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Abstract

Cryogenic Electron Tomography (Cryo-ET) has gained increasing interest in recent

years due to its ability to image whole cells and subcellular structures in 3D at

nanometer resolution in their native environment. However, due to dose restrictions

and the inability to acquire high tilt angle images, the reconstructed volumes are

noisy and have missing information. In order to overcome these limitations and

fulfill the promise of this method, it is necessary to image numerous instances of

the same underlying object and average them, requiring a high throughput pipeline.

Currently, the bottlenecks in the electron tomography pipeline are a set of image

inference tasks which require manual intervention by an expert due to weak and

unreliable local image features. In this thesis we propose the use of geometric con-

text in a structured probabilistic models framework to overcome the low reliability

of local features and achieve automation and high throughput for two of the bottle-

neck tasks- precision registration of 2D images and 3D segmentation of whole cells.

The central idea in our approach is to overcome the uncertainty from unreliable

features by exploiting their mutual geometric and spatial relationships in varying

degrees of locality to classify them more accurately. Structured probabilistic models

provide a framework for encoding a diverse set of geometric relationships, as well as

a substantial body of efficient yet effective approximate inference algorithms.

In the first problem of precision registration of 2D images, the features are a set of

gold markers which can be difficult to distinguish at high tilt angles. Precision align-

ment of the images requires the successful tracking of these markers throughout the

series of images. We track markers jointly as a group, using the geometric relation-

ship of the markers. Therefore the geometric relationship of interest for overcoming
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the unreliable features in this case is the pattern formed by the gold markers. We

encode the relative geometric arrangement of pairs of markers as pairwise factors in

a Markov random field (MRF) framework, and use loopy belief propagation to find

the most likely correspondence of markers between images. This approach, called

RAPTOR (Robust Alignment and Projection estimation for TOmographic Recon-

struction) has resulted in successful automatic full precision alignment of electron

tomography tilt series.

The second problem of 3D segmentation of whole cells is challenging due to un-

certain boundary characteristics. Intensity and intensity gradients based methods

easily confuse many non boundary pixels as boundaries, and therfore precision ex-

traction of the cell boundary is difcult, manual and time intensive. We present an

efficient recursive algorithm called BLASTED (Boundary Localization using Adap-

tive Shape and TExture Discovery) to automatically extract the cell boundary using

a conditional random field (CRF) framework in which boundary points and shape

are jointly inferred with the help of a learned boundary feature detector and shape

evolution model. The algorithm learns the texture of the boundary region pro-

gressively, and uses a global shape model and shape-dependent features to propose

candidate boundary points on a slice of the membrane. It then updates the shape

of that slice by accepting the appropriate candidate points using local spatial clus-

tering, the global shape model, and trained boosted texture classiers. This method

has successfully segmented numerous datasets starting from one hand labelled slice

each, reducing the processing time from days to hours.

v



Acknowledgments

I would like to thank my advisor, Professor Mark Horowitz.

I would like to thank my coadvisor, Professor Daphne Koller.

I would like to thank Professor Harley McAdams and Professor Lucy Shapiro.

I would like to thank my friends and colleagues- Geremy, Gal, Fernando, Luis,

Ken, Rick, Stephen, Sewoong, ...more

I would like to thank my family. This thesis is dedicated to them.

vi



Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 High Resolution 3D Imaging of Cells . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Contributions and Outline . . . . . . . . . . . . . . . . . . . . 4

2 Cryogenic Electron Tomography (CET) 9

2.1 Image Formation in the Electron Microscope . . . . . . . . . . . . . . 9

2.2 Tomographic 3D Reconstruction from 2D Images . . . . . . . . . . . 10

2.3 The Electron Tomography Pipeline and Challenges . . . . . . . . . . 13

2.4 Overcoming Image Challenges: the Need for High Throughput . . . . 15

3 Modeling Geometric Context with Graphical Models 24

3.1 Local Features and Geometric Relationships . . . . . . . . . . . . . . 24

3.2 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Estimation with Inference . . . . . . . . . . . . . . . . . . . . . . . . 29

4 2D Image Registration 41

4.1 Precision Registration of 2D Images . . . . . . . . . . . . . . . . . . . 42

4.2 Previous Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 RAPTOR:Tracking Groups of Markers Using Graphical Models . . . 44

4.4 Probabilistic Framework . . . . . . . . . . . . . . . . . . . . . . . . . 45

vii



4.5 Inference of Marker Correspondences . . . . . . . . . . . . . . . . . . 54

4.6 Projection Model Estimation . . . . . . . . . . . . . . . . . . . . . . . 58

4.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.9 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 3D Segmentation of Cell Boundaries 73

5.1 Automatic Cell Boundary Segmentation . . . . . . . . . . . . . . . . 73

5.2 Previous Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.3 BLASTED:Joint Discovery of Boundary Points and Shape . . . . . . 79

5.4 Probabilistic Framework . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5 Inference in BLASTED . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6 Conclusions 121

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

Bibliography 122

viii



List of Figures

1.1 Two examples of cell biology studies in which detailed 3D structures

must be observed. (a)shows the tracing of neurons in a mouse cortex

[JBH+09], and (b) shows the study of spatial and temporal behavior

of the cell membrane at the division plane of a Caulobacter crescentus

([CJ05]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 The biomedical imaging spectrum illustrating the ”imaging gap” . . 5

2.1 Process of electron tomography. . . . . . . . . . . . . . . . . . . . . . 10

2.2 Projecting a 2D object onto a 1D line at an angle φ. . . . . . . . . . . 14

2.3 Radiation damage incurred by a Caulobacter crescentus at liquid ni-

trogen temperatures when exposed to 21,800 e−/nm2 ([CD05]). . . . 15

2.4 Single projection of a whole cell (a) and single slice of a reconstructed

tomogram (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 (a)Normal reconstruction of test image of Einstein, using angular

spacings of 2 and 5 degrees, (b)Reconstruction of Einstein test image

with missing wedge, using limited angular range of 60 degrees, and

(c)slice of reconstructed tomogram of a Caulobacter crescentus cell

with missing wedge- note missing horizontal features. . . . . . . . . . 19

2.6 Flagellar motor viewing through averaging ([MLJ06]) . . . . . . . . . 20

2.7 Caulobacter surface layer (SLayer) viewing through averaging ([ACM+10])

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.8 Electron tomography pipeline . . . . . . . . . . . . . . . . . . . . . . 22

ix



2.9 Uninformative local regions in electron tomography. It is difficult to

find the cell boundary using only the local region shown in (a). By

looking at the context of the surrounding of that region in the original

Image, it is possible to successfully find the cell boundary (b). . . . . 23

3.1 Local features in natural images and electron tomography images. A

natural image of an aircraft against sky background(a) and its edge

detected version (b). A single slice of a reconstructed tomogram (c)

and its edge detected version (d). . . . . . . . . . . . . . . . . . . . . 36

3.2 A Markov Network. . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 A Markov network with 3 variables, 3 pairwise cliques, and 1 triplet

clique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Two factor graphs for the Markov network in Fig. 3.3. (a) the

factorization of Eq. 3.3 and (b)the factorization of Eq. 3.4 . . . . . 38

3.5 A conditional random field (CRF) with 4 variables X1..X4, and 4

observed features y1....y4. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 A linear chain CRF with one state variable and one observed feature 40

4.1 Gold beads injected into the sample for alignment (a)0 degree pro-

jection (b)50 degree projection . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Finding correspondence for 5 markers in left image from among 7

possible markers in right image . . . . . . . . . . . . . . . . . . . . . 44

4.3 Variables in the alignment with markers problem . . . . . . . . . . . 46

4.4 Conditional random field relating the variables in the alignment . . . 47

4.5 Conditional random field relating the variables in the tracking sub-

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.6 Single marker image and average marker image after detection of

hundreds of markers . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7 Markov graph for correspondence of markers in a pair of images. The

nodes Si,j are variables which can take on values Bi,l . . . . . . . . . 51

4.8 Patches and vectors used for the singleton factors . . . . . . . . . . . 53

x



4.9 Vectors used for the pairwise factors . . . . . . . . . . . . . . . . . . 55

4.10 Pruned CRF relating the variables in the tracking subproblem . . . . 57

4.11 Tracking of a single marker through a point cloud. In frame (a), the

marker pointed to by the red arrow is headed south. After frames (b)

and (c), it emerges from the cloud and is still being tracked correctly. 62

4.12 RAPTOR performance tracking markers in a Caulobacter crescentus

dataset. (A) The -58 deg 2D original projection from the tilt series.

The size of the image is 2048 pixels on edge. The cell forms a meniscus

of considerable thickness. Both the cell and the grid bars may occlude

markers at high tilts. The wider area projected into the images at

these angles contains many markers with appropriate SNR, far from

the cell, which disappear at lower angles. (B). Trajectories recovered

from the tilt series. (C) Overlay of several marker locations in image

space (x-y coordinates in pixel number) throughout the raw datasets

illustrates the trajectories in the raw data set, (D) trajectories of same

markers after RAPTOR automatic alignment. The insets in (C) and

(D) show the trajectory of a single marker. . . . . . . . . . . . . . . . 70

4.13 Comparison of RAPTOR aligned and manually aligned reconstruc-

tions. (A) and (B) - One pixel-thick slices from tomographic recon-

structions of a Caulobacter crescentus polar mutant, obtained from a

manually aligned dataset and from an automatically aligned dataset,

respectively. (C) One pixel-thick slice from a tomographic reconstruc-

tion of a dividing Caulobacter crescentus cell after manually aligning

the tilt series and (D) After RAPTOR automatic alignment. Recon-

struction after marker tracking by hand and human-directed align-

ment (A and B), and after automatic alignment (C and D), results in

equivalent final quality. The images are sections, 900 pixels on edge,

from tomographic reconstructions binned from 2048 to 1024 pixels on

edge. The boxes shown in the insets measure 84 pixels on edge in the

binned images. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

xi



4.14 Panels (A and B) show quantitative resolution comparisons for to-

mographic reconstructions of the two datasets above using noise-

compensated leave-one-out method of [CGS05] The resolution curves

obtained with RAPTOR, in red, and with human-directed alignment,

in blue, are equivalent. . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.1 Study of the constriction process in cell division (from [CJ05]) . . . . 74

5.2 Patches obtained along a cell membrane . . . . . . . . . . . . . . . . 76

5.3 Algorithm overview and physical model of the cell: a sequence of

outlines and points. Starting with outline si−1 we predict ŝi in image
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Chapter 1

Introduction

1.1 High Resolution 3D Imaging of Cells

Imaging has been one of the main enablers of new discoveries in the life sciences. The

combination of more imaging modalities, advances in image processing and computer

vision algorithms, and the availability of fast, inexpensive, parallel computing has

poised the field of biomedical imaging for an era of rapid advancement. The mission

of this field is quickly being transformed into one of mining large quantities of

imaging data to find the most biologically relevant information efficiently.

In particular, the fields of structural biology and cell biology stand to benefit

tremendously from the ability to image cells and subcellular structures in three

dimensions at molecular resolutions (several nm or less). Such a capability gives

the biologist a view onto details of relevant structures and their organization inside

cells, as well as the ability to study macromolecules in their native state and context

inside the cell. Two examples of biological studies in which such detailed structures

need to be observed are shown in Fig. 1.1.

The first example (Fig. 1.1 (a)) illustrates the tracing of neurons in a mouse

cortex in [JBH+09]. The goal of this work is to extract the connectivity of neurons,

and requires high resolution imaging of large quantities of data. This example

represents 1 mm3 of tissue imaged at nanometer resolution. The second example

1



CHAPTER 1. INTRODUCTION 2

Figure 1.1: Two examples of cell biology studies in which detailed 3D struc-
tures must be observed. (a)shows the tracing of neurons in a mouse cortex
[JBH+09], and (b) shows the study of spatial and temporal behavior of the cell
membrane at the division plane of a Caulobacter crescentus ([CJ05])

(Fig. 1.1 (b)) illustrates a study of spatial and temporal behavior of the cell

membrane in cell division of Caulobacter crescentus ([CJ05]), and dealt with 5

datasets of 2 µm3 each at the same resolution of the first example.

In such studies, the goal is to zoom into a cell, and see the organization and

arrangement of groups of structures, such as cell membrane shape deformations,

ribosomes, actin filaments, or other organelles in three dimensions. Indeed it has

been shown that proteins and other macromolecules in the cell are highly organized

(references), and that this organization is significant to the understanding of cell

functions. The primary instrument used for capturing images with such detail is the
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electron microscope. By taking multiple images of the same sample from different

angles with the electron microscope, it is possible to reconstruct a three dimensional

reconstruction of the sample using tomography. This process is called electron

tomography (ET). When the sample is cryogenically prepared, this process is called

cryogenic electron tomography (CET).

Cryogenic electron tomography promises to fill an important ”imaging gap” in

the biomedical imaging spectrum as depicted in Fig. 1.2. To the right of this

gap, there is light microscopy which provides resolutions in the range of hundreds

of nm. Superresolution techniques such as photo-activated localization microscopy

(PALM) [BPS+06], stochastic optical reconstruction microscopy (STORM) [RBZ06]

offer higher effective resolution of 10’s of nm, but are targeted to individual types of

molecules which can be fluourescently labeled. Therefore it is difficult to see spatial

organization of different molecular structures. To the left of the imaging gap are

spectroscopy techniques, which can resolve high resolution structure of molecules,

but the molecules must be isolated first. Therefore the context of spatial arrange-

ment of different moleculare structures within the cell is still not observable. There-

fore, this gap is crucial for studying the internal molecular organization of cells, and

it would be desirable for CET to fill this gap if possible.

While both cases in Fig. 1.1 illustrate the ability and utility of imaging cells in

3D at high resolution, the amount of data being analyzed is quite different. Both

cases were at roughly 1 nm3 per voxel. The first case is from 2009, and contains over

1000 TBytes of data, whereas the second one from 2005 has roughly 10 GBytes of

data. Such increase in capacity to generate such images has occurred recently in the

past few years due to substantial advances in the microscopes and their automation.

Therefore the acquisition of data has achieved true high throughput capability. This

trend has put significant pressure on the analysis and post-processing portion of the

pipeline, which still requires significant manual intervention. As we shall see, the

obstacles to high throughput have been a number of inference tasks in which local

features and local regions are not sufficently informative.

CET datasets suffer from two major challenges- low signal to noise ratio (SNR)

and missing data. The low SNR is due to limitations on total dose in order to
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avoid damaging the sample. The missing data is in the form of missing projections

from high angles, which present the electron beams with higher effective thickness.

Since electrons do not image well after passing through thick regions, the projections

from these angles are nonexistent. Therefore the reconstruction is conducted on an

incomplete set of components, creating numerous artifacts. These challenges will be

explained in more detail.

One increasingly used approach to overcoming these challenges is to acquire

multiple tomograms of the same underlying object, and average them very carefully

to increase the SNR and compensate for the missing projections. This approach

requires multiple acquisitions of the same underlying object, and therefore puts ad-

ditional pressure on the CET pipeline to have high throughput. The goal in this

work is to use our knowledge of computer vision, probabilistic graphical models,

and inference to help achieve this badly needed high throughput post-processing

pipeline. In this thesis, we leverage recent results from computer vision which make

use of geometric and spatial context to overcome this uncertainty in a probabilistic

framework. Using this approach, we then demonstrate the automation of two par-

ticularly time consuming tasks in this pipeline: 2D image registration, and 3D cell

boundary segmention.

1.2 Thesis Contributions and Outline

This thesis makes the following contributions towards the goal of achieving high

throughput electron tomography:

1-The incorporation of geometric and spatial context for robust object

and pattern recognition in electron tomography

Electron tomography datasets have very low quality and therefore weak local fea-

tures. This makes automatic queries on the images such as feature tracking and

object recognition difficult. In our framework we incorporate geometric and spatial

context of various types and degrees of locality to strengthen these local features. In
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Figure 1.2: The biomedical imaging spectrum illustrating the ”imaging gap”
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some cases, geometric context is integrated at a low level as part of the local feature

itself.

2-The introduction of structured probabilistic models to exploit the above

context and local information in an integrated and efficient way

The language and framework in which the geometric and spatial context is incor-

porated along with the local features is that of structured probabilistic models.

Specifically, we employ conditional random fields (CRF’s) to describe and relate the

relevant variables in our queries of these images. Structured probabilistic models

offer two main advantages. Firstly, they provide a flexible means to specify and

describe a diverse variety of large complex problems with many variables in terms

of many smaller more manageable components which are interrelated. Secondly,

they provide a wealth of approximate yet efficient inference algorithms to perform

queries on a few variables while combining information from all other variables in

the problem. This concept is ideal for exploiting context.

3-Robust correspondence, tracking, and precision image registration us-

ing pattern context and conditional random fields

Precision image registration in electron tomography has required the detection, cor-

respondence, and tracking of point features across images. Past approaches to cor-

respondence have attempted this by tracking single features at a time with lim-

ited success. Using the context of patterns formed by groups of points in a CRF

framework, we achieve robust correspondence of these features, and hence success-

ful tracking and automatic precision registration of images in electron tomography

datasets.

4-Holistic 3D boundary detection of cells using novel features based on

global shape, local orientation, and nonlocally learned texture

Detection of whole cell boundaries in 3D electron tomography volumes has been

difficult due to weak local features and poor discriminative power of intensity and
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intensity gradient based methods. We have created novel features based on nonlo-

cally learned texture, global shape, and local orientation, and combined them with

global shape information in a CRF framework. By performing maximum a poste-

riori (MAP) inference on this model, we have successfully discovered and detected

whole cell boundaries automatically, reducing processing times from days to hours.

The rest of this thesis is organized as follows:

In chapter 2, we provide an overview of electron tomography and its pipeline.

Specifically, we describe the process of acquiring images with the electron microscope

from multiple projections. We then continue with the processing of those images to

get 3D volume renditions of cells and subcellular structures, as well as their analysis.

In chapter 3, we provide a brief review of inference with graphical models, and

describe how conditional independence is exploited in these models to reduce the

complexity of representation. We then briefly describe two relevant inference algo-

rithms to this work, and pose shape and spatial context as latent hidden variables

to be jointly inferred with local features within this framework.

Chapter 4 describes the first problem in the CET pipeline to be addressed with

the above framework- the precision alignment and registration of 2D images in

preparation for the best possible 3D reconstruction. We describe how the tracking

and correspondence of features in these images can be achieved by considering their

mutual spatial relationships. These relationships along with physical appearance

scores of features are encoded into a probabilistic graphical model (a CRF), and in-

ferred efficiently using loopy belief propagation (LBP) to achieve successful tracking

and alignment. This work is based on the article [AMC+07].

Chapter 5 goes on to describe another problem in this pipeline also addressed

with a similar framework- the 3D segmentation of whole cells from electron tomog-

raphy volumes. In this case, we show the geometric context of use to be shape, a

context that has a continuous parameterization. We also learn the nature of the

appearance feature nonlocally throughout the volume. We then jointly encode the

shape with the learned features into another CRF. We finally infer the most likely

shape incrementally in a prediction measurement update based coordinate ascent

on the CRF. This work is based on the article [MHA+09].
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We conclude this work in chapter 6.



Chapter 2

Cryogenic Electron Tomography

(CET)

Electron Tomography is the process of taking multiple electron micrographs of a bi-

ological sample (usually a whole cell or subcellular structure) from different angles,

and tomographically reconstructing a 3D image of the sample [KK03, Bau02]. In

cryogenic electron tomography (cryo-ET), the sample is first flash frozen to retain

the biological and molecular structure as much as possible, enabling the study of

macromolecular cell features such as cell membrane, surface layer (S-layer) compo-

nents, ribosomes, filaments, and cytoskeletal structures [GCJ08, OFK+06] in their

native natural environment. This process is depicted graphically in Fig. 2.1.

2.1 Image Formation in the Electron Microscope

-Image formation in the electron microscope - by phase contrast- electron scattering,

need to limit thickness

9
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Figure 2.1: Process of electron tomography.

2.2 Tomographic 3D Reconstruction from 2D Im-

ages

Tomography is the estimation of a volume’s interior from its projections. By rotat-

ing a 3D object to different angles and imaging its 2D projections, one can use those

projections to reconstruct the density map of the subject. We will now mathemati-

cally describe both the projection and reconstruction of an object. Our definitions

will be on 2D objects with 1D projections, but the same concept can be readily

extended to 3D objects with 2D projections.
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2.2.1 The Forward Problem- Projection as Radon Trans-

form

We start with the process of taking projections. Consider a 2D sample that has

been rotated to an angle φ in a coordinate system described by coordinates x1 and

x2. The sample has a density function u(x1, x2). We then take a projection of

this sample onto a 1D line by taking parallel beams orthogonal to this line, and

integrate the density of the sample along these beams. Each beam has an offset ρ

with respect to the 1D line, and is called Lρ,φ. This situation is depicted graphically

in Fig. 2.2. The value seen at each point ρ on the projection line is the line integral

of the density along Lρ,φ:

R(ρ, φ) =

∫ ∫
Lρ,φ

u(x1, x2)dx1dx2 (2.1)

However, the line Lρ,φ can be described by the equation:

ρ = x1cos(φ) + x2sin(φ) (2.2)

Therefore Eq. 2.1 can be written as

R(ρ, φ) =

∫ +∞

−∞

∫ +∞

−∞
u(x1, x2)δ(ρ− x1cosφ+ x2sinφ)dx1dx2 (2.3)

This relation is known as the Radon transform of u(x1, x2), and transforms a

function in real space (x1, x2) to the space of lines (also known as Radon space)

(ρ, φ). A line in real space will transform to a point in Radon space. Also, a point

in real space will transform to a sinusoid in Radon space.

We can now think of each projection of angle φ of the sample as the Radon trans-

form of the sample for a fixed value of φ. Therefore the collection of all projections

of the sample form a sampled version of the entire Radon transform of the sample.
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2.2.2 The Inverse Problem- Reconstructing from Projec-

tions as the Inverse Radon Transform

We would like now to estimate the original sample’s density function given its pro-

jections, i.e. the measured samples of its Radon transform. We start by taking the

1D Fourier transform of one of the projections with respect to ρ:

Sφ(r) = FρR(ρ, φ) =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
u(x1, x2)δ(ρ− x1cosφ+ x2sinφ)e−i2πρrdx1dx2dρ

(2.4)

where r is the dual variable for the variable transform. If we introduce two new

variables

k1 = rcosφ (2.5)

k2 = rsinφ (2.6)

we can see that

Sφ(k1, k2) =

∫ +∞

−∞

∫ +∞

−∞
u(x1, x2)e

−i2π(k1x1+k2x2)dx1dx2 (2.7)

which is simply the 2D Fourier transform of u(x1, x2). However, k1 and k2 are

restricted in this formulation through Eq. 2.6 to be on one line which passes through

the origin with angle φ in Fourier space. Therefore the 1D Fourier transform of the

projection from angle φ of u(x1, x2) is a slice of the 2D Fourier transform of the

entire u(x1, x2) which passes through the origin of the Fourier plane with angle φ.

This fact is known as the Fourier slice theorem.

It is possible to reconstruct the function u(x1, x2) using the Fourier slice theorem.

By taking the Fourier transform of each projection Sφ(r), we can assemble a sampled
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version of the Fourier transform of the entire function, and then invert it. It can be

shown that

û(x1, x2) =

∫ π

0

∫ +∞

−∞
Sφ(r)|r|ei2πrtdrdφ|t=x1cosφ+x2sinφ (2.8)

The inner integral in Eq. 2.8 is the inverse Fourier transform of Sφ(r) filtered

by a ramp filter |r| evaluated at t = x1cos(φ) + x2sin(φ). If we take a fixed point

(x1, x2), there corresponds a value t for a fixed angle φ. The contribution of this

integral to the reconstruction will be constant for all points (x1, x2) along the line t =

x1cosφ+ x2sinφ. For this reason this value is considered t be backprojected evenly

onto this line, and this process is commonly referred to as filtered backprojection.

The value of the recovered density û(x1, x2) at each point (x1, x2) is the sum of all

contributions of this inner integral for all values of φ.

This has been a brief description of the vast subject of tomographic reconstruc-

tion from projections using the Radon transform. While the derivation was for

projection of a 2D object onto one dimensional lines, it is readily extended to the

case of projecting 3D objects onto 2D planes. For more details the reader is referred

to many excellent references ([KS01, Nat01, Her95, Bra95, Rad17, Rad86]).

2.3 The Electron Tomography Pipeline and Chal-

lenges

In order to avoid damage to the sample, the microscopist must observe a limitation

on total dose applied. In the case of cryogenic electron tomography, this dose is

smaller than in other forms of electron tomography (get numbers). An example of

a radiation damaged sample is shown in Fig. 2.3. As a result, the total signal to

noise ratio in each projection as well as in the final reconstruction will be very low.

An example of a single projection is shown in Fig. 2.4(a), and a single slice from a

tomographic reconstruction is shown in Fig. 2.4(b).
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Figure 2.2: Projecting a 2D object onto a 1D line at an angle φ.

Image formation in the electron microscope is a result of electron scattering,

which causes phase contrast. As electrons travel through thick samples, they scat-

ter multiple times, resulting in poor images. Therefore, as the sample gets rotated

to high tilt angles, the effective thickness experienced by the electrons is too high,

and projections of the sample are not usable. Typically, this limits the angular range

of the acquisition to +/− 60degrees. Since tomography requires a full range acqui-

sition of +/ − 90degrees for a faithful reconstruction, electron tomographic recon-

structions suffer from artifacts due to missing projections, which directly translate

to corresponding missing regions in Fourier space due to the Fourier slice theorem.

Therefore these artifacts are known as the ”missing wedge” effect. An example of



CHAPTER 2. CRYOGENIC ELECTRON TOMOGRAPHY (CET) 15

Figure 2.3: Radiation damage incurred by a Caulobacter crescentus at liquid
nitrogen temperatures when exposed to 21,800 e−/nm2 ([CD05]).

the missing wedge effect is shown for a normal image and an electron tomographic

reconstruction in Fig. 2.5. The main consequence of noise and artifacts in these

images is the lack of reliable low level local features that would be typically used for

higher level recognition tasks. This will be discussed in more detail in section 3.1.

2.4 Overcoming Image Challenges: the Need for

High Throughput

To fulfill the promise of 3D high resolution imaging of cells and subcellular struc-

tures, it is necessary to overcome the uncertainty from noise and artifacts. This can

be done by imaging many instances of the same underlying object, then registering

and averaging them. If these instances are at random orientations, and the noise in
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Figure 2.4: Single projection of a whole cell (a) and single slice of a recon-
structed tomogram (b)

each instance is independent from the noise in other instances, averaging large num-

bers of these instances can produce higher quality renditions of the objects. This

process is called subtomogram averaging and has been an active area of research

by the electron tomography community ([BSL+08, SMVC09]). Two examples are

shown in Figs. 2.6 and 2.7 . The first example involves the study of the flagellar

motor ([MLJ06]). Several individual images of this complex molecular machinery,

are shown in Fig. 2.6 (a). Several hundred instances of this motor are averaged

manually exploiting its seven way symmetry. The result is shown in Fig. 2.6 (b),

which shows significant structural detail at the molecular level. The second example
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involves the surface layer (SLayer) of the Caulobacter crescentus bacterium, which

is known to have a periodic macromolecular structure. Small individual patches of

this layer obtained from the tomogram Fig. 2.7 suggest a periodic pattern, but

little other detail of the molecular structure. However, averaging several thousand

such patches with an automatic procedure described in ([ACM+10]) reveals a much

more informative result, shown in Fig. 2.7 (b).

To facilitate this process, large amounts of data must be processed, requiring

a high throughput pipeline. The electron tomography pipeline is shown in Fig.

2.8. It can be divided into two major parts- the acquisition of images, and the

postprocessing of images.

The acquisition part of the pipeline involves sample preparation and images

series acquisition. Samples are obtained by growing populations of cells on carbon

grids, and then prepared usually by either chemically treating them and embedding

them in resin (plastic sections) or by flash freezing the sample to liquid nitrogen

temperatures (cryogenic electron tomography). In both cases, the preparation aims

to keep the sample rigid and to make it tolerate a significant amount of electron dose

before sustaining damage. Once the sample is prepared, it is inserted into a special

holder which is then loaded onto the electron microscope stage. The series of images

is then acquired sequentially. For each image in the series, the microscope stage is

carefully rotated to a certain angle (called the tilt angle), and the projection image

for that tilt angle is then acquired. When planning an image series acquisition, the

microscopist must plan for the set of tilt angles and the dosage budget for each

projection.

The postprocessing part of the pipeline takes the raw set of images from the

image series acquisition and gives out the final data and results. The first step in

this process is to precisely align the images in the series, since the mechanical stage

is not capable of controlling the position of the holder precisely enough to avoid

misalignment. The aligned image series is then used to obtain a 3D reconstruction

with tomography as described in section 2.2 to obtain a 3D volume representation

of the sample. The volume is then analyzed to obtained the various subjects of

study through segmentation and recognition. Finally, the identified subvolumes
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are analyzed for specific attributes, and then averaged in cases of subtomogram

averaging.

In recent years, a number of advances in microscope automation have given the

acquisition portion of the pipeline high throughput capability. Pipeline throughputs

of several hundred tomograms per month are now a reality and not uncommon. With

each tomogram having a size of a few gigabytes, it is not practical to require any

significant manual intervention of the postprocessing of these tomograms. Therefore

the bottlenecks in realizing a high throughput electron tomography pipeline lie in

the postprocessing section of the pipeline.

A common reason that various tasks in the postprocessing require manual in-

tervention is the need for inference and recognition in images containing unreliable

local features as discussed in section 2.3. For example if we believe a boundary

to be a connected set of edge pixels and the edges are weak in a local region, that

boundary will appear as weak and incoherent, as shown in Fig. 2.9 (a). However,

by exploring the context of the surrounding area of that local region in the original

image, it is possible to search for and acquire the cell boundary (b). Human beings

are very good at inferring that the boundaries by exploiting context in the image.

In order to overcome the uncertainty in these local features, we seek to employ

the same intuition as humans do and apply context wherever possible. In the next

section, we will explore concrete ways to encode context, and to use this encoded

context to make efficient inferences.
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Figure 2.5: (a)Normal reconstruction of test image of Einstein, using angu-
lar spacings of 2 and 5 degrees, (b)Reconstruction of Einstein test image with
missing wedge, using limited angular range of 60 degrees, and (c)slice of recon-
structed tomogram of a Caulobacter crescentus cell with missing wedge- note
missing horizontal features.
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Figure 2.6: Flagellar motor viewing through averaging ([MLJ06])
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Figure 2.7: Caulobacter surface layer (SLayer) viewing through averaging
([ACM+10])
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Figure 2.8: Electron tomography pipeline
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Figure 2.9: Uninformative local regions in electron tomography. It is difficult
to find the cell boundary using only the local region shown in (a). By looking at
the context of the surrounding of that region in the original Image, it is possible
to successfully find the cell boundary (b).



Chapter 3

Modeling Geometric Context with

Graphical Models

3.1 Local Features and Geometric Relationships

Computer vision is a highly developed and rapidly advancing field. A common ap-

proach to scene understanding in modern computer vision is to start from obtaining

local features, and then feed them to increasingly higher level understanding tasks

to reach an overall understanding of the image. This approach is known as the

bottom up approach in computer vision.

3.1.1 Local Features - Bottom Up vs. Top Down Approach

Local features are image characteristics that are extracted from local patches of the

images. A simple example of local feature detection in images is edge detection,

which uses intensity gradients to detect boundaries in a local region of an image. In

natural images with high enough quality, edge detection can sometimes be used to

create a processed image that is sufficiently informative for higher level queries. An

example of this is shown in a photograph of an aircraft in Fig. 3.1 (a) and (b). The

output of edge detection captures the outline of an aircraft and other significant

objects in the image, and serves as a good starting point for higher level queries

24
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such as segmentation and object classification.

In more typical cases (and indeed in most cases of electron tomography images),

however, local features are not very informative in and of themselves. Applying

the same edge detection to a slice of an electron tomogram results in many false

responses (Fig. 3.1 (c) and (d)). Therefore the output image is not very infor-

mative or useful for any subsequent recognition task, making a purely bottom up

approach infeasible. In such cases, it is helpful to incorporate any available higher

level information about the object or geometry to be inferred in order to guide the

local feature detection. Such an approach is known as a top down approach. A

simple example of higher level information is the numbers of each type of feature

found in a candidate object, e.g. number of legs and ears and tails detected when

trying to find an animal. An approach which uses the number of features without

regard for their arrangement is called a “bag of features” approach. Bag of features

has been used widely and successfully for a large number of computer vision tasks

in natural images.

3.1.2 Geometric Context

Another example of high level information in an object is the arrangement of its

member features. In the animal detection case, knowing that the head is at the

opposite end of the tail, or the legs are at the bottom of the animal can be valuable

cues for inference. In the case of cell boundary detection, (e.g. the case of Fig. 3.1

(c) and (d)), it would help to know that the edges we seek lie in an elliptical region,

and have certain orientations which are consistent with some underlying ellipse.

Such underlying geometric information is considered high level information, and the

constraints associated with this information are geometric ones.

More robust recognition and inference in images is enabled by combining infor-

mation from the bottom up approach and the top down approach, thus integrating

high and low level information in an image. Recent work in the computer vision

community has leveraged this notion to achieve better recognition in natural im-

ages. Indeed, recent works in object detection by [FFJS08, OPZ08] have used local
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shape formed by feature points in addition to the features’ appearances themselves

to achieve better overall detection. Most recently, [HEPK09] used learned global

shape and appearance in a probabilistic model to localize landmarks and outlines

of objects of a particular class. It is this line of work that inspires the basis for our

approach to achieving better inference in the electron tomography pipeline.

3.2 Graphical Models

We seek a suitable framework to formally encode the necessary information in order

to facilitate combining top down and bottom up approaches and achieve robust

inference in images. Such a framework must be flexible enough to capture and

encode a wide and diverse types of context, such as high level geometric relationships

or nonlocal low level appearance information. It must also lend itself to efficient

optimization methods. A framework which satisfies these requirements is that of

graphical models.

3.2.1 Representation

Graphical models, or structured probabilistic models, are a vast subject with many

excellent references ([KF09, Bis06]), and we provide a brief overview of the main

concepts here. In graphical models, individual variables are depicted as nodes in a

graph. Edges are then inserted between nodes (variables) only if they are directly

dependent on one another. The edges can be directed or undirected. A directed

edge from one variable to another indicates a conditional probability distribution

(CPD) of the child variable given the parent variable. Undirected edges indicate

an unnormalized compatibility function between variables in a fully connected sub-

graph. If all the edges in the graph are directed and the graph is acyclic, the graph

is a Bayesian network. If all the edges in the graph are undirected, the graph is

a Markov network. In either case, there are clear statements of conditional inde-

pendence that can be made about variables given other variables. In the case of

Markov networks (and with some exceptions in Bayesian networks), variables are



CHAPTER 3. MODELING GEOMETRIC CONTEXT WITH GRAPHICAL MODELS27

conditionally independent of all other variables given their neighbors. Therefore,

the joint distribution over all variables factorizes into a product of many smaller

terms over few variables. In a Bayesian network, the factors are CPD’s, and in a

Markov network, the factors are compatibility functions. The set of variables found

in the argument of each factor is called the scope of that factor. In this work, we

are primarily concerned with Markov networks.

An example of a Markov network is shown in Fig. 3.2. This example has M

variables Xi, i = 1...M . The joint distribution over these variables factorizes into

smaller terms.

P (X = x) =
1

Z

∏
c

φc(XC = xc) (3.1)

where Z is a normalizing constant called the partition function, and φc(XC = xc)

are factors over a fully connected subgraph, known as a clique denoted by C. The

set of variables in clique C are denoted by XC . A maximal clique is a clique that

is not a subset of any other clique. A factor is not required to be over a maximal

clique.

For example one such factorization could be:

P (X1, ...Xi, ...XM = x1, ..xi, ...xM) =
1

Z

∏
i

φsi (Xi = xi)
∏

j⊂N(i),j>i

φpi,j(Xi = xi, Xj = xj)

(3.2)

where N(i) refers to neighbors of node i in the Markov network, and the j > i

condition is to avoid double counting of factors (φpi,j(Xi, Xj) = φpj,i(Xj, Xi)). Here

we chose cliques with maximum size of 2 variables.

Various factorizations are possible in Markov networks, as factors are not re-

quired to be over a maximal clique. For example in Fig. 3.3 there are 3 variables, 3

pairwise cliques, and 1 triplet clique (which is the maximal clique). Therefore both
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of the following factorizations may apply to this graph:

φC12(X1 = x1, X2 = x2)φC23(X2 = x2, X3 = x3)φC13(X1 = x1, X3 = x3) (3.3)

φC123(X1 = x1, X2 = x2, X3 = x3) (3.4)

Both of these factorizations satisfy the same conditional independence relation-

ships, but the first one has fewer degrees of freedom than the second, and can encode

a smaller space of possible distributions over these 3 variables. However, as we shall

see, it requires less complexity when performing queries on its variables. This per-

formance complexity tradeoff is commonly encountered when using probabilistic

graphical models.

A representation which makes the factorization explicit is the factor graph. A

factor graph is a bipartite graph which contains factor nodes in addition to variable

nodes. Each factor node represents one factor φC(XC), and connects to the variables

in XC , the scope of that factor. Two distinct factor graphs which represent the

factorizations in Eq. 3.3 and Eq. 3.4 are shown in Fig. 3.4 (a) and (b) respectively.

A graph which encodes P (X), a joint distribution over a set of variables X, is

called a generative model, as it can be used to generate samples for any subset of the

variables in X. It is often desirable to encode a conditional distribution P (X|Y),

where Y is a set of observed features that have fixed values and are disjoint from X.

We prefer to treat Y as observed features rather than variables with a distribution,

since this distribution may be complex and poorly understood. This situation is

not uncommon for image features used as observations. A model which encodes

such a distribution is called a discriminative model, and cannot be used to generate

samples for the evidence variables. A Markov network that models this relationship

is called a conditional random field, or CRF ([LMP01]). The CRF nodes are X∪Y,

and Y are shown grayed out to emphasize that they are fixed observations and not

variables. An example CRF is shown in Fig. 3.5. The main difference with a
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normal Markov netowrk is that a factor’s scope must contain variables only from

X. The conditional distribution for a CRF is defined by:

P (X = x|Y = y) =
1

Z(y)

∏
c

φc(XC = xc; y) (3.5)

where Z(y) is the partition function over X given the observations Y = y, and

φc(XC = xc; y) is a compatibility function indicating preference for the assignment

Xc = xc given Y = y. This compatibility function is often abbreviated to omit the

observation, and is simply written as φc(XC = xc).

Lastly, we consider a class of graphical models called temporal models, in which a

common subgraph gets repeated over time and unfolds to yield an extended unfolded

graph. When the subgraph is a CRF, the resulting graph is called a linear chain

CRF ([KF09, Bis06]). A linear chain CRF is shown in Fig. 3.6. In general,

temporal models can repeat over time indefinitely. However, in this work, we will

work with temporal models with finite length.

We next explore how to use these representations to make probability queries.

3.3 Estimation with Inference

Our goal is to estimate geometry from images. To encode geometry, one can intro-

duce relevant variables such as shape parameters, or locations of point features in

the image, and/or physical appearance variables. By specifying local relationships

between these variables, we can construct a conditional distribution over all the

unknown variables given the evidence variables in the images. This model now has

a set of observed (evidence) variables E as well as hidden variables X, and we may

be interested in a subset of the hidden variables, such as shape parameters. We can

then perform various probability queries to estimate the desired geometry variables.

Such queries are referred to as inference.

We consider two types of queries: conditional probability queries and maximum
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a posteriori or MAP queries. In a conditional probability query we seek the condi-

tional probability distribution

P (Y|E = e) (3.6)

where Y ⊂ X are query variables, and E = e are the observed values for evidence

variables E. In a MAP query, we seek the most likely joint assignment to all the

unknown variables X given the observations E = e:

MAP (X|e) = arg max
x

P (X = x,E = e) (3.7)

To perform a conditional probability query on the variables Y, one must calculate

the marginal of Y by summing out the variables in X that are not in Y. In the

worst case, this operation has complexity which is exponential in the number of

variables to be summed out and may not be very tractable. However, in many

graphs this complexity is much lower due to an amenable graph structure. When

the summation can be carried out exactly, this query is an exact inference. When

this cannot be done due to excessive complexity, many approximate yet effective

inference techniques can be used.

Performing a MAP inference in a Markov network is equivalent to maximizing

an energy function, in this case the unnormalized distribution over that graph. Once

again, if this maximization can achieve a global maximum (e.g. if the energy func-

tion is convex), the inference is exact. If this is not possible or practical, many

approximate yet effective optimization techniques can be used to achieve approxi-

mate inference.

In this work, we will use two approximate inference techniques. These are loopy

belief propagation (LBP) for performing conditional probability queries, and pre-

dictive update for MAP inference on a finite duration temporal model.
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3.3.1 Loopy Belief Propagation

Belief propagation, or BP, aims to calculate marginal distributions by summing out

variables in distributions. It is a form of message passing which allows messages to

travel through graphs. Message passing is the process of summing variables locally

and combining intermediate results to calculate marginals. The intermediate results

are called messages.

Belief propagation is accomplished by iteratively calculating messages locally at

each node in a factor graph and propagating them. There are two types of messages:

messages from factor nodes to variable nodes and vice versa. These are signified by

mf→i(Xi) and mi→f (Xi) respectively. We define the belief on a variable Xi to be

the product of all incoming messages to variable Xi from the factor nodes connected

to it:

bi(Xi) =
∏

C:Xi∈XC

mf→i(Xi) (3.8)

Similarly, we define the belief on a factor fC to be the product of the factor itself

and all incoming messages to that factor from the variable nodes connected to it:

bC(XC) = φC(XC)
∏

i:Xi∈XC

mi→f (Xi) (3.9)

Each iteration of belief propagation is a pair of steps carried out at all nodes in

which a sum product algorithm is executed. Firstly, the messages from all variable

nodes to all factor nodes are calculated:

mi→f (Xi) =
∏

Xi∈XC

bi(Xi) (3.10)

Secondly, the messages from all the factor nodes to all the variable nodes are

calculated:
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mf→i(Xi) =
∑

j:Xj∈XC\Xi

bC(XC) (3.11)

where XC\Xi is the scope of the factor excluding Xi, and bC(XC) is obtained

from Eq. 3.9. After this step, the belief on Xi (bi(Xi)) can be calculated from Eq.

3.8.

It can be shown that continuing this process on a tree will result in convergence

of the beliefs bi(Xi) to the unnormalized marginal of Xi after a finite number of

steps ([YFW05, KF09, KMFaL01, Bis06]). However, in a graph with loops, there is

no guarantee of such convergence, and in general there will be some error between

the normalized version of bi(Xi) to the marginal of Xi. Therefore in the presence of

graphs with loops, belief propagation is called loopy belief propagation (LBP) and

is approximate. In LBP, convergence criteria such as maximum number of iterations

and error thresholds must be specified.

3.3.2 Predictive Update for Temporal Models

We now explore inference on temporal models. We first consider the simple linear

chain CRF shown in Fig. 3.6. In this model, there is one state variable Xi and

one observed variable Oi at each time slice i. We will denote a sequence of variables

X1....Xi by X1:i. The goal is to estimate the distribution (and ultimately most likely

value) of Xi given the observed values of the variables O1:i, i.e. P (Xi|O1:i). This

task is also referred to as tracking.

We consider at each slice i the following two CPD’s: P (Xi|Xi−1) and P (Oi|Xi)

(to which we do not have direct access in the linear chain CRF). These are known re-

spectively as the transition model and observation model. To make the inference scal-

able with time, it is desirable to estimate P (Xi|O1:i) recursively from P (Xi−1|O1:i−1)

and recent observations. We have
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P (Xi|O1:i) =
P (Oi|Xi, O1:i−1)P (Xi|O1:i−1)

P (Oi|O1:i−1)

=
P (Oi|Xi)P (Xi|O1:i−1)

P (Oi|O1:i−1)
(3.12)

where P (Oi|Xi, O1:i−1) = P (Oi|Xi) due to conditional independence, and

P (Xi|O1:i−1) =
∑
Xi−1

P (Xi|Xi−1)P (Xi−1|O1:i−1) (3.13)

and

P (Oi|O1:i−1) =
∑
Xi

P (Oi|Xi)P (Xi|O1:i−1) (3.14)

Eq. 3.12, 3.13, and 3.14 are the basis for recursively and incrementally calcu-

lating P (Xi|O1:i) from P (Xi−1|O1:i−1). As these equations suggest, the calculation

is done in two steps. The first step is the time update, or prediction step, which

calculates P (Xi|O1:i−1) using Eq. 3.13. The second step is the measurement update,

which calculates P (Xi|O1:i) using Eq. 3.12 and 3.14. In effect, the time update

step predicts the distribution of Xi from the set of previous observations O1:i, and

the measurement update step refines that distribution by looking at the most cur-

rent observation Oi. There are many manifestations of this concept, as well as many

excellent references ([KF09, Bis06, AMG02, For73, AM79]), depending on the appli-

cation and knowledge of the distributions. When the two CPD’s are based on linear

relationships of the variables with white Gaussian noise, the optimal solution is found

exactly and in closed form by the Kalmanfilter ([Kal60, AM79, AMG02, Bis06]).

However, quite often such assumptions may not hold, and we may not have direct

knowledge of the two distributions. In such cases, time and measurement updates
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cannot be performed exactly, and suboptimal approximate methods become neces-

sary.

One class of approximate inference methods for temporal models is to perform

the time and measurement updates empirically by generating samples using Monte

Carlo methods. This approach is known as particle filtering ([DDFG01, KF09,

Bis06, AMG02] ), and is appropriate when we have a way to generate samples from

the appropriate CPD’s.

Sometimes we may not even have a way to generate samples in the temporal

model. This may be indeed the case when we use a linear chain CRF, and our

unnormalized compatibility functions do not lend themselves to readily generating

samples. Another class of approximate methods that can be used for these cases is

to perform an energy maximization using max product versions of Eq. 3.12, 3.13,

and 3.14. The max product version of these equations replaces the sum operator

with the max operator, and puts out the most likely assignment with its probability

instead of a distribution over all possible assignments.

Concretely, we would try to maximize the unnormalized distribution up to slice

i:

Ei =
i∏

j=1

φtj(Xj−1, Xj)φ
o
j(Xj, Oj)

P (X1:i, O1:i) =
1

Zi
Ei

Emax
i = max

x1:i

Ei

xmax1:i = arg max
x1:i

Ei (3.15)

where Zi is a normalization constant for slice i, φtj(Xj−1, Xj) and φoj(Xj, Oj) are

the pairwise compatibility functions corresponding to transition and observation

model relationships respectively, and φtj(X0, X1) = 1 by definition.

We estimate Emax
i and xmax1:i by solving the following recursion:
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Emax
i = max

xi
φoj(Xi = xi, Oi = oi) max

xi−1

φti(Xi−1 = xi−1, Xi = xi)E
max
i−1

Emax
1 = 1 (3.16)

This recursion allows an efficient calculation of the MAP estimate. The inner

maximization in Eq. 3.16 can be viewed as a time update step, and the outer

maximization can be viewed as a measurement update step. Since this procedure for

MAP inference is not guaranteed to obtain the global maximum, it is approximate.

While the max product version of time and measurement update is an approx-

imate, suboptimal method, its flexibility and efficiency for use in discriminative

temporal models like a linear chain CRF are significant advantages. One can view

this method on a linear chain CRF also as a block coordinate ascent method on an

energy function. In this view, the energy function is the product of all the compat-

ibility functions up to time i, and a MAP estimation is performed by varying only

one group of variables (the scope of a particular factor) at a time. To make this

method more optimal, it is possible to go back and vary previously varied variables

in a forward backward or other multiple pass strategy.

In this chapter we have established geometric context as a key source of informa-

tion in our noisy and uncertain image inference problem. We have also shown that

a framework based in graphical models, and specifically a conditional random field

can be useful to model and exploit this information. We are now ready to apply

this intuition and framework to address two specific problems in the ET pipeline:

registration of 2D images and segmentation of 3D volumes.
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Figure 3.1: Local features in natural images and electron tomography images.
A natural image of an aircraft against sky background(a) and its edge detected
version (b). A single slice of a reconstructed tomogram (c) and its edge detected
version (d).
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Figure 3.2: A Markov Network.
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Figure 3.3: A Markov network with 3 variables, 3 pairwise cliques, and 1
triplet clique.

Figure 3.4: Two factor graphs for the Markov network in Fig. 3.3. (a) the
factorization of Eq. 3.3 and (b)the factorization of Eq. 3.4
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Figure 3.5: A conditional random field (CRF) with 4 variables X1..X4, and 4
observed features y1....y4.
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Figure 3.6: A linear chain CRF with one state variable and one observed
feature



Chapter 4

2D Image Registration

The first task to be carried out on images from the electron microscope is their align-

ment (Fig. 2.8), typically requiring significant manual intervention by a user due to

uncertain and weak local features. The precision of this alignment directly affects

the resolution of the reconstruction, and therefore it must be carefully executed.

The goal in this chapter is to automate this task and overcome this bottleneck. We

will see that by incorporating geometric context into a probabilistic framework it is

possible to to overcome this uncertainty and achieve this goal.

For aligning a stack of images, it is necessary to estimate each of their projection

maps, and effectively reproject them to a consistent reference frame, such that their

playback is smooth. This is equivalent to image stabilization when a movie is taken

with a handheld camera on high zoom. The high magnification amplifies small

mechanical motions of the camera in the video. The electron microscope being a

high magnification imaging device also amplifies even the smallest motion of the

mechanical stage, and must be corrected for. We shall see that this problem can

be broken down into two subproblems: 1)detection and tracking of features across

images (correspondence), and 2)calculating the transform to be applied to each

image to ensure smooth playback. The second problem is also known as structure

from motion, and depends on the solution to the first problem.

41
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4.1 Precision Registration of 2D Images

Image stabilization for natural scenes relies on reliable detection of distinct features

in different frames for subsequent correspondence, tracking, and motion correction

as described above. However, such features are not generally available in ET images,

and this process is prohibitively difficult even when done manually. At the same

time, the precision of the alignment directly determines the effective resolution of

the reconstruction, and must be considered carefully. For the express purpose of

enabling precision alignment, biologists inject the sample with fixed diameter spher-

ical gold beads which show up as high contrast features, as shown in Fig. 4.1. Even

with this aid in place, detection of the bead features can be difficult, especially at

the higher tilt angles as shown in Fig. 4.1(b) for 50 degrees. Another problem

for alignment is that even if the beads are detected accurately, they are not very

distinct from one another, which can complicate their tracking. This is especially

problematic when beads are grouped together, as is also the case in Fig. 4.1.

An example of corresponding markers in a pair of cryo ET images is shown in Fig.

4.2. When a marker is isolated and its corresponding marker is nearby, the choice of

correspondence is straightforward. The correspondences depicted with yellow arrows

are such cases. In other cases however, the above mentioned problem of grouping

markers can make the choice confusing, especially if false positive candidates have

been detected. The red arrows in the figure illustrate such cases. As we shall see,

a key to overcoming this this confusion is the consideration of the spatial relations

between multiple markers.

4.2 Previous Methods

Extensive work has been published for automatic marker detection and correspon-

dence (e.g. [KMM96, RHMM99, BHE01, BZ06, HB07, ZKB+07, Fra06]) which has

performed well for many datasets. However, correspondence for low SNR cryo-ET

images is still prone to error for reasons previously described. For the most part,

these methods attempt to correspond individual markers one at a time in adjacent
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Figure 4.1: Gold beads injected into the sample for alignment (a)0 degree
projection (b)50 degree projection

images using assumptions about the underlying projection geometry. The hope is

that with a better prediction of where the corresponding marker should be, a bet-

ter correspondence decision can be made. Such approaches will be fundamentally

limited by the accuracy of the detection and prediction of marker locations.
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Figure 4.2: Finding correspondence for 5 markers in left image from among 7
possible markers in right image

4.3 RAPTOR:Tracking Groups of Markers Using

Graphical Models

1

A fundamental idea for overcoming the uncertainty in the marker detection and

correspondence is to consider matching groups of markers. Rather than model

1RAPTOR was joint work with Fernando Amat, and the entire work is presented here to
preserve context. The work in sections 4.4 and 4.5.1 was led by Farshid Moussavi and the work
in sections 4.5.2 and 4.6 was led by Fernando Amat.
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the underlying projection geometry for corresponding one marker at a time, we

infer 2D geometric similarities between groups of markers in neighboring images.

For example, in addition to searching for a single matching marker in an adjacent

image, we also search for a matching group of markers that has a similar spatial

arrangement in an adjacent image. This intuition is captured and exploited in

the method we present here called RAPTOR- Robust Alignment and Projection

estimation for TOmographic Reconstruction.

4.4 Probabilistic Framework

We seek the most likely projection model given the observed 2D image data. To

find this model involves detecting marker locations in each image, recovering the

marker trajectories across the tilt series, and then finally fitting a projection model

to the estimated trajectories. We define the following variables. Let R = {Rj} be

the set of 3D locations of M markers in the original volume Rj ∈ R3, j = 1...M . Let

there be N projected images of this volume, and θi be the projection parameters

(projection angles, rotations, translations) for the ith projection in the image tilt

series, i = 1...N . Let Ii be the ith projection image. Then let Si be an ordered

set of 2D point locations Si = {Si,j, Si,j ∈ R2, j = 1...M} corresponding to the 3D

location in R. Also let Bi be the set of K unordered noisily detected observations

of Si in Ii, Bi = {Bi,l, Bi,l ∈ R2, l = 1...K}. We take K > M to allow for false

positives and poorly detected true positives. Let the observable Oi be the union of

Bi and image Ii. For convenience, we define θ, S, and O respectively be the sets

{θi}, {Oi}, and {Si} over all i = 1...N . These quantities are shown graphically in

Fig. 4.3. The relationship between these variables is captured in the conditional

random field (CRF) shown in Fig. 4.4. The variables to be inferred are R, θ, and

S; and the observed features are the O.

We seek to find the best projection model by doing a MAP estimation on the

variables, i.e. finding the arguments which maximize the probability of θ, S, and R

given the observed values of O. This probability can be expressed as the product
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Figure 4.3: Variables in the alignment with markers problem

of two terms:

P(R,S,θ|O) = P (S|O)P (R,θ|S,O) (4.1)

The two terms in Eq. 4.1 represent two subproblems in alignment. The first

term is the correspondence of markers, or tracking problem. The second term is the

projection model estimation from the corresponded markers and their locations. It is

solvable by a variety of approaches available from structure from motion (SFM) when

the projection maps are affine. Further study has been done on the case of nonlinear
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Figure 4.4: Conditional random field relating the variables in the alignment

projection maps in [LBPE06]. In this work, we model and solve the two problems

separately and disjointly. We focus below first on the tracking problem, which

has been less well understood and has been the main reason for needing manual

intervention. We subsequently describe our model and solution for projection model

estimation in section 4.6.

The tracking problem can be represented in terms of a separate CRF. From the

overall CRF in Fig. 4.4, it can be seen that if R and θi are not given, the Si are

dependent on each other, and can be modeled as a separate CRF in which all the

Si are fully connected as shown in Fig. 4.5. We seek to find the ordered set of

markers Si by corresponding the unordered noisy observations Oi, thus maximizing
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the probability P (S|O). This maximization is performed on the CRF in Fig. 4.5,

conditioned on the observed evidence O.

Figure 4.5: Conditional random field relating the variables in the tracking
subproblem

The first step in the marker tracking is to obtain the observations Oi. This

involves detecting markers in all the images, and providing a score for each detected

marker. For this step, a template is required. The user picks a small number (we

found 3 to be sufficient) of marker centers, and the program then averages the

corresponding marker patches. This provides a preliminary template. These can

also be picked automatically with a synthetic template which is generated based

on marker diameter and applying a Gaussian blur. We then cross-correlate this
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template with all the images at tilt angles between +30 and −30 and do a peak

search and select the first five peaks from each of those images. The particles

corresponding to these peaks are then averaged to obtain a template that is used for

the final cross-correlation. The noise of the new template is much reduced relative to

the preliminary template. The selection of the first three markers for the preliminary

template is the only manual step required in RAPTOR, and is much faster than a

standard initial seeding step used in many packages. Fig. 4.6 shows a comparison

between an individual (of three) marker used for the preliminary template and the

final template generated by this approach. In a last pass, we once again cross-

correlate the final template with all the images, do a peak search, obtain all the

peaks and apply a threshold. The resulting set of peaks in each image is our list

of candidates in that image. If the number of target markers is M , the number of

peaks selected as candidates per image ranges from 3M to 4M .

Having obtained the observable features O, we next seek to find the ordered set

of markers S by corresponding them, thus maximizing the probability P (S|O) and

performing a MAP inference over the CRF in Fig. 4.5. This ideally would involve

inferring all the Si at once, which represents a large combinatorial problem. Rather,

to contain the complexity, we infer only for a pair of nearby images first, and then

combine these local results heuristically to find the solution for all the images. First,

we will describe the correspondence of markers for one pair of nearby images.

We consider a pair of images Ii−1 and Ii. Si−1 = {Si−1,j} and Si = {Si,j}
(j = 1...M) are the random variables corresponding to M markers in image Ii−1

and Ii respectively. Recall Bi = {Bi,l}, (Bi,l ∈ R2, l = 1...K) be the locations of

K markers detected in image Ii (typically we take K > 3M). We also have by

definition Oi = {Ii}∪Bi. The variables Si,j can take on values from Bi, as well as a

“null” assignment signifying no correspondence for marker Rj in image Ii. For this

pair of images, our goal is maximize P (Si|Si−1,Oi−1,Oi). The joint distribution

P (Si,1, ..Si,j, ..Si,M |Si−1,Oi−1,Oi) assigns a probability value for each assignment of

the Si,j. Our goal is to find the assignment that maximizes this distribution
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Figure 4.6: Single marker image and average marker image after detection of
hundreds of markers

S∗i = arg max
Si,1..Si,M

(P (Si,1, ..Si,j, ..Si,M |Si−1,Oi−1,Oi)) (4.2)

We represent this conditional distribution using a Markov graph, in which each

node is the variable Si,j, and connections are between nodes which are members

of one pattern. In general, if we are not conditioning on Si−1,j, all patterns and

correspondences would be possible, and we would connect all nodes Si,j, j = 1...M ,

to get a fully connected graph. However, we can use the values from the variables
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Si−1,j to simplify the graph and give it a simpler structure. We determine a pair of

variables Si,j1 and Si,j2 to be directly dependent on each other (and hence have an

edge between them in the Markov graph) if their predecessors in the previous image

(Si−1,j1 and Si−1,j2 respectively) are within a certain distance of each other. This

distance is fixed and is chosen as a model parameter. This simple criterion directly

gives us the Markov graph structure, an example of which is shown in Fig. 4.7.

This example follows the example shown in Fig. 4.2, in which 5 markers in image

Ii−1 needed to find their correspondences in image Ii.

Figure 4.7: Markov graph for correspondence of markers in a pair of images.
The nodes Si,j are variables which can take on values Bi,l

This Markov graph defines the following factorized conditional distribution, as
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described in section 3.2:

P (Si,1, ..Si,j, ..Si,M |Si−1,Oi−1,Oi) =
1

Z

∏
j1

φsj1(Si,j1)
∏

Si,j2⊂N(Si,j1 ),j2>j1

φpj1,j2(Si,j1 , Si,j2)

(4.3)

where Z is a normalizing constant, and we have dropped the observable features

terms on which the distribution is conditioned in the factors for brevity. To complete

the definition of this distribution, we need to define the singleton and pairwise

factors, φs and φp respectively.

First we will define a function that will be common to both types of factors. Let

v1 and v2 be two vectors in R2, and k be a constant. We define

fk(v1, v2) = e(−k||v1−v2||) (4.4)

which is a Laplacian rolloff with the norm of the vector difference between v1

and v2 with rate k.

The singleton factors φsj1(Si,j1 = Bi,l1) encode how likely it is that marker Si−1,j1

in image Ii−1 corresponds to marker Bi,l1 in image Ii, i.e. the jth1 marker in image Ii

is Bi,l1 . The criteria we use for this likelihood are physical similarity and proximity.

The components of the factor are NCC(j1, l1)- the normalized cross correlation of

a patch centered at marker Si−1,j1 in image Ii−1 with a patch centered at marker

Bi,l1 in image Ii, and a Laplacian rolloff factor with the distance between these two

markers:

φsi (Si,j1 = Bi,l1) = NCC(j1, l1)fk1(xj1 , xl1) (4.5)

where xj1 , xl1 are vectors from the origin to marker locations Si−1,j1 and Bi,l1

respectively, and k1 is a model parameter constant. These quantities are depicted
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graphically in Fig. 4.8.

Figure 4.8: Patches and vectors used for the singleton factors

The pairwise factors φpj1,j2(Si,j1 = Bi,l1 , Si,j2 = Bi,l2) encode how likely it is that

the pair of markers Si−1,j1 , Si−1,j2 in image Ii−1 correspond to the pair of markers

Bi,l1 , Bi,l2 in image Ii, i.e. the jth1 and jth2 marker in image Ii are Bi,l1 and Bi,l2

respectively. The criteria for this assignment are purely geometric ones- we favor

correspondences between pairs of markers which form similar vectors. Let vj1j2 be

the vector formed from marker Si−1,j1 to marker Si−1,j2 in image Ii−1, and vl1l2 be

the vector formed from marker Bi.l1 to marker Bi,l2 in image Ii. A good pairwise

correspondence is one in which the vectors formed by the pairs are as close to each

other as possible, i.e. their vector difference is small. We also include the proximities
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between the respective markers and their candidates for correspondence, such that

we prefer correspondences where Si−1,j1 is near Bi,l1 , and Si−1,j2 is near Bi,l2 . The

pairwise factors are thus defined as:

φpj1,j2(Si,j1 = Bi,l1 , Si,j2 = Bi,l2) = e−k2||vj1,j2−vl1,l2 ||
2

fk1(xj1 , xl1)fk1(xj2 , xl2) (4.6)

where vj1,j2 is the vector from marker Si−1,j1 to marker Si−1,j2 ; vl1,l2 is the vector

from marker Bi,l1 to marker Bi,l2 ; xj1 , xj2 , xl1 , xl2 are vectors from the origin to

markers Si−1,j1 , Si−1,j2 , Bi,l1 , and Bi,l2 respectively; and k2 is another model param-

eter constant. These quantities are depicted graphically in Fig. 4.9. Note that the

rolloff factors fk1 occur in both the singleton and pairwise factor equations (Eq. 4.5

and 4.6). This has the effect of making the rolloff steeper when a marker has more

neighbors in the graph, making the search more constrained when there is more

crowding. Specifically, the effective rolloff rate becomes linear with the number of

neighbors (degree) of the marker’s variable in the graph.

This completes the definition of our model for the conditional distribution over

Si,j’s given Si,j−1’s, Oi−1, and Oi.

4.5 Inference of Marker Correspondences

Having defined the conditional distribution over marker assignments Si given Si−1,

Oi−1, and Oi for one pair of images, we then seek the most likely trajectories given

the observed features. This inference is executed in two stages- locally for each pair

of neighboring images, followed by globally for the whole set of images.

4.5.1 Inference of Marker Correspondences in One Image

Pair

We first seek to infer the most likely joint assignment to the marker correspondences

in each pair of nearby images, thus performing the MAP query of Eq. 4.2. Even
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Figure 4.9: Vectors used for the pairwise factors

though we have defined this distribution, maximizing it is still an expensive combi-

natorial task, as it must evaluate an exponentially large number of assignments to

find the highest scoring one. Furthermore, the distribution is in general not convex.

Therefore for any scenario other than a very small number of markers, we must

consider more efficient approximate inference methods, as discussed in section 3.1.

In ET images we typically have dozens to several hundred markers.

It is possible to use approximate MAP estimation, which attempts to solve Eq.

4.2 with no guarantees of reaching a global optimum. In such an approach, signifi-

cant care should be taken to deal with outliers due to false positives in the marker
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detection. An alternative strategy is to perform a marginal query for the individ-

ual assignments and then combine them. This marginal query seeks the marginal

distribution for each marker’s correspondence from the joint distribution of all cor-

respondences. Since the graph has loops in general as well as many variables, a

marginal query inference is approximate, and we chose loopy belief propagation

(LBP), which works well in practice on such graphs. A brief introduction to LBP

was provided in section 3.3.1. For a detailed description of LBP the reader is

referred to [Bis06, KF09].

4.5.2 Global Correspondence from Image Pair Correspon-

dence

Having obtained the correspondence between two images, we would like to now con-

struct the global correspondences. If the correspondence for two images were perfect

and had no mistakes, this would have been trivially accomplished by cascading the

results of sequential pairs of images. However, we would like to provide robust-

ness by considering redundant pairs of images and cross checking. This effectively

amounts to pruning the CRF in Fig. 4.5 such that images more than a certain

distance from each other in the tilt series will not be directly related, as shown

in Fig. 4.10. However, all image correspondences will still be related indirectly.

We next describe a heuristic method that combines the results of pairwise image

correspondence inferences to get the global correspondence.

The first step of global correspondence is to build trajectories. To do this we

use a multi-level approach. The first level contains correspondences between the

ith image and the (i + 1)th image. The second level contains the correspondences

between the ith and the (i+ 2)th image. We use up to 3 levels in images spaced up

to 2 apart because after that it is difficult to find correspondences due to the tilt

difference between projections. We initialize the first trajectory as the first point in

image 1 and level 1. We call this point p11 (in general, we define pij as the point

in image i and trajectory j). Local correspondence gives us the location of this

trajectory in image 2, i.e. p21. Next, we try to find p21 in the local correspondence
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Figure 4.10: Pruned CRF relating the variables in the tracking subproblem

between image 2 and image 3. If we find it, that returns p31 and we repeat the

process for this new location to find p41. We use the extra levels in two ways. First,

if a local correspondence for a track is missing, we look in the next level of the

global correspondence to complete the track. For example, if we cannot find p31

from p21 in the first level, we try to find p41 from p21 in the second level, which

contains local correspondence between image 2 and image 4. If we find p41, we

continue the process for this new location to try to extend the trajectory. If we

do not find it, we try to find p51 from p21 in the third level, which contains local

correspondence between image 2 and image 5. We iterate this process until the first

trajectory can not be extended longer, either because we reach the last image (full
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trajectory) or because one location can not be found in any level (partial contour).

To create new trajectories, we use points in each level that have not been used

in previous trajectories, since they are potential seeds of new trajectories. Having

multiple match levels allows trajectories to recover from occlusion. Occlusion occurs

if a marker present in one image can not be found, even by a human eye, in the next

image. A variety of events can create occlusion. For example, a fiducial marker in

the edge in one image can move out of the field of view in the next image. Or some

other feature in the sample can occlude the marker in some views (two clouds of

markers crossing each other.

The second way of using a multi-level approach, and the second step of global

correspondence, is to add confidence in the trajectories obtained in the first step.

We do this using the redundant information contained in the local correspondences

that have not been used in the first step. For example, suppose we found p21, p31,

and p41 using the first step. We can check this path against the local correspondence

for p21 in image 4, which is contained in the second level. We count the number of

times such comparisons fail in each trajectory. If this occurs more than one fifth of

the length of this particular trajectory, we drop the trajectory. Otherwise, we retain

the consistent part of the trajectory.

Finally, only trajectories of certain length are kept to estimate the projection

model. The length is selected automatically to assure that we have enough points

in each image to estimate the projection model. As explained in the next section,

the projection estimation is able to handle partial trajectories of any length across

the tilt series. This is extremely useful at high tilt angle, where many markers are

present in only a few images before disappearing.

4.6 Projection Model Estimation

Having obtained an estimate for the ordered set of points S, we are now ready to

estimate the projection parameters θ, thus maximizing the second term in Eq. 4.1.

The projection model finds a common origin of coordinates for all the images in order
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to align them. Details about projection models can be found in [LBPE06]. We use

convex optimization techniques to estimate a linear projection model. For the ith

image in the tilt series and jth marker trajectory we have the following projection

model:

[
Sx,i,j

Sy,i,j

]
= Gi


Rx,j

Ry,j

Rz,j

 +

[
tx,i

ty,i

]
(4.7)

where Gj is a 2x3 matrix representing an affine 3D to 2D transformation, tx,i

and ty,i are 2D translation parameters. These quantities together represent the

projection parameters θi. The unknowns in this equation are therefore Rj, Gi, tx,i,

and ty,i. To solve for these unknowns, we solve the following minimization problem:

min
N∑
i=1

 M∑
j=1

wi,jL


[

Sx,i,j

Sy,i,j

]
−Gi


Rx,j

Ry,j

Rz,j

−
[
tx,i

ty,i

] + λ||Gi −G0,i||2


(4.8)

where L(∗) is a penalty function, wi,j is a weight for point corresponding to

trajectory j in image i, λ is a regularization constant, and G0,i is a prior belief on

the affine transform derived from the microscope settings. The quantity wi,j is 1

if trajectory j has a correspondence in image i, and 0 otherwise. The objective

of Eq. 4.8 is nonconvex in Gi and R. However, if one of these variable is held

constant and L(∗) is convex, then the objective is convex in the other variable. We

solve the problem by holding one of these variables consant, solving the resulting

convex problem, and then alternating. This approach is known as sequential convex

programming ([BV04]) and works well and efficiently in practice.

Finally, in order to be robust to outliers, we use the Huber penalty ([Hub81,

BV04]) for L(∗). In most previous work, L(r) = r2, the familiar least squares
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penalty. The Huber penalty uses the L2 norm for small residuals, and the L1 norm

for large residuals, such that an outlier will not dominate the objective function and

unnecessarily distort the final solution.

4.6.1 Iterative Refinement

As a final step towards better alignment, after projection model estimation we per-

form the following iterative refinement:

1. Remove outliers 2. Replenish missing markers in global trajectories 3. Refit

projection maps

Outlier detection is possible after projection model estimation because we have

complete projection maps and estimated trajectories. We remove outliers on each

trajectory separately since all trajectories did not have an equal number of points.

Therefore the projection maps fit the more complete trajectories better, and their

statistics should be examined separately. We use a heuristic scheme to detect out-

liers. Firstly, any point which is greater than twice the diameter of a gold bead

away from the predicted center is considered an outlier. Next, for each trajectory

we form a vector of residuals and sort it. If all projections had similar quality, we

would expect a similar range of residual values for all projections. However, the

image quality degrades with tilt angle, so that we would expect to see a steady

increase in residual value from lower tilt angle images to higher tilt angle images.

By forming the first order difference vector on the sorted vector of residuals, we can

easily detect an outlier by looking for a sudden jump in the first order difference

value for that projection.

We next replenish missing markers using the obtained projection maps and the

NCC score described in Eq. 4.5. For each missing point xi,j ∈ R2 of trajectory j

in image i, we predict where the point should be in images i and i − 1 using the

projection maps. We then take a patch surrounding the predicted trajectory point

in image i − 1 and use it as a template to find matches with the NCC score in a

region of radius twice the gold bead diameter around the predicted point in image

i. We take the highest scoring point in this region as long as the score is above 0.5
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to be a replenished point.

After one round of outlier detection and missing marker replenishment, we refit

the projection maps. We repeat this procedure iteratively until there are no more

outliers and no more replenishments are possible.

4.7 Results

In this section we evaluate the performance of Raptor. We applied RAPTOR to

cryo-ET datasets of the bacteria D. grandis and C. crescentus. Each of these datasets

poses unique and different challenges. Most of the datasets were acquired by hand,

which results in tilt series with more discontinuous trajectories, or jerky movements

across the angular range than in the case of automated acquisition.

Deinoccocus grandis cryo grids are considerably thick, with the large bacteria

forming conspicuous meniscus in the amorphous ice. As a result, projections from

high angles usually occlude many of the markers clearly visible at the lower angles.

The cryo-grids used with these bacteria are also more irregular, uneven in shapes,

contrast, and transparency than for other bacteria more commonly studied by cryo-

ET. For this reason, the usual marker selection and tracking applications included

in other programs tend to fail. Most of C. crescentus and D. grandis datasets were

acquired with a total dose of at most 100 e−/A2, resulting in very noisy individual

images. Caulobacter cryo-grids are thick and form a meniscus although they are

still transparent to the beam. The surface of the grids is not as irregular as with

Deinoccocus and the high angle occlusion problem is thus less severe. However, in

all cases there are, in high tilt angle views, sets of very useful markers towards the

image boundaries which disappear at lower angles.

We first examine its tracking performance, and then compare its resulting final

reconstructions with those obtained by manually precision aligned images.

4.7.1 Alignment Results

The robustness of RAPTOR’s correspondence is illustrated in Fig. 4.11.
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Figure 4.11: Tracking of a single marker through a point cloud. In frame (a),
the marker pointed to by the red arrow is headed south. After frames (b) and
(c), it emerges from the cloud and is still being tracked correctly.

We illustrate in Fig. 4.12 the overall performance of the algorithm in the

alignment of a difficult dataset of C. crescentus. This dataset was acquired with

a helium-cooled stage, and as a consequence the relative position of the markers

was significantly more variable than is normally the case with liquid nitrogen-cooled

stages ([CD05]). Panel (A) of Fig. 4.12 shows the projection acquired at 58 degrees.

Panel (B) shows the set of trajectories recovered by RAPTOR. There are complete

trajectories across the whole tilt series, there are trajectories that cover the whole

angular range of the tilt series but are missing the marker in some images, and there
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are partial trajectories starting from both ends of the tilt series, disappearing at

lower angles. The meniscus formed by the cell and bars of the cry-grid may occlude,

at high tilt angles, markers chosen at low angles. At specific angles throughout the

tilt series, the overlapped projection of groups of markers which belong to different

planes within the cryo-grid may cause gaps in their tracked trajectories. Many gaps

also represent locations where the probability of making a correct marker assignment

is not sufficiently high. Finally, there are in the high angle projections, many markers

with ideal SNR which are left out of the view in the projections at lower angles. All

these events are represented in the diagram plotted in Fig. 4.12(B). The physical

trajectories of all chosen markers in image space (xy coordinates in pixel number),

in the raw data and the aligned data, are shown in Fig. 4.12 (C) and (D). The inset

in each panel shows one single trajectory. No pre-alignment of the raw dataset was

performed before obtaining the automatically aligned one, as is readily obvious from

the cloud shape of marker trajectories in the raw data (Fig. 4.12). A comparison

with the results of manual marker selection and tracking shows indistinguishable

final tomographic reconstructions, which is the ultimate performance test.

4.7.2 Resolution Results

For all datasets, we also compared visually the quality of the tomographic recon-

structions obtained after RAPTOR alignment with those obtained after alignment

by an independent standard method. Two such comparisons are shown in Fig. 4.13.

Panels (A) and (B) show, side by side, a one-pixel-thick slice through a tomographic

reconstruction of a dividing C. crescentus cell obtained after manual alignment and

after RAPTOR automatic alignment, respectively. The quality of both is equiva-

lent. Another example is shown in Fig. 4.13, panels (C) and (D). The features

observed in a one pixel-thick slice through a tomographic reconstruction are com-

parable in definition and resolution, whether the dataset was aligned with human

intervention or automatically by RAPTOR. A better comparison is established by

careful inspection of regular features, as shown in the insets. These reconstructions

were binned by two, from an image size of 2048 pixels on edge to 1024, and each
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box measures 84 pixels on edge.

Fig. 4.14, panels (A) and (B) show the resolution plots for each final recon-

struction obtained using cross-validation available in software Electra ([CGS05]).

The plots demonstrate that RAPTOR obtains the same resolution as the manual

reconstruction.

Dataset Tilt Approx.. Bead SNR NLOO3D NLOO3D NLOO3D NLOO3D
range number diam. (high manual RAPTOR manual RAPTOR
(deg) markers (pixels) tilt) (0.3-nm) (0.3-nm) (0.5-nm) (0.5-nm)

Caulo1 -58:2:54 15 10 0.038 14.26 13.81 30.16 24.48
Caulo2 -34:1:36 10 10 0.026 11.02 8.63 15.11 14.25
Caulo3 -62:2:58 15 10 0.007 18.01 16.35 24.82 26.78
Caulo4 -61:2:54 10 10 0.009 25.21 32.54 36.59 41.14
Caulo5 -60:1:60 70 10 0.294 10.35 10.34 13.32 13.18
Caulo6 -68:2:68 20 10 0.005 17.27 18.68 24.09 27.96

Caulo7-He -54:1.5:51 60 10 0.024 15.44 18.34 27.01 27.89
Caulo8 -45:1:45 20 10 0.066 13.25 13.63 20.01 20.49
Caulo9 -60:1:62 10 8 0.032 7.51 7.66 14.32 16.95
Deino1 -62:2:57 30 10 0.044 19.28 19.64 29.13 30.15
Deino2 -60:1:57 20 7 0.008 14.75 10.56 20.55 15.18
Deino3 -25:1:26 40 10 0.044 21.04 19.38 30.93 27.65
Deino4 -62:2:62 15 10 0.001 -1 -1 -1 -1

Table 4.1: Summary of the datasets tested to assess RAPTORs performance.
First columns contain information to present the variety of scenarios where
RAPTOR was tested: spacing between projections, SNR of the gold beads
and number of markers to track. The last four columns show a quantitative
comparison of the resolution obtained using human-directed alignment and the
automatic full-precision alignment presented in this paper. The method used for
resolution assessment is noise-compensated leave-one-out (NLOO) by [?]).(-1)
Method fails to align.

4.8 Discussion

RAPTOR has been tried in dozens of datasets in numerous labs, and has achieved

reconstructions with precision comparable to that achieved with manual alignment.

However, instead of a human taking up to one day to align manually, RAPTOR does
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so in under one hour on a common desktop computer. Initial results were reported

in ([AMC+07]). RAPTOR continues to be used by several ET labs today. However,

we have observed limitations in some datasets and discuss them below.

The most prominent limitation in RAPTOR is in the presence of a large number

of gold beads (more than 400 per image). In such cases, the LBP marginal corre-

spondence step does not find and resolve clear winners for the correspondence of

the majority of markers due to a multitude of competing and confusing choices. For

example, in a dataset with 400 markers, good correspondences may be found for

100 of them in a pair of images. Furthermore, in subsequent pairs of images, good

correspondences may be found for another set of 100 out of the 400 total markers,

resulting in partial trajectories. While the structure from motion can function with

many partial trajectories, it performs better when there are more long (or better

yet complete) trajectories. Therefore when most of the trajectories are small and

partial, the achieved resolution in the reconstruction is limited. In such cases, the

user can select fewer markers for tracking out of the original large set that have

higher quality. We have found that the selection of the initial markers to be tracked

is one of the key determinants to RAPTOR’s success. In datasets with fewer than

100 markers, RAPTOR performs well when the user selects all or most of the mark-

ers. In datasets with more than 100 markers, the user can choose the 100 best

scoring markers in the first image for tracking. While selection of a smaller number

of initial markers helps achieve more robust tracking, small partial trajectories are

still inevitable since the set of candidate markers may still not be consistent with

the set of reference markers, and wrong correspondences may still occur.

Potential remedies to this limitation can be considered from two possible cat-

egories: (1)a better correspondence solution, and (2)a better hollistic solution to

correspondence and structure from motion. The first category of approaches keeps

the separated approach to alignment that RAPTOR follows as explained in section

4.4. RAPTOR’s current solution to correspondence relies primarily on preserving

pairwise distances between markers. One could favor preserving more detailed quan-

tities, e.g. angles formed by groups of three markers. Ultimately, the first category
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of approaches fundamentally favors patterns of markers that are as similar as possi-

ble between images. This strategy is ultimately limited by lack of consideration of

expected changes in the patterns between images due to projection geometry. The

second category considers this information, and is more powerful, but also more

complex. As correspondences are found for the first few images, it is possible to

obtain rough but useful projection geometry information. This strategy involves

running inference on the entire CRF in Fig. 4.5 rather than on two separate CRF’s

as RAPTOR currently does, and will be discussed further in sections 4.9.1 and

4.9.2.

Another limitation of RAPTOR is datasets with incremental angles of larger

than 4 degrees. One assumption in RAPTORs local correspondence is that there

is a small incremental angle between images in the tilt series. We have success-

fully tried datasets with incremental angles ranging from 0.5 to 4 degrees. This

accommodates most common tomographic tilt series. However, for bigger angular

increments, two problems will arise. First, adjacent images will be less similar. This

might cause a decrease in the number of correspondences found between images.

Second, it becomes more difficult to have many levels in the multi-level scheme,

which might affect the robustness of the method. Although we can address this

problem by modifying the global correspondence scheme it has not been necessary

for any datasets that were available to us.

Another limitation of RAPTOR is the features used for marker detection. RAP-

TOR currently uses NCC with an average template shown in Fig. 4.6. Cryo ET

images are generally low contrast and do not result in too many false positive from

this detection. However, higher contrast plastic section and negative stained images

return many more false positives due to more distinct edges present anywhere, thus

throwing off the correspondence more. To extend RAPTOR to perform well on plas-

tic sections it will be necessary to design a better marker detection scheme. This

can be approached as a classification problem in a supervised learning framework.
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4.9 Future Work

RAPTOR is publicly available for download from www-vlsi.stanford.edu/TEM/software.htm,

and is in use by numerous labs that do ET. While it is doing well for common

datasets, we believe that further enhancements are possible and beneficial which we

describe below.

4.9.1 Joint Inference of Correspondence and Projection Model

Our current solution solves the two problems of marker tracking and projection

model estimation separately and disjointly. The marker tracking takes no advantage

of even partial projection model information and uses very basic geometric context

assumptions to make its decisions. In practice this has worked well for most datasets,

generally with less than 200 markers to be tracked. However, some datasets have

more markers and therefore crowding, as well as local distortions, creating more

confusion for the marker tracking. A possible way to overcome this confusion is to

introduce partial projection model information inferred from intermediate tracking

results. This implies a much more integrated approach to the two main subproblems.

While the overall CRF model still applies, the inference method over this large CRF

would need to change. There are many possible options to do this, and we consider

two here: expectation maximization (EM) and particle filtering.

In an expectation maximization (EM) framework, we would seek to maximize

an energy function over all the variables in a sequential projection by projection

fashion. At each slice, we would perform correspondence estimation and tracking,

which would take into account projection parameters, and could be implemented

as a MAP or marginal query. We then would use these results to roughly estimate

projection parameters incrementally. These parameters would then be fed back into

the current tracking query, and this process would be iterated. Since the parameters

get more refined as tracking progresses, the refined parameters could be used to go

back to previous projections and do better tracking. This iteration could happen

over a number of forward backward passes to increasingly explore the solution space.
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A more complicated approach would be a particle filtering framework. In this

framework we would maintain an empirical distribution over all the variables using

multiple hypotheses for the correspondences, since they present the most uncertainty

when there are many markers present. To do this we must generate and score

particles over these correspondences and sets of projection parameters that reflect

multiple hypotheses for the correspondences. This is in general not trivial, and

may require Markov chain Monte Carlo (MCMC) techniques which sample particles

closer and closer to our target distribution. By combining this empirical distribution

with the estimated distribution of the projection model parameters, we may then

have an opportunity to maximize all of Eq. 4.1 and effectively explore a larger

portion of the overall space. We could also iterate from there to generate newer

particles and refine the empirical distribution as well.

4.9.2 Extension of Correspondence CRF to Multiple Images

In order to maintain robustness while tracking a larger number of markers, it would

be useful to extend the correspondence CRF beyond pairs of images. The current

global correspondence scheme is good at detecting inconsistencies and rejecting of-

fending markers. However, it does nothing to correct these inconsistencies in a way

that could salvage the otherwise useful detected markers. In such a formulation,

the variables could be trajectories themselves, and they would take on values of sets

of markers in all the images. As in the current case, the most contextual informa-

tion gain would be obtained from pairwise factors. The pairwise factors in this case

would try to find consistency between pairs of trajectory assignments, and may need

to consider partially estimated projection. This approach would expand the scope

of the context in the CRF and would be an interesting direction for improvement.

4.9.3 Higher Order Factors

The next enhancement to RAPTOR’s correspondence CRF is the use of higher order

factors, beyond pairwise. RAPTOR currently seeks similar patterns of markers

which preserve pairwise distances. New factors could be defined that look for more
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detailed geometric similarities between patterns. Since more details of the pattern

would be considered, the factors would need to be over a larger set of markers. For

example a triplet factor would look for assignments that form similar triangles as

the group of markers they are being considered for.

Despite all these limitations, RAPTOR has been successful in aligning a large

majority of cryo ET datasets with precision by a variety of research facilities, with

success rates of greater than 70%. For the most part, this time consuming bottleneck

of the cryo ET pipeline shown in Fig. 2.8 has been relieved, and the bottleneck

has shifted to downstream portions of this pipeline. In the next chapter we will

examine the next bottleneck in this pipeline- segmentation of cell boundaries from

reconstructed tomograms.
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Figure 4.12: RAPTOR performance tracking markers in a Caulobacter cres-
centus dataset. (A) The -58 deg 2D original projection from the tilt series. The
size of the image is 2048 pixels on edge. The cell forms a meniscus of consid-
erable thickness. Both the cell and the grid bars may occlude markers at high
tilts. The wider area projected into the images at these angles contains many
markers with appropriate SNR, far from the cell, which disappear at lower an-
gles. (B). Trajectories recovered from the tilt series. (C) Overlay of several
marker locations in image space (x-y coordinates in pixel number) throughout
the raw datasets illustrates the trajectories in the raw data set, (D) trajectories
of same markers after RAPTOR automatic alignment. The insets in (C) and
(D) show the trajectory of a single marker.
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Figure 4.13: Comparison of RAPTOR aligned and manually aligned recon-
structions. (A) and (B) - One pixel-thick slices from tomographic reconstruc-
tions of a Caulobacter crescentus polar mutant, obtained from a manually
aligned dataset and from an automatically aligned dataset, respectively. (C)
One pixel-thick slice from a tomographic reconstruction of a dividing Caulobac-
ter crescentus cell after manually aligning the tilt series and (D) After RAP-
TOR automatic alignment. Reconstruction after marker tracking by hand and
human-directed alignment (A and B), and after automatic alignment (C and
D), results in equivalent final quality. The images are sections, 900 pixels on
edge, from tomographic reconstructions binned from 2048 to 1024 pixels on
edge. The boxes shown in the insets measure 84 pixels on edge in the binned
images.
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Figure 4.14: Panels (A and B) show quantitative resolution comparisons for
tomographic reconstructions of the two datasets above using noise-compensated
leave-one-out method of [CGS05] The resolution curves obtained with RAP-
TOR, in red, and with human-directed alignment, in blue, are equivalent.



Chapter 5

3D Segmentation of Cell

Boundaries

Automated precision image registration gives the electron tomography pipeline (Fig.

2.8) high throughput all the way until after volume reconstruction. One of the first

tasks after this step is to segment the cell boundary, which is typically a very time

consuming and manually intensive process. The goal in this chapter is to auto-

matically segment the cell boundary in electron tomograms, thus removing this

bottleneck. Once again, we will see how local features contain insufficient informa-

tion for this recognition task, and how contextual information can be exploited in a

joint probabilistic framework (another CRF) to overcome this uncertainty.

5.1 Automatic Cell Boundary Segmentation

The cell boundary is important as a subject of study itself, as well as a reference

structure which can be used to navigate from and find other relevant structures

inside the cell. Having the segmented boundary thus reduces the size of the volume in

which any search for cytoplasmic features (such as ribosomes, filaments, cytoskeletal

features) needs to operate. An example of the importance of the cell boundary’s

surface is found in [CJ05]. In this work, the spatial and temporal behavior of

73
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the cell constriction process during division was studied. To analyze the mechanical

forces and stresses involved, a quantitative measurement of the cell boundary surface

curvature and other geometric quantities was necessary, as shown in in Fig. 5.1.

Figure 5.1: Study of the constriction process in cell division (from [CJ05])

In the absence of reliable automatic methods, an expert user today can spend

significant amounts of time (ranging from hours to days) manually extracting this

boundary by clicking on thousands of points. An adequate solution to automating

this task must address the significant challenges of noise and missing wedge artifacts

described earlier. Due to these challenges, many existing segmentation and bound-

ary detection techniques that rely on features such as intensity and its gradients are

unreliable in these images. Alternatively, we can consider other potential sources
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of information for boundary classification:1) local appearance features defining a

boundary point; 2) local appearance features that are distinct inside and outside

the contour and help demarcate the two regions; and 3) shape information of object

to be segmented, which can be local, global, or both.

The key to overcoming these challenges is to adequately specify and model the

cell boundary. To this end, we propose an approach called BLASTED (Boundary

Localization using Adaptive Shape and TExture Discovery) — an efficient recursive

algorithm which extracts the cell boundary in cryo-ET datasets. BLASTED dis-

covers and exploits knowledge about the pattern along the boundary as well as the

shape for these types of cells to jointly infer the global set of boundary points and

shape under a conditional random field framework which combines and relates all

this knowledge.

To understand how to discover the boundary pattern, we examine an example

with four patches of the cell boundary obtained from a cross sectional slice, rotated

to a common vertical orientation in Fig. 5.2. They have been anisotropically blurred

along the tangent to the membrane with a Gaussian kernel. Even after such blurring,

their quality is low. As a result, no single one of these patches informs us of the

pattern to look for. On the other hand, in the same figure we show the average of

ten such patches, which distinctly shows the three layers of the Caulobacter surface

— the inner membrane, outer membrane, and S-layer more clearly. This suggests

that we can discover the nominal boundary patch texture by non-locally learning

from multiple patches distributed throughout the volume. The boundary pattern is

one of the most distinguishable features in these images.

The shape of the cells is not generally predictable a priori. However, the cross

sections have generally smooth outlines and can be modeled by low order polyno-

mial segments or shapes such as ellipses. Also, the cross sections change slowly

throughout most of the cell, such that each inferred cross section can be helpful

in guiding an inference of a subsequent cross section. We shall see that these two

simple yet specific shape assumptions will aid the inference of the whole cell surface

substantially.

We shall see that by combining these two types of cues within an integrated



CHAPTER 5. 3D SEGMENTATION OF CELL BOUNDARIES 76

probabilistic framework, BLASTED segmented the cell membrane over an average

of 93% of the length of the cell in 19 difficult cryo-ET datasets.

Figure 5.2: Patches obtained along a cell membrane

5.2 Previous Methods

When segmenting the cell boundary, we seek a closed surface which separates the

volume into two regions. Broadly, there are two classes of techniques for this task: re-

gion classification and boundary classification. In the former, distinct regions having

some characteristic are detected, and their boundaries naturally become the output
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of the segmentation. In the latter, the boundaries between regions are detected

directly. Regardless of technique, there are three possible sources of information to

guide the segmentation: 1) local appearance features defining a boundary point; 2)

local appearance features that are distinct inside and outside the contour and help

demarcate the two regions; and 3) shape information of object to be segmented,

which can be local, global, or both. Both features and shape information can be

2D or 3D in nature, depending on the method and particular application. Since

segmentation is a very developed field that has many applications, an exhaustive

survey is beyond the scope of this paper. Instead, we summarize some previous

work in these two classes of techniques from the general segmentation community,

as well as adaptations to electron tomography below. When evaluating methods for

this task, one needs to consider 1) segmentation performance (span and precision of

segmented surface), 2) extent of manual supervision required, 3) scalability to large

datasets with billions of voxels, and 4) robustness to low signal to noise ratio, false

positives and missing data.

Region classification techniques try to identify regions of distinct texture and/or

color. Individual pixels might be associated with an appearance model suggest-

ing their class assignment. Pixel pairs in the image are assigned affinity scores

that serve to impose soft smoothness constraints on the pixel-to-region assignment.

This information can be used to infer boundaries between dissimilar regions. Some

methods use energy functions based on graph cuts [KZ03, ZK04, SM00], fuzzy sets

[GWBVE08], and separation and deviation functions [Hoc01]. Graph cuts were ap-

plied to electron tomography datasets in [FH02]. A different region based method,

the watershed transform [VS91, Mey01], is based on intensity and intensity gradi-

ents. This method is a region growing technique based on mathematical morphology,

and aims to find regions around local maxima in the intensity map. Watershed meth-

ods often suffer from the problem of oversegmentation. A 3D watershed method was

used in [Vol02] to segment molecular structures like actin filament bundles, as well

as Golgi regions in pancreatic cells, which had relatively high quality (well defined

boundaries and homogeneous regions) compared to cryo-ET data. Region clas-

sification techniques have been very successful in many types high quality images.
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However, these techniques can have difficulties with cryo-ET cell membrane segmen-

tation, where the texture inside and outside a boundary is usually not consistent

and may not be a distinguishing criterion.

Boundary classification approaches seek a boundary based on some feature of

the boundary itself, such as intensity gradients, or difference between average inten-

sities of regions separated by that boundary. It is often formulated using an energy

function that is then optimized using some type of local search. Methods in this

class include active contours, snakes, and level sets [LKGD07, MS89, CV01, CT93,

KWT88, Set95]; variants have been developed with both 2D and 3D approaches.

An important advantage of having energy functions is the ability to encode shape

information, whether it is weak (like smoothness constraints) or strong (adherence

to an absolute shape). Some energy based methods have been developed under level

set and other frameworks specifically for segmenting subcellular structures in viruses

in electron tomography [BSS05], once again on regions with reasonably well defined

boundaries and more homogeneity compared to the whole cell cryo-ET. While these

methods are known to be subject to local optima and scalability issues, in practice

they are used widely with success by carefully choosing starting points, parameters,

and preconditioning. A method called watersnakes [NWvdB03] combines watershed

and snakes into an edge driven, region growing technique with an energy function,

and helps alleviate some of these problems. Recently, [NJ08] used a 3D watersnake

method with shape prior on mitochondria and one example of a cell membrane,

requiring a rough 3D manual segmentation in the form of hand-labeling multiple

slices in the beginning. Two summaries of segmentation methods tried in electron

tomography so far can be found in [San07, Fra06].

In images of higher quality, local features based on intensity and intensity gradi-

ents such as various edge detection operators [Can86], [Sob70] and many others are

used successfully. Many variants of these methods also exist and are summarized in

[ZT98, Wah07]. However, in the case of cell membranes in whole cryo-ET datasets,

low SNR and missing wedge and other artifacts due to electron scattering and non-

linear image formation [LBPE06, FSC97] cause boundaries to be often broken and
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not contiguous. This causes difficulty for intensity and intensity gradient based lo-

cal features. Other boundary methods [SB07] can address the edge-fragmentation

problem by using a transformation to a space that represents edges compactly and ef-

ficiently (such as Hough or Radon space). While they are capable with long straight

segments, they have difficulty in segments which are short or have curvature. These

methods also return false positives when attempting to detect cell membranes in

cryo-ET images.

Experience with the issues described above suggests that boundaries of interest

are not adequately described by features based on intensity or texture gradients. An

important work in computer vision that addressed this problem for natural images

was the Berkeley boundary detector [MFM04], which exploits local orientation as

well as texture, intensity, and their variations along the boundary, and uses super-

vised learning to classify local boundary points. This was an innovative shift from

previous boundary recognition techniques, and was designed to detect features lo-

cally in natural images which have richer features than cryo-ET datasets. The local

features could be then used in a higher level object detection algorithm. Indeed,

recent works in object detection by [FFJS08, OPZ08] have used local shape formed

by feature points in addition to the features’ appearances themselves to achieve

better overall detection. Most recently, [HEPK09] used learned global shape and

appearance in a probabilistic model to localize landmarks and outlines of objects of

a particular class. It is this line of work that forms the basis for our approach.

5.3 BLASTED:Joint Discovery of Boundary Points

and Shape

The BLASTED algorithm is founded on a holistic description of the cell bound-

ary using its shape and texture. It leverages the idea of discriminatively training

boundary point detectors as well as other previous work in boundary recognition

to incrementally discover the points and texture of 3D whole cell boundaries, and

ultimately the shape of the boundary itself. We accomplish this segmentation by:
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1) treating the boundary texture itself as an unknown that is nonlocally learned; 2)

proposing candidate points using physical features that depend on estimated shape

as well as the learned boundary texture; and 3) robustly classifying candidate points

using the learned texture with local and global shape context. In order to keep com-

putational complexity manageable and support large datasets, we partition the 3D

inference of the boundary into a recursive 2D slice by slice organization.

As described in section 5.1, the key to overcoming the challenges of noise and

missing wedge artifacts in segmentation of cryo ET datasets is to adequately specify

and model the cell boundary. The BLASTED framework models the cell bound-

ary by describing the relationships between texture, points and shape of the cell

boundary. Physical features of potential boundary points are based on oriented ver-

sions of a learned texture, whose orientations depend on the underlying shape. The

underlying shape in turn depends on the correct boundary points.

We start by modeling the surface as a set of N slice outlines as depicted in

Fig. 5.3. Each outline lies in image Ii, i ∈ {1 . . . N}, which consists of n pixels,

and is described by a vector of slice shape state parameters si. Starting from a

hand-labelled outline in one slice, we aim to find all subsequent outlines and a set

of points that collectively lie on the cell membrane.

In each image Ii depicted in Fig. 5.3, we characterize the boundary appearance

using a boundary texture template Ti,0 ∈ Rq×r; this is an unoriented fixed size q× r
template which resembles an ideal texture on the boundary. This template is a

model parameter that is to be learned nonlocally as shown in Fig. 5.2. Oriented

versions of this template can be used to help evaluate the appearance of a patch in

the image. To this end, we define the oriented boundary texture template Ti,θ to be

the boundary texture template Ti,0 rotated by an angle θ. We define Mi,j ∈ {0, 1}
as the indicator variable for whether each pixel j ∈ {1 . . . n} in image Ii is on the

cell boundary. Also, each pixel j in image Ii has associated with it an orientation

θi,j (which depends on indicator Mi,j and shape si). For convenience we denote the

set of all pixel orientations in image Ii as θi, and the set of their indicator variables

as Mi. The goal of the algorithm is to infer Mi, si, and θi from the set of images

Ii.
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We next combine these quantities to construct a detailed model of the cell bound-

ary.

5.4 Probabilistic Framework

Our goal is to build a comprehensive holistic model of the cell boundary which com-

bines the appearance, points, and shape information given the evidence — namely

Ti,0, Mi, si, and θi given the set of images Ii. We will combine all these quantities

into a CRF. But first we must define two quantities more specifically — boundary

appearance Ti,0 and boundary slice shape si.

5.4.1 Modeling Boundary Appearance

The first component of our membrane description is the underlying boundary pat-

tern. As described in section 5.1, the underlying pattern of the cell membrane is

more complicated than a single edge, and is represented by an estimated texture

template Ti,0. This estimate is not readily obtainable by looking at one point on the

boundary, but rather by averaging over multiple such points as depicted in Fig. 5.2.

We will see how this average is taken and incrementally improved over time as the

algorithm proceeds in section 5.5.3. The template Ti,0 will be a parameter in our

CRF.

5.4.2 Modeling Boundary Shape

The second component of our membrane description is the shape to which boundary

points adhere. We would like to exploit the natural characteristics of cell shapes (e.g.

smoothness, slowly changing curvature) as much as possible to make the description

as specific and as discriminative as possible. We model the boundary shape as an

interrelated sequence of cross sectional shapes as described in section 5.3. At each

slice i, we define a vector of shape state parameters si, which contains information

for slice i and possibly previous slices as sufficient statistics to facilitate prediction
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of future slice shapes. The first slice is hand labeled and therefore s1 is given as a

starting slice for the algorithm.

We first focus on the shape parameterization for one slice. We consider two types

of cross sectional shapes: ellipses and cubic B-splines. Ellipses are very specific but

model cross sections of many cells. B-splines are general and are suitable for cells

whose cross sections are not elliptical.

Ellipses

A simple shape that models many cells’ cross sections well is an ellipse. Ellipses

are fully described in two dimensions with only five parameters xei ,y
e
i (center), θei

(orientation), and ce1i , ce2i (major and minor axes). An ellipse can be represented in

two forms — either with these five parameters directly:

eTi =
[
xei yei θei ce1i ce2i

]
(5.1)

or as a quadratic polynomial:

f(x, y) = ax2 + by2 + cxy + dx+ fy + g = 0 (5.2)

As we shall see, fitting of ellipses to point data is readily and robustly achievable.

Therefore, it is desirable to use ellipses to model cell cross sections when we can.

B-splines

When the cross sectional shape is not elliptical, we use a more general shape model —

cubic B-splines. Cubic B-splines are ubiquitous in computer aided geometric design

(CAGD) and computer graphics. An nth order B-spline curve is a concatenation of

multiple nth order polynomial segments. For cubic B-splines, n is 3. Such curves can

be represented in two forms — piecewise polynomials (intrinsic), or with a pair of

component functions (x(t), y(t)) which are functions of a parameter t (parameteric).
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In both views, the breakpoints at which the polynomial segments connect are called

knots. An example B-spline curve is depicted graphically in Fig. 5.4.

In the intrinsic representation, the breakpoints and polynomial coefficients of

each segment are specified. In the parametric representation, the curve is repre-

sented in terms of its parametric component functions:

P(t) = (x(t), y(t))

x(t), y(t) ∈ R (5.3)

It can be shown that in the parametric representation, each point P(t) can be

expressed as a linear combination of a fixed number Nc of control points Pi which

define the curve:

P(t) =

NC∑
k=1

PkBk(t),

P(t),Pk ∈ R2 (5.4)

The weights of the control points in this linear combination or functions over

t called B-spline curve basis functions which are determined by the B-spline order

n and its continuity constraints at the knots. The number of control points NC

depends on the number of knots in the curve, as well as the continuity constraints

of the curve at the knots. This number determines the complexity of the curve in

our formulation. It is lower bounded by a minimum complexity needed to model

the shape, and upper bounded by the quality of the data used to fit the curve.

Specifically, if NC is chosen to be too high for a given quality of data, overfitting

may occur.

B-splines are very versatile and can model very general curves and surfaces of

varying degrees of complexity by merely choosing different values of NC . In order to

avoid overfitting, the complexity of the B-spline must be properly constrained. As we
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shall see, the control points Pi,k will play a crucial role in this process. Specifically,

the surface is modeled as a sequence of B-spline curves with a consistent set of

control points across the slices, and the context of control points from previous

slices will be used to help find the control points in a slice being inferred. This

concept is depicted graphically in Fig. 5.5 (b).

B-splines are also able to model 3D surfaces in an analogous fashion to 2D curves.

The parametric representation for a B-spline surface is given by

P(u, v) =

NC,1∑
k=1

NC,2∑
l=1

Pk,lB
s
k,l(u, v),

P(u, v),Pk,l ∈ R3 (5.5)

where the Bs
k,l(u, v) are B-spline surface basis functions, and are separable into

products of B-spline curve basis functions:

Bs
k,l(u, v) = Bk(u)Bl(v) (5.6)

As a result, modeling the surface as a parametric B-spline surface with Eq. 5.5

can be interpreted as being the same as modeling the surface as a collection of

parametric B-spline curves with a fixed, consistent set of control points as shown in

Fig. 5.5 (b).

For more on B-splines the reader is referred to [PT97, Far02].

3D Shape as the Evolution of a 2D Shape

Having defined the shape parameterization for a cross sectional slice, we are now

ready to define the shape state parameters si, which contain sufficient statistics to

predict future slice shapes.
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In the case of ellipses, si is a combination of ei and its difference with ei−1:

∆ei = ei − ei−1 (5.7)

si =

[
ei

∆ei

]
, s1 =

[
e1

0

]
(5.8)

In the case of B-splines, si is the collection of all previous control points P1:i,j:

si =



P1,1.....P1,j.....P1,Nc

.

.

.

Pi,1.....Pi,j.....Pi,Nc


(5.9)

In both these cases, the first slice is hand labeled and s1 is given as a starting

slice for the algorithm. We shall see how these shape states will be used to predict

future slice shape parameters.

5.4.3 Combining Shape and Appearance in a Conditional

Random Field

Having defined the relevant variables Ii, Mi, θi, si, and parameter Ti,0; we can

now formally describe the membrane boundary probabilistically in a CRF. In this

framework, the state variables of the model are Mi, θi, and si. The evidence are

the images Ii, and the first outline s1 which is given since it is hand labelled. The

texture templates T1:N,0 are model parameters that are learned incrementally. The

CRF for BLASTED is depicted in Fig. 5.6.

We can express the joint conditional probability of the state variables given the
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observations in this CRF:

P (s2:N ,M1:N ,θ1:N |I1:N , s1; T1:N,0) =

1

Z

∏
i=2:N

φs(si, si−1)
∏
j=1:n

φx(si,Mi,j)φa(si,Mi,j, θi,j) (5.10)

where Z is a normalizing constant. The first factor φs in (5.10) is the global shape

transition model, which reflects the compatibility of the 2D shape at slice i with the

2D shape at slice i−1. The second and third factors φx and φa form the observation

model; they reflect the likelihood of seeing the images Ii with a hypothesis shape

si and their pixels classified by Mi,j. We next describe the different factors in this

CRF.

5.4.4 Shape Transition Model — 3D Shape as the Evolution

of a 2D Shape

The role of the shape transition model factor is to predict the next curve given the

previously inferred curves, which are described by the shape state parameters si

defined in section 5.4.2. In the case of ellipses, this means predicting the next set

of ellipse parameters from the set of ellipses inferred so far. In the case of B-splines,

it means predicting the next set of (consistent) control points from all the control

points inferred so far.

For the case of ellipses, we take ∆ei and ∆ei−1 from (5.7) to be jointly Gaussian.

Therefore, the conditional distribution of ei|si−1 is also Gaussian, and can be directly

written as:

ei|si−1 v N (µi,Σi) (5.11)
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where

µi = E[ei|si−1] = ei−1 + ∆̂e,i (5.12)

Σi = E[eie
T
i − E[ei]E[eTi ]|si−1]

= Σ1 −Σ2Σ
−1
1 ΣT

2 (5.13)

in which

∆̂e,i = E[∆e] + Σ2Σ
−1
1 (∆ei−1 − E[∆e]) (5.14)

Σ1 = E[∆e∆eT ]− E[∆e]E[∆eT ] (5.15)

Σ2 = E[∆e∆eT−1]− E[∆e]E[∆eT ] (5.16)

If previously segmented datasets are available, the values E[∆e], Σ1, and Σ2 are

learned from them, and stored as model coefficients. This is done by gathering

statistics on ∆e and ∆e−1 (changes in ellipse parameters between adjacent slices,

and differences in these changes between adjacent slices) from the correctly labelled

dataset, and forming the empirical mean vector and covariance matrices for use in

Eqs. (5.12 -5.16). The shape transition model factor for the case of ellipses for

which we have these statistics is a function of ei and is taken to be:

φs(si, si−1) = e(ei−µi)
TΣ−1

i (ei−µi) (5.17)

When segmenting new datasets for which similar correctly segmented datasets

are not available, we have found that simply using the inferred shape from slice

i− 1 to predict the shape in slice i can also work well, and the results can be used

as a correctly segmented dataset for learning in a boostrapped fashion. The shape

transition model factor in this case is simply:

φs(si, si−1) = δ(ei − ei−1) (5.18)
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For the case of B-splines, predicting the next shape in slice i is the same as

predicting the next set of control points Pi,j for all j. Each control point Pi,j is

predicted with the estimate P̂i,j by fitting another cubic B-spline to the previously

obtained control points P1:i−1,j. It is possible to predict each control point in this

fashion since there is a consistent set of control points across slices that are corre-

sponding to each other, and is the main reason for this design choice. In essence,

the B-spline curve basis functions serve as regressors for predicting the next set

of control points from their predecessors. In this case, the shape transition model

factor becomes:

φs(si, si−1) = e−
PNc
j=1 ||Pi,j−P̂i,j ||

2

(5.19)

5.4.5 Observation model — shape noise

The second factor φx in (5.10) quantifies shape noise in the observation model, that

is, deviation of points j on the boundary in image Ii from shape si. We model this

as a Gaussian rolloff with distance from si for points which are on the membrane,

and uniform for other points:

φx(si,Mi,j) =

{
e−d(xi,j ,si)

2/(2σ2
x) Mi,j = 1

1 Mi,j = 0
(5.20)

where xi,j is the location of pixel j in image Ii, d(x, si) is the Euclidean distance

from point x to shape si, and σx is an input parameter to the algorithm which allows

for variation of the locations of xi,j around the shape si. This parameter can be

interpreted as the standard deviation allowed between points on the boundary and

the nominal shape si. A smaller value for σx penalizes deviations from the shape si

more heavily. We found that using a relatively large value of 100 pixels (120 nm)

for this parameter worked well across all experiments (all of which had the same

magnification) , and used this value for all the results. For comparison, the thickness

of the outer membrane which we are trying to localize is roughly 10 nm.
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5.4.6 Observation model — physical similarity

The third factor φa in (5.10) measures physical similarity of a patch centered around

xi,j and oriented by θi,j in image Ii with the learned oriented texture patch Ti,θi,j .

One possibility is to define it as the cross correlation of Ti,θi,j with the patch, but

this may result in many false positives. Our experiments showed that even applying

a missing wedge filter to Ti,θi,j did not improve cross correlation results or reduce

false positives in practice. To address this problem, we treat the physical similarity

as a classification problem in a supervised learning framework. In this framework,

we consider cross correlation with the oriented texture patch Ti,θi,j , distance of xi,j

from shape si, and spatial context of nearby candidate points. We implement φa

as a boosted classifier using AdaBoost ([FHT00, HTF03]), which uses a weighted

sum of results from a committee of M weak classifiers. Specifically, each weak

classifier Gm(f),m = 1 . . .M takes a vector of features f , and returns a class label

G ∈ {−1, 1} as its decision. The boosted classifier takes a weighted sum of the

committees decisions, and uses their sign as a final decision:

G(f) = sign(
M∑
m=1

αmGm(f)) (5.21)

The weights αm are calculated during the supervised training of the boosted

detector. We modify this usage slightly to obtain a confidence level rather than a

hard decision. To this end we can apply the sigmoid function:

σ(v) =
1

1 + e−v
(5.22)

on a real number v to get a score between 0 and 1.

We can now consider getting a confidence level for each pixel being on the bound-

ary. For each pixel xi,j we take a set of features f , and form the weighted sum in to

the sum in Eq. 5.21. We than convert this sum to a confidence level that Mi,j = 1



CHAPTER 5. 3D SEGMENTATION OF CELL BOUNDARIES 90

(that is, that xi,j is on the boundary) using Eq. 5.22. The features for this classifier

will be described in section 5.5.1. We can now define the physical similarity factor

φa:

φa(si,Mi,j, θi,j) =
1

1 + e−
PM
m=1 αmGm(f)

(5.23)

The variables, parameters, structure, and factors for the overall cell boundary

CRF have now been defined. We next consider how to run inference over this CRF

to solve for the cell boundary.

5.5 Inference in BLASTED

Having defined the CRF for BLASTED, we now seek to perform a MAP inference on

this CRF of the unknown variables given the evidence. The steps of this inference

are described next, and are outlined graphically in Fig. 5.3. The inference seeks

the maximizing values of si, θi, and Mi for each slice i, using the learned template

Ti−1,0 starting from one hand labelled slice:

ŝi, θ̂i, M̂i = arg max
si,θi,Mi

(P (si,θi,Mi|Ii, si−1; Ti−1,0)) (5.24)

The inference takes place sequentially in a slice by slice fashion. As in most sequen-

tial inference in temporal models, there is a time update (prediction) step and a

measurement update step as described in section 3.3.2.

In the time update step, shape ŝi is predicted from shapes inferred so far using

the global shape transition model as described in section 5.4.4. In the measurement

update step, the algorithm does block coordinate ascent on the observation model.

In each iteration, it first uses the fixed shape ŝi to seek candidate points using

the latest estimate of the boundary template. It then estimates Mi,j by maximizing

appearance terms of the observation model with a trained boosted classifier. Finally,

it fixes Mi,j , and uses the candidate points for which Mi,j = 1 to fit the refined
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shape si, thus minimizing the shape noise terms of the observation model. We

discuss the details of maximizing the appearance term in section 5.5.1 and shape

fitting in section 5.5.2. This completes one iteration of the coordinate ascent and

measurement update. To guarantee an ascent direction, the observation model is

evaluated to see if it has increased in this step, in which case the iteration gets

accepted. Otherwise, the iteration terminates. The inferred shape si gets assigned

to ŝi, and the procedure is repeated until the number of outlier points to the inferred

ellipse is below some threshold, or a maximum number of iterations is reached.

Finally, if the average texture of slice i, ti,0, is sufficiently similar to Ti−1,0 (judging

by the normalized cross correlation between the two) and it completely lies within

the field of view, template Ti,0 is updated for the next slice as follows:

Ti,0 = α ∗ ti,0 + (1− α) ∗Ti−1,0, i ∈ 2 . . . N

T1,0 = t1,0 (5.25)

effectively updating the estimate of the boundary texture. More details of the

estimation of Ti,0 are explained in section 5.5.3

We will now describe the details of the measurement update step.

5.5.1 Measurement Update — Boundary Point Classifica-

tion

The boundary point classification happens in two steps: selection of candidate points

and classification of the candidate points.

Selection of candidate points for classification

Since most pixels in any image are far from boundaries, it would be desirable to

limit the inference to a small subset of the pixels which act as candidate points.

In this section we describe how we find candidate points in an image Ii starting

from some hypothesis shape ŝi and underlying boundary texture template Ti,0. The

estimation of Ti,0 is described in section 5.5.3.
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We begin by sampling uniformly at random a fixed numberm (in our experiments

60) of reference points xri,k, k ∈ 1 . . .m along ŝi (like the template estimation). The

set of all xri,k is called xri for convenience. The orientation at xri,k, or θi,k is taken to

be the tangent of shape ŝi at xri,k. We form the oriented boundary texture template

Ti,θi,k . We then take interest patches, Ai,k ∈ Ru×v as large fixed size u × v (in our

experiments 101×101 pixels) patches centered around xri,k in image Ii . Finally, we

run normalized cross correlation of Ti,θi,k with all points in Ai,k, apply a decay factor

based on distance of the point from ŝi, obtaining a score for each point in Ai,k (this

score is explained more below in Section 5.5.1). We keep only the points that score

more than a fixed threshold (nccmin, a parameter to the algorithm), resulting in ni

candidates, each one called xci,j, j ∈ 1 . . . ni. The union of all such points in image Ii

is called xci for convenience. This operation is depicted graphically in Fig. 5.3. The

candidate points are now ready to be considered for classification.

Classification of candidate points with appearance features and local spa-

tial context

It remains to define the potential associated with the Mi,j variables. We use a super-

vised learning framework to learn this potential, so as to try to reduce false positives.

To accomplish this, we use local spatial context within the cross correlation result

patch.

We expect that cross correlation with a template like ours will produce a map

with several local maxima, only one of which is correct. To find the correct max-

imum, we spatially cluster the thresholded cross correlation results as shown in

Fig. 5.7. A small region of image Ii is shown in Fig. 5.7(a). The thresholded cross

correlation yields the interest points xci,j in Fig. 5.7(b). The points on the outer

membrane (middle line) are the correct ones. We refer to a point’s rotated x coor-

dinate as the coordinate along the horizontal axis of its corresponding point in the

rotated patch. We spatially cluster the points on their rotated x coordinates into

three clusters to get the result in Fig. 5.7(c). We then set up a boosted classifier that

uses statistics from a candidate interest point’s cluster, as well as the information
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for the interest point itself, to make classification decisions. Boosted detectors are

based on simple classifiers (e.g. a decision tree) whose parameters are iteratively

learned from a training set of multiple features [FHT00]. They have been successful

at taking many features (often called a “bag of features”) and learning through a

training procedure how to classify test data which provides those same features.

Our classifier uses seven features (f1 to f7), and returns a confidence that Mi,j = 1.

The features f1 to f3 are for a given candidate interest point xci,j. They are

intended to measure physical similarity of the interest patch Ai,j to the rotated

template Ti,θci,j
, as well as provide hints to help eliminate false peaks from this

information. Feature f1 is the cross correlation with Ti,θci,j
attenuated by a Laplacian

distance rolloff exp(−kad(xci,j, si)), where ka is an input parameter to the algorithm

and where d(x, si) is the Euclidean distance from point x to shape si:

f1 = NCC(Ai,j,Ti,θci,j
) exp(−kad(xci,j, si)) (5.26)

The parameter ka acts as a shape stiffness parameter, as it determines the rate

at which the likelihood of a point being on the boundary decreases with distance

from a predicted shape. To avoid the inference being driven by shape more than the

appearance features, we would like this rate to be small. Our experiments worked

with this parameter being mostly a value of 0.008, and only once being increased as

high as 0.04, reflecting an effective distance radius of 125 and 25 pixels respectively

in a slice. Feature f2 is a similarly attenuated cross correlation with a cropped

version of Ti,θci,j
in which the middle one third of the template has been retained,

which has the effect of detecting lines with orientation θci,j. Finally, feature f3 is

the ratio f1/f2. This ratio is intended to normalize for different imaging conditions

and line strengths, and separate incorrect from correct local maxima from cross

correlation of f1 with the candidate patch.

The features f4 to f7 are for the cluster to which a candidate interest point

belongs. They are intended to provide local spatial context to help remove any

remaining false positives by estimating which of the clusters (if any) are the most

likely. In following the bag of features approach, we seek to define multiple measures
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to do this estimation. We define these features as follows. Feature f4 is the sum of

f1 (total area) for all the points. Feature f5 is the mean of f1 in the cluster. Features

f6 and f7 are relative peaks of the three clusters. They use the sum of the top 5

values of f1 in each cluster, called s5. Specifically, feature f6 is the ratio of s5 for an

interest point’s cluster to the smallest s5 of the three clusters (so that its minimum

value is one). Feature f7 is the difference between s5 of the interest point’s cluster

and the largest s5 of the three clusters (so that its maximum value is zero).

Using this boosted classifier, we classify the interest points given in Fig. 5.7(c)

to get the set in Fig. 5.7(d). Note that while we may misclassify good points as not

being on the boundary, we are still left with a sufficient number of good points from

which shape can be inferred. This boosted classifier is trained a priori, using a set

of manually-labelled boundary points. This manual labeling of points is done per

cluster, and is quick. Typically we train with more than 2000 points in less than

ten minutes. Training need not be done for each dataset, but only on a few points

in similar datasets.

5.5.2 Measurement Update — Shape Fitting

Once the boundary points are classified, they can be used to fit the cross sectional

shape. We now describe the fitting methods for ellipses and cubic B-splines.

Ellipses

The first shape we consider is an ellipse. Fitting ellipses requires the determining of

the polynomial coefficients, or the ellipse parameters as specified in section 5.4.2.

It is more straightforward to fit polynomial coefficients using least squares, but the

coefficients must meet certain conditions to satisfy an ellipse, and the constraints

on the coefficients are nonconvex. Various approaches have been used to accom-

plish this, and a direct least squares method is described in [FPF99]. This method

formulates an equivalent constrained minimization problem where the constraint is

quadratic, and then solves by minimizing the Lagrangian. It is robust and ellipse

specific, and works well in the presence of unreliable data.
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B-Splines

When the cross sections are non-elliptical, we use cubic B-splines with a parametric

representation as described in section 5.4.2. Such a representation has a linear

combination of control points (Eq. 5.4). The number of control points NC depends

on the number of piecewise polynomial segments in the curve. Therefore highly

complex curves can be modeled by choosing a sufficiently large NC . However, too

large a choice for NC can result in overfitting. Therefore, the choice of NC represents

an inherent bias-variance tradeoff.

In order to fit a B-spline curve to the boundary points, we model the boundary

points as points along the B-spline with additive shape noise:

xi,j(tj) = P(tj) + εj =

NC∑
k=1

PkBk(tj) + εj

xi,j(tj),P(t),Pk, εj ∈ R2 (5.27)

When fitting the B-spline, our aim is to minimize εj. At the same time, we

aim to constrain the B-spline appropriately to match the inherent complexity of the

shape to be fitted and prevent overfitting. An intuitive way to constrain (relax)

the B-spline is to remove (add) control points. While this approach is common

and makes sense for curve generation, it represents a combinatorial problem in the

case of curve fitting. Alternatively, we can maintain a fixed number of control

points NC with consistently placed knots (and therefore constant basis functions

Bk(t)), and constrain them through regularization. The control points Pk provide

a geometrically meaningful quantity on which regularization can be carried out.

With these goals in mind, we define the following minimization problem to per-

form the fit of the B-spline curve:
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minimize
∑NC

k=1

∑M
j=1 ||PkBk(tj)− xi,j||2 + λ

∑NC
k=1(||∆(Pk −P(k−1))||2 + c||∆Pk||2)

Pk, tj
(5.28)

where ∆Pk = Pi,k − Pi−1,k is the difference vector between two corresponding

control points from slice i and slice i − 1. Therefore in this minimization there is

a data term and a regularization term to constrain the shape. The regularization

is a smoothing term over ∆Pk and ∆(Pk − P(k−1))and will be explained shortly.

When the values of tj are known, both terms are quadratic over Pk. In this case the

objective function is an L2 regularized least squares objective and therefore convex

in Pk.

However, unfortunately tj is not known, and the B-spline basis functions Bk(t)

are nonconvex in t. Therefore the overall objective function is in general nonconvex.

It is searched using block coordinate descent, in which the values tj are fixed and

Pk are optimized, and then Pk are fixed and tj are optimized. This procedure

is continued iteratively until convergence. The initial guesses for tj are obtained

through the chord length method ( [PT97]). The first step in the iteration is carried

out by standard least squares. The second step in the iteration is carried out with

nonlinear least squares using the B-spline basis functions and their derivatives, which

are precomputed.

The regularization term has a constant λ and involves a smoothing term
∑NC

k=1(||∆(Pk−
P(k−1))||2 + c||∆Pk||)2. The goal of this term is to penalize deviations of individual

control points from their predicted locations, as well as deviations of the overall set

of control points from the predicted set of control points. Therefore there is regu-

larization of control points and pairwise differences of control points between slices.

Both types of regularization are useful because of cases of incomplete fitting data.

If fitting data is present near one control point but not near another, regularization

on individual control points may cause one control point to move from its predicted

value while the control point without data will tend to stay fixed. The net effect
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is a shape distortion. By penalizing changes in pairwise distances between con-

trol points, a degree of rigidity is maintained, and control points are encouraged to

move together. Together, these two types of regularization make the fitting robust

to missing data and outliers in the classified boundary points.

An important parameter for this fitting is the regularization constant λ. While it

is possible to make this constant an input parameter to the algorithm, a fixed value

for λ would cause a variable strength of the regularization term since the strength

of the data term varies with the data at each slice. Instead, it would be preferable

to provide the algorithm with a more intrinsic parameter that only reflects the

complexity of the target shape, and have the algorithm calculate the corresponding

value of λ if possible. A good choice for such parameter is the degrees of freedom

(DOF) of the projection arising from this fitting. When solving the fitting problem

of Eq. ( 5.28), we are effectively projecting the data points xi,j to points Yi,j in a

restricted subspace of reachable B-splines. The degrees of freedom of this projection

operation can be shown to be

DOF == tr(Sλ,Y) = tr(B(BTB + λC)−1BT ) (5.29)

where B is data dependent matrix, and C is a constant matrix. The derivation of

Eq. ( 5.29) is based on the theory of smoothing splines and is explained in Appendix

A. [NOTE: ADD APPENDIX A]

Once the user specifies a target DOF, the algorithm can numerically calculate λ

for each slice using Eq. ( 5.29), since DOF is monotonic with λ. The question of

target DOF specification remains for the user. As described previously, this question

is a bias variance tradeoff. Too small a target DOF constrains the shape too much

and underfitting may occur. On the other hand, too large a value for target DOF

could result in overfitting. To give the user a rough idea of a good range for target

DOF, the algorithm fits a cubic B-spline with varying number of control points on

the first hand labeled slice. The target DOF would be twice this number (each

control point is in R2). It then calculates mean fitting error and the variance of

the signed curvature plot for the B-spline ([Far02]). The signed curvature of a
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parametric curve in R2 is defined by:

κ(t) =
x′′(t)y′(t)− y′′(t)x′(t)

(x′(t)2 + y′(t)2)3/2
(5.30)

As more and more control points are allowed, the mean fitting error decreases.

At the same time, the signed curvature plot tends to have more variance due to

overfitting. The resulting plot for an example initial curve is shown in Fig. 5.8,

and shows a clear range of number of target DOF for which neither underfitting

nor overfitting occur. The user can then experiment with several target DOF values

from this range.

5.5.3 Nonlocal Learning of the Underlying Boundary Pat-

tern with the Texture Template

The unoriented boundary texture template Ti,0 is a necessary parameter for inferring

the CRF, and is learned incrementally as follows. The first shape in slice 1 (s1) is

fit to the hand labeled points in that slice. Then T1,0 is just the average of the q× r
patches centered around the hand labelled points after being rotated to a common

orientation.

To obtain subsequent boundary texture templates, we first sample uniformly at

random a fixed number m (usually 60) points xsi,k, k ∈ 1 . . .m along the currently

inferred shape ei in image Ii, and take an oriented q × r patch ai,k around each

sampled point. For convenience, we use ai to refer to the set of all ai,k in image

Ii, and xsi to refer to the set of all sampled points xsi,k in Ii. The orientation

of each patch ai,k is θsi,k, the tangent to si at point xsi,k. We define the current

slice average texture ti,0 ∈ Rq×r as the average of all of the m patches which are

sufficiently similar to the latest estimate of the texture template Ti−1,0 (judged by

normalized cross correlation) in the current image after rotating them to a common

orientation (as shown in Fig. 5.2). The similarity condition is to prevent patches

from regions affected by the missing wedge from adding more noise than signal to
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the current average. If ti,0 is sufficiently similar to Ti−1,0 (judged by the normalized

cross correlation of the two), the unoriented texture template Ti,0 is updated to be

a weighted average of the previous template Ti−1,0 with the current slice average

texture ti,0 according to ( 5.31) repeated below:

Ti,0 = α ∗ ti,0 + (1− α) ∗Ti−1,0, i ∈ 2 . . . N

T1,0 = t1,0 (5.31)

Otherwise, we just carry forward the previous template, and assign Ti,0 = Ti−1,0.

This operation is depicted graphically in Fig. 5.3.

Here α is an input parameter to the algorithm. This parameter is the relative

weight of the texture inferred at the current slice compared to the texture inferred

so far from all the slices, and determines the memory of the estimate. The effect

of ti,0, the current average texture i, decays exponentially with distance, at a rate

of (1 − α)(n−i). A small value means a long memory, and less effect of the current

slice on the estimate of texture. A value of one indicates no memory, and bases

the texture estimate on the most recent slice only. In the interest of robustness,

we preferred to have an estimate with a long memory, and chose a relatively small

default value of α = 0.01.

The above method dynamically adapts the template to changes in boundary

texture, but it does assume that the nominal texture is constant in a given slice and

slowly varying across slices. In some cases this may not hold, so we also speculatively

maintain alternative templates with virtually no history, and very little nonlocal

learning.

These alternative templates are clustered subaverage patches using k-means clus-

tering, where k=2. The clustering is done while averaging the patches in only the

last slice to get ti−1,0. The clustered subaverages are called t1
i−1,0 and t2

i−1,0, such

that ti−1,0 is a weighted average of the two. When the template Ti−1,0 does not

return any points above a minimum normalized cross correlation threshold (nccmin,

a parameter input to the algorithm), it is assumed that the current patch being

studied is sufficiently different than the normal template, and instead use t1
i−1,0 and
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Table 5.1: Parameters for BLASTED

Parameter Description Range Default

σx Eq. (5.20) 100 pixels 100 pixels
α Eq. (5.31) 0.01,0.1 0.01
ka Eq. (5.26) 0.008-0.04 pixels−1 0.008 pixels−1

q, r template size 21x71 pixels 21x71 pixels
u, v candidate region size 101x101 pixels 101x101 pixels
nccmin NCC threshold 0.6 0.6
max iter coordinate ascent 5 5
max outliers coordinate ascent 0.5% of points 0.5% of points
max outlier err coordinate ascent 10 pixels 10 pixels

t2
i−1,0, keeping the result which has the highest score.

The estimated templates Ti,0, t1
i,0, or t2

i,0 can now be used together with rough

estimates for shape êi+1 to find candidate points in the next image Ii+1 and to

classify whether they are on the boundary or not.

Summary of Key Parameters

The key parameters for this inference are summarized in table 5.1. For all our

experiments, the slices were taken to be separated by 5 pixels. All parameters were

held constant, except for ka (the shape stiffness parameter), which was slightly varied

for 3 out of 20 tried datasets, and α (the texture template adaptation rate parameter)

which was changed for one dataset whose boundary texture varied relatively rapidly

within the dataset.

5.6 Results

The 3D cryo-ET data used for this work consists of a selected subset of 20 intact

Caulobacter crescentus data sets obtained in the course of ongoing research on cell

division mutants, PopZ localization [BCZ+08] and polar organization in bacteria.

We have included bacteria spanning a range of cell shapes and sizes: C.c. daughter
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cells (swarmer) are quite small while pre-divisional cells are twice as long and a

bit thicker in diameter; dividing cells and mutants with cell division defects can be

quite long, extending well beyond a field of view at 25Kx on a 2Kx2K CCD ( 2.5

µm by side). As a consequence there is a range of thickness in the amorphous ice

meniscus embedding these cells, especially at high tilt angles during the acquisition

of tilt series. We have thus included for this work data sets acquired at 1 deg angular

steps, for smaller and more transparent cells, and data sets acquired at 2 deg angular

steps for the larger ones. We aimed as much as possible to take the tilt axis to be

close to and parallel to the length of the cell. Cryo-grids are prepared by cryo-

plunging aliquots of cell cultures and stored in liquid nitrogen. All data sets were

acquired on a JEOL3100 electron microscope equipped with a FEG electron source

operating at 300 kV, an Omega energy filter, a Gatan 795 2Kx2K CCD camera, and

cryo-transfer stage. Tilt series were recorded with the program Serial-EM [Mas05]

adapted to Jeol microscopes using a magnification of 25Kx at the CCD, giving a

pixel size of 1.2 nm at the specimen. Underfocus values ranged between 9 µm± 0.5

um to 14 µm± 0.5 um, and energy filter widths were typically around 22 eV ± 2

eV. Angular steps of 1 deg and 2 deg were used with angular ranges between 62 deg

to 65 deg. Data acquisition and 3D reconstruction details are exactly as published

previously in [CBD+08].

5.6.1 Segmented Datasets

A segmentation was considered successful if it localized the membrane within an

accuracy better than its thickness (10 nm, or 8.3 pixels) over large portions (at least

70%) of the segmentable slices. A slice was considered segmentable if the entire cross

section of the cell was in the field of view, and the cell was not obstructed. This

means that the segmentable portion of the cell should be well within the volume

box window. By this measure, BLASTED succeeded in segmenting for 19 of the 20

attempted datasets. The failing dataset had sufficiently lower signal to noise ratio

than the others such that tracking could not recover enough candidate points to

go through more than 20% of the slices. None of the data was prefiltered. Run



CHAPTER 5. 3D SEGMENTATION OF CELL BOUNDARIES 102

times were from two to three hours using unoptimized prototype Matlab code on a

workstation with two 2.33 GHz Intel Xeon CPU’s using less than 1 GB.

We show visualizations of the inferred surfaces for four datasets (Caulo6, Caulo13,

Caulo8, and Caulo21) in Figs. 5.9–5.12. All of these panels show the surface formed

by the inferred outlines. These datasets represent mutant strains of a Caulobacter

during division, and offer interesting shapes for segmentation. In each case, a lateral

and cross sectional slice are shown with the inferred surface. For each example, we

show a few slices from the volume with their inferred boundary points and out-

line. The points and outlines appear on the outer membrane as desired. A good

example of BLASTED’s precision and selectivity is seen in Caulo6 (Fig. 5.9). Here,

the carbon grid comes up to and along the membrane at the neck of the division

(Fig. 5.9(a)), but does not distract the segmentation despite being a much stronger

and more visible edge than the membrane. The wandering shape of the membrane

in this area is precisely tracked. Another example of BLASTED’s robustness is seen

in the case of Caulo13, where a carbon grid severely obstructs the cell membrane in

some slices (Fig. 5.10(d)), but does not prevent the segmentation from continuing

successfully past the carbon grid to the unobstructed regions (Fig. 5.10(e)). This

is possible thanks to global shape context and shape based local features. This sit-

uation also occurs in Caulo8 although it is not as severe (Fig. 5.11(e)). A contour

based method that uses intensity and edges to score contours would incorrectly re-

spond to the carbon grid’s edges and infer the wrong shape for the cross section, and

thus fail shortly thereafter in these cases. The zoomed in patches in these figures

illustrate the challenges in detecting local features. The low contrast and signal to

noise and artifacts make it very difficult to rely on intensity and intensity changes

alone to make inferences about being a potential membrane point.

We show a visualization for the inferred surface of the dataset Caulo21, which

cannot be modeled by an elliptical cross section. We therefore used a cubic B-

spline cross sectional shape model, and chose to segment in the lateral direction

(orthogonal to the direction used for the previous three datasets). This strategy

was possible because the B-spline can model more general shapes. As a result, we

segmented two separate surfaces, one being more complex than the other. For the
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less complex (top) surface we used a target DOF of 8, and for the more complex

(bottom with bump) surface we used a target DOF of 14. The choices for these

values were made after viewing a curve like that in Fig. ( 5.8 and choosing one

value with little experimentation.

Even with specialized membrane features and higher level shape information,

the quality of points along the membrane is not always consistent. To quantitate

the accuracy of the contours produced by BLASTED, we hand label every 40th

slice in all datasets, and fit an ellipse to each of these to get the ground truth. We

then measure the average distance from each point on the ground truth ellipse to

the inferred ellipse in the region that points were found. This measure is based

on the Chamfer distance transform [Bor88] and is plotted for the dataset Caulo3 in

Fig. 5.13. The mean and standard deviation of this measure are listed for 19 datasets

in Table 5.2. We do a similar comparison between two attempts by different users at

hand labeling the same dataset (Caulo3) to illustrate the intrinsic uncertainty of the

ground truth itself in segmentation of the surface. The error incurred by BLASTED

is comparable to this uncertainty, indicating that in the range that is being tracked,

the achieved accuracy of the inferred shape is as good as hand labeling.

As a second metric of performance, we define the tracking range for a dataset as

the ratio of the number of slices for which the distance between ground truth and

inferred ellipses is less than 11 nm to the number of complete slices spanning the

cell. When using a fixed template from the first slice (α = 0), the average range

achieved was 89%. Using a value of α = 0.01 improved this figure to 93%. Common

reasons for failure were weak physical features in whole quadrants of the slice, re-

sulting in distorted ellipses, as well as deviation of the cross sectional shape from the

assumed shape model (ellipse or pair of quadratic segments). All experiments used

multiple alternative templates as described in Section 5.5.3, which was responsible

for improvements of up to 10% tracking range in individual datasets (depending on

intra-slice boundary texture variability). The overall results are shown in Table 5.2.
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Table 5.2: Tracking range, accuracy for 19 datasets (all parameters default
unless otherwise specified)

Dataset No Slices Initial Slice %tracked mean/std err(nm) parameters

Caulo1 1040 700 100 3.89/1.78
Caulo2 1700 500 91.7 6.36/2.53 ka = 0.016
Caulo3 1860 1000 93.6 2.54/1.32
Caulo4 1545 600 100 4.15/1.78
Caulo5 700 150 91.43 3.82/1.77
Caulo6 1800 300 90 2.62/1.06 ka = 0.04
Caulo7 750 250 100 3.42/1.84
Caulo8 1700 500 97.9 3.30/1.58
Caulo9 1365 500 100 4.30/2.26
Caulo10 1700 1000 90.6 3.66/1.49
Caulo11 1150 500 94.9 5.21/2.41 ka = 0.04
Caulo12 1600 800 97.5 3.11/1.16
Caulo13 1800 850 92.2 6.06/1.49
Caulo14 920 300 73.4 3.47/2.22
Caulo15 1400 800 94.3 5.52/2.04
Caulo16 1200 350 90.8 3.13/3.04
Caulo17 210 150 100 7.06/1.85
Caulo18 650 400 100 4.89/1.2 α = 0.1
Caulo19 700 500 85.7 7.92/4.28
Average 1255 93.9 4.44/1.95

5.6.2 Comparison with Other Methods

Despite the increasing importance of cryo-ET, to the best of our knowledge, there

have been no standard benchmark cryo-ET datasets with ground truth segmentation

made publicly available for evaluation and comparison of different algorithms. In

absence of such a baseline, we compare performance of BLASTED on one slice of

the dataset Caulo1 against several popular boundary recovery techniques: active

contours (snakes) and level sets, as well as a state of the art segmentation method

developed for electron tomography.

We attempt the segmentation of the outer membrane on the image shown in
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Fig. 5.14(a). We start with two popular boundary based techniques which utilize

a rough shape initialization: snakes and level sets. For both methods, we use the

same initial contour shown in Fig. 5.14(b), which is close to the correct answer. The

result for snakes is shown in Fig. 5.14(b), and is obtained with the implementation of

[BS95]. Due to intensity gradients being weak features for indicating the membrane,

as the snake evolves, large portions of the contour get driven far from the boundary.

Level sets results are shown in Fig. 5.14(c,d). We used the method of [CV01],

which seeks a contour that separates regions of maximally different intensity. The

parameter µ determines length (stiffness) of the recovered contour. We used the

implementation of [Der09], and two values of µ = 0.07, 0.5 to illustrate intermediate

and high stiffness. When µ = 0.07, the contour evolves to a good boundary where

the physical boundary is clear, and to an unrealistic shape elsewhere. To enforce a

smooth shape, we increase the stiffness. But this constrains the contour evolution

and makes it less responsive to the physical features. While the recovered contour

is close to the shape of the correct solution in this case, a closer look reveals errors

near the correct boundary (shown in inset). Since recovering the volume involves

traversing hundreds of slices, precise localization of the correct boundary in each

slice is crucial. Despite the use of global shape context by these methods, the local

physical features are not strong enough to drive towards a precision segmentation.

We next used a publicly available state of the art segmentation method devel-

oped specifically for electron tomography — the 3D watershed technique of [Vol02],

which has been also released recently in a visualization and segmentation toolbox for

electron tomography [PMF08]. We show the direct result of applying this method

to a volume 100 slices thick (120 nm) containing the slice of Caulo1 in Fig. ??(e).

We take the highest scoring points of the watershed output (8% of all nonzero scor-

ing points), and plot them overlaid with the image in Fig. 5.14(f). The watershed

method is considered to be less prone to local optima than level set methods, and

this intrinsic 3D version is expected to result in fewer false positives than a 2D

version. Although good points on the target membrane were detected, a large num-

ber of sizable local maxima in the intensity map that are not related to the cell

membrane appear as false positives. Despite the more powerful 3D local features
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provided by this method, the limitations of using intensity and intensity peaks as

the sole physical attribute of a boundary point for membrane detection remained

apparent. Furthermore, since this method is based on morphology and has no closed

form energy function, it is difficult to incorporate higher level information such as

shape in a structured way to improve the inference.

To explore the role of more advanced local features including local texture and

orientation, we applied the Berkeley boundary detector in Fig. 5.14(g). We used

the implementation of [FMM05] and kept the points whose probability of boundary

Pb > 0.1. The edges found on the membrane are quite good, but there still are

substantial false positives. While the better local features helped, it is clear that

higher level shape context is necessary.

As a reasonably simple attempt at using global shape context to clean up the false

positives from better local features, we applied a Laplacian exponential decay from

an initial shape prior to the scores obtained from watershed and Berkeley boundary

detector. This behaves as a hard shape prior. We used the same initial contour from

Fig. 5.14(b), and a decay rate of 0.008 pixels−1, the same decay used by BLASTED.

We then applied this decay factor to the watershed result from Fig. 5.14(e) to get the

new result in Fig. 5.14(h). We then kept the same proportion (top 8%) of the points

with new scores, and plotted them overlaid with the image in Fig. 5.14(i). Similarly

applying the decay to the Berkeley boundary detector result yields the points in

Fig. 5.14(j). This shape prior helped clean up the false positives in both cases,

with the best final result being that of the Berkeley boundary detector. However, a

careful look at this result reveals still a number of false positives which are not close

to the membrane, and this would make it difficult to obtain a precise localization

of the membrane, and therefore the tracking through hundreds of slices. This does

suggest however that combining higher level shape with richer local features can

lead us closer to a precision localization of the membrane.

Finally, the recovered contour using BLASTED is shown in Fig. 5.14(k); it is on

the cell outer membrane as desired (shown in inset). In BLASTED, shape context

is not used to clean up false positives after local feature detection, but rather as

an integral part of the local feature itself. These shape dependent local features
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which are targeted to membrane detection, as well as their integration with the

global shape information in a structured probabilistic model were able to drive the

inference to the correct solution. The output of BLASTED from this slice is now

ready to be used to estimate the starting contour for the subsequent slice.

5.7 Discussion

The results shown for BLASTED show that by holistically treating the cell boundary

in terms of its shape, underlying texture, and local orientation, it is possible to

achieve robust boundary detection automatically. BLASTED was tried in over

25 datasets, 19 of which had ground truth for quantitative comparison. While it

succeeded in segmenting the cell boundary in the majority of these datasets, there

were failures at some point in each dataset, and in some cases very early in the

segmentation. The failures were due to insufficient candidate points being detected.

This would happen under two general scenarios. In the first one, the boundary was

just too faint and weak to be detected, and the cross correlation score was too low.

In the second scenario, spacing between the various layers of the membrane had

changed such that the underlying boundary texture template was no longer suitable

for detecting candidate points. This is common in particular datasets of certain

mutants in which membrane spacing was variable. Both these scenarios suggest

that a more robust detector for candidate points based on better local features

would be beneficial.

The majority of datasets available to us had smooth boundary shapes, such

that elliptical or B-spline cross sections with low curvature were sufficient models

of the cross sectional shapes. In the cases where B-splines were used, a short ex-

perimentation step in the beginning to choose the degrees of freedom of the shape

was sufficient to properly constrain the B-spline model. However, in very few cases

the shape had very local instances of high curvature (shape deviations) in which

case a single global complexity measure such as degrees of freedom was insufficient
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to capture such detail. It should be noted that the B-spline model we used is ar-

bitrarily restricted to have fixed control point spacing in order to allow control of

the overall complexity of the shape by the single number (degrees of freedom). In

cases where a few localized details such as high curvature points or corners exist,

it would be beneficial to focus an accordingly concentrated modeling effort, such as

adding dedicated control points or searching over a wider range of orientations of

the boundary texture template.

5.7.1 Future Work

While BLASTED has demonstrated a robust segmentation capability for whole cells,

it represents a beginning. There is much further work that can be done, both in

terms of developing the method as well as using the method to create and expand

a knowledge base.

Feature Improvements

As mentioned above, the primary reasons for BLASTED failures were inability to

detect candidate points due to physical features that were either too weak or too

different from the texture template. The boosted detector used for boundary point

classification currently uses 7 features which were designed manually, and were jus-

tified by human reasoning. More exploration is needed to identify other features,

and preferably a good set of basis functions for boundary features (which could also

lead to bases for cryo ET features in general). An example of such a set of features

is the set of Gabor features for natural images. Naturally this requires the existence

of a fairly large and diverse set of successfully segmented data to be used as training

examples in a supervised learning approach.

3D Shape Phenotyping with Electron Tomography

With the ability to segment cells quickly, it is possible to create a larger knowledge

base of data from which more shape details can be learned. Such a trend has re-

cently begun in 2D light microscopy images through the automated segmentation
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and classification work in CellProfiler ([CJL+06]). Using the CellProfiler package,

researchers have been able to study 2D shape phenotypes through many experi-

ments involving varying gene expression and automatic segmentation. Extending

this concept to 3D electron tomograms could potentially prove fruitful due to the

higher resolution of electron microscopy and richer information available from 3D

shape.
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Figure 5.3: Algorithm overview and physical model of the cell: a sequence of
outlines and points. Starting with outline si−1 we predict ŝi in image Ii, and
sample reference points xri (red points) along it. For each such point, we seek
candidate points, xci (all blue points, empty as well as solid) inside local regions
Ai around xri . The inference then classifies which of these candidate points
are on the boundary (solid blue points) and fits the next outline si to them.
At each step, the template Ti−1 is updated by registering and averaging the
patches ai−1, and then weighted averaging with the previous template Ti−1.
This template is used for the finding and scoring of candidate points in image
Ii.
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Figure 5.4: An nth order B-spline curve is represented in parametric form as
a linear combination of control points Pj , j = 1...N .

Figure 5.5: A surface is modeled as a sequence of curves, which could be
ellipses (a) or B-splines (b).
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Figure 5.6: Conditional random field (CRF) for BLASTED
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Figure 5.7: Clusters of points found for one reference point xri,j using k-
means, k=3. (a) patch of Ii, (b) points for which cross correlation is higher
than threshold (c) points from (b) put through k-means clustering,k=3 (d)
points from (c) that are classified as membrane points by the boosted classifier
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Figure 5.8: Bias variance tradeoff for varying target degrees of freedom (DOF),
where target DOF is twice the number of control points used to fit a cubic B-
spline to the points provided by the user in the first hand labeled slice.
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Figure 5.9: Segmentation of Caulo6 — a dividing Caulobacter cell from hand
labeled slice 400: a) rendered surface from 3 views, partly cut away for visual-
ization; b) slice 200; c) slice 700 (note carbon grid obstructing bottom part); d)
slice 1200; e) slice 1700.
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Figure 5.10: Segmentation of Caulo13 — a dividing Caulobacter cell from
hand labeled slice 1000: a) rendered surface from 3 views, partly cut away
for visualization; b) slice 200; c) slice 600; d) slice 1200 (note carbon grid
obstructing top left part); e) slice 1600.
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Figure 5.11: Segmentation of Caulo8 — a dividing Caulobacter cell from
hand labeled slice 1000: a) rendered surface from 3 views, partly cut away for
visualization; b) slice 200; c); slice 600; d) slice 1000; e) slice 1200.
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Figure 5.12: Segmentation of Caulo21 — a dividing Caulobacter cell from
hand labeled slice 240: a) rendered surface from 2 views; b) slice 320; c) slice
210.
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Figure 5.13: Chamfer measure between ground truth and inferred ellipses
from BLASTED, as well as for two attempts by different users at ground truth
for the dataset Caulo3. Tracking with BLASTED is lost below slice 300 and
above slice 1880, when the distance grows very large.
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Figure 5.14: Results of different segmentation algorithms on slice of Caulo1:
(a) original slice of Caulo1 to be segmented; (b) snakes (initial contour is yellow,
final contour is red), (c) Chan-Vese level sets with µ = 0.07; (d) Chan-Vese level
sets with µ = 0.5; (e) 3D Watershed segmentation (output map); (f) the top
8% scoring points from 3D Watershed overlaid with Caulo1 slice; (g) Berkeley
boundary detector: points whose Pb > 0.1; (h) 3D Watershed segmentation
with Laplacian decay of rate 0.008 pixels−1 applied (output map); (i) the top
8% scoring points from decayed 3D Watershed overlaid with Caulo1 slice; (j)
Berkeley boundary detector after Laplacian decay applied: points whose Pb >
0.1; (k) BLASTED (same initial contour as (b,h,i,j), same decay rate as (h,i,j)).



Chapter 6

Conclusions

6.1 Conclusions

Cryogenic electron tomography has emerged as an important modality for imaging

of cells. In order for it to fully realize its promise of high resolution 3D imaging of

cells and subcellular structures, its pipeline needs to achieve high throughput. The

bottlenecks have been a number of labeling tasks in images which contain unreli-

able local features and require substantial manual intervention. To overcome this

uncertainty, strengthen the local features, and ultimately make better inferences for

labeling, we used geometric contextual information- the mutual spatial relationships

between the local features (This concept is inspired by recent works in computer

vision to achieve higher level scene understanding and object detection.) We en-

coded these relationships in probabilistic frameworks using graphical models, which

have the added advantage of available efficient approximate inference algorithms.

We have shown that using such frameworks it is possible to automate two time con-

suming tasks in the ET pipeline- 2D image stack precision alignment and 3D cell

boundary segmentation.
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