

SMART MEMORIES: A RECONFIGURABLE MEMORY SYSTEM
ARCHITECTURE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Amin Firoozshahian

December 2008

ii

 Copyright by Amin Firoozshahian 2009

All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as dissertation for the degree of Doctor of
Philosophy.

(Mark Horowitz) Principal Advisor

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as dissertation for the degree of Doctor of
Philosophy.

(Christos Kozyrakis)

I certify that I have read this dissertation and that in my opinion it is fully
adequate, in scope and quality, as dissertation for the degree of Doctor of
Philosophy.

(Kunle Olukotun)

Approved for the University Committee on Graduate Studies

iv

v

ABSTRACT

The move to chip level multiprocessors (CMP), where multiple processor cores are

integrated on the same die, fundamentally shifts the focus and complexity of the systems

towards the memory subsystem. The memory subsystem serves as the primary means for

data storage, sharing and communication that processors need to perform meaningful

computations. Moreover, appearance of innovative proposals for multiprocessor memory

systems, such as streaming and transactional memory, diversifies the semantics

requirements that need to be provided in the memory system implementation. In this

dissertation we observe that while having different semantics, all major memory models

in today's multiprocessors rely on very similar hardware resources and operations at the

implementation level. The different memory access semantics are generated by altering

how the primitive hardware operations are composed. We propose a universal memory

system architecture that implements the shared resources and exports the common

operations, enabling a user to implement different memory protocols by "programming"

the operations that occur in the memory system. The system consists of storage elements

for storing data and state information, communication channels for performing data

transfers and exchanging control messages, and associated controllers which sequencing

and carry out control operations. We present Smart Memories as a concrete example of

such reconfigurable memory system and discuss its architecture and hardware

mechanisms that provide flexibility. We also explain how protocols can be mapped to

this hardware substrate by providing a simple example. Our study shows that the

performance impact of the flexible hardware mechanisms are generally small, less than

20% compared to an ideal memory system, in almost all cases across three different

memory models. The impact on the physical aspects of the system is more significant,

consuming 60% more dynamic power and twice the area in configurable controllers

compared to controllers specialized for a specific protocol.

vi

vii

ACKNOWLEDGMENTS

During on my long years at Stanford I had the opportunity to work and collaborate with

many wonderful people and without their help and support this journey would not have

been possible. My deepest and sincere thanks of course is devoted to my advisor,

professor Mark Horowitz, for his guidance, advice, support, and specially his

extraordinary patience and trust in me during the years. I certainly consider it a privilege

to work under his supervision for all my years at Stanford. But most importantly I am

grateful for his wise mentorship and his teachings, in always considering the most

important questions to answer, whether it being a homework problem, a design project, or

living your life.

I would also like to thank my co-advisor, professor Christos Kozyrakis, for all the helpful

guidance and discussions over the course of the program. Being it the most recent

architecture paper or yesterday’s soccer game, I have always found his passionate and

enthusiastic explanations a source of limitless inspiration. I like to thank professor Kunle

Olukotun for serving in my reading and defense committee, his class lectures, and also

for collaborations with his research group during the course of our project.

I want to thank professor Balaji Prabhakar for accepting to be the chair of my defense

committee and for all the wonderful things I learned in his classes and during the short

research collaboration we had. My thanks are also extended to professor Nick McKeown,

not only for helping me when coming to Stanford, but also for his continuous support

during the course of the Ph.D. program and for all that I learned from his lectures, talks

and classes.

While working on the Smart Memories project I had the opportunity to collaborate with

many wonderful people without whom this project would have not been possible. Most

viii

importantly I want to thank my friend, colleague and officemate, Alex Solomatnikov, for

all the long years of working shoulder to shoulder. I learned a lot from him during the

years and his hard work, absolute dedication and integrity has always been the perfect

example for me. I also want to thank him for all our arguments and disagreements and

sometime disputes, without which this project would have not been as much fun.

I want to thank the rest of the Smart Memories team, Kyle Kelly, Megan Wachs, Wajahat

Qadeer, Rehan Hameed, Stephen Richardson, Don Stark and specially Ofer Shacham for

his amazing persistence and full devotedness to the project. I also would like to thank

Zain Asgar and Han Chen, our backend team, whom without their hard work and

dedication the test chip would have not been completed.

Finally I also want to thank my friends and family, specially Mom, Dad and my sister

Yalda, for their unconditional love and support during all these years, without which I

would have not been able to come to Stanford. Last but not least, I would like to thank

my lovely wife Sara, for her infinite love, profound understanding and extraordinary

patience during my years as a student. It would certainly not be possible to complete this

journey without having her by my side.

ix

TABLE OF CONTENTS

Abstract ..v

Acknowledgments... vii

List of tables... xiii

List of figures.. xv

1. Introduction..1

2. Background and motivation...5

2.1. Multicore processors and complexity of memory system5

2.2. Programming models and memory access semantics...8

2.3. Characteristics of major memory models ...10

2.3.1. Streaming memory systems ...10

2.3.2. Coherent shared memory ...12

2.3.3. Transactional memory ...15

2.4. Commonalities between models ...21

3. A universal architecture for memory systems ...25

3.1. A brief review of memory system tasks ...26

3.2. General architecture ..29

3.2.1. Storage elements ..31

3.2.2. Communication channels...32

3.2.3. Associated control logic...33

3.3. Controllers...36

3.3.1. Organization...36

3.3.2. Instruction set architecture...38

3.3.2.1. Internal State ...38

3.3.2.2. Instructions..40

3.3.2.3. Address mapping modes...43

3.4. Sequence of operations ...44

3.4.1. Processor interface logic ..44

x

3.4.2. Highest-level controller ...46

3.4.3. Lowest-level controllers...48

3.5. Summary...49

4. Smart Memories, a reconfigurable memory system architecture51

4.1. Overall architecture...52

4.2. Processors ...53

4.3. Storage elements ...57

4.3.1. Reconfigurable memory mat..57

4.3.2. Main off-chip memory...64

4.3.3. Physical address map ...65

4.4. Tile crossbar..68

4.5. Processor interface logic ...70

4.5.1. Specifying address translation and mapping..72

4.5.2. Defining memory operations ...76

4.5.3. Detecting access faults...78

4.5.4. Programmable request messages ...79

4.5.5. Interrupt interface...81

4.6. Protocol controller ..82

4.6.1. Organization...83

4.6.2. Sequencing of actions ..84

4.6.3. Supported operations ...85

4.6.4. Status holding registers and data buffers ...91

4.7. Main memory controller ...96

4.7.1. Organization...96

4.8. Mapping memory protocols..98

4.8.1. Streaming memory system...99

4.8.2. Shared memory system..101

4.8.3. Transactional memory system ...102

4.9. Summary...103

xi

5. Evaluation ..107

5.1. Test chip implementation results ..107

5.2. Performance overhead ..110

5.2.1. Coherent shared memory ...110

5.2.2. Streaming ...114

5.2.3. Transactional coherence and consistency ..117

5.3. Physical overhead ...121

5.4. Summary...124

6. Conclusions..125

Appendix A: SMASH interconnection network ..131

A.1. Inter-Quad network ..132

A.2. Network switch architecture ..133

A.3. Enforcing priorities ..136

A.4. Broadcast / multi-cast capabilities ...137

Appendix B: Implementing a simple protocol...139

B.1. Allocating resources...139

B.1.1. State and data storages ..140

B.1.2. Address translation and mapping ..143

B.2. Defining memory accesses...144

B.2.1. Accesses to local memory mats ..145

B.2.2. Accesses to main memory...151

B.3. Communication messages ..151

B.3.1. Defining communication messages...152

B.3.2. Specifying priorities ..153

B.3.3. Programming protocol controller ..155

B.3.4. Programming main memory controller ...161

B.4. Summary ..163

Bibliography ..165

xii

xiii

LIST OF TABLES

Number Page

Table 2-1: Similarities between different protocol actions..22

Table 3-1: Controller instruction set (ISA)..41

Table 3-2: Functional description of ISA instructions...42

Table 4-1: Memory mat data array opcodes ..59

Table 4-2: Memory mat control array opcodes..61

Table 4-3: Cache access signals generated by address slicer ..75

Table 4-4: Fields of request messages to protocol controller ..79

Table 4-5: Information fields in MSHR...93

Table 4-6: Information fields in USHR ...94

Table 4-7: Communication messages for implemented memory models........................100

Table 5-1: Test chip specifications ..108

Table 5-2: Coherent shared memory benchmarks ...111

Table 5-3: System parameters for coherent shared memory model111

Table 5-4: Streaming benchmarks ...115

Table 5-5: System parameters for streaming memory model ..115

Table 5-6: System parameters for hardware transactional memory model118

Table 5-7: Transactional memory benchmarks..118

Table 5-8: Performance overhead of reconfigurable controllers120

Table 5-9: Power comparison for baseline and specialized controllers...........................123

Table B-1: Cache parameters for example configuration ..140

Table B-2 : Processor interface operations on memory mats (cached)146

Table B-3: Processor interface operations on memory mats (un-cached)147

Table B-4: Protocol controller operations on tag mats ..148

Table B-5: Protocol controller operations on data mats ..148

Table B-6: Success/Failure conditions for LSU operations on caches150

xiv

Table B-7: Messages between processor interface and protocol controller152

Table B-8: Messages between protocol controller and main memory controller............153

Table B-9: Fields of messages between protocol and main memory controller..............153

Table B-10: Breakdown of message handling steps in protocol controller156

Table B-11: Breakdown of message handling steps in main memory controller162

xv

LIST OF FIGURES

Number Page

Figure 2-1: SpecInt performance numbers ..6

Figure 2-2: SpecFP performance numbers ..7

Figure 2-3: Example streaming application, stereo depth extraction10

Figure 3-1: High-level architecture of the memory system...30

Figure 3-2: Finding data copies by searching controller’s sub-trees35

Figure 3-3: Internal organization of a controller..37

Figure 3-4: Organization of processor interface ..38

Figure 3-5: Information fields in SHR and data buffer entries..39

Figure 3-6: Processing a memory access in processor’s interface logic............................46

Figure 3-7: Steps for handling request/reply messages in L1 controller47

Figure 3-8: Steps for handling request/reply messages in main memory controller48

Figure 4-1: Smart Memories hierarchical architecture ..52

Figure 4-2: Xtensa LX2 processor architecture, from [78]..54

Figure 4-3: Internal organization of memory mat..58

Figure 4-4: Logical OR operation in IMCN ..63

Figure 4-5: Virtual and physical address spaces..66

Figure 4-6: Mapping of memory mats in physical address space......................................67

Figure 4-7: Mapping of configuration registers in physical address space.......................68

Figure 4-8: Tile crossbar..69

Figure 4-9: Processor interface logic ...71

Figure 4-10: Processor’s segment table ...73

Figure 4-11: An example two-way cache configuration..75

Figure 4-12: Inputs and outputs of the opcode translation mechanism77

Figure 4-13: Detecting success or failure of a memory operation.....................................79

Figure 4-14: Interrupt interface to processors..82

xvi

Figure 4-15: Internal organization of Quad’s Protocol Controller84

Figure 4-16: Conceptual execution model of the protocol controller................................85

Figure 4-17: MSHR structure ..92

Figure 4-18: USHR structure ...93

Figure 4-19: Line buffer structure..95

Figure 4-20: Internal organization of main memory controller ...97

Figure 5-1: SMASH die plot..108

Figure 5-2: SMASH test chip area breakdown..109

Figure 5-3: Area breakdown for Tile and local memory controller.................................109

Figure 5-4: Performance impact in coherent shared memory model (kernels)112

Figure 5-5: Performance impact in coherent shared memory model (applications)........113

Figure 5-6: Breakdown of execution time (shared memory benchmarks)114

Figure 5-7: Performance impact in streaming model ..116

Figure 5-8: Performance impact in transactional memory model119

Figure 5-9: Breakdown of execution time (TM benchmarks) ...120

Figure 5-10: Area comparison for protocol controller functional units...........................122

Figure 5-11: Comparison of total area between controllers...123

Figure A-1: Star interconnection topology in SMASH ...132

Figure A-2: Organization and connections of the network switch133

Figure A-3: Input port of the network switch ..134

Figure A-4: Output port of network switch ...135

Figure A-5: Network switch scheduling logic ...136

Figure B-1: Mapping and encoding of state information...141

Figure B-2: Example instruction cache settings ..142

Figure B-3: Example data cache settings...143

Figure B-4: Example setting for segment table (address translation)..............................144

Figure B-5: Flow of operations for processing messages in protocol controller.............158

Figure B-6: P-Unit subroutines..159

Figure B-7: T-Unit subroutines (cached and un-cached parts) ..159

xvii

Figure B-8: S-Unit subroutines..160

Figure B-9: D-Unit subroutines ...160

Figure B-10: N-Unit subroutines (receiver and transmitter)..161

Figure B-11: Flow of operations for processing messages in main memory controller.162

xviii

 1

1. INTRODUCTION

Since the beginning days of computers, applications have always needed large

amounts of fast memory. However, as the memory quantity increased, so did the

application demands. With the increasing gap between the operational speed of

processors and memory the only feasible way of creating an illusion of large, fast

memory was by organizing it into multiple levels of hierarchy. Therefore, in addition

to storing application data, optimal transfer of the data between levels of the hierarchy

has also been one of the crucial tasks of the memory system and has been studied

extensively in the literature.

The appearance of parallel machines, and most recently with the emergence of chip-

multiprocessors, has further increased the importance of memory system design since

it serves as the primary means for data communication and sharing between multiple

processor cores. This communication and sharing not only increases the performance

requirements of the memory, but also interacts in many ways with the memory

hierarchy that was created to improve the effective performance of the memory.

Additional mechanisms are required to provide a consistent view of the shared address

space and guarantee orderly completion of memory accesses, in addition to

performing data transfers between levels of hierarchy. These mechanisms in the

memory system have to follow a specific set of rules to provide such guarantees,

usually referred to as a memory access protocol.

Memory protocols usually are exposed to the software in the form of a memory model,

which is the conceptual view of the shared address space and its operational semantics

as seen by processors. The memory model in turn is dictated by the system’s

programming model. Besides the traditional sequential programming model for single

thread processors, various programming models have been proposed by researchers to

simplify the difficult task of developing parallel programs. Each programming model

usually has its own view of the underlying memory and hence dictates its specific

2

memory access semantics. These semantics can vary from a simple, software managed

memory hierarchy to very complex set of rules for providing atomicity and isolation

guarantees between operations of concurrent threads and in memory system.

The distributed concurrent nature of these memory systems makes their

implementation in general a very challenging and expensive task. This complexity is

compounded if a machine must support more than one memory model. Interestingly,

while the semantics required by various models are diverse, this dissertation will show

that they have considerable similarities at the hardware implementation level. This

critical observation motivates the design and development of a universal memory

system architecture that can be “programmed” or “configured” after construction, in

order to efficiently support implementation of existing memory models, and hopefully

future ones, on the same hardware substrate.

This dissertation proposes an abstract architecture for a universal memory system,

recognizing and identifying necessary resources and operations. It also proposes an

abstract instruction set architecture for the operations supported by the memory system

controllers for implementing memory access protocols. In order to demonstrate the

feasibility and effectiveness of this approach to memory system design, the

dissertation presents the design and implementation of the memory system in the

Smart Memories multiprocessor, focusing on the reconfigurable controllers that

implement the proposed abstract instruction set. Finally, it evaluates the performance

impact of the reconfigurable mechanisms added to the memory system, as well as the

physical overheads of constructing configurable controllers.

To show the commonalities between hardware model implementations, Chapter 2

reviews some of the important memory models implemented in today’s multiprocessor

systems in more detail, and highlights the hardware mechanisms that are used. Using

this information, Chapter 3 proposes a universal memory system architecture

constructed by implementing the set of common resources and operations discussed in

Chapter 2. It explains the functionality of the resources and the operations they export,

3

providing a set of basic, abstract operations that the memory system can support.

Combining and composing these operations in different sequences implements a large

class of memory protocols.

To make this design more concrete, in Chapter 4 we present the Smart Memories

memory system architecture as an instance of the universal memory system. We

discuss system’s organization and components in detail and explain the flexible

hardware mechanisms embedded within different system components to provide the

discussed abstract operations. In order to provide more insight and illustrate the

capabilities of the system, Appendix B discusses the details of implementing a simple

coherence protocol on top of the Smart Memories hardware. It explains the steps of

sketching the protocol as a set of operations on local resources and communication

messages exchanged between different levels of hierarchy, and illustrates how to carry

out those operations on the designated resources.

In Chapter 5 we discuss the Smart Memories test chip, SMASH, and its

characteristics. We evaluate the performance impact of the reconfigurable mechanisms

embedded in the architecture to provide the flexibility in composing and sequencing of

the operations, as well as their effect on physical characteristics of the system, namely

area and power. Finally Chapter 6 presents our conclusions and provides directions for

future research.

4

5

2. BACKGROUND AND MOTIVATION

The memory subsystem is a crucial part of any computer system. In addition to

managing data locality to provide the illusion of a large fast memory, it also serves as

the main infrastructure for communication and data sharing in today’s

multiprocessors. In this chapter we discuss how the integration of more processor

cores in today’s CMP systems affects the memory subsystem design, as well as the

implications of innovative parallel programming models on the system’s memory

access semantics. Next, we review the characteristics of major memory models

supported in the existing multicore processors, trying to understand the underlying

hardware mechanisms used in their implementation. We will see a considerable

similarity between these memory systems, both in terms of low-level hardware

resources and operations. The commonalities in resources and operations serve as the

bases for constructing a universal memory system architecture, as presented in next

chapter.

2.1. MULTICORE PROCESSORS AND COMPLEXITY OF MEMORY SYSTEM

In the past decades, number of transistors in the integrated circuits has been increasing

according to Moore’s Law. For microprocessor systems, this increased quantity has

been successfully converted in to increased system performance, resulting in

exceptional advances in the microprocessor and in general, in digital systems industry.

Major reasons for this increased performance have been three-fold:

• Scaling of VLSI technology has made transistor’s operational speed faster,

resulting in faster clock cycles for the devices in successive generations.

• Number of pipeline stages in the modern processors has been increased,

decreasing number of logic gates per pipeline stage, furthermore enabling faster

clock frequencies for microprocessors.

6

• By using architectural techniques such as wider issue windows and out-of-order

executions, modern microprocessors have been successfully extracting more and

more instruction level parallelism (ILP) from the applications, hence reducing total

number of clock cycles per application.

As a result of this steep performance increase, the traditional sequential programming

model has remained unchanged for a long time.

Specint 2006

0.01

0.10

1.00

10.00

100.00

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

Year of Introduction

intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc64
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
IBM Power
SUN UltraSPARC
Intel Core 2
AMD Opteron
AMD Phenom

Figure 2-1: SpecInt performance numbers

However, in the recent years performance of single chip microprocessors has stopped

scaling [33][34]. Figure 2-1 and Figure 2-2 display the SpecFP and SpecInt

performance numbers for a various number of microprocessor families, clearly

demonstrating this slowdown. There are several for this slowdown [33][34][35]: gate

speeds are not increasing as fast in today’s submicron fabrication technology. ILP

extraction has reached its limits; there is only diminishing return in increasing the

7

issue width of the processor or making pipelines deeper. But most importantly, power

consumption has been the major concern. Processors simply have reached their limit

power consumption.

To alleviate these issues, microprocessor vendors have started integrating more than

one processor core on the same die. Replicating cores is an attractive solution since it

allows one to use slightly less powerful, but much more power efficient cores to get

around the power wall. Such “multicore” processors have become mainstream in

recent years: Intel Xeon [36] and Quad-core Itanium [37], AMD Opteron [38],

Sony/Toshiba/IBM Cell [41], Sun Niagara [39] and Niagara-2 [40] are only a few

examples of the multicore processors in today’s market.

Specfp 2006

0.01

0.10

1.00

10.00

100.00

88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

Year of Introduction

intel 486
intel pentium
intel pentium 2
intel pentium 3
intel pentium 4
intel itanium
Alpha 21064
Alpha 21164
Alpha 21264
Sparc
SuperSparc
Sparc64
Mips
HP PA
Power PC
AMD K6
AMD K7
AMD x86-64
IBM Power
SUN UltraSPARC
Intel Core 2
AMD Opteron
AMD Phenom

Figure 2-2: SpecFP performance numbers

While this solution is conceptually simple, replicating a number of cores, the

complexity in such systems shifts towards the memory subsystem and the

communication mechanisms between the processors. Processors use caches and local

8

memories to exploit temporal and spatial locality of the data, keeping copies close for

the duration of computation. Results produced by the processors are also placed in

these local memories or caches. The difficulty arises when processors need to share

these results in order to cooperate in performing a meaningful computation. Data

sharing involves implementing necessary communication and ordering mechanisms to

keep caches and local memories consistent with each other in presence of multiple

data copies. The added mechanisms usually are not trivial, both conceptually and

physically, and if not carefully designed, might prove to be performance bottlenecks

or in the extreme case, introduce complex design errors that render the whole system

useless.

In addition, modern processors issue a large number of memory operations in order to

overlap useful computation with memory accesses and tolerate long memory access

latencies. Thus, in the multicore systems, the complexity of the underlying memory

hierarchy increases with the number of cores; it has to accept and satisfy more and

more requests as the number of cores in the system grows. Furthermore, enlarging

number of processor cores increases number of local storages or caches within the

system, potentially increasing number of copies of a specific data block, which further

complicates the mechanisms utilized for memory coherence and consistency.

However, in spite of all the architectural complexities, the major limiting factor for

multicore processor performance is the software. While system’s performance

potentially scales with the number of integrated cores, this performance has to be

exploited by the programmer. The sequential programming model which has been

dominant so far has to be replaced with explicit parallel programming models to

utilize available resources, as is discussed next.

2.2. PROGRAMMING MODELS AND MEMORY ACCESS SEMANTICS

With the slowdown of single core performance and emergence of multicore

processors, the task of improving application performance falls on the programmer’s

9

shoulder. The available additional cores must be utilized by software in order to

provide speedups for the running application. The traditional sequential programming

model must be replaced with an explicit parallel model. Traditional parallel

programming model provides the user with the abilities of creating threads that can be

executed on multiple processors. POSIX threads (Pthreads) [42][43] and ANL macros

[44][45] are examples of such environments. They also provide user with the low-

level synchronization mechanisms such as locks, semaphores and barriers, for thread

coordination. Hence, the programmer not only has to think about parallelizing his/her

application, but also has to implement all coordination and orchestration activities for

the concurrent threads in the application code itself, using the provided low-level

mechanisms. More recent programming constructs such as OpenMP critical

[75][76] and Java synchronized [74] directives allow the user to identify the

critical regions of the program without worrying about the details of handling actual

synchronization. However, at the lower level, these constructs also rely on the

traditional locking mechanisms.

Moreover, after developing the first version of a parallel program, it is usually difficult

to have it reach the desired level of performance. Oblivious coordination and coarse-

grain data sharing between processor cores usually introduces unnecessary, expensive

communication and serialization that reduces the performance of the running

application.

In recent years, researchers have proposed innovative programming models to address

the parallel programming productivity problem. Stream programming [1] and

transactional memory [18][19], are among the accepted models for future

multiprocessors and will be introduced and discussed in this chapter. These proposals,

while being effective for some classes of applications, fail to provide a uniform and

general model that can be used across application domains. More importantly, each

model usually makes certain assumptions about the capabilities of the underlying

hardware, specifically in defining semantics of memory accesses. Due to these

differences in the requirements of the memory system, usually each of today’s existing

10

multicore processors assumes a particular programming model and provides its

specific memory access semantics. While traditional x86 architectures by Intel and

AMD implement conventional coherent shared memory, more recent architectures

adopt new models: IBM Cell [41] employs a stream programming model and the Sun

Rock [46] supports transactional memory.

2.3. CHARACTERISTICS OF MAJOR MEMORY MODELS

2.3.1. STREAMING MEMORY SYSTEMS

The stream programming model expresses the application in terms of computational

kernels communicating via data streams [1]. A stream is a sequence of similar data

elements. A kernel is a compute function which performs the same operations on each

data element in the stream. Data streams are passed from one kernel to the other. Each

kernel consumes one or more input streams and produces one or more output streams.

Expressing the program in terms of kernels and streams exposes both parallelism and

communication patterns in an application. Figure 2-3 shows an example application

expressed in the stream programming model.

7x7
Convolution

3x3
Convolution

7x7
Convolution

3x3
Convolution

SAD

Input Data

Input Data

Output Data

Stream

Kernel

Figure 2-3: Example streaming application, stereo depth extraction

A stream programming model is mostly suitable for applications with lots of data

parallelism, where operations on one data element are largely independent of other

11

elements. Signal processing, graphics and media applications are the most important

classes of such compute-intensive applications. These applications have abundant

amount of parallel computations with a relatively high ratio of compute operations to

memory accesses.

Streaming applications usually have regular, statically analyzable memory access

patterns, with little or no global data reuse. Most of the locality in streaming

applications is in form of producer-consumer communication, where produced data

stream is either passed to another compute kernel or used by the next iteration of the

same kernel.

In the stream programming model, software is responsible for managing all memory

references and communications between compute kernels. No implicit data sharing

and copying occurs in the system. This provides the memory system with the potential

of achieving better performance and energy efficiency, since programmer and

compiler can orchestrate data accesses and communications with much more accuracy

and efficiency. Because system behaves proactively under software control, all data

transfers can be started ahead of time and before the data is actually required. Such

overlapping of computation and communication/memory access (usually referred to as

double buffering or Compute Transfer Parallelism, CPT [48]) leads to better latency

tolerance in the streaming systems and applications. Performing memory transfers

with better accuracy and variable granularity, results in more efficient usage of off-

chip memory bandwidth as well as better local storage occupation.

Because of its relative simplicity and the fact that almost all aspects of the system are

controlled by software, stream programming model has been mapped to a number of

different architectures, including general purpose architectures (Streamware

[49][50][51]) and GPUs [55]. Researchers also have proposed programming languages

and run-time environments that implement stream programming model transparently,

encapsulating the underlying hardware from the programmer. Examples of these

systems are Stream Virtual Machine [56], StreamIt [54] and Sequoia [57][58].

12

However, streaming model has been demonstrated to achieve better performance on

the streaming architectures, such as Imagine media processor [1][2][59][60] or Cell

Broadband Engine from Toshiba/Sony/IBM [41][48][61][62].

In a streaming memory system, local memories are exposed to the software and can be

addressed explicitly. In some streaming systems local memories are the only memory

available to the processors for fetching operands: off-chip global memory cannot be

directly accessed (such as Imagine and Cell). Hardware provides a hierarchy of

storage locations and communication bandwidth to move data between levels. Data

transfers between main and local memory are in the granularity of streams, which

might be of arbitrary lengths. Therefore, hardware has to provide fast and efficient

memory copy facilities to move data between local memories or between main

memory and local memories. Such transfers are usually off-loaded to dedicated DMA

engines (e.g. Stream Controllers in Imagine, Memory Flow Controllers in Cell), which

support a variety of addressing modes for memory gather/scatter operations

(sequential, strided, indexed, etc.), as well as queuing mechanisms for performing

back-to-back transfers without the intervention from the main processor.

In general, a streaming memory system has simpler and more energy efficient

hardware since it avoids complications of cache management and cache coherence

protocols, but instead pushes the complexity of memory management to the software.

2.3.2. COHERENT SHARED MEMORY

While managing all the communication and data transfer in software potentially

provides better performance and power efficiency, it often proves to be a burden on

the programmers. Rather than performing such explicit managements, processors can

rely on caches to capture temporal and spatial locality of data accesses. Since

hardware transparently provides the best-effort locality management, caches are

favorable for applications with dynamic control and unpredictable memory accesses

which are difficult to statically analyze, such as desktop and enterprise applications.

13

In cache-based system, all the local storage is used to implement caches and off-chip

memory is the only directly accessible storage. The granularity of data transfer

between on-chip and off-chip memories is a cache block. Hardware also uses a fixed

allocation and block replacement policy for transferring blocks between cache and

main memory. In these systems, off-chip memory address space is shared among

processors and all communication between processors is performed by reading and

writing locations in the shared memory.

While this model simplifies communication, it complicates the system hardware since

multiple copies of the same cache lines might be present in different caches.

Therefore, in cache-based systems, hardware is also responsible for providing

processors with a consistent view of the shared address space by implementing a

coherency protocol. Coherence protocols ensure that copies of cache lines replicated

in the system are exactly the same by defining a set of rules to be followed by

hardware at the times processors attempt to read or write shared memory locations.

Coherence protocols either imply propagation of write data from one processor’s

cache to others (update-based protocols) or ensure that upon any modification, only

one copy of the cache line exists in the whole system (invalidation-based protocols)

[69]. In both cases, hardware has to locate all the current copies of the cache line to

invalidate or update the data, as well as find the most up-to-date copy when satisfying

a processor’s read action. Depending on the scale of the system, the search for a

specific cache line is either broadcasted to all possible sharers (bus-based, Symmetric

Multi Processor1 systems) or a dedicated entity in the memory system called directory,

keeps the sharing information to identify possible sharers when necessary (directory-

based, Distributed Shared Memory2 system). Upon a write, the system sends state

inquiry requests to identify sharers and invalidate copies or adjust data. Upon a read,

1 Symmetric Multi Processor (SMP) systems are the ones in which main memory has equal distance (in

term of access time) from all processors. Typical configuration of such systems has a central shared
bus that connects all processors and main memory.

2 Distributed Shared Memory (DSM) systems are multiprocessors in which main memory is distributed
among processors. Processors are connected to each other over an interconnection network.

14

the same state inquiries locate and acquire the most up-to-date copy for the requesting

processor. Coherent shared memory systems also have to enforce a write serialization

property, serializing writes to the same location from different processors, by

providing a serialization point. In SMP systems, the shared bus used for accessing

main memory serves both as a serialization point and as a broadcast mechanism for

sending state inquiry or data update requests. In DSM systems the home

memory/directory controller serves as the serialization point while also identifying

potential sharers, and sends explicit, point-to-point state adjustment or data

update/acquire messages to all the sharers.

In shared memory systems in addition to the coherence protocol (which dictates the

rules for accessing a specific memory location by all processors) hardware has to

provide the set of regulations that governs ordering of memory accesses to different

memory locations. More specifically, hardware should clearly identify the ordering

guarantees it provides for completing memory accesses issued from different

processors. This information is imperative for developing parallel software, since

these rules define semantics for processors communicating via shared memory.

Collection of these ordering regulations is usually referred to as system’s memory

consistency model [63]. The consistency model limits the implementation

optimizations that can be made, such as overlapping and re-ordering of memory

operations, because they can disturb the order of memory accesses.

The shared memory programming model relies on low-level synchronization

mechanisms such as locks and barriers to provide coordination for accesses to shared

data. Implementation of these mechanisms is also part of the responsibilities of the

memory system. They are usually implemented by atomic read-modify-write

operations on the memory locations, such as Test & Set, Compare & Swap or Load-

Locked/Store-Conditional. Memory system hardware should be capable of providing

necessary atomicity guarantees in performing these operations, even in the presence of

interjecting accesses from other processors or actions by coherence protocol.

15

Given the above issues, shared memory systems usually require a set of rather

complex hardware mechanisms. First of all, implementing a cache involves providing

a correspondence mechanism between local storage and main memory in order to

indicate which portions of the main memory currently exist in the cache. Such

correspondence is commonly made by associating address tags with the cache blocks.

In addition, each block should also have a state, indicating its presence, copy-back

requirements and read/write permissions according to the coherence protocol.

Therefore, in addition to the data storage, hardware has to provide extra space for

keeping the associated tags and state information.

Cache management and maintenance of coherence and consistency model is usually

off-loaded to cache/coherence controllers in the shared memory systems. These

controllers integrate all necessary facilities in one place: they monitor and update state

information associated with cache lines, initiate and carry out coherence actions on

behalf of the processor, provide the necessary ordering between memory accesses, and

include the necessary data transfer mechanisms to move cache blocks between caches

or between cache and main memory. In addition, they might also be equipped with

prefetch engines which recognize and detect streams of cache misses and initiate data

transfers prior to the processor’s data access.

Locality management, coherence, synchronization and memory consistency model are

strongly related in the context of a shared memory system. As a result, while these

systems simplify the task of programmer by providing best-effort locality and

communication management behind the scene, they are often times more complex and

challenging to design and verify than streaming memory systems.

2.3.3. TRANSACTIONAL MEMORY

Speculation has proven to be a useful technique for extracting better performance.

Out-of-order execution, branch prediction, value prediction [3][4][5], etc. are all

examples of speculative execution techniques commonly used in modern processors.

16

The common base for all these techniques is to speculatively predict the outcome of an

operation before the operation is completed and launch the following operations using

this value. At the time where the actual result of the operation is known, if it is

recognized that the speculation was incorrect, all the speculatively executed operations

are cancelled and execution is resumed with the actual result.

Speculative execution is also used as a relatively simple method for parallelizing

sequential applications [6]. Thread Level Speculation (TLS) speculatively executes

sections of an application concurrently as threads running on different processors. The

concurrent execution does not consider the logical dependence between code

segments. The underlying memory system hardware tracks such dependencies and

recognizes any dependence violation at run time. In case of a violation, hardware

automatically re-executes the dependent sections after the results from their logically

earlier sections are produced. Parallel threads in sequential applications are created

from iterations of the loops or procedure calls [7].

 In addition to speeding up sequential applications, TLS can also be used to speed up

traditional parallel programs that use locks and barriers for synchronization. In such

systems, a thread continues to execute the critical region of the application

speculatively, assuming that it has successfully acquired any necessary locks

protecting the region [8]. When a collision is detected between two threads that have

entered the same critical region, the system rolls back the executed critical region and

re-executes it after acquiring necessary locks. This optimistic concurrency extraction

helps to remove the penalty of conservative synchronization and exploit parallelism

whenever possible.

Many architectures for thread-level speculative systems have been proposed:

Multiscalar project [9][11], Stanford Hydra [7][12][13], CMU’s STAMPede [14][15]

as well as others [16][17]. These systems buffer speculative results in the memory

system for two main reasons: first, they speculate over large sections of the code

where register file is not large enough for storing the speculative results. Second,

17

hardware can relatively easily track all the dependences and detect dependence

violations by observing loads and stores from different threads.

More recently, TLS proposals have been evolved from a simple speedup mechanism

into Transactional Memory (TM), an innovative programming model for developing

parallel application [18][19]. This programming model finds its roots in the Data Base

Management Systems (DBMS) [20] where all operations in the shared database are

performed as atomic transactions. By definition, a transaction is a sequence of

operations that appear to be executed atomically and instantaneously. Specifically,

transactions in the TM systems have three major properties [19]:

• Atomicity: Operations within a transaction are either all completed successfully or

none of them is executed. Hence, the transaction either commits as a whole or

aborts without any visible side effect.

• Consistency: Each transaction starts its operations with a consistent view of the

shared data and leaves the system in a consistent state after completion.

Consistency is defined with respect to the specific application and structure and

semantics of its shared data.

• Isolation: Transaction executes in such a way that it does not have any effect on

the concurrently running transactions. Particularly, this property implies that all of

the modifications of a transaction are hidden from other transactions within the

system and are made visible only after commit.

The isolation property of the transactions also implies that they are serializable; for a

system running concurrent transactions, the produced result should be the same as

produced by one execution in which are all transactions run serially.

With these powerful abstraction mechanisms, transactional memory claims to provide

a new paradigm to increase parallel programming productivity. Programming within a

transaction is much simpler since programmer writes sequential code and is only

18

concerned with correctness of results within a transaction’s scope. Transactional

semantics are provided by system hardware or runtime software and programmer does

not need to be concerned with their implementation. This facilitates development of

parallel programs by shifting programmer’s focus on optimizing the parallel software

rather than “getting it right” at first place.

TM is most useful for applications with irregular synchronization and low probability

of contention, where the dependences cannot be statically analyzed and predicted by

the compiler or programmer. For such applications, TM allows parallelization by

enabling optimistic concurrency: potentially dependent transactions are executed

concurrently and are only rolled-back and re-executed if there is true dependence. This

provides a better execution performance in contrast to conservative synchronization in

traditional shared memory model. Delegating all the correctness issues to hardware

enables compiler or programmer to only identify potentially parallel sections of the

application without being concerned about the details of coordination and

synchronization of their parallel execution.

There have been many implementations of the transactional memory proposed by

researchers. These implementations are usually categorized in three classes. Software

Transactional Memory or STM systems [21][22][23] implement transactions purely in

software and a runtime system, without requiring any modifications to the underlying

hardware. While STM systems are easier to develop and maintain a great degree of

flexibility in terms of transaction sizes or different operational policies, their

performance is poor compared to hardware TM systems due to runtime overheads for

tracking transaction read/write sets and managing commit/undo logs.

Hardware Transactional Memory (HTM) systems directly implement transactional

semantics in the hardware. LogTM [24][25][26], Transactional Coherence and

Consistency (TCC) [27][28] and UTM/LTM [29] are example implementations of

HTM systems. While achieving better performance compared to STM systems, HTM

systems usually are limited by fixed amount of hardware resources available for

19

tracking transactions, e.g. limited buffering space for a transaction’s modifications.

HTM systems therefore cannot handle arbitrarily large transactions and fall back to

software mechanisms when a transaction overflows hardware structures. In such

situations they usually suffer from the same performance penalties as STM systems.

Hybrid transactional memory systems (HyTM) rely on a few modifications in the

underlying hardware system in order to support transactions effectively, but

implement most of the system in software. [30][31][32] are examples of these

systems.

Hardware implementations of transactional memory, like TLS systems, rely heavily

on memory system to provide the key capabilities:

• Tracking: The memory system has to provide mechanisms to keep track of

transactions’ read and write sets. These sets are the memory locations that are read

or written by a transaction, and are used for detecting dependencies between the

transactions to decide when a transaction commits or aborts. The memory system

hardware maintains these sets by associating meta-data or state information with

the memory locations touched by each transaction. Tracking can be performed at

different granularities, such as cache line or memory word, depending on the

system.

• Buffering/Logging: All speculative results produced by a transaction should be

buffered somewhere inside the memory system and kept hidden from other

transactions. The memory system has to propagate these changes to the

architecturally visible state only when a transaction successfully commits. Most of

the HTM systems use the processor’s cache for buffering a transaction’s write set,

since it can be accessed very fast and is private, hence the modifications can be

kept isolated from other transactions. Alternatively, if the updates are done in

place, undo logs for the modified locations should be kept elsewhere in the

memory so that the effects of the transaction can be rolled back if it aborts.

20

• Detecting conflicts: The memory system has to detect any potential conflict

between any two running transactions in the system. This task is accomplished by

cross checking a transaction’s write set against other transactions read and write

sets. A conflict is detected if both transactions modify same memory location or a

transaction modifies a memory location that is previously read by another

transaction. Conflict detection can happen early (eagerly) [19] when memory

locations are accessed or late (lazily), when a transaction is intended to commit its

modifications.

• Committing/Aborting: Committing a transaction’s modifications can be performed

eagerly, by propagating all the modifications at commit time to main memory and

other transactions [27] or lazily, by allowing them to remain local and be

discovered by the underlying sharing mechanism (e.g. coherence protocol) when

they are needed. In case of aborting a transaction, all the speculative modifications

should be discarded, without any side effects. If updates are done in place, the

locations should be overwritten with their previous values extracted form the undo

log.

Given the above roles, in HTM systems the memory subsystem hardware has to

provide extra storage for the necessary state information as well as buffering space for

speculative modifications or alternatively undo logs. It also has to provide the

necessary facilities for detecting accesses to shared memory locations, very similar to

the coherence mechanisms in the shared memory systems. In fact, some

implementations of the HTM rely on existing coherence protocols for detecting

conflicting accesses [24]. In addition, hardware has to have functionality for keeping

intermediate changes of a transaction isolated from other transactions and atomically

make them visible at commit time or completely discard them at abort time. Therefore,

in general, the implementation of the memory system hardware for HTM is more

complicated than shared memory systems since it has delicate interactions with the

system software.

21

2.4. COMMONALITIES BETWEEN MODELS

When considering all the memory models discussed above, one can observe

similarities between them, most importantly requiring similar resources for

implementing the desired functionality. First and foremost, all models have a

hierarchy of storage elements: data storage for storing user data and state storage for

keeping associated meta-data along with it. They utilize communication resources

(channels and message send/receive engines) for data transfers between storages and

coordination of accesses to shared data. Lastly, in all the models there is a set of

external logic entities or controller agents for implementing access protocol and

providing assistance in completing processors’ memory references. This logic usually

serves as request generator and/or performs control, sequencing and scheduling

operations in order to execute protocol actions. DMA engines in streaming memory

system, cache/coherence controllers and prefetch engines in shared memory systems

and cache/commit controllers in HTM systems are instances of these external control

agents.

Furthermore, the operations performed on these common resources are also very

similar. One can recognize such similarity at two levels: at the high level, many

protocol actions that implement the discussed memory models have the same

conceptual functionality. Table 2-1 lists a few of these actions, specifying their

memory model and specific protocol, indicating which other actions they resemble.

For example, a DMA transfer between the local memories of the two processors is

very much like a cache to cache transfer performed in any invalidation based

coherence protocol: while there are extra actions for checking and writing the state

information, both of the operations essentially copy data from one physical location to

another. As another example, the committing of modifications of a transaction in the

TCC HTM is very much like a scattered DMA operation in stream programming

model: source addresses are read from an auxiliary structure (FIFO associated with the

cache in TCC, or index memory in streaming), data elements are read from the source

memory (L1 cache in TCC and local memory in streaming) and are scattered to main

22

memory as well as other caches or local stores. Other examples are the commit

operation which update the word in the destination cache exactly the same way as an

update-based coherence protocol.

Model Protocol Action Similar
to

1 DMA block read (main mem. to local mem.) 5
2 DMA block write (local mem. to main mem.) 6
3 DMA transfer from one local mem to another 7
4

Streaming

DMA indexed scatter 10
5 Any Cache refill 1
6 WB caches Write-back (cache spill) 2
7 Invalidation

based
Cache to cache transfer 3

8 Invalidation
based

Snoop, coherence downgrade/invalidate 11, 12

9

Coherent
Shared
Memory

Update based Updating word in destination caches 10
10 TCC Commit - updating data in other caches and

main mem.
4, 9

11 TCC Conflict detection (lazy) - checking for
violation in destination cache upon commit

8

12

HTM

LogTM Conflict detection (eager) - checking for
violation upon receiving coherence request

8

Table 2-1: Similarities between different protocol actions

At a lower level, the primitive memory operations that are combined to form the

protocol actions are the same in all of the above models. These primitive operations

can be categorized into five different classes, as described below:

1. Data/State read and write – Accessing data and state storages for performing data

transfers, state inquiries and updates, according to the specific protocol action

2. Communication – Sending and receiving request/reply messages over available

communication infrastructure

3. Ordering – Guaranteeing a specific order between requests from the same or

different processors, according to the specific protocol or memory consistency

model

23

4. Tracking – Keeping track of the outstanding requests in the system so that each

request can be completed after the corresponding reply is received. This is also

necessary for enforcing ordering between different requests

5. Interpretation of state information – The major differentiating factor among

memory models; indicates how the state associated with data is interpreted and the

flow of control is changed according to the specific interpretation

These operations are essentially the basic blocks for composing protocol actions. One

can describe the activities occurring in the memory system hardware upon receiving

any protocol request/reply message as a composition of the above operations in the

appropriate sequence. Given the common set of resources and their associated

primitive operations as well as the strong similarities observed in the composition of

operations to form protocol actions, the interesting challenge is to construct a universal

memory system that can be “programmed” to implement a given memory model.

Having a programmable memory system not only allows executing applications

developed for different memory models on the same hardware substrate, but also

allows the user to tailor the memory system to the specific needs of the application,

potentially achieving better performance. Also, the late binding of actual memory

protocol to the system hardware makes it possible to fix implementation errors by

changing the memory system “program”, potentially avoiding expensive fixes in the

underlying hardware and costly chip re-spins.

Considering this common ground between different memory models discussed in this

chapter, the following chapter presents our proposal for the universal memory system

architecture. We explain system’s resources and operations in more details and

express the primitive operations discussed in this chapter as an instruction set

architecture for the controlling agents in the memory system.

24

 25

3. A UNIVERSAL ARCHITECTURE FOR MEMORY

SYSTEMS

After reviewing the major memory systems used in today’s multicore processors in the

previous chapter and recognizing common resources and operations in their

implementation, in this chapter we propose a universal memory system architecture

which enables the realization of different classes of memory models on the same set of

hardware resources.

Executing a processor’s memory access instruction involves performing a set of

actions in the memory system hardware. A “memory model” defines the set of

requirements that should be satisfied by the memory system after executing each

memory access instructions. A “memory protocol” expresses the set of rules that

should be followed by the hardware when executing a memory access instruction, so

that the semantics requirements of the memory model are fulfilled.

The design philosophy of the universal memory system is very similar to the concept

of reduced instruction set (RISC) architectures for microprocessors; instead of

providing a fixed sequence of actions in the hardware that conforms to a specific

memory model (or protocol), a universal memory system provides a set of basic,

primitive memory operations as well as flexible means for combining and sequencing

these operations. The flexibility enables one to develop or adopt a memory model that

is best suited for a specific application and implement it in hardware by

“programming” or “configuring” the underlying resources.

In order to construct such a generic model, we first have to distinguish the major tasks

of the memory system and recognize the necessary hardware resources. The next step

is defining a comprehensive set of operations on these resources, and the final step is

to provide mechanisms that allow meaningful composition and coordination of

operations in order to implement the desired memory protocol. Note that in our

26

discussion we concentrate on the functional characteristics of the memory system and

operations that it performs internally, rather that on its quantitative characteristics,

such as size of memories or available bandwidth of the communication channels.

3.1. A BRIEF REVIEW OF MEMORY SYSTEM TASKS

The primary task of the memory system is to store application data. Processors view

the memory as a linear array of storage locations where each location is identified by a

unique address. Applications require a large, fast memory. However, in today’s VLSI

fabrication technology, as the size of the memory increases so does its access time. In

reality, the only economically feasible approach to provide an illusion of large, fast

memory is by organizing it as a hierarchy of locations: small, fast memories closer to

the processors and larger but slower memories farther from processors.

When running an application, the data should be brought into the closest memory (also

referred to as local, level1, or L1 memories or caches) in order for the processor to

operate on it faster. Therefore, one of the crucial tasks of the memory system is to

transfer data between levels of the hierarchy in order to bring it closer to the

processor. Transfer involves copying the desired data from larger, slower memories

that are located farther from processor to smaller, faster memories closer to processor,

and copying it back to the main storage after processing finishes. Data transfers also

might copy data from a processor’s private memory to another processor’s private

memory, when the two processors are sharing data or communicating. In order to

exploit spatial locality of the data accesses and amortize the overhead associated with

the transfer, such data copy operations usually involve a few adjacent memory words,

referred to as a data block, or in the systems with caches, a cache line.

Data transfer operations can be explicitly initiated by the software via executing

memory copy instruction, or implicitly by hardware, when a memory access cannot be

satisfied in local memory, for example after detecting a cache miss. In cache based

systems, the hardware allocation policy decides where to place cache lines in caches at

27

different levels of hierarchy and establishes a correspondence between the locations in

the cache and main memory. In addition, the hardware has to decide whether a cache

line should be copied back when being replaced or can simply be overwritten. In order

to facilitate such decisions, cache based systems associate meta-data or state

information with cache lines to establish their correspondence with locations in main

memory, express their validity, and whether they need to be copied back on

replacement. This state information is inquired, observed, and updated by memory

system hardware when executing memory access instructions.

In most cache based systems, processors are unaware of data transfers and state

adjustments that occur inside memory system, and simply view the memory as a linear

storage array. However, in order to assist the hardware and achieve better

performance, modern processors often include instructions for explicitly initiating data

transfers and adjusting state information in their caches at various levels of hierarchy.

Most common examples of such instructions are prefetch instructions, instructions for

locking cache lines or explicitly invalidating and/or writing them back.

 Furthermore, in shared memory multiprocessor systems, where all processors view

the same linear memory array, multiple copies of the same data block might exist in

the caches of different processors. In such settings, it is the responsibility of the

memory system hardware to provide a coherent view of the underlying array of

addresses despite the fact that multiple copies of the same address might be present.

As mentioned in the previous chapter, this coherent view is provided by following a

certain set of predefined rules when accessing a memory location, commonly known

as a “coherence protocol”. Invalidation-based coherence protocols have dominated

shared memory multiprocessor systems. In these systems, the state information of the

cache line is extended to contain access permissions: whether cache line data can be

read or written by the processor. When executing Store instructions, hardware

guarantees that the only copy of the cache line is with the writing processor and when

executing Load instructions, hardware finds the most up-to-date copy of the cache line

to read the data from.

28

As discussed above, the associated state information plays an essential role in guiding

hardware and helping in making correct decision about data transfer and data access.

Therefore, another major task of memory system is to provide mechanisms for storing,

inquiring, interpreting and adjusting the state information associated with data as

well as finding potential data copies. State updates can be initiated when processors

access memory locations (e.g. cache misses), by explicit processor instructions (e.g.

invalidation or ownership prefetch instruction), or by following the set of rules

dictated by memory access protocol (e.g. coherence actions).

In addition to the coherence protocol, which imposes specific rules for establishing

order between memory accesses to the same addresses, a shared memory system has

to provide the user with a series of regulations that govern the order of completion of

memory operations issued to different memory locations. These rules, commonly

known as memory consistency model, provide a base for programmers and compiler

writers to reason about correctness of the developed program or generated machine

code. Consistency model dictates semantics of concurrent execution of memory

accesses issued by different processors in a multiprocessor system and specifies how

processors can synchronize their communication via accesses to shared memory.

Many consistency models have been proposed and utilized by modern multiprocessor

systems over the past years [63].

As part of the consistency model, modern processors have explicit instructions for

enforcing order between the accesses they issue to memory. These instructions are

usually known as memory barriers or memory fences. Execution of such instructions

involves preventing a processor from issuing any new memory operation until all

previously issued memory operations (from the same processor) are completed. Hence

the third major task of the memory system is providing the ordering guarantees

dictated by the consistency model, coherence protocol and memory barrier

instructions.

29

Given these three important tasks of the memory system, the rest of the chapter

discusses a universal memory system architecture that not only provides the necessary

means for efficiently fulfilling these tasks, but also offers adaptability in supporting

memory semantics of various programming models.

3.2. GENERAL ARCHITECTURE

Figure 3-1 shows high-level logical organization of the universal memory system. It

consists of distinct memory elements arranged in levels of hierarchy, connected by

communication channels. There are three main elements in the memory system:

memories as storage locations, their associated controllers, and communication

channels connecting the controllers together. In actual implementation, elements might

be organized and grouped differently, however the logical view of any implementation

is similar to Figure 3-1. Note that in this figure we assume processors are located at

the top and main memory at the bottom. Memories and controllers closer to the

processors hence are referred to as higher-level memories or controllers and the ones

farther from processor are referred to as lower level ones.

The execution model of the system is based on exchanging messages between the

different components. Operations start by processors emitting memory instructions to

their corresponding Load/Store Unit (LSU). At each level of hierarchy, controllers

receive and decode messages, then execute a set of operations to handle the received

message. Executed operations might include accesses to the local memory as well as

composing and sending new messages to other controllers. The combined result of the

operations executed by all controllers involved, results in our desired outcome,

satisfying a processor’s memory request in compliance with the system’s memory

model.

30

P

LSU

L1 Cntrl

L1 Interconnect

L1...

L2

Cntrl

Cntrl

L2 Interconnect

...

...
Global Interconnect

...

...

L1 Cntrl

L1 Interconnect

L1...

L2

Cntrl

Cntrl

M Cntrl M Cntrl ...

P

LSU

P

LSU

P

LSU

Figure 3-1: High-level architecture of the memory system

Four major categories of messages are recognized in the system:

Data Transfer Requests: Data transfers involve copying a block of data from one

memory location to another. Data transfer messages usually travel downwards

(towards main memory) in the memory hierarchy, attempting to read/write data blocks

from/to larger, slower memories to faster smaller ones. They might also copy data

between memories at the same level of hierarchy. Transfer requests can be short

messages that attempt to acquire a data block for the local memory, such as cache

misses and DMA gather requests, or long messages writing a data block to a remote

memory such as write-backs and DMA scatter requests.

Data Transfer Replies: Transfer replies are either long messages carrying requested

data block, such as cache refills or short acknowledgement messages indicating that

data copy operation is completed (e.g. write-back acknowledgements).

31

State Inquiry/Update Requests: The purpose of these messages is to query and

adjust the state information associated with a data blocks. They are usually sent by a

controller to the controllers in the same or higher level and travel upward in the

hierarchy, where data copies are located. These messages are short, containing no

data, but depending on the state information they acquire, their corresponding reply

might contain data in addition to the acquired state information. Most common

examples of such messages are coherence requests or bus snoops requests.

State Inquiry/Update Replies: Reply messages for state inquiries contain the state

information of the target data block. They also might bring back the data portion of the

target block depending on the state in which they find it. Examples are replies to

coherence messages that carry data and/or ownership information.

In the following, we describe the memory system resources and the capabilities that

they should provide in more details.

3.2.1. STORAGE ELEMENTS

Memories at each level of hierarchy must not only store the application data, but also

keep the state information that system associates with data. Our logical model does not

make any specific assumptions about organization of the memories at each level, such

as granularity of the data storage (word, byte, etc.), size of the memory, number of

banks, or even number of state bits associated (However we assume that there are

enough state bits available to implement the desired memory model). The only

requirement is that all the storage locations have unique addresses across the system

and are addressable by each and every processor. If processors only use main memory

addresses (e.g. when local memories are used as caches), then at each level of the

hierarchy controllers convert the processor generated address to the unique physical

address of the local memory they are associated with before attempting to access the

local memory.

32

Memories at each level of the hierarchy should support the basic read and write

operations on the data and state information they store. As it will be discussed later in

this chapter, data accesses in the memories are usually preceded by accesses to their

associated state information. This is due to the fact that state information oftentimes

protects the data by encoding necessary access permissions. Before attempting the

data access, processors and controllers must check the state information to ensure that

they have the required permissions. Therefore, as an optimization, the memories can

overlap data and state accesses, provided that the data access is conditioned on having

correct state information. This necessitates support for conditional operations on data

in the memories, as well as the basic means for propagating and exchanging state

information between them. Given such optimizations, sequential operations on the

state and data can be converted into concurrent operations, reducing the latency of the

overall memory access time which is particularly advantageous for L1 memories due

to the frequent processors accesses. The next chapter presents an architecture of a

basic storage element which enables conditional operations and exchange of the

necessary state information, mostly based on the work by Ken Mai et. al. [71][70].

3.2.2. COMMUNICATION CHANNELS

Communication channels are used for exchanging messages and moving data between

different memories in the system. In some systems in addition to the memory

hierarchy there also exists a bandwidth hierarchy in the memory system where the

available bandwidth decreases as traveling downward in the hierarchy [1][2].

In practical systems communication channels might be implemented in many ways: as

shared busses or a type of interconnection network with point-to-point connections. In

our model we do not assume any particular structure for the channels or any specific

latency/bandwidth assumptions associated with communication mechanisms.

However, we require the communication infrastructure to satisfy two requirements:

33

1. Lossless channels: we assume that any communication channel that establishes

a connection does not drop exchanged messages; at the abstract level,

communications are assumed to be lossless. It is the sole responsibility of the

underlying channel implementation to either guarantee delivery of messages or

recover from failures by using retransmissions or any other recovery technique.

2. Point-to point ordering: We do not require any of the channels to be

completely ordered, however, we assume that point-to-point communication

between any two entities on a channel are ordered. That is, no reordering of

messages occurs in a point-to-point connection between source and

destination. If the underlying channel provides virtualization facilities and

communication occurs over virtual channels, the assumption is that

communications between any two points over any virtual channel is ordered.

This assumption simplifies satisfying the ordering requirements that a memory

consistency model might place on the memory system hardware3.

3.2.3. ASSOCIATED CONTROL LOGIC

We assume that at each level of the hierarchy there is an associated controlling agent

that executes the necessary operation to satisfying a processor’s memory request.

While memories and communication channels are considered passive resource,

controllers are active resources of memory system, issuing operations that utilize the

passive resources. The processor’s interface to the memory system, the Load/Store

unit, is considered to be the top-level control logic, communicating directly with

processor’s data-path. The following summarizes major tasks of the controllers in the

universal memory system architecture:

• Address mapping/translation: Controllers, including LSU, map an effective

address generated by the processor to the address of physical location(s) in the

3 A common technique for providing such ordering over an unordered physical interconnect is using

timestamps or sequence numbers, similar to TCP protocol or timestamp snooping [77]

34

local memory, where the requested data might reside. The most common example

of such mapping occurs in set-associative cache structures, where control logic

extracts the cache set index from the received address and accesses all the ways in

the set to see whether data is available or not. In addition to this mapping phase, a

translation operation might also occur (typically only in the processor interface

logic) which converts the effective memory address from virtual address space to

the system-wide, physical address space. Other controllers map this physical

address into addresses in the appropriate locations in their associated local

memory.

• Buffering and scheduling: Controllers schedule and perform all data read/write

operations from/to the memories at each level of the hierarchy. They take all

necessary actions for buffering data and sending/receiving it over the

communication channels when data transfer is required.

• Message composition/decomposition: Control agents are also responsible for

generating, sending, receiving and decoding messages used for requesting and

transmitting data blocks and/or associated state information.

• Finding data copies: When it comes to finding copies of replicated data blocks

and performing state adjustments, each controller is responsible for finding copies

and updating state information in its own sub-tree. The sub-tree of a controller

contains memory associated with it and all higher-level memories that are

connected to this controller. (Figure 3-2). Controller can locate copies either by

broadcasting inquiry messages to nodes in its sub-tree or by keeping the sharing

information internally as done by directory controllers in DSM systems.

35

...

P P P P P P P P P

1
2

2

3
4

4

...

Messages 2 and 4 are state inquiry messages looking for copies,
resulted from data transfer messages 1 and 3

Figure 3-2: Finding data copies by searching controller’s sub-trees

• Tracking and ordering: Controllers, including the processor’s interface logic,

keep necessary tracking information about memory requests they receive and are

currently processing. This information is used for completing requests after

receiving corresponding replies. Keeping this information is also essential for

enforcing any ordering constraint dictated by the memory consistency model or

coherence protocol.

Controllers are the operating agents in the memory system; while memories and

communication paths provide means for storing and moving data, the actual

operations for reading/writing as well as sending/receiving data and state information

are performed by the system controllers. The next section describes the general

architecture of these controllers and elaborates on the operations they should be

capable of performing. Afterwards, we discuss how these basic operations could be

combined for handling protocol actions and request/reply messages. Since every

memory protocol at the implementation level is decomposed into a set of primitive

operations, a user can map a wide variety of memory protocols on this universal model

by appropriately defining protocol messages and sequence of operations each must

perform.

36

3.3. CONTROLLERS

The above mentioned tasks for controllers can be decomposed into a set of basic

operations on the memory resources. This section explains the general architecture of

memory system controllers, the state maintained within them, and the set of abstract

operations they provide. These abstract operations either affect the internal controller

state or operate on the local memories and communication channels. The architectural

state of the controllers and the set of operations effectively defines an Instruction Set

Architecture (ISA). The next section explains how these instructions are put together

in order to handle protocol actions and request/reply messages.

3.3.1. ORGANIZATION

Figure 3-3 shows the internal organization of a controller. It has interfaces to the

communication paths and memory, a set of internal status holding registers to keep

tracking information of memory requests as well as data buffers for temporarily

storing data blocks. The memory interface has an address mapping block that is used

for accessing local memory. All the interfaces can access the internal data buffers in

order to read/write data. A sequencing mechanism coordinates all the actions within

the controller, including receiving incoming and sending outgoing messages,

managing tracking information in the status holding registers, issuing local memory

accesses and interpreting the collected state information.

The communication interfaces are used for composing outgoing messages and

decoding incoming ones. They should contain the necessary flow control mechanisms

to stall further communication when the interface runs out of the buffer space.

However, the utilized flow control mechanism should independently control requests

and replies, to avoid circular buffer dependency and deadlock [69].

37

MemoryMemory

Communication Interface

Communication Interface

M
em

or
y

In
te

rf
ac

e

Data
Buffers

Status
Holding

Registers

S
eq

u
en

ce
r

Communication Channel

Communication Channel

Controller

Data

Control

A
d

dr
es

s
M

a
pp

in
g

Memory

Figure 3-3: Internal organization of a controller

A set of internal status holding registers hold the tracking information of the requests

that are currently being handled by controller or the requests that are waiting for a

reply from lower levels of the hierarchy. For each request message that is received, the

controller allocates a register and records the necessary tracking information. This

information is retrieved and used for completing the processing when a corresponding

reply is received. It is also used for enforcing any necessary ordering between memory

requests. We do not assume any specific mechanism for associating requests and

replies. This association can be realized by tagging the requests and reply messages or

by guaranteeing that requests are processed in order, which allows controllers to use a

simple in-order queue structure for storing and retrieving tracking information.

Controller operations are triggered by an incoming message; it is received and

decoded at one of the communication interfaces and then is passed to the central

sequencing logic. The sequencer executes (or schedules) the necessary operations for

handling the message which depends on the type of message received. The execution

model of the controller is assumed to be sequential; each operation is logically

completed by the controller before moving to the next one in the sequence.

38

The main memory controller at the bottom level of the hierarchy has the same

organization, as other system controllers with the exception that it only has a single

communication interface and channel. The processor interface logic however, has a

slightly different organization (Figure 3-4). It does not require data buffers, since there

are no block transfers from/to processor’s data path. However, its address mapping

and translation logic is more sophisticated and contains mechanisms for converting

addresses from virtual space to physical space (e.g. Translation Look-aside Buffers or

TLBs). However its controlling logic is generally much simpler and is integrated with

the processor’s pipeline.

Memory Interface Communication Interface

Status
Holding

Registers

Sequencing
Address

Translation /
Mapping

Communication Channel

Data Address Control

Processor
Interface

Processor
Data Path

Memory

Figure 3-4: Organization of processor interface

3.3.2. INSTRUCTION SET ARCHITECTURE

Upon receiving a message, controller executes a sequence of “instructions” that

perform certain operations on the memory system resources in order to process the

received message, very much like executing an interrupt handler in a processor.

3.3.2.1. Internal State

The internal state of the controller consists of tracking information about outstanding

memory requests, blocks of data being transferred by the controller, and a few

39

information fields for managing controller operations. Status holding registers keep

the necessary tracking information about the received requests. Figure 3-5 shows the

necessary information fields that should be kept within each register. These fields are:

- Valid: Indicates that this register contains information of a valid request

- Source address: address of the location in which the data should be fetched

from, can be a local or global address depending on the type of the request

- Destination address: address of the destination where data should be written

into, can be a local or global address depending on the type of the request

- Type: Type of the request

- Requestor: Identifies the source of the request, e.g. processor ID/Port ID

- Data Buffer index: The index of associated data buffer. Alternatively each

status holding register can be statically associated with a data buffer and use

the same index.

Status Holding Register Data Buffer

Data
n

State
n

Data
0

State
0

...
V
0

V
n

ValidV Type Src Addr Dst Addr Requestor DB Index

Figure 3-5: Information fields in SHR and data buffer entries

Since each memory request can potentially involve a data transfer, each SHR entry

should have access to a temporary data buffer. Data buffers contain the data words of

the memory blocks that are being read or written by controller. Potentially there is a

valid bit per each data element (word or byte) to identify whether that element is valid

or not. Information fields for a Data Buffer entry includes (Figure 3-5):

- Valid: Indicates that this entry is allocated and associated with an SHR

- Data i: ith data word within data block

40

- State i: State information associated with ith data word

- V i: Valid indicator for data element i.

In addition to SHRs and data buffers, controller needs three separate registers for

storing the result of its instructions. These registers are:

- Accumulator (AC): Temporary location for storing the data or state information

that controller is currently working on

- Result_Flag (RF): Stores the result of the executed instruction, for example a

state comparison instruction or SHR allocation instruction.

- SHR_Index (S): Stores the index of a SHR entry. It can be the next available

SHR entry, index of the entry indicated by received message (reply messages),

or index of the matching entry when executing a SHR lookup instruction.

The usages of these special registers are discussed in the next subsection.

3.3.2.2. Instructions

Controllers perform a set of primitive operations on their internal state as well as local

memory and communication resources. These operations are performed by executing

corresponding “memory instructions”. Controller instructions are divided into five

categories. Data and state access instructions are performed on the local memory

addresses using the memory interface. Send/receive operations are executed by the

communication interfaces. Instructions related to internal state and control flow are

performed by the central sequencing logic. While the exact syntax and semantics of

each operation/instruction depends on the actual implementation of the controller, a

summery of the instructions is listed in Table 3-1.

Table 3-2 describes the effect of these instructions on the internal controller state. In

this table, SHR and DB indicate the status holding register and data buffer structures.

Req means input request to the controller and L is the size of a data block. Note that

41

when writing a word into data buffer, both state and data fields of the word are written

and V flag is set to one.

Category Instruction Description
Word Read Reads a word from local memory into data buffer or

Accumulator
Word Write Writes a word to from data buffer or Accumulator to local

memory
Block Read Reads a data block from local memory to a data buffer entry

Data

Block Write Writes a data block from a data buffer entry to local
memory

State Read Reads state information associated with data into
Accumulator

State

State Write Writes state information associated with data with
Accumulator contents

Load AC Loads an immediate value into the Accumulator
Compare Compares Accumulator contents with a predefined bit

pattern. Adjusts Result Flag accordingly
SHR
Allocate

Allocates next available SHR entry by setting its Valid bit to
one and storing its index in the SHR Index register. If there
is no available entry, adjusts the Result Flag to indicate that
allocation was not successful.

SHR Write Writes different fields of the SHR by a request’s tracking
information

SHR Search Searches SHR structure to find an entry with matching
fields (typically memory address or requestor). Adjusts
Result Flag accordingly If a matching entry is found, stores
the index of it in the SHR Index register

SHR Free Releases a status holding register by setting its Valid bit to
zero

DB Allocate Allocates next available data buffer entry by setting its
Valid bit to one and storing its index in the appropriate field
in the SHR entry. If there is no available entry, adjusts the
Result Flag to indicate that allocation was not successful.

Tracking

Info /

Internal

State

DB Free Releases a status holding register by setting its Valid bit to
zero

Flow
Control

Branch if Checks the Result Flag and changes flow of control
depending on its status

Comm. Send Sends a message on a given communication interface

Table 3-1: Controller instruction set (ISA)

42

Message receive is another basic operations performed by communication interfaces.

However it is not performed as result of executing an instruction in the controller.

Receivers accept messages and pass them over to the central sequencing logic for

processing without relying on any specific receive instruction. Like the interrupt

handling in a normal processor, where receiving an interrupt causes the processor to

jump to the beginning of the interrupt handler, receiving a message causes execution

of a sequence of instructions in the controller which form the appropriate message

handler. If the receiver detects that the message is a reply, it loads the index of the

SHR entry corresponding to the request into the SHR_Index register before passing the

message to the sequencing logic.

Instruction Operation
Word Read DB[SHR[S].DBIndex][Req.Address%L]<-Mem[Req.Address]

Or: AC <- Mem[Req.Address].Data
Word Write Mem[Req.Address]<-DB[SHR[S].DBIndex][Req.Address%L]

Or: Mem[Req.Address].Data <- AC
Block Read DB[SHR[S].DBIndex][L-1:0] <-

Mem[((Req.Address/L)*L)+L-1:Req.Address/L)*L]
Block Write Mem[((Req.Address/L)*L)+L-1:Req.Address/L)*L] <-

DB[SHR[S].DBIndex][L-1:0]
State Read AC <- Mem[Req.Address].State

State Write Mem[Req.Address].State <- AC

Load AC AC <- Immediate

Compare RF <- (AC == Immediate)

SHR
Allocate

S <- next available entry
SHR[S].Valid <- 1
RF <- available ? 0 : 1

SHR Write SHR[S] <- Req

SHR Search S <- match entry
RF <- match ? 1 : 0

SHR Free SHR[S].Valid <- 0

DB Allocate SHR[S].DBIndex <- next available entry
DB[SHR[S].DBIndex].Valid <- 1

DB Free DB[SