

POLYMORPHIC CHIP MULTIPROCESSOR ARCHITECTURE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Alexandre Solomatnikov

December 2008

ii

© Copyright by Alexandre Solomatnikov 2009

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as dissertation for the degree of Doctor of
Philosophy.

Mark A. Horowitz
(Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as dissertation for the degree of Doctor of
Philosophy.

Christos Kozyrakis

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as dissertation for the degree of Doctor of
Philosophy.

Stephen Richardson

Approved for the University Committee on Graduate Studies

iv

v

ABSTRACT

Over the last several years uniprocessor performance scaling slowed significantly

because of power dissipation limits and the exhausted benefits of deeper pipelining and

instruction-level parallelism. To continue scaling performance, microprocessor designers

switched to Chip Multi-Processors (CMP). Now the key issue for continued performance

scaling is the development of parallel software applications that can exploit their

performance potential. Because the development of such applications using traditional

shared memory programming models is difficult, researchers have proposed new parallel

programming models such as streaming and transactions. While these models are

attractive for certain types of applications they are likely to co-exist with existing shared

memory applications.

We designed a polymorphic Chip Multi-Processor architecture, called Smart Memories,

which can be configured to work in any of these three programming models. The design

of the Smart Memories architecture is based on the observation that the difference

between these programming models is in the semantics of memory operations. Thus, the

focus of the Smart Memories project was on the design of a reconfigurable memory

system. All memory systems have the same fundamental hardware resources such as data

storage and interconnect. They differ in the control logic and how the control state

associated with the data is manipulated. The Smart Memories architecture combines

reconfigurable memory blocks, which have data storage and metadata bits used for

control state, and programmable protocol controllers, to map shared memory, streaming,

and transactional models with little overhead. Our results show that the Smart Memories

architecture achieves good performance scalability. We also designed a test chip which is

an implementation of Smart Memories architecture. It contains eight Tensilica processors

vi

and the reconfigurable memory system. The dominant overhead was from the use of

flops to create some of the specialized memory structures that we required. Since

previous work has shown this overhead can be made small, our test-chip confirmed that

hardware overhead for reconfigurability would be modest.

This thesis describes the polymorphic Smart Memories architecture and how three

different models—shared memory, streaming and transactions—can be mapped onto it,

and presents performance evaluation results for applications written for these three

models.

We found that the flexibility of the Smart Memories architecture has other benefits in

addition to better performance. It helped to simplify and optimize complex software

runtime systems such as Stream Virtual Machine or transactional runtime, and can be

used for various semantic extensions of a particular programming model. For example,

we implemented fast synchronization operations in the shared memory mode which

utilize metadata bits associated with data word for fine-grain locks.

vii

ACKNOWLEDGMENTS

During my years at Stanford, I had an opportunity to work with many wonderful people.

This work would not be possible without their generous support.

Firstly, I am very grateful to my advisor, Mark Horowitz, for giving me the opportunity

to work with him. His technical expertise, dedication, immense patience, and availability

to students made him a great advisor.

I would like to thank my orals and reading committee members, Bill Dally, Christos

Kozyrakis, Steve Richardson and Balaji Prabhakar, who provided insightful comments on

my research. I have been a student in several of their classes at Stanford that greatly

enhanced my understanding of many areas of research.

My research would not have been possible without the technical and administrative

support provided by Charlie Orgish, Joe Little, Greg Watson, Taru Fisher, Penny

Chumley, and Teresa Lynn.

I would also like to thank DARPA for their financial support.

Mark Horowitz’s VLSI group has been a friendly and interesting environment. Smart

Memories team was also a great group to be apart of. I am especially thankful to Amin

Firoozshahian who was my officemate for many years and one of the key members of

Smart Memories project team. Through Smart Memories project I had a chance to work

with great people such as, Ofer Shacham, Zain Asgar, Megan Wachs, Don Stark,

Francois Labonte, Jacob Chang, Kyle Kelley, Vicky Wong, Jacob Leverich, Birdy

Amrutur and others. This work has benefited greatly from their help and expertise.

I am very thankful to people at Tensilica, Chris Rowen, Dror Maydan, Bill Huffman,

Nenad Nedeljkovic, David Heine, Ding-Kai Chen, Junjie Gu, Himanshu Sanghavi, Nupur

viii

Andrews, Chris Benson and others, who tolerated my questions and requests for so many

years. This work would not have been possible without access to Tensilica’s technology

and support.

I am also very thankful to all my friends for their moral support. They have made my

experience at Stanford more enjoyable and memorable.

Finally, I’d like to thank my wife Marina for her love, support and encouragement.

ix

TABLE OF CONTENTS

List of Tables .. xii

List of Figures .. xiii

Chapter 1: Introduction ..1

Chapter 2: Architectural Trends...3

2.1 Processor Performance and Microarchitecture Trends ..3

2.2 Chip Multiprocessors ...8

2.3 Parallel Memory Models..9

2.3.1 Shared Memory Model with Cache Coherence ..10

2.3.2 Streaming Memory Model..12

2.3.3 Transactional Memory Model...14

2.4 The Case for A Polymorphic Chip Multi-Processor..19

Chapter 3: Smart Memories Architecture ..22

3.1 Overall Architecture...22

3.2 Processor ..25

3.2.1 Interfacing the Tensilica Processor to Smart Memories26

3.2.2 Special Memory Access Instructions..28

3.2.3 Pipelining Issues Related to Special Memory Instructions...........................29

3.2.4 Pre-Defined Options and VLIW Processor Extensions31

3.3 Memory Mat ..32

3.4 Tile ...35

3.4.1 Interface Logic ..37

3.4.2 Crossbar ..40

3.4.3 Statistics and Debugging Unit ..41

3.4.4 Tile Timing ...42

3.4.5 Tile Reconfigurability Overhead ..43

x

3.5 Quad...45

3.5.1 Protocol Controller..47

3.5.2 Example of Protocol Controller Operation ...54

3.5.3 Related Work and Discussion of Protocol Controller Design54

3.6 On-Chip Network...55

3.7 Memory Controller ..58

3.8 Smart Memories Test Chip ..62

3.9 Summary ..64

Chapter 4: Shared Memory..65

4.1 Hardware Configuration ..65

4.2 Fast Fine-Grain Synchronization ...68

4.3 Evaluation ..70

4.3.1 Performance of Fast Fine-Grain Synchronization Operations......................73

4.3.2 MPEG-2 Encoder..75

4.4 Conclusions..81

Chapter 5: Streaming ...82

5.1 Hardware Configuration ..82

5.2 Direct Memory Access Channels...85

5.3 Runtime..86

5.3.1 Stream Virtual Machine..87

5.3.2 Pthreads Runtime for Streaming...91

5.4 Evaluation ..93

5.4.1 Application Case Study: 179.art ...99

5.5 Conclusions..104

Chapter 6: Transactions ...106

6.1 Transational Functionality ...106

6.2 Hardware Configuration ..108

6.3 TCC Optimization..113

6.4 TCC Runtime ...115

xi

6.4.1 Arbitration for commit..115

6.4.2 Hardware Overflow ..116

6.4.3 Processor State Recovery from Violation...117

6.5 Evaluation ..119

6.6 Possible Extensions and Optimizations ...124

6.7 Conclusions..125

Chapter 7: Conclusions and Future Directions ..127

7.1 Future Directions ...128

Appendix A: Special Memory Instructions ...129

Appendix B: 179.art Streaming Optimizations..131

Appendix C: TCC Application Programming Interface ..135

Appendix D: Using A Register Windows Mechanism for Processor State

Checkpointing ..137

Bibliography ..140

xii

LIST OF TABLES

Number Page

Table 3.1: Tile area breakdown after logic synthesis ..45

Table 3.2: Virtual channel assignment...57

Table 3.3: Smart Memories test chip details..63

Table 3.4: Smart Memories test chip area breakdown...64

Table 4.1: Shared memory applications...70

Table 4.2: Shared memory kernels ..70

Table 4.3: System configuration parameters ...71

Table 5.1: Streaming Applications ..94

Table 6.1: Characteristics of Smart Memories transactional mode119

Table 6.2: Percentage of TCC buffered loads and stores...124

xiii

LIST OF FIGURES

Number Page

Figure 2.1: Integer Application Performance (SPECint2006)...4

Figure 2.2: Floating Point Application Performance (SPECfp2006)5

Figure 2.3: Microprocessor Clock Frequency (MHz)..6

Figure 2.4: Clock Cycle in FO4...7

Figure 2.5: Microprocessor Power Dissipation (W) ..7

Figure 2.6: Normalized Energy per Instruction vs Normalized Performance9

Figure 3.1: Smart Memories Architecture ...23

Figure 3.2: Xtensa Processor Interfaces...27

Figure 3.3: Processor Interfaces to Smart Memories...28

Figure 3.4: Processor Pipeline ...30

Figure 3.5: Memory operation pipeline: a) without interlocks; b) with interlocks............31

Figure 3.6: Memory mat ..33

Figure 3.7: Tile...36

Figure 3.8: Tile pipeline...43

Figure 3.9: Tile layout after place&route ..44

Figure 3.10: Quad ..46

Figure 3.11: Protocol Controller block diagram..48

Figure 3.12: D-Unit..51

Figure 3.13: Example of cache miss processing..54

Figure 3.14: Flit Payload Formats ...56

Figure 3.15: Memory Controller..59

Figure 3.16: Smart Memories test chip die..63

Figure 4.1: Example of cached configuration..66

Figure 4.2: Hierarchical cache coherence..67

Figure 4.3: Shared memory application speedups ...72

Figure 4.4: Shared memory kernel speedups...73

Figure 4.5: mp3d performance with and without locking..75

Figure 4.6: MPEG-2 encoder speedups for different cache configurations.......................78

Figure 4.7: Instruction miss rate for different cache configurations (%)...........................79

Figure 4.8: Instruction fetch stalls for different cache configurations (%)........................79

Figure 4.9: Number of out-of-Quad fetch misses (millions) ...80

Figure 4.10: Average fetch latency (cycles) ..81

Figure 5.1: Example of streaming configuration ...83

Figure 5.2: Alternative streaming configuration..84

Figure 5.3: SVM compiler flow for Smart Memories ...87

Figure 5.4: SVM mapping on Smart Memories...90

Figure 5.5: Performance scaling of streaming applications...95

Figure 5.6: Off-chip bandwidth utilization ..96

Figure 5.7: Cycle breakdown for 179.art ...96

Figure 5.8: Performance scaling of streaming applications with 4MB L2 cache..............98

Figure 5.9: Cycle breakdown for 179.art with 4 MB L2 cache ...99

Figure 5.10: 179.art speedups ..100

Figure 5.11: 179.art off-chip memory traffic...101

Figure 5.12: 179.art off-chip memory utilization ..102

Figure 5.13: 179.art data cache miss rate...103

Figure 6.1: Example of TCC configuration ...110

Figure 6.2: Performance scaling of TCC applications...120

Figure 6.3: Cycle breakdown for barnes..121

Figure 6.4: Cycle breakdown for mp3d ...122

Figure 6.5: Cycle breakdown for fmm...122

Figure 6.6: Percentage of violated transactions ...123

 xiv

CHAPTER 1: INTRODUCTION

For a long time microprocessor designers focused on improving the performance of

sequential applications on single processor machines, achieving annual performance

growth rate of over 50% [1]. This phenomenal performance growth relied on three main

factors: exploiting instruction-level parallelism (ILP), decreasing the number of “gates”

in each clock cycle by building faster functional units and longer instruction pipelines,

and using the faster transistors provided by CMOS technology scaling [2, 3].

Unfortunately, the first two factors have reached their limit. As a result of this and

limitations such as wire delay and slowly changing memory latency, single processor

performance growth slowed down dramatically [1-5]. In addition, increasing complexity

and deeper pipelining reduce the power efficiency of high-end microprocessors [6, 7].

These trends led researchers and industry towards parallel systems on a chip [8-22].

Parallel systems can efficiently exploit the growing number of transistors provided by

continuing technology scaling [2, 4, 5].

Programmers must re-write application software to realize the benefits of these parallel

systems on a chip. Since traditional parallel programming models such as shared memory

and message passing are not easy to use [23-24], researchers have proposed a number of

new programming models. Two of the most popular today are streaming [25-28] and

transactions [29-32]. Although these new programming models are effective for some

applications, they are not universal and the traditional shared memory model is still being

used. Also, new programming models are still evolving as researchers refine their APIs

[36-39].

The goal of the Stanford Smart Memories project is to design a flexible architecture that

can support several programming models and a wide range of applications. Since

processors are fundamentally flexible – their operation is set by the code they run – our

1

 2

focus was on making the memory system as flexible as the processors. We designed a

coarse-grain architecture that uses reconfigurable memory blocks [40, 41] and a

programmable protocol controller to provide the flexible memory system. Memory

blocks have additional meta-data bits and can be configured to work as various memory

structures, such as cache memory or local scratchpad, for a particular programming

model or application. The protocol controller can be programmed to support different

memory protocols, like cache coherence or transactional coherence and consistency

(TCC) [32].

This thesis describes the polymorphic Smart Memories architecture and how three

different models—shared memory, streaming and transactions—can be mapped onto it,

and presents performance evaluation results for applications written for these three

models. In addition, this thesis discusses other benefits of reconfigurability such as

optimization of complex software runtime systems and semantic extensions.

The next chapter discusses microprocessor design trends, why the industry switched to

chip multi-processors, reviews multi-processor programming models and makes the case

for reconfigurable, polymorphic chip multi-processors architecture. Chapter 3 describes

the design of polymorphic Smart Memories architecture and the design of Smart

Memories test chip. Next three chapters show how three different programming models

can be mapped onto Smart Memories architecture and how reconfigurability can be used

for semantic extensions and implementation of complex software runtime systems.

Chapter 7 presents conclusions of this thesis.

3

CHAPTER 2: ARCHITECTURAL TRENDS

To better understand the transition to chip multiprocessors (CMP), this chapter begins by

reviewing historical processor performance trends, and how these improvements were

generated. During the early 2000’s power became an important limit, and further

improvement in performance required more energy efficient computation. The data on

prior processor design clearly shows that achieving the highest performance is not energy

efficient – two processors running at half the performance dissipate much less power then

one processor. Thus parallel processors allow one to continue to scale chip level

performance, but gives rise to another difficult issue: generating parallel code to run on

these machines.

Parallel application development is known to be a difficult problem. While there have

been many attempts to create compilers that can parallelize old non-numeric code [42,

43], researchers are also exploring new computational models that are explicitly or

implicitly parallel. This chapter also explores some of these programming models to

better understand their requirements on the computing hardware. Since it seems likely

that each of these programming models will exist in some form in the future, this chapter

makes a case for a polymorphic chip multiprocessor architecture which can be configured

to support the three described programming models as well as hybrid models, making it

suitable for broad range of applications.

2.1 PROCESSOR PERFORMANCE AND MICROARCHITECTURE TRENDS

Microprocessor performance initially grew exponentially at the rate of more than 50%

per year, as shown in Figure 2.1 and Figure 2.2 using SPEC 2006 benchmark [48, 49]

 4

results1. This phenomenal performance growth continued for 16 years; however, it then

slowed down significantly [1].

0.01

0.10

1.00

10.00

100.00

88 90 92 94 96 98 00 02 04 06 08

Year of Introduction

intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc 64-bit
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
IBM Power
Intel Core 2
AMD Opteron

Figure 2.1: Integer Application Performance (SPECint2006)

To achieve such growth, microprocessor designers exploited instruction level parallelism

(ILP) to increase the number of instructions per cycle (IPC) [1-3] and steadily increased

processor clock frequency (Figure 2.3).

There is little instruction level parallelism left that can be exploited efficiently to improve

performance [1, 2]. In fact, microprocessor architects confront a complex trade-off

between making more complicated processors to increase IPC and increasing clock

frequency through deeper pipelining at the cost of reduced IPC [3].

1 For older processors, SPEC2006 numbers were estimated from older versions of SPEC

benchmark using scaling factors.

 5

0.001

0.010

0.100

1.000

10.000

100.000

88 90 92 94 96 98 00 02 04 06 08

Year of Introduction

intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc 64-bit
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
IBM Power
Intel Core 2
AMD Opteron

Figure 2.2: Floating Point Application Performance (SPECfp2006)

Increases in clock frequency were possible because of deeper pipelining and

improvements in transistor speed due to CMOS technology scaling. To separate the effect

of technology scaling, processor clock cycle time can be characterized using the

technology-independent delay metric of fanout-of-four delay (FO4), which is defined as

the delay of one inverter driving four equally sized inverters [50, 51]. Figure 2.4 shows

estimates of microprocessor clock cycle time expressed in terms of FO4. Clock cycle

time decreased, from 60-90 FO4 in 1988 to 12-25 in 2003-2004, mainly because of

deeper pipelines. Further decrease in clock cycle time measured in FO4 are unlikely

because it is yielding less and less performance improvement while increasing power

dissipation, complexity and cost of design [2, 3]. As a result clock frequency doesn’t

grow as fast as before (Figure 2.3).

 6

10

100

1000

10000

88 90 92 94 96 98 00 02 04 06 08
Year of Introduction

intel 386
intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc64
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
Intel Pentium D
Intel Core 2 Duo
Intel Xeon
Sun Niagara
IBM Power
AMD

Figure 2.3: Microprocessor Clock Frequency (MHz)

The only remaining factor driving uniprocessor performance is improving transistor

switching speed due to CMOS technology scaling. However, as processor designs

became power and wire limited, it is harder to use faster transistors to design faster

uniprocessors [2]. As a result clock frequency and processor performance doesn’t scale as

fast as before (Figure 2.1, Figure 2.2, Figure 2.3).

Also, processor power dissipation increased because of both higher complexity and

higher clock frequency, and eventually reached the limit for air-cooled chips (Figure 2.5).

These trends caused a switch towards chip multiprocessors (CMP) or multi-core

microprocessors.

 7

0

10

20

30

40

50

60

70

80

90

100

88 90 92 94 96 98 00 02 04 06 08
Year of Introduction

intel 386
intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc 64-bit
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
Intel Pentium D
Intel Core 2 Duo
Intel Xeon
Sun Niagara
IBM Power
AMD

Figure 2.4: Clock Cycle in FO4

1

10

100

1000

88 90 92 94 96 98 00 02 04 06 08
Year of Introduction

intel 386
intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc 64-bit
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
Intel Pentium D
Intel Core 2 Duo
Intel Xeon
Sun Niagara
IBM Power
AMD

Figure 2.5: Microprocessor Power Dissipation (W)

 8

2.2 CHIP MULTIPROCESSORS

Performance of CMPs can potentially scale with the number of the processors or cores on

the die without re-design of individual processors. Therefore, the same processor design

with small modifications can be used across multiple generations of product, amortizing

the cost of design and verification.

Also, scaling CMP performance does not require an increase in energy dissipation per

instruction; on the contrary, CMP performance can be increased simultaneously with a

reduction in energy spent per instruction. Figure 2.6 shows, for single processors, how

energy per instruction increases with performance. On this graph, energy dissipation and

performance are both normalized with respect to technology and supply voltage.

Similarly, examination of Intel microprocessor design data from i486 to Pentium 4

showed that power dissipation scales as performance1.73 after factoring out technology

improvements [52]. Thus, Intel Pentium 4 is approximately 6 times faster than i486 in the

same technology but consumes 23 times more power [52] which means Pentium 4 spends

approximately 4 times more energy per instruction.

By using a less aggressive processor design it is possible to reduce energy dissipation per

instruction and at the same time use multiple processors to scale overall chip

performance. This approach can thus use a growing number of transistors per chip to

scale performance while staying within the limit of air-cooling [2].

The switch to chip multiprocessors also helps to reduce the effect of wire delays, which is

growing relative to gate delay [2, 8, 9]. Each processor in a CMP is small relative to the

total chip area, and wire length within a processor is short compared to the die size. Inter-

processor communication still requires long global wires; however, the latency of inter-

processor communication is less critical for performance in a multi-processor system than

latency between units within a single processor. Also, these long wires can be pipelined

and thus don’t affect clock cycle time and performance of an individual processor in a

CMP.

 9

Chip multiprocessors are a promising approach to scaling, however, in order to achieve

potential performance of the CMP architectures new parallel applications must be

developed.

1

10

100

0.01 0.1 1 10
Spec2006*L

W
at

ts
/(N

um
C

or
es

*S
pe

c2
00

6*
L*

Vd
d^

2)

Intel 486
Intel Pentium
Intel Pentium 2
Intel Pentium 3
Intel Pentium 4
Intel Itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc 64-bit
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
Intel Pentium D
Intel Core 2 Duo
Intel Xeon
IBM POWER
AMD Athlon
AMD Opteron

Figure 2.6: Normalized Energy per Instruction vs Normalized Performance

2.3 PARALLEL MEMORY MODELS

The shift towards CMP architectures will benefit only parallel, concurrent applications

and will have little value for today’s mainstream software. Therefore, software

applications must be re-designed to take advantage of parallel architectures. A parallel

programming model defines software abstractions and constructs which programmers use

to develop concurrent applications. A closely related concept is a parallel memory model

which defines the semantics and properties of the memory system. Memory model

determines how parallel processors can communicate and synchronize through memory

and, thus, determines to a large extent the properties of the programming model.

 10

A large portion of existing parallel applications were developed using a multi-threaded

shared memory model. Existing concurrent applications such as web-servers are mostly

server-side applications which have abundant parallelism. Multi-threaded model fits well

these applications because they asynchronously handle many independent request

streams [23]. Also, multiple threads in such applications share no or little data or use

abstract data store, such as a database which supports highly concurrent access to

structured data [23]. Still, developing and scaling server-side applications can be a

challenging task.

As chip multi-processors become mainstream even in desktop computers, parallel

software needs to be developed for different application domains that do not necessarily

have the same properties as server-side applications. A conventional multi-threaded,

shared memory model might be inappropriate for these applications because it has too

much non-determinism [24]. Researchers have proposed new programming and memory

models such as streaming and transactional memory to help with parallel application

development. The rest of this section reviews these three parallel memory models and the

issues associated with them.

2.3.1 SHARED MEMORY MODEL WITH CACHE COHERENCE

In cache-coherent shared memory systems, only off-chip DRAM memory is directly

addressable by all processors. Because off-chip memory is slow compared to the

processor, fast on-chip cache memories are used to store the most frequently used data

and to reduce the average access latency. Cache management is performed by hardware

and does not require software intervention. As a processor performs loads and stores,

hardware attempts to capture the working set of the application by exploiting spatial and

temporal locality. If the data requested by the processor is not in the cache, the controller

replaces the cache line least likely to be used in the future with the appropriate data block

fetched from DRAM.

 11

Software threads running on different processors communicate with each other implicitly

by writing and reading shared memory. Since several caches can have copies of the same

cache line, hardware must guarantee cache coherence, i.e. all copies of the cache line

must be consistent. Hardware implementations of cache coherence typically follow an

invalidation protocol: a processor is only allowed to modify an exclusive private copy of

the cache line, and all other copies must be invalidated before a write. Invalidation is

performed by sending “read-for-ownership” requests to other caches. A common

optimization is to use cache coherence protocols such as MESI

(Modified/Exclusive/Shared/Invalid), which reduce the number of cases where remote

cache lookups are necessary.

To resolve races between processors for the same cache line, requests must be serialized.

In small-scale shared memory systems serialization is performed by a shared bus or ring,

which broadcasts every cache miss request to all processors. The processor that wins bus

arbitration receives the requested cache line first. Bus-based cache coherent systems are

called also symmetric multi-processors (SMP) because any processor can access any

main memory location, with the same average latency.

High latency and increased contention make the bus a bottleneck for large multiprocessor

systems. Distributed shared memory (DSM) systems eliminate this bottleneck by

physically distributing both processors and memories, which then communicate via an

interconnection network. Directories associated with DRAM memory blocks perform

coherence serialization. Directory-based cache coherence protocols try to minimize

communication by keeping track of cache line sharing in the directories and sending

invalidation requests only to processors that previously requested the cache line. DSM

systems are also called non-uniform memory access (NUMA) architectures because

average access latency depends on processor and memory location. Development of high-

performance applications for NUMA systems can be significantly more complicated

because programmers need to pay attention to where the data is located and where the

computation is performed.

 12

In comparison with traditional multiprocessor systems, chip multiprocessors have

different design constraints. On one hand, chip multiprocessors have significantly higher

interconnect bandwidth and lower communication latencies than traditional multi-chip

multiprocessors. This implies that the efficient design points for CMPs are likely to be

different from those for traditional SMP and DSM systems. Also, even applications with

a non-trivial amount of data sharing and communication can perform and scale

reasonably well. On the other hand, power dissipation is a major design constraint for

modern CMPs; low power is consequently one of the main goals of cache coherence

design.

To improve performance and increase concurrency, multiprocessor systems try to overlap

and re-order cache miss refills. This raises the question of a memory consistency model:

what event ordering does hardware guarantee [53]? Sequential consistency guarantees

that accesses from each individual processor appear in program order, and that the result

of execution is the same as if all accesses from all processors were executed in some

sequential order [54]. Relaxed consistency models give hardware more freedom to re-

order memory operations but require programmers to annotate application code with

synchronization or memory barrier instructions to insure proper memory access ordering.

To synchronize execution of parallel threads and to avoid data races, programmers use

synchronization primitives such as locks and barriers. Implementation of locks and

barriers requires support for atomic read-modify-write operations, e.g. compare-and-swap

or load-linked/store-conditional. Parallel application programming interfaces (API) such

as POSIX threads (Pthreads) [55] and ANL macros [56] define application level

synchronization primitives directly used by the programmers in the code.

2.3.2 STREAMING MEMORY MODEL

Many current performance limited applications operate on large amounts of data, where

the same functions are applied to each data item. One can view these applications as

 13

having a stream of data that passes through a computational kernel that produces another

stream of data.

Researchers have proposed several stream programming languages, including

StreamC/KernelC [26], StreamIt [28], Brook GPU [58], Sequoia [59], and CUDA [60].

These languages differ in their level of abstraction but they share some basic concepts.

Streaming computation must be divided into a set of kernels, i.e. functions that cannot

access arbitrary global state. Inputs and outputs of the kernel are called streams and must

be specified explicitly as kernel arguments. Stream access patterns are typically

restricted. Another important concept is reduction variables, which allow a kernel to do

calculations involving all elements of the input stream, such as the stream’s summation.

Restrictions on data usage in kernels allow streaming compilers to determine

computation and input data per element of the output stream, to parallelize kernels across

multiple processing elements, and to schedule all data movements explicitly. In addition,

the compiler optimizes the streaming application by splitting or merging kernels for

balance loading, to fit all required kernel data into local scratchpads, or to minimize data

communication through producer-consumer locality. The complier also tries to overlap

computation and communication by performing stream scheduling: DMA transfers run

during kernel computation, which is equivalent to macroscopic prefetching.

To develop a common streaming compiler infrastructure, the stream virtual machine

(SVM) abstraction has been proposed [61-63]. SVM gives high-level optimizing

compilers for stream languages a common intermediate representation.

To support this type of application, in streaming architectures fast on-chip storage is

organized as directly addressable memories called scratchpads, local stores, or stream

register files [11, 16, 27]. Data movement within chip and between scratchpads and off-

chip memory is performed by direct memory access (DMA) engines, which are directly

controlled by application software. As a result, software is responsible for managing and

 14

optimizing all aspects of communication: location, granularity, allocation and

replacement policies, and the number of copies. Stream applications have simple and

predictable data flow, so all data communication can be scheduled in advance and

completely overlapped with computation, thus hiding communication latency.

Since data movements are managed explicitly by software, complicated hardware for

coherence and consistency is not necessary. The hardware architecture only must support

DMA transfers between local scratchpads and off-chip memory.2 Processors can access

their local scratchpads as FIFO queues or as randomly indexed memories [57].

Streaming is similar to message-passing applied in the context of CMP design. However,

there are several important differences between streaming and traditional message-

passing in clusters and massively parallel systems. In streaming, the user level software

manages communication and its overhead is low. Message data is placed at the memory

closest to the processor, not the farthest away. Also, software has to take into account the

limited size of local scratchpads. Since communication between processors happens

within a chip, the latency is low and the bandwidth is high. Finally, software manages

both the communication between processors and the communication between processor

scratchpads and off-chip memory.

2.3.3 TRANSACTIONAL MEMORY MODEL

The traditional shared memory programming model usually requires programmers to use

low-level primitives such as locks for thread synchronization. Locks are required to

guarantee mutual exclusion when multiple threads access shared data. However, locks are

hard to use and error-prone — especially when the programmer uses fine-grain locking

2 Some recent stream machines use caches for one of the processors, the control

processor. In these cases, while the local memory does not need to maintain coherence
with the memory, the DMA often needs to be consistent with the control processor.
Thus in the IBM Cell Processor the DMA engines are connected to a coherent bus and
all DMA transfers are performed to coherent address space [16].

 15

[34] to improve performance and scalability. Programming errors using locks can lead to

deadlock. Lock-based parallel applications can also suffer from priority inversion and

convoying [31]. These arise when subtle interaction between locks causes high priority

tasks to wait for lower priority tasks to complete.

Transactional memory was proposed as a new multiprocessor architecture and

programming model intended to make lock-free synchronization3 of shared data accesses

as efficient as conventional techniques based on locks [29-31]. The programmer must

annotate applications with start transaction/end transaction commands; the hardware

executes all instructions between these commands as a single atomic operation. A

transaction is essentially a user-defined atomic read-modify-write operation that can be

applied to multiple arbitrary words in memory. Other processors or threads can only

observe transaction state before or after execution; intermediate state is hidden. If a

transaction conflict is detected, such as one transaction updating a memory word read by

another transaction, one of the conflicting transactions must be re-executed.

The concept of transactions is similar to the transactions in database management systems

(DBMS). In DBMS, transactions provide the properties of atomicity, consistency,

isolation, and durability (ACID) [65]. Transactional memory provides the properties of

atomicity and isolation. Also, using transactional memory the programmer can guarantee

consistency according to the chosen data consistency model.

Transactions are useful not only because they simplify synchronization of accesses to

shared data but also because they make synchronization composable [66], i.e.

transactions can be correctly combined with other programming abstractions without

understanding of those other abstractions [35]. For example, a user transaction code can

call a library function that contains a transaction itself. The library function transaction

3 Lock-free shared data structures allow programmers to avoid problems associated with

locks [64]. This methodology requires only standard compare-and-swap instruction but
introduces significant overheads and thus it is not widely used in practice.

 16

would be subsumed by the outer transaction and the code would be executed correctly4.

Unlike transactions, locks are not composable: a library function with a lock might cause

deadlock.

Transactional memory implementations have to keep track of the transaction read-set, all

memory words read by the transaction, and the write-set, all memory words written by

the transaction. The read-set is used for conflict detection between transactions, while the

write-set is used to track speculative transaction changes, which will become visible after

transaction commit or will be dropped after transaction abort. Conflict detection can be

either pessimistic (eager) or optimistic (lazy). Pessimistic conflict detection checks every

individual read and write performed by the transaction to see if there is a collision with

another transaction. Such an approach allows early conflict detection but requires read

and write sets to be visible to all other transactions in the system. In the optimistic

approach, conflict detection is postponed until the transaction tries to commit.

Another design choice for transactional memory implementations is the type of version

management. In eager version management, the processor writes speculative data directly

into the memory as a transaction executes and keeps an undo log of the old values [68].

Eager conflict detection must be used to guarantee transaction atomicity with respect to

other transactions. Transaction commits are fast since all data is already in place but

aborts are slow because old data must be copied from the undo log. This approach is

preferable if aborts are rare but may introduce subtle complications such as weak

atomicity [69]: since transaction writes change the architectural state of the main memory

they might be visible to other threads that are executing non-transactional code.

4 Nesting of transactions can cause subtle performance issues. Closed-nested and open-

nested transactions were proposed to improve the performance of applications with
nested transactions [67, 36, 37]. The effects of closed-nested transaction can be rolled
back by a parent transaction, while the writes of open-nested transaction can not be
undone after commit.

 17

Lazy version management is another alternative, where the controller keeps speculative

writes in a separate structure until a transaction commits. In this case aborts are fast since

the state of the memory is not changed but the commits require more work. This

approach makes it easier to support strong atomicity: complete transaction isolation from

both transactions and non-transactional code executed by other threads [69].

Transactional memory implementations can be classified as hardware approaches (HTM)

[30-32, 68], software-only (STM) techniques [70], or mixed approaches. Two mixed

approaches have been proposed: hybrid transactional memory (HyTM) supports

transactional execution in hardware but falls back to software when hardware resources

are exceeded [71, 72, 20], while hardware-assisted STM (HaSTM) combines STM with

hardware support to accelerate STM implementations [73, 74].

In some proposed hardware transactional memory implementations, a separate

transactional or conventional data cache is used to keep track of transactional reads and

writes [31]. In this case, transactional support extends existing coherence protocols such

as MESI to detect collisions and enforce transaction atomicity. The key issues with such

approaches are arbitration between conflicting transactions and dealing with overflow of

hardware structures. Memory consistency is also an issue since application threads can

execute both transactional and non-transactional code.

Transactional coherence and consistency (TCC) is a transactional memory model in

which atomic transactions are always the basic unit of parallel work, communication, and

memory coherence and consistency [32]. Each of the parallel processors in a TCC model

continually executes transactions. Each transaction commits its writes to shared memory

only as an atomic block after arbitration for commit. Only one processor can commit at a

time by broadcasting its transactional writes to all other processors and to main memory.

Other processors check incoming commit information for read-write dependency

violations and restart their transactions if violations are detected. Instead of imposing

some order between individual memory accesses, TCC serializes transaction commits.

 18

All accesses from an earlier committed transaction appear to happen before any memory

references from a later committing transaction, even if actual execution was performed in

an interleaved fashion. The TCC model guarantees strong atomicity because the TCC

application only consists of transactions. A simple approach to handle hardware overflow

in TCC model is to allow overflowing transaction to commit before reaching the commit

point in the application. Such a transaction must stall and arbitrate for a commit token.

Once it has the token, it is no longer speculative, and can commit its previously

speculative changes to free up hardware resources, and then continue execution. It can’t

release the commit token until it hits the next commit point in the application. All other

processors can not commit until the commit token is free. Clearly this serializes

execution, since only one thread can have the commit token at a time, but it does allow

overflows to be cleanly handled5.

A programmer using TCC divides an application into transactions, which will be

executed concurrently on different processors. The order of transaction commits can be

optionally specified. Such situations usually correspond to different phases of the

application, which would have been separated by synchronization barriers in a lock-based

model. To deal with such ordering requirements TCC has hardware-managed phase

numbers for each processor, which can be optionally incremented upon transaction

commit. Only transactions with the oldest phase number are allowed to commit at any

time.

An example of a transactional application programming interface (API) is OpenTM [38].

The goal of OpenTM is to provide a common programming interface for various

transactional memory architectures.

5 Another proposed approach is to switch to software transactional memory (STM) mode.

This approach is called virtualized transactional memory. Challenges associated with
virtualization are discussed in [34].

 19

2.4 THE CASE FOR A POLYMORPHIC CHIP MULTI-PROCESSOR

While new programming models such as streaming and transactional memory are

promising for certain application domains, they are not universal. Both models address

particular issues associated with the conventional multi-threaded shared memory model.

Specifically, the goal of streaming is to optimize the use of bandwidth and on-chip

memories for applications with highly predictable memory access patterns. The

streaming model strives to avoid inefficiencies resulting from the implicit nature of cache

operation and cache coherence by exposing memory and communication management

directly to software. However, this might be inappropriate for applications that have

complex, hard to predict memory access patterns. Moreover, in some cases stream

architecture with cache performs better than the same architecture without cache but with

sophisticated streaming software optimizations [75]. Also, sometimes application

developers emulate caches in software because they cannot find any other way to exploit

data locality [76].

Transactional memory is a promising approach for parallelization of applications with

complex data structures because it simplifies accesses to shared data, avoiding locks and

problems associated with them. However, transactional memory cannot solve all

synchronization issues, for example, in the case of coordination or sequencing of

independent tasks [35]. Also, it is not necessary for all applications, for example,

applications that fit well into streaming category. For streaming applications,

synchronization of shared data accesses is not the main issue and therefore transactional

memory mechanisms would be simply unnecessary.

Finally, the multi-threaded programming model with shared memory is still dominant

today especially in server-side application domain. The asynchronous nature of the multi-

threaded model is good match for server applications that must handle multiple

independent streams of requests [23].

 20

All these considerations motivate the design of a polymorphic, reconfigurable chip multi-

processor architecture, called Smart Memories, which is described in this thesis. The

design of the Smart Memories architecture is based on the observation that the various

programming models differ only in the semantics of the memory system operation. For

example, from the processor point of view, a store operation is the same in the case of

cache coherent, streaming, or transactional memory system. However, from the memory

system point of view, the store semantics are quite different.

Processor microarchitecture is very important for achieving high performance but it can

vary significantly while memory system semantics and programming model can be

similar. For example, the Stanford Imagine architecture consists of SIMD processing

elements working in lockstep and controlled by the same VLIW instruction [12], while

the IBM Cell has multiple processors executing independent instruction streams [16]. Yet

both are stream architectures: both have software-managed on-chip memories and

explicit communication between on-chip and off-chip memories performed by software-

programmed DMA engines.

Thus, the focus of the Smart Memories architecture design is to develop a reconfigurable

memory system that can work as a shared memory system with cache coherence, or as a

streaming memory system, or as a transactional memory system. In addition, flexibility is

useful for semantic extensions, e.g. we have implemented fast fine-grain synchronization

operations in shared memory mode using the same resources of the reconfigurable

memory system (Section 4.2). These operations are useful for optimization of

applications with producer-consumer pattern. Also, flexibility of the memory system was

used to simplify and optimize complex software runtime systems such as Stream Virtual

Machine runtime (Section 5.3.1) or transactional runtime (Section 6.4). Finally, the Smart

Memories memory system resources can be configured to match the requirements of a

particular application, e.g. by increasing the size of the instruction cache (Section 4.3.2).

 21

The key idea of the polymorphic chip multi-processor architecture is based on this

observation: although the semantics of memory systems in different models varies, the

fundamental hardware resources, such as on-chip data storage and interconnect, are very

similar. Therefore, the Smart Memories memory system is coarse-grain reconfigurable: it

consists of reconfigurable memory blocks and programmable protocol controllers,

connected by flexible interconnect. The design of the Smart Memories architecture is

described in the next chapter.

22

CHAPTER 3: SMART MEMORIES ARCHITECTURE

The goal of the Smart Memories architecture was to create a memory system that was as

programmable as the core processors, and could support a wide range of programming

models. In particular we ensured that the three models mentioned in the previous chapter,

cache coherent shared memory, streaming, and transactions could all be supported. This

chapter describes how we accomplished the programmable memory system, and how the

processors interacted with it. It begins by giving an overview of the architecture,

introducing the main hierarchical blocks used in the design. The chapter then goes into

more detail and describes the main building blocks used in the machine. Section 3.2

describes how we used the Tensilica processors to interface to our memory system.

Section 3.4 then describes how these processors are combined with flexible local

memories to form a Tile, which is followed by a description of how four Tiles are

grouped with a local memory controller/network interface unit to form a Quad. The final

sections then explain how the Quads are connected together through an on-chip network,

and to the memory controllers.

3.1 OVERALL ARCHITECTURE

Figure 3.1 shows a block diagram of the architecture, which consists of Tiles, each Tile

has two Tensilica processors, several reconfigurable memory blocks, and a crossbar

connecting them. Four adjacent Tiles form a Quad. Tiles in the Quad are connected to a

shared local memory Protocol Controller. Quads are connected to each other and to the

Memory Controllers using an on-chip interconnection network.

This modular, hierarchical structure of Smart Memories helps to accommodate VLSI

physical constraints such as wiring delay. Quads are connected to each other and to off-

chip interfaces only through an on-chip network that can be designed to use regular,

 23

structured wires. Regular wire layout results in predictable wire length and well-

controlled electrical parameters that eliminate timing iterations and minimize cross-talk

noise. This allows the use of high-performance circuits with reduced latency and

increased bandwidth [77, 78]. Since there are no unstructured global wires spanning the

whole chip, wire delay has a small effect on clock frequency.

The modular structure of the Smart Memories architecture makes system scaling simple:

to increase the performance of the system the number of quads can be scaled up without

changing the architecture. The bandwidth of the on-chip mesh-like network will also

scale up as the number of quads increases.

Figure 3.1: Smart Memories Architecture

The memory system consists of three major reconfigurable blocks, highlighted in Figure

3.1: the Load/Store Unit, the Configurable Memory and the Protocol Controller. The

memory interface in each Tile (Load/Store Unit) coordinates accesses from processor

cores to local memories and allows reconfiguration of basic memory accesses. A basic

operation, such as a Store instruction, can treat a memory word differently in

transactional mode than in conventional cache coherent mode. The memory interface can

also broadcast accesses to a set of local memory blocks. For example, when accessing a

set-associative cache, the access request is concurrently sent to all the blocks forming the

cache ways. Its operation is described in more detail in Section 3.4.1.

 24

The next configurable block in the memory system is the array of memory blocks. Each

memory block in a Tile is an array of data words, and associated metadata bits. It is these

metadata bits that makes the memory system flexible. Metadata bits store the status of

that data word and their state is considered in every memory access; an access to this

word can be discarded based on the status of these bits. For example, when mats are

configured as a cache, these bits are used to store the cache line state, and an access is

discarded if the status indicates that cache line is invalid. The metadata bits are dual

ported: they are updated atomically with each access to the data word. The update

functions are set by the configuration. A built-in comparator and a set of pointers allow

the mat to be used as tag storage (for cache) or as a FIFO. Mats are connected to each

other through an inter-mat network that communicates control information when the mats

are accessed as a group. While the hardware cost of reconfigurable memory blocks is

high in our standard-cell prototype, a full custom design of such memory blocks can be

quite efficient [40, 41].

The Protocol Controller is a reconfigurable control engine that can execute a sequence of

basic memory system operations to support the memory mats. These operations include

loading and storing data words (or cache lines) into mats, manipulating meta-data bits,

tracking outstanding requests from each Tile, and broadcasting data or control

information to Tiles within the Quad. The controller is connected to a network interface

port and can send and receive requests to/from other Quads or Memory Controllers.

Mapping a programming model to the Smart Memories architecture requires

configuration of Load/Store Unit, memory mats, Tile interconnect and Protocol

Controller. For example, when implementing a shared-memory model, memory mats are

configured as instruction and data caches, the Tile crossbar routes processor instruction

fetches, loads, and stores to the appropriate memory mats, and the Protocol Controller

acts as a cache coherence engine, which refills the caches and enforces coherence.

 25

The remainder of this chapter describes the main units of the Smart Memories

architecture: processor, memory mat, Tile, Quad, on-chip network, and Memory

Controller.

3.2 PROCESSOR

The Tensilica processor [79, 80] was used for the Smart Memories processor. Tensilica’s

Xtensa Processor Generator automatically generates a synthesizable hardware description

for the user customized processor configuration. The base Xtensa architecture is a 32-bit

RISC instruction set architecture (ISA) with 24-bit instructions and a windowed general-

purpose register file. Register windows have 16 register each. The total number of

physical registers is 32 or 64.

The user can select pre-defined options such as a floating-point co-processor (FPU) and

can define custom instruction set extensions using the Tensilica Instruction Extension

language (TIE) [79, 80]. The TIE compiler generates a customized processor, taking care

of low-level implementation details such as pipeline interlocks, operand bypass logic, and

instruction encoding.

Using the TIE language designers can add registers, register files, and new instructions to

improve performance of the most critical parts of the application. Multiple operation

instruction formats can be defined using the Flexible Length Instruction eXtension

(FLIX) feature to further improve performance [81]. Another feature of the TIE language

is the ability to add user-defined processor interfaces such as simple input or output

wires, queues with buffers, and lookup device ports [81]. These interfaces can be used to

interconnect multiple processors or to connect a processor to other hardware units.

The base Xtensa ISA pipeline is either five or seven pipeline stages and has a user

selectable memory access latency of one or two cycles. Two-cycle memory latency

allows designers to achieve faster clock cycles or to relax timing constraints on memories

 26

and wires. Although Tensilica provides many options for memory interfaces, these

interfaces cannot be used directly to connect the Tensilica processor to the rest of the

Smart Memories system, as explained further in the next subsection, which describes our

approach for interfacing the processor and the issues associated with it.

3.2.1 INTERFACING THE TENSILICA PROCESSOR TO SMART MEMORIES

Connecting Tensilica’s Xtensa processor to the reconfigurable memory system is

complicated because Tensilica interfaces were not designed for Smart Memories’ specific

needs. Although the Xtensa processor has interfaces to implement instruction and data

caches (Figure 3.2), these options do not support the functionality and flexibility

necessary for the Smart Memories architecture. For example, Xtensa caches do not

support cache coherence. Xtensa cache interfaces connect directly to SRAM arrays for

cache tags and data, and the processor already contains all the logic required for cache

management. As a result, it is impossible to modify the functionality of the Xtensa caches

or to re-use the same SRAM arrays for different memory structures like local

scratchpads.

In addition to simple load and store instructions, the Smart Memories architecture

supports several other memory operations such as synchronized loads and stores. These

memory operations can easily be added to the instruction set of the processor using the

TIE language but it is impossible to extend Xtensa interfaces to natively support such

instructions.

27

Shared Memories

Figure 3.2: Xtensa Processor Interfaces

Instead of cache interfaces we decided to use instruction and data RAM interfaces as

shown in Figure 3.3. In this, case instruction fetches, loads and stores are sent to interface

logic (Load Store Unit) that converts them into actual control signals for memory blocks

used in the current configuration. Special memory operations are sent to the interface

logic through the TIE lookup port, which has the same latency as the memory interfaces.

If the data for a processor access is ready in 2 cycles, the interface logic sends it to the

appropriate processor pins. If the reply data is not ready due to cache miss, arbitration

conflict or remote memory access, the interface logic stalls the processor clock until the

data is ready.

Xtensa

Instruction
Cache

Instruction
RAM

Instruction
ROM

Data
Cache

Data
RAM

Data
ROM

PIF

XLMI

Shared Peripherals
Shared FIFOsQueue

TIE Queue Interrupts
Device TIE Port

TIE Lookup

Off-Chip Bus
Interface

Memory On-Chip Bus
Lookup Memory
Device ProcessorMemory

Processor
ProcessorPeripheral

Peripheral
Peripheral

28

InterfaceCLKXtensa
Logic Processor
(LSU)

Figure 3.3: Processor Interfaces to Smart Memories

The advantage of this approach is that the instruction and data RAM interfaces are very

simple: they consist of enable, write enable/byte enables, address and write data outputs

and return data input. The meaning of the TIE port pins is defined by instruction

semantics described in TIE. Processor logic on the critical path is minimal. The interface

logic is free to perform any transformations with the virtual address supplied by the

processor.

3.2.2 SPECIAL MEMORY ACCESS INSTRUCTIONS

Several instructions were added to the Tensilica processor to exploit the functionality of

the Smart Memories architecture. These instructions use the TIE lookup port to pass

information from the processor to the memory system as described in the previous

section, and they access the metadata bits associated with each memory word.

For example, synchronized instructions define one of the metadata bits to indicate

whether the address is full (has new data) or empty. A synchronized load instruction

stalls the processor if the full/empty (FE) bit associated with the data word is zero

(“empty”). The processor is unstalled when the FE bit becomes one (“full”), and the

synchronized load returns a 32-bit data word into the processor integer register similarly

Instruction
RAM port

Data
RAM port

Instruction
Cache

TIE lookup
port

Data
Cache

 29

to a conventional load instruction. The FE bit is atomically flipped back to zero during

the synchronized load execution.

A synchronized store instruction stalls the processor until the FE bit associated with the

data word is zero, and then it writes a 32-bit data word and flips FE bit to one.

A complete list of added memory instructions is in Appendix A.

3.2.3 PIPELINING ISSUES RELATED TO SPECIAL MEMORY INSTRUCTIONS

Adding special memory instructions to the architecture does add one complication.

Special load instructions can modify metadata bits, i.e. they can alter the architectural

state of the memory. Standard load instructions do not have side effects, i.e. they do not

alter the architectural state of the memory system, and therefore they can be executed by

the processor as many times as necessary. Loads might be reissued, for example, because

of processor exceptions as shown in Figure 3.4: loads are issued to the memory system at

the end of the E stage, load data is returned to the processor at the end of the M2 stage,

while the processor commit point is in the W stage, i.e. all processor exceptions are

resolved only in the W stage. Such resolution may ultimately result in re-execution of the

load instruction. Stores, by contrast, are issued only in the W stage after the commit

point.

30

commit point

F1 F2 D E M1 M2 W U1 U2

Figure 3.4: Processor Pipeline

Since it would be very difficult to undo side effects of special memory operations, they

are also issued after the commit point in W stage. The processor pipeline was extended

by 2 stages (U1 and U2 in Figure 3.4) to have the same 2 cycle latency for special load

instructions.

However, having different issue stages for different memory operations creates the

memory ordering problem illustrated in Figure 3.5a. A load following a special load in

the application code is seen by the memory system before the special load because it is

issued in the E stage. To prevent such re-ordering, we added pipeline interlocks between

special memory operations and ordinary loads and stores. An example of such an

interlock is shown in Figure 3.5b. The load is stalled in the D stage for 4 cycles to make

sure the memory system sees it 1 cycle after the previous special load. One extra empty

cycle is added between 2 consecutive operations to simplify memory system logic for the

case of synchronization stalls. This does not degrade performance significantly because

special loads are not executed as often as standard loads and the compiler can schedule

instructions to minimize the impact of extra pipeline interlocks.

load
issue

load
data

store/
custom
op issue

fetch fetch custom
issue data load

data

31

s. load F1 F2 D E M1 M2 W U1 U2

issue data

load F1 F2 D E M1 M2 W U1 U2

issue data

a)

dataissue

s. load F1 F2 D E M1 M2 W U1 U2

load F1 F2 D - - - - E M1 M2 W U1 U2

issue data b)

Figure 3.5: Memory operation pipeline: a) without interlocks; b) with interlocks

3.2.4 PRE-DEFINED OPTIONS AND VLIW PROCESSOR EXTENSIONS

To increase the computational capabilities and usability of the Smart Memories

architecture, the following pre-defined Tensilica processor options were selected:

• 32-bit integer multiplier;

• 32-bit integer divider;

• 32-bit floating point unit;

• 64-bit floating point accelerator;

• 4 scratch registers;

• On-Chip Debug (OCD) via JTAG interface;

• instruction trace port;

• variable 16/24/64-bit instruction formats for code density and FLIX/VLIW extension.

 32

To further improve performance of the processor and utilization of the memory system,

we added two multi-instruction formats using FLIX/VLIW capability of Tensilica

system:

• {ANY; INT; FP};

• {ANY; INT; LIMITED INT};

where ANY means any type instruction, INT means integer instruction type (excluding

memory operations), FP means floating-point instruction type, LIMITED INT means a

small subset of integer instructions which requires at most 1 read and 1 write port.

The reason for this choice of instruction formats is the limitation of the Xtensa processor

generator: register file ports cannot be shared among different slots of FLIX/VLIW

format. For example, the FP multiply-add instruction requires 3 read and 1 write ports. If

such an operation could be present in 2 different slots, then the FP register file would

need to have at least 6 read and 2 write ports, even if 2 such operations are never put in

the same instruction. On the other hand, memory operations can only be allocated in slot

0 (ANY) and the common usage case is to have a memory operation and a compute

operation such as multiply-add in the same instruction. This means that it should be

possible to have FP operations in slots other than 0 but the number of such slots should

be minimal.

3.3 MEMORY MAT

A memory mat is the basic memory unit in the Smart Memories architecture. In addition

to storage, it can also perform simple logical operations on some of the stored bits.

Depending on the configuration, a memory mat can be used as simple local memory, as a

hardware FIFO, or as part of a cache for storing either tag or data. Each Tile has 16

memory mats, which are connected to processors and the outside world by a crossbar.

 33

Figure 3.6 shows the internal structure of a memory mat. The main part is the data array

(or data core), which consists of 1024 32-bit words. A 4-bit mask input allows each byte

within the 32-word to be written independently. In addition to simple reads and writes,

the memory mat can also do compare operations on the accessed word using a 32-bit

comparator, which compares contents of the word with the data from the Data In input

and generates a Data Match output signal. The Data Match signal is sent out to the

processors over the crossbar as well as being passed to metadata array logic.

Figure 3.6: Memory mat

Write operations in the data array can be guarded or conditional. Such operations are

used for caches. For these operations, the data array receives two additional control bits,

 34

Guard and Condition, and can decide to discard a write operation if either of the Guard or

Condition signals is not active. The Guard signal can be configured to be any function of

the IMCN_in inputs (which are described in the next section), while Condition can be

any function of the 6 control bits within the metadata array. For example the data storage

can discard a cache write operation if the tag mat reports a cache miss via the IMCN and

Guard signal.

The metadata array (or control core) is a 1024 entry 6-bit wide array (Figure 3.6). These 6

bits are called metadata bits or control bits associated with each 32-bit data word. The

metadata array is dual-ported: it can do a read and a write operation in the same cycle.

Thus, in addition to ordinary reads and writes, the metadata array can do atomic read-

modify-write operations on the control bits. A small programmable logic array (PLA)

block is used to perform the logic functions for read-modify-write operations. The read

address of the metadata array is the same as the mat input address. The write address can

either be the current input address or the address from the previous cycle when doing a

read-modify-write update. An internal forwarding logic bypasses write values to the read

port if a subsequent read operation goes to the same address that was written in the

previous cycle.

Similarly, metadata array operations can be guarded or conditional. The metadata array

can also perform a compare operation between stored meta-data and the Control In input

to generate a Total Match output signal. A 7-bit mask is used to determine which

metadata bits participate in the comparison and which are ignored. An extra MSB mask

bit is used to determine whether the metadata comparison result should be ANDed with

Data Match.

In addition to simple operations, the metadata array can perform column-wise gang write

operations on bits 0-2: a whole column can be set to one or zero in a single-cycle

operation. Also, one column of the array (bit 2) can do a conditional gang write

operation: bit 2 in each entry of the array can be written with one or zero, if bit 1 of the

 35

same entry is set to one. These operations are used for transactional caches: all

transactional state can be flushed away in a single cycle (Section 6.2).

Each memory mat is equipped with a pair of pointers that allow it to be used as a

hardware FIFO (Figure 3.6). A FIFO select input determines whether the mat should use

the externally supplied “Address In” signal or use internal pointers to generate an address

for data and metadata arrays. These pointers are automatically incremented after each

access: read and compare operations increment the head pointer, while write operations

increment the tail pointer. Increment of the tail pointer can be guarded the same way that

a write operation is guarded: if the guard signal is not active, the pointer will not be

incremented. An example usage of a guarded increment is described in Section 6.2,

which explains the operation of a transactional cache.

The depth of the FIFO can also be controlled via a configuration register. Whenever the

size of the FIFO reaches the value of the depth register and another write to the FIFO is

attempted, the write operation is ignored and a FIFO Error output signal is asserted. The

same situation happens if a user tries to read an empty FIFO. Also, there is another

configuration register called the threshold register. When the size of the FIFO reaches the

threshold value, a separate FIFO Full output signal is asserted to let the requestor module

know that the FIFO is almost full.

3.4 TILE

The Smart Memories Tile unit, shown in Figure 3.7, consists of two Tensilica processors,

16 memory mats, a crossbar and interface logic unit (LSU) connecting processor and

memory mats, tile configuration register unit, Statistics and Debugging unit (SDU), and

two JTAG test access port (TAP) units. Memory mats are also interconnected through an

inter-mat communication network (IMCN), which can be configured to exchange

between mats a few bits of control information such as a tag comparison result.

 36

Protocol
Controller

Port 0

Protocol
Controller

Port 1

Crossbar

Processor 0
Interface

Processor 1
Interface

To/From
Protocol

Controller

Interface Logic (LSU)
Instr Port Data Port Instr Port Data Port Stats

Debug
(SDU)

Tile
Config

Registers

Processor 0 Processor 1

Mat 0 Mat 1 Mat 14 Mat 15

IMCN

. . .

TAP 1TAP 0To/From
Protocol

Controller
JTAG unit

Figure 3.7: Tile

 37

3.4.1 INTERFACE LOGIC

The interface logic (LSU) translates each processor memory request into a set of memory

mat operations executed in parallel. The virtual address issued by the processor is

translated into a physical address by a segment table. The segment table has four 256 MB

segments for instruction space (0x40000000-0x7FFFFFFF address range) and eight 256

MB segments for data space (0x80000000-0xFFFFFFFF address range). Segment

information is stored in the configuration registers. In addition to address translation,

segment settings also specify read/write permissions and what type of memory access the

processor request should be converted to. If a processor request violates segment

permissions, then the LSU raises a fatal non-maskable interrupt (NMI).

Depending on the segment, a processor memory operation can go to conventional data or

instruction cache, transactional cache, on-tile local memory, off-tile local memory, or off-

chip DRAM. For conventional cache access the LSU generates data and tag mat

operations according to the cache configuration and sends them to the crossbar. Since a

cache can be set-associative, the same operation might need to be sent to more than one

memory mat. To handle this case the LSU generates a memory mat mask that tells the

crossbar which mats should receive the operation.

Tag mats perform cache line address and state comparison using the built-in comparator

described in Section 3.3. The hit/miss result of the comparison (Total Match signal) is

sent to the appropriate data mats via the IMCN according to the cache configuration. The

data mats use this IMCN signal as a “Guard” for write operations. The same IMCN

signals are used to update most-recently-used (MRU) metadata bits in all tag mats. MRU

bits are used by the Quad Protocol Controller to implement a not-most-recently-used

cache line replacement policy.

Total Match signals are also sent via crossbar back to the LSU. The crossbar aggregates

Total Match signals from all tag mats and sends the result as a Hit/Miss signal back to the

 38

LSU. Also, the crossbar uses Total Match signals to route the result of the read operation

from the appropriate data mat back to the LSU.

In the case of a cached load hit the LSU returns the data to the processor port. In the case

of a cache miss the LSU turns off the requesting processor clock and generates a cache

miss message which is placed into the queue to the Quad Protocol Controller port. The

LSU has 4 separate queues for Protocol Controller messages, one per processor port.

Each queue has 4 entries that buffer outstanding cache miss requests before they are

accepted by the Protocol Controller for processing. Thus, the LSU does not need to stall

the processor because of store misses, which can be non-blocking. Strict order between

cache miss requests in the same queue is enforced by the LSU logic to guarantee

program order of memory operations. The address of a later memory operation issued by

the same processor is compared to cache miss requests in the queue. If the address

matches, then the memory operation is sent directly to the queue, skipping the memory

mat access.

Every clock cycle the LSU performs arbitration among non-empty queues and sends one

request to the Quad Protocol Controller. The Protocol Controller arbitrates between the

four Tiles and starts processing 1 cache miss request per cycle. If the request does not

conflict with other requests currently being processed, then the Protocol Controller sends

an acknowledgement to the Tile LSU, which frees the corresponding entry in the queue.

Otherwise, the request is not acknowledged and blocks the queue.

When the request is processed, the Protocol Controller sends a reply to the LSU. The

reply for a load or instruction fetch miss contains data that the LSU sends to the processor

port. Replies for store misses are used by the LSU to keep track of outstanding memory

operations. If stores are configured to be blocking, then the LSU stalls the processor on a

store cache miss, and unstalls it only after receiving a reply from the Protocol Controller.

If stores are configured to be non-blocking, then the LSU uses a store miss counter to

 39

keep track of outstanding stores. This is necessary to support memory barrier operations,

which stall the processor until all outstanding memory operations are complete.

Memory mats in the Tile can also be used as local, directly addressable memories

(Section 2.3.2). In such a case the memory segment that corresponds to the local memory

is configured to be uncached on-tile. The LSU generates a single memory mat access for

load or store to the local memory mat. Similarly, a segment can be uncached off-tile, i.e.

mapped to the local memory mats in another Tile or Quad. For memory operations to

such segments the LSU sends a message directly to the Protocol Controller. Also, an

uncached segment can be mapped to off-chip DRAM.

The LSU also supports FIFO load and store processor operations (Appendix A). FIFO

operations can be routed to an on-tile mat or to a mat in another Tile or Quad. Since a

FIFO operation can fail because of FIFO overflow or underflow, the LSU saves the FIFO

Error signal in a 32-bit shift register that is accessible by the processor. This allows the

processor to issue non-blocking back-to-back FIFO stores and to check for success up to

32 operations later.

In addition to ordinary loads and stores the processor can issue special memory

operations such as synchronized loads and stores (Section 3.2.2). Synchronized loads and

stores might stall the processor depending on the state of the metadata bits associated

with the data word. For such operations the LSU checks the value of the metadata

returned from the cache data mat or uncached memory mat and, if necessary, stalls the

processor and sends a sync miss message to the Protocol Controller just as in the case of a

cache miss.

The LSU also handles processor interrupts, which can be initiated by the Protocol

Controller, Statistics and Debugging unit (SDU), or by a write into a special

configuration register either by software or JTAG. Processor interrupts can be soft, i.e.

the LSU waits while the processor is stalled because of outstanding memory operations

 40

and asserts processor interrupt pins. After a soft interrupt is handled, execution of an

application can be restarted transparently. If a hard interrupt is requested, the processor is

unstalled by the LSU even if there are outstanding memory operations. Only the Quad

Protocol Controller can initiate hard interrupts, because the Protocol Controller must then

cancel all outstanding cache and sync miss requests. Hard interrupts are not restartable,

i.e. execution of the application can not be restarted because there is no guarantee that the

application state is restored after return from the interrupt. Hard interrupts are required to

handle such events as transaction violation (Section 6.2).

3.4.2 CROSSBAR

The Tile crossbar routes mat accesses from the LSU and Protocol Controller ports

(Figure 3.7) to the memory mats. It also performs arbitration between two processors and

the Protocol Controller every cycle if there are conflicting accesses. If the processor loses

arbitration, then the LSU stalls the processor clock just like in the case of a cache miss

and re-tries the operation in the next cycle. The Protocol Controller has priority over

processors because it is simpler to stall the processor clock rather than to stall the

Protocol Controller pipeline. To simplify and to speed up arbitration, the crossbar does

not arbitrate between ports of the same processor. Some special memory instructions,

which read and write configuration state (Appendix A), can access any memory mat,

skipping segment table translation and permission checks. To avoid potential crossbar

conflicts and to simplify logic, whenever the LSU receives such an operation request

from the processor it asserts the IRamBusy input of the processor without stalling the

processor clock. This signal tells the processor that the instruction fetch was not

successful and should be re-tried in the next cycle.

Reads and writes to Tile configuration registers are also routed by the crossbar just like

memory mat accesses.

 41

3.4.3 STATISTICS AND DEBUGGING UNIT

The Statistics and Debugging unit (SDU) counts different types of events such as the

number of certain types of operations (instruction fetches, loads, stores, etc.), number of

cache or sync misses, number of cycles between events, etc. The SDU can generate a

latency histogram for certain types of memory operations. Histogram state is stored in

one or two memory mats that can be dedicated for statistics. Similarly, the SDU can be

programmed to generate profile counts for certain types of events using one or two

memory mats as storage. Profile binning is determined by the bits of the processor

program counter (PC) or memory operations address, or by a combination of the two.

Also, the SDU can store a compressed processor instruction trace from the processor

trace port into the memory mats. To access memory mats the SDU has a dedicated

crossbar port.

The Tile configuration unit contains all SDU configuration state that is accessible to

software or through JTAG. Software running on the processor can start, stop and reset

statistics counters using raw loads and stores. Another way to control the SDU is to use

the spec_cmd instruction (Appendix A). The spec_cmd instruction is ignored by the LSU,

however, the SDU can be configured to start or to stop a counter whenever the processor

executes such an instruction. This instruction has very low overhead because it doesn’t

have any register operands and does not require any extra instructions to load register

values. It is used by transactional runtime to produce detailed execution cycle statistics

(Section 6.4).

The SDU can be programmed to generate a processor interrupt under certain conditions,

for example, when a counter overflows or reaches a programmed value. The SDU sends

an interrupt signal to the LSU, which asserts processor interrupt pins. This feature can be

used to handle counter overflow in software, to do sampling profiling, or for debugging

purposes, e.g. to interrupt a processor when there is a cache miss to a certain address.

 42

The SDU can signal the LSU to stall the processor when the SDU needs extra cycles to

handle an event, e.g. when the profiling counter in the memory mat is incremented.

The Statistics and Debugging unit consists of:

• eight 64-bit event counters;

• 2 profiling counters;

• latency histogram block;

• processor trace block;

• shared comparator block:

- 8 event comparators;

- 6 program counter comparators;

- 4 address range comparators.

Each Tile has two Test Access Port (TAP) units connected to the processors. TAP units

are used for on-chip debug (OCD) functionality [82]. OCD allows a GDB debugger

running on a host PC to connect to the Tensilica processor via a JTAG port. Through

OCD, GDB can set a debug breakpoint or watchpoint, single step program execution,

execute a random instruction, or access processor registers.

3.4.4 TILE TIMING

Tile timing is determined by very tight timing constraints on the processor clock signal as

shown in Figure 3.8. The forward path for the memory operation data issued by the

processor goes through the flop in the interface logic and then through the flop in the

memory mat. In the reverse path, the output of the memory mat goes to the stall logic and

determines whether the processor clock should be stalled or not. To avoid glitches on the

processor clock, the output of the stall logic must go through a flop or latch clocked with

an inverted clock. The whole reverse path including memory mat, crossbar and stall logic

 43

delays must fit in a half clock cycle. This half cycle path is the most critical in the design

and determines Tile clock cycle time.

Interface Logic (LSU)

CLK

Memory
Mat

F
E

stage
M1

stage
M2

stage
W

stage F F F

F F

CLK

Crossbar

F

CLK
stall
logic

Xtensa Processor

Figure 3.8: Tile pipeline

To relax timing constraints, the processor is clocked with an inverted clock: the delay of

the reverse path in Figure 3.8 must fit within the whole clock cycle, rather than just the

half cycle.

3.4.5 TILE RECONFIGURABILITY OVERHEAD

It is impossible to calculate area breakdown for a Tile after layout generation (Figure 3.9)

because placement and routing are performed on a flattened Tile netlist. Instead, Table

 44

3.1 shows Tile area breakdown after logic synthesis but before placement and routing. An

upper bound on reconfigurability overhead can be estimated by calculating the minimal

equivalent area of a fixed (non-reconfigurable) chip with the same computational

capabilities and the same amount of local memory: 2 processors, 32 memory macros, and

statistics and debug unit. The area of such an equivalent configuration would be 1.8 mm2

+ 1.4 mm2 + 0.24 mm2 = 3.44 mm2 or 49% (Table 3.1). However, even a fixed

configuration would need interface logic and wire buffers to connect processors to

memories and to the Protocol Controller, which is likely to take at least several percent of

the area. Therefore, reconfigurability overhead is less than 50%.

Processor 0

LSU
Processor 1

Configuration
Registers

Crossbar

Figure 3.9: Tile layout after place&route

Table 3.1 shows that the largest component of the overhead is the logic and registers in

the Memory Mats: 2.6 mm2 or 37% of the Tile area. This is because half of the metadata

 45

bits in the Memory Mats are implemented using flip-flops instead of more area efficient

memory macros. The reason for this is the required flexibility of metadata storage: to

support TCC mode, metadata bits must be gang writable (Section 6.2). This metadata

storage had to be implemented only using standard cells in ASIC design flow. However,

a full custom design can significantly reduce this overhead [40, 41].

Table 3.1: Tile area breakdown after logic synthesis

Module Area,
mm2

% Logic,
mm2

Registers,
mm2

Memory
macros, mm2

Tile 7.022 100.0 0.025 0.010 0.000
Protocol Controller interface 0.027 0.4 0.027 0.000 0.000
LSU 0.349 5.0 0.213 0.136 0.000
Memory Mats 4.045 46.9 1.397 1.233 1.414
Processor 0 0.899 12.8 0.639 0.260 0.000
Processor 1 0.911 13.0 0.651 0.260 0.000
Stats-Debug Unit 0.243 3.5 0.141 0.102 0.000
Configuration Registers 0.245 3.5 0.143 0.102 0.000
Crossbar 0.248 3.5 0.239 0.008 0.000

3.5 QUAD

A Smart Memories Quad consists of four Tiles and a shared configurable Protocol

Controller as shown in Figure 3.10. The Protocol Controller is connected to the Tile

crossbars and interface logic units (LSU). The Protocol Controller implements basic

cache functionality such as cache line refill and eviction as well as cache coherence

functions: cache-to-cache transfers within a Quad and off-Quad cache snoops.

46

Figure 3.10: Quad

One of the key decisions in the Smart Memories architecture design was to share the

Protocol Controller among four adjacent Tiles because of the following reasons:

- Sharing the Protocol Controller reduces overheads of reconfigurability, which is

significant because the Protocol Controller is designed to implement different

memory protocols. This was especially important in the initial phases of the design

when the cost of reconfiguration was hard to estimate.

- Sharing reduces the cost of the network interface/router and reduces the number of

network hops required to cross the chip.

Interface Unit

Crossbar

Tile 0

Interface Unit

Crossbar

Tile 2

Tile 1

Interface Unit

Crossbar

Interface Unit

Crossbar

Tile 3

TAP 1 TAP 0

TAP 1 TAP 0

TAP 1 TAP 0

TAP 1 TAP 0

To On-Chip Network

Protocol
Controller

 47

- A single shared Protocol Controller simplifies intra-quad cache coherence

implementation because outstanding cache misses requests are tracked in a single

centralized hardware structure. There is no need for a coherent bus between Tiles.

3.5.1 PROTOCOL CONTROLLER

Instead of dedicated hardware for a specific memory protocol, the Protocol Controller

implements a set of primitive operations that can be combined and sequenced by a

configuration memory. A request from a Tile is translated into a sequence of primitives

specific to a given protocol.

These primitive operations are divided into four main categories:

- Tracking and serialization: in some memory protocols such as cache coherence,

memory requests issued to same addresses have to be serialized to satisfy protocol

requirements. The Protocol Controller performs request serialization because all

memory requests from all Tiles go through it. In addition, the Protocol Controller

keeps track of all outstanding memory requests from all processors in the Quad and

can merge several requests if possible.

- Control state checks and updates: for a protocol such as cache coherence, the control

state associated with the data needs to be read and updated according to the protocol

state transition rules. The Protocol Controller can access all four Tiles in the Quad

and can use metadata from them to determine how to process memory request.

- Data movements: data transfers between any two mats or two sets of mats regardless

of their location, and transfers over the network interface to other Quads or to off-

chip memory controllers.

- Communication: the Protocol Controller has interfaces to Tile LSUs and to other

Quads and memory controllers in the system.

 48

Figure 3.11: Protocol Controller block diagram

As shown in Figure 3.11 several blocks of the Protocol Controller directly correspond to

the above classes of primitive operations: tracking unit (T-Unit), state update unit (S-

Unit), data movement unit (D-Unit), LSU and network interface units. There are also

special storage structures: miss status holding registers (MSHR) and similar registers for

uncached off-tile requests (USHR), and line buffers which are used as temporary storage

for data. In addition to these major functional units, the Protocol Controller has a few

extra units which are used for special operations: an interrupt unit, a configuration and

statistics unit, and a set of eight direct memory access (DMA) channels.

The Processor Interface unit connects to the Tile’s LSU units. Each cycle it arbitrates

between Tiles and selects 1 cache miss request and 1 uncached memory request, both of

which are passed to the T-Unit. Requests from the head of each LSU queue are buffered

internally inside the Processor Interface to avoid resending the same request from the

LSU to the Protocol Controller.

 49

The T-Unit acts as the entry point to the Protocol Controller execution core: all

request/reply messages from processors, network interface and internal DMA channels

must go through the T-Unit. For each request, an entry in the appropriate tracking

structure is allocated and the request information is recorded, and then passed to the next

unit.

MSHRs are used to store processor cache miss information as well as coherence snoop

requests from Memory Controllers. The MSHR block has an associative lookup port that

allows the T-Unit to check conflicts between new cache misses and already outstanding

ones and enables optimizations such as request merging. USHRs are separate but similar

structures used to store information about a processor’s direct memory requests for any

locations outside of its own Tile. It also keeps information about outstanding DMA

transfers generated by DMA engines.

If no conflict with an already outstanding request is detected, the request is written into a

free MSHR or USHR during the next pipeline stage after associative lookup. If a request

cannot be accepted due to conflict or because the MSHR structure is full, the T-Unit

returns a negative acknowledgement (NACK) and the sending party must retry the

request later. If a reply for an outstanding request is received, the T-Unit reads

information for the request from an MSHR or a USHR and passes it to the next Protocol

Controller unit to complete processing.

The S-Unit reads and updates metadata state associated with the data, such as cache line

state, cache tags, etc. Its pipeline has four stages and a small output queue at the end. A

round robin arbiter at the input selects the next request to be processed by S-Unit.

The Access Generator block in the first stage of the pipeline generates all necessary

signals for memory mat access. It can generate two independent accesses to memory mats

and can access either a single Tile or all Tiles simultaneously; for example, when a cache

miss request is processed, the S-Unit can evict a line from the cache of the requesting

 50

processor and simultaneously update the state of the cache line in other Tiles to enforce

cache coherence. Generated mat accesses are flopped and sent to memory mats in the

second stage. All the necessary control signals for memory mat access, i.e. data opcode,

metadata opcode, PLA opcode, masks, etc., are stored in a microcode memory inside the

access generator block, which is indexed by the type of the input request to the S-Unit,

and hence can be adjusted according to the memory protocol.

The Decision Block at the last stage of the pipeline receives the value of all metadata bits

read from memory mats as well as the Total Match and Data Match signals and

determines the next step in processing the request. For example, when serving a cache

miss request, if a copy of the line is found in another cache, a cache-to-cache transfer

request is sent to D-Unit. Or if the evicted cache turns out to be modified, a write back

request is generated. The decision is made by a ternary content-addressable memory

(TCAM) which matches collected state information to one of several predefined patterns

and generates up to 3 operations for the next processing step and identifies which

Protocol Controller units should perform them. The data and mask bits inside the TCAM

can be programmed according to the protocol.

A small output queue buffers requests before sending them to other units. The size of this

buffer is large enough to drain the S-Unit pipeline, so as to avoid pipeline stalls when a

memory mat access is in flight. The arbiter logic in front of the S-Unit pipeline always

checks the availability of buffer space in the output queue and does not accept new

requests if there is not enough free entries in the queue.

The D-Unit (Figure 3.12) also has an arbiter at the input that decides which request

should be accepted. The Dispatch Block determines which Tiles should be accessed as

part of request processing. Four Data Pipes associated with the four Tiles receive requests

from their input queues and send the results to their output queues. A small finite state

machine generates replies for processors.

 51

DispatchArb
From
Other
Units

Data Pipe 1

Data Pipe 2

Data Pipe 3

Processor
Reply FSM

F
F

To Other
Units

F
F

Access
Generator

F
F

F
F

Condition
Check

To/From Tile Memory Mats

To Line Buffer
(Read port)

From
Line Buffer

To Line Buffer
(Write port)

Data Pipe 0

Figure 3.12: D-Unit

For a simple cache refill the D-Unit just writes data to memory mats of one Tile. For a

more complex cache-to-cache transfer the D-Unit reads the data from the source cache

first and then writes it to the destination cache with appropriate read/write scheduling.

The Dispatch Block uses an internal TCAM to determine the type and schedule of

appropriate data read/writes for each Data Pipe and then places them into input queues. It

also initiates the processor reply FSM when needed.

The Data Pipe (Figure 3.12) has a port to memory mats in the associated Tile as well as a

read and write port to the line buffer. The Access Generator in the first stage generates

necessary control signals to read/write memory mats and the line buffer. Similarly to the

S-Unit, all necessary signals are extracted from microcode memory within the Access

Generator and can be changed to implement any type of access. The condition check

block at the last stage receives the metadata bits associated with the each of the accessed

words and can match them with a predefined bit pattern. This allows the Data Pipe to

generate the request for the next unit according to the extracted bit pattern. For example,

 52

one of the metadata bits in the mat is used as a Full/Empty (FE) bit for fine grain

synchronization operations (Section 4.2). The Data Pipe decides whether to reply to the

processor or to send a synchronization miss message to the Memory Controller

depending on the status of the FE bit.

Like the S-Unit, the D-Unit has a shallow output queue that ensures that all the operations

in the Data Pipe can be drained such that a memory mat access need never be stalled in

flight.

Line buffers are a multi-port/multi-bank storage structure for data associated with

requests in flight. Line buffer storage is augmented with per-byte valid bits, which allow

merging of data from multiple sources. For example, store miss data is written into the

line buffer immediately after the request is accepted by the Protocol Controller for

processing and the corresponding valid bit or bits are set. This data is later merged with

fetched cache line data before the line is refilled into the requestor’s cache. Multiple store

misses to the same cache line can be merged in the line buffer even if these misses

originate from different processors. A second set of byte valid bits is required for

transaction commit as described in more detail in Section 6.2.

The Network Interface unit consists of separate receiver and transmitter blocks that

operate independently. A priority queue stores the requests for outbound transmissions

until the transmitter is ready to send. Transmitter logic composes packet headers based on

the request type and attaches the data to the header. In case of long packets, data is read

from the line buffer and immediately placed in the outgoing queue.

The priority queue in front of the transmitter receives a virtual channel number along

with the packet request. Virtual channels might have ordering priorities, which are

required by certain memory protocols to avoid message re-ordering. The transmitter

queue takes into account virtual channel priority when the next message is selected for

transmission, hence the name priority queue. The priority queue is sized such that it can

 53

absorb and store all active requests within the execution core. This guarantees that all

active requests in the Protocol Controller that need to send out a packet can be safely

drained into the queue even when the outgoing link is blocked (due to back pressure, for

example). This is necessary to guarantee deadlock-free operation of the Protocol

Controller when it processes multiple requests simultaneously.

The network receiver block has eight buffers for different virtual channels. A decoder

detects the virtual channel of the received network data and places it in the appropriate

virtual channel buffer. After arbitration, the header of the selected packet is decoded and

a request is generated for an execution core based on the packet type. In the case of long

packets, data words are first written into the line buffer before the request is passed to the

execution core.

In addition to the execution part, the Protocol Controller has eight DMA channels, which

generate memory transfer requests that enter the execution part via the T-Unit. Channels

can do continuous copy, as well as strided and indexed gather/scatter operations. Each

DMA channel is a micro-coded engine that generates requests according to the loaded

microcode. This makes the DMA engine a very flexible request generator that can be

used by many applications. For example, after completion of a transfer, DMA channels

can generate interrupt requests for processors that are waiting for the transfer, or release a

lock variable on which processors are waiting. Another example is the use of DMA

channels to commit the speculative modifications of transactions (Section 6.2).

An Interrupt Unit (INT-Unit) connects the Protocol Controller to the interrupt interface of

each processor. A write into one of eight special registers inside this unit will generate an

interrupt for the corresponding processor. In addition, the INT-Unit implements a small

state machine to handle hard interrupts (Section 3.4.1, Section 6.2). This state machine

sends a cancel request to the execution part of the Protocol Controller to ensure that there

are no outstanding synchronization misses from a processor before processor interrupt is

raised and interrupt handler is executed.

 54

3.5.2 EXAMPLE OF PROTOCOL CONTROLLER OPERATION

Figure 3.13 shows an example of a Protocol Controller operation. In this case the

Protocol Controller receives a cache read miss request. The requested cache line is found

in another Tile in the same Quad, and the cache line to be evicted from the requestor’s

cache is not modified and therefore doesn’t need to be written back. In the first step, the

Processor Interface receives the cache miss request and sends it to the T-Unit. After

allocating an MSHR and saving the request information, the T-Unit sends an S-Read miss

request to the S-Unit. The S-Unit searches the Tile caches, ensures that the requesting

cache is not already refilled (by doing a probe access) and issues a transfer request to the

D-Unit. The D-Unit moves the cache line from the source Tile to the destination Tile,

sends a reply to the processor and a tag write command to the S-Unit to write new tags

and cache line state in the requesting cache.

Figure 3.13: Example of cache miss processing

3.5.3 RELATED WORK AND DISCUSSION OF PROTOCOL CONTROLLER DESIGN

The Quad Protocol Controller is a flexible controller that performs most of the control

functions inside the Quad: memory request tracking, serialization, merging, protocol state

sequencing, and communication over the interconnection network. In some ways it is

similar to the flexible memory controller implemented by the MAGIC chip in the

Stanford FLASH system. It too was designed to implement a variety of cache coherence

 55

protocols as well as to support message passing protocols [83-85]. The MAGIC chip had

many similar hardware features: line buffers to store data, lookup tables to track

outstanding requests, additional control state associated with the data, and processor,

network and memory interfaces. In addition, MAGIC used a programmable processor

that executes message handlers to implement the logic of a particular cache coherence

protocol.

The main difference between MAGIC and the Smart Memories Protocol Controller is the

latency and message throughput that the designs can support. Since the Protocol

Controller is responsible for managing first level caches which are very latency sensitive

it is designed as a set of programmable finite state machines or pipelines that can often

initiate a new operation each cycle. In contrast, MAGIC is a separate chip and receives

cache miss requests from the processor’s off-chip bus, which makes the latency of

request processing less critical. This difference allows the Protocol Controller to be

shared among eight processors in a chip multi-processor while MAGIC is dedicated only

for one processor. As shown in [84] the occupancy of the MAGIC chip can be quite high

even though it processes requests for only one processor. Finally, combined with the

meta-data storage, the Protocol Controller provides significantly more flexibility in

memory system functionality allowing it to support such different programming and

memory models as shared memory, streaming and transactions.

3.6 ON-CHIP NETWORK

Because the Smart Memories architecture is designed to be scalable to a large number of

processors on a chip, it uses network-on-chip (NoC) to interconnect multiple Quads and

Memory Controllers. NoC is a promising approach for scalable on-chip interconnect [77].

This section describes the general interface from Smart Memories units to the NoC and

high-level requirements imposed by the architecture and memory protocols on the

interconnection network such as packet ordering and virtual channel priority. The Smart

Memories architecture does not specify other network parameters such as topology and

 56

routing because it does not depend on these implementation parameters as long as higher-

level requirements are satisfied.

In Smart Memories, network packets are divided into smaller sub-blocks called flits (flow

control digit) where each flit is 78-bit wide. There are three categories of packets: single-

flit, two-flit and multi-flit. Correspondingly, there are five types of flits: Head, Tail, Body,

Head_Tail, and Null. Null flit type means that no packet/data is transmitted over the

interface. Each flit carries a 3-bit flit type and a 3-bit virtual channel number in addition

to the payload. Figure 3.14 shows the possible formats of the flit payloads.

VC
(3)

Flit Type
(3)

Header
(40)

Address
(32)

Data
(32)

Data
(32)

MetaData
(4)

Data
(32)

MetaData
(4)

VC
(3)

Flit Type
(3)

VC
(3)

Flit Type
(3)

Payload

Figure 3.14: Flit Payload Formats

Packet exchange over the network is controlled by an explicit credit-based flow control

mechanism; after each flit is consumed by the upstream network interface, an explicit

credit is sent back to the downstream network interface. Whenever the available credit is

lower than the length of the packet to be sent, the packet is stalled and the interface waits

for more credits before it can transmit again.

The Smart Memories network supports eight independent virtual channels. These virtual

channels are necessary for correct, deadlock-free implementation of memory protocols,

not because of network implementation requirements such as deadlock avoidance at the

 57

routing level or network quality-of-service (QoS). Virtual channel assignment for

different requests/replies over the network can be configured within the Quads and

Memory Controllers. Messages or packets traveling on the same virtual channel must be

ordered. Virtual channels support a flexible priority scheme: for each virtual channel, an

8-bit mask indicates which other virtual channels can block it. For example, setting this

mask to 8’b0000_0011 for virtual channel two indicates that it can be blocked by virtual

channels zero and one, or in other words, virtual channels zero and one have priority over

virtual channel two. Of course, a virtual channel should not block itself. Also, because

packets on the same virtual channel must be ordered and virtual channels can be

prioritized, the overall network must be ordered, i.e. virtual channels can not be routed on

different physical wires. Table 3.2 shows the assignment of request/replies to virtual

channels and their priorities used in the Smart Memories architecture.

Table 3.2: Virtual channel assignment

VC Message Types Blocked by

VC0 Reserved

VC1 Coherence replies, cache refills, writebacks, DMA
(Gather/Scatter) replies, wake up notifications, replies to off-Tile
memory accesses, sync misses, cancel replies

VC2 Coherence requests, cache misses, DMA (Gather/Scatter)
requests, off-tile memory accesses

VC1

VC3 Quad-to-Memory Controller sync cancel VC1

VC4 Quad-to-Quad sync cancel requests VC2

VC5 Unused

VC6 Unused

VC 7 Unused

The Smart Memories network provides some basic facilities for broadcast and multicast.

For example, for canceling an outstanding synchronization operation, a Quad broadcasts

 58

the cancel message to all Memory Controllers. To enforce coherence, a Memory

Controller sends a coherence message to all Quads except the one originating the cache

miss. The broadcast/multicast features of the network allow network interfaces to send

out a single request rather than generating separate requests for all desired destinations.

3.7 MEMORY CONTROLLER

The Memory Controller is an access point for the off-chip DRAM memory and it also

implements some functionality for memory protocols, for example, for cache coherence

between different Quads.

The Memory Controller communicates with Quads via an on-chip network. A Smart

Memories system can have more than one Memory Controller. In this case, each Memory

Controller handles a separate bank of off-chip memory and memory addresses are

interleaved among the Memory Controllers.

Since all Quads send requests to a Memory Controller, it serves as a serialization point

among them, which is necessary for correct implementation of memory protocols such as

coherence. Similar to a Quad’s Protocol Controller, the Memory Controller supports a set

of basic operations and it implements protocols via combinations of these operations.

The architecture of the Memory controller is shown in Figure 3.15. C-Req and C-Rep

(cached request and reply) units are dedicated to cache misses and coherence operations.

The U-Req/Rep unit handles DMA operations and uncached accesses to off-chip

memory. The Sync Unit stores synchronization misses and replays synchronization

operations whenever a wakeup notification is received.

 59

N
etw

ork Interface

Figure 3.15: Memory Controller

The C-Req and C-Rep units integrate the cache miss and coherence request tracking and

serialization, state monitoring and necessary data movements required for handling cache

miss operations in one place. In general, memory accesses that require coordination

between Quads, such as cache misses in a cache coherent system or commit of

transaction modifications in a transactional memory system, are handled by these two

units.

The network interface delivers Quad requests to the C-Req unit and Quad replies to the

C-Rep unit. Quad requests start their processing at the C-Req unit. Similarly to the

 60

Protocol Controller, each incoming request is first checked against outstanding requests

and is accepted only if there is no conflict. Outstanding request information is stored in

the Miss Status Holding Register (MSHR) structure, which has an associative lookup port

to perform an address conflict check. If no serialization is required and there is no

conflicting request already outstanding, an incoming request is accepted by C-Req and is

placed in the MSHR. In case of a collision, a request is placed in the Wait Queue

structure and is considered again when the colliding request in the MSHR completes.

When a memory request requires state information from other Quads or the state

information in other Quads has to be updated, the C-Req unit sends the appropriate

requests to other Quads via the network interface. For example without a directory

structure in the memory, in the case of a cache miss request, caches of other Quads have

to be searched to see if there is a modified copy of the cache line. Similarly, during

commit of the speculative transaction modifications, the data has to be broadcast to all

other running transactions. The network interface has the basic capability of broadcasting

or multicasting packets to multiple receivers and is discussed in Section 3.6. The C-Req

unit also communicates with the memory interface to initiate memory read/write

operations when necessary.

The C-Rep unit collects replies from Quads and updates the MSHR structure accordingly.

Replies from Quads might bring back memory blocks (e.g. cache lines) and are placed in

the line buffers associated with each MSHR entry. After the last reply is received, and

based on the collected state information, C-Rep decides how to proceed. In cases where a

memory block has to be returned to the requesting Quad (e.g., for a cache miss request),

it also decides whether to send the memory block received from main memory or the one

received from other Quads.

The U-Req/Rep unit handles direct accesses to main memory. It can perform single word

read/write operation on the memory (un-cached memory accesses from processors) or

block read/writes (DMA accesses from DMA channels). It has an interface to the

 61

Memory Queue structure and places memory read/write operations in the queue after it

receives them from the network interface. After completion of the memory operation, it

asks the network interface to send back replies to the requesting Quad.

As discussed in the earlier sections, Smart Memories supports a fine-grain

synchronization protocol that allows processors to report unsuccessful synchronization

operations to Memory Controllers, also known as synchronization misses. When the state

of a synchronization location changes, a wakeup notification is sent to the Memory

Controller and the failing request is retried on behalf of the processor. The Sync Unit is in

charge of managing all the synchronization misses and replaying operations after wakeup

notifications are received.

Information about synchronization misses is stored in the Sync Queue structure. The

Sync Queue is sized such that there is at least one entry for each processor in the system6.

When a synchronization miss is received, its information is recorded in the Sync Queue.

When a wakeup notification is received for a specific address, the outstanding

synchronization miss on that address is removed from the Sync Queue and a replay

request is sent to the appropriate Quad to replay the synchronization operation.

The Sync Unit also handles cancel requests received by the network interface. A cancel

request erases a synchronization miss from a specific processor if it exists in the Sync

Queue. The Sync Unit invalidates the Sync Queue entry associated with the processor

and sends a Cancel Reply message back to the Quad that sent the Cancel request.

The network interface of the Memory Controller is essentially the same as the Protocol

Controller network interface, as discussed in Section 3.5.1. It has separate transmit and

receive blocks that are connected to input/output pins. It can send short and long packets

and has basic broadcast capabilities which are discussed in Section 3.6.

6 Since synchronization instructions are blocking, each processor can have at most one

synchronization miss outstanding

 62

The memory interface is a generic 64-bit wide interface to the off-chip memory that is

operated by the Memory Queue structure. When one of the Memory Controller units

needs to access main memory, it places its read/write request into the Memory Queue and

the reply is returned to the issuing unit after the memory operation is complete. Requests

inside the queue are guaranteed to complete in the order in which they are placed in the

queue and are never re-ordered with respect to each other. Block read/write operations

are always broken into 64-bit wide operations by the issuing units and are then placed

inside the Memory Queue structure.

The Memory Controller can be optionally connected to the second level cache. In this

case, the Memory Controller tries to find the requested cache line in the second level

cache before sending a request to the off-chip DRAM. The second level cache can reduce

average access latency and required off-chip bandwidth. Note that there is no cache

coherence problem for second level caches if there is more than one Memory Controller

because Memory Controllers are address-interleaved and a particular cache line will

always be cached in the same second level cache bank.

3.8 SMART MEMORIES TEST CHIP

To evaluate a possible implementation of a polymorphic architecture, the Smart

Memories test chip was designed and fabricated using STMicroelectronics CMOS 90 nm

technology. It contains a single Quad, which has four Tiles with eight Tensilica

processors and a shared Protocol Controller (Figure 3.16). To reduce the area of the test

chip, the Memory Controller with DRAM interface is placed in an FPGA on a test board,

the Berkeley Emulation Engine 2 (BEE2) [110]. Up to four Smart Memories test chips

can be connected to four FPGAs on a BEE2 board, forming a 32-processor system.

The Smart Memories test chip was designed using standard cell ASIC design

methodology. Verilog RTL for all modules was synthesized by the Synopsys Design

Compiler, and was placed and routed by Synopsys IC Compiler. Physical characteristics

 63

of the test chip are summarized in Table 3.3. The chip area is 60.5 mm2, and the core

area, which includes Tiles and Protocol Controller, is 51.7 mm2 (Table 3.4).

Table 3.3: Smart Memories test chip details

Technology ST Microelectronics CMOS 90 nm
Supply voltage 1.0 V
I/O voltage 2.5 V
Dimensions 7.77mm × 7.77mm
Total Area 60.5 mm2
Number of transistors 55 million
Clock cycle time 5.5 ns (181 MHz), worst corner
Nominal power (estimate) 1320 mw
Number of gates 2.9 million
Number of memory macros 128
Signal pins 202
Power pins 187 (93 power, 94 ground)

Figure 3.16: Smart Memories test chip die

The area breakdown for the test chip is shown in Table 3.4. Tiles, which contain all

processors and memories, consume 66% of the chip area, while the area of the shared

 64

Protocol Controller is 12%. The percentage of overhead area (22%) would be smaller for

larger scale systems containing multiple Quads.

Table 3.4: Smart Memories test chip area breakdown

Module Area, mm2 %
Tiles 40.0 66.1
Protocol Controller 7.2 11.9
Chip core 51.7 85.4
Routing channels 4.5 7.5
Pad ring 8.8 14.6
Chip 60.5 100.0

3.9 SUMMARY

This chapter presented the design of the Smart Memories architecture, which leveraged

Tensilica processors allowing us to focus on the reconfigurable memory system. By

creating local memory storage containing metadata bits and a programmable local

memory controller we created a system that can support a wide number of memory

models including streaming, transactions and cache coherent threads. Based on this

architecture we created a test chip implementation with eight processors and evaluated

hardware overheads of reconfigurability. While the overheads in the current system are

high (slightly less than 50%) this is the result of using flops for building some of the

storage arrays the system requires. Since others have already demonstrated these

memories can be built with small overhead, the final overhead for configuration should

be much smaller. The next chapters show how three different programming models can

be mapped onto Smart Memories architecture.

65

CHAPTER 4: SHARED MEMORY

This chapter describes how a shared memory model with broadcast-based MESI cache

coherence protocol and relaxed memory consistency can be mapped onto the

reconfigurable Smart Memories architecture and presents performance evaluation results

showing good scaling for up to 32 processors. Also, the chapter discusses how the

flexibility of Smart Memories can be used to extend the shared memory model to provide

fast fine-grain synchronization operations, which are useful for optimization of

applications with producer-consumer patter. Finally, we describe how the flexibility of

the memory system can be used to adjust the cache configuration for the requirements of

a particular application.

4.1 HARDWARE CONFIGURATION

For the shared memory programming model (Section 2.3.1) the on-chip memory

resources of the Smart Memories architecture are used as instruction and data caches.

Figure 4.1 shows an example of a Tile configuration for shared memory mode. In this

case, memory mats inside the Tile are used as a 32 KB 2-way set-associative data cache

and a 16 KB 2-way set-associative instruction cache. Each way of the cache has its own

dedicated tag mat as highlighted in Figure 4.1. In this example, the processors share both

caches.

Each processor load or store generates 4 memory mat operations: 2 tag mat read-

compares and 2 data mat reads or writes (shown with bold arrows in Figure 4.1). These

operations are routed to the appropriate memory mats by the crossbar according to the

cache configuration. The Total Match (TM) outputs of the tag mats are used as Hit/Miss

signals for corresponding ways of the cache. These signals are routed through the IMCN

(Section 3.4) to the data mats to disable data mat operation in the case of cache miss.

 66

Meta data bits in tag mats are used to store control the state of each cache line: valid (V),

exclusive (E), modified (M), reserved (R), and most-recently-used (MRU) bits. V, E and

M bits are used to indicate the coherence state of a cache line similarly to the

conventional MESI cache coherence protocol. The R bit is used by the Protocol

Controller to reserve a cache line for an outstanding cache miss refill request: after a

cache miss request is accepted for service, the Protocol Controller selects a candidate line

for eviction, performs a writeback if necessary, and sets the line state to reserved. A

processor request results in a cache miss if it tries to access a reserved cache line.

Data Cache Instruction Cache

Interface Logic

TileProcessor 0

Crossbar

Processor 1

Data

Data

Data

Data

Data

Data

Data

Data

Tag0

Tag1

Data

Data

Data

Data

Tag0

Tag1
TM

TM

TM

TM

Figure 4.1: Example of cached configuration

The MRU bit is used to implement a not-most-recently-used eviction policy for set-

associative caches: for every cache hit the MRU bit is set in the cache way where the hit

was detected and reset for all other ways. When the Protocol Controller has to select a

candidate line for the eviction, it uses the MRU bit to detect which way of the cache was

 67

most recently used and randomly selects one of the other ways. In the case of a 2-way

set-associative cache this is equivalent to a least-recently-used (LRU) policy.

The Protocol Controller (Section 3.5.1) performs all necessary cache coherence actions

within a Quad. It checks for conflicts among incoming cache miss requests and ensures

their proper serialization. It also performs snooping within a Quad by sending lookup

requests to caches in other Tiles and performs cache-to-cache transfers in the case of a

snoop hit.

$$$$

Protocol
Controller

$$$$

Protocol
Controller

Memory
Controller

1
2

3 4

6

78

9

...

M

5

1

2

Cache miss request

In-Quad snoops

3
Cache miss request to
Memory Controller

4 Snoop requests to
other Quads

5 Main memory read
request

6 Snoops in caches of
other Quads

8

7 Snoop replies

Memory Controller reply

9 Cache refill

Figure 4.2: Hierarchical cache coherence

In multi-Quad configurations Memory Controllers serve as serialization points for inter-

Quad cache coherence as illustrated in Figure 4.2. The Memory Controller broadcasts

snoop requests to other Quads, collects replies and performs off-chip DRAM accesses.

The cache-coherent mode of the Smart Memories architecture implements relaxed

memory consistency [53]. Loads always complete in-order because processors stall in the

case of a cache miss but stores can complete out-of-order because store cache misses are

non-blocking. There are several reasons for re-ordering: later store misses can be merged

 68

with an already outstanding request in an MSHR in the Protocol Controller or in the

Memory Controller or a later store miss can be serviced faster because its cache line is

found in a neighboring Tile. Thus, a memory barrier instruction must be used to enforce

of memory ordering: it stalls the processor until all outstanding memory operations issued

by the processor are completed.

The Smart Memories cache-coherent mode maintains the property of write atomicity [53]

because it uses an invalidation cache coherence protocol and there is no data forwarding

in the memory system.

4.2 FAST FINE-GRAIN SYNCHRONIZATION

The flexibility of the Smart Memories architecture can be used to extend semantics of

memory operations. For example, meta data bits in the Memory Mats can be used to

implement full/empty (FE) bits [86-94]. Full/empty bits are used as locks associated with

each data word to enable fine-grain producer-consumer synchronization. Tensilica

processors are extended with several memory instructions that use these bits:

Synchronized load stalls the processor if the FE bit associated with the corresponding

data word is empty (zero). When the FE bit is set to 1, the processor is unstalled and the

value of the data word is returned to the processor. After completion of a synchronized

load, the FE bit is atomically reset to 0. A synchronized load is essentially a combination

of a lock acquire with a conventional load.

Synchronized store stalls the processor if the FE bit associated with corresponding data

word is full (one); if the FE bit is 0, the processor is unstalled and the store data is written

into the data word. After completion of a synchronized store, the FE bit is atomically set

to 1. A synchronized store is essentially a combination of a conventional store and a lock

release.

Future load is similar to synchronized load but it does not change the value of the FE bit.

 69

Reset load and set store are similar to synchronized load and store but they do not stall

the processor regardless of the state of the FE bit. These instructions are necessary for

initialization.

To implement synchronized memory operations in the Smart Memories architecture two

metadata bits in the data mats of the caches are used: full/empty (FE) and waiting (W)

bits. The FE bit is used as described above. Whenever a synchronized operation cannot

complete because of the state of the FE bit, interface logic in the Tile generates a

synchronization miss message which is sent to the Protocol Controller and then to the

Memory Controller. The Memory Controller serves as serialization point for

synchronization miss messages and keeps track of outstanding synchronization misses.

The W bit is set to indicate that there is synchronized operation waiting on this address.

When the FE bit is flipped for a data word that also has its W bit set, a wakeup message is

generated and sent to the Memory Controller. The Memory Controller checks if any

synchronization miss is outstanding for the same address and sends a replay message to

the originating Protocol Controller, which tries to re-execute the synchronization

operation in the same cache. If the state of the FE bit was changed between wakeup and

replay, then replay would not be completed and the synchronization miss would be sent

to the Memory Controller again. For correct operation, the synchronization misses and

wakeups must not be re-ordered within the memory system. This condition is ensured by

virtual channel assignment in the on-chip network (Section 3.6).

Synchronized memory operations work with cached data and therefore must interact

correctly with cache coherence. In the Smart Memories implementation, every

synchronized memory operation is treated as an operation requiring exclusive state of the

cache line. Therefore, before synchronized operation can be executed, the cache line must

be fetched or upgraded to exclusive state by the Protocol Controller. The same is also true

for replays of synchronization misses. Such an approach guarantees transparent execution

of synchronized memory operations.

 70

4.3 EVALUATION

Several shared memory applications (Table 4.1) and kernels (Table 4.2) were used to

evaluate performance of shared memory mode of the Smart Memories architecture. All

benchmarks were compiled by the Tensilica optimizing compiler (XCC) with a –O3

option (highest optimization level) and a –ipa option (inter-procedural analysis).

Table 4.1: Shared memory applications

Name Source Runtime Comment
mp3d SPLASH [95] ANL simulation of rarefied hypersonic flow
barnes SPLASH-2 [96] ANL Barnes-Hut hierarchical N-body method
fmm SPLASH-2 ANL N-body adaptive fast multi-pole method
179.art SPEC CFP2000 [97] pthreads image recognition/neural networks

parallelized for [44, 45]
MPEG-2
encoder

 pthreads parallelized for [44, 45]

Table 4.2: Shared memory kernels

Name Source Runtime Comment
radix SPLASH-2 ANL integer radix sort kernel
fft SPLASH-2 ANL complex 1-D FFT kernel
lu SPLASH-2 ANL LU factorization kernel
cholesky SPLASH-2 ANL blocked sparse Cholesky factorization

kernel
bitonic sort pthreads developed and parallelized for [44, 45]

System configuration parameters used for simulation are shown in Table 4.3 (except for

MPEG-2 encoder, for which 8 KB data caches and 16 KB instruction caches were used,

as discussed in Section 4.3.2). Latency parameters for Protocol Controller, Memory

Controller, and network were back-annotated from the actual RTL design. To provide

 71

sufficient off-chip memory bandwidth the number of Memory Controllers is equal to the

number of Quads.

Table 4.3: System configuration parameters

Parameter Value Comment
Off-chip memory latency 100

cycles

Off-chip memory width 64 bits per Memory Controller
Cache line size 32 bytes
Network switch latency 4 cycles
Network interface
latency

5 cycles including message formation, buffering,
arbitration, pipelining and wiring delay within
Quad

Number of MSHRs 16
L1 cache latency 2 cycles
L1 data cache size 16 KB per processor
L1 instruction cache size 8 KB per processor

As shown in Figure 4.3 four out of five applications exhibit good performance scaling,

achieving speedups between 24 and 32 on a 32-processor configuration. The exception is

mp3d, which is limited by off-chip memory bandwidth. mp3d performance of 4 and 8-

proceessor configurations is almost identical: 2.66 vs. 2.78.

 72

0

5

10

15

20

25

30

35

0 5 10 15 20 25 30

Number of processors

linear speedup
mp3d
barnes
fmm
179.art
mpeg2enc

Figure 4.3: Shared memory application speedups

Similarly to mp3d, performance scaling of three out of five kernels is limited by the

DRAM bandwidth (Figure 4.4a). Increase in off-chip bandwidth by doubling the number

of Memory Controllers per Quad results in significant performance improvement for

these applications as shown in Figure 4.4b. For example, the speedup of mp3d on a 32-

processor configuration improves from 10.8 to 18.3.

 73

Figure 4.4: Shared memory kernel speedups

Another way to improve performance of memory intensive applications and kernels is to

add an on-chip second level cache between Memory Controllers and off-chip DRAM.

For these applications it would completely solve the problem; for more realistic

applications it would at least reduce the main memory bandwidth requirements.

4.3.1 PERFORMANCE OF FAST FINE-GRAIN SYNCHRONIZATION OPERATIONS

In order to evaluate the performance of fast fine-grain memory operations (Section 4.2),

mp3d (Section 4.3) was recompiled to use synchronized loads and stores for fine-grain

locking of space cell data structures. By default, these locks are compiled out, and the

accesses to these data structures cause data races. The reason for this is performance: in

conventional shared memory architectures, fine-grain locking is expensive. Since mp3d

performs randomized computation and reports results only after statistical averaging of

many steps of computation, the data races should not alter the results significantly [95].

a) 1 Memory Controller per Quad b) 2 Memory Controllers per Quad

0

5

10

15

20

25

30

0 10 20 30

Number of processors

linear speedup

0

5

10

15

20

25

30

0 10 20 30

Number of processors

linear speedup
mp3d mp3d
radix radix
fft fft
lu lu
cholesky cholesky
bitonic bitonic

 74

In the case of the Smart Memories architecture, fine-grain locking7 with synchronized

loads and stores has little effect on performance as shown in Figure 4.5. Two Memory

Controllers per Quad were used as in Figure 4.4b to provide sufficient off-chip

bandwidth.

Note that mp3d with locks slightly outperforms the default version without locks on 8-32

processor configurations, even though locks require execution of extra instructions. This

happens because mp3d performs many read-modify-write operations on shared data. The

version without locks causes a read cache miss first, which brings the cache line in the

shared state; a later write to the same cache line then also causes an upgrade miss. The

version of mp3d with locks first performs a synchronized load to acquire a lock which

brings the cache line in the exclusive state (Section 4.2) before the read-modify-write

operation, eliminating upgrade miss. As a result, the number of upgrade misses is

decreased by a factor of three, reducing occupancy of the Protocol Controllers.

7 These locks are necessary but not sufficient to make mp3d results deterministic, i.e. re-

producible, independent of thread interleaving.

 75

0

5

10

15

20

25

30

0 10 20

Number of processors
30

linear speedup
no lock
lock

Figure 4.5: mp3d performance with and without locking

This comparison mp3d with and without fine-grain locking is an indication of how well

synchronized memory operations perform on the Smart Memories architecture. But to

realize the benefits of fast fine-grain synchronization, application software must be

redesigned. V. Wong redesigned several probabilistic inference algorithms with fine-

grain locking and showed that fast fine-grain locking can result in significant

performance improvements [99]. For example, a recursive conditioning algorithm can use

synchronized memory operations to cache and share intermediate computation results

between multiple threads to avoid re-computation. As a result, the recursive conditioning

algorithm with fine-grain synchronization and multiple hardware contexts [100, 101]

performs three times better than the original algorithm on a 32-processor configuration

[99].

4.3.2 MPEG-2 ENCODER

The MPEG-2 encoder is an interesting example of an application that presents

opportunities for performance optimization by both restructuring software and utilizing

 76

capabilities of the reconfigurable memory system to fit cache configuration to the

demands of an optimized application.

The original parallel version of an MPEG-2 encoder by Li et al. [98] performs each stage

of the computation, i.e. Motion Estimation, DCT, Quantization, etc., on an entire video

frame before starting the next stage. Such structuring of the application results in a

significant data cache miss rate since the whole video frame typically does not fit into a

first level cache, especially for configurations with a small number of processors. Each

stage of encoding causes writeback of intermediate data, while the next stage has to

reload it from off-chip memory.

Alternatively, an MPEG-2 encoder can be parallelized at the macroblock level [44, 45].

Macroblocks are entirely data-parallel and dynamically assigned to cores using a task

queue. The code was restructured by hoisting the inner loops of several tasks (e.g. Motion

Estimation, DCT) into a single outer loop that calls each task in turn. All tasks are

executed on a single macroblock of a frame before moving to the next macroblock. This

allows one to condense a large temporary array into a small number of stack variables.

The improved producer-consumer locality reduced write-backs from first level caches by

60%. Furthermore, improving the parallel efficiency of the application became a simple

matter of scheduling a single data-parallel loop.

However, this streaming-inspired optimization can lead to a higher instruction cache miss

rate unless the code for all stages of the computation fits into the instruction cache. On

the other hand, the size of the data cache becomes less critical as long as it is large

enough to capture producer-consumer locality within one macroblock. Such

characteristics are quite different from characteristics of other shared memory

applications discussed in Section 4.3.

The reconfigurable Smart Memories architecture can exploit characteristics of the

MPEG-2 encoder to optimize performance by matching cache parameters to the

 77

requirements of the applications. Figure 4.6 shows relative performance for five different

Tile cache configurations with the same amount of data storage:

1) two 8 KB instruction caches and a single 32 KB data cache (2 8K IC/1 32K DC);

2) two 8 KB instruction caches and two 16 KB data caches (2 8K IC/2 16K DC);

3) a single 16 KB instruction cache and a single 32 KB data cache (1 16K IC/1 32K DC);

4) two 16 KB instruction caches and a single 16 KB data cache (2 16K IC/1 16K DC);

5) two 16 KB instruction caches and two 8 KB data caches (2 16K IC/2 8K DC);

All speedups are normalized with respect to a single processor configuration with 16 KB

instruction and 8 KB data caches.

2 16K IC/2 8K DC configurations significantly outperform 2 8K IC/2 16K DC and 2 8K

IC/1 32K DC configurations because of fewer instruction cache misses (Figure 4.7).

Although the size of instruction cache differs only by a factor of two, the difference in

instruction cache miss rate is significant. As a result, the percentage of instruction fetch

stalls is high for configurations with an 8 KB instruction cache, as shown in Figure 4.8,

which significantly degrades performance.

Configurations with a shared instruction cache (1 16K IC/1 32K DC) also have low

instruction miss rates, however, they also suffer from instruction fetch stalls (Figure 4.8)

and have lower performance than configurations with private 16 KB instruction caches,

especially for low processor counts. The reason for this performance degradation is high

utilization of the shared instruction cache (e.g. 72% vs. 46% for private cache) and

additional fetch stalls due to conflicts between two processors in the Tile.

 78

0

5

10

15

20

25

30

0 10 20

Number of processors
30

linear speedup
2 8K IC/ 1 32K DC
2 8K IC/ 2 16K DC
1 16K IC/ 1 32K DC
2 16K IC/ 1 16K DC
2 16K IC/ 2 8K DC

Figure 4.6: MPEG-2 encoder speedups for different cache configurations

This performance difference is specific to the optimized version of MPEG-2 encoder.

Other applications discussed in Section 4.3, as well as the original version of MPEG-2

encoder, exhibit different behavior: they benefit from larger data caches, and the size of

the instruction cache has little effect on performance. MPEG-2 encoder is an example of

how the reconfigurability of the Smart Memories architecture can be used to optimize

memory system performance for a particular application.

 79

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 10 20

Number of processors
30

2 8K IC/ 1 32K DC
2 8K IC/ 2 16K DC
1 16K IC/ 1 32K DC
2 16K IC/ 1 16K DC
2 16K IC/ 2 8K DC

Figure 4.7: Instruction miss rate for different cache configurations (%)

0

10

20

30

40

50

60

70

0 10 20

Number of processors
30

2 8K IC/ 1 32K DC
2 8K IC/ 2 16K DC
1 16K IC/ 1 32K DC
2 16K IC/ 1 16K DC
2 16K IC/ 2 8K DC

Figure 4.8: Instruction fetch stalls for different cache configurations (%)

 80

As the number of processors increases, the percentage of fetch stalls as total execution

time decreases in all configurations (Figure 4.8) because of two factors. First, when many

processors execute the same code at the same time, their fetch miss requests are likely to

be merged by the Protocol Controller (Section 3.5.1) or the requested cache lines are

likely to be found in other caches within a Quad. Because of these optimizations, the

number of fetch misses which need to be sent out of the Quad decreases significantly

(Figure 4.9). Correspondingly, the average fetch latency also decreases (Figure 4.10).

Second, with a larger number of processors, more time is spent on inter-processor

synchronization, which becomes a larger portion of the total execution time.

0

1

2

3

4

0 10 20

Number of processors
30

2 8K IC/ 1 32K DC
2 8K IC/ 2 16K DC
1 16K IC/ 1 32K DC
2 16K IC/ 1 16K DC
2 16K IC/ 2 8K DC

Figure 4.9: Number of out-of-Quad fetch misses (millions)

 81

0

1

2

3

4

5

6

0 10 20

Number of processors
30

2 8K IC/ 1 32K DC
2 8K IC/ 2 16K DC
1 16K IC/ 1 32K DC
2 16K IC/ 1 16K DC
2 16K IC/ 2 8K DC

Figure 4.10: Average fetch latency (cycles)

4.4 CONCLUSIONS

This chapter described the mapping of shared memory cache-coherent model onto the

reconfigurable Smart Memories architecture. Performance evaluation shows that Smart

Memories achieves good performance scaling for up to 32 processors for several shared

memory applications and kernels. This chapter also shows how flexibility in metadata

manipulation is used to support fast fine-grain synchronization operations. Software

developers can use such operations to optimize performance of shared applications with

producer-consumer dependency. In addition to allowing new memory features,

flexibility in cache configuration can be used to tailor memory system to the

requirements of particular application. We demonstrated that this simple feature

achieved significant performance improvements for the MPEG-2 encoder.

82

CHAPTER 5: STREAMING

This chapter describes the streaming mode of the Smart Memories architecture, which

implements the architectural concepts discussed in Section 2.3.2, that is software-

managed local memories and DMAs instead of the coherent caches used in conventional

shared memory systems. Then, we present implementations of software runtimes for

streaming, including a Stream Virtual Machine [61-63], showing how the flexibility of

the Smart Memories architecture is used to simplify and optimize a complex runtime

system. After that, we present performance evaluation results of the Smart Memories

streaming mode and compare it to shared memory mode, showing good performance

scaling. Finally, we take one of the benchmark applications, 179.art, and describe

tradeoffs between different methods of streaming emulation in shared memory mode.

5.1 HARDWARE CONFIGURATION

To support the stream programming model (Section 2.3.2), the memory mats inside the

Tile are configured as local, directly addressable memories (stream data mats in Figure

5.1). The corresponding memory segment (Section 3.4.1) in the Tile’s interface logic

(LSU) is configured to be on-tile, uncached. Loads or stores issued by the processors are

translated into simple read or write requests and routed to the appropriate single memory

mat. Thus, application software executed on the processors can directly access and

control the content of local memory mats. Similarly, processors can access memories in

other Tiles, Quads and off-chip DRAM, thus, streaming application software has

complete control over data allocation in different types of memories and movement of

data between different memories. However, for efficiency reasons it is better to move

data between on-chip and off-chip memories using the software-controlled DMA engines

as described in the next section.

83

Figure 5.1: Example of streaming configuration

One or more memory mats can be used for shared data (shared data mat in Figure 5.1).

Processors from other Tiles and Quads can access the shared data mat via their off-tile,

uncached memory segment. In this case, interface logic and Protocol Controllers route

memory accesses through crossbars and the on-chip network to the destination mat.

Shared data mats contain shared application state such as reduction variables, state for

synchronization primitives such as barriers, and control state for software runtime.

For synchronization between processors, application and runtime software can use

uncached synchronized loads and stores as in the case of cache coherent configurations

(Section 4.2). Uncached synchronized operations are executed directly on local memories

without causing any coherence activity, and therefore are more efficient.

For streaming mode, a few memory mats can be configured as a small instruction cache

as shown in Figure 5.1. Instruction caches typically perform very well for streaming

Interface Logic

Data Cache Instruction Cache

Processor 0

Crossbar

Processor 1

Data

Tile

Stream
Data1

Stream
Data0

Stream
Data0

Shared
Data

Stream
Data0

TM

Tag0

Stream
Data0

Data

Stream
Data1

Data

Stream
Data1

TM

Tag0

Stream
Data1

 84

applications because these applications are dominated by small, compute-intensive

kernels with a small instruction footprint.

Data Cache Instruction Cache Instruction Cache

Figure 5.2: Alternative streaming configuration

If a streaming application is well optimized, it may be able to completely hide memory

latency by overlapping DMA operations with computational kernels. In this case, a

shared instruction cache can become a bottleneck because of high utilization and conflicts

between the processors in the Tile. Therefore, it is more efficient to configure two private

instruction caches within a Tile (Figure 5.2), taking advantage of Smart Memories

reconfigurable architecture.

Finally, some of the data regions, such as thread stack data and read-only data, also

exhibit very good caching behavior. Configuring a small shared data cache as shown in

Figure 5.1 and Figure 5.2 for these data regions simplifies software because the

Interface Logic

Processor 0

Crossbar

Processor 1

Data

Tile

Stream
Data1

Stream
Data0

Stream
Data0

Stream
Data0

TM

Tag0

Data

Shared
Data

Data

Stream
Data1

TM

Tag0

Stream
Data1

Data
TM

Data Tag0

 85

programmer does not need to worry about memory size issues for such data, e.g. stack

overflow.

5.2 DIRECT MEMORY ACCESS CHANNELS

Direct Memory Access (DMA) channels are included in the Quad Protocol Controller

(Section 3.5.1). DMA is used for bulk data transfers between Tile memory mats and off-

chip DRAM. Streaming applications can directly program DMA channels by writing into

control registers of the Protocol Controller.

The following types of DMA transfer are supported by the Smart Memories architecture:

1) copy of contiguous memory region (DMA_MOVE);

2) stride scatter (DMA_STR_SCATTER);

3) stride gather (DMA_STR_GATHER);

4) index scatter (DMA_IND_SCATTER);

5) index gather (DMA_IND_GATHER).

DMA transfers must satisfy several conditions:

- cache memories must not be a source or a destination;

- source or destination should be in the same Quad as the DMA channel;

- index array should be in the local memory mats in the same Quad as the DMA

channel;

- DMA channels work with physical addresses, no virtual-to-physical address

translation is supported;

- DMA channels can perform only simple read and write operations, synchronized

operations can not be executed;

- all addresses must be 32-bit word aligned, and the element size for stride and index

DMA must be a multiple of four bytes;

 86

Upon completion of the transfer, the DMA channel can perform up to two extra stores to

signal the end of the transfer to the runtime or to the application. Each completion store

can:

- perform a simple write into a flag variable;

- perform a write into a memory mat configured as a FIFO;

- cause a processor interrupt by writing into a special interrupt register inside the

Protocol Contoller;

- perform a set store to set the full-empty bit and wake up a processor waiting on a

synchronized load.

Similarly to DMA data transfers, completion stores must write 32-bit words and cannot

write into caches.

5.3 RUNTIME

For streaming mode we developed two different runtime systems. One of them is called

Stream Virtual Machine [61-63]. It was used as an abstraction layer for high-level stream

compiler research [102-104].

The other runtime system is a steaming version of the Pthreads runtime which provides a

low level Application Programming Interface (API). Such an API gives programmer a lot

of flexibility and allows experimentation with streaming optimizations (an example is

described in Appendix B) when a high-level stream compiler is still not available. The

Pthreads runtime allowed us to manually develop and optimize several streaming

applications which were used for streaming mode performance evaluation and

comparison of streaming with shared memory model [44, 45].

87

5.3.1 STREAM VIRTUAL MACHINE

The Stream Virtual Machine (SVM) was proposed as an abstraction model and an

intermediate level API common for a variety of streaming architectures [61-63]. The goal

of SVM infrastructure development is to share a high-level stream compiler such as R-

Stream [102-104] among different streaming architectures.

SVM compiler flow for Smart Memories is shown in Figure 5.3. High-level compiler

(HLC, R-stream in Figure 5.3) inputs are 1) a stream application written in a high-level

language, such as C with Streams, and 2) an SVM abstract machine model. The HLC

performs parallelization and data blocking and generates SVM code, which is C code

with SVM API calls. The Low-level compiler (LLC, Tensilica compiler in Figure 5.3)

compiles SVM code to executable binary (“SM binaries”).

C with Streams

R-Stream
Compiler

SVM machine model for SM

SVM code for SMSVM runtime for SM

Tensilica XCC
Compiler

SM binaries

Smart Memories SM machine configuration

Figure 5.3: SVM compiler flow for Smart Memories

The SVM abstract machine model describes the key resources of the particular streaming

architecture and its specific configuration: computational resources, bandwidth of

interconnect and memories, sizes of local stream memories. This information allows the

 88

HLC to decide how to partition computation and data. The SVM model has three threads

of control, one each for the control processor, the stream processor, and the DMA

engine. The Control processor orchestrates operation of the stream processor and DMA.

The Stream processor performs all computation and can also initiate DMA transfers. The

DMA engine does all transfers between off-chip main memory and local stream

memories.

The SVM API allows specification of dependencies between computational kernels

executed on the stream processor and DMA transfers. Some of these dependencies are

producer-consumer dependencies derived from the application code but others are related

to resource constraints like allocation of local memories [63]. The Control processor

dispatches operations to the stream processor and DMA according to dependencies

specified by the HLC.

The SVM API implementation for Smart Memories takes advantage of the flexibility of

its reconfigurable memory system [63]. An example of SVM mapping on Smart

Memories is shown in Figure 5.4. One of the processors is used as a control processor,

which uses instruction and data caches. One of the memory mats is used as uncached

local memory for synchronization with other processors and DMA engines. Other

processors are used as stream processors for computation. They use instruction cache and

local memory mats for stream data.

To simplify synchronization between control and stream processors and DMA, two

memory mats are used as FIFOs (Figure 5.4). One FIFO is used by the stream processors

to queue DMA requests sent to the control processor. To initiate a DMA transfer stream,

the processor first creates a data structure describing the required transfer, and then it

writes a pointer to this structure into a DMA request FIFO as a single data word.

 89

Another FIFO is used by the DMA engines to signal to the control processor completion

of DMA transfers. Each DMA engine is programmed to write its ID to this DMA

completion FIFO at the end of each transfer.

The control processor manages all DMA engines and dependencies between DMA

transfers and computational kernels. It reads the DMA request FIFO and, if it is not

empty and there is an unused DMA engine, it starts a DMA transfer on that engine. The

control processor also reads the DMA completion FIFO to determine which DMA

transfer is completed and when the next operation can be initiated.

To avoid constant polling of the FIFO, an empty flag variable is used in the local memory

of the control processor. After reaching the end of both FIFOs the control processor

executes a synchronized load to this flag and stalls if it is empty. The DMA engine or the

stream processor performs a set store (Section 4.2) to the empty flag after writing into the

corresponding FIFO. The set store wakes up the control processor if it was waiting. After

wakeup, the control processor checks both FIFOs and processes queued DMA requests

and DMA completions.

90

Figure 5.4: SVM mapping on Smart Memories

Interface Logic

Control Processor

Instruction CacheData Cache

Crossbar

Stream Processor

Data

Tile 0

Stream
Data

SVM
Shared

Data

DMA
request
FIFO

DMA
compl.
FIFO

Tag0

SVM
Local
Data

Data

Stream
Data

Data

Stream
Data

Tag0

Stream
Data

TM TM

Instruction Cache

Data Data Tag0
TM

Interface Logic

Stream Processor

Crossbar

Stream Processor

Data

Instruction CacheData Cache

Tile 1

Stream
Data1

Stream
Data0

Stream
Data0

Stream
Data0

Tag0

Stream
Data0

Data

Stream
Data1

Data

Stream
Data1

Tag0

Stream
Data1

TM TM

Instruction Cache

Data Data Tag0
TM

DMA

DMA

DMA

DMA

Protocol
Controller

 91

Synchronized memory operations and DMA flexibility allows the SVM runtime to avoid

FIFO polling or interrupts, which require at least 50 cycles to store processor state. Using

a memory mat as a hardware FIFO greatly simplifies and speeds up runtime software for

the control processor: instead of polling multiple entities or status variables in the

memory to figure out which units require attention, it has to read only two FIFOs. Also,

hardware FIFOs eliminate a lot of explicit software synchronization between stream and

control processors because both can rely on atomic FIFO read and write instructions.

F. Labonte showed that the SVM API can be implemented very efficiently on Smart

Memories [63]. The percentage of dynamically executed instructions due to SVM API

calls is less than 0.6% for the GMTI application [105] compiled with the R-Stream

compiler. More details and results on SVM and its implementation for Smart Memories

are presented in the cited paper [63].

5.3.2 PTHREADS RUNTIME FOR STREAMING

While the SVM approach is very promising for development of portable streaming

applications written in a high-level language, it depends on the availability and maturity

of a high-level stream compiler such as R-Stream [102-104]. Development of such

advanced compilers is still an area of active research and only a very limited set of

applications can be handled efficiently by the R-Stream compiler.

To evaluate streaming on a wider range of applications, a streaming version of the

POSIX threads (Pthreads) runtime [55] was developed. This runtime was used for a

comparison study of streaming and cache-coherent memory systems in a couple of papers

by Leverich et al [44, 45]. The programmer can use this runtime to parallelize an

application manually and convert it to a streaming version. This approach resembles the

StreamC/KernelC approach for stream application development [26] in that it requires the

programmer to use explicit hardware-specific constructs. However, Pthreads are much

 92

more familiar to programmers and provide a lot more flexibility than the high-level

streaming language used as source for SVM runtime.

The main difference between conventional Pthreads and streaming Pthreads is in the

different types of memories explicitly supported by the runtime, and support for explicit

memory allocation and management. The thread stack and the read-only segment are

mapped to the data cache (Figure 5.1), which is not coherent. This means that automatic

local variables and arrays in the thread-stack segment cannot be shared. However, this is

viewed as bad software practice because the same location on the stack can be used for

different variables in different functions or even in different invocations of the same

function.

Shared variables must be global/static or heap variables, which are allocated to off-chip

main memory and are not cached. These locations can be safely shared among threads;

however, direct access to them is slow because of the absence of caching. The

recommended way to access these locations is through DMA transfer to Tile local

memory: the DMA engine can perform bulk data transfer very efficiently with the goal of

hiding the latency under concurrent computation.

Local memory mats are used for stream data (Figure 5.1), i.e. data fetched by DMA from

off-chip memory. The programmer can declare a variable or array to be allocated in local

memory using the __attribute__ ((section(".stream_buffer")))

construct of the GNU C compiler [106], which is also supported by the Tensilica XCC

compiler. Variables and arrays declared in this way are automatically allocated by the

compiler in the thread-local memory on Tile. A simple local memory heap is

implemented, which allows an application to dynamically allocate arrays in the local

memory during runtime. This is necessary for optimal local memory allocation, which

depends on the data size, the number of processors, and the size of local memory (Section

5.4.1).

 93

Shared runtime data, synchronization locks and barriers, application reduction variables

and other shared data are allocated in the shared memory mat (Figure 5.1) using the

__attribute__ ((section(".shared_data"))) construct. Similarly, a

simple shared memory heap is implemented to support dynamic allocation of shared data

objects.

The stream Pthreads runtime provides programmers with a lot of flexibility. It can

explicitly emulate the SVM runtime by dedicating a single control processor to manage

DMA transfers. However, in many applications, such as investigated in Leverich et al

[44, 45], it is easier to dedicate a DMA engine per execution processor, so that each

processor can issue chained DMA transfer requests directly to the DMA engine and avoid

the overhead and complexity of frequent interaction with the DMA control processor. In

such cases simple synchronization primitives, e.g. synchronization barriers, are usually

sufficient because processors need to synchronize only at the boundaries of different

computation phases or for reduction computations.

5.4 EVALUATION

Several streaming applications were developed using the stream Pthreads runtime for a

comparison study of streaming and cache-coherent memory systems [44, 45]. This

section presents performance results for three of these applications (Table 5.1) and

compares their performance to shared memory versions of the same applications (Section

4.3). These applications were selected because they exhibit different memory

characteristics and different performance behaviors for streaming and cache-coherent

memory systems. Results for more applications are presented in the earlier paper [44, 45].

All benchmarks were compiled with the Tensilica optimizing compiler (XCC) using the

highest optimization options (–O3) and inter-procedural analysis (–ipa option).

 94

Table 5.1: Streaming Applications

Name Source Comment
179.art SPEC CFP2000 [97] image recognition/neural networks
Bitonic sort [44, 45]
MPEG-2 encoder [44, 45] parallelization and stream optimizations are

described in Section 4.3.2

179.art is one of the benchmarks in the SPEC CFP2000 suite [97]. It is a neural network

simulator that is used to recognize objects in a thermal image. The application consists of

two parts: training the neural network and recognizing the learned images. Both parts are

very similar: they do data-parallel vector operations and reductions. Parallelization and

streaming optimization of 179.art are described in Appendix B. The performance of

shared memory and streaming versions is discussed in more detail in the next section.

Bitonic sort is an in-place sorting algorithm that is parallelized across sub-arrays of a

large input array. The processors first sort chunks of 4096 keys in parallel using

quicksort. Then, sorted chunks are merged or sorted until the full array is sorted. Bitonic

Sort retains full parallelism for the duration of the merge phase. Bitonic sort operates on

the list in situ [44, 45]. It is often the case that sub-lists are already moderately ordered

such that a large percentage of the elements don’t need to be swapped, and consequently

don’t need to be written back. The cache-based system naturally discovers this behavior,

while the streaming memory system writes the unmodified data back to main memory

anyway [44, 45].

Parallelization and optimization of the MPEG-2 encoder for shared memory is explained

in detail in Section 4.3.2. A streaming version of the MPEG-2 encoder uses a separate

thread, called a DMA helper thread, to manage DMA engines and DMA requests that are

queued by computational threads. For these experiments, a helper thread shared a

processor with one of the computational threads.

 95

Speedup

0

10

20

30

40

50

0 10 20 30
Number of processors

Speedup

0

10

20

30

40

50

0 10 20 30
Number of processors

linear speedup linear speedup
179.art STR 179.art STR
179.art CC 179.art CC
bitonic STR bitonic STR
bitonic CC bitonic CC
mpeg2enc STR mpeg2enc STR
mpeg2enc CC mpeg2enc CC

Figure 5.5: Performance scaling of streaming applications

Figure 5.5 plots the scaling performance of shared memory (CC) and streaming versions

(STR) of our applications. The streaming version of 179.art outperforms the shared

memory version for all processor counts. Figure 5.7 shows processor execution cycle

breakdown for both versions of 179.art. All bars are normalized with respect to a shared

memory version running on a configuration with one Memory Controller per Quad. For

the streaming version, DMA wait cycles are part of sync stalls.

a) One Memory Controller per Quad b) Two Memory Controllers per Quad

96

Off-chip BW Utilization, %

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30
Number of processors

179.art STR
179.art CC
bitonic STR
bitonic CC
mpeg2enc STR
mpeg2enc CC

Off-chip BW Utilization, %

0

10

20

30

40

50

60

70

80

90

100

0 10 20
Number of processors

30

Figure 5.6: Off-chip bandwidth utilization

Figure 5.7: Cycle breakdown for 179.art

a) 1 Memory Controller per Quad b) 2 Memory Controllers per Quad

0

20

40

60

80

100

1 2 4 8 16 32

Number of processors

%

STR CC STRCC STR CC STRCC STRCC STRCC

0

20

40

60

80

100

1 2 4 8 16 32

Number of processors

%

STR CC STRCC STR CC STRCC STRCC STRCC

sync stall

store stall

load stall

fetch stall

exec time

a) 1 Memory Controller per Quad b) 2 Memory Controllers per Quad

 97

Increasing the off-chip memory bandwidth (by increasing the number of memory

controllers) also increases the streaming performance much more significantly (Figure

5.5b). For small processor counts (1-4) the streaming version of 179.art uses a higher

percentage of the available off-chip memory bandwidth (Figure 5.6); for larger processor

counts it moves a smaller amount of data to and from off-chip memory as described in

more detail in Section 5.4.1.

Bitonic sort shows the opposite result: the shared memory version outperforms streaming

significantly. As mentioned before, the shared memory version of bitonic sort avoids

writebacks of unmodified cache lines and therefore requires less off-chip bandwidth.

Both streaming and shared memory versions are limited by off-chip bandwidth (Figure

5.6a) and an increase in off-chip bandwidth (by doubling the number of Memory

Controllers per Quad) improves performance of both (Figure 5.5b), however, the

streaming version still has lower performance for all configurations with more than two

processors.

Streaming and shared memory versions of the MPEG-2 encoder perform similarly for up

to 16 processors (Figure 5.5). MPEG-2 encoder is a compute-intensive application and it

shows very good cache performance despite a large dataset. It exhibits good spatial or

temporal locality and has enough computation per data element to amortize the penalty

for any misses. Both caches and local memories capture data locality patterns equally

well. The MPEG-2 encoder is not limited by off-chip memory bandwidth (Figure 5.6)

and an increase in off-chip bandwidth does not change performance significantly (Figure

5.5b).

The streaming version executes more instructions because it has to program many

complex DMA transfers explicitly. Also, its instruction cache miss rate is slightly higher

for a 16 KB instruction cache because of the larger executable size (although in both

cases the instruction miss rate is less than 1%). As a result, the streaming version is

approximately 15% slower for 1-16 processors. In the case of the 32-processor

 98

configuration, the streaming version is 27% slower because of increased overhead of

synchronization with a single shared DMA helper thread.

Speedup

0

5

10

15

20

25

30

35

40

0 10 20 30
Number of processors

Speedup

0

5

10

15

20

25

30

35

40

0 10 20 30
Number of processors

linear speedup linear speedup
179.art STR 179.art STR
179.art CC 179.art CC
bitonic STR bitonic STR
bitonic CC bitonic CC
mpeg2enc STR mpeg2enc STR
mpeg2enc CC mpeg2enc CC

Figure 5.8: Performance scaling of streaming applications with 4MB L2 cache

To explore the effect of a second level cache we repeated the same simulations for the

same configurations with a 4 MB second level cache. Performance results are shown in

Figure 5.8. As one might expect, with a large second level cache the effect of doubling

the number of Memory Controllers is negligible (Figure 5.8a versus Figure 5.8b). Also,

performance scaling of MPEG-2 encoder does not change significantly because this

application is not limited by the memory system.

The difference between streaming and shared memory versions of bitonic sort becomes

negligible because the entire dataset of this application fits within the second level cache.

However, this is only true for this particular dataset size. For larger datasets which do not

a) One Memory Controller per Quad b) Two Memory Controllers per Quad

 99

fit within second level cache, or for a smaller second level cache, the performance

difference is the same as that which was shown in Figure 5.5.

In the case of 179.art, the streaming version still outperforms the shared memory version

even though the second level cache reduces the percentage of cache miss stalls

significantly (Figure 5.9) and the absolute execution time of the shared memory version

on a single processor decreases by a factor of approximately 2x. For a 32-processor

configuration, the streaming version also exhibits fewer synchronization stalls.

0

20

40

60

80

100

1 2 4 8 16 32

Number of processors

%

STRCC STRCC STR CC STR CC STRCC STR CC

sync stall

store stall

load stall

fetch stall

exec time

Figure 5.9: Cycle breakdown for 179.art with 4 MB L2 cache

5.4.1 APPLICATION CASE STUDY: 179.ART

This application is an interesting case because it is small enough for manual optimization,

parallelization, and conversion to streaming. At the same time it is a complete application

that is significantly more complex than simple computational kernels like FIR or FFT,

 100

and it has more room for interesting performance optimizations. It can be used as a case

study to demonstrate various optimizations for both shared memory and streaming

versions, as well as how streaming optimization techniques can also be used in the shared

memory version [44, 45].

Speedup

0

10

20

30

40

50

0 10 20 30
Number of processors

Figure 5.10: 179.art speedups

179.art optimizations include changing data layout, loop merging, elimination and

renaming of temporary arrays, and application-aware local memory allocation. These

techniques are described in more detail in Appendix B. The rest of this section analyzes

the reasons for the difference in performance between streaming and shared memory

a) 1 Memory Controller per Quad b) 2 Memory Controllers per Quad

Speedup

0

10

20

30

40

50

0 10 20 30
Number of processors

linear speeduplinear speedup
STR x2 MCSTR

CC CC x2 MC
CC+prefetch CC+prefetch x2 MC
CC+dhwbi CC+dhwbi x2 MC
CC+prefetch+dhwbi CC+prefetch+dhwbi x2 MC

 101

versions of the application and discusses techniques that can be used to improve

performance of shared memory version by emulating streaming.

The streaming version has significantly better performance (STR vs. CC in Figure 5.10)

and moves a smaller amount of data to and from off-chip memory (STR vs CC in Figure

5.11) than the optimized shared memory version.

Off-chip Memory Traffic, MB

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30
Number of processors

STR
CC
CC+dhwbi

Figure 5.11: 179.art off-chip memory traffic

Shared memory performance for 179.art can be improved using hardware prefetching

[44, 45]. After splitting the f1_layer into several separate arrays, as described in

Appendix B, most of the accesses become sequential, making simple sequential

prefetching very effective. Data cache miss rates for the configurations with prefetching

(CC+prefetch in Figure 5.13) are significantly lower than for the configurations without

prefetching (CC in Figure 5.13). Prefetching significantly increases off-chip memory

bandwidth utilization (CC+prefetch vs CC in Figure 5.12). If off-chip memory bandwidth

is doubled, then prefetching becomes even more effective (Figure 5.13b).

 102

Figure 5.12: 179.art off-chip memory utilization

For configurations with a large number of processors (32), prefetching has a smaller

effect because the data cache miss rate is relatively small even without prefetching. Also,

in this case each processor handles only a small part of the array and as a result initial

data cache misses consume more time.

Prefetching reduces the number of cache misses. However, a significant difference

remains in data locality, and as a result, there is a significant difference in the amount of

data moved between local memories or first level caches and off-chip memory (STR vs

CC and CC+prefetch in Figure 5.11). This difference also strongly affects energy

dissipation [44, 45]. To close this gap, streaming optimizations for local memories can be

emulated in the shared memory version of 179.art. Cache lines that correspond to data

structures that are not desirable to keep in cache, can be flushed from the cache using

a) 1 Memory Controller per Quad b) 2 Memory Controllers per Quad

Off-chip BW Utilization, %

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30
Number of processors

Off-chip BW Utilization, %

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30
Number of processors

STR STR x2 MC
CC CC x2 MC
CC+prefetch CC+prefetch x2 MC
CC+dhwbi CC+dhwbi x2 MC
CC+prefetch+dhwbi CC+prefetch+dhwbi x2 MC

 103

cache control instructions such as data-hit-writeback-invalidate8 (DHWBI) in the

Tensilica ISA and in other instruction set architectures such as MIPS [107]. DHWBI is

safe to use because it doesn’t change the application-visible state of the memory system.

If the cache line is not present in the cache, DHWBI has no effect; if the line is present

but not dirty, then it is simply invalidated; if the line is dirty, then it is written back and

invalidated. For example, DHWBI can be used in yLoop (Appendix B) to flush cache

lines corresponding to the BUS matrix. Since matrix BUS is much larger than the cache

capacity, it is advantageous to flush cache lines corresponding to the BUS matrix to save

space for vector P. The DHWBI instruction is executed once per eight iterations of

yLoop.

Figure 5.13: 179.art data cache miss rate

This optimization partially eliminates cache pollution with data structures that are much

larger than first level cache capacity. As result, the data cache miss can be reduced

significantly, for example, for a 4-processor configuration, the miss rate decreases from

8 The Larrabee processor uses similar techniques to manage the content of caches and to

reduce cache misses due to streaming accesses [21].

Data Cache Miss Rate, %

0

1

2

3

4

5

6

7

0 10 20 30
Number of processors

CC
CC+prefetch
CC+dhwbi
CC+prefetch+dhwbi

Data Cache Miss Rate, %

0

1

2

3

4

5

6

7

0 10 20 30
Number of processors

CC x2 MC
CC+prefetch x2 MC
CC+dhwbi x2 MC
CC+prefetch+dhwbi x2 MC

 104

approximately 5.5% to 4%, similarly to hardware prefetching (CC+dhwbi vs. CC in

Figure 5.13a). Moreover, in the case of limited off-chip memory bandwidth, the effects of

locality optimization and prefetching are additive (CC+prefetch+dhwbi vs CC in Figure

5.13a). Off-chip memory traffic for the 4-processor configuration also decreases

significantly and becomes comparable to the streaming version of the application

(CC+dhwbi vs. STR in Figure 5.11). Note that the cache coherent version with

prefetching and locality optimization outperforms the streaming version for 1-4 processor

configurations with increased off-chip memory bandwidth (Figure 5.10b).

For the 32-processor configuration, the effects of prefetching and locality optimization

are small because even without these optimizations the cache miss rate is relatively small

– approximately 2% (Figure 5.13), and off-chip bandwidth is not a limiting factor (Figure

5.12). The limiting factor for shared memory performance is synchronization stalls as

shown in Figure 5.7 and Figure 5.9.

5.5 CONCLUSIONS

This chapter described how a stream programming model can be mapped onto the

reconfigurable Smart Memories architecture. The flexibility of Smart Memories can be

effectively used to simplify and optimize implementation of a complex stream runtime

system such as the Stream Virtual Machine.

Our evaluation shows that some applications perform better in streaming mode while

others perform better in shared memory cache-coherent mode. This result supports the

idea of reconfigurable Smart Memories architecture that can work in both modes or in

hybrid mode (i.e. when part of memory resources are used as cache and part as software-

managed local memory). In contrast, for pure streaming architectures such as IBM Cell,

in some cases programmers must implement caching in software to achieve good

performance, e.g. Ray Tracer for the IBM Cell processor [76]. In these cases, pure stream

architectures have dual disadvantages: they are more complex to program and their

 105

performance is worse because of the overheads of software caching. The reconfigurable

Smart Memories architecture gives application programmers flexibility to choose the

appropriate type of memory structure, simplifying software and improving performance.

CHAPTER 6: TRANSACTIONS

This chapter describes the implementation of the transactional memory mode of the

Smart Memories architecture. The chapter begins discussing the functionality required

for transactional memory and some high-level design decisions made during the mapping

of transactional memory. Then, it describes the hardware configuration and transactional

runtime, which takes advantage of the flexibility of the Smart Memories architecture. It

concludes by providing performance evaluation results.

6.1 TRANSATIONAL FUNCTIONALITY

The transactional memory model has a number of required features that are not present in

other memory systems:

1) A transactional memory system must checkpoint its state at the beginning of each

transaction. As a result, stores are speculative and must be buffered until transaction

commit, and processor state (integer and floating point register files, other registers)

must be saved at checkpoint.

2) Transaction’s speculative changes must be isolated from other transactions until

commit.

3) A transactional memory system must track read-write dependencies between

transactions. Thus, loads from shared data must be tracked.

4) A transactional memory system must be able to restore its state to the checkpoint and

to restart a transaction if a dependency violation is detected.

5) At transaction commit, speculative changes must become visible to the whole system.

6) If a transaction is violated, then all of its speculative changes must be discarded.

106

 107

7) A transactional memory system must be able to arbitrate between transactions for

commit and ensure proper commit serialization9.

8) A transactional memory system must handle correctly overflow of hardware

structures.

9) A transactional memory system must guarantee forward progress, i.e. must avoid

deadlock and livelock.

These functional requirements are necessary for correct operation of transactional

memory (Section 2.3.3). Other properties of transactional memory systems depend on the

design decisions made by the architects, for example, pessimistic versus optimistic

conflict detection as discussed in Section 2.3.3. These design decisions affect

performance of transactional memory system for different applications10.

The Smart Memories architecture supports the transactional coherence and consistency

(TCC) model, which is one proposed implementation of transactional memory [32]. The

Smart Memories implementation of TCC is hybrid—part of the functionality is

performed by runtime software because otherwise it would require TCC specific

hardware structures or changes to the Tensilica processor that are not possible.

Specifically, arbitration for transaction commit, transaction overflow handling, and

processor state checkpointing are implemented in software.

The TCC system is guaranteed to make forward progress because it uses optimistic

conflict detection. Conflicts are detected only after one of the transactions wins

arbitration and performs commit, therefore, a transaction that causes other transactions to

restart will never need to restart itself. Livelock is not possible because at least one

transaction is making forward progress at any time.

9 Parallel transaction commit for non-conflicting transactions is also possible as proposed

in [108].
10 Some of these design decisions affect implementation complexity with regard to subtle

properties such as strong atomicity, which is discussed in Section 2.3.3.

 108

Smart Memories TCC mode handles hardware overflow by partial serialization of

transaction execution: an overflowing transaction arbitrates for a commit token, commits

the partially executed transaction to free hardware resources, and continues execution

without releasing the commit token. The commit token is released only when processor

reaches its natural transaction commit point in the application code. No other transaction

can commit before that11.

Note that a transactional memory system needs to buffer all stores during transaction

execution12, both to shared and private data, while only loads to shared data need to be

tracked for dependencies. This observation can be used to optimize transactional

performance using the flexibility of the Smart Memories architecture.

6.2 HARDWARE CONFIGURATION

As described in the previous section, transactional systems need to keep a lot of state for

correct operation, including dependency tracking information and buffered speculative

changes. Because of limited hardware resources and the expensive hardware operations

required, the Smart Memories architecture can execute only one transaction per Tile. As a

result, only one processor in a Tile runs actual application transactional code. This

processor is called execution processor. The other processor in a Tile, called support

processor, is used by the TCC runtime system to handle overflow. Also, it is impossible

to request a precise exception from outside of the Tensilica processor, i.e. it is not

possible to restart execution of the program from precisely the same instruction that

caused the overflow. Therefore, the memory system can only stall the execution

11 Virtualization of hardware transactional memory is another proposed alternative: if

hardware overflow is detected, a virtualized system can switch to software transactional
memory (STM) mode. Challenges associated with virtualization are discussed in [34].

12 Other approaches are also conceivable. For example, private data can be checkpointed
explicitly by software. However, such approach makes transactions’ semantics harder

 109

processor in the case of an overflow and must use another processor to handle overflow

in software.

In TCC mode, the memory mats inside the Tile are used as a traditional cache for

instructions and a transactional cache for data (Figure 6.1). In addition to data and tag

mats, the transactional cache includes an address FIFO mat that saves addresses of stores

that must be committed at the end of transaction. Similar to streaming configurations

(Section 5.1), the TCC configuration also uses uncached, local memory mats to store

thread-private and shared runtime state.

Metadata bits in data mats are used for speculatively modified (SM) and speculatively

read (SR) bits. An SR bit is set by a load to track read dependency. The SM bit is set by

stores to avoid overwriting of speculatively modified data by other committing

transactions and to avoid false read dependency. Thus, if a processor reads an address

that was already modified by the transaction, then the SR bit is not set for loads to the

same address, because the transaction effectively created its own version of the data word

and that version should not be overwritten by other transactions.

Sub-word stores, i.e. byte and 16-bit stores, set both SR and SM bits to 1, i.e. they are

treated as read-modify-write operations because SR and SM bits can be set only per 32-

bit word. This can potentially cause unnecessary violations due to false sharing.

to understand, significantly complicates application development and introduces
overhead.

110

Figure 6.1: Example of TCC configuration

Similarly, metadata bits in tag mats are also used for SM and SR bits. These bits are set to

1 whenever SM or SR bits are set within the same cache line. The SM bit in the tag mat is

used to reset the valid bit (V) for speculatively modified cache lines in case of violation.

This is performed by a conditional cache gang write instruction (Appendix A). This

instruction is translated by the LSU into metadata conditional gang writes for all tag mats

(Section 3.3).

Also, tag SM and SR bits are used by the Protocol Controller to determine cache lines

that cannot be evicted from the cache. Eviction of a cache line with SR or SM bit set to 1

would mean loss of dependency tracking state or loss of speculative modifications. If no

cache line can be evicted, then Protocol Controller sends an overflow interrupt to the

support processor in the Tile to initiate overflow handling by runtime software (Section

6.4).

Interface Logic

Transactional Data Cache Instruction Cache

Processor 0

Crossbar

Processor 1

Data

Tile

Data

Data

Data

Data

Data

Data

Data

Tag0

Tag1

Data

Shared
Data

Data

Local
Data

Tag0

FIFO
TM

TM TM

 111

During transaction commit or violation, all transactional control state, i.e. the SR/SM bits

in tag and data mats must be cleared. Such clearing is performed by the cache gang write

instruction (Appendix A). This instruction is translated by the LSU into metadata gang

writes for all tag and data mats (Section 3.3).

Similarly to a conventional cache, a load to a transactional cache causes the LSU to

generate tag and data mat accesses that are routed to appropriate mats by the crossbar

(Figure 4.1).

For a store to a transactional cache, the LSU, in addition to tag and data accesses,

generates a FIFO access that records a store address for transaction commit (Figure 6.1).

The IMCN is used to send a Total Match signal from the tag mat to the address FIFO mat

to avoid writing the FIFO in the case of a cache miss. Also, the SM bit is sent from the

data mat to the FIFO mat via the IMCN to avoid writing the same address to the FIFO

twice. The threshold register in address FIFO is set to be lower than the actual size of the

FIFO (1024 words) to raise the FIFO Full signal before the FIFO actually overflows. If

the LSU receives a FIFO Full signal after a transactional store, it sends a FIFO Full

message to the Protocol Controller, which sends an overflow interrupt to the support

processor just as in other cases.

To perform a commit, speculative changes made by a transaction must be broadcast to

other Tiles and Quads in the system and to the Memory Controllers. The broadcast is

performed by a DMA engine in the Protocol Controller. Control microcode of the DMA

engine is modified for this special mode of DMA transfer, which consists of three steps

for each address/word pair:

1) read the address from the FIFO;

2) read the data word from the transactional cache;

3) broadcast the address/data word pair.

 112

Inside the Protocol Controller, each broadcast address/data pair goes through MSHR

lookup to check for collision with outstanding cache miss requests. If a conflict is

detected and the cache miss request is in the transient state, i.e. the cache line is being

copied to or from the line buffer, then the broadcast must be stalled. If a conflicting

request is not in a transient state, then the Protocol Controller updates the corresponding

line buffer with the committed data word. This update is complicated. For example,

suppose a store miss has valid data bytes in the line buffer, which corresponds to the

bytes written by the processor, and should not be overwritten by the commit, i.e. commit

data must be merged with miss data with priority given to the miss data. However, the

commit for the next transaction might write the same address again while the store miss

is still outstanding. Therefore, the commit must be able to overwrite previous commit

data but not overwrite store miss data. This requires extra byte valid bits in the line buffer

(Section 3.5.1) and logic that merges committed data with the data in the line buffer13.

After the MSHR lookup/line buffer update, the commit is sent to the transactional cache

of other Tiles and to other Quads through the network interface. The data word in the

cache is updated if the corresponding cache line is present and the SM bit is not set for

this word. The SR bit is returned back to the Protocol Controller and if it is set to 1, then

the Protocol Controller initiates a violation interrupt process.

Violation interrupt is a hard interrupt (Section 3.4.1), which must unstall the processor

even if the processor is stalled waiting on a synchronization instruction. Any outstanding

synchronization miss must be canceled to avoid dangling miss requests, which can cause

hardware resource leaks. Canceling outstanding requests is complicated because requests

can be in flight in the Protocol Controller or Memory Controller pipeline, network

buffers, etc. To ensure correct operation, cancel messages are sent on virtual channels

that have lower priority than virtual channels used by synchronization messages (Section

13 This problematic case of commit data overwrite by another commit was found only in

RTL simulation during design verification.

 113

3.6), and go through the same pipeline stages as synchronization operations. Therefore,

when the Protocol Controller receives all cancel acknowledgement messages there are no

outstanding miss requests in the system from the processor being violated.

Hard interrupts are delayed by the interrupt FSM until all outstanding load and store

cache misses are completed, instead of trying to cancel such requests. This is possible

because, unlike synchronization operations, loads and stores cannot be stalled for an

unbounded number of cycles. This design decision simplifies the design and verification

of the system.

6.3 TCC OPTIMIZATION

A simple TCC model assumes that all speculative changes performed by the transaction

must be broadcast to the whole system. Such an approach simplifies programming model

for the application developer; however, it can also degrade performance because part of

the transaction writes are committed to thread-private data, e.g. the stack, which is never

shared with other threads/transactions. Unnecessary commit broadcasts can slow down

application execution because they have to be serialized and can be a performance

bottleneck for larger system. Also, unnecessary broadcasts waste energy.

In addition, loads to such thread-private data do not need to be tracked by the

transactional memory system because by definition they cannot cause transaction

violation. As a result, cache lines corresponding to such loads do not need to be locked

for the duration of the transaction and therefore the probability of overflow can be

reduced.

Smart Memories flexibility can be used to optimize the handling of such private data. We

define the TCC buffered memory segment as a segment in which loads are not tracked

and stores are buffered but not broadcast, i.e. this segment is not TCC coherent. Data can

be placed in the TCC buffered segment either by default through compiler memory map

 114

settings, e.g. for stack and read-only data, or explicitly using the __attribute__

((section(".buffered_mem"))) construct of the GNU C compiler [106], which

is also supported by the Tensilica XCC compiler.

This approach is different from other approaches [36, 37], which introduce immediate

load, immediate store and idempotent immediate store instructions that are not tracked by

the transactional memory system (i.e. their addresses are not added to transaction read or

write-set). However, it is not obvious how to use such instructions: either the compiler

must be modified to generate application code with such instructions or the programmer

must explicitly use them in the application code. In contrast, the TCC buffered memory

segment approach does not require changes in the compiler or application. In addition, a

small change in the application source code (marking the data structure with an attribute

construct) results in even bigger performance improvement as shown in Section 6.5.

Also, a TCC buffered store is semantically different from the immediate store or

idempotent immediate store in [36, 37]: it is buffered by the memory system until

transaction commit and not propagated to the main memory.

To support the TCC buffered memory segment an extra metadata bit, called the Modified

(M), is used in the tag mat. A TCC buffered store sets the M bit to 1 along with the SM

bit. If the transaction is violated, then the cache line is invalidated by the conditional gang

write instruction because the SM bit is 1. During commit the SM bit is reset by the gang

write instruction but the M bit remains set to 1. When the next transaction performs a

TCC buffered store to the same cache line (M==1 and SM==0), a TCC writeback request

is generated by the Tile LSU and sent to the Protocol Controller. The Protocol Controller

writes back the cache line to the main memory or the second level of the cache,

effectively performing lazy, on-demand commit for the previous transaction and resets

the M bit. Thus, commit of TCC buffered stores is overlapped with the execution of the

next transaction and possibly with the commit broadcast of transactions executed on other

processors.

 115

Loads to the TCC buffered memory segment do not set the SR bit, thus, avoiding locking

corresponding cache lines in the cache and reducing the probability of overflow.

6.4 TCC RUNTIME

The Smart Memories implementation of TCC supports several TCC API function calls

[32], as described in Appendix C.

The TCC runtime performs arbitration for transaction commit and handles transaction

overflow. Processor state checkpointing and recovery from violation is also performed in

software.

The execution processor in Tile 0 of Quad 0 is also used as a master processor, which

executes sequential parts of the application and sets up runtime data structures that are

shared by all processors in the system. Shared runtime data structures are placed in the

dedicated memory mat in Tile 0 of Quad 0 (Figure 6.1) because the master processor has

to access these data structures most frequently.

The shared data mat contains: barriers used to synchronize processors in the beginning

and at the end of the transactional loop execution; an array of locks used by the processor

to arbitrate for commit; data structures used to keep track of transaction phase numbers;

etc.

6.4.1 ARBITRATION FOR COMMIT

When a processor has to arbitrate for commit, it issues a synchronized store instruction to

the lock variable corresponding to its current phase number. This store tries to write its

processor ID. If no other processor is doing a commit and the processor phase number is

oldest, then the lock variable is set to empty and synchronized store succeeds, and the

processor starts its commit broadcast by writing into the DMA control register.

 116

During the broadcast, the processor resets the SR and SM bits in the transactional cache,

checkpoints its own state, updates runtime state, etc. After completion of the broadcast

the processor releases the commit token by doing a synchronized load to the same lock

variable (if there are other processors with the same phase number) or to another lock

variable (the one that corresponds to the next active phase number). Thus, if the broadcast

is long enough, then instructions required for runtime updates are overlapped with

broadcast and software overhead of the commit is minimized.

Commit and other API calls are implemented as monolithic inline assembly blocks, hand

scheduled to use the minimum number of instructions and cycles. The most frequently

used call, TCC_Commit0(), uses only 19 instructions (not including instructions

required to checkpoint processor register files as described below). These assembly

blocks must be monolithic to prevent the compiler from inserting register spills in the

middle of commit or other API calls. Otherwise, such register spills are compiled into

stores to the thread stack, i.e. to the TCC buffered memory segment, which might cause

overflow and deadlock in the middle of commit code.

6.4.2 HARDWARE OVERFLOW

The TCC runtime must also handle hardware overflow, which is detected either if the

address FIFO threshold is reached or if no cache line can be evicted because of SR/SM

bits. Upon overflow, the Protocol Controller sends a soft interrupt to the support

processor in the same Tile, while at the same time the execution processor is blocked at

the Protocol Controller interface. The support processor checks whether the commit

token was already acquired by reading runtime state in the local data mat (Figure 6.1). If

not, then the support processor performs arbitration using a pointer saved by the

execution processor in its local data mat, initiates DMA commit broadcast and resets

SR/SM bits in the transactional cache. Also, it updates local runtime state to indicate that

the commit token was already acquired. At the end of the overflow interrupt handler the

 117

support processor unblocks the execution processor by writing into the control register of

the Protocol Controller.

If a dependency violation is detected by the Protocol Controller, then both processors in

the Tile are interrupted with high-priority hard interrupts, i.e. the processors would be

unstalled even if they were blocked on synchronization operations. The support processor

must be hard interrupted because it may be stalled arbitrating for commit token. The

violation interrupt handler for the execution processor invalidates all speculatively

modified cache lines in the transactional cache, resets SR/SM bits and the address FIFO

and then returns to the checkpoint at the beginning of the transaction.

The TCC runtime code is complicated because it has to correctly handle multiple

simultaneous asynchronous events such as violation and overflow interrupts. Many

complex corner case bugs were discovered only during RTL verification simulations.

Fixes for these bugs required subtle changes in the runtime code.

6.4.3 PROCESSOR STATE RECOVERY FROM VIOLATION

To be able to restart execution of a speculative transaction after violation, all system state

must be saved at the beginning of the transaction. The memory system state can be

quickly restored to the check point because all speculative changes are buffered in the

transactional data cache and can be easily rolled back by invalidating cache lines using

gang write operations. Processor state must be checkpointed separately

Processor state consists of general purpose register files (integer and floating point) and

various control registers. One complication is that the processor state might be

checkpointed anywhere during application execution, including inside a function or even

recursive function calls, because the programmer can insert TCC_Commit() anywhere

in the application code. If TCC applications were compiled using Tensilica’s standard

windowed application binary interface (ABI), which relies on the register window

mechanism, then checkpointing would require saving the whole integer register file and

 118

not just the current register window. This would be expensive from a performance point

of view and would significantly increase application size.

Instead, the Smart Memories implementation of TCC utilizes Tensilica’s optional non-

windowed ABI, which does not use register windows. In this case, the compiler can be

forced to spill general purpose registers into the stack memory at the transaction check

point using the asm volatile construct. After a checkpoint, the compiler inserts load

instructions to reload the values into the register files.

An alternative approach for windowed ABI is discussed in Appendix D; this alternative

approach, however, cannot be used for checkpoints inside subroutine calls.

The advantage of the non-windowed approach is that the compiler spills only live register

values, minimizing the number of extra load and store instructions. Temporary values

produced during transaction execution do not need to be spilled. The disadvantage of

spilling all live values is that some of them may be constant during the execution of the

transaction.

Spilled register values in the memory are check-pointed using the same mechanism as

other memory state. The only general purpose register that can not be check-pointed in

this way is the stack pointer register a1; we use a separate mechanism for the stack

pointer as well as for other processor control registers.

To save the state of the control registers we added three more registers and used one of

the optional scratch registers (MISC1):

• SPEC_PS – a copy of the PS (processor status) register;

• SPEC_RESTART_ADDR – the transaction restart address;

• SPEC_TERMINATE_ADDR – the address to jump to in case of execution abort;

• MISC1 – stack pointer.

 119

To use these registers in interrupt handlers we added two special return-from-interrupt

instructions:

• SPEC_RFI_RESTART – return from interrupt to the address stored in

SPEC_RESTART_ADDR register, SPEC_PS register is copied atomically to PS;

• SPEC_RFI_TERMINATE – the same except that SPEC_TERMINATE_ADDR

register is used as the return address.

6.5 EVALUATION

Table 6.1 summarizes characteristics of the transactional mode of the Smart Memories

architecture. As in hardware transactional memory architectures (HTM) application loads

and stores are handled by hardware without any software overhead. The main difference

from HTM architectures is in handling transaction commit by software, which increases

commit overhead.

Table 6.1: Characteristics of Smart Memories transactional mode

Name Value Comment
loads/stores 1 cycle no overhead compared to cache-coherent mode
commit 19 instructions TCC_Commit0();

7 instructions are overlapped with DMA commit;
2 synchronized remote mat operations to acquire
and to release commit token

processor register
checkpoint

1 load and 1 store
per live register

typical number of live register values is 5

DMA commit one 32-bit word
per cycle

assuming no conflicts in caches, MSHRs, and
network interface

violation interrupt 9 instructions

Three applications, barnes, mp3d and fmm from SPLASH and SPLASH-2 suites, were

used to evaluate the performance of the TCC mode of the Smart Memories architecture.

 120

These applications were converted to use transactions instead of their original ANL

synchronization primitives [109]. All benchmarks were compiled with the Tensilica

optimizing compiler (XCC) using the highest optimization options (–O3) and inter-

procedural analysis enabled (–ipa option). For these experiments we used configurations

with 4 MB second level cache.

Performance scaling for TCC is shown in Figure 6.2. For comparison, speedups for

original cache coherent versions of the same applications are also shown in Figure 6.2

(designated as CC - dotted lines). All speedup numbers are normalized with respect to

execution time of TCC version running on a single Tile configuration.

Speedup

0

2

4

6

8

10

12

14

16

18

0 5 10 15

Number of processors

linear speedup
barnes TCC
barnes TCC nobuf
barnes CC
mp3d TCC
mp3d TCC nobuf
mp3d CC
fmm TCC
fmm TCC nobuf
fmm CC

Figure 6.2: Performance scaling of TCC applications

On a single Tile configuration, all applications show similar performance slowdown in

the range of 13-20% with respect to the original shared memory code. The reason for this

slowdown is because the TCC version has to execute more instructions for TCC API calls

and to spill and re-load registers at processor state checkpoints.

 121

0

20

40

60

80

100

120

140

160

180

1 2 4 8 16

%

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

overflow stall
sync stall
store stall
load stall
fetch stall
exec time

Figure 6.3: Cycle breakdown for barnes

As the number of processors increases, the performance of barnes continue to scale up, to

the 16-Tile configuration. However, for the 16-Tile configuration, stalls due to commit

arbitration and overflow increase the slowdown in comparison with the shared memory

version (sync and overflow stalls in Figure 6.3). This happens because of frequent

transaction commits, which were added to barnes code to minimize overflows.

On the other hand, the performance of mp3d and fmm doesn’t scale beyond 8 Tiles.

These applications also exhibit a significant percentage of synchronization stalls due to

frequent commit arbitration (Figure 6.4 and Figure 6.5). The performance of mp3d

suffers because of large number of violations: the percentage of violated transactions

increases with the number of Tiles, reaching as high as 40% in the 16-Tile configuration

(Figure 6.6). This is because mp3d performs a lot of reads and writes to shared data and,

in fact, the original shared memory version has data races that are successfully ignored

[95]. As the number of transactions executed in parallel increases, the probability of

transaction conflicts and violations also increases, leading to performance degradation.

The performance of fmm also suffers because it performs a large number of commits to

avoid overflows or to avoid deadlock on spin-locks.

 122

0

20

40

60

80

100

120

1 2 4 8 16

%
CC TC

C
TC

C no
bu

f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

overflow stall
sync stall
store stall
load stall
fetch stall
exec time

Figure 6.4: Cycle breakdown for mp3d

0

20

40

60

80

100

120

1 2 4 8 16

%

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

CC TC
C

TC
C no

bu
f

overflow stall
sync stall
store stall
load stall
fetch stall
exec time

Figure 6.5: Cycle breakdown for fmm

 123

Violated Transactions, %

0

5

10

15

20

25

30

35

40

45

0 5 10 15

Number of processors

barnes
mp3d
fmm

Figure 6.6: Percentage of violated transactions

To evaluate the performance impact of the TCC buffered segment optimization feature

(described in Section 6.3), Figure 6.2 also shows speedups for configurations in which all

data memory segments are set to TCC coherent (designated as TCC nobuf – dashed

lines). TCC buffered segment optimization doesn’t improve performance significantly for

mp3d or for barnes on small configurations. However, the performance of barnes on the

largest 16-Tile configuration improves quite significantly: 9.14x speedup versus 5.36x

speedup. This is because barnes performs 77% of loads and 99% of stores to the TCC

buffered segment (Table 6.2). As a result, data words written by these stores do not need

to be broadcast during transaction commits, reducing commit latency and performance

penalty due to commit serialization. Also, the reduction in the amount of data necessary

to be broadcast lowers bandwidth requirements on interconnection network and reduces

energy dissipation.

Similarly, fmm performs 51% of loads and 87% of stores to the TCC buffered segment

(Table 6.2), however, TCC buffered segment optimization does not have significant

 124

effect because fmm performs a large number of commits to avoid overflows or deadlock

on spin-locks.

In contrast, the percentage of TCC buffered loads and stores for mp3d is significantly

lower (Table 6.2). Also, the performance of mp3d on large configurations suffers because

of an increased number of violations due to frequent modifications of shared data. As a

result, the effect of TCC buffered segment optimization is negligible.

Table 6.2: Percentage of TCC buffered loads and stores

Number of processors 1 2 4 8 16
buffered loads, % 77.2 77.08 77.14 77.05 76.79 barnes
buffered stores, % 99.32 99.31 99.31 99.27 99.03
buffered loads, % 14.13 14.21 14.35 14.69 16.07 mp3d
buffered stores, % 29.91 29.93 29.94 29.98 30.09
buffered loads, % 51.75 51.72 51.68 51.62 51.44 fmm
buffered stores, % 87.71 87.6 87.63 87.57 87.57

6.6 POSSIBLE EXTENSIONS AND OPTIMIZATIONS

Rich semantic extensions for transactional memory have been proposed [36, 37]. Some of

these extensions such as two-phase commit and transactional handlers (commit,

violation, and abort) can be implemented in Smart Memories by modifying runtime

software and API call implementation. The reconfigurable memory system can provide

additional flexibility for such software extensions, for example, uncached local and

shared memory mats can be used to store and communicate state between transactional

handlers.

Although performance of transactional applications can scale as shown in the previous

section, it can be further optimized. One idea is to store addresses of cache lines in the

FIFO instead of addresses of individual data words. The Tile configuration can be easily

 125

adjusted to send cache line addresses and SM bits from the tag mat to the FIFO, thus

recording the unique address of each cache line modified by the transaction.

A more significant change is required in the Protocol Controller: it has to read the whole

cache line at once, determine which words were modified and merge them with

conflicting line buffers, update other transactional caches and check for violations. The

advantage of such an approach is faster commit if multiple words per cache line are

modified by the transaction.

Another idea for performance optimization is to implement a different transactional

model on the reconfigurable Smart Memories architecture. Instead of the TCC model of

“all transactions, all the time”, this new model would build on top of the shared memory

model with cache coherence. Transactions would be executed only when necessary to

modify shared data atomically. The motivation for this idea is based on the observation

that in many cases, applications do not need to run transactions all the time, and running

transactions can be expensive from a performance point of view. For example, barnes

(Section 6.5) spends most of the time reading shared data without updating it, however, it

has to perform frequent commits to avoid overflows.

In this model, the memory system would be configured to run with cache coherence but

could be switched into transactional mode by the application at the beginning of a

transaction. In transactional mode, the addresses of modified cache lines would be

recorded in the FIFO similarly to TCC. At commit time, the addresses from the FIFO can

be broadcast by the DMA to all other caches in the system to invalidate all copies of

modified cache lines and to detect conflicts with other transactions.

6.7 CONCLUSIONS

This chapter described how the transactional memory model is mapped to the Smart

Memories architecture. The flexibility of Smart Memories is used in two ways: 1)

 126

memory mats configured as local memories are used to store the state of the transactional

runtime system, which greatly simplifies its implementation; 2) reconfigurability in

metadata handling is used for performance optimization, by lazily committing private

data. We feel that these examples are just a start. With further work, we will be able to

use the configurable memory system to continue to tune transactional memory

performance.

127

CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS

Due to slowdown in single processor performance growth there is a trend towards chip

multi-processors, which can deliver continuing performance scaling. However, these

promised performance gains depend on the availability of parallel applications.

Development of such applications is challenging and there is no agreement about a single

parallel programming model.

This dissertation described the design of the polymorphic reconfigurable Smart Memories

architecture, which supports three different models: shared memory with cache

coherence, streaming, and transactions. Smart Memories achieves good performance and

scalability for a variety of applications developed using three different programming

models. Flexibility in choosing a programming model is useful because of two reasons:

1) matching the programming model to the applications simplifies development;

2) choosing the right execution model improves performance, e.g. some applications

perform better in streaming mode than in shared memory mode or vice versa.

Also, the reconfigurability of Smart Memories can be used to implement the semantic

extensions of a particular programming model. For example, we added fast fine-grain

synchronization operations in shared memory mode, which are useful for applications

with a producer-consumer pattern.

The flexibility of the Smart Memories architecture is also useful for implementation of

complex software runtime systems such as the Stream Virtual Machine or the

transactional runtime. Such runtime systems use dedicated memory blocks to store

critical state to optimize performance and simplify synchronization.

 128

These advantages of dynamic reconfiguration need to be weighed against the costs

incurred by this approach. The Smart Memories test chip implementation provided a

framework for this analysis. It showed that the reconfiguration overheads are relatively

large, increasing the area of each Tile by around 2x. This additional area was mostly

caused by our standard cell implementation of the metadata storage and would be

significantly smaller in full custom implementation.

7.1 FUTURE DIRECTIONS

The goal of the Smart Memories project was to design a general purpose flexible

architecture whose resources can configured in the most efficient way for a particular

application. Embedded system designers have to solve a similar problem of efficient

resource allocation and to generate an optimized custom design for a particular

application. This observation led us to the idea of the Chip Multi-Processor Generator

[46]. Such a generator presents to the designer an abstraction of a virtual flexible

architecture with very unconstrained resources. After configuration, the generator can

produce an optimized custom design for a particular application or a class of applications.

The Smart Memories architecture can serve as the basis for a virtual flexible architecture:

configuration of the memory system can be tailored to the requirements of a given

application as described in this thesis. After that, configuration can be fixed and unused

logic and resources can be optimized away. Processors can be extended with custom

functional units and register files using the capabilities of the Tensilica system.

129

APPENDIX A: SPECIAL MEMORY INSTRUCTIONS

Full list of memory instructions that were added to the Tensilica processor to exploit the

functionality of the Smart Memories architecture:

• synchronized load: stall if full/empty (FE) bit associated with data word is zero

(“empty”), unstall when the FE bit becomes one (“full), return data word to the

processor and atomically flip the FE bit to zero;

• synchronized store: stall if the FE bit is 1, unstall when it becomes 0, write data word

and atomically flip the FE bit to 1;

• future load: the same as synchronized load but the FE bit is not changed;

• reset load: reset FE bit to 0 and return data word to the processor without stalls

regardless of the state of the FE bit;

• set store: set FE bit to 1 and write data word without stalls;

• meta load: read the value of meta data bits associated with data word;

• meta store: write to meta data bits;

• raw load: read data word skipping virtual-to-physical address translation, i.e.

effective address calculated by the instruction is used as physical address directly;

• raw store: write data word skipping virtual-to-physical address translation;

• raw meta load: read metadata bits skipping virtual-to-physical address translation;

• raw meta store: write metadata bits skipping virtual-to-physical address translation;

• fifo load: read a value from a memory mat configured as a FIFO, FIFO status register

in the interface logic is updated with FIFO status information, i.e. whether FIFO was

empty;

• fifo store: store a value to a FIFO, FIFO status register is updated with FIFO status

information, i.e. whether FIFO was full;

 130

• safe load: read a data word from the memory and ignore virtual-to-physical address

translation errors;

• memory barrier: stall the processor while there are outstanding memory operations,

i.e. non-blocking stores;

• hard interrupt acknowledgement: signal to the memory system that a hard interrupt

was received by the processor, this instruction is supposed to be used only inside

interrupt handler code;

• mat gang write: gang write all meta data bits in the memory mat, supported only for 3

meta data bits;

• conditional mat gang write: conditionally gang write all meta data bits in the memory

mat, supported only for one meta data bit;

• cache gang write: gang write all meta data bits in the data cache, supported only for 3

meta data bits;

• conditional cache gang write: conditionally gang write all meta data bits in the data

cache, supported only for one meta data bit;

• spec_cmd: functional NOP, used by statistics control.

131

APPENDIX B: 179.ART STREAMING OPTIMIZATIONS

179.art is one of the benchmarks in SPEC CFP2000 suite [97]. It is a neural network

simulator that is used to recognize objects in a thermal image. The application consists of

two parts: training the neural network and recognizing the learned images. Both parts are

very similar: they do data-parallel vector operations and reductions.

This application is an interesting case because it is small enough for manual optimization,

parallelization, and conversion to streaming version. At the same time it is a complete

application that is significantly more complex than simple computational kernels like FIR

or FFT, and it has more room for interesting performance optimizations. It can be used as

a case study to demonstrate various optimizations for both shared memory and streaming

versions, as well as how streaming optimization techniques can also be used in the shared

memory version [44, 45].

Figure B.1 shows a sequence of inner loops from 179.art’s train_match() function

(training part). Vectors or arrays of floating point numbers are labeled with capital letters

while scalar values are named using small letters. The size of vectors for the reference

data set is 10,000. BUS and TDS are big matrixes that are more than 10 times larger than

vectors. For example, wLoop iterates over elements of I and U vectors and produces a

vector W and a scalar tnorm which is a result of reduction calculation, i.e. sum of

squares of elements of W.

The original sequential version of this benchmark exhibits very low cache locality: the L1

cache miss rate is 35.5%. This is because the main data structure of the application called

f1_layer is an array of structures that group together elements of vectors I, U, W, X, V,

P, Q. As a result, consecutive elements of the same vector are not adjacent in the

memory.

132

Before After

Figure B.1: Inner loop sequence of train_match(): before and after optimization

We optimized the code by splitting f1_layer into several separate arrays of floating

point values each corresponding to different vector. This dramatically improved cache

locality and reduced cache miss rate to approximately 10% because now successive

wLoop

U I

xLoop

W tnorm

vLoop

X

uLoop

V tnorm

Q

xvLoop

U tnormP

upLoop

U

P

tnormP

Utresult BUS

y

yLoop

TDS

I U

wLoop

pLoop

U

P tresult

P

ttemp

TDS

yLoop

y

BUS

qLoop

Q

 133

iteration of the inner loop access adjacent words in the same cache line14, exploiting

spatial data locality.

The code of train_match() can be further significantly optimized as shown in Figure

B.1 by merging loops (kernel fusion) and demoting arrays to scalars after loop merging.

For example, after merging xLoop and vLoop into xvLoop, X becomes a scalar, local

to xvLoop and does not need to be written into memory.

The memory footprint of the inner loops can be further reduced by renaming of

vectors/arrays to reuse the minimal number of arrays for temporary data. For example,

the same U vector can be used as input and output of wLoop. After all renaming

optimizations, only two such arrays, U and P, are necessary to store temporary data

between consecutive loops, as shown on the right side of Figure B.1.

All techniques discussed so far are applicable to sequential, multi-threaded shared

memory and streaming versions of 179.art and can be performed at the source code level

without the knowledge of details of a particular architecture or configuration. As a result,

the data cache miss rate in on a single processor configuration is reduced from 35% to

approximately 7%, while the execution time improves by a factor of 6.1. For the multi-

threaded version running on a 16-processor configuration, the cache miss rate improved

from 22% to approximately 2%, while execution time improved by a factor of 7.2 over

the original code. The hit rate is higher for the multi-processor configuration because the

same data set is partitioned across multiple caches.

The next stage of optimization is specific to the streaming architecture. Part of the local

memory inside each Tile is allocated for buffering data fetched by the DMA; however,

this occupies only a small portion of available local memory. Increasing the size of the

buffers beyond certain point doesn’t affect performance and in fact can decrease

performance because large chunks can cause granularity and load imbalance problems. In

14 Sun compiler can automatically perform this optimization.

 134

case of 179.art DMA, the chunk size is set to 125 vector elements, which occupies only

500 bytes in the local memory. Given that kernels or loops operate on at most three

vectors and each vector requires double buffering, only about 3 KB of local memory is

necessary for stream/DMA data buffering.

The rest of the local memory can be used to store most frequently used data. As the

number of processors and the total size of local memory increases, a larger portion of the

working data set can be placed into local memories. For example, in a 2-processor

configuration, only the P vector is placed in the local memories, while in a 4 or 8-

processor configuration, U vector is also allocated locally. Also, even if the data structure

is too large it can be partially allocated in the local memory, e.g. only part of BUS matrix

is in the local memory for 16 or 32-processor configurations while the rest still has to be

fetched by DMA. By doing such application-aware local memory allocation rather than

oblivious hardware caching, locality can be further improved and off-chip memory traffic

is reduced. Of course, this optimization significantly complicates application source code

because optimized code can contain many slightly different versions of kernels/loops to

handle the different ways of allocating local memory.

Local memory allocation is similar to traditional register allocation in optimizing

compilers: the usage of fast small storage is optimized by allocating this storage to the

most frequently used data at each point of the application. However, in general it is a

more complicated problem than register allocation: size of arrays might be determined

only at runtime and optimal allocation might depend on total size of all local memories.

Another streaming optimization is moving DMA transfer from the beginning of the loop

into the end of the previous loop. For example, a DMA fetch of the P vector (right side of

Figure B.1) can be started at the end of wLoop instead of beginning of xvLoop. This

transformation allows overlapping communication of reduction variable tnorm and

processor synchronization at the end of wLoop with DMA transfer for the next loop.

135

APPENDIX C: TCC APPLICATION PROGRAMMING

INTERFACE

TCC_Loop(funcPtr,argPtr) – executes ordered transactional loop, i.e. iterations

of the loop are executed as transactions on different processors with sequential commit

order; the code of loop body should be separated into a function, pointed by funcPtr,

parameters can optionally be passed through a structure, pointed by argPtr. Parameter

structure must be declared as global variable or allocated on the heap.

TCC_LoopLabel(funcPtr) – executes inline ordered transactional loop, i.e. the

same loop body function can contain more than one transactional loop.

TCC_ULoop(funcPtr,argPtr) – executes unordered transactional loop, similar to

TCC_Loop().

TCC_ULoopLabel(funcPtr) – executes inline ordered transactional loop, similar to

TCC_LoopLabel().

TCC_LoopEnter() – synchronizes processors in the beginning of transactional loop

execution.

TCC_LoopExit() – synchronizes processors at the end of transactional loop

execution.

TCC_Commit(phaseInc) – perform transaction commit and start a new transaction

with phase number ([32], Section 2.3.3) equal to current phase number + phaseInc.

TCC_Commit0() – performance optimized version of TCC_Commit() for the most

frequent case.

 136

TCC_UBARRIER() – transactional barrier: processors perform commit, wait until all

processors arrive to the barrier, and start new transactions. Transactional barrier is a

performance optimization construct which can be used to separate different phases of

application execution and minimize transaction violations.

int TCC_GetNumCpus() – returns the number of parallel processors executing

transactions.

int TCC_GetMyId()– returns unique processor ID in the range of 0…

TCC_GetNumCpus()-1.

An example of TCC API usage - simple histogram code using TCC unordered loop:

void mainX(int argc, char * argv[]) {
 …
 TCC_ULoop(¶llel_test_loop, NULL);
 …
}

void parallel_test_loop(void * context)
{
 TCC_LoopEnter();

 for (int i = TCC_GetMyId(); i < NUM_DATA; i+= TCC_GetNumCpus()) {

 bin[A[i]-1]++;
 TCC_Commit(0);
 }
 TCC_LoopExit();
}

137

APPENDIX D: USING A REGISTER WINDOWS MECHANISM

FOR PROCESSOR STATE CHECKPOINTING

To checkpoint processor state in the beginning of speculative execution, previously

proposed thread-level speculation (TLS) architectures modify the register renaming

mechanism in out-of-order execution processors [111, 112] or utilize a shadow register

file [9]. It is possible to accomplish the needed checkpoint with little overhead and almost

no hardware support (no shadow registers) in a machine with register windows. In order

to explain the proposed approach, let’s consider an example of a windowed register file

that consists of 64 physical registers, divided into groups of four, with 16 register window

being visible at any time. Figure D.2a shows the two registers controlling the window

mechanism. Window Start has one bit per group of four registers, and indicates where a

register window starts. Window Base is a pointer to the beginning of the current window

in Window Start.

On each function call, as directed by the compiler, the register window shifts by 4, 8 or

12 registers (Figure D.2b). Register window overflow occurs when, after shifting,

Window Start has 1 within the current window (Figure D.2c). In this case, an exception

handler is invoked to spill the registers over to the memory.

When a context runs a speculative thread, register values can fall into one of the

following categories:

• constants, which are passed to the speculative thread and are not changed during the

execution;

• shared variables, which are modified by other threads and must be read from memory

before they are used for computation;

• temporary values, which are live only during the execution of this thread;

 138

• privatized variables, such as loop induction variable or reduction variables.

The first three categories do not require to be saved at the start of speculative thread,

since they are not changed at all or are reloaded or recalculated. To simplify the violation

recovery process, we have forced privatized variables to go through memory as well: the

values are loaded at the start of the speculation and are saved back in the memory at the

end. Software overhead is typically quite small because speculative threads usually have

few privatized variables.

If a speculative thread does not contain any function calls, the register window will not

move during the execution of the speculative thread. As discussed, since the registers in

the active window do not change, the recovery process after mis-speculation is very

rapid, since no restoration of the register values is required. However, if there is a

function call in the speculative loop body, the register window will be shifted by the

function call. If a violation is detected while the thread is in the middle of the function

call, the state of the register window should be recovered correctly. For this purpose, two

instructions and a special register for each context are added to the processor for saving

and restoring Window Start and Window Base values atomically. In order to keep the

recovery operation simple and fast, the exception handler for the window overflow is also

modified to avoid spilling the registers when a context is speculative. This way, it is not

necessary to read back the spilled values into the register file in the case of violation; the

window exception handler is simply stalled until the thread becomes non-speculative and

can commit its changes to the memory system.

In comparison with shadow register file approach, our technique requires little extra

hardware: a special register per context to save values of Window Start and Window

Base, and two new instructions. In comparison with a purely software approach (which

takes tens to a hundred cycles), our technique is significantly faster: it requires one

instruction to save Window Start and Window Base and only a few store instructions for

privatized variables, since a typical speculative thread rarely has more than two

 139

privatized variables. It should be noted that this checkpointing technique is not applicable

to non-windowed architectures such as MIPS, because function calls may overwrite any

register regardless of how it was used in the caller function.

0

0
1
0
0
0
0
0

Current
Window

0
0

Window Base

Window Start

0

0
1
0
1
0
0
0

Current
Window

0
0

Window Base

Window Start

0

0
1
0
1
0
1
0

Current
Window

1
0

Window Base

Window Start

Window
Overflow

a) Register window
mechanism

b) Register window shift
because of a function call

c) Window wrap-around
(overflow)

Figure D.2: Register windows

140

BIBLIOGRAPHY

1. D. A. Patterson and J. L. Hennessy, “Computer Architecture: A Quantitative

Approach”, 4th edition, pp. 2-4, Morgan Kaufman, 2007.

2. M. Horowitz, W. Dally, “How Scaling Will Change Processor Architecture,” IEEE

International Solid States Circuits Conference (ISSCC) Digest of Technical Papers,

pp. 132-133, February 2004.

3. V. Agarwal, M.S. Hrishikesh, S. W. Keckler, D. Burger, “Clock rate versus IPC: The

end of the road for conventional microarchitectures,” in Proceedings of the

International Symposium Computer Architecture (ISCA), pp. 248-259, June 2000.

4. K. Olukotun, L. Hammond, “The Future of Microprocessors,” Queue, vol. 3, no. 7,

September 2005.

5. K. Olukotun, L. Hammond, J. Laudon, “Chip Multiprocessor Architecture:

Techniques to Improve Throughput and Latency,” Synthesis Lectures on Computer

Architecture, Morgan & Claypool, 2007.

6. V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban, P. N. Strenski and P. G.

Emma. “Optimizing pipelines for power and performance”, Proceedings of the

International Symposium on Microarchitecture (Micro), pp. 333-344, December

2002.

141

7. A. Hartstein, T. Puzak, “Optimum power/performance pipeline depth”, Proceedings

of the International Symposium on Microarchitecture (Micro), pp. 117- 125,

December 2003.

8. K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang, "The Case for a

Single-Chip Multiprocessor," Proceedings of International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pp. 2-11, October 1996.

9. L. Hammond, B. Hubbert , M. Siu, M. Prabhu , M. Chen , and K. Olukotun, “The

Stanford Hydra CMP,” IEEE Micro Magazine, pp. 71-84, March-April 2000.

10. M. Taylor et al., “Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay

Architecture for ILP and Streams,” ISCA, p. 2, June 2004.

11. J. H. Ahn , W. J. Dally , B. Khailany , U. J. Kapasi , A. Das, “Evaluating the Imagine

Stream Architecture,” ISCA, p. 14, June 2004.

12. B. Khailany et al., “A Programmable 512 GOPS Stream Processor for Signal, Image,

and Video Processing,” IEEE Journal Solid-State Circuits (JSSC), vol. 43, pp. 202-

213, January 2008.

13. C. Kozyrakis, D. Patterson, "Vector Vs Superscalar and VLIW Architectures for

Embedded Multimedia Benchmarks," Proceedings of the International Symposium on

Microarchitecture (Micro), pp. 283-293, December 2002.

14. L. Barroso et al., “Piranha: A Scalable Architecture Based on Single-Chip

Multiprocessing,” ISCA, pp. 282-293, June 2000.

142

15. P. Kongetira, K. Aingaran, K. Olukotun, "Niagara: A 32-Way Multithreaded Sparc

Processor," IEEE Micro Magazine, vol. 25, no. 2, pp. 21-29, March–April 2005.

16. D. Pham et al., “The Design and Implementation of a First-Generation CELL

Processor,” ISSCC, pp. 184-185, February 2005.

17. R. Kalla, B. Sinharoy, and J. M. Tendler, “IBM POWER5 Chip: A Dual-Core

Multithreaded Processor,” IEEE Micro Magazine, vol. 24, no. 2, pp. 40–47, March–

April 2004.

18. T. Takayanagi et al., “A Dual-Core 64b UltraSPARC Microprocessor for Dense

Server Applications,” ISSCC, pp. 58-59, February 2004.

19. N. Sakran et al., “The Implementation of the 65nm Dual-Core 64b Merom

Processor,” ISSCC, pp. 106-107, February 2007.

20. M. Tremblay and S. Chaudhry, “A Third-Generation 65nm 16-Core 32-Thread Plus

32-Ccout-Thread CMT SPARC Processor,” ISSCC, February 2008.

21. L Seiler, D Carmean, E Sprangle, T Forsyth, M, Abrash, P. Dubey, S. Junkins, A.

Lake, J. Sugerman, R, Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan,

“Larrabee: A Many-Core x86 Architecture for Visual Computing,” ACM

Transactions on Graphics (TOG), vol. 27, no. 3, August 2008.

22. D. Carmean, “Larrabee: A Many-Core x86 Architecture for Visual Computing,” Hot

Chips 20, August 2008.

23. H. Sutter and J. Larus, "Software and the Concurrency Revolution," ACM Queue, vol.

3, no. 7, 2005, pp. 54-62.

143

24. Edward A. Lee, “The Problem with Threads,” IEEE Computer, vol. 39, no. 5, pp. 33-

42, May 2006.

25. S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. López-Lagunas , P. R. Mattson,

J. D. Owens, "A bandwidth-efficient architecture for media processing," Proceedings

of the International Symposium on Microarchitecture (Micro), pp. 3-13, November

1998.

26. B. Khailany et al., "Imagine: Media Processing with Streams," IEEE Micro

Magazine, vol. 21, no. 2, pp. 35-46, Mar.-Apr. 2001.

27. W. Lee et al., “Space-time scheduling of instruction-level parallelism on a raw

machine,” ASPLOS, pp. 46-57, October 1998

28. W. Thies, M. Karczmarek, and S. P. Amarasinghe, “StreamIt: A Language for

Streaming Applications,” Proceedings of the International Conference on Compiler

Construction, pp. 179-196, April 2002.

29. D. B. Lomet, “Process structuring, synchronization, and recovery using atomic

actions,” Proceedings of the ACM Conference on Language Design for Reliable

Software, p.128-137, March 1977.

30. T. Knight, “An An Architecture for Mostly Functional Languages,” Proceedings of

ACM Conference on LISP and Functional Programming, p.105-112, August 1986.

31. M. Herlihy and J.E.B. Moss, “Transactional Memory: Architectural Support for

Lock-Free Data Structures,” ISCA, pp. 289-300, 1993.

32. L. Hammond et al., “Transactional Memory Coherence and Consistency,” ISCA, pp.

102, June 2004.

144

33. J. Larus, R. Rajwar, “Transactional Memory,” Synthesis Lectures on Computer

Architecture, Morgan & Claypool, 2007.

34. T. Harris et al., "Transactional Memory: An Overview," IEEE Micro Magazine, vol.

27, no. 3, pp. 8-29, May-June 2007.

35. J. Larus and C. Kozyrakis, "Transactional Memory," Communications of the ACM,

vol. 51, no. 7, pp. 80-88, July 2008.

36. A. McDonald et al., "Architectural Semantics for Practical Transactional Memory,"

ISCA, June 2006.

37. A. McDonald et al., "Transactional Memory: The Hardware-Software Interface,"

IEEE Micro Magazine, vol. 27, no. 1, January/February 2007.

38. W. Baek et al., “The OpenTM Transactional Application Programming Interface,”

Proceedings of International Conference on Parallel Architecture and Compilation

Techniques (PACT), pp. 376-387, September 2007.

39. B. D. Carlstrom et al., "The ATOMOS Transactional Programming Language,"

Proceedings of the Conference on Programming Language Design and

Implementation (PLDI), June 2006.

40. K. Mai et al., “Architecture and Circuit Techniques for a Reconfigurable Memory

Block,” ISSCC, February 2004.

41. K. Mai, “Design and Analysis of Reconfigurable Memories,” PhD thesis, Stanford

University, June 2005.

42. E. Bugnion, J. M. Anderson, T. C. Mowry, M. Rosenblum, M. S. Lam, "Compiler-

Directed Page Coloring for Multiprocessors," ASPLOS, pp. 244–255, October 1996.

145

43. J. Steffan, T. Mowry, "The Potential for Using Thread-Level Data Speculation to

Facilitate Automatic Parallelization," HPCA, p.2, January 1998.

44. J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, M. Horowitz, C.

Kozyrakis, “Comparing Memory Systems for Chip Multiprocessors”, ISCA, June

2007.

45. J. Leverich, H. Arakida, A. Solomatnikov, A. Firoozshahian, C. Kozyrakis,

“Comparative Evaluation of Memory Models for Chip Multiprocessors”, to appear in

ACM Transactions on Architecture and Code Optimization (TACO).

46. A. Solomatnikov, A. Firoozshahian, W. Qadeer, O. Shacham, K. Kelley, Z. Asgar, M.

Wachs, R. Hameed, and M. Horowitz, “Chip Multi-Processor Generator,”

Proceedings of the Design Automation Conference (DAC), June 2007.

47. M. Wehner, L. Oliker, J. Shalf, "Towards Ultra-High Resolution Models of Climate

and Weather," International Journal of High Performance Computing Applications

(IJHPCA), April, 2008.

48. J. L. Henning, “SPEC CPU2006 Benchmark Descriptions,” ACM SIGARCH

Computer Architecture News, vol. 34, no. 4, pp. 1-17, September 2006.

49. J. L. Henning, “SPEC CPU Suite Growth: An Historical Perspective,” ACM

SIGARCH Computer Architecture News, vol. 35, no. 1, March 2007.

50. D. Harris, R. Ho, G. Wei, and M. Horowitz, “The Fanout-of-4 Inverter Delay

Metric,” unpublished manuscript, http://www-vlsi.stanford.edu/papers/dh_vlsi_97.pdf

51. D. Harris and M. Horowitz, “Skew-tolerant domino circuits,” IEEE Journal Solid-

State Circuits (JSSC), vol. 32, pp. 1702-1711, November 1997.

146

52. E. Grochowski et al., "Best of Both Latency and Throughput," Proceedings of the

IEEE International Conference on Computer Design, 2004, pp. 236-243.

53. S. V. Adve and K. Gharachorloo, “Shared Memory Consistency Models: A Tutorial,”

IEEE Computer, 29(12), pp. 66–76, December 1996.

54. L. Lamport, “How to Make a Multiprocessor Computer That Correctly Executes

Multiprocess Programs,” IEEE Transactions on Computers, C-28(9), pp. 690–691,

September 1979.

55. B. Lewis and D. J. Berg, “Multithreaded Programming with Pthreads,” Prentice Hall,

1998.

56. E.L. Lusk and R.A. Overbeek, "Use of Monitors in FORTRAN: A Tutorial on the

Barrier, Self-scheduling DO-Loop, and Askfor Monitors," Tech. Report No. ANL-84-

51, Rev. 1, Argonne National Laboratory, June 1987.

57. N. Jayasena, “Memory Hierarchy Design for Stream Computing,” PhD thesis,

Stanford University, 2005.

58. I. Buck et al., "Brook for GPUs: Stream computing on graphics hardware," ACM

Transactions on Graphics, vol. 23, no. 3, August 2004, pp. 777–786.

59. K. Fatahalian et al., "Sequoia: Programming The Memory Hierarchy,"

Supercomputing Conference, November 2006.

60. I. Buck, “GPU Computing: Programming a Massively Parallel Processor,“

Proceedings of the International Symposium on Code Generation and Optimization,

pp. 17, March 11-14, 2007

147

61. F. Labonte et al., "The Stream Virtual Machine," PACT, pp. 267-277, September

2004.

62. P. Mattson et al., "Stream Virtual Machine and Two-Level Compilation Model for

Streaming Architectures and Languages," Proceedings of the International Workshop

on Languages and Runtimes, in conjunction with OOPSLA'04, October 2004.

63. F. Labonte, “A Stream Virtual Machine,” PhD thesis, Stanford University, June 2008.

64. M.P. Herlihy, " A Methodology for Implementing Highly Concurrent Data Objects,"

Proceedings of Symposium on Principles and Practice of Parallel Programming

(PPoPP), pp. 197–206, March 1990.

65. J. Gray, A. Reuter, “Transaction Processing: Concepts and Techniques,” Morgan

Kaufmann, 1993.

66. T. Harris, S. Marlow, S. Peyton-Jones, M. Herlihy, “Composable Memory

Transactions,” Proceedings of the ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming (PPoPP), June 2005.

67. E. Moss and T. Hosking. “Nested Transactional Memory: Model and Preliminary

Architecture Sketches,” In OOPSLA Workshop on Synchronization and Concurrency

in Object-Oriented Languages, Oct.ober 2005.

68. K.E. Moore et al., ‘‘LogTM: Log-Based Transactional Memory,’’ Proceedings of

International Symposium on High-Performance Computer Architecture (HPCA), pp.

254-265, 2006.

148

69. C. Blundell et al., ‘‘Deconstructing Transactional Semantics: The Subtleties of

Atomicity,” Workshop on Duplicating, Deconstructing, and Debunking (WDDD),

June 2005.

70. N. Shavit and D. Touitou, ‘‘Software Transactional Memory,’’ Proceedings

Symposium Principles of Distributed Computing (PODC), pp. 204-213, 1995.

71. P. Damron et al., ‘‘Hybrid Transactional Memory,’’ ASPLOS, pp. 336-346, 2006.

72. S. Kumar et al., ‘‘Hybrid Transactional Memory,’’ Proceedings of Symposium on

Principles and Practice of Parallel Programming (PPoPP), pp. 209-220, 2006.

73. B. Saha, A. Adl-Tabatabai, and Q. Jacobson, ‘‘Architectural Support for Software

Transactional Memory,’’ Micro, pp. 185-196, 2006.

74. A. Shriraman et al., “Hardware Acceleration of Software Transactional Memory,”

Proceedings of the ACM SIGPLAN Workshop on Languages, Compilers, and

Hardware Support for Transactional Computing, June 2006.

75. M. Erez et al., “Executing irregular scientific applications on stream architectures,"

Proceedings of the International Conference on Supercomputing, pp. 93 - 104, 2007.

76. C. Benthin, I. Wald, M. Scherbaum, H. Friedrich, “Ray Tracing on the CELL

Processor,” Proceedings of the IEEE Symposium on Interactive Ray Tracing, pp. 15–

23, 2006.

77. W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection

Networks,” Proceedings of the Design Automation Conference (DAC), June 2001.

78. R. Ho, K. Mai, M. Horowitz, “Efficient On-Chip Global Interconnects,” IEEE

Symposium on VLSI Circuits, June 2003.

149

79. R. Gonzalez, "Configurable and Extensible Processors Change System Design," Hot

Chips 11, 1999.

80. A. Wang, E. Killian, D. Maydan, C. Rowen, “Hardware/software instruction set

configurability for system-on-chip processors,” DAC, pp. 184-188, June 2001.

81. D. Jani, G. Ezer, J. Kim, "Long Words and Wide Ports: Reinventing the Configurable

Processor," Hot Chips 16, 2004.

82. “Tensilica On-Chip Debugging Guide”, Tensilica, 2007.

83. J. Kuskin, et al., “The Stanford FLASH Multiprocessor,” ISCA, pp. 302-313, April

1994.

84. M. Heinrich, et al., “The performance impact of flexibility in the Stanford FLASH

multiprocessor,” ASPLOS, pp. 274-285, October 1994.

85. J. Heinlein, et al., “Integration of Message Passing and Shared Memory in the

Stanford FLASH Multiprocessor,” ASPLOS, pp. 38-50, October 1994.

86. B.J. Smith, “A Pipelined, Shared Resource MIMD Computer,” Proceedings of

International Conference on Parallel Processing, pp. 6-8, 1978.

87. B. J. Smith, “Architecture and Applications of the HEP Multiprocessor Computer

System,” in SPIE: Real Time Signal Processing IV, vol. 298, January 1981, pp. 241-

248.

88. J. S. Kowalik, editor, “Parallel MIMD Computation: the HEP Supercomputer and Its

Applications,” MIT Press, 1985.

89. R. Alverson, et al., “The Tera Computer System”, Proceedings of the International

Conference on Supercomputing, pp. 1-6, June 1990.

150

90. A. Agarwal, B.-H. Lim, D. Kranz, J. Kubiatowicz, “APRIL: A Processor Architecture

for Multiprocessing,” ISCA, pp. 104-114, May 1990.

91. D. Kranz, B. H. Lim, A. Agarwal, “Low-Cost Support for Fine-Grain

Synchronization in Multiprocessors,” Technical Report: TM-470, Massachusetts

Institute of Technology, Cambridge, MA, 1992.

92. A. Agarwal, et al., “Sparcle: An Evolutionary Processor Design for Large-Scale

Multiprocessors,” IEEE Micro Magazine, vol. 13 no. 3, pp. 48-61, May 1993.

93. M. D. Noakes, D. A. Wallach, W. J. Dally, “The J-Machine Multicomputer: An

Architectural Evaluation,” ISCA, pp. 224-235, May 1993.

94. A. Agarwal, et al., “The MIT Alewife Machine: Architecture and Performance,”

ISCA, pp. 2-13, June 1995.

95. J. P, Singh, W.-D. Weber, A. Gupta, “SPLASH: Stanford parallel applications for

shared-memory,” ACM SIGARCH Computer Architecture News, vol. 20 no. 1, pp. 5-

44, March 1992.

96. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, A. Gupta, “The SPLASH-2 Programs:

Characterization and Methodological Considerations,” ISCA, pp. 24-36, June 1995.

97. SPEC (Standard Performance Evaluation Corporation) CP2000,

http://www.spec.org/cpu2000/CFP2000/, September 2000.

98. M. Li, et al., “ALP: Efficient Support for All Levels of Parallelism for Complex

Media Applications,” Technical Report UIUCDCS-R-2005-2605, UIUC CS, July

2005.

151

99. V. Wong, “Characterizing the Parallel Performance and Soft Error Resilience of

Probabilistic Inference Algorithms,” PhD thesis, Stanford University, September

2007.

100. J. Laudon, A. Gupta, M. Horowitz, “Architectural and Implementation Tradeoffs in

the Design of Multiple-Context Processors,” Technical Report CSL-TR-92-523,

Stanford University, May 1992.

101. J. Laudon, A. Gupta, M. Horowitz, “Interleaving: A Multithreading Technique

Targeting Multiprocessors and Workstations,” ASPLOS, pp. 308-318, October 1994.

102. Allen Leung, Benoit Meister, Eric Schweitz, Peter Szilagyi, David Wohlford, and

Richard Lethin, “R-Stream: High Level Optimization for PCA,” Technical report,

Reservoir Labs, 2006.

103. Richard Lethin, Allen Leung, Benoit Meister and Eric Schweitz, “R-Stream: A

Parametric High Level Compiler,” High Performance Embedded Computing

Workshop, 2006.

104. Reservoir Labs, “R-Stream - Streaming Compiler,” http://www.reservoir.com/r-

stream.php.

105. Albert Reuther, “Preliminary Design Review: GMTI Narrowband for the Basic PCA

Integrated Radar-Tracker Application,” Technical Report, MIT Lincoln Laboratory,

2003.

106. “GCC online documentation,” http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Variable-

Attributes.html.

http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Variable-Attributes.html
http://gcc.gnu.org/onlinedocs/gcc-4.0.0/gcc/Variable-Attributes.html

152

107. “MIPS32 Architecture For Programmers Volume II: The MIPS32 Instruction Set,”

MIPS Technologies, Inc., Revision 2.50, 2005.

108. H. Chafi et al., "A Scalable, Non-blocking Approach to Transactional Memory,"

HPCA, February 2007.

109. A. McDonald, J. Chung, H. Chafi, C. C. Minh, B. D. Carlstrom, L. Hammond, C.

Kozyrakis, and K. Olukotun, “Characterization of TCC on Chip-Multiprocessors,“

PACT, pp. 63-74, September 2005.

110. C. Chang, J. Wawrzynek, R.W. Brodersen, “BEE2: A High-End Reconfigurable

Computing System,” Design & Test of Computers, vol. 22, no. 2, pp. 114-125,

March/April 2005.

111. J. G. Steffan, et al., “A Scalable Approach to Thread-Level Speculation,” ISCA, June

2000.

112. M. Cintra, et al., “Architectural Support for Scalable Speculative Parallelization in

Shared-Memory Multiprocessors,” ISCA, June 2000.

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Chapter 1: INTRODUCTION
	Chapter 2: ARCHITECTURAL TRENDS
	2.1 PROCESSOR PERFORMANCE AND MICROARCHITECTURE TRENDS
	2.2 CHIP MULTIPROCESSORS
	2.3 PARALLEL MEMORY MODELS
	2.3.1 Shared Memory Model with Cache Coherence
	2.3.2 Streaming Memory Model
	2.3.3 Transactional Memory Model

	2.4 THE CASE FOR A POLYMORPHIC CHIP MULTI-PROCESSOR

	Chapter 3: SMART MEMORIES ARCHITECTURE
	3.1 OVERALL ARCHITECTURE
	3.2 PROCESSOR
	3.2.1 Interfacing the Tensilica Processor to Smart Memories
	3.2.2 Special Memory Access Instructions
	3.2.3 Pipelining Issues Related to Special Memory Instructions
	3.2.4 Pre-Defined Options and VLIW Processor Extensions

	3.3 MEMORY MAT
	3.4 TILE
	3.4.1 Interface Logic
	3.4.2 Crossbar
	3.4.3 Statistics and Debugging Unit
	3.4.4 Tile Timing
	3.4.5 Tile Reconfigurability Overhead

	3.5 QUAD
	3.5.1 Protocol Controller
	3.5.2 Example of Protocol Controller Operation
	3.5.3 Related Work and Discussion of Protocol Controller Design

	3.6 ON-CHIP NETWORK
	3.7 MEMORY CONTROLLER
	3.8 SMART MEMORIES TEST CHIP
	3.9 SUMMARY

	Chapter 4: SHARED MEMORY
	4.1 HARDWARE CONFIGURATION
	4.2 FAST FINE-GRAIN SYNCHRONIZATION
	4.3 EVALUATION
	4.3.1 Performance of Fast Fine-Grain Synchronization Operations
	4.3.2 MPEG-2 Encoder

	4.4 CONCLUSIONS

	Chapter 5: STREAMING
	5.1 HARDWARE CONFIGURATION
	5.2 DIRECT MEMORY ACCESS CHANNELS
	5.3 RUNTIME
	5.3.1 Stream Virtual Machine
	5.3.2 Pthreads Runtime for Streaming

	5.4 EVALUATION
	5.4.1 Application Case Study: 179.art

	5.5 CONCLUSIONS

	Chapter 6: TRANSACTIONS
	6.1 TRANSATIONAL FUNCTIONALITY
	6.2 HARDWARE CONFIGURATION
	6.3 TCC OPTIMIZATION
	6.4 TCC RUNTIME
	6.4.1 Arbitration for commit
	6.4.2 Hardware Overflow
	6.4.3 Processor State Recovery from Violation

	6.5 EVALUATION
	6.6 POSSIBLE EXTENSIONS AND OPTIMIZATIONS
	6.7 CONCLUSIONS

	Chapter 7: CONCLUSIONS AND FUTURE DIRECTIONS
	7.1 FUTURE DIRECTIONS

	Appendix A: SPECIAL MEMORY INSTRUCTIONS
	Appendix B: 179.ART STREAMING OPTIMIZATIONS
	Appendix C: TCC APPLICATION PROGRAMMING INTERFACE
	Appendix D: USING A REGISTER WINDOWS MECHANISM FOR PROCESSOR STATE CHECKPOINTING
	BIBLIOGRAPHY

