. We instead perform non-local means along the
flow vectors before averaging (bottom left), and then add some simulated photon
shot noise (bottom right). We can thus produce a passable photograph from these
extremely noisy inputs.
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Figure 6.3: This second example follows the same pipeline as in Figure 6.2, but with
only four less-noisy inputs. The input photograph with the desired composition is in
the top left. First we remove some chrominance noise (top right). Globally aligning
and averaging the frames produces blur, as the kitten is rotating its head (middle left).
Warping the frames using optical flow and then averaging is better (middle right),
but not as good as denoising the volume before warping and averaging (bottom left),
and then adding simulated photon shot noise (bottom right).
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6.2 Automatically-propagating local edits

Post-production of photographs usually includes both global edits like color correc-

tion, and also local edits such as dodging and burning. Local changes to sharpness,

brightness, contrast, saturation, and other properties are commonplace. These manip-

ulations are usually painted on using a mask, and are often the most time-consuming

tasks in post-production, because they require careful application to avoid artifacts.

For example, if we wish to darken a bright sky in a landscape image, the horizon

must be dealt with very carefully to avoid either creating a dark halo below it (where

the brush has strayed too far into the landscape) or a bright halo above it (where the

brush has erred on the side of caution).

In this application we use a joint non-local means filter to make local adjustments

to an image in a way that automatically propagates across similar colors and textures.

This operates in a similar manner to the propagating edits of An and Pellacini [4],

but is an order of magnitude faster, allowing for interactive-rate manipulations.

The user applies approximate edits with a few strokes. Each stroke paints values

on a mask in those locations. The mask is then filtered with respect to position

vectors derived from the input image. We use six PCA terms and two spatial terms

to capture changes in brightness, color, and texture. By choosing appropriate position

dimensions, local edits can be made to respect boundaries with respect to any set of

local descriptors. The filtered mask serves as an influence map for how the edit should

be applied.

To adjust brightness, for example, the user paints dark or bright values into the

mask. We then filter the mask, and use it to modulate the input image. Filtering is

done at interactive rates (10 frames per second at 800× 600), so the user can see the

fully propagated edit as they paint it on the canvas. To achieve this speed we use the

GPU implementation of the permutohedral lattice, and omit the blur stage. For an

example session, see Figure 6.4.
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Figure 6.4: We can use the GPU implementation of the permutohedral lattice to make
local manipulations to a photograph automatically propagate to similarly-textured
regions. The user paints strokes (bottom left) on the input image (top left). These
strokes are filtered in real time with respect to 8-dimensional position vectors derived
from the input image. The filtered mask (bottom right) is then used to modulate the
input to produce the output (top right), which is what the user sees while working.
In this case we have darkened the far hill and near grass, and brightened the girl’s
hair, the post, the far sky, and the flowers. This session took about 20 seconds.



CHAPTER 6. APPLICATIONS 82

6.3 Volume denoising

Non-local means is quite popular in medical imaging, as it easily extends to vol-

ume data. Instead of two-dimensional patches we simply use small sub-volumes. In

Figure 6.5 we show the result of non-local means applied to a volume data set of a

bacterium. This data set (courtesy of Amat et al. [3]) was acquired using cryo-electron

tomography. Such volumes are typically very noisy, because bombarding specimens

with large numbers of electrons tends to alter them, meaning few electrons must be

used, limiting the signal-to-noise ratio obtainable.

The extension to volume data is straightforward. However, there are two more

subtle aspects to this particular application of non-local means that make it inter-

esting. First, we found it advantageous to omit a spatial term and filter only with

respect to patch distance. The volume is homogeneous; any given local structure

recurs widely spread throughout much of the volume. Spatially remote patches may

be quite close in patch-space, and may have a significant influence on each other. A

conventional non-local means implementation which searches within some fixed ra-

dius would either miss these matches or devolve into an intractable all-pairs O(n2)

search. In contrast, the permutohedral lattice and the Gaussian kd-tree both speed

up as the spatial search window expands.

Second, the noise in this volume is not uniform white noise. Rather, it is “pink”

noise, which is dominated by lower frequencies, and so neighboring pixels have highly

correlated noise. This means that spatially nearby patches are similar by virtue of

having a similar noise pattern, regardless of the similarity of the underlying structure.

A Gauss transform therefore blurs the volume in addition to denoising. We can coun-

teract this by spatially blurring the volume and extrapolating from our output away

from the blurred volume. Note that spatially blurring the volume is a Gauss transform

in its own right. The implication is this: a linear combination of Gauss transforms

may be superior to a single Gauss transform, which is equivalent to smoothing in

patch-space using a non-Gaussian filter. For any given application this raises an in-

triguing question: which combination of Gaussians is optimal for this task? We leave

an attempt to address this question in the general case as an open problem.
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Figure 6.5: The top left shows a slice of a noisy 640 × 480 × 240 volume data set
of a Caulobacter crescentus acquired using cryo-electron tomography. The volume
is denoised using non-local means with 9 × 9 × 9 volumetric patches weighted with
a 3-dimensional Gaussian of standard deviation 1.4. The patches are reduced to 16
dimensions using PCA, and non-local means is performed using the Gaussian kd-tree.
The patch space standard deviation is 0.75. We do not include a spatial term, so this
computation would be intractable with conventional methods. The output of non-
local means is in the bottom left. It appears similar to simply blurring the volume
(bottom right). If we linearly exaggerate the difference between the two we obtain
the result in the top right. Structures such as the cell walls are preserved, while the
noise is almost eliminated.
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Conclusion

We have now explored the use of Gauss transforms in photographic image processing,

using the two novel data structures described in this dissertation: the Gaussian kd-

tree and the permutohedral lattice. The key insights of these two techniques can be

summarized in a few sentences:

We can express many useful operations in photographic image processing as a

Gauss transform, which can be accelerated by resampling and blurring in a high-

dimensional space. For moderate dimensionalities, we can most efficiently resample

using a lattice which tessellates space with simplices. For higher dimensionalities,

we can compute our Gaussian-weighted integrals using importance-sampled kd-tree

queries.

