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Abstract

Power consumption limits have changed how processors are designed today: designers

now need to be very careful to use their energy budgets efficiently. While a design

option may be used to increase performance, it usually comes at an energy cost.

Thus, to create a truly efficient processor, the designer must consider the space of all

available options and parameters and make those design choices that offer the best

rate of return in terms of performance per unit energy. Performing this efficiency

optimization presents several challenges. First, the design space of a processor can

be very large, and designers need a way of exploring this multi-dimensional space

effectively. Second, the costs of the architectural units are directly dependent on

the circuits that are used to implement them; these circuits, however, have a design

space of their own and can internally trade off speed for energy. As a result, to

properly evaluate the cost of an architectural feature, designers need to be aware of

the circuit-level design spaces as well.

This work presents an integrated optimization framework that addresses these

challenges by performing a co-exploration of the architectural and circuit-level design

spaces. In this framework, we model large architectural design spaces by using sta-

tistical sampling and fitting techniques, and we characterize circuit design trade-offs

for underlying units which we store in a library. We then link these two design spaces

together to create a joint architecture-circuit model. By using posynomial functions

for our models, we are then able to form a geometric program optimization problem
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that we can solve efficiently with convex solvers.

The resulting optimization framework enables a designer to optimize large design

spaces for various design objectives and under different resource constraints, including

both area and energy. It identifies, for a given design problem specification, the

optimal design parameters in both the architectural and circuit domains. The tool can

also be used to map out cost-performance trade-offs within a design space, allowing

the designer to select the design that best meets his needs.

We apply this framework to study energy-performance trade-offs in general pur-

pose processor design. We consider six different high-level architectures, from a sim-

ple single-issue in-order processor to a quad-issue out-of-order processor. Optimizing

across this space for different performance targets, we identify the order in which

high-level architectural features should be considered as one seeks more performance.

Starting from a single-issue in-order processor for low energy budgets, our results

show that to increase performance efficiently, a designer should consider first increas-

ing issue width to two, then adding an out-of-order execution engine, and ending with

a further increase in issue width to end with the quad-issue out-of-order processor for

very high-performance targets.

Adding voltage scaling changes these results dramatically. Our results show that

architecture and circuit design techniques have a rapidly changing marginal cost pro-

file, with many options having either very low or very high marginal costs. Since

the marginal cost of obtaining additional performance through voltage changes more

slowly, we find that when we optimize the system jointly with voltage, the set of effi-

cient architecture and circuit design features become confined to a small sweet spot

for a large part of the design space. Thus, when optimized with voltage as a parame-

ter, two high-level architectures—the dual-issue in-order processor and the dual-issue

out-of-order processor—are efficient over almost the complete range of performance

targets.
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Chapter 1

Introduction

Computer system design is currently undergoing a significant shift. Historically, chip

design was focused, for the most part, on maximizing performance within a con-

strained die area. However, changes in device characteristics brought on by contin-

ued technology scaling—in addition to the emergence of a large mobile computing

market—have caused a fundamental shift in the design constraints: power consump-

tion constraints now play a major role in defining how we design the silicon chips that

drive our electronics.

This change in design constraints has had a significant impact on system design.

With power considerations now limiting the achievable performance, designers can no

longer apply all the aggressive design techniques they once used to; achieving a desired

performance target requires careful management of the power budget. Moreover, with

voltages no longer scaling with technology nodes as they once did, power constraints

will become even more stringent in the future. Thus, regardless of whether one is

designing low-power embedded mobile devices or high-performance servers, power

consumption is now a critical factor in determining the system’s overall performance.

In this new power-constrained era, the principal design objective is to achieve

energy efficiency. Designers need to find ways to make the most of their power

1



2 CHAPTER 1. INTRODUCTION

budgets, and—in addition to finding new, more energy-efficient design techniques—

this requires ways of exploring existing design spaces to enable designers to tune their

systems for efficient operation.

The process of optimizing a design for energy efficiency requires that designers

perform a systematic trade-off analysis; they need to consider the cost-benefit trade-

offs of all design options, choosing those with the best returns. By choosing design

features with low marginal costs (i.e. energy cost per unit performance) and staying

away from design options with high marginal costs, a designer can produce a more

efficient system that best uses the available power budget.

While performing this optimization is simple in theory, it is quite difficult to

perform in practice because of the size of the design space at hand. The number

of design options at a microarchitecture level alone can be very large, and if the

designers truly want to optimize the whole system, they need to consider the circuits

and technology parameters as well; each of these domains, by itself, is challenging to

explore and optimize.

In the past, optimization efforts have focused mostly on each of these design

spheres independently. Years of research in each of these fields have produced various

optimization tools and studies, with the most recent of these focusing on power-

performance optimization, but these tools typically optimize for a given layer only.

To truly optimize the whole system, however, a designer needs to consider all levels of

the hierarchy. The energy consumption of a microarchitecture, for example, depends

directly on the energy consumption of the circuits that it uses, and any thorough

optimization of the microarchitecture needs to consider the circuit design. Unfortu-

nately, communication of design possibilities and constraints between the layers of

the hierarchy are typically very limited, and current tools are generally unable to

expose the entire realm of possibilities from one domain to the higher level domain.

Thus, we find that existing microarchitectural power estimation tools generally only
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use fixed energy costs per circuit (based on a single design) to perform their analysis,

and are oblivious to the different circuit implementations available.

In this dissertation, we close this architecture-circuit modeling gap by creating the

first general circuit-aware approach to architectural analysis, presenting an integrated

architecture-circuit modeling and optimization framework. Our approach brings to-

gether and leverages recent advances in modeling methodologies to create a powerful

yet flexible framework for optimizing digital systems: we apply statistical regression

techniques to build models of large architectural spaces, and we leverage existing

circuit optimization tools to characterize circuit trade-offs. We then integrate these

models together to characterize a large joint architectural and circuit design space.

Finally, by using posynomials—mathematical functions with a special form—for cre-

ating our models, we enable the use of powerful convex optimizers to search the joint

architecture-circuit system.

The resulting framework allows the designer to systematically analyze design

trade-offs in a large microarchitecture-circuit design space, evaluating marginal costs

of design options and identifying the most attractive design features. Furthermore,

because it applies a sample-and-fit approach to creating models, the framework is gen-

eral and flexible. Existing system simulators—which should exist in any architectural

design space exploration environment—are used to extract a relatively small set of de-

sign space samples from the very large space of possible designs, which the framework

then uses to create models for large architectural design spaces. By joining these archi-

tectural models with circuit trade-offs—which can be generated using the designer’s

tool of choice—the framework is able to explore the joint architecture-circuit space

of energy-performance trade-offs to find the most energy-efficient designs.

We use this framework to optimize processor designs for energy efficiency. In our

study, we consider various high-level architectures, from a simple in-order processor

to an aggressive quad-issue out-of-order processor, optimizing not only the numerous
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microarchitectural design knobs within each of these designs, but optimizing down to

the circuit level as well.

Our results show that performing a joint optimization results in more energy-

efficient designs over traditional architecture-only optimizations. While a fixed-cost

approach is constrained to a single design and cannot adapt to different design objec-

tives, a circuit-aware approach allows the optimizer to select the appropriate circuit

based on the particular needs of the architecture and the design objective specified

by the user. Slower, lower-energy circuits are used in parts of the design where the

marginal cost savings warrants it, and faster, higher-energy circuits are used where

performance is critical. By empowering the optimization with more circuit choices,

the optimization framework is able to achieve significant energy savings and perfor-

mance benefits over the entire energy-performance space.

Finally, we study the designs in the overall processor design space to show how the

marginal cost profile of the joint architecture and circuit design space changes fairly

rapidly: many design options turn out to be either very cheap or expensive, and

the transition between these two extremes occurs quickly. Contrasting this behavior

to the behavior of voltage scaling—an equally powerful means of trading-off energy

and performance—we see that achieving performance through voltage has much more

stable marginal costs. Because of voltage scaling’s attractive marginal cost profile, this

result suggests that voltage scaling is often an efficient means of trading-off energy for

performance. Thus, we have found that applying the principles of marginal costs in

a disciplined fashion results in a surprisingly small sweet spot of architecture/circuit

design points being interesting for energy efficient operation when voltage scaling is

available as a design knob.

We begin our discussion in the next chapter with some background on the power

crisis that has led to the importance of energy efficiency, and modeling and opti-

mization efforts, especially in the processor design space. We then strengthen our
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case for a systematic framework for processor optimization that can look at multi-

ple layers of the design hierarchy simultaneously. In Chapter 3 and Chapter 4, we

subsequently present the details of our circuit-aware architectural modeling and op-

timization framework. Finally, in Chapter 5 we present the results of applying this

framework to the processor design space, examining the advantages of performing

joint circuit-architecture optimization and evaluating marginal costs in the processor

design space.



Chapter 2

Background

The design of a digital electronic system, like the design of any engineered system,

is an optimization problem: the designer has various resources (many of which may

be limited and/or costly), design constraints, and a design objective that needs to be

maximized or minimized. Faced with this problem, the task of the designer is to find

a solution that best achieves the design goals.

Historically, the optimization objective in chip design was to produce chips that

provided the most performance at reasonable production costs (i.e. chip area). More

recently, however, changes in technology scaling have resulted in more restrictive

power constraints that are changing the optimization problem. Whereas power dis-

sipation used to be a secondary concern for high-performance designs, designers now

face hard power constraints that significantly limit the system. These constraints

directly affect the amount of computation a design can perform, and, therefore, the

performance that can be achieved. In this new era of design, power is no longer a con-

sideration for only low-power embedded devices; rather, design for energy efficiency

is critical for all designs.

In this chapter, we examine the general problem of designing and optimizing

systems for energy efficiency. We first discuss the fundamental causes of the power

6
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constraints, showing why design for energy efficiency is so important today. We

next examine the general principles of design in such a power-constrained world. We

then consider the particular challenges in modeling and optimizing a complex digital

system such as a processor, ending with an overview of our optimization framework

that proposes to solve these challenges.

2.1 Power-Constrained Design & Energy Efficiency

In the past, chip designers could traditionally count on technology scaling to contin-

ually improve their designs. With each successive technology generation, technology

scaling produced better devices that achieved gains on virtually all fronts: transis-

tors got smaller, transistors got faster, and transistors also consumed less energy per

switching activity. In addition to all these benefits, by following Dennard’s constant-

field scaling [19]—in which one scales supply voltage along with feature sizes—designs

were able to maintain constant power densities throughout these scaling generations.

The future of digital design—although not without challenges—was, at the time,

looking good.

As scaling continued into feature sizes below 130 nm, however, technology scaling

faced some new challenges in rising leakage currents. The fundamental problem,

which Dennard had noted in his paper, was that the thermal voltage, kT/q, does

not scale with technology nodes; this means that transistor leakage currents grow

exponentially as threshold voltages are lowered [35]. Unfortunately, below the 130

nm node, technology scaling had finally reached the point where transistor leakage

currents threatened to become a considerable source of power dissipation, and device

technologists had little choice but to dramatically reduce the scaling of transistor

thresholds in order to keep leakage power in check. This, however, also prevented

further supply voltage scaling, as lowering the voltage without changing thresholds
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would reduce the voltage overdrive, resulting in significant performance losses. Today,

as we move to the 32 nm technology node, supply voltages remain at around 1 V,

roughly where they were for the four previous technology generations.

The inability to practically scale voltages has considerable consequences for power

consumption in designs when scaling. Traditionally, scaling by a factor α (where α

is a unitless scaling factor; α < 1) would cause the energy to perform an operation

to scale with α3 (E = CV 2; C and V scale with α), but with voltages no longer

scaling, that energy now only scales with α. As area continues to scale with α2, and

the frequency of a fixed design now scaling at a factor between 1 and
1

α
[28], power

densities are expected rise, scaling by between
1

α
and

1

α2
(power density =

E × f

A
),

a significant increase over the constant power densities that came with constant-field

scaling. The resulting situation is that to continue scaling—which is still driven by the

economics of chip production—designing within power dissipation limits will become

increasingly difficult.

The situation becomes even more dire when one considers that, even before the

changes in technology scaling, designers were already facing rising power consumption

envelopes. As Figure 2.1 shows, processor power consumption has been steadily rising

over the years; ever since the early 2000s, commercial microprocessors have hit a

“power wall” and have been operating at the limits of air cooling. What is interesting

to note is that this figure shows increasing power levels despite Dennard’s scaling rules,

which suggest that processors should maintain constant power densities. The reason

for this apparent contradiction is that Dennard scaling assumes that a design remains

unchanged through scaling generations; a fixed design is scaled, resulting in a smaller

area, lower power, but constant power density. Designers, however, have not been

content with relying on scaling alone; rather, they have continually advanced their

designs, using resources such as extra area and power to add more features and create

more complex designs. Because of these more aggressive designs, we have witnessed
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Figure 2.1: Plot of the power consumption of various commercial processors over the
past 25 years. Power consumption has been steadily rising, hitting a “power wall” at
approximately 130 Watts. High-performance designs today are now constrained by
this power dissipation limit.

a relative increase in the number of transistors switched per cycle; the use of deeper

pipelines with higher frequencies than what Dennard predicted, and more aggressive

design features, in addition to some growth in die area, has led to a steady increase

in power. While this effect is separate from the increase in power that is caused by

the slow-down in voltage scaling—which is a more recent phenomenon—it makes the

problem of designing within power limits even more difficult as we continue to move

forward.
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2.1.1 Power and Energy

With power constraints being so stringent, designers today need to manage their

power levels carefully. Examining the definition of power,

Power =
energy

second
=

energy

operation
× operations

second
(2.1)

we find that there are two primary means by which a designer can reduce power con-

sumption. The first is to reduce the number of operations per second. This approach,

however, simply reduces performance to save power. It is analogous to slowing down

a factory’s assembly line to save electricity costs; although power consumption is re-

duced, the factory output is also reduced and the electricity used per unit of output

remains unchanged. If, on the other hand, a designer wishes to maintain—or even

improve—performance under a fixed power budget, a reduction in the fundamen-

tal energy per operation is required. It is this reduction in energy, not power, that

represents real gains in efficiency.

This distinction between power and energy is an important one. Even though

designers typically face physical power constraints that stem from power supply and

dissipation issues (e.g. heat dissipation), to increase efficiency (i.e. performance per

unit power) requires that the fundamental energy of operations be reduced. While one

could consider power-performance trade-offs, this can be misleading because power is

a rate of energy consumption (watts = joules/second) and is directly affected by the

performance; what may seem like a trade-off may just be a modulation in performance

resulting in changes in power consumption. In fact, for this reason, it is often easy to

achieve some trade-off between performance and power; simply decreasing the clock

frequency (without changing voltage),1 for example, results in both less power and

1If one also scales voltage as is done in dynamic voltage and frequency scaling (DVFS), then this
does represent an increase in energy efficiency. The increased energy efficiency, however, essentially
comes from the voltage scaling.
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Figure 2.2: Illustration of the energy-performance trade-off space. As a designer
considers all possible design implementations, an efficient frontier can be identified.
Designs not on the frontier are inefficient, because there exist other designs that can
achieve the same performance using less energy. Designs on the frontier, on the other
hand, are optimal for their given level of performance. This frontier also demonstrates
the fundamental trade-off between energy and performance, with higher performance
designs requiring higher energy. In optimization for energy efficiency, the designer
seeks to find the design configurations that lie on this frontier.

performance, but this does not reflect any improved efficiency. Thus, even though

the designer may be facing a power constraint, it is energy per operation that is the

more meaningful metric to use when evaluating the efficiency of a design.

2.1.2 Energy-Performance Trade-offs & the Efficient Frontier

With energy per operation (not power) as the primary cost metric for energy effi-

ciency, design then becomes a process of evaluating the trade-offs between energy per

operation and the achievable performance. To find a good design, a designer must

consider different design alternatives; each potential design the designer evaluates

will offer a certain amount of performance and will also consume a certain amount of

energy. By comparing how well the different designs meet the design objectives, the

designer can gradually move towards a more optimal design.

The resulting design optimization problem is illustrated in Figure 2.2. Here, the
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design space exploration process is extended over a large number of designs, and the

performance and energy per operation of each design is plotted in the performance-

energy space. In the context of this figure, the goal of the designer is to choose a

design as far to the right (higher performance) and to the bottom (lower energy) as

possible.

Examining the figure, we first note that many of the design points in the space are

inefficient: there exist other design points which have at least the same performance,

but with lower energy. If performance and energy are the only considerations, these

designs should never be used. If we ignore all these inefficient points, then what

remains is the set of design points that form the energy-efficient frontier (also referred

to as the Pareto-optimal curve), which is represented in the figure with a curve. The

designs on this frontier constitute the most energy efficient design points for different

performance targets.2

This frontier demonstrates the fundamental trade-off between energy per opera-

tion and performance: to get higher performance, one needs to use more aggressive

designs that require more energy. One can use a higher energy, higher performance

design or choose a lower performance design with a lower energy cost. There is no

single optimal design, but rather an entire set of optimal designs. In this context, it

should be noted that using a higher energy design point does not necessarily mean

that it is inefficient; as long as it is the best design for its performance level, it is still

referred to as energy-efficient.

Determining the particular design point that is best for a given design problem is

a matter of design objectives and possibly the energy cost one is willing to pay to get

performance. If the design problem is to achieve a performance target with the least

energy, the optimal design will be at the intersection of the frontier and a vertical line

2Equivalently, one can view these design points as those that maximize performance for different
energy budgets.
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Figure 2.3: Different optimization problems and their relation to the energy-efficient
frontier: (a) represents the case of minimizing energy for a given performance require-
ment (vertical dotted line); (b) represents the case of maximizing performance for a
given energy budget (horizontal dotted line). (c) EDn metrics are popular alternative
optimization metrics that minimize the design space with respect to the EDn cost
function. In a log-log plot, these cost function contours map to lines of slope n, as
shown in this figure. EDn metrics such as ED and ED2 typically yield balanced
designs, but do not directly map to specific performance targets or energy budgets.

representing the performance target; similarly, if the design problem is to maximize

performance under an energy budget, then the optimal design is at the intersection

of the frontier with the horizontal energy budget line. These scenarios are shown in

Figure 2.3a and Figure 2.3b respectively.

One can also optimize for other metrics. For example, ED and ED2 metrics are

two commonly used metrics in design for energy efficiency. These EDn metrics try

to find a balanced design point by essentially setting a cost ratio between energy and

performance; neither is allowed to be sacrificed too much for the other. The choice of

n depends on how much one favors performance versus the energy cost. Graphically,

optimizing for EDn objectives means minimizing against a set of cost contours, which

in a log-log energy-performance plot correspond to lines of slope n. As a higher value

of n is chosen, higher sloped lines will cause a higher performance point to be tangent

to the minimum cost line. One example is shown schematically in Figure 2.3c.
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Practically, ED and ED2 metrics are useful because they usually yield balanced

designs. Strictly speaking, however, they can be viewed as somewhat arbitrary metrics

in the sense that they do not consider a specific performance target or energy budget

that needs to be met. Thus, it is unclear which design point an EDn metric will

produce with respect to these design specifications. It is also unclear which value of

n the designer should use, since this is not restricted to be 1 or 2, but can be any real

number (e.g. n = 1.5 could work as well).

For these reasons, we rely on the basic energy-performance curves to provide

a more complete picture of the design space. Whereas optimizing for a particular

metric produces only a single design, a trade-off curve exposes the entire space of

possibilities to the designer and allows for a more complete evaluation of the trade-

offs in the design space. Using performance requirements and design constraints, the

designer can then choose which point on the curve best meets his needs. This is

the approach we take when we examine energy-performance trade-offs in processors

designs in Chapter 5.

We end this section by considering the energy-performance space of real micro-

processor designs in Figure 2.4. This figure plots the energy per operation and perfor-

mance of various historical processors—first normalizing them for voltage and tech-

nology scaling to make the comparison fair—and showing the energy-efficient frontier

for real processors.

With respect to this energy-efficient frontier, design for efficiency involves two

distinct, albeit related, challenges. On the one hand, designers are always seeking to

innovate new design techniques that push this frontier out to achieve lower energy

and higher performance. For example, one can view techniques such as power and

clock gating, at the time that they were introduced, as increasing the design space

of possibilities and extending the lower bound of the frontier to lower energy design
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Figure 2.4: Plot of historical processors in the energy-performance space. Designs
that maximize performance (to the right) and minimize energy (to the bottom) are
preferred, resulting in an trade-off curve. Finding the designs on this energy-efficient
frontier is the goal of design optimization. The particular design of choice depends
on the designer’s particular needs (i.e. energy budget or performance target).
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points. Complementing innovation, we have on the other hand optimization.3 This

challenge, which is just as important as the first, is to search across an existing, often

large, design space to actually identify how to achieve a design on the frontier. In

this process, a designer needs to consider the space of all different design decisions

and features. Then, by evaluating their performance and energy characteristics, and

comparing them to each other, a designer can gradually optimize a design for more

efficiency. It is this optimization challenge that we focus on in this dissertation. We

examine this topic further in the next section.

2.2 Modeling and Optimization

To achieve energy efficiency in a design, a designer needs to consider all the different

design options and features and must then evaluate them for their benefits and costs.

By applying a trade-off analysis, where the benefits of a design decision are weighed

against its costs, the more efficient design options can be identified, and a designer

can begin to optimize his design.

Formalizing this process, we can denote the various different design parameters

available to a designer with variables xi. In the case of a processor system, for

example, these xi could represent design parameters such as cache sizes, pipeline

depth and the issue-width (to name only a few). The critical metric for performing

optimization is then the marginal cost, MC, of changing a design parameter, xi:

MC(x) =

∂E

∂xi

∂P

∂xi

(2.2)

Here, ∂E
∂xi

is the energy cost (or savings) of changing xi, while the ∂P
∂xi

is the performance

3Many designers like to use the term “optimization” to mean innovation, but in this work, we
distinguish the two terms and use “optimization” in the sense of design space exploration.
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benefit (or loss) with respect to the same design decision.

Equipped with marginal costs, a designer can systematically optimize a system

by selecting those design features with lower costs, and even exchanging those de-

sign features that have a higher cost for others that are cheaper. By following these

optimization rules, a designer will methodically move towards a more efficient de-

sign. An important corollary of applying the principle of marginal costs is that all

marginal costs should always match in an optimal design,4 with an arbitrage oppor-

tunity otherwise existing in which the designer can sell the more expensive feature

and then replace the lost performance by buying the feature with the lower cost. This

observation will be critical in some of our analysis in later chapters.

While performing such a marginal cost analysis is conceptually simple, the real

challenge lies in determining how a design change actually affects the performance and

cost metrics. Thus, at its core, the evaluation of marginal costs and the optimization

of a system is a modeling problem: we need models P (..., xi, ...) and E(..., xi, ...) that

can predict how much the total performance and energy of the system will be affected

by changing any design parameter, xi. For example, if a designer wants to identify

the optimal cache size for his system, then he needs models that can tell him how the

performance and the energy of the entire system change with changing cache sizes.

He can then use these model to evaluate different cache sizes.

Thus, at a high level, the entire design exploration process can be divided into two

separate phases: modeling and optimization. In the first phase, the designer needs to

develop models that accurately describe the system characteristics (e.g. performance,

energy, area) as a function of the design space parameters and options. These models

can be in analytical form or—as is often the case in system design—in the form of

simulation models. Then, once the designer has acceptable models of the system, the

4Unless a design parameter is constrained such that the optimal marginal cost cannot be achieved;
in this case, the design parameter should be at its limit.
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designer needs to search the design space described by the models to find an optimal

design; it is during this phase that the designer needs to evaluate the cost-benefit

trade-offs.

Although the basic process is straightforward, there are challenges in both these

phases. First, creating models of complex systems can be hard, especially when one

considers that the space of designs that need to be modeled can be large and that

the model evaluation time can become a critical bottleneck [34]. For example, while

simulation models are common for system design, these are long-running (taking sev-

eral hours to days to evaluate a single design) and can hinder the entire optimization

process. We examine this problem and possible solutions in more detail in Chapter 3.

The second phase—searching the space to find an optimal design—can be as chal-

lenging as the first. The design space is often high-dimensional, growing exponentially

with the number of parameters. Finding a good design can, therefore, be hard, the

exponentially-growing size of the space making an exhaustive search intractable for

most practical design spaces. Compounding this problem, the space may also have lo-

cal optima, making the search more complex and making it difficult to know whether

one has truly found the best design.

2.2.1 Optimization and Geometric Programming

To help with the design space exploration problem, numerous heuristic optimization

techniques have been developed that try to find good designs. Algorithms such as

simulated annealing and genetic optimization [17], for example, search the space while

trying to avoid getting stuck in a local optimum. These approaches have shown to be

effective for many problems—particularly problems with discrete design spaces—but

still take a long time to perform their analysis and only probabilistically find the

optimal design.



2.2. MODELING AND OPTIMIZATION 19

Fortunately, in certain cases, the form of the design space can be such that per-

forming the optimization or design space exploration can be much more efficient. For

example, one well known class of optimization problems which can be solved effi-

ciently are linear programs [16], where the system can be described as a set of linear

constraints. Using mathematical techniques that take advantage of the form of the

problem, linear programs can be solved very quickly, even for very high-dimensional

spaces.

Over the past several decades, optimization research has shown that linear pro-

grams are, in fact, only a subset of much larger class of optimization problems, termed

convex optimization problems [9], that can be solved efficiently to find the global op-

timum. If a problem characterization can be shown to map to a convex optimization

problem, then the search phase can be solved rapidly, with even problems with thou-

sands of or more variables being solvable in minutes or hours.

Further optimization research has been able to expand the applicability of convex

optimization to different types of problems. One important optimization class for

various design problems, including this work, is the geometric program (GP) [8]. A

GP is a kind of optimization problem with a special form that uses particular functions

known as posynomials to describe the characteristics of the system. A posynomial is

a mathematical expressions consisting of the sum of any number of positive monomial

terms, where monomials are the product of powers of variables. For example, kxaybzc

is a monomial in the variables x, y and z (with k, a, b, and c as constants), while

k1x
aybzc + k2x

d with k1 ≥ 0, k2 ≥ 0, is a posynomial in x, y and z because it is the

sum of two positive monomials.

Having defined posynomials, the GP is an optimization problem that allows for

posynomial constraints and objective functions. More formally, the basic form of a
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GP is

minimize f0(x)

subject to fi(x) ≤ 1, i = 1, ...,m

gi(x) = 1, i = 1, ..., n

where fi are posynomial functions, gi are monomial functions, and xi are the design

optimization variables. Although, strictly speaking, GPs are not convex optimiza-

tion problems, GPs can be mapped to a convex space through a log-transformation,

meaning that GPs can be solved just as efficiently as regular convex optimization

problems.

To give the reader a sense of how GPs are applied, we present a simple optimization

problem for the energy-performance design problem of the previous section.

minimize E(x),

subject to T (x) ≤ Ttarget

xmin ≤ x

x ≤ xmax

Here x is a vector of design variables in the design space, and we are trying to minimize

total energy, E, while achieving an execution time, T , that meets the minimum

execution time specification, Ttarget. Each of the design variables is also constrained

to values between the vectors xmin and xmax. In this problem, to increase performance

(reduce execution time), we must change some design variable xi, but this also affects

the total energy. Conversely, if we try to reduce total energy, we must do so through a

design knob, and this will affect total performance. Thus, changing a design knob has

an effect on both energy and performance, which results in an energy-performance
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trade-off. It should be noted that while the constraints have not been written in the

form of fi(x) ≤ 1 they can be easily manipulated to be in such form. In the general

case, there is no guarantee that the functions E(x) and P (x) will be posynomial, but

if it can be shown that these functions can be modeled with posynomials, then GPs

can be used find the optimal values of the design parameters in x.

While it may be ineffective to use any of these optimization methods if the problem

intrinsically lacks the appropriate form, numerous design problems have been shown

to be convex [6, 43, 67, 63, 62, 11, 57, 32, 66, 18, 10]. When one can identify a design

problem as being convex, then formulating convex optimization problems enables

convex solvers to globally optimize the system in a quick and robust fashion. In

Chapters 3 and 4, we show how most of the energy and performance models for both

the architecture and circuit design spaces of digital systems can actually be captured

well with posynomial functions. For example, many architectural design knobs have

a monotonic, diminishing returns profile; changing parameters such as instruction

window sizes, cache sizes or functional unit latencies typically either smoothly increase

or smoothly decrease performance. These characteristics—and even some other more

complex effects—can be modeled well by posynomials. We take advantage of this

property to formulate the system optimization problem as a geometric program. This

allows us to rigorously optimize digital systems for energy efficiency, and identify the

energy-efficient frontier of Figure 2.2.

2.3 Processor Modeling & Optimization

The previous section discussed the modeling and optimization of systems from a

general perspective. We now examine the particular problem of modeling and opti-

mizing digital electronic systems, with a specific focus on microprocessors, since they

represent one of the most important, best-studied and most complex of all digital
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systems. While the discussion here and in the rest of this work focuses on processors,

the challenges and proposed solutions apply, for the most part, to digital systems in

general.

The primary challenge in modeling and optimizing a digital system such as a

processor arises from the fact that digital systems are complex, hierarchical systems

with large design spaces. At each level of this hierarchy there exist numerous design

decisions. At the lowest level, there are various transistor parameters that can be

tuned to provide devices with different delay and energy characteristics. At the

circuit level, each circuit can be implemented in various different ways with different

characteristics. Similarly, the design of the architecture also involves a large space

of design possibilities. Despite the complexity of the problem, each of these levels of

the design needs to be engineered properly as each can have a potentially significant

impact on the characteristics of the whole system.

While a designer would like to explore the space of all possibilities to optimize

the whole system, the sheer size of the design space that needs to be considered can

quickly make this analysis unwieldy, especially when one notes that each parameter

or design choice in the design space causes the space to grow exponentially. Trying to

explore the space of possibilities for a single level of the design hierarchy, such as the

circuit design or architecture, can be daunting by itself, let alone trying to consider

all aspects of the design simultaneously.

To simplify the design problem, designers rely on design decomposition and ab-

straction across the layers of the hierarchy to enable the design of each layer in relative

isolation. By identifying the critical parameters at the level of interest and abstract-

ing away the lower level details, a designer is able to focus on his particular domain

of the hierarchy, making the design problem more manageable.

The use of hierarchies and abstractions have been a powerful means of manag-

ing the complexity of the design problem; without design decomposition, designing
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large systems such as processors would be virtually impossible. A side effect of ap-

plying design layering, however, is that the communication of design constraints and

capabilities between different layers of the hierarchy sometimes become limited. In

particular, we find that, even though the modeling of circuits and architectures are

very developed areas, the architecture and circuit design spaces are usually optimized

separately: there exists a gap between the two domains, with architectural studies

sometimes only loosely considering the circuit design space. This design abstraction

into layers, along with the inter-layer gap it sometimes creates, has effects on both

the performance and power modeling aspects of the design.

2.3.1 Performance Modeling

We first examine current architectural performance modeling methods, and how

they connect to the lower level layers of abstraction. Years of work in the archi-

tectural domain has led to the development of very mature performance modeling

methodologies. The most important and primary modeling tool used by the ar-

chitect to perform performance evaluations is the architectural performance simu-

lator [24, 7, 42, 4, 59, 68, 69, 70, 46]. In these simulators, to abstract away the

lower-level circuit details, the clock cycle is established as the basic unit of delay, and

all events occur around this basic unit of time. Thus, the latencies of the various dif-

ferent architectural units that form the processing pipeline are all expressed in terms

of the number of clock cycles. While it is understood that the clock cycle time is a

value that is dependent on the delays of the underlying circuits that implement the

architectural functionality, these details are typically abstracted away for the sake of

simplicity. This approach frees the architect to more easily perform studies of new

architectures and features.

This use of design abstraction, however, also requires that care be taken to model

the right system. For one, because cycles within the software simulator are abstract
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delay entities, there is no real connection to the delays of the underlying units. This

means a pipeline stage in a simulator can potentially contain arbitrary amounts of

logic, and there is not much to prevent a careless or novice architect from creating

an unrealistic design with too much logic in a given stage of the pipeline. Thus, it

becomes important for an informed architect to always ensure that all circuits are

accounted for, and that the right system is being modeled.

As a related issue, because architectural simulators operate using cycles, the total

execution time (performance) of a given benchmark application is reported as the

total number of cycles, or, in its normalized form, the number of cycles per instruction

(CPI). It is well-known, however, that true performance is not the number of cycles,

but rather the execution time in seconds. Using the instruction-normalized form, the

total time per instruction, TPI, is

TPI = CPI × Tcycle (2.3)

where Tcycle is the clock cycle time. While architectural studies target CPI, it is again

the duty of the architect to take care to account for the clock frequency, which is a

critical parameter to total performance. For example, there can often be architectural

design innovations that may improve CPI, but which may also increase Tcycle, making

them undesirable. Here again, since there is no systematic approach to incorporating

these effects into the architectural simulation models, an informed architect simply

has to do his best to ensure that his study evaluates any potential effect on the clock

cycle time.

Despite this gap between the architecture-level models and the lower-level circuit

delays, the cycle-based simulation approach to performance modeling has been effec-

tive. The simplicity offered by this abstraction allows for quick exploration of new

designs, and this strength far outweighs the drawbacks of that come with the loose
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modeling of circuit issues. The architect simply needs to separately account for cir-

cuit issues and their effect on the cycle time. Although this may sometimes lead to

some small errors when certain circuit details are not accounted for properly, this has

been an issue that has generally been manageable. Thus, we find that simulators are

powerful tools in performing architectural design evaluations.

2.3.2 Power Modeling

With power consumption becoming an increasingly important concern, we have, more

recently, seen the development of various power estimation tools. Tools such as

Wattch [13], SimplePower [64] and PowerTimer [12] are now important tools that

help guide power-performance analyses and optimizations.

At a fundamental level, the operation of all these power estimation tools is fairly

simple. As an application is simulated, these tools maintain activity counts for each

time a unit is accessed (e.g. adder accesses, D-cache accesses, etc.). These activities

are then multiplied by a per-access power cost for each unit to get the total power

consumed in each unit. Summing the power in all the units then provides the total

dynamic energy, to which a leakage component can then also be added.

In these power modeling approaches, the design hierarchy has again had an impact

on how the modeling is performed. At the heart of the power modeling tools is a

library of energy costs for each unit; the simulator references this library to determine

the per-access dynamic energy cost during its computation. While each unit in this

library is represented by a single energy cost, in reality, a circuit can be implemented

in different ways. Thus, there is, in fact, no single cost; the cost, rather, depends

on the desired circuit implementation. Including the whole space of circuit design

options, however, would complicate the situation, as the power estimation tool would

not know which cost to use. To maintain the simple abstraction model, therefore,

these tools choose a single fixed energy cost, typically using the cost of an circuit
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implementation in an existing chip.

While using a fixed cost has its advantages—particularly being a simple and easy

to use modeling abstraction—the need to now rigorously evaluate energy-performance

trade-offs when optimizing designs for energy-efficiency means that we need a tighter

coupling between design decisions between the architecture and circuit levels. The

energy spent in each of the underlying circuits can have a significant impact on

the energy of the whole system, and designers now need to consider the different

circuit implementations that offer different trade-offs between energy per operation

and performance. For performing large-scale hierarchical optimization of a system,

a single fixed energy cost does not capture the entire space of possibilities, and the

single fixed circuit implementation is not necessarily the right choice for all systems

and design objectives.

To truly optimize the architecture, a circuit-aware framework is required that

takes into consideration the different possible circuit implementations and their char-

acteristics. Building such a framework requires that existing modeling methodologies

and infrastructure be extended to support better communication of design possibilities

between layers to enable a multi-level optimization. In the next section, we provide an

overview of how we build on current approaches to produce an architecture-circuit co-

optimization framework that resolves these issues, and links the architectural models

to the circuit domain. First, however, we end this section by examining some previous

work in the areas of processor optimization and architecture-circuit co-optimization.

2.3.3 Processor Energy-Performance Optimization

Due to the importance of managing power in future systems, there have been nu-

merous prior works examining various aspects of power-performance trade-offs in

microprocessors. The emergence of the aforementioned architectural power modeling
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tools has enabled an increasing number of studies that have focused on perform-

ing design space explorations under power considerations. Along these lines, several

works have examined the optimal pipeline depth from a power-performance perspec-

tive [61, 31, 71], while more recent works have applied advances in modeling method-

ologies to explore larger parts of the space: Karkhanis and Smith used an analytical

modeling approach to study power-performance trade-offs in processor design [41],

while Lee and Brooks used regression-based models to explore an even larger part of

the design space [45]. These works—and a large number of others—have focused on

the architectural domain and provided plenty of insights on energy-efficient design.

We use some of the approaches in these works to create the architectural models

within our circuit-aware optimizer.

Research that explored joint architecture-circuit design has been fewer in num-

ber. Some early concepts of performing a hierarchical optimization of digital systems

were proposed by Markovic et al. in their work examining methods for true energy-

performance optimization [48]. In another work, Zyuban et al. proposed a hardware

intensity metric—simply the relative marginal performance versus energy cost—to

connect the architectural optimization to the circuit behavior [72]; Qi et al. general-

ized some of these concepts [56]. While these works were mostly theoretical in nature,

they established a foundation for creating the practical framework for evaluating joint

architecture-circuit trade-offs that we present.

Despite the lack of a concrete co-optimization framework in the digital design

field, several works in other fields were able to show that co-optimization is possible.

Markovic was able to apply co-optimization to the design of wireless MIMO detection

systems [47], while Sredojevic did the same for high-speed links [60]. Although both

these works focused specifically on a particular systems and included analog circuit

design issues, they both showed significant benefit for the higher-level system, pro-

viding a case for creating a general framework for performing joint optimization for
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Figure 2.5: Example of a joint circuit-architecture optimization for a very simple in-
order machine. For each architectural block, there is an associated circuit trade-off
similar to the one shown for the multiplier. There are also microarchitectural design
knobs, such as the sizes of queues, buffers and caches, which require a more complex
trade-off characterization, as shown for the I-cache. The joint circuit-architecture
optimizer uses these circuit trade-offs, along with models of the architecture and
knowledge of dependencies between instructions, to explore the design space and find
the optimal design.

digital systems.

2.4 Circuit-Aware Optimizer Overview

To provide an overview of the function of a circuit-aware optimization framework,

Figure 2.5 shows a simple in-order processor system design problem. Even though

this particular system is very simple, there are numerous design parameters that need

to be explored and set by an optimization procedure. First, each of the architectural
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blocks can be designed for different delays, with the chosen delay determining the

energy per operation of that unit. This circuit-level trade-off is shown schematically

in the figure for the multiplier block; similar trade-offs exist for other blocks as well,

but are omitted for simplicity. For certain other units in the system, there are also

higher level microarchitectural sizing knobs, such as the sizing of buffers, queues and

caches, that affect the trade-off. In these cases, a more complex circuit trade-off

characterization is required where the energy per operation of the block is dependent

on both the size of the structure and its delay. This kind of trade-off is shown

schematically in the figure for the I-cache block (but, again, exists for certain other

blocks as well).

The task of a circuit-aware architectural optimizer is to determine the optimal

values for each of the delays of the circuits, along with the sizes of any structures, when

applicable. To accomplish this, however, the optimizer needs to know how a change

in any one of these parameters translates into a change in the overall performance and

energy of the whole system. Not all units are equally important to the architecture,

and the optimizer, using application behavior, needs to determine the sensitivity of

each parameter to the overall system characteristics during optimization. Some units,

for example, may be used more frequently than others, making their effect on overall

performance stronger; a designer may desire to allocate more of his energy budget to

these units. As a more complex example, many units in the system can be pipelined,

but whether the one should use a higher latency, pipelined version of a unit depends on

many factors. First, the less aggressive circuitry may mean the energy per operation

of the circuit will decrease, but one also needs to account for the additional energy

in the pipeline registers. Second, one must consider how often that unit finds itself

on a critical dependence loops. If the unit is not often found in critical dependence

loops, then pipelining the circuit can save energy without sacrificing too much in

performance; on the other hand, if a block is often essential to resolving critical data
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Figure 2.6: Overview of the optimization framework. Architectural models are gen-
erated using sampling and fitting methods. Energy-delay (E-D) trade-off curves are
characterized for each circuit. These design spaces are integrated, and the design
space exploration engine finds the optimized design.

or control dependencies frequently, then the performance cost of that design decision

may not be worth any potential savings in energy. To produce a truly optimized

design, all these effects—from the circuit-trade-offs to the architecture and the effect

of the application behavior—need to be modeled in the optimization problem; this is

the goal of our joint architecture-circuit system optimization framework.

Figure 2.6 shows an overview of our circuit-aware digital system optimization

framework. There are four major components (representing four steps) in this frame-

work. We first create circuit trade-off libraries that characterize the different energy-

performance trade-offs for each of the underlying circuits that make up the system.

These libraries, which essentially consist of the energy-performance points of different

potential design implementations, are characterized by exploring the circuit design

space. The circuit exploration process can be done with any existing circuit optimiza-

tion tools, and then fed into the circuit-aware optimization framework. These circuit

trade-off libraries replace the fixed energy cost libraries of existing power modeling
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tools.

The second step involves creating architectural performance models that describe

how changing architectural design knobs such as latencies and sizes of structures

affect the overall architectural performance. In this step, the primary challenge is to

model a large design space with numerous design parameters. To solve this problem,

we leverage design space sampling and statistical inference methods to enable us to

capture a large multi-dimensional space of microarchitectural parameters by sampling

only a small subset of the entire design space. The application behavior is captured

implicitly in the models generated in this step.

Once we have circuit libraries and architectural models characterized, the third

step involves linking the circuit libraries to the architectural models. This step in-

volves establishing the relationships between circuit delays, architectural pipeline la-

tencies and the cycle time; computing total performance from CPI and the cycle

time; and also linking circuit-level energy models to the overall energy. These con-

straints create a joint design space that not only makes the architectural latencies

dependent on the real delays of the circuits, but which also exposes an entire space

of circuit implementations (and their energy-performance trade-offs) to the overall

system.

Throughout the modeling of the architecture, the circuits and their integration,

we use posynomial characterization functions to fit the data. This enables the formu-

lation of a geometric program to describe the behavior of the entire system. This joint

architecture-circuit design space is then finally sent to an optimization/exploration

engine—the last component—which, given an optimization objective and resource

budgets, searches the space to find the most efficient design configuration.

A large part of this optimization framework is unavoidably centered around the

modeling of the circuits and the architecture. Because we ultimately want to perform
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optimization, creating mathematical characterizations through data-fitting is a com-

mon feature throughout the modeling phases: After collecting circuit data points,

a data-fit is performed to characterize the energy-delay trade-offs mathematically.

Similarly, the statistical inference modeling of the architecture is also fundamentally

a data-fitting process. While they can initially be time-consuming, building the cir-

cuit libraries and architectural models are generally one-time costs unless new design

spaces are being explored (e.g. systems requiring new circuit blocks, new architectures

or new applications). Once the characterization is complete, the convex optimizer of

the design space exploration engine can produce optimized designs relatively quickly,

in under 30 seconds for complex processor designs on a desktop computer.

The combination of these techniques creates a framework that is both powerful

and general. It is powerful since it enables a rigorous study of marginal performance

benefits and energy costs of any design decision; with this framework we can identify

the parameter values that yield the most energy efficient design for a performance tar-

get, or the highest possible performance design for a given energy target. It is general

because we can construct architectural models for any system simply by extracting

simulation samples from the designer’s simulator of choice, and we can include circuit

trade-offs from a broad range of tools.

In the following two chapters, we examine each of the components of this optimiza-

tion framework in more detail. Chapter 3 discusses the problem of creating models of

large architectural design spaces to drive this framework, discussing why traditional

simulation-based approaches are insufficient and showing how statistical inference us-

ing posynomial functions can be effective in capturing large design spaces. Chapter 4

then examines the characterization of the circuit trade-offs, how they are integrated

into the architectural models and the resulting optimization problem formulation for

the joint design space.



Chapter 3

Architectural Modeling

The process of designing and optimizing a system at the architectural level requires

significant effort and analysis. The designer needs to evaluate various design alterna-

tives, features and ideas, while also optimizing the numerous microarchitectural design

knobs in each design he considers. To help guide this design process, the designer

relies on modeling tools as a means of evaluating different design configurations. Ar-

chitectural performance models are needed that can predict how performance changes

as design parameters change; these must then be complemented with appropriate cost

models—whether area, power or some other metric—that estimate the cost of each

design. Armed with performance and energy models, the designer can evaluate the

performance benefits and associated costs of design choices to make informed design

decisions, ultimately deciding on what design to implement.

In this chapter, we examine this architectural modeling problem. We begin by

considering architectural performance modeling, where we examine traditional sim-

ulation approaches and show how regressions/fit-based techniques can be used in

conjunction with simulation to help characterize large multi-dimensional spaces. We

then present how posynomials functions can be applied to characterize the system

performance. Then, in the second section in this chapter, we examine how energy

33
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modeling is typically performed at the architectural level, and how it has to change

in a joint architecture-circuit optimization framework.

3.1 Performance Modeling

Traditionally, architectural performance modeling has been done through simula-

tion [7]. This has been primarily due to the fact that processors are complex pipelined

systems in which performance depends on the input (i.e. the application). The per-

formance of an architecture in executing an application depends on the sequences of

instructions and dependencies in the instruction stream, and how well the architec-

ture resolves those dependencies. Thus, performance is not a simple function of the

architecture, but involves, rather, an interplay between how the given architecture

meets the demands of the application. This means an architecture may perform well

on one application class, but poorly on others.

To capture the application’s effect on performance, any modeling approach re-

quires, at minimum, some trace simulation/analysis to examine the application be-

havior. Characteristics such as instruction mix, data dependency patterns and control

dependencies—which can vary greatly from one application to another—play a sig-

nificant role in defining what aspects of the system should be optimized.

While simulation-based approaches are valued for their ability to model complex

systems, simulation run times are typically very long. Whereas real high-performance

processors can execute billions of instructions or more per second (BIPS), industrial

simulators run at about tens of thousands of instructions per second (KIPS) [34]—a

100000 times speed gap. Thus, running even short simulations can take on the order

of several hours and more complete simulations can take multiple days. This presents

a serious challenge when trying to explore large design spaces, and so there have been

considerable research efforts to find more efficient modeling techniques.
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To help solve this problem, researchers have proposed, throughout the years, var-

ious different analytical processor performance models that predict performance di-

rectly from application characteristics and design parameters [23, 39, 51, 25, 26, 40, 5].

Having mathematical forms, these solutions offer the significant advantage that the

design evaluation time is very quick. This is particularly important for design space

exploration and makes searching large spaces considerably more efficient. Despite

these advantages, analytical models have not been widely adopted by the architec-

tural community. This has been due to a combination of reasons: analytical models

are less flexible and can be hard to to modify when investigating new features, they

are often restricted to a smaller set of design parameters that they can model, they of-

ten have lower precision than simulation models, and they are generally a less trusted

form of performance modeling (having, in fact, to be calibrated and/or validated

against the more trusted simulation models). Moreover, depending on how accu-

rately an analytical approach wants to account for application characteristics, the

analytical models still need to process long simulation traces, which diminishes its

run-time advantage over simulation. In the end, while analytical models are useful as

first-order models for performing high-level design space explorations, the flexibility

that simulators provide in modeling complex systems, in addition to the fact that

they are easy to understand and work with, has meant that simulators are still the

preferred method of performance modeling for the architect.

As simulators remain the most widely used modeling tools, there has been con-

siderable research into finding ways of reducing simulation times. Here there are two

orthogonal problems: First, one needs to reduce the simulation time per simulation

run, and, second, one needs to reduce the total number of simulations that need to

be run to explore a design space. On the first front, there are several approaches a

designer can use. Tools such as SimPoint [29] and others [22, 65], for example, have

been effective in identifying short, representative simulation segments that can serve
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as a proxy for how the whole application would behave. Others have investigated the

use of FPGA emulation to speed up simulation runs [3, 14, 55, 52]. Even with these

approaches, however, there can still be a very large number of design points in the

design space, with the space growing exponentially with the number of parameters.

For example, if one considers a design space with even only 15 parameters, each with

4 possible values, then we already have a space with over a billion possible design

configurations. Thus, the second approach to reducing total simulation time, which

is complementary to the first, seeks to find some way of exploring these large spaces

effectively.

3.1.1 Fit-Based Performance Modeling

To help explore large design spaces effectively, recent works have proposed the use

of statistical sampling and inference to create fitted models from a relatively small

sample of design points [44, 36, 37, 20]. The basic idea behind these approaches is

that one does not necessarily have to simulate every single design point to get a good

indication of how different parameters in the system behave and interact. One can

learn a lot about the behavior of the system simply by simulating a relatively small

number of designs with different configurations and observing the output. Essentially,

these techniques take advantage of the fact that the performance surface is usually

fairly smooth; thus, they work by sampling the surface and then interpolating for

missing data.

In these approaches, the design (i.e. the simulator) is treated as a black box

with various configurable/tunable design parameters and a user-provided, but fixed,

application workload. By randomly setting the design parameters to create random

designs, and then running simulations for a handful of the possible designs in the

design space, one can obtain enough data to develop a fitted model of how the system
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(b) Inference-Based Design Optimization

Figure 3.1: Inference-based design optimization. In traditional optimization, the
simulator directly serves as the system model, so all design points need to be simulated
to determine their performance. This results in a design optimization loop around
the simulator. In inference-based methods, an analytical model is generated from
design space samples (acquired from the same simulator). Typically, several hundred
to a few thousand samples are sufficient to capture a large space of billions of design
points. Using the generated mathematical model then results in a much more efficient
exploration and optimization of the system.
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behaves as a function of the design parameters for the given workload.1

The result of these fitted models is a predictive mathematical model that can be

quickly evaluated to predict the performance in any part of the captured space. The

number of samples required to create the models can be dramatically smaller than

the number of designs in the space, with several hundred to a few thousand samples

typically being sufficient to model complex processor systems with spaces that span

billions of possible design configurations. Thus, these approaches have shown to be

powerful tools for design space exploration. This approach, and how it contrasts to

traditional simulation based optimization is in shown in Figure 3.1.

This fit-based modeling offers several advantages. First, because it still relies on

simulators to generate the initial samples, the approach offers a lot of flexibility; one

can model any system so long as an appropriate performance simulator for the system

exists (assuming an appropriate fit function is found). The designer simply uses the

simulator to obtain design space samples from which he then creates fitted model. At

the same time, because this approach generates mathematical models of the system,

it can be very effective in quickly exploring the space and evaluating different design

configurations. In this way, fit-based/inference approaches can be viewed as a hybrid

of direct analytical modeling and purely simulation-based methods, achieving the

strengths of both methods.

There are, of course, limitations to what kinds of design choices one can model

with fit-based models. Fitting assumes that the surface of the space being fitted is

smooth; if the data is not smooth, then it is hard to produce a good fit. Generally, this

means the technique lends itself well to capturing tunable design parameters (such as

sizes of resources and latencies of units). On the other hand, discrete architectural

1To model mixed application workloads, one can either develop a single model directly by using
the mixed workload as the simulator input, or one can develop individual models for each of the
different benchmarks from which an average performance can be computed later. We use the latter
approach, so we generally have fitted models for each application in a suite.
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changes—such as moving from in-order to out-of-order execution, or changing the

instruction scheduling algorithm—represent parts of the space that are less natural to

capture with fits. Being more numerical in nature, the tunable design parameters are

also more amenable to mathematical optimization.2 Thus, we partition architectural

parameters into two groups: discrete design features and tunable design knobs. We

capture the tunable knobs in the models we create, and generate separate models to

capture discrete architectural changes.

After deciding to use a fitting approach to model an architecture, the next chal-

lenge is to find a fitting function that can serve as a good model for the system as sug-

gested by the data. Previously, several different functional forms have been suggested

to produce models from the simulation data. Lee and Brooks used cubic splines [44] to

produce models of the fitted data, while Ipek et al. used artificial neural networks [36];

both were shown to produce good fits. The problem with these forms, however, is

that they can result in spaces that can be “bumpy” (i.e. have local minima) and

can therefore be hard to explore. The space, however, can usually be captured just

as effectively with simpler functions that can make the search/optimization process

more efficient. Thus, we explore the use of posynomial modeling functions next.

3.1.2 Performance Modeling using Posynomials

Because our ultimate goal is to optimize the system, we choose to create our architec-

tural models using posynomial functions instead of the previously suggested functional

forms. Using posynomial functions offers the advantage that, as log-convex functions,

2One could always map the discrete changes to numeric labels, but this presents its own set of
difficulties: first, the combined space could become harder to model given that each architecture
may have a different set of underlying design parameters; even common parameters may behave
differently depending on the discrete choice. Second, since the ultimate goal is optimization, it is
hard to interpret what fractional results really mean for a discrete option. For example, it is not
clear what an instruction scheduling algorithm of 1.5 represents when there may be 3 scheduling
algorithms available (not to mention that the result depends on the arbitrary labeling used).
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they can be optimized very efficiently. The potential drawback, on the other hand,

is that posynomial functions are less general than other forms such as cubic splines;

posynomials, for example, can have difficulty capturing spaces with hills and valleys.

It would, of course, be hopeless to try to capture a space with a restricted form such

as a posynomial if the space was intrinsically more complex. However, if the space

does not require more complex mathematical forms, then it makes sense to use the

simpler posynomial form: the simpler form makes over-fitting less of a concern, and—

more importantly—the use of posynomials enables the application of some powerful

mathematical techniques for performing optimization.

In examining the architectural performance space, many of the design knobs ex-

hibit behavior that seems to be well-suited for posynomial modeling. Specifically,

a large number of tunable design knobs have a smooth, monotonic profile that can

typically be captured well by posynomials. For example, reducing a unit’s latency

or increasing the size of a queue, buffer or memory structure typically only improves

CPI. To demonstrate this kind of behavior, Figure 3.2 plots CPI versus a few design

parameters as obtained through simulation sweeps.3 While only a few parameters are

shown here, there are numerous other parameters that exhibit this smooth, mono-

tonic profile—which also covers the frequently observed case of diminishing returns—

including cache sizes, the reorder buffer size, reservation station sizes and instruction

queues to name only a handful. Even in cases where a parameter exhibits more com-

plex behavior that results in a peak or valley—for example, performance as a function

cache block size—posynomials may sometimes still be able to capture the effect by

using the sum of multiple different monomial terms (e.g. 1
x

+ x is a posynomial that

results in a single valley) to model the more complex behavior.

3It should be noted that these plots sweep parameters independently sweep of parameters, but we
ultimately want to model the entire space as a function of all parameters simultaneously (including
their interactions). Nevertheless, they still demonstrate the general monotonic nature of design
parameters in the space.
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Figure 3.2: A sample of design parameters and their effect on CPI. Most architectural
parameters have a smooth, monotonic profiles. As posynomials can have negative
exponents, fitting parameters with both positive and negative correlations to CPI
typically do not pose any difficulties.
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Given that posynomials seem like good candidate for fitting the space we seek to

characterize, we use a fit-based posynomial modeling approach to create our architec-

tural performance models. As inputs to the model, we have the various tunable design

knobs within the system. Thus, the models we generate predict CPI as a function

of the latencies of units and sizes of structures like caches, buffers and queues:

CPI = f(..., latencyi, ..., sizej, ...) (3.1)

While we have specified the design knobs and we know we want to use a posynomial

to model the system, we still need to select the right posynomial function f to produce

a good fit. This process involves choosing the right set of monomial terms to include

in the model, and requires some attention. If some important terms are not included,

the model will not be able to capture the space; if too many superfluous terms are

included, then finding the fit coefficients becomes harder and takes longer, over-

fitting the data becomes an issue (even though over-fitting is less likely to occur

with posynomials because of their already restricted form), and the optimization is

needlessly slowed down as it evaluates a more complex function. Thus, we aim for a

relatively simple function that can capture the space well.

f(x1, x2, ..., xn) =
n∑

i=1

ai(xi)
di +

∑
(j,k)∈S

bjk(xj)
ejk(xk)

gjk + c

Here x1, x2, ..., xn are the architectural parameters, and all other variables are fitting

constants. The first summation term includes a monomial to account for each archi-

tectural parameter’s independent influence on the output. It is always included for

each parameter. The second summation term serves as a way to capture interactions

between pairs of parameters (j and k), with the set S denoting parameter pairs in the

model. For example, one important interaction between parameters involves the L1

cache size and the latency of the L2 cache; L2 access times become more important
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as L1 miss rates increase. Thus, we would want to have this parameter pair in the

set S.

As part of this fitting process, therefore, it is important to identify the right pa-

rameter interactions. Without capturing certain critical interactions, the fit could fail

to produce any meaningful model; other smaller interactions can still improve the fits

by several percentage points. One could use domain knowledge to manually specify

expected interactions, but this requires that the system already be well understood.

Instead, a more automated process is preferred. To determine the interactions terms

in an automated fashion, we can simply perform an exhaustive search. We first create

a base fit with no interaction terms. We then initialize S to be empty and iterate

over all possible pairs. For each visited pair, we attempt a new fit with that term.

If the resulting fit improves the model by some threshold, the interaction terms are

added to S.

The interaction terms we have discussed have been limited to parameter pairs,

but one can also look for more complex interaction terms that involve three or more

parameters. The number of terms to consider when looking at three parameters,

however, is exponentially larger, making it more difficult to identify such terms. Nev-

ertheless, one way to check whether the exclusion of any term (not only triplets, but

any single parameter or otherwise) is adversely affecting the fit is to check for residual

errors in the fit that are correlated to the parameters under consideration. For the

systems we have studied, we have performed some limited checks to look for errors

correlated to triplets, but have been unable to identify any such cases. While it is

certainly no guarantee that these terms may not be important, for the processor sys-

tems we have examined, using only interaction pairs still yields fairly good accuracy

and seems to be sufficient for modeling the systems.

To validate and check the accuracy our fits, we set aside a fraction of the simulation

samples specifically for the purpose of checking our fits; these samples are not used



44 CHAPTER 3. ARCHITECTURAL MODELING

in producing the fit. We can then compare how well the fitted model would predict

the performance of a design configuration in the design space which it has not seen

before. To measure error, we use the same metric as in [44]:

error =
|predicted− actual|

actual

This metric is applied to each validation sample, and the median error achieved is

reported.

Generally, the number of samples required to generate a good fit depends on the

size and complexity of the system. For example, we have found 200 samples often

enough for simple in-order processors with 11 parameters, and 500 samples to be

sufficient for a complex superscalar out-of-order processor with 18 parameters. The

average of median errors over different benchmarks range from less than 1% to 6%,

with more complex high-level architectures such as out-of-order processors tending to

be harder to fit.

Figure 3.3 shows some sample fits, which are scatter plots of the actual perfor-

mance of a design configuration versus the performance predicted by the posynomial

model. Thus, the closer the points are to the diagonal, the better the fit is. Each

plot represents the result of running a particular application on a given architecture.

The figure shows results of varying qualities: a very accurate fit, a typical fit, and

a worse fit. Even in the worst case, the fitting error is below 10%. The cumulative

distribution functions (CDFs) of these three fits are also shown to give the reader a

sense of the distribution of errors in each of these generated models.

Although these results are only specific examples, in most cases we are able to

achieve fits with behavior similar to the “typical” case. This means that our posyno-

mial fits typically perform well in capturing the architectural performance space. In

certain cases, however, our posynomial fits do yield slightly worse results as in the
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Figure 3.3: Validation of three architectural models generated through posynomial
design space fitting. (a)-(c) compare model predictions to the results of the simulator.
Each fit is for a particular application running on a given processor architecture. (a)
is a very accurate fit generated for a single-issue in-order machine, (b) is a typical fit,
in this case generated for a quad-issue out-of-order machine, and (c) is a worse fit,
also for the quad-issue out-of-order machine (but using a different application). (d)
shows the cumulative distribution of errors for these three models. Even in the worst
case, the median error is less than 10% for a performance range that spans around
10x.
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“worse” example.

To check the degree to which our posynomial fits may be restricting the quality of

the models we generate, we compare our fits with other fits that use a more flexible

form; this checks to see whether more freedom would produce a better fit. Along these

lines, we have compared our fits to cubic spline fits and more relaxed versions of our

posynomial functions with the positive constraints on coefficients removed. In some

cases, we find that we could produce a fit that may be two or three percentage points

more accurate (e.g. 6% accuracy instead of 8% accuracy) by using the more flexbile

forms. In these cases, these results indicate that our particular choice of posynomial

function is restricting the quality of the fit somewhat. Investigating these cases shows

that the loss in accuracy can be attributed to smoothness issues. For example, we

sometimes find that a parameter, though still monotonic, has a sharp change in

curvature or slope. Our posynomial function often fits this data in a smoother way,

resulting in some increased error at the point of sharp curvature change.

Despite these occasional fitting effects, in most cases, we find the results to be of

comparable accuracy to the other, more flexible fitting functions. Thus, the use of

our posynomial functions is not usually a restricting factor in the models we produce.

Moreover, even in the “worse” cases, the fits still achieve a median error of less than

10%, which represents a good fit for performing the large-scale optimization that we

are interested in; a second optimization iteration around the identified area of interest

can always be used to refine the optimization results and get around these minor

fitting effects. Finally, when optimizing over a suite of benchmarks, averaging makes

the effects of these occasional fitting issues less significant. For further evaluation

of how well this posynomial fitting approach works for different benchmarks and

architectures, we refer the reader to the results in Section 5.1, where we create models

and optimize different processor architectures.
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3.2 Architectural Energy Modeling

To evaluate the marginal costs of different design decisions, a designer needs energy

models to complement his performance models. With appropriate energy models, the

designer can associate costs to the performance gained, and can determine whether

a design decision is worth the effort from an energy efficiency perspective.

As power considerations have become more important over the years, simulation

infrastructures have thus been extended to provide power estimates in addition to

performance numbers. The use of architectural power analysis tools like Wattch,

SimplePower and PowerTimer is now common. Fundamentally, these tools all oper-

ate in a similar fashion. To perform their analysis, these tools divide the total energy

consumed into the energy consumed in different blocks, each of which can have dy-

namic and leakage components. The total dynamic energy consumed is therefore

just the sum of the dynamic energy consumed by activity in each circuit block. To

compute the dynamic energy of a particular block, the average cost of exercising that

unit is simply multiplied by the number of times that the unit was used. Formalizing

this, and converting it to a per instruction basis, the dynamic energy per instruction,

EPIdynamic, is computed as follows:

EPIdynamic =
∑

i

(αi × Ei) (3.2)

Here, i iterates over all the units in the system, Ei is the average energy cost of a unit

i and αi is the activity factor of that unit as obtained from simulation. This value can

then be converted into power by dividing by the average time per instruction. Total

leakage power, Pleakage, is easier to handle—at least from an architectural modeling
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perspective—as it does not depend on any activity factors:

Pleakage =
∑

i

(Pi) (3.3)

Here, Pi is the leakage contribution from each unit. Finally, the dynamic and leakage

components can be added together to compute the total power consumption, Ptotal:

Ptotal =
EPIdynamic

TPI
+ Pleakage (3.4)

In this analysis, the average per-access energy consumption cost and leakage power

of each unit needs to be characterized before-hand; these numbers are typically ex-

tracted from real circuit implementations, and are stored in a library that the sim-

ulator can access. The activity counts are then determined by the simulator as an

application is simulated.

Since these integrated simulators now report power in addition to performance,

one might expect that we can build energy models in exactly the same way we modeled

performance—by fitting functions to the energy numbers obtained from the simulation

runs; indeed, this method works and has been used in the past [45].

The situation, however, becomes more complicated in a joint circuit-architecture

optimization. When the energy costs of each circuit are known, the simulator can

easily report final power numbers and creating the models is straightforward. When

the circuits themselves can change, however, then the costs, Ei, are not known until

after an implementation is determined by the optimizer. As a result, we cannot

multiply the activity factors by the energy costs at modeling time (as the costs are

unknown); instead, we need late, optimization-time binding of this information.

To allow for this late-time binding, we need to extract the right information from

the architectural simulator that will allow us to compute total energy later. Thus,
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instead of directly characterizing the power of the different architectures, we must

characterize the activity factors of each of the units.

To first order, the activity factors of most units are determined by the application

instruction mix, and can be determined by a trace analysis. For example—assuming

a very simple ISA—the number of times the multiplier is used depends on the number

of multiply instructions in the execution trace.

Of course, this is not quite a complete characterization. First, speculative exe-

cution generally means that activity factors for units will be higher than indicated

by a trace analysis; speculation implies that the processor is doing work that may

be discarded. Second, and perhaps more significant, is that the activity factors for

certain units can be affected by caches. For example, the number of L2 cache accesses

depends on the miss rates—and therefore the sizes—of the L1 caches below it.

The basic solution to both these problems is the same: we need more characteri-

zation of the system. We need to model what the actual activity factors are, and how

they change with design parameters. Fortunately, there is no need to run additional

simulations to extract this data; we can use the same simulation samples as used for

the performance modeling to obtain activity factors. We can then build mathematical

equations that can predict how activities change with design parameters.

3.2.1 Characterizing Activity Factors

While we needed complex equations that were dependent on numerous parameters to

generate the performance models, it is often possible to characterize activity factors

using much simpler equations. To capture the primary effects on cache miss rates,

for example, we need only characterize how these miss rates are affected by the cache

size. While other parameters may cause miss rates to change slightly (due to changes

in the speculative activity), these are smaller scale effects. Thus, for a system with
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separate instruction and data L1 caches, we want to characterize miss rates as follows:

mrIL1 = fmr I(sizeIL1) (3.5)

mrDL1 = fmr D(sizeDL1) (3.6)

αL2 = mrIL1 + mrDL1 (3.7)

Here, mr is a global miss rate with respect to total number of instructions (not

per cache access), and fmr is a function that characterizes cache behavior for the

application; separate characterizations are made for the L1 I-cache, IL1, and the L1

D-cache, DL1. Then, αL2 is the activity factor of the L2 cache, which depends on

the number of misses below it.

We still need to determine a function fmr that can fit cache miss rates well for

different applications. Because we want to leverage geometric programming tech-

niques to perform the overall system optimization, we would like this function to

be a posynomial. In practice, we have found that different cache miss rate profiles

for different applications require different fit forms. We have found one of the two

following approaches often works well: either a simple function of the form

a× (size)b + c (3.8)

where a, b and c need to be characterized, or a piecewise fit with n pieces of the form

max(a1 ×
1

size
+ c1, ..., an ×

1

size
+ cn) (3.9)

can be used. In both of these fits, a and c need to be positive for the function to be

a posynomial. Of course, these are not the only posynomial functions that one could

use; any other posynomial function that produces a good fit could be used as well.

Nevertheless, in the various different applications we have examined, we have found
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Figure 3.4: Characterization of cache miss rates as a function of cache size for one
particular application. The dots are data extracted from simulation, while the solid
line is the fitted posynomial function. The dotted vertical lines specify the boundaries
between which this model can be trusted.

that at least one of these two forms produces a good fit.

Figure 3.4 shows an example of this characterization step. In this figure, the black

dots are the data points extracted through simulation, while the curve is a fit of the

data that will be used for optimization purposes. The dotted vertical lines specify

the trust region of the data—since we do not have samples outside of this range, we

want to restrict cache sizes to be within this region.

Unfortunately, it is not always possible to create such a good posynomial fit for a

given set of data points. Figure 3.5, for example, shows cache miss rate behavior for

a different application. In this case, we have first tried to fit the data using the same

posynomial forms as before, but a good fit is not produced because the y-intercept

(or asymptote), c, is restricted to being positive by the posynomial requirements.

To rectify the fit, we can relax the posynomial form, allowing c to be negative and

allowing the function to go into negative territory. While this means that the miss

rate function could return negative values for some inputs, this will never happen over

the trusted region of the fit, which is enforced by the constraints of the optimizer. A
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Figure 3.5: Cache fitting example where a posynomial fits poorly. By relaxing the
posynomial and allowing a constant shift into negative values, we can produce a good
fit. However, this new fit is no longer a posynomial, making the application of a pure
geometric program for optimization impossible. This makes the optimization phase
more complicated.

problem, however, is that the functional form has changed, and the fit is actually no

longer a posynomial.

This is an important example, because it shows that it may not always be pos-

sible to use posynomials to characterize all aspects of the design space. In general,

when such situations arise, it means some additional effort needs to be made during

the optimization phase to find the optimal design. For example, in this case, we

might have to try manually iterating over different cache sizes, while using geometric

programming to optimize for all other parameters in the design space.

In certain special cases, there are also specific ways to get around such issues. In

this particular case, for example, we have been able to avoid this issue by shifting

the cache miss rate functions up by fixed amounts to make them posynomials. This

causes the activity factor experienced by the L2 cache to increase; if the L2 cache has

a fixed cost, however, this additional activity can be translated into a fixed energy

overhead which can be added to the total energy budget. This artificial overhead
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is removed after optimization. Unfortunately, this trick only works when the L2

access energy is fixed; it does not work if the L2 size is also a design parameter,

as we would not be able to know how much additional energy to allocate prior to

optimization. To optimize cache hierarchies, therefore, we must fall back to the more

general approaches.

There can potentially be other posynomial fitting issues. For example, if an ap-

plication has a very pronounced working sets, then it may be hard to capture the

cache behavior through posynomials. This becomes less of an issue when optimizing

for a suite of benchmarks, where such effects disappear through averaging effects. If

optimization of a single application is absolutely necessary, then it is still possible to

create separate posynomial models for the different working sets. This may require

that both models be searched to find the right optimization, but is always possible.

3.3 Discussion

In this chapter, we examined the problem of modeling the architectural properties

of a system for use within an optimization framework. To this end, we relied on a

regression-based modeling methodology that uses posynomial functions to perform

the fits. This approach has two key properties that make it attractive. First, being

regression-based, it is a general method that can use existing architectural tools to

create mathematical models of the architectural space; as such, it should be applicable

to a wide variety of different digital systems (not only general-purpose processors).

Second, by using posynomial forms, we open the door to the application of convex

optimizations tools for later performing the design space exploration.

Through this chapter, we showed that for many of the system characteristics,

posynomials do a good job of modeling the space. On the performance side, we are

able to create accurate models of very large, high dimensional spaces. Errors with this
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kind of approach were typically under 10% and at about 6% in the median case. On

the energy side, we also showed that we are usually able to characterize the necessary

activity factors that ultimately determine the total dynamic energy. The errors for

these fits are typically in the same range or better.

Posynomials are thus often good functions to use to describe the system behavior.

The reason for this is that we are typically dealing with tunable, numerical parameters

that affect the system characteristics in a smooth way. When such a smooth behavior

is encountered and the values that one is dealing with are positive, then posynomials

are often promising candidates. As it turns out, this applies to a large number of

architectural-level parameters, such as resource sizes, latencies and miss rates.4 Thus,

we find that many of the system parameters that exhibit monotonic, diminishing

returns profiles are modeled very effectively by posynomials (although posynomials

can model more complex behavior as well).

While posynomials are quite effective in many cases, they cannot be applied ev-

erywhere, and a designer who wishes to use this approach should be aware of these

cases and the appropriate alternatives. First, there are often discrete parameters

in the design space of interest. For example, in Chapter 5, we will look at several

high-level processor architecture decisions such as whether to use in-order versus out-

of-order execution engines; as another example, a designer may wish to explore the

decision of whether to use a distributed or centralized instruction window for instruc-

tion scheduling. In the presence of such large discrete design decisions, we generally

prefer to create separate models. This makes the modeling easier and produces better

fitted models.

While smooth, tunable, positive-valued data is often fit well by posynomials, these

4Even though these parameters may require integer value assignments, we consider them to be
of the tunable, numerical type. The fits we produce will be continuous functions that go through
the integer-valued data points; this helps with optimization, where continuous valued functions are
preferred. Then, some post-optimization analysis can be performed to snap results back their closest
acceptable value.
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attributes are not, by themselves, a guarantee that posynomials will be able to capture

the space. As we showed with both the example of the “worse” architectural fit in

Figure 3.3 and the example of the cache fit in Figure 3.5, posynomials can sometimes

still have difficulty in capturing certain characteristics. For the architectural fit, our

particular posynomial function sometimes had difficulties in capturing abrupt changes

in the data; for the cache miss rate fit, there were issues because the fitted curve

needed to go into negative territory (even though the data itself was positive and

region of the fitted curve we were interested in would also be positive). Fortunately,

in practice, cases like this have been less common for the systems we have examined.

Moreover, it is not too difficult to deal with these cases, with a number of potential

approaches being possible. While we had a very specific fix for the cache miss rate

case, one can also simply generate segmented models that fit different parts of the

curve, switching between models as necessary. Alternatively, one can use a broader,

less accurate fit as a starting point, refining the fit through several iterations as one

identifies the region of interest. These last two approaches both take advantage of the

fact that creating fits of smaller regions of a curve is easier. Finally, one may even be

able to reason, in some cases, that inaccuracy in a particular part of a fit will have

a negligible effect on the overall optimization. For example, it may be the case that

when dealing with very low cache miss rates near zero, the miss rate may not have a

dominant effect on either performance and energy; if that were the case, then slightly

over-estimating those cache miss rates may not be a serious issue.

Despite these occasional fitting issues for certain specific benchmarks, in the ma-

jority of cases, we have found that the characteristics we need to model tend to fit well

with posynomials. This is encouraging, because it means we can use this fit-based

approach to effectively model and optimize complex systems. In the next chapter, we

examine how to incorporate circuit trade-offs into these models to produce a circuit-

aware optimization framework.



Chapter 4

Integrated Architecture-Circuit

Optimizer

In Chapter 3, we showed how we can model a system at the architectural level. In

this chapter, we examine how we can make these models circuit-aware so the space of

different circuit implementations becomes known to the architectural optimization. In

Section 4.1, we first look at how to explore and characterize the circuit space to create

our circuit trade-off libraries. Then, in Section 4.2, we look at how we can integrate

these circuit trade-offs into the architectural models, establishing the appropriate

links between the two characterizations and creating the full-system model; during

this integration, we incorporate pipelining into the analysis, and we also include

voltage scaling. Finally, in Section 4.3, we look at how we can search the joint space

to find an architecture-circuit co-optimized design.

4.1 Circuit Trade-offs

Just as with architectural design, the design of a circuit involves the analysis of many

options and design parameters. A given circuit can be implemented in various ways

56
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that trade-off energy, area and delay. The design space at this level includes the

choice of circuit topology (e.g. ripple-carry adders, carry-lookahead adders, etc.),

logic synthesis mappings, circuit styles (e.g. static, dynamic, etc.) and the sizing of

gates, yielding a large space of possible designs. Because the energy, area and delay

characteristics of these circuits directly affect the energy, area and performance of

the higher-level system, we need to explore and characterize this trade-off space for

each circuit block. Ultimately, our goal is to make these circuit trade-offs known to

the higher-level architecture. Thus, after exploring and characterizing this space, we

store it in a circuit trade-offs library so it can be referenced when optimizing the

overall system (Section 4.2).

While the space we need to explore can involve a large number of parameters,

only the final delay, energy and/or area of the circuit matter to the higher level

system. Thus, we may need to explore a high-dimensional space, but we only produce

characterizations that summarize the trade-offs between these primary metrics. For

example, in the overview presented in Figure 2.6, we had simple energy-delay trade-

offs for different units; although simply an illustration, these curves would have been

generated from searching a large space of circuit designs. Once a certain circuit

delay point is selected from such curves, back-referencing is used to determine the

specific circuit implementation. This summarization of the circuit space into its

primary metrics is an important characteristic of our modeling approach; it reduces

the number of variables that need to be considered by the next level of the hierarchy

and makes the optimization of the higher-level system much more tractable.

There are many tools that can help explore the circuit design space [15, 27, 54, 38].

Given a circuit topology, many of these tools can automatically generate energy-delay

trade-off curves. By trying different discrete circuit topologies and circuit styles with

these tools, one can then create a large trade-off space for a circuit [53]. Because

we want to keep our framework general, we require only a set of design data points
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annotated with delay and energy per operation (or area) characteristics. These design

samples are then used to create fitted models in a manner similar to the approach

used to create the architectural models. The extent to which a circuit’s design space

is explored and the accuracy of those characterizations are left to the discretion of

the user. Larger circuit trade-off spaces and more detailed circuit data will produce

better, higher fidelity results, but more easily obtained, approximate circuit data may

be appropriate for high-level rapid design space exploration.

The requirements of the higher-level optimization affect the circuit-level modeling

in several ways. First, because pipeline depth and operating frequency are opti-

mization parameters that are not known until after performing the optimization, the

circuit characterizations we make are for unpipelined logic. In the integrated models

of Section 4.2, we determine how deeply each of the circuits needs to be pipelined,

and we model the energy, area and delay overheads of inserting these pipeline regis-

ters. This allows the optimizer to automatically pipeline circuits as needed to quickly

explore a space of different pipeline depths.

Secondly, because the higher-level architecture views each circuit as a single entity

with a single trade-off curve (as in Figure 2.5), each circuit is characterized by a single

delay parameter. This means that circuits are assumed to have fixed boundaries with

aligned inputs and outputs. Thus, it is important that the logic in the circuit is

properly balanced. In cases where logic is not balanced (e.g. two distinct cones of

logic with different timing characteristics), the logic can be split into two separate

circuit blocks.1

Although this approach sets certain restrictions that the designer needs to take

into account, it results in a simpler architectural modeling abstraction: the top level

1This approach is meant for large circuit blocks, and assumes the logic is separable. For example,
a branch target buffer and the PC incrementer are two sub-blocks that work in parallel to compute
the next PC; these can be separated. If outputs are staggered in a more fine-grained way (e.g. a
ripple-carry adder), it may be harder to separate the block into parallel components. In these cases,
the delay of the unit is set by the critical path.
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architecture links to these trade-offs during model integration by importing the circuit

blocks and connecting them together to create the architectural organization. The

architecture then becomes aware of each of the trade-offs of the different attributes—

delay, energy and area—and can determine system performance given the operating

point of each circuit.

Finally, in addition to modeling trade-offs in the logic components, we also account

for the effects of wires at this level of modeling. While the delay and energy of local

wires in a circuit are built directly into the circuit characterizations that circuit tools

produce, the delay and energy of global wires that transfer data across large portions

of the die need to be added explicitly. Because global wires may grow in length

with the chip area, we also need to model this effect when expected to be significant.

We thus create models for these global wires—treating them as energy-delay units

like any other logic circuit—and include them in the system model that we use for

optimization.

4.1.1 Characterizing Trade-offs

Given a set of design points, our goal is to create a model that characterizes the cost

of a unit as a function of performance (delay). This cost could be area, energy per

use, or something else; here, we consider energy, but the principles remain the same

for other cost metrics. We examine multiple cost metrics in more detail later in this

section.

To create the circuit energy-delay trade-offs, we use a tool-based data-fitting ap-

proach that parallels, in many ways, the approach used to create the architectural

models described in Chapter 3. Just as we relied on architectural simulators to ob-

tain architectural design samples, we use existing circuit design tools to explore the

characteristics of different circuit implementations. We then use this data to create

fitted mathematical trade-offs for each circuit.
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Figure 4.1: Characterizing a circuit trade-off space.

For purely logic units, the trade-off we need to characterize is between energy per

operation and delay. For storage structures such as caches, buffers and queues, the de-

lay and energy also depend on storage capacity. Thus, the trade-off characterizations

that we produce generally take the form of:

Energy =f(Delay), for logic units

Energy =f(Delay, Size), for memory structures

Here, the energy per operation can be for random or prespecified input vectors, but

should represent the average use case as closely as possible. Because we want to formu-

late the optimization problem as a geometric program, we use posynomial functions

for f to produce these characterizations.

To produce the fits, we first filter out any non-Pareto optimal design points in

the data sets. These are points which do not contribute to the optimal frontier, and

which would never be used because there exist other designs points that are more

efficient. Following this pre-filtering step, we then perform a data fit of the remaining
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data points; this creates a mathematical characterization of the efficient frontier of

the circuit space. The fit is produced using least squares, and we have found that a

linear interpolation of the Pareto-frontier points prior to fitting often improves the

fit, especially if the data points are not evenly distributed across the frontier. To

produce a characterization, we have found the following three GP constraints to be

effective in capturing the 2-D trade-off curves for our circuits:2

E ≥ K

D −D0

+ E0 (4.1)

E ≥ Emin (4.2)

D ≥ Dmin (4.3)

Here, D is the delay, E is the cost (energy or area), and the rest are fit parameters.

These equations represent a diminishing returns trade-off, where Emin is the minimum

energy (or area), and Dmin is the minimum delay of the circuit. The first constraint

is produced through fitting. The other two constraints are important to ensure that

the model is restricted to a trusted region; unfeasible design points could otherwise

be selected.

Figure 4.1 shows one particular fit for the energy-delay trade-off of a 32-bit adder.

The round dots represent data points produced using a synthesis tool, while the three

lines show the mathematical model used to represent this space. The figure shows

that the fitted model is able to track the synthesis data very closely. This result

is representative of the general case; the trade-off curve fits we produce for a large

number of circuits often fit the data within 5% error or less.

2Strictly speaking, the first constraint is not a GP constraint. However, it can be decomposed
into one as follows: tD ≤ D −D0, tE ≤ E − E0 and tD × tE ≥ K.
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Figure 4.2: Characterization of cache access energy as a function of both size and
delay. Data points extracted from CACTI [49] for a 2-way cache.

For structures such as caches and buffers, delay and energy also depend on the stor-

age capacity. To capture this dependency in the circuit library, we need a more com-

plex fitting function. We start with the same basic trade-off curve, but parametrize

each of the fit parameters with monomials:

K →K ′ × sizeβK (4.4)

D0 →D′
0 × sizeβD0 (4.5)

E0 →E ′
0 × sizeβE0 (4.6)

Dmin →D′
min × sizeβDmin (4.7)

Emin →E ′
min × sizeβEmin (4.8)

where the primed variables and various βs are new fit parameters. In this way we

produce a function that defines the cost as a joint function of its size and delay.

Figure 4.2 shows an example of applying such a fit for a cache over a range of

sizes suitable for an L1 cache. Five sets of data are shown for cache sizes between
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2KB and 32KB, with solid lines representing the fitted functions. Not shown are the

boundary conditions, Dmin and Emin of which there would also be five sets.

Generally, creating fitted energy models as a joint function of size and delay can be

harder to produce than with the simple energy-delay trade-offs since there are more

data points that need to be simultaneously captured. As with any fitting process,

there is a fitting trade-off between accuracy and the size of the space captured. To

achieve acceptable accuracies in the cases of memory structures, we often restrict the

range of sizes to a limited set of values—4 or 5 sizes often performs well. This is not a

serious restriction, however, since, after optimizing, one can always identify whether

the domain of values that was considered was appropriate or not (if an optimized

value is at its maximum or minimum, then it suggests that one should move the

domain of values up or down respectively). Alternatively, one can use an iterative

approach, where a first pass uses broad characterizations to find the local region

of interest, followed by a second pass which focuses in on that region with higher

accuracy characterizations.

Regardless of the level of detail used, each of these joint energy-size-delay trade-off

curves is stored in the circuit library, along with all the other basic trade-off curves.

The optimizer can then access these trade-offs to create an integrated architecture-

circuit model.

4.1.2 Multiple Cost Metrics

In the previous section, we considered how to characterize dynamic energy as a func-

tion of delay, and sometimes, size. However, dynamic energy is not the only cost

attribute of a circuit that we may be interested in. For example, when optimizing for

total power, we must also take into account the circuit’s leakage. Moreover, area is

another important cost metric in chip design.

In general, trying to simultaneously capture the space of all these metrics requires
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a higher dimensionality characterization. For example, there could theoretically be

trade-offs between dynamic energy and leakage power, where the designer would need

to select whether he prefers a circuit implementation with higher dynamic energy

costs but lower leakage, or an alternative design with lower dynamic energy but higher

leakage. This would require a multi-dimensional trade-off between energy, leakage and

delay. While it is possible to create such trade-offs—we showed how to do so with

energy, delay and size in the last section—we would like to avoid these situations

whenever possible, as the creation of higher dimensionality trade-offs requires more

effort.

Fortunately, in practice, relationships between parameters often allow us to create

simpler, lower dimensional characterizations of the design space. For example, a faster

circuit requires more resources, which typically results in a higher dynamic energy

per use, more leakage and more area all at the same time (in fact, leakage and area

are usually very highly correlated). This often allows us to simplify the modeling

problem, by characterizing separate costs as a function of the same input (delay and,

if applicable, size).

Figure 4.3 shows an example of such a situation using a floating point multiply

accumulate (FPMAC) circuit data produced from a synthesis tool. For each of the

three cost functions—dynamic energy, leakage power and area—we find the same

physical design points (round dots) on the Pareto-optimal frontier. From a modeling

and optimization perspective, this means we can can separately produce analytical

fits of each of the data sets. Then, by turning a single delay knob, we can cause the

three cost functions to change simultaneously.

Although we would like to use such simplifications when possible, they are not

always applicable. For example, if building a circuit library that has both dynamic

and static CMOS circuits, we can potentially run into situations where there are

trade-offs between the dynamic energy and area costs: dynamic circuits have higher
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Figure 4.3: The high correlation between dynamic energy, leakage power and area
of designs produced by a synthesis tool makes it possible to decompose the multi-
dimensional trade-offs into independent functions of delay.
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energy because of their clock power (the clock transistors transition frequently), but

may have lower area because of the reduction in the number of transistors. As another

example, changing the threshold voltages of devices affects a circuit’s area, dynamic

energy and leakage in different ways. In scenarios such as these, one must either find

a way to break the characterization into separate components (for example, finding

equations that describe how threshold voltages affect leakage and dynamic energy)3

or one must fall back to creating multi-dimensional trade-offs. When we examine

the use of dynamic circuits in the results of Chapter 5, we actually choose to create

separate library modules for the static and dynamic implementations of each circuit,

explicitly specifying which library to use based on the study.

4.1.3 Global Wires

From the perspective of the higher level system, global wires are treated logically like

any other energy-delay unit. As there is not much of a design space for wires, global

wires are in some ways easier to model than the circuit trade-offs. In fact, if it were

not that global wires change in length with chip area, they could simply exist in the

circuit library as single energy-delay points. Global wires, however, do grow in length

with chip area, so to properly account for the delay and energy of wires, this effect

needs to be modeled.

Establishing this relationship between energy and delay of wires versus chip area

is not difficult. In the simplest case, one can simply scale the energy and delay of

3We will see this kind of approach applied later in this chapter when examine how to model
supply voltage. We separately characterize how supply voltage affects the delay, dynamic energy
and leakage of circuits, and we then use this characterization to specify how the basic trade-off
curves scale with the supply voltage parameter.
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wires linearly with wire length:

Di = Dwire × L (4.9)

Ei = Ewire × L (4.10)

L = γ ×
√

Atotal (4.11)

Here Di and Ei represent the delay and energy of the wire i respectively. Dwire and

Ewire represent per unit length delay and energy costs, while L is the length of the

wire. L, itself, is dependent on the fraction, γ, of the total chip length the wire needs

to cross and the full length of one side of the chip,
√

Atotal (Atotal is total area, and

this formulation assumes square aspect ratio).

One can easily develop variations on this model as needed. For example, this

model assumes that the wire length grows proportionally with the area of the entire

chip. If, however, a medium-range wire grows with a more localized area of the design,

then creating such relationships is not difficult. One simply needs to replace Atotal

with the area of interest.

Finally, it should be noted that performing such an evaluation assumes that the

circuit libraries one generates have area components built in as described in the

previous subsection. This then allows the optimizer to dynamically compute the

delay and energy costs of global wires as parameters such as cache size change the

total die area and cause the length of wires to grow. Having mentioned this, we note

that in the results we present in Chapter 5, we mostly use fixed global wire costs.

4.2 Integrated Architecture-Circuit Model

Having shown how to create analytical characterizations of the architectural spaces

and how to generate circuit libraries, the next step is to integrate the two models
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together to create a joint model. This step involves not only making the energy

models aware of the different potential implementations and their costs, but it also

involves making the architectural models—which usually operate on cycles—aware

of the physical delay of the circuits. This prevents the architect from inadvertently

placing unrealistic amounts of logic into a single pipe stage, holding him accountable

for architectural changes that require more circuit evaluation time.

4.2.1 Cycles, Circuit Delays and Pipelining

As mentioned in Chapter 2, in simulation-based architectural evaluations, the basic

unit of time is the cycle. All the various events and processing latencies within the

simulator are described in terms of the number of cycles they require, and simulations

report final performance in terms of the total number of cycles (or, more frequently,

the cycles per instruction, CPI). Any experienced architect, however, also knows that

real performance depends not only on the CPI, but also the cycle time, Tcyc, that

can be achieved. What we really need to measure, therefore, is the total execution

time. Normalized to a per instruction basis, the desired performance metric is thus

the time per instruction, TPI:

TPI = CPI × Tcyc (4.12)

To model the effect of both CPI and the cycle time, we need to simultaneously

consider the architecture and also how underlying circuits affect the pipeline struc-

ture. By linking to a library of circuit implementations, our circuit-aware modeling

approach is able to more accurately model these components of TPI; we can associate

architectural blocks to physical circuit implementations, and since we know exactly

how long each circuit block takes, we can determine how the cycle time or pipeline

structure will have to change to accommodate different circuits.
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Thus, one of the functions of our integrated model is to make the architectural

model aware of the real delays. More formally, we do this by linking the physical

delays, Di, of units in the circuit library to the cycle-based latency, Ni, in the archi-

tectural model. The number of pipe stages in a unit is essentially the delay of the

underlying circuit divided by the clock period Tcyc. This simply represents cutting the

logic into stages. Adding delay overheads for pipeline registers, we get the following

relationship

Ni = Di/(Tcyc − Tff ). (4.13)

where Tff includes the delay overheads of registers caused by register setup, clock-to-q

times and clock skew.

In this equation, the cycle time, Tcyc, is a design space variable (along with Di and

Ni). Any, or all, of the design parameters can change. For example, by changing Tcyc

while holding Di constant, we can explore different pipeline depths of a unit (Ni) for

a fixed logic implementation. Alternatively, if we vary Di, while holding Tcyc fixed,

we can again explore different pipeline depths, but this time causing the underlying

circuit implementation to change to be faster or slower. Finally, we also can hold the

number of stages, Ni, fixed, meaning that when the frequency changes, the underlying

circuit needs to speed up or slow down accordingly.

In the context of optimization, the inclusion of the cycle time parameter means

we can explore the trade-offs of pipelining to different depths, and the ideal clock

frequency can be identified along with all other circuit and architectural parameters.

Of course, we need to account for the energy and area overheads of pipeline registers.

For this, we need to know the approximate number of pipeline registers in each unit,

Ri. We characterize this as a simple function of the number stages, Ni, and the
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average logic width, Wi:

Ri = (Ni)
η ×Wi. (4.14)

The parameter η allows for modeling super-linear pipeline register growth, and can

be unique for each architectural block.

We can also constrain how deeply a unit can be pipelined. For example, control

units such as next-PC logic or a processor’s instruction scheduler often need to com-

pute once a cycle and cannot be pipelined. In these cases, we simply add a constraint

that Ni = 1.

As a final note, in this formulation, there is an implicit assumption that perfect

pipelining can be achieved when pipelining a circuit (i.e. the logic can be evenly

cut into the Ni stages); in reality, this is not always true. There are a couple cases

to consider here. In cases where latches with transparency windows can be used or

intentional clock skewing can be applied, some degree of uneven logic distribution can,

in fact, be managed as long as there are no hold-time violations. On the other hand,

when flip-flops with fixed clock edges are being used, one may want to add overheads

to account for non-ideal pipelining. This can be done by characterizing an additional

overhead term, Toverhead, that represents the maximum overhead across all stages due

to uneven pipeline stages. Then, Equation 4.13 would remain unchanged, but Toverhead

would be added to Tcyc before its use in the TPI calculation of Equation 4.12. While

modeling the pipeline overhead in this fashion is possible, the results we present in

Chapter 5 assume perfect pipelining.

4.2.2 Cost Functions

In addition to tying the architecture to the circuit delays, a circuit-aware approach

is able to determine the energy cost of a unit based on the circuit implementation

used; by linking to the trade-off curves discussed earlier in this section, costs can
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be computed based on the performance required from the circuits. Our next task is

now to create the overall energy models for the entire system from the energy of the

components that come from the circuit trade-offs. While this section focuses on energy

models, area models follow the same principles. In fact, area modeling is generally

simpler to handle since area is a cost that is determined completely at design time,4

whereas energy costs depend not only on the design, but also on how applications

exercise the different parts of the design (i.e. activity factors). Energy costs are also

more complicated in that they have several different components—dynamic energy

and leakage—that need to be considered.

For the purposes of creating the energy models within the optimization framework,

we break total energy into several components: energy spent in the logic (including

global wires), in pipeline registers, and in the clock distribution network. For the

energy within the logic and registers, we further split the energy into dynamic and

leakage components.

We decompose the total energy into these components because of how they relate

to different design choices. The energy spent in logic components depends on the

aggressiveness of the circuits, and links to the trade-offs in the circuit libraries. The

energy spent in pipeline registers depends on the cycle time and how deeply we

pipeline the design. Finally, the energy spent in distributing the clock also depends

on the number of registers, but has a different activity factor than the internal power

of the data transitions within the registers.

For the logic component, the total dynamic energy depends on the average energy

consumed per use of each circuit, Ei, multiplied by its activity rate αi:

EPIlogic,dynamic =
∑

i

(αi × Ei) (4.15)

4We assume here that area of the different components are additive, and that pack-
ing/floorplanning issues are not a concern. This is more or less true for synthesized designs that use
modern place and route tools.
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The energy cost Ei links directly to the circuit trade-offs. Thus, using faster circuits

will naturally cause an increase in total logic energy. The activity factor αi represents

how often a unit is used per instruction and depends on the application characteristics

as discussed in Chapter 3. This characterization of dynamic energy assumes that the

design is clock gated: the activity factors represent only real work being performed

by the circuit. At all other times, the circuit is assumed to be idle, with no switching

activity and no dynamic energy consumed.

Each circuit also has a rate at which it leaks, Pi, from which we can determine

the total leakage power dissipated in the logic components:

EPIlogic,leakage = TPI ×
∑

i

(Pi) (4.16)

Like its dynamic energy counterpart, the Pi values link to the circuit trade-offs (as-

suming we have created circuit libraries with leakage components as described in

Section 4.1.2). Thus, trying to use faster circuits will cause increases in leakage

power in addition to the extra dynamic energy). Since leakage power is a rate of en-

ergy consumption (watts = joules/second) and is independent of whether a circuit is

being used or not, we have to convert the leakage power to an energy per instruction

basis. We accomplish this by multiplying by the average time per instruction, TPI.

This essentially distributes the leakage cost across all instructions. Thus, if the rate

of instruction processing is lower, more energy will be wasted in leakage relative to

the number of instructions, and leakage will have a larger contribution to the total

EPI.

There are a few points that should be noted in this formulation of leakage power.

First, this formulation assumes that circuits are always on, and therefore always leak-

ing. Power gating could be used to virtually eliminate leakage in a circuit when that

unit is expected to be inactive for long periods of time, but this ability to apply power
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gating depends on the application behavior. With more application characterization,

one can adjust these models to determine how often a circuit can be power gated,

and then include gating factors into the analysis. As another issue, it should be noted

that leakage is a property that can change considerably with temperature; this is not

included in the current characterization, but could be added with more modeling.

The leakage power values in the circuit libraries we have generated come from the

underlying tools used to produce the data (in our case, synthesis tools), and thus use

the same assumptions as those tools.

We account for the energy spent in registers separately from the logic because it

depends on pipeline depth and the number of pipeline registers, which changes at

optimization time with the cycle time. To compute total dynamic register energy,

we take the average energy cost of a single register, Eff , and multiply by the total

number of pipeline registers in a unit, Ri, times the unit’s activity factor, αi. We

also have a leakage component that is based on the average leakage power of a single

register, Pff :

EPIreg,dynamic =
∑

i

(αi ×Ri × Eff ) (4.17)

EPIreg,leakage = TPI ×
∑

i

(Ri × Pff ) (4.18)

So while increasing pipeline depth will improve performance, it also results in in-

creased energy because of a larger value of Ri.

The last component of dynamic energy is clock power. Energy spent in the clock

distribution network depends on the clock load, which is dependent on both the

number of pipeline registers that are driven and also an intrinsic component that

represents the distribution network itself (wires). This latter component is a function
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of the area of the chip. Putting these two components together, we get:

EPIclk = CPI × (Effclk ×
∑

i

(Ri) + f(
∑

i

(Ai))) (4.19)

Here, Effclk is the average clock energy contribution per register per cycle, which

we extract from real designs. The summation
∑

i(Ai) represents the total area as

computed from the area of each of the constituent circuits. A function f is used to

account for how chip area affects the energy spent in the clock network; this function

is obtained empirically by extracting energy numbers for designs of different sizes.

Both these components are summed and then multiplied by the number of cycles per

instruction, CPI, to convert the final energy value to a per instruction basis.

Putting everything together, we get

EPIlogic = EPIlogic,dynamic + EPIlogic,leakage (4.20)

EPIreg = EPIreg,dynamic + EPIreg,leakage (4.21)

EPI = EPIlogic + EPIreg + EPIclk (4.22)

where the overall EPI is the final optimization metric used when optimizing for

energy efficiency.

4.2.3 Voltage Scaling

So far, we have focused primarily on design knobs in the circuit and architecture

domains. Voltage, however, is a powerful knob that can produce significant trade-

offs between speed and energy. It is therefore important to include voltage into the

optimization analysis.

One way to incorporate voltage scaling would be to include it directly into the

circuit trade-offs. However, since the underlying design details are encapsulated when
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creating circuit trade-offs—only the primary delay, energy and area metrics are ex-

posed to the architecture—there would be no way to control the voltage parameter.

This would mean each unit could operate at its own preferred voltage.

Instead we characterize delay and energy scaling factors as a function of voltage

and introduce scaling functions to allow the optimizer to scale the basic circuit trade-

off curves at optimization-time. The scaling functions we use have the following form:

MD = aD × (VDD)bD + cD (4.23)

ME = aE × (VDD)bE (4.24)

MP = aP × (VDD)bP + cP (4.25)

In these equations, VDD is the supply voltage, while MD, ME and MP are delay, energy

and leakage scaling factors respectively. The remaining variables are constants that

need to be characterized.

Figure 4.4 shows how the delay, dynamic energy and leakage scale with voltage

on several small circuits simulated in SPICE (data is normalized to 1V ). The dotted

line shows the mathematical characterization of the data. In these characterizations,

energy scaling follows an expected V 2 profile, while leakage and delay also change

as one would expect. The choice of circuit has little effect on the scaling behavior,

meaning that we can apply these results to circuits in general to create the effect of

voltage scaling.5

We therefore use these scaling factors to scale the basic circuit trade-off curves

and other energy and delay values. This scaling is done before the trade-off curves are

5There are certain cases where these scaling characteristics cannot be applied, most notably where
full-swing signaling is not used. One kind of circuit in which this is often the case is large on-chip
memories such as the L2 cache. The bit-lines in such large memories typically do not completely
discharge, and instead sense amplifiers are used to detect the signal. In these cases, one must
be careful to use the correct scaling characteristics. Fortunately, in most circuits, including static
CMOS logic and dynamic logic, full-swing signaling is used, and the standard scaling characteristics
can be safely applied.
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Figure 4.4: Characterization of how delay, energy and leakage scale with voltage.
Various circuits were simulated in SPICE, and then fits were produced.
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linked with the architectural models, and is represented mathematically as follows:

D′ = D ×MD (4.26)

E ′ = E ×ME (4.27)

P ′ = P ×MP (4.28)

These new “primed” variables are used instead of the original variables for the equa-

tions throughout this section.

Having voltage explicitly modeled using these forms gives us more control over

the voltage scaling assumptions in the design. By using a single voltage variable that

scales all circuit trade-offs, we can restrict the design to be a single-VDD design. On

the other hand, by using multiple voltage variables, we can still model multi-VDD

designs if we so choose.

4.3 Optimization

Having modeled the architectural space, the circuit trade-offs and their interactions,

the final step is to search the design space defined by these models to find a design

configuration that best meets the designer’s needs. While one could use a variety

of heuristics or other algorithms to link to the models and perform the search, our

approach is to formulate a formal geometric program (GP) optimization problem;

using a GP allows us to leverage powerful mathematical optimization techniques that

search the design space efficiently and robustly to find the optimal design.

The first step in this process is to describe the system behavior in the GP. This

involves taking each of the equations from this chapter and Chapter 3, and then mold-

ing them into a GP form. The equations we have are already in posynomial form—we

specifically ensured ensured we used posynomials in each of our modeling steps, and
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it is for this reason that we are looking to use a GP optimization solver in the first

place—but this process still requires some minor transformations to the equations.

The primary issue consists of our use of equalities to describe system characteris-

tics; although we represented all the system characteristics as equalities, a geometric

program requires that most constraints be in the form of inequalities. Thus, most

equations must be modified to use “≥” instead of “=” with only a monomial being

allowed on the left side of the inequality.6 This needs to be done carefully, to ensure

that the wrong problem is not being solved. Fortunately, for the performance-cost

characterizations that we make, it turns out we can do this by setting the performance

metrics and energy costs on the left (e.g. E ≥ f(...) or CPI ≥ f(...)). The pressure

to reduce waste during optimization will then cause these inequalities to be tight.

The next step is to provide the top-level design objective and constraints to the

geometric program as defined by the designer. These constraints typically apply to

the high-level characteristics of the system, such as overall performance, energy and

area. For example, the optimization problem can be to minimize EPI for a given

performance target (TPI ≤ TPImax) in the case of a high-performance design or to

minimize TPI (maximize performance) for a given energy budget (EPI ≤ EPImax)

in the case of an embedded/low-power design. Alternatively, one can optimize for

other metrics such as the energy-delay product, minimize EPI×TPI. If the circuit

libraries include area models, then it is also possible to optimize for more complex

metrics such as performance per unit area, which is important in CMP designs.

Figure 4.5 shows pseudo-code for a geometric program formulation that demon-

strates the formulation of the optimization problem. A constraint is listed for each

particular aspect of the system. Together, all the constraints describe a complex

system with interconnected parameters. For example, changing a delay parameter

Di in a given circuit affects Ni and Tcyc; Ni then affects CPI; and both Tcyc and

6For example, x ≥ y + z is a valid GP constraint, but y + z ≥ x is not
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CPI affect the final performance metric TPI. At the same time, a change in Di also

affects the energy cost of the circuit, Ei, which similarly causes a chain reaction that

ripples all the way to the final energy metric EPI. Moreover, the change in Ni will

cause additional energy in the pipeline registers which also affects EPI. One could

take this example even further, as there are other interactions as well, but our point

is simply to show the degree of analysis required to evaluate trade-offs in a complex

system. Fortunately, because we are using a GP solver, we can simply describe all

these constraints as an optimization problem; the optimizer then accounts for all the

complex interactions and trade-offs between parameters in its analysis.

Thus, having described all the design space equations and constraints, the last

step is to execute the GP solver. The GP solver transforms the problem to a convex

optimization problem by performing log-transforms on the equations, and then uses a

convex solver to automatically search the space. The optimizer essentially evaluates

the cost-benefit sensitivities of each parameter to quickly find the optimal set of design

knob values. We use GGPLAB [50] as our GP solver, although any GP solver will do.

Using a desktop computer system with a 3.2 GHz Pentium 4 CPU, this optimization

phase takes only about 30 seconds per optimization run for optimizing a fairly large

out-of-order processor, with simpler designs taking even less time. By sweeping the

design target—for example, by iteratively solving the problem with increasing energy

budgets—one can map out the overall trade-off space of the entire system.

The output of the optimization is the set of values for each parameter in the design

space. This includes values such as the latencies of units, the sizes of memories, the

clock frequency and the supply voltage. The costs of these parameters and their

sensitivities can also be easily accessed. An additional back referencing step through

the circuit library provides the internal circuit design configuration that achieves the

requested circuit specifications.

It should be noted that the results produced by this framework will be continuous
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# Circuit trade-offs library
for each basic circuit i

# Dynamic energy

Ei ≥
KE,i(sizei)

Di −D0,i(sizei)
+ E0,i(sizei)

Ei ≥ Emin,i(sizei)

# Leakage power

Pi ≥
KP,i(sizei)

Di −D0,i(sizei)
+ P0,i(sizei)

Pi ≥ Pmin,i(sizei)

# Area

Ai ≥
KA,i(sizei)

Di −D0,i(sizei)
+ A0,i(sizei)

Ai ≥ Amin,i(sizei)

Di ≥ Dmin,i(sizei)

# Architectural models with posynomial characterization f()
CPI ≥ f(..., Ni, ..., sizej , ...)

# Link circuit delays to architectural latencies
for each linked pair (i,j) (circuit i, architectural latency j)

Nj ≥
Di

(Tcyc − Tff )

# Model pipeline registers
for each architectural stage i

Ri ≥ (Ni)η ×Wi

# Logic energy
EPIlogic,dynamic ≥

∑
i(αi × Ei)

EPIlogic,leakage ≥ TPI ×
∑

i(Pi)
EPIlogic ≥ EPIlogic,dynamic + EPIlogic,leakage

# Pipeline register energy
EPIreg,dynamic ≥

∑
i(αi ×Ri × Eff )

EPIreg,leakage ≥ TPI ×
∑

i(Ri × Pff )
EPIreg ≥ EPIreg,dynamic + EPIreg,leakage

# Clock energy
EPIclk ≥ CPI × (Effclk ×

∑
i(Ri) + fclk(

∑
i(Ai)))
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# Total performance
TPI ≥ CPI × Tcyc

# Total Energy
EPI ≥ EPIlogic + EPIreg + EPIclk

# User-defined objective and constraints
# (In this case to minimize TPI for an energy budget EPImax)
minimize TPI
subject to
EPI ≤ EPImax

Figure 4.5: Simplified pseudo-code of the final optimization problem constraints.
Some effects such as voltage scaling are left out for simplicity. The final optimization
objective and constraint in this example is to minimize TPI subject to an energy
budget, but it could also be to minimize EPI for a performance target, or any other
objective and constraints from the user.

in nature because of the analytical modeling and optimization. This may not be a

serious issue for certain parameters, but has to be managed for others such as the

number of pipe stages in a functional unit.7 Some post-optimization snapping of the

results to discrete values is therefore needed. This snapping can be done in various

ways. Greedy algorithms that consider the sensitivities of each of the parameters could

be used, possibly with re-optimizations as parameters are locked down. As we will

see in the results presented next, however, voltage scaling makes this discretization

issue less significant.

4.4 Discussion

The framework discussed in the last two chapters brings together a number of tech-

niques to produce a general, yet powerful, tool for evaluating design decisions and

7Intentional clock skewing and register retiming, however, may sometimes allow a designer to
work with non-integer values of pipe stages
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their cost-performance trade-offs. It applies a systematic approach to design, intrin-

sically relying on marginal cost analysis to help rigorously optimize decisions at both

the architectural and circuit levels.

At its core, the framework is driven by models that describe the system behavior,

characterizing how metrics such as performance, energy and area change with design

parameters. The general method used in creating these models is primarily a sample-

and-fit approach. To explore large architectural spaces, for example, the framework

uses statistical inference on a relatively small set of simulation samples to create

regression models of the entire architectural space. At the circuit-level, we see a

similar approach of using data-fitting to characterize the design trade-offs.

While perhaps a simple idea, this general approach of fitting data points enables

the modeling of a wide range of systems. In theory, this approach can be applied to

virtually any kind of system; to create architectural models, all that is required of the

designer is a system simulator, a tool which must be developed in any design process

regardless. By turning the different design knobs in the simulator and extracting

performance samples of random design configurations, it becomes possible to create

powerful models that describe a much larger space of designs. The models can then be

used to determine the importance of each design knob and how design knobs interact.

For generating the circuit-trade-offs, the approach was once again quite general.

The designer is free to use the circuit optimization tool of his choice—of which there

are many—simply providing the energy-delay points into the circuit library. These

data points are then processed and fitting is used to create a mathematical charac-

terization of the design trade-offs.

While applying a mathematical characterization is, in itself, powerful, the frame-

work goes further by applying posynomial functions to produce the fits. By doing so,

the framework restricts the space to being log-convex, enabling the use of geometric

programming solvers to search the large, multi-dimensional space to find the optimal
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design.

This approach assumes that log-convex models of desirable accuracy can be pro-

duced. If a good architectural model for the entire design space cannot be fitted, how-

ever, then it may be necessary to segment the design space and model the segments

separately. This, of course, only works to a certain degree, otherwise degenerating

into a manual search. Alternatively, lower-accuracy models can be used to locate

the general area of a result and a second iteration of the methodology focused on

that area (and with higher-resolution models) can be used to produce a finer-grained

optimization result.

While these issues could theoretically complicate matters, in practice, we have

found that for most design knobs in a system—excluding discrete design decisions—

the use of posynomial functions is generally quite effective in modeling the system. In

the next chapter, we apply the framework to study energy-performance trade-offs in

the processor design space, in process of which we also demonstrate the effectiveness

of the modeling and optimization methodologies used by the framework.



Chapter 5

Processor Optimization

In Chapters 3 and 4 we showed how we can model and optimize digital systems,

from the high-level architecture down to the circuit trade-offs. In this chapter, we

use this framework to study the energy efficiency of general-purpose processors. We

examine various different high-level architectures—from a simple in-order core to an

aggressive multiple-issue out-of-order core—in addition to examining pipeline depth,

various lower-level microarchitectural knobs and circuit design trade-offs for each of

these architectures. We first consider this design space without voltage scaling, and

then study how the introduction of voltage scaling changes the basic results. Before

presenting the results, however, we look at the experimental setup of our study: the

design space we consider, the benchmarks we use, and the accuracy of the models we

generate.

Parts of the work in this chapter were performed in collaboration with Aqeel Mahesri and Sanjay
Patel at the University of Illinois at Urbana-Champaign.

84
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Table 5.1: Microarchitectural design space parameters.

Parameter Range
Branch predictor 0-1024 entries

BTB size 0-1024 entries
I-cache (2-way) size 2-32KB
D-cache (4-way) size 4-64KB

Fetch latency 1-3 cycles
Decode/Reg File/Rename lat. 1-3 cycles

Retire latency 1-3 cycles
Integer ALU latency 1-4 cycles

FP ALU latency 3-12 cycles
L1 D-cache latency 1-3 cycles

ROB size 4-32 entries
IW (centralized) size 2-32 entries

LSQ size 1-16 entries
L2 cache latency 8-64 cycles
DRAM latency 50-200 cycles

Cycle Time unrestricted
Supply Voltage 0.7-1.4 V

5.1 Experimental Methodology

To study the processor design space, we examine six different high-level processor

architectures: single-issue, dual-issue and quad-issue designs, each with both in-order

and out-of-order execution. This covers a large range of the traditional architecture

space, from a simple lower-energy, low-performance single-issue in-order processor to

an aggressive higher-energy, high-performance quad-issue out-of-order processor.

For each of these high-level architectures, there are then various tunable microar-

chitectural parameters that trade-off energy and performance. Table 5.1 lists these

parameters for the design space we explore. This microarchitectural space consists of

billions of possible design configurations for each high-level architecture, and this is

without even taking into account the circuit design space we explore.

For our study, we use a large 8MB L2 cache with a fixed access time. The large
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Table 5.2: Percent errors of architectural performance (CPI) models generated
through statistical inference.

1-issue 2-issue 4-issue 1-issue 2-issue 4-issue
in-order in-order in-order ooo ooo ooo

bzip2 0.49 0.55 0.41 3.76 4.43 4.66
crafty 6.18 6.70 8.25 6.56 7.74 7.77
eon 3.93 9.25 7.94 6.37 7.50 7.27
gap 1.10 1.13 1.30 4.58 5.01 4.77
gcc 4.45 2.31 6.58 4.93 6.30 5.54
gzip 1.25 1.24 6.25 3.48 4.10 4.24
mcf 2.33 5.69 5.78 5.83 6.42 8.99

parser 0.63 1.39 0.87 3.41 4.13 3.80
perlbmk 3.37 2.07 3.62 5.62 7.38 5.98

twolf 2.36 3.40 3.14 4.08 5.97 5.27
average 2.61 3.37 4.42 4.86 5.90 5.83

L2 cache was used because it reduces costly accesses (both energy and delay-wise) to

the main memory and lets us focus on the energy-efficiency of the processing core.

Because the clock cycle time of the core is an optimization parameter, the relative

access latency in cycles can still vary, and so the L2 access latency is included in the

design space. The DRAM latency is likewise included in the design space because the

core frequency can change.

We considered two branch prediction schemes for our processors: a simple table of

2-bit saturating counters, and a YAGS branch predictor [21]. We tried both predictors

on all architectures, and found that from an energy-performance perspective, the

performance return of the YAGS predictor was usually worth the small increase in

total energy. Thus, we use the YAGS predictor in all architectures except the single-

issue in-order design, where we use simple 2-bit counters instead. We found the 2-bit

counters were still useful for very low energy budgets, so we use this simpler predictor

for the single-issue in-order design. The lower CPI of these simple designs also means

that more aggressive predictors are not as important.
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As benchmark suites, we use a subset of SPEC CPU benchmarks. We simulate

500 randomly generated design configurations per benchmark, from which we then

generate our architectural models through statistical inference. We set aside a per-

centage of these these samples for validating our models. Median fitting errors are

listed in Table 5.2. The most complex out-of-order architectures exhibit errors that

are a bit higher because of the additional complexity of the system being modeled.

Two of the benchmarks, crafty and eon, also show higher errors because they have cer-

tain parameters that cause sharp changes in performance; our particular posynomial

functions fit this data more smoothly, resulting in some additional error. Neverthelss,

averaged over all benchmarks, our models have errors of 6.0% or less.

For this study, we use a CMOS 90 nm technology. This technology’s leakage

current is relatively low, so for the results we present, we consider dynamic energy

consumption only. We discuss how the inclusion of leakage currents would affect the

results in Section 5.6.

To create the circuit energy-delay characterizations for our circuit libraries, we

use a mixed approach. For logic units and small memory structures (queues, register

files, etc.), we build Verilog implementations, and use Synopsys Design Compiler to

synthesize each of these blocks. By sweeping the timing constraint on these blocks,

Design Compiler produces different logic topologies, synthesis mappings and gate

sizings that trade-off energy and delay. Designs with tighter delay constraints use

more aggressive mappings and larger gates, resulting in higher energy per use.

For larger memories such as the memory caches and the BTB, we use CACTI

6.0 [49] to characterize the energy-delay trade-off space. CACTI searches the space

of possible SRAM memory organizations to evaluate access time and power charac-

teristics of design points. We use CACTI to extract all energy-delay points in this

search space, which we then use to construct energy-delay trade-off models.

Because we use synthesis tools, most of the circuits trade-offs we produce are



88 CHAPTER 5. PROCESSOR OPTIMIZATION

static CMOS circuits, although CACTI models dynamic circuits in parts of the SRAM

memories. We consider dynamic circuits by using alternate circuit libraries that we

discuss in Section 5.4.

We use this approach to characterize the energy-delay trade-offs for all the major

blocks in the processor: the ALUs, the caches, the reorder buffer, the instruction

window, etc. While we have taken care to include all major components in a pro-

cessor, there are often numerous smaller units and state registers that are present

in commercial designs that we are not including. Moreover, while characterizing

energy-delay trade-offs for individual circuit blocks is straightforward, accounting for

the communication in a processor is more difficult, and is often done with empirical

data. We have created first-order models of these effects by using wireload models

in the circuits that we synthesize, but we expect others, with more data to draw on,

to improve our models in the future. While the detailed results will change as the

underlying models improve, we believe that the general trends and conclusions in our

study will still hold true.

5.1.1 Validation Methodology

To validate our results, we take a two-pronged approach. We first consider the val-

idation of the individual models that we have created, and then we also compare

our overall results to real industrial processors as a more global validation. At the

modeling level, we need to validate each of the performance and energy models we

create. This has already been discussed for our performance models; we achieve me-

dian errors of 6% or less when compared to architectural performance simulators. On

the energy side, the process is analogous: we ensure that the energy-delay trade-off

characterizations we create fit the energy-delay points from the synthesis tools. Here,

again, we achieve good results, with most energy models typically being within 5%

error.
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While performing validation of the individual models is useful, this approach is

unable to verify the extent to which we have modeled all the important units. For

this reason, we also compare our designs to real processors. For our comparisons, we

consider two ARM Cortex A-Series processors: a low-power Cortex-A5 [1]—a single-

issue in-order processor—and a performance-targeted Cortex-A9 [2]—a multi-issue,

superscalar out-of-order processor with speculative execution. These two processors

are good candidates for performing our comparisons because they map very well

to the range of processors we examine. Normalizing the available performance and

efficiency data [1, 2] to our technology and voltage, the Cortex-A5 consumes about

175 pJ per instruction while the more aggressive Cortex-A9 consumes about 415

pJ per instruction. These values are in the same range as the 80 to 340 pJ per

instruction that we see in our optimized designs in the next section; they are a bit

higher, but this is not surprising since there are many smaller components within a

commercial design that we have not modeled. On the performance side, the Cortex-

A9 achieves a instruction processing rate of approximately 1800 MIPS (normalized

using delay scaling factor half-way between 1 and
1

α
), which is also close to the

high-end performance of around 1900 MIPS the optimization framework produces.

This comparison reassures us that our models are reasonable and cover the dominant

performance and energy issues.

5.2 Base Results

Having described the experimental set up, we apply the optimization framework to

each of our high-level architectures. The resulting energy-performance trade-offs for

these architectures are shown in Figure 5.1. These Pareto-optimal curves show the

entire range of trade-offs. As performance is pushed, each architecture uses more

aggressive structures and circuits, causing the energy consumed per instruction to
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Figure 5.1: Overall energy-performance trade-offs of our six macro-architectures for
a 90 nm CMOS technology, produced by jointly optimizing microarchitectural and
circuit parameters. As the performance is pushed, the optimal choice of macro-
architecture changes to progressively more aggressive machines. Design details for
the circled design points are shown in Table 5.3.
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increase. Given an energy budget or performance target, a designer can use these

curves to identify the most appropriate design.

We remind ourselves that these Pareto-optimal trade-off curves between perfor-

mance and energy are more general than commonly used metrics like ED or ED2. As

was mentioned in Chapter 2, EDn metrics essentially set an exchange ratio between

energy and performance, with higher powers of n favoring more performance; in this

sense, they can be somewhat arbitrary. Optimizing for EDn with a particular value

of n would correspond to a particular point on the Pareto-optimal curve. Since one

generally wants to design for a specific performance target or energy budget, neither

of these points is necessarily the desired answer. Representing the results as a trade-

off curve between energy per operation and performance provides a more complete

picture of the design space to designers.

The overall trade-off space spans approximately 6.5x in performance—from about

300 MIPS to 1950 MIPS—and 4.25x in energy—from about 80 pJ/op to 340 pJ/op.

The various architectures contribute different segments to the overall energy-efficient

frontier. As one would expect, the single-issue in-order architecture is appropriate for

very low energy design points, while the quad-issue out-of-order is only appropriate

at very high performance points. In between these two extremes, we find that the

dual-issue in-order and out-of-order processors are efficient for large parts of the de-

sign space. Thus, when starting from a basic single-issue in-order design, the order in

which high-level architectural features should be considered is, first, superscalar issue,

and then—if more performance is still needed—out-of-order processing. From the per-

spective of the marginal energy cost per unit performance, the move to a superscalar

design is cheaper than investing in out-of-order processing. The quad-issue in-order

design is only efficient for a small performance range, not being as energy-efficient as

the dual-issue in-order design at lower energy points, and being outmatched at high

performance points by the dual-issue out-of-order design. Finally, the single-issue
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Table 5.3: Design Configuration Details For Selected Design Points.

D1 D2 D3 D4
In-order vs out-of-order in-order in-order out-of-order out-of-order
Issue width 1-issue 2-issue 2-issue 4-issue
Cycle time (FO4) 27.5 16.9 17.2 16.3
Branch pred size (entries) 264 600 1024 870
BTB size (entries) 64 90 554 1024
I-cache size (KB) 21 32 32 32
D-cache size (KB) 8 11 14 42
Fetch latency 1.0 1.6 2.2 2.1
Decode/Rename latency 1.0 1.7 2.4 3.0
Retire latency N/A N/A 2.0 2.2
Integer ALU latency 1.0 1.0 1.0 1.0
FP ALU latency 3.0 4.0 3.9 4.1
L1 D-cache latency 1.0 1.1 1.1 1.1
ROB size N/A N/A 22 32
IW size N/A N/A 11 9
LSQ size N/A N/A 16 16

out-of-order design is never efficient and does not contribute to the overall efficient

frontier. This architecture represents a design that is out of balance. Being able to

issue only a single instruction becomes a bottleneck to the out-of-order processor,

resulting in wasted effort.

We can also examine how the various underlying parameters are changing through-

out the design space. In Table 5.3, we examine these parameters for design points D1

through D4 as marked on Figure 5.1. Not surprisingly, as we push for more perfor-

mance, the frequency and structure sizes generally increase, while latencies generally

decrease. Some of the latencies show fractional values which would need to be snapped

to discrete values, although techniques such as time borrowing and register retiming

can also be used to work with the results. We highlight a few points from these results

that demonstrate the advantages and capabilities of using a systematic optimization

framework.
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First, both the I-cache and D-cache tend to stay away from small sizes, even when

targeting lower-performance points. Across the design points, the D-cache reaches a

minimum of 8KB even though a 4KB cache is available, and the I-cache never goes

below 20KB. This behavior is the result of two counteracting forces that “fight” in

the optimization of the cache size. Although smaller caches result in less expensive

individual accesses, a larger cache potentially saves energy by reducing the number

of misses that incur a more expensive access to higher level caches. Making an L1

cache big would reduce L2 cache access energy, but would be wasteful because of the

high access cost to the L1 cache itself; conversely, making an L1 cache small would

reduce the L1 cache access energy, but would be wasteful because of an increased

number of expensive accesses to the L2 cache. Thus, for lower power design points,

the optimizer determines that the marginal savings it can achieve by reducing misses

outweighs the access cost of the larger caches, ultimately finding the right balance

and settling on the chosen values. In these results, the I-cache tends to have larger

sizes than the D-cache; the I-cache has higher hit rates which means that the marginal

cost of increasing its size (per unit performance offered) is lower. Generally, these

results show the importance of caches in energy-efficient designs as a way to both

save energy and increase performance.

Secondly, we note that the instruction window (IW) is relatively small compared to

the maximum available IW of size 32. In this case, we once more see an optimization

“fight”. While a larger IW improves the architectural performance and increases CPI,

a larger IW also increases the complexity (and delay) of the instruction dispatch

logic. Since the dispatch logic in a traditional out-of-order machine must execute

every cycle1—the previously dispatched instruction(s) need to be removed from the

1While it is possible to create more complex dispatch schemes that operate over multiple cycles,
we do not consider those in this example. It should be noted that multi-cycle dispatch logic schemes
bring with them their own set of trade-offs, as they would generally require either segmentation of
the instructions into dispatch banks, which may limit ILP extraction, or speculation with correction
logic, which is also expensive. The fact that we have not considered these machines is simply because
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instruction window before selecting the instructions to be dispatched for the given

cycle—the delay of the dispatch circuitry can adversely affect the clock frequency.

The optimizer realizes this trade-off and finds the right balance between architectural

performance through a higher CPI and pipeline performance through a higher cycle

time. Moving from design point D3 to D4, the instruction window size backs off to

accommodate frequency scaling. We see a similar effect in the branch predictor size,

another structure that needs to execute once per cycle.

This example demonstrates one of the major advantages of using a circuit-aware

evaluation of architectural trade-offs: the consideration of circuit delays prevents the

designer from creating unrealistic architectural evaluations that could be misleading

(even if unintentional). As architectural performance simulators are not generally

linked to the actual delay of different circuits, such simulators cannot identify situ-

ations where the delay of a circuit would affect the frequency of a pipeline. Thus,

it is very easy, for example, for an architectural simulator to model systems with

very large instruction windows with hundreds of entries, ignoring the fact that these

designs are not realistically implementable.

The need for the consideration of circuit-level issues is not specific to the instruc-

tion window, but affects all circuits and structures in the system. When adding any

new architectural feature, the designer needs to account for the additional logic in

the design. The clock frequency may need to be reduced to allow that feature to

execute within the given pipeline stage (this may also require that faster circuits

be used, resulting in an additional energy cost), or a new pipe stage may need to

be created, which potentially has an adverse effect on the system’s CPI whenever

data or control dependencies are present. Nevertheless, the effect is most pronounced

where critical dependence loops are present—such as the dispatch logic, next-PC

it is not our purpose to explore every possible design, but rather to demonstrate the abilities of the
framework and perform a high level study of energy-efficient machines. The optimization framework
would have no problem modeling these kinds of systems if the system simulators for them exist.
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logic or data forwarding logic—because these circuits must complete once a cycle and

otherwise adversely affect the clock frequency.

Returning to the results in Table 5.3, we finally note that the optimizer generally

ensures that the delays of units such as the integer ALU and the D-cache fit into one

clock cycle. This is because these units are critical to resolving data dependencies.

Thus, it is usually worth the energy cost to ensure these units fit into one clock cycle.

Of course, this is not a surprising fact, and is confirmed by current design practices.

It is important to note, however, that the delays of these units are changing with

the cycle time, so it is not the case that the same implementations are being used

throughout the design space. Machines with more aggressive cycle times use faster,

higher energy versions of these circuits, whereas the lower power design points use

lower-energy circuit implementations.

5.3 Circuit Trade-offs

The circuit-aware approach that we use integrates delay and energy information into

the optimization, exposing different energy-delay design points to the design space

exploration. This extends most architectural design space tools and studies which

typically use fixed energy costs for each circuit (e.g. Wattch [13], others [71, 41]).

The additional fidelity allows us to trade-off the energy and delay within a circuit to

find the optimal circuit operating point. For example, the optimizer can choose to

slow down a circuit to save energy when it does not need to run as fast, or it can

allocate more energy to a circuit to speed it up if it finds that circuit to be critical

to the system performance. This is an important consideration in the optimization

space, especially when we consider that different circuits will be optimal at different

performance targets.
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Figure 5.2: Co-optimization with circuit trade-offs versus optimization with fixed
circuit data. In this experiment, fixed circuits operate at 15% back-off from their
minimum delay. By restricting the circuit operation to these fixed points, we see a
31% energy overhead at the low energy design points, and an 8% performance loss
at high-performance points. A single circuit implementation is unable to meet the
demands of the entire design space, and each circuit needs to be tuned different for
efficient operation.
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To evaluate the advantages of including circuit trade-offs in the design space anal-

ysis and optimization, we compare our approach to a fixed energy cost approach. We

perform this study by restricting our circuit libraries to single energy-delay points (in-

stead of curves) for each circuit. This causes the optimizer to consider only a single

implementation per circuit, thus mimicking—from an energy modeling perspective—

the functionality of current architectural tools. Using these fixed circuit libraries,

we then run a complete architectural optimization, comparing the optimal energy

efficiency achieved using the the fixed circuits to energy efficiency of a joint circuit-

architecture optimization.

In performing this study, we first have to select design points for our fixed circuit

libraries. To maintain a fair comparison, we desire points that represent a reasonable

balance between the high energy costs of running circuits at their maximum speeds

and running circuits too slow. To achieve this balance, we set each of the circuits in

our libraries to be operating at 15% back-off from their maximum speed. We have

found that this approach causes most circuits to be operating approximately at the

“knee” of their energy-delay trade-off curves.

In Figure 5.2, we compare a 15% back-off fixed-circuit architectural optimization

to a circuit-aware optimization that includes the full circuit design space in the op-

timization. What this figure shows is a significant amount of inefficiency over the

entire design space caused by the use of fixed circuit libraries. At the low-energy

points—where the lowest energy circuits would normally be preferred—the architec-

ture is restricted to more costly circuits, resulting in a 31% energy overhead. On the

other hand, at high-performance points—where some circuits should be operating at

their peak performance—the architecture is restricted to slower circuits, resulting in

an 8% performance loss. Moreover, the inefficiency does not occur only at the extreme

data points, but exists over the entire range of the trade-off space; at no point does

the fixed-circuit optimization achieve the same energy efficiency of the circuit-aware
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Figure 5.3: Plot showing inefficiency caused by using fixed circuit data. Fixed cir-
cuit libraries both reduce the achievable peak performance and require more energy
than a jointly optimized design. Each fixed library is placed along the x-axis by the
performance loss of its fastest solution, so a circuit library at 1% off the minimum
delay is located at near 0 performance loss and circuits at 50% off from the minimum
delay cause the overall system to slow down 37%. For each library we then find the
energy overheads compared to the jointly optimized design. The dotted line is the
max overhead throughout the architectural design space, while the solid line is the
min overhead. No fixed circuits provide good performance with low energy overhead.

optimization.

To ensure that these results are not an outcome of the particular fixed circuit

libraries that we have used, we extend this study to other fixed libraries. We thus

sweep the fixed circuit points to be at 1, 5, 10, 15, 20 25 and 50% of the minimum

delay, and repeat the previous study. Figure 5.3 shows the resulting inefficiency of

using each of these different “fixed” circuit points, plotting the maximum and min-

imum energy efficiency losses of each these circuit libraries against the performance

loss experienced at the highest performance point (for our 15% circuit libraries, for

example, the high-end performance loss was 8%).
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In this figure, we see that running all the circuits at near maximum speeds (left-

most point, circuits at 1% of their min delay) allows the machine to run at near-peak

performance, but comes with significant energy overheads of 130% or more. These

large overheads are the result of uniformly running all circuits very fast, since only

performance critical units should run at their maximum speed; non-critical units

should be slowed down to save energy. On the other hand, if slower circuits (right-

most points) are used in an effort to reduce energy, energy overheads reduce to about

15%, but maximum performance is sacrificed.

The problem, of course, is that in the fixed library approach, the circuit designs

are restricted to a single implementation, and the architecture has no choice but

to use the provided circuit designs. Unfortunately, no single operating point can

possibly cover the needs of architecture across the entire range of the design space.

Circuits which are appropriate for high-performance targets are different than circuits

for low-energy objectives, and if one wants to map out the energy efficient frontier

of the entire design space, it becomes necessary to include the entire space of circuit

trade-offs in the analysis.

Even if one is not trying to explore the entire energy-efficient frontier, but is rather

targeting a single design objective, the inclusion of circuit trade-offs in the optimiza-

tion is still important. In a system with many sub-units, each of the underlying

circuits needs to be tuned differently according to how important they are to the sys-

tem as a whole; certain circuits that are critical to the system performance should be

sped up, while less critical circuits should be slowed down to save energy. Of course,

to perform this analysis, a circuit-aware architectural optimizer is required that can

evaluate the system-level marginal costs of making circuit changes. The optimizer can

then tune the circuit design and select the most appropriate circuit. Without making

the system optimization aware of the the circuit design space, the appropriate circuits

cannot be determined, ultimately resulting in some degree of energy inefficiency in
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the system.

5.4 Dynamic Circuits

The use of a circuit-aware optimization framework also allows us to perform other

studies that cross the architecture-circuit boundary that were difficult to perform

before. One such study, that we present here, explores the effect of using different

circuit styles.

Our base circuit libraries use static CMOS energy-delay trade-offs which include

the space of gate sizings and logic synthesis mappings. There are various other circuit

styles, however, each of which have their own set of characteristics and trade-offs;

here, we examine the trade-offs of using dynamic circuits. Dynamic circuits were

once commonly used in high-performance processors and can be significantly faster

that static CMOS circuits. However, because of their clock power and high activity

factors, dynamic circuits also come at a significant energy cost.

Our first task is to create circuit libraries with energy-delay trade-off curves for

dynamic circuits. To characterize the performance gains and energy overheads of

using dynamic circuits, we compare a dynamic dual-rail domino adder to a static

implementation using a circuit optimization tool [53]. These results indicate that

the dual-rail domino circuit achieves 0.67x the delay of the static circuit at 4x the

energy. Since we do not have a complete dynamic circuit library, we use this adder

scaling data as a proxy for all circuits (except memories2) to generate dynamic circuit

trade-offs.

We examine two dynamic designs using these new libraries. In the first, we use

dynamic circuits for certain performance-critical components, speeding up the integer

ALU and the out-of-order issue logic. While the ALU does not strictly stand in the

2Most memories already use some dynamic circuits internally, so we do not change their perfor-
mance in this experiment.
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way of the cycle time—the ALU is pipelinable—the performance loss of pipelining the

ALU due to data dependency stalls means it is usually not an energy-efficient design

choice. The optimizer generally prefers a 1-cycle ALU with a longer cycle time over

a higher frequency design with a multi-cycle ALU. In the case of the issue logic, it

cannot be pipelined in our design, and actually limits the use of shorter cycles times.

Dynamic logic has a second potential advantage. Since every dynamic gate already

has a clock, it is possible to build an entire system without including any explicit

flops or latches. Furthermore, the overall design can be constructed to be tolerant of

skew on the clock lines [30, 58]. This type of design essentially removes all clocking

overheads that are found in conventional designs. For this method to work, all logic

must be a monotonic function of its input (domino logic), so this generally requires

one to create dual-rail gates, which compute both true and complement outputs

from true and complement inputs. Thus, for our second design, we also explore the

performance trade-offs of a complete dual-rail design.3

Figure 5.4 shows the results of using these circuit styles on our dual-issue out-

of-order architecture. Also shown is the original static version. As expected, both

dynamic designs push performance to new limits, but come with some added energy

overheads. The partially dynamic design provides more performance because it can

now achieve higher cycle times. The faster issue logic now also allows for larger

instruction windows of up to 20 entries; this in contrast to the small 8 entry instruction

windows we saw in the static design. These performance benefits, of course, come at

a somewhat high energy cost: the transition from the static design to the partially

dynamic design comes at a marginal cost of 2.3% in energy for 1% in performance. The

fully dual-rail, skew-tolerant design offers an even larger performance gain; it virtually

eliminates clocking overheads. However, it comes with an even larger energy cost

3While the memories would need to be modified to work in this system, the changes would be
small and would not cause major changes in memory power or delay.
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Figure 5.4: Trade-offs of dynamic circuits. A partially dynamic design (with a dy-
namic ALU and issue logic) increases maximum performance by enabling shorter
cycle times. A fully dynamic, skew-tolerant design offers even greater performance
by removing clocking overheads. Both designs, however, come at significant energy
costs which place them on a steep part of the trade-off curve.

since the entire machine must be implemented in dynamic logic. This design option

represents a more expensive choice at about 2.7% in energy for 1% in performance.

While neither of these options are cheap, a designer may be willing to pay the cost

if the added performance is truly needed. As we will see in the next section, however,

voltage scaling can often offer better marginal costs and should be considered first.

5.5 Voltage Optimization and Marginal Costs

It is well-known that an important consideration in energy-efficient design is the

choice of operating voltage. One needs only to scale voltage by a few tenths of a volt

to see significant increases in both performance and energy consumption. Thus, it

becomes important to optimize the design along with the supply voltage.

Figure 5.5a shows the energy and delay scaling characteristics of circuits as a
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Figure 5.5: Effect of voltage on delay and energy. (a) shows the delay and energy
scaling as a function of supply voltage (normalized to 0.9V). (b) shows the corre-
sponding energy-performance trade-off curve. Percentage marginal costs (MC%) is
the percentage energy cost required to increase performance by 1%. For a wide range
of energy and performance, marginal costs do not change much, making voltage a
powerful knob for energy-efficiency.
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Figure 5.6: Marginal costs of the joint architecture and circuit design space. In light
are the energy-performance curves of our six architectures. In dark is the overall,
composite energy-performance frontier. Data is normalized to 0.9V to allow for com-
parison to the voltage marginal costs. Marginal costs in the architecture/circuit space
vary considerably more than voltage marginal costs. For most practical design ob-
jectives the optimal architecture should be selected from the narrow band of designs
with a marginal cost of 0.80%-2.3% to match voltage marginal costs.

function of voltage as obtained through SPICE simulations. The energy curve follows

an expected V dd2 profile; the delay shows an inverse relationship proportional to

1
V dd3.325 +1 (empirical fit, normalized to 0.9V). Composing these two relationships, we

get the energy-delay scaling trade-offs of the supply voltage parameter in Figure 5.5b.

This data shows that, by itself, voltage tuning from 0.7V to 1.4V provides a range

of about 3x in performance and 4x in energy. More importantly, the profile of the

energy-performance curve is relatively shallow throughout this entire range. This

means that the marginal cost of increasing performance through voltage scaling does

not change much as we continue to increase the voltage parameter. At low voltages,

the marginal cost is at about 0.80% in energy for 1% in performance; at the high end,

this marginal cost reaches 2.3% in energy for 1% in performance.
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We can contrast this marginal cost profile against the marginal cost profile of

achieving performance through circuits and architecture, shown in Figure 5.6. This

space shows a much larger range of marginal costs. At the low performance points,

the marginal costs are very cheap, while at the high performance points, the marginal

costs are very expensive.

We recall that to optimize a design, the marginal costs of all parameters should

be equal. If this were not the case, then an arbitrage opportunity would exist, and

the more expensive parameters could be exchanged for cheaper parameters: selling

the expensive parameter would cause some performance loss, but this performance

could be recovered at a lower cost through the cheaper parameter. Comparing the

marginal costs of voltage versus architectural parameters, this suggests that, unless we

are trying to achieve the very extremes of performance or low power (to the point that

the voltage knob is constrained by its maximum or minimum voltage, respectively),

the optimal set of designs should lie roughly in the range of marginal costs from

0.80% to 2.3% in order to match the marginal costs of voltage scaling.4 This results

in a narrow band of architectural and circuit designs being optimal when the voltage

scaling parameter is available.

Figure 5.7 shows the optimization results when the supply voltage parameter is

included in the design space. Confirming the marginal cost analysis, we see that a

4Strictly speaking, this is an approximate statement as it requires that all components in the
system scale uniformly with voltage. While this is mostly the case, in reality, components like L2
caches use low-swing bitlines that change their scaling behavior. This means that one cannot simply
look at the marginal cost profile of the whole system when considering voltage scaling; one must,
rather, separate out the L2 cache component and treat it differently. This effect applies to our case
study as well, since we assume L2 caches and main memory have a fixed access cost and physical
latency (i.e. we specifically exclude these components from scaling with voltage because they are
outside the design space). Nevertheless, the rule of matching marginal costs still applies to a high
degree and is useful as a rule of thumb. It is particularly so in our study because the activity factors
of the L2 cache and main memory are not high, and the energy spent in these components is not
a dominating factor. Regardless, in the results we present next in Figure 5.7, these effects are all
modeled correctly, as the optimizer is aware of which components scale with voltage, and it therefore
evaluates the correct set of energy-performance trade-offs to find the energy-efficient frontier.
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Figure 5.7: (a) Energy-performance trade-offs for the processor design space with
voltage scaling. The dual-issue out-of-order design now dominates an even larger
part of the design space; the dual-issue in-order design is optimal at low energy
points. The quad-issue in-order design and the single-issue out-of-order design are
not shown to simplify the plot; they are never efficient. (b) Same results zoomed in
on low energy points.
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Figure 5.8: Results of Figure 5.7 plotted as the energy overhead over the lowest energy
available. A value of 1 means that the design is the most energy-efficient available;
values greater than 1 represent the inefficiency.

smaller set of architectures cover a larger part of the energy-efficient frontier. The

dual-issue out-of-order processor is energy-efficient for a large part of the design space.

At low performance targets, the dual-issue in-order processor takes over, although

the dual-issue out-of-order processor is still not overly inefficient. Only at the very

extremes, when the voltage knob becomes capped, do the single-issue in-order and

quad-issue out-of-order designs play a role, and these represent designs with very low

and very high marginal costs respectively. Figure 5.8 provides an alternative view

of the same data, plotting the energy overhead versus the overall energy-efficient

frontier.

This result suggests that a small number of properly tuned designs can cover

most of the overall energy-performance frontier at near optimal efficiencies simply by

voltage and frequency scaling. We pick one dual-issue in-order processor and one dual-

issue out-of-order processor with fixed microarchitectural and circuit parameters, and

evaluate these fixed designs under voltage and frequency scaling. Figure 5.9 shows the
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Figure 5.9: By using two carefully selected designs—a fixed dual-issue in-order design
and a fixed dual-issue out-of-order design—voltage scaling can be used to cover a large
performance range within 3% of the optimal energy-efficiency.

energy overheads of scaling these fixed designs as compared to the fully optimized

designs which also tune the architecture and circuits. Because design parameters

are fixed, we see some inefficiency; the lines deviate from the normalized optimal

value of 1. This result is expected because the marginal costs of all parameters in

the system are no longer equal. Yet, we see the resulting inefficiency is small—

under 3%. Of course, this result requires that we start with the right two designs in

the architecture/circuit space sweet spot. Thus, with two carefully selected designs

and voltage scaling, we can operate at near optimal energy-efficiencies over a broad

performance range.

5.6 Discussion

In design for efficiency, a designer needs to consider the cost-performance trade-offs of

all available design options, using this information to make the best decisions. This
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process needs to be done in a disciplined, systematic way, with the designer always

adhering to the principles of minimizing marginal costs and ensuring that marginal

costs of all design options match.

The results in this chapter have shown the potential pitfalls of ignoring these

principles. One needs to be careful to neither over- nor under-design any aspect of

the system; all components need to be in balance, with all design decisions having

matching marginal costs. Without applying this principle, inefficiencies arise, with a

cheaper sources of performance being left untapped. The importance of this principle

was particularly clear when considering voltage scaling versus architectural/circuit

design decisions as a means of achieving performance. The results of the last section

showed that it makes little sense to over-aggressively design the system when the

marginal costs of voltage—an equally powerful design parameter—changes relatively

slowly over its range. Since the marginal costs of voltage vary between 0.8 to 2.3%

energy for 1% in performance (over the range of 0.7-1.4V), this implies that a potential

rule of thumb should be that the marginal cost of any design decision should fall within

this range to be acceptable, with lower or higher marginal costs only being considered

if the voltage parameter becomes constrained, and the designer has no other feasible

options.

As a result of the steady marginal cost profile of voltage versus the rapidly chang-

ing marginal costs of architectural and circuit design, we found that the optimal

architecture/circuit design was limited to a small sweet spot; most other designs

fell outside the 0.8 to 2.3% marginal cost range. Some design features landed on a

very cheap part of the trade-off curve, meaning they should virtually always be used,

while many other design options came at very expensive rates, meaning they should

be avoided. In between these two extremes, the set of design knobs did not vary

much. This suggested that with a few fixed designs from within this sweet spot, volt-

age scaling could be a very effective means of acheiving different design objectives, a
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hypothesis that our results seemed to confirm.

It should be stressed that this result should not be mis-interpreted as indicating

that the architecture and circuit design are irrelevant. In fact, the conclusion is the

opposite. There are many ways to build an inefficient design, and the designer has to

make a concerted effort to find a design within this sweet spot. If the initial system

is inefficient or lies outside this sweet spot, voltage scaling cannot make up for the

initial inefficiency. It becomes critical to tune the design to include the right set of

features with the right marginal costs.

At this point, it is important to consider how these results would change with

higher leakage future technologies. There are at least a couple ways that the results

would be affected by leakage. First, as leakage is highly correlated to area, one

would expect that structures with larger area would be penalized somewhat during

the optimization; this is especially true if the structures are less frequently used

(i.e. have a lower activity factor), because then the amount of leakage energy per

instruction rises, requiring a higher increase in performance per instruction to make

the structure attractive from an energy-performance perspective. Second, in cases

where the chip can power down to a low-power idle mode, optimizing with a high

leakage technology can actually favor more aggressive, higher performance features.

This is because leakage is a rate of energy consumption that gets multiplied by the

execution time; with leakage considerations, the whole system would like to “run”

to the finish line of a task, and then power down, reducing the leakage contribution

which would otherwise be incurred over a longer time period. We have confirmed

these results with simple experiments for our optimizations. Including leakage causes

the trade-off curves rise due to the additional leakage energy, but in a skewed way—

the design points at the left-hand side (lower performance), rise more as a percentage

of their original power. This has two consequences: first, the low-energy tails of the

trade-off curves get cut off—at some point it does not make sense to run any slower
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because the small savings in dynamic energy per operation are offset by the increase

in leakage energy—and second, because the trade-off curves rise in a skewed fashion,

the more aggressive architectures become somewhat more important from an energy-

efficiency perspective and end up covering a larger area of the energy-efficient frontier.

Thus, we saw that the dual-issue out-of-order design was optimal over an even larger

percentage of performance targets.

While this chapter has presented the results of optimally tuned processors, the

real advantage of this type of design framework is the insight it can give a designer.

For example, we initially had each of our high level architectures fetch instructions

according to the width of the machine (e.g. one word for the single-issue machines,

etc.). This led to wider machines being more energy efficient than single issue ma-

chines even at low performance. Clearly, because of high instruction locality, it makes

sense to have all architectures fetch multiple instructions at a time to amortize the

cost of going to cache. As with any tool, the task of examining and interpreting the

results to find new design directions lies with the user.

This framework is thus also an important tool for exploring new architectures and

designs. Without having a means of tuning the design knobs within a new architec-

ture, it becomes difficult to compare it versus previous designs. Comparing single

design instances of two architectures can be misleading, because it is unclear how

their internal design trade-offs have been selected, and where within their energy-

performance space they lie. Instead, one should be comparing energy-efficient fron-

tiers as a proper comparison. It might be the case that one architecture is always

more efficient than another—in which case the idea is clearly a good one—or the

result might be that the frontiers cross at some point, similar to how the different

architectures of Figure 5.1 are each optimal at different parts of the design space. In

either case, to make a fair analysis, the energy-efficient trade-off curves need to be

compared, and this requires a systematic optimization framework that can perform
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this analysis.

In addition to exploring new architectures, the designer may desire to explore

different optimization objectives. The results presented in this chapter have focused

on performance-energy trade-offs, and not considered area (die cost) or what happens

for threaded or data parallel applications. It is easy to include these effects using

our framework. For example, in the case of multi-core designs for highly parallel

workloads, we need to change the performance objective. The number of cores that we

can fit on a die is critical to performance, and we must consider both the performance

and area of the cores.

Under the assumption of infinite parallelism, using more cores to increase per-

formance is always an energy-efficient choice; the performance scales linearly with

the number of cores, while the energy per instruction remains constant.5 Because

performance can be achieved very cheaply through more cores, the design objective

to optimize for in this case is performance per mm2.

Figure 5.10 shows optimization results under this new design objective. In this

case, the area overheads of implementing out-of-order processors outweigh their per-

formance benefit, and so the dual-issue in-order design is always optimal. To account

for workloads with more realistic amounts of parallelism, one just needs to change

how the performance scales with the number of cores [33], which will just change the

performance/area function that needs to be optimized.

We present this simple example only to show that it is possible to consider various

different optimization objectives. In this case, the optimization metrics were changed

http://padworld.myexp.de/index.php?filesto include a combination of area, energy

and performance. In other cases, the designer may wish to optimize for other met-

rics, such as total fabrication plus operating cost (in dollars); given the right set of

5Overall power increases, but energy per operation is constant because each executed instruction
requires the same amount of energy.
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Figure 5.10: Energy per operation vs performance/mm2 for a highly parallel work-
load. The area overheads of out-of-order processing make it a less attractive option.

data, such studies would also be possible. In analogous ways we can optimize whole

systems that contain SIMD units, external high-power accelerators (i.e. GPUs) or

other components that affect energy or performance.



Chapter 6

Conclusion

The optimization of digital electronic systems requires a cost-benefit analysis of many

design parameters, a process that is made challenging because of the large hierarchical

nature of the design spaces that need to be explored. Current modeling and design

simulation tools have done a good job of guiding the design optimization process by

providing performance and cost predictions by abstracting away lower levels, but they

have typically relied on a modeling approach that communicates only a single design

point between the levels of hierarchy. Thus, in current architectural evaluations, the

architectural optimization relies on the characteristics of fixed circuit designs, and

is unaware of the design space of possibilities at this lower level. The emergence of

strict power constraints, however, has made the design of energy efficient systems

critical, and this requires that designers examine energy-performance trade-offs more

thoroughly.

In this dissertation, we extended current modeling and optimization methodolo-

gies to create a hierarchical optimization framework that could evaluate design space

trade-offs in the joint architecture-circuit space. Through this framework, we were

able to show two key advancements over current methodologies. First, we were able

114
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to demonstrate that it is, in fact, possible to create a hierarchical modeling and op-

timization framework that communicates design space information between levels of

the hierarchy without greatly increasing the complexity of the resulting optimization.

In particular, we were able to expose the space of circuit design implementations to

the architectural level by using circuit trade-off libraries. This extension of current

modeling tools provided the optimizer with the flexibility to choose the correct circuit

implementation based on the needs of the architecture and marginal costs, producing

significantly more energy efficient designs. Second, we were able to show that it is

possible to model a large part of the design space using posynomial models that en-

able the application of convex optimization to find the optimal design. This property

allowed us to create a framework that could easily search large multi-dimensional

design spaces with numerous architectural and circuit design parameters to find the

optimal design quickly and reliably. Moreover, the basic sample-and-fit approach at

the core of this framework proved to be very effective, and we showed one can easily

characterize different aspects of complex processor systems—from circuit trade-offs to

multi-dimensional architectural design spaces—with high accuracy using fitted posyn-

omial forms. The generality of using a fitting-based approach makes the framework

powerful, theoretically being applicable to a diversity of systems, provided that the

appropriate simulators exist from which data samples can be extracted.

The creation of this framework enabled a disciplined analysis of energy-performance

trade-offs in the processor design space centered around the systematic application of

marginal costs: the well-known principle that design features with lower energy costs

per unit performance should always be preferred over higher cost alternatives (and its

related form, that in an optimal design, marginal costs of all parameters must match,

arbitrage opportunities otherwise being available). Applying this methodology to the

general-purpose processor space enabled a study of energy-efficient processors, with

the framework identifying the design parameters with the best marginal costs and
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ultimately yielding a Pareto-optimal set of designs. Through this study, the impor-

tance of always adhering to a marginal cost analysis became critically apparent when

voltage was considered in addition to the architecture and circuit design. With volt-

age scaling’s marginal cost profile being relatively steady—the cost of buying more

performance through voltage scaling does not change much as one moves from low

voltages to high voltages—and the marginal cost profile of architectural and circuit

techniques changing much more rapidly, this suggested that only a small number of

designs within a design “sweet spot” were optimal over a large part of the design

space. In particular, since the marginal cost of voltage scaling between 0.7 to 1.4 V

ranges from 0.8% to 2.3% in energy for 1% performance, a good rule of thumb one can

use is that unless a proposed design feature attains a marginal cost of 2.3%, it is prob-

ably not worth implementing (voltage scaling being a more efficient alternative). As

a result of these marginal cost profiles, our results showed that the dual-issue out-of-

order design, properly tuned, was an efficient design over a large range of performance

tragets when used in conjunction with voltage scaling; the dual-issue in-order design

was suitable for lower energy points.

6.1 Future Work

This focus of this dissertation has been to show how to create an optimization frame-

work for analyzing trade-offs in complex hierarchical systems, but it is important to

clearly define the scope of this work, and acknowledge areas where work still needs to

be done. The first point of consideration relates to the optimization framework itself.

Although most of the design space that we examined was convex, we mostly consid-

ered design knobs that were tunable in nature. There is still, however, a question of

how one can practically explore discrete design decisions in an effective manner. For
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example, we explored the space of different high-level architectures by creating sep-

arate models—a decision that made sense in our circumstances given the significant

changes between those architectures—and the optimization framework was instru-

mental in allowing us to compare these different architectures in a fair manner by

tuning each design and producing Pareto-optimal curves we could compare. Never-

theless, if the number of discrete options increases, the space grows exponentially and

this potentially presents a problem. In this case, it may become necessary to wrap

some higher-level heuristic optimization around the framework to handle the dis-

crete parameters, with the inner core using convex optimization to optimize internal

parameters.

A related matter is how one can handle modeling issues that arise when one

produces fits that may not be as accurate as desired. In these cases, it would be

interesting to investigate the possibility of extending the framework to perform a

multi-pass optimization: using a high-level optimization with crude models to find

the local region of interest, then dynamically refining the optimization by refitting

the models with a focus on the new area of interest. By using this kind of approach,

one may be able to create an even more accurate and robust optimization framework

that could consider even larger design spaces.

On a different front, while the work in this dissertation examined creating a closer

coupling of the architectural and circuit design spaces, one can consider extending

this approach to more levels of the hierarchy. Going deeper down the stack, one

should be able to include trade-offs in the design of the underlying transistor; this

design space could be encapsulated into the circuit libraries, ultimately rippling all

the way to the architectural design space. At the other end of the spectrum, one

could consider incorporating design trade-offs in the software stack, creating a joint

hardware-software co-optimized system. Since the application characteristics can

have a significant influence on the energy and performance of systems, including this
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layer in the optimization could potentially have a large impact on system energy

efficiency.

Finally, the study of energy efficient processors presented in this work covers only

one particular type of system optimized for a specific environment, namely single-

threaded applications. While general principles like the application of marginal costs

will always hold true, it should be expected that the results would change under

different circumstances. As such, it would be interesting to apply this optimiza-

tion framework to different kinds of digital systems. There are many different types

systems one could consider; graphics processors are one example. Throughput com-

puting systems, in general, are a particularly interesting area to explore. Not only

are throughput computing systems becoming more common, they also present new

modeling challenges. They introduce an additional level of hierarchy—covering not

only the circuits to the core design, but up to the multi-core system as well. Applying

our hierarchical optimization framework to these systems, the top-level architecture

would be the multi-core system, with the individual processing cores being like the

circuit libraries that we used in this work; just as we built circuit trade-off libraries,

one can imagine a library of processor core trade-offs being used in the optimiza-

tion of the full multi-core system. Generating the system-level models could again

be simulation-based, but would model the interactions between cores, including any

communication and memory contention patterns. Thus, while the particular details

of modeling such systems may need to be explored further, one should be able to use

the current optimization framework to evaluate trade-offs in these important systems.



Bibliography

[1] ARM Ltd., “Cortex-A5 processor – ARM,” Aug. 2010. [Online]. Avail-

able: http://www.arm.com/products/processors/cortex-a/cortex-a5.php?tab=

Performance

[2] ARM Ltd., “Cortex-A9 processor – ARM,” Aug. 2010. [Online]. Avail-

able: http://www.arm.com/products/processors/cortex-a/cortex-a9.php?tab=

Performance

[3] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-L. Lu, M. Os-

kin, D. Patterson, J. Rabaey, and J. Wawrzynek, “RAMP: Research accelerator

for multiple processors - a community vision for a shared experimental parallel

HW/SW platform,” EECS Department, University of California, Berkeley, Tech.

Rep. UCB/CSD-05-1412, Sep 2005.

[4] T. Austin, E. Larson, and D. Ernst, “SimpleScalar: An infrastructure for com-

puter system modeling,” Computer, vol. 35, no. 2, pp. 59–67, 2002.

[5] O. Azizi, J. Collins, D. Patil, H. Wang, and M. Horowitz, “Processor performance

modeling using symbolic simulation,” in ISPASS ’08: Proceedings of the ISPASS

2008 - IEEE International Symposium on Performance Analysis of Systems and

software. Washington, DC, USA: IEEE Computer Society, 2008, pp. 127–138.

119

http://www.arm.com/products/processors/cortex-a/cortex-a5.php?tab=Performance
http://www.arm.com/products/processors/cortex-a/cortex-a5.php?tab=Performance
http://www.arm.com/products/processors/cortex-a/cortex-a9.php?tab=Performance
http://www.arm.com/products/processors/cortex-a/cortex-a9.php?tab=Performance


120 BIBLIOGRAPHY

[6] A. Ben-Tal and A. S. Nemirovskiaei, Lectures on modern convex optimization:

analysis, algorithms, and engineering applications. Philadelphia, PA, USA:

Society for Industrial and Applied Mathematics, 2001.

[7] P. Bose and T. M. Conte, “Performance analysis and its impact on design,”

Computer, vol. 31, no. 5, pp. 41–49, 1998.

[8] S. Boyd, S.-J. Kim, L. Vandenberghe, and A. Hassibi, “A tutorial on geometric

programming,” 2004.

[9] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY, USA:

Cambridge University Press, 2004.

[10] S. P. Boyd and S. J. Kim, “Geometric programming for circuit optimization,” in

ISPD ’05: Proceedings of the 2005 international symposium on Physical design.

New York, NY, USA: ACM, 2005, pp. 44–46.

[11] S. P. Boyd, S.-J. Kim, D. D. Patil, and M. A. Horowitz, “Digital circuit opti-

mization via geometric programming,” Oper. Res., vol. 53, no. 6, pp. 899–932,

2005.

[12] D. Brooks, P. Bose, V. Srinivasan, M. K. Gschwind, P. G. Emma, and M. G.

Rosenfield, “New methodology for early-stage, microarchitecture-level power-

performance analysis of microprocessors,” IBM J. Res. Dev., vol. 47, no. 5-6, pp.

653–670, 2003.

[13] D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: a framework for architectural-

level power analysis and optimizations,” SIGARCH Comput. Archit. News,

vol. 28, no. 2, pp. 83–94, 2000.



BIBLIOGRAPHY 121

[14] D. Chiou, D. Sunwoo, J. Kim, N. A. Patil, W. Reinhart, D. E. Johnson, J. Keefe,

and H. Angepat, “FPGA-accelerated simulation technologies (FAST): Fast, full-

system, cycle-accurate simulators,” in MICRO 40: Proceedings of the 40th An-

nual IEEE/ACM International Symposium on Microarchitecture. Washington,

DC, USA: IEEE Computer Society, 2007, pp. 249–261.

[15] A. R. Conn, I. M. Elfadel, J. W. W. Molzen, P. R. O’Brien, P. N. Strenski,

C. Visweswariah, and C. B. Whan, “Gradient-based optimization of custom cir-

cuits using a static-timing formulation,” in DAC ’99: Proceedings of the 36th

ACM/IEEE conference on Design automation. New York, NY, USA: ACM,

1999, pp. 452–459.

[16] G. B. Dantzig, Linear programming and extensions. Princeton University Press,

Princeton, N.J.,, 1963.

[17] L. Davis, Genetic Algorithms and Simulated Annealing. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 1987.

[18] M. del Mar Hershenson, S. S. Mohan, S. P. Boyd, and T. H. Lee, “Optimization

of inductor circuits via geometric programming,” in DAC ’99: Proceedings of the

36th annual ACM/IEEE Design Automation Conference. New York, NY, USA:

ACM, 1999, pp. 994–998.

[19] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,

“Design of ion-implanted MOSFET’s with very small physical dimensions,”

Solid-State Circuits, IEEE Journal of, vol. 9, no. 5, pp. 256–268, Oct 1974.

[20] C. Dubach, T. Jones, and M. O’Boyle, “Microarchitectural design space ex-

ploration using an architecture-centric approach,” in MICRO ’07: Proceedings

of the 40th Annual IEEE/ACM International Symposium on Microarchitecture.

Washington, DC, USA: IEEE Computer Society, 2007, pp. 262–271.



122 BIBLIOGRAPHY

[21] A. N. Eden and T. Mudge, “The YAGS branch prediction scheme,” in MICRO

31: Proceedings of the 31st annual ACM/IEEE international symposium on Mi-

croarchitecture. Los Alamitos, CA, USA: IEEE Computer Society Press, 1998,

pp. 69–77.

[22] L. Eeckhout, J. Sampson, and B. Calder, “Exploiting program microarchitec-

ture independent characteristics and phase behavior for reduced benchmark suite

simulation,” in Workload Characterization Symposium, 2005. Proceedings of the

IEEE International, 6-8 2005, pp. 2 – 12.

[23] P. G. Emma and E. S. Davidson, “Characterization of branch and data depen-

dencies on programs for evaluating pipeline performance,” IEEE Trans. Comput.,

vol. 36, no. 7, pp. 859–875, 1987.

[24] P. G. Emma, J. W. Knight, J. H. Pomerence, T. R. Puzak, and R. N. Rechtschaf-

fen, “Simulation and analysis of a pipeline processor,” in WSC ’89: Proceedings

of the 21st conference on Winter simulation. New York, NY, USA: ACM, 1989,

pp. 1047–1057.

[25] B. Fields, S. Rubin, and R. Bod́ık, “Focusing processor policies via critical-

path prediction,” in ISCA ’01: Proceedings of the 28th annual international

symposium on Computer architecture. New York, NY, USA: ACM Press, 2001,

pp. 74–85.

[26] B. A. Fields, R. Bod́ık, M. D. Hill, and C. J. Newburn, “Using interaction

costs for microarchitectural bottleneck analysis,” in MICRO 36: Proceedings

of the 36th annual IEEE/ACM International Symposium on Microarchitecture.

Washington, DC, USA: IEEE Computer Society, 2003, p. 228.



BIBLIOGRAPHY 123

[27] J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial programming approach

to transistor sizing,” in IEEE Int. Conf. Computer-Aided Design, 1985, pp. 326–

328.

[28] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H.-S. P.

Wong, “Device scaling limits of si mosfets and their application dependencies,”

Proceedings of the IEEE, vol. 89, no. 3, pp. 259 –288, mar. 2001.

[29] G. Hamerly, E. Perelman, J. Lau, and B. Calder, “Simpoint 3.0: Faster and more

flexible program analysis,” in Journal of Instruction Level Parallelism, 2005.

[30] D. Harris, Skew-tolerant circuit design. San Francisco, CA, USA: Morgan Kauf-

mann Publishers Inc., 2001.

[31] A. Hartstein and T. R. Puzak, “The optimum pipeline depth considering both

power and performance,” ACM Trans. Archit. Code Optim., vol. 1, no. 4, pp.

369–388, 2004.

[32] A. Hassibi, J. How, and S. Boyd, “Low-authority controller design via convex

optimization,” in Decision and Control, 1998. Proceedings of the 37th IEEE

Conference on, vol. 1, 1998, pp. 140 –145 vol.1.

[33] M. D. Hill and M. R. Marty, “Amdahl’s law in the multicore era,” Computer,

vol. 41, no. 7, pp. 33–38, 2008.

[34] J. C. Hoe, D. Burger, J. Emer, D. Chiou, R. Sendag, and J. Yi, “The future of

architectural simulation,” IEEE Micro, vol. 30, pp. 8–18, 2010.

[35] M. Horowitz, E. Alon, D. Patil, S. Naffziger, R. Kumar, and K. Bernstein, “Scal-

ing, power, and the future of CMOS,” in Electron Devices Meeting, 2005. IEDM

Technical Digest. IEEE International, Dec. 2005, pp. 7 pp.–15.



124 BIBLIOGRAPHY
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