It is our hope that the applications described in the previous chapter are merely

the tip of the iceberg. Fast Gauss transforms using these data structures should

enable new applications in computational photography, and help us answer the central

questions of the field.

Discrete Gauss transforms are widely used in many other fields, such as artificial

intelligence and computer vision. The data structures described in this dissertation

may also unlock new applications in these fields, and the application of techniques like

these to the diverse requirements of other fields will undoubtedly be an interesting

research topic in its own right.

In this final chapter we lay out future work to be done in this area; first in the
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form of limitations of the data structures described, and second in the form of new

applications to be considered.

7.1 Limitations of the permutohedral lattice

The permutohedral lattice has three outstanding issues:

The output is produced by high-dimensional barycentric interpolation,

which sometimes produces visible piecewise-linear artifacts in the output.

This problem can be surmounted by using higher-order interpolation. While one may

be tempted to expand the slicing and splatting kernels to touch more lattice vertices,

this quickly introduces an exponential dependence on dimension. Instead, we could

store a linear model at each lattice vertex as opposed to a simple constant. Each

lattice vertex would describe a linear function of best fit for the input positions that

fall within its influence. By interpolating between these linear models during slicing

we can produce a piecewise-quadratic output. To save time and memory we could also

constrain the linear model to vary only with the spatial dimensions of the position

vector, which would be enough to remove the piecewise-linear artifacts in the output

image (illustrated in Figure 3.5).

The implementation requires storing lattice points in a hash table. This

data structure is awkward to parallelize on wide data-parallel processors

like GPUs. This is a widely-discussed issue common to GPU implementations of

algorithms like this one. We expect these architectures to evolve to better support

these kinds of sparse data structures.

The permutohedral lattice creates a simplicial scaffold about the input

manifold. This representation uses a very large amount of memory as

dimensionality increases. This issue is fundamental to the lattice and difficult

to overcome. It may be possible to finesse this by only probabilistically creating

lattice points based on the expected weight that arrives at them. One could also try
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a nearest-neighbor splatting procedure, coupled with creating higher-order models

at the lattice points to regain the lost accuracy. This quickly becomes equivalent to

modifying the fast Gauss transform [28] to use simplices instead of hypercubes, which

may be a worthwhile route.

7.2 Limitations of the Gaussian kd-tree

The Gaussian kd-tree also has three outstanding issues worthy of discussion:

It is hard to choose good sample counts for splatting and slicing. In Chap-

ter 4 we conservatively chose 4 samples for splatting and 64 samples for slicing.

However for many applications fewer samples produce acceptable results. Also, it

may be possible to save time by spatially varying the sample counts. For example,

when performing a bilateral filter, large flat regions can be accurately filtered using

very few samples. Finally, it may be worthwhile examining the applicability of the

variance-reduction techniques used in ray tracing.

Building a kd-tree is hard to parallelize. The Gaussian kd-tree algorithm ex-

hibits mixed parallelism. Splatting and slicing are simple and data-parallel, and so

are well supported by GPU architectures. Tree building is more complex. Initially it

uses large reductions (computing a bounding box) and sorting-like steps (partitioning

the data over a split node). These are difficult to implement efficiently on a GPU.

Once the building process warms up, it begins to exhibit task-parallelism, which is

also difficult to exploit on a GPU.

At higher dimensionalities, our weighted importance sampling becomes

inefficient as each split node insufficiently constrains its children. During

a query of the Gaussian kd-tree, the number of samples sent to each leaf node is

proportional to a Gaussian integrated over that leaf. This is an approximation to

the ideal probability, which is the Gaussian evaluated at the sample stored in each

leaf. We corrected for this approximation using a weight attached to each returned
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leaf node. However, for n inputs the depth of the tree is O(log n), which may be

comparable to the dimensionality of the space for higher dimensionalities. This means

that each leaf node probably extends to ± infinity in one or more dimensions. As

the dimensionality increases our approximation becomes increasingly poor, and the

sampling may grow inefficient; it may return many leaf nodes with a weight near zero.

A tree that more tightly constrains the extent of its leaves may be superior for such

high-dimensional cases. For example, a tree based on a hierarchy of bounding spheres

would make our approximation very accurate, but would require more work at each

split node to determine how many samples to send to each child.

7.3 The non-homogeneous case

All of the applications described in this dissertation used Gauss transforms of ho-

mogeneous values. That is, instead of computing a weighted sum of Gaussians, we

compute a weighted average. We did this by augmenting our input value vectors with

an extra coordinate with value 1. On the output side, we divide through by this last

coordinate to convert the weighted sum into a weighted average. All of our tests for

accuracy were done on typical image processing tasks which used this homogeneous

representation.

A homogeneous representation can hide certain types of error. First, imagine if the

output were off by some global scale factor. This would be corrected in the division

and would not affect the final image. To perform an accurate non-homogeneous Gauss

transform we would need to compute and correct for this global scale factor.

This issue is not particularly daunting; even if our algorithms cannot be modified

to remove any global scale factor, most applications involve other constraints which

can be used to solve for it. For example, one common use of non-homogeneous Gauss

transforms is in kernel density estimation, in which the output function is treated as

a probability distribution, and is known to have a sum of 1.

A second type of error is far more challenging to deal with. Consider the case where

each output value is individually scaled by some unknown factor. The homogeneous

case is unaffected by this type of error, as it is cancelled in the final division. This
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second type of error does indeed occur with both the permutohedral lattice, the

Gaussian kd-tree, and other methods based on resampling.

Let us take the case of a uniformly-weighted Gauss transform (all value vectors

are the constant 1):

~̂vi =
∑
j

e−|~pi−~pj |
2/2

Now consider an outlier – a lone position vector far from any other. With the

permutohedral lattice, this value may be placed arbitrarily with respect to the lattice.

In the two extreme cases, it may lie exactly on a lattice point, or it may lie at the

centroid of a simplex. If we ignore the blurring stage, the output value at the same

position is 1 in the first case, and 1
d+1

in the second. Thus the relative error can be

quite large, and is spatially varying. The blur stage complicates the picture slightly,

but does not alter the underlying issue.

In this particular case, the Gaussian kd-tree will create one cluster at the outlying

position, and send all splatting and slicing samples to that cluster for that query

position. Thus it will correctly produce an output value of 1 (assuming we have

corrected for the global scale induced by our sample counts).

The Gaussian kd-tree, however, is still based on resampling, and produces the

same type of error in a slightly more complex case. Consider a position vector that

lies midway between two cluster centers. During splatting it contributes 1
2

to each

cluster center. During slicing it weighs these two values equally, and its contribution

to its own output value will be 1
2

2
+ 1

2

2
= 1

2
where it should be 1.

These effects are significant. In a simulated application with 64 equally-weighted

Gaussians of standard deviation 1, uniformly randomly located within a 10 × 10

square, the Gaussian kd-tree produces a typical RMS error of around 0.15 relative to

an exact Gauss transform, and the permutohedral lattice produces an RMS error of

0.3. Not performing any Gauss transform and simply setting all the output values

to 1 gives an RMS error of 0.4. These numbers are a far cry from the typical RMS

errors under 0.01 that we see in the homogeneous case.

Resampling approaches like these produce good far-field estimates; two points
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several standard deviations apart will contribute roughly the right amount of energy

to each other. The near-field estimates, however, can be almost arbitrarily bad. It

may be possible to augment one of these data structures to behave differently for

these near-field interactions. Alternatively, we could borrow the method of the fast

Gauss transform and use the higher-order models described above; instead of splatting

constant values onto the permutohedral lattice, each input position could contribute

to a polynomial expansion about the vertices of the enclosing simplex. Slicing could

then be done by interpolating the responses of the same polynomials.

7.4 Further applications

The applications described in Chapters 1 and 6 are by no means an exhaustive list.

Here are a few more possible directions to explore.

7.4.1 Least-squares smoothing

Gaussian filtering can be interpreted as enforcing a smoothness prior on the data:

small changes in position vector should correspond to small changes in value. It en-

forces this via explicit smoothing in the space of position vectors. However, data

structures like the bilateral grid and permutohedral lattice already encode a notion of

smoothness; a coarse sampling of a space (combined with a reasonable reconstruction

filter) can only ever produce smooth functions. We might therefore enforce a smooth-

ness prior less aggressively by asking: what are the best values to store at each lattice

vertex, such that after slicing we most closely match the input (in the least squares

sense)? This would be the smooth function that most closely resembles the input,

which may denoise without the loss of tone and contrast seen with non-local means

(See for example Figures 5.4 and 5.5).

7.4.2 Filtering gradients or PCA terms

The bilateral filter is fairly poor at smoothing gradients, as the footprint of the filter

is truncated to a thin band of similar intensities. This property of the filter is usually
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helpful, as it prevents smoothing across step edges, but it also serves to accentuate

any irregularities in a smoothly varying region. The trilateral filter of Choudhury

and Tumblin [16] addresses this by modifying the bilateral filter to tilt its footprint

to match local gradients. The effect is that the trilateral filter favors piecewise-linear

output, whereas the bilateral filter favors piecewise-constant output.

An alternative way to achieve the same effect is to perform a bilateral filter on

image gradients, and then re-integrate using a Poisson solver (as in [38]), as piecewise-

constant gradients entail piecewise-linear output. A gradient field of a color image is

naturally six-dimensional, so this may be an excellent application for the permutohe-

dral lattice.

More generally one could imagine filtering not just gradients but arbitrary local

descriptors, and then solving for the image that best matches the descriptors pro-

duced. For example, consider non-local means with PCA-reduced patches, which

uses the output of a filter bank for position vectors and homogeneous pixel color for

value vectors. Instead let us use the filter bank responses for both positions and

values. The problem of producing an output image from the filtered responses is an

over-constrained deconvolution, which can be easily solved with division in Fourier-

space.

7.4.3 Scaling up non-local means

Non-local means doesn’t scale as elegantly as it could. As you throw more and more

data into the mix, the number of plausible but incorrect matches to each patch grows,

resulting in a loss of fine detail. Each pixel is also attracted towards the average color

of all the data used, resulting in a loss of overall tone. These effects are illustrated

in Figure 7.1. A more discriminating non-local means could potentially be used to

denoise an image using the entire corpus of photographs available on the internet.

Here is a sketch of such an algorithm:

1. Using metadata, high-level scene understanding algorithms, or simple image

descriptors, acquire a large candidate set of images from the web that are likely

to contain patches useful for denoising some noisy input image. For landscape
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Figure 7.1: As we include more and more image data as reference, non-local means
performs increasingly poorly. In the top left is a crop from the noisy image used
earlier in Chapter 5. In the center is the same crop of non-local means applied with
no spatial term; each patch is denoised using every other patch in the image. Much of
the noise is removed. On the right we try to improve the result by including 40 other
images from the same photo album as reference patches. Some of these images are
shown across the bottom. Two types of artifact result. First, there is a loss of overall
tone and contrast. Note for example the rich red hues present in the midground in
the input that are merely brown in the output. Second, much of the fine detail is
over-smoothed, such as the bush in the foreground.

photographs a GPS tag and time of day is sufficient to find other photographs of

the same location in similar lighting. For portraits, a face-recognition algorithm

run against your existing photo collection would provide useful patches. For our

example noisy landscape used in Figure 7.1, an image search for “monument

valley at dawn” produces a wealth of similar images.

2. Splat all of these photographs into a high-dimensional data structure such as

the Gaussian kd-tree or permutohedral lattice.

3. Slice out a denoised photograph using position vectors derived from your noisy

input image.

To attempt such an algorithm, we first need to address non-local means’ tendency

to pull all colors towards the average. There are several viable approaches. The

simplest is to separate the image into base and detail layers (with a bilateral filter),

and only perform non-local means on the detail layer. The unchanged base layer
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would preserve global tone and contrast. There are some interesting questions to

answer here, such as whether it is better to derive position vectors from the input or

from the detail layer alone.

We next need to address the loss of detail. This is substantially more difficult. One

approach could be to use non-Gaussian high-dimensional filters, as we did in Section

6.3. A Gaussian is always positive. If we instead used a filter with negative lobes we

could make good matches attract and merely-plausible matches actively repel. Such

a filter could be accelerated with the techniques in this dissertation by expressing it

as a difference of Gaussians. Selecting the best Gaussians to use is an interesting

problem.

7.5 Closing remarks

The rise of digital photography has empowered photographers with an unprecedented

amount creative control by moving much of the imaging process from the realm of

physics and chemistry into software. Instead of merely reproducing the light that

strikes the sensor, we treat this data as one of many raw ingredients to be used to

make a photograph. Computational photography provides a toolbox of algorithms

that manipulate raw photographic data in myriad ways to produce photographs that

could never have been produced with a traditional film camera.

This dissertation adds two tools to the box: the permutohedral lattice and the

Gaussian kd-tree. They can be used to quickly filter, decompose, or denoise images

– essential steps in the digital darkroom. We hope that these algorithms are also

of interest to imaging hardware or software architects, looking for algorithms with

mixed types of parallelism. We hope that they are of interest to aficionados of the

Gauss transform in other fields. Most of all, we hope that these tools are of use to

fellow computational photographers, as our community continues to redefine what it

means to make a photograph.
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Permutohedral lattice source code

This appendix contains C++ source code for the permutohedral lattice. It assumes

the input values and positions are available as arrays of single-precision floating-point

numbers. The interesting functions are PermutohedralLattice::filter, which en-

acts the splat-blur-slice pipeline, and PermutohedralLattice::splat, which identi-

fies the vertices of the simplex enclosing a query position.

#include <math.h>

#include <vector>

#include <memory>

using std::vector;

// Hash table implementation for permutohedral lattice.

//

// The lattice points are stored sparsely using a hash table.

// The key for each point is its spatial location in the (d+1)-

// dimensional space.

class HashTablePermutohedral {

public:

// Hash table constructor

// kd : the dimensionality of the position vectors

// vd : the dimensionality of the value vectors

HashTablePermutohedral(int kd, int vd) : kd(kd), vd(vd) {

filled = 0;

entries.resize(1 << 15);
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keys.resize(kd*entries.size()/2);

values.resize(vd*entries.size()/2, 0.0f);

}

// Returns the number of vectors stored.

int size() { return filled; }

// Returns a pointer to the keys array.

vector<short> &getKeys() { return keys; }

// Returns a pointer to the values array.

vector<float> &getValues() { return values; }

// Looks up the value vector associated with a given key. May or

// may not create a new entry if that key doesn’t exist.

float *lookup(const vector<short> &key, bool create = true) {

// Double hash table size if necessary

if (create && filled >= entries.size()/2) { grow(); }

// Hash the key

size_t h = hash(&key[0]) % entries.size();

// Find the entry with the given key

while (1) {

Entry e = entries[h];

// Check if the cell is empty

if (e.keyIdx == -1) {

if (!create) return NULL; // Not found

// Need to create an entry. Store the given key.

for (int i = 0; i < kd; i++) {

keys[filled*kd+i] = key[i];

}

e.keyIdx = filled*kd;

e.valueIdx = filled*vd;

entries[h] = e;

filled++;

return &values[e.valueIdx];

}

// check if the cell has a matching key

bool match = true;
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for (int i = 0; i < kd && match; i++) {

match = keys[e.keyIdx+i] == key[i];

}

if (match) {

return &values[e.valueIdx];

}

// increment the bucket with wraparound

h++;

if (h == entries.size()) { h = 0; }

}

}

// Hash function used in this implementation. A simple base conversion.

size_t hash(const short *key) {

size_t h = 0;

for (int i = 0; i < kd; i++) {

h += key[i];

h *= 2531011;

}

return h;

}

private:

// Grows the hash table when it runs out of space

void grow() {

// Grow the arrays

values.resize(vd*entries.size(), 0.0f);

keys.resize(kd*entries.size());

vector<Entry> newEntries(entries.size()*2);

// Rehash all the entries

for (size_t i = 0; i < entries.size(); i++) {

if (entries[i].keyIdx == -1) { continue; }

size_t h = hash(&keys[entries[i].keyIdx]) % newEntries.size();

while (newEntries[h].keyIdx != -1) {

h++;

if (h == newEntries.size()) { h = 0; }

}

newEntries[h] = entries[i];

}

entries.swap(newEntries);
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}

// Private struct for the hash table entries.

struct Entry {

Entry() : keyIdx(-1), valueIdx(-1) {}

int keyIdx;

int valueIdx;

};

vector<short> keys;

vector<float> values;

vector<Entry> entries;

size_t filled;

int kd, vd;

};

// The algorithm class that performs the filter

//

// PermutohedralLattice::filter(...) does all the work.

//

class PermutohedralLattice {

public:

// Performs a Gauss transform

// pos : position vectors

// pd : position dimensions

// val : value vectors

// vd : value dimensions

// n : number of items to filter

// out : place to store the output

static void filter(const float *pos, int pd,

const float *val, int vd,

int n, float *out) {

// Create lattice

PermutohedralLattice lattice(pd, vd, n);

// Splat

for (int i = 0; i < n; i++) {

lattice.splat(pos + i*pd, val + i*vd);

}

// Blur
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lattice.blur();

// Slice

lattice.beginSlice();

for (int i = 0; i < n; i++) {

lattice.slice(out + i*vd);

}

}

// Permutohedral lattice constructor

// pd : dimensionality of position vectors

// vd : dimensionality of value vectors

// n : number of points in the input

PermutohedralLattice(int pd, int vd, int n) :

d(pd), vd(vd), n(n), hashTable(pd, vd) {

// Allocate storage for various arrays

elevated.resize(d+1);

scaleFactor.resize(d);

greedy.resize(d+1);

rank.resize(d+1);

barycentric.resize(d+2);

canonical.resize((d+1)*(d+1));

key.resize(d+1);

replay.resize(n*(d+1));

nReplay = 0;

// compute the coordinates of the canonical simplex, in which

// the difference between a contained point and the zero

// remainder vertex is always in ascending order.

for (int i = 0; i <= d; i++) {

for (int j = 0; j <= d-i; j++) {

canonical[i*(d+1)+j] = i;

}

for (int j = d-i+1; j <= d; j++) {

canonical[i*(d+1)+j] = i - (d+1);

}

}

// Compute part of the rotation matrix E that elevates a

// position vector into the hyperplane

for (int i = 0; i < d; i++) {

// the diagonal entries for normalization
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scaleFactor[i] = 1.0f/(sqrtf((float)(i+1)*(i+2)));

// We presume that the user would like to do a Gaussian

// blur of standard deviation 1 in each dimension (or a

// total variance of d, summed over dimensions.) Because

// the total variance of the blur performed by this

// algorithm is not d, we must scale the space to offset

// this.

//

// The total variance of the algorithm is:

// [variance of splatting] +

// [variance of blurring] +

// [variance of splatting]

// = d(d+1)(d+1)/12 + d(d+1)(d+1)/2 + d(d+1)(d+1)/12

// = 2d(d+1)(d+1)/3.

//

// So we need to scale the space by (d+1)sqrt(2/3).

scaleFactor[i] *= (d+1)*sqrtf(2.0/3);

}

}

// Performs splatting with given position and value vectors

void splat(const float *position, const float *value) {

// First elevate position into the (d+1)-dimensional hyperplane

elevated[d] = -d*position[d-1]*scaleFactor[d-1];

for (int i = d-1; i > 0; i--)

elevated[i] = (elevated[i+1] -

i*position[i-1]*scaleFactor[i-1] +

(i+2)*position[i]*scaleFactor[i]);

elevated[0] = elevated[1] + 2*position[0]*scaleFactor[0];

// Prepare to find the closest lattice points

float scale = 1.0f/(d+1);

// Greedily search for the closest remainder-zero lattice point

int sum = 0;

for (int i = 0; i <= d; i++) {

float v = elevated[i]*scale;

float up = ceilf(v)*(d+1);

float down = floorf(v)*(d+1);
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if (up - elevated[i] < elevated[i] - down) {

greedy[i] = (short)up;

} else {

greedy[i] = (short)down;

}

sum += greedy[i];

}

sum /= d+1;

// Rank differential to find the permutation between this

// simplex and the canonical one.

for (int i = 0; i < d+1; i++) rank[i] = 0;

for (int i = 0; i < d; i++) {

for (int j = i+1; j <= d; j++) {

if (elevated[i] - greedy[i] < elevated[j] - greedy[j]) {

rank[i]++;

} else {

rank[j]++;

}

}

}

if (sum > 0) {

// Sum too large - the point is off the hyperplane. We

// need to bring down the ones with the smallest

// differential

for (int i = 0; i <= d; i++) {

if (rank[i] >= d + 1 - sum) {

greedy[i] -= d+1;

rank[i] += sum - (d+1);

} else {

rank[i] += sum;

}

}

} else if (sum < 0) {

// Sum too small - the point is off the hyperplane. We

// need to bring up the ones with largest differential

for (int i = 0; i <= d; i++) {

if (rank[i] < -sum) {

greedy[i] += d+1;

rank[i] += (d+1) + sum;

} else {
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rank[i] += sum;

}

}

}

// Compute barycentric coordinates

for (int i = 0; i < d+2; i++) { barycentric[i] = 0.0f; }

for (int i = 0; i <= d; i++) {

barycentric[d-rank[i]] += (elevated[i] - greedy[i]) * scale;

barycentric[d+1-rank[i]] -= (elevated[i] - greedy[i]) * scale;

}

barycentric[0] += 1.0f + barycentric[d+1];

// Splat the value into each vertex of the simplex, with

// barycentric weights

for (int remainder = 0; remainder <= d; remainder++) {

// Compute the location of the lattice point explicitly

// (all but the last coordinate - it’s redundant because

// they sum to zero)

for (int i = 0; i < d; i++) {

key[i] = greedy[i] + canonical[remainder*(d+1) + rank[i]];

}

// Retrieve pointer to the value at this vertex

float *val = hashTable.lookup(key, true);

// Accumulate values with barycentric weight

for (int i = 0; i < vd; i++) {

val[i] += barycentric[remainder]*value[i];

}

// Record this interaction to use later when slicing

replay[nReplay].offset = val - &hashTable.getValues()[0];

replay[nReplay].weight = barycentric[remainder];

nReplay++;

}

}

// Prepare for slicing

void beginSlice() {

nReplay = 0;

}
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// Performs slicing out of position vectors. The barycentric

// weights and the simplex containing each position vector were

// calculated and stored in the splatting step.

void slice(float *col) {

const vector<float> &vals = hashTable.getValues();

for (int j = 0; j < vd; j++) { col[j] = 0; }

for (int i = 0; i <= d; i++) {

ReplayEntry r = replay[nReplay++];

for (int j = 0; j < vd; j++) {

col[j] += r.weight*vals[r.offset + j];

}

}

}

// Performs a Gaussian blur along each projected axis in the hyperplane.

void blur() {

// Prepare temporary arrays

vector<short> neighbor1(d+1), neighbor2(d+1);

vector<float> zero(vd, 0.0f);

vector<float> newValue(vd*hashTable.size());

vector<float> &oldValue = hashTable.getValues();

// For each of d+1 axes,

for (int j = 0; j <= d; j++) {

// For each vertex in the lattice,

for (int i = 0; i < hashTable.size(); i++) {

// Blur point i in dimension j

short *key = &(hashTable.getKeys()[i*d]);

for (int k = 0; k < d; k++) {

neighbor1[k] = key[k] + 1;

neighbor2[k] = key[k] - 1;

}

neighbor1[j] = key[j] - d;

neighbor2[j] = key[j] + d;

float *oldVal = &oldValue[i*vd];

float *newVal = &newValue[i*vd];

float *v1 = hashTable.lookup(neighbor1, false);

float *v2 = hashTable.lookup(neighbor2, false);

if (!v1) v1 = &zero[0];
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if (!v2) v2 = &zero[0];

// Mix values of the three vertices

for (int k = 0; k < vd; k++) {

newVal[k] = (v1[k] + 2*oldVal[k] + v2[k]);

}

}

newValue.swap(oldValue);

}

}

private:

int d, vd, n;

vector<float> elevated, scaleFactor, barycentric;

vector<short> canonical, key, greedy;

vector<char> rank;

struct ReplayEntry {

int offset;

float weight;

};

vector<ReplayEntry> replay;

int nReplay;

HashTablePermutohedral hashTable;

};
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Gaussian kd-tree source code

This appendix contains C++ source code for the Gaussian kd-tree. Like the code

above, it assumes the input values and positions are available as arrays of single-

precision floating-point numbers. The interesting functions are GKDTree::filter,

which enacts building, splatting, and slicing, and Split::lookup, which describes

how to send a query down the tree.

#include <math.h>

#include <stdlib.h>

#include <string.h>

#include <vector>

#include <limits>

#include <algorithm>

using std::vector;

using std::swap;

const float INF = std::numeric_limits<float>::infinity();

// Random floating-point number between zero and one

float randFloat() {

return rand()/(RAND_MAX+1.0f);

}
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// A quartic approximation to the integral of a Gaussian of variance 1/2

inline float gCDF(float x) {

x *= 0.81649658092772592f;

if (x < -2) {

return 0;

} else if (x < -1) {

x += 2;

x *= x;

x *= x;

return x;

} else if (x < 0) {

return 12 + x*(16 - x*x*(8 + 3*x));

} else if (x < 1) {

return 12 + x*(16 - x*x*(8 - 3*x));

} else if (x < 2) {

x -= 2;

x *= x;

x *= x;

return 24 - x;

} else {

return 24;

}

}

// The algorithm class that performs the filter

//

// GKDTreeLattice::filter(...) does all the work.

//

class GKDTree {

public:

// Performs a Gauss transform

// pos : position vectors

// pd : position dimensions

// val : value vectors

// vd : value dimensions

// n : number of items to filter

// out : place to store the output

static void filter(const float *pos, int pd,

const float *val, int vd,

int n, float *out) {

// Make an array of pointer to each position vector. We’ll

// reshuffle this array while building the tree.
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vector<const float *> points(n);

for (int i = 0; i < n; i++) {

points[i] = pos + i*pd;

}

// Build a tree. The last argument is the maximum side length

// of a cell. We set it to twice the standard deviation of

// splatting and slicing.

GKDTree tree(pd, &points[0], points.size(), sqrtf(2.0f));

// Arrays to use while splatting and slicing

vector<int> indices(64);

vector<float> weights(64);

// The values stored at the leaves

vector<float> leafValues(tree.nLeaves()*vd, 0.0f);

// Splatting: For each position vector ...

for (int i = 0; i < n; i++) {

// find up to 4 leaves nearby ...

int results = tree.lookup(pos + i*pd, &indices[0],

&weights[0], 4);

// and scatter to them.

for (int j = 0; j < results; j++) {

for (int k = 0; k < vd; k++) {

leafValues[indices[j]*vd + k] += val[i*vd + k]*weights[j];

}

}

}

// Clear the output array

memset(out, 0, sizeof(float)*n*vd);

// Slicing: For each position vector ...

for (int i = 0; i < n; i++) {

// find up to 64 leaves nearby ...

int results = tree.lookup(pos + i*pd, &indices[0],

&weights[0], 64);

// and gather from them.

for (int j = 0; j < results; j++) {

for (int k = 0; k < vd; k++) {

out[i*vd + k] += leafValues[indices[j]*vd + k]*weights[j];

}
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}

}

}

// GKDTree constructor

// kd : the dimensionality of the position vectors

// pos : an array of pointers to the position vectors

// n : the number of position vectors

// sBound : the maximum allowable side length of a leaf node

GKDTree(int kd, const float **pos, int n, float sBound) :

dimensions(kd), sizeBound(sBound), leaves(0) {

// Recursively build the tree

root = build(pos, n);

// Recursively compute the bounds of each node

vector<float> kdtreeMins(dimensions, -INF);

vector<float> kdtreeMaxs(dimensions, +INF);

root->computeBounds(&kdtreeMins[0], &kdtreeMaxs[0]);

}

// Destructor. Recursively deletes the tree.

~GKDTree() {

delete root;

}

int nLeaves() {

return leaves;

}

// Query the kdtree. Returns the number of leaf nodes found.

// query : the position around which to search

// ids : the ids of the leaf nodes found

// weights : the weight for each leaf node found

// nSamples : how many query samples to use

int lookup(const float *query, int *ids, float *weights, int nSamples) {

return root->lookup(query, ids, weights, nSamples, 1);

}

private:

// The interface for nodes

class Node {
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public:

virtual ~Node() {}

// Query the kdtree. Same interface as above, but also tracks

// the probability of reaching this node using the last

// argument.

virtual int lookup(const float *query, int *ids,

float *weights, int nSamples, float p) = 0;

// Compute the bounds of the node along the cut dimension

virtual void computeBounds(float *mins,

float *maxs) {}

};

// An internal split node.

class Split : public Node {

public:

virtual ~Split() {

delete left;

delete right;

}

// For a Gaussian centered at the given value, truncated to

// within this leaf, what is the fraction of the Gaussian on

// the left of this cut value. This gives the probability of

// splitting left at this node.

inline float pLeft(float value) {

float val = gCDF(cutVal - value);

float minBound = gCDF(minVal - value);

float maxBound = gCDF(maxVal - value);

return (val - minBound) / (maxBound - minBound);

}

int lookup(const float *query, int *ids, float *weights,

int nSamples, float p) {

// Compute the probability of a sample splitting left

float val = pLeft(query[cutDim]);

// Common-case optimization for a single sample

if (nSamples == 1) {

if (randFloat() < val) {

return left->lookup(query, ids, weights, 1, p*val);

} else {
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return right->lookup(query, ids, weights, 1, p*(1-val));

}

}

// Send some samples to the left of the split

int leftSamples = (int)(floorf(val*nSamples));

// Send some samples to the right of the split

int rightSamples = (int)(floorf((1-val)*nSamples));

// There’s probably one sample left over by the

// rounding. Probabilistically assign it to the left or

// right.

if (leftSamples + rightSamples != nSamples) {

float fval = val*nSamples - leftSamples;

if (randFloat() < fval) leftSamples++;

else rightSamples++;

}

int samplesFound = 0;

// Descend the left subtree.

if (leftSamples > 0) {

samplesFound += left->lookup(query, ids, weights,

leftSamples, p*val);

}

// Descend the right subtree

if (rightSamples > 0) {

samplesFound += right->lookup(query,

ids + samplesFound,

weights + samplesFound,

rightSamples, p*(1-val));

}

return samplesFound;

}

// Recursively compute the bounds of each cell in the

// dimension that that cell cuts along.

void computeBounds(float *mins, float *maxs) {

minVal = mins[cutDim];

maxVal = maxs[cutDim];
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maxs[cutDim] = cutVal;

left->computeBounds(mins, maxs);

maxs[cutDim] = maxVal;

mins[cutDim] = cutVal;

right->computeBounds(mins, maxs);

mins[cutDim] = minVal;

}

// The dimension along which this cell cuts

int cutDim;

// The cut value and bounds in that dimension

float cutVal, minVal, maxVal;

// The children of this node

Node *left, *right;

};

// A leaf node. Has an id and a position.

class Leaf : public Node {

public:

int lookup(const float *query, int *ids,

float *weights, int nSamples, float p) {

// p is the probability with which one sample arrived

// here. Calculate the correct probability, q, by

// evaluating the Gaussian.

float q = 0;

for (size_t i = 0; i < position.size(); i++) {

float delta = query[i] - position[i];

q += delta*delta;

}

q = expf(-q);

// Weight each sample by the ratio of the correct

// probability to the actual probability.

*weights = nSamples * q / p;

*ids = id;

return 1;
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}

int id;

vector<float> position;

};

// Construct a kd-tree node from an array of position vectors

Node *build(const float **pos, int n) {

// Compute a bounding box

vector<float> mins(dimensions, +INF), maxs(dimensions, -INF);

for (int i = 0; i < n; i++) {

for (int j = 0; j < dimensions; j++) {

if (pos[i][j] < mins[j]) mins[j] = pos[i][j];

if (pos[i][j] > maxs[j]) maxs[j] = pos[i][j];

}

}

// Find the longest dimension

int longest = 0;

for (int i = 1; i < dimensions; i++) {

if (maxs[i] - mins[i] > maxs[longest] - mins[longest]) {

longest = i;

}

}

if (maxs[longest] - mins[longest] > sizeBound) {

// If it’s large enough, cut in that dimension and make a

// split node

Split *node = new Split;

node->cutDim = longest;

node->cutVal = (maxs[longest] + mins[longest])/2;

// resort the input over the split

int pivot = 0;

for (int i = 0; i < n; i++) {

// The next value is larger than the pivot

if (pos[i][longest] >= node->cutVal) continue;

// We haven’t seen anything larger than the pivot yet

if (i == pivot) {

pivot++;

continue;

}



APPENDIX B. GAUSSIAN KD-TREE SOURCE CODE 111

// The current value is smaller than the pivot

swap(pos[i], pos[pivot]);

pivot++;

}

// Build the two subtrees

node->left = build(pos, pivot);

node->right = build(pos+pivot, n-pivot);

return node;

} else {

// Make a leaf node with a sample in the center of the

// bounding box

Leaf *node = new Leaf;

node->id = leaves++;

node->position.resize(dimensions);

for (int i = 0; i < dimensions; i++) {

node->position[i] = (mins[i] + maxs[i])/2;

}

return node;

}

}

Node *root;

int dimensions;

float sizeBound;

int leaves;

};



Appendix C

Bilateral filter source code

This appendix demonstrates how to use the permutohedral lattice to perform a color

bilateral filter. We assume an image type is available that provides a reference to the

pixel at x, y in color channel c via im(x,y,c). This implementation is intended to

be as simple as possible. Numerous optimizations could be applied. One significant

optimization would be to generate position and value vectors on the fly while splatting

and slicing rather than pregenerating them as this code does.

// A bilateral filter of a color image with the given spatial standard

// deviation and color-space standard deviation

void bilateral(Image im, float spatialSigma, float colorSigma) {

// Construct the five-dimensional position vectors and

// four-dimensional value vectors

vector<float> positions(im.width*im.height*5);

vector<float> values(im.width*im.height*4);

int idx = 0;

for (int y = 0; y < im.height; y++) {

for (int x = 0; x < im.width; x++) {

positions[idx*5+0] = x/spatialSigma;

positions[idx*5+1] = y/spatialSigma;

positions[idx*5+2] = im(x,y,0)/colorSigma;

positions[idx*5+3] = im(x,y,1)/colorSigma;

positions[idx*5+4] = im(x,y,2)/colorSigma;

values[idx*4+0] = im(x,y,0);
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values[idx*4+1] = im(x,y,1);

values[idx*4+2] = im(x,y,2);

values[idx*4+3] = 1.0f;

idx++;

}

}

// Perform the Gauss transform. For the five-dimensional case the

// Permutohedral Lattice is appropriate.

PermutohedralLattice::filter(&positions[0], 5,

&values[0], 4,

im.width*im.height,

&values[0]);

// Divide through by the homogeneous coordinate and store the

// result back to the image

idx = 0;

for (int y = 0; y < im.height; y++) {

for (int x = 0; x < im.width; x++) {

float w = values[idx*4+3];

im(x,y,0) = values[idx*4+0]/w;

im(x,y,1) = values[idx*4+1]/w;

im(x,y,2) = values[idx*4+2]/w;

idx++;

}

}

}



Appendix D

Non-local means source code

This appendix demonstrates how to use the permutohedral lattice or Gaussian kd-tree

to perform non-local means denoising. As in the previous appendix, we assume an

image type is available that provides a reference to the pixel at x, y in color channel

c via im(x,y,c). We use the TNT and Jama linear algebra libraries [41] to compute

eigenpatches for dimensionality reduction.

#include <tnt/tnt.h>

#include <jama/jama_eig.h>

// A random integer in the range [min, max)

int randomInt(int min, int max) {

return (rand() % (max - min)) + min;

}

// Denoise an image using non-local means, including dimensionality

// reduction of patch-space with PCA.

void nlmeans(Image im, float spatialSigma, float patchSigma,

int patchDimensions, float patchMaskSigma) {

// Our patches are weighted with a Gaussian mask of standard

// deviation patchMaskSigma. Their footprint is three times this

// in each direction, in order to extend to three standard

// deviations.

int patchRadius = (int)roundf(patchMaskSigma*3);

int patchSize = (patchRadius*2+1)*(patchRadius*2+1);
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// Compute the Gaussian mask

vector<float> mask(patchSize);

int idx = 0;

for (int y = -patchRadius; y <= patchRadius; y++) {

for (int x = -patchRadius; x <= patchRadius; x++) {

float distance = x*x + y*y;

mask[idx] = expf(-distance/(2*patchMaskSigma*patchMaskSigma));

idx++;

}

}

// Storage for a patch with three color channels

vector<float> patch(patchSize*3);

// To perform dimensionality-reduction with PCA, first we need to

// compute the covariance matrix of the patches in this image. We

// use the TNT and JAMA linear algebra libraries for this

// (http://math.nist.gov/tnt/documentation.html).

TNT::Array2D<double> covariance(patch.size(), patch.size(), 0.0);

TNT::Array1D<double> mean(patch.size(), 0.0);

// Randomly sample 10000 patches from the input image in order to

// gather covariance statistics.

const int patchSamples = 10000;

for (int iter = 0; iter < patchSamples; iter++) {

// Don’t consider patches near the boundary, to avoid dealing

// with boundary conditions.

int px = randomInt(patchRadius, im.width-patchRadius);

int py = randomInt(patchRadius, im.height-patchRadius);

// Extract a Gaussian-weighted patch

idx = 0;

for (int y = py-patchRadius; y <= py+patchRadius; y++) {

for (int x = px-patchRadius; x <= px+patchRadius; x++) {

patch[idx*3+0] = mask[idx]*im(x,y,0);

patch[idx*3+1] = mask[idx]*im(x,y,1);

patch[idx*3+2] = mask[idx]*im(x,y,2);

idx++;

}

}
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// Add its statistics to the running totals

for (int i = 0; i < (int)patch.size(); i++) {

mean[i] += patch[i];

for (int j = 0; j < (int)patch.size(); j++) {

covariance[i][j] += patch[i]*patch[j];

}

}

}

// Subtract the mean and normalize the covariance matrix

for (int i = 0; i < (int)patch.size(); i++) {

for (int j = 0; j < (int)patch.size(); j++) {

covariance[i][j] -= mean[i]*mean[j]/patchSamples;

covariance[i][j] /= patchSamples;

}

}

// Now compute the eigenvectors of the patch covariance matrix

JAMA::Eigenvalue<double> eig(covariance);

TNT::Array2D<double> eigenvectors(patch.size(), patch.size());

eig.getV(eigenvectors);

// Allocate storage for the position vectors. They have

// patchDimensions patch-similarity terms, and 2 spatial terms.

vector<float> positions(im.width*im.height*(patchDimensions+2));

// We can now compute the position vectors by projecting each

// Gaussian-weighted patch onto the basis provided by the

// eigenvectors

int posIdx = 0;

for (int y = 0; y < im.height; y++) {

for (int x = 0; x < im.width; x++) {

// Add the spatial terms first

positions[posIdx*(patchDimensions+2)+0] = x/spatialSigma;

positions[posIdx*(patchDimensions+2)+1] = y/spatialSigma;

// Initialize the patch terms to zero

for (int i = 0; i < patchDimensions; i++) {

positions[posIdx*(patchDimensions+2)+2+i] = 0.0f;

}

// Gather the Gaussian-weighted patch at this location and
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// construct the patch terms

int patchIdx = 0;

for (int dy = -patchRadius; dy <= patchRadius; dy++) {

for (int dx = -patchRadius; dx <= patchRadius; dx++) {

// Use clamping for boundaries

int imx = x+dx, imy = y+dy;

if (imx < 0) imx = 0;

if (imx > im.width-1) imx = im.width-1;

if (imy < 0) imy = 0;

if (imy > im.height-1) imy = im.height-1;

float r = im(imx, imy, 0);

float g = im(imx, imy, 1);

float b = im(imx, imy, 2);

for (int i = 0; i < patchDimensions; i++) {

positions[posIdx*(patchDimensions+2)+2+i] +=

eigenvectors[patchIdx*3+0][i]*r +

eigenvectors[patchIdx*3+1][i]*g +

eigenvectors[patchIdx*3+2][i]*b;

}

patchIdx++;

}

}

// Scale the patch terms by the patch standard deviation

for (int i = 0; i < patchDimensions; i++) {

positions[posIdx*(patchDimensions+2)+2+i] /= patchSigma;

}

posIdx++;

}

}

// We now have our position vectors. Next, construct the value

// vectors.

vector<float> values(im.width*im.height*4);

idx = 0;

for (int y = 0; y < im.height; y++) {

for (int x = 0; x < im.width; x++) {

values[idx*4+0] = im(x,y,0);

values[idx*4+1] = im(x,y,1);
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values[idx*4+2] = im(x,y,2);

values[idx*4+3] = 1.0f;

idx++;

}

}

// Now we perform the Gauss transform. We choose an algorithm

// based on dimensionality.

if (patchDimensions+2 >= 12) {

GKDTree::filter(&positions[0], patchDimensions+2,

&values[0], 4,

im.width*im.height,

&values[0]);

} else {

PermutohedralLattice::filter(&positions[0], patchDimensions+2,

&values[0], 4,

im.width*im.height,

&values[0]);

}

// Finally, divide through by the homogeneous coordinate and store

// the output.

idx = 0;

for (int y = 0; y < im.height; y++) {

for (int x = 0; x < im.width; x++) {

float w = values[idx*4+3];

im(x,y,0) = values[idx*4+0]/w;

im(x,y,1) = values[idx*4+1]/w;

im(x,y,2) = values[idx*4+2]/w;

idx++;

}

}

}
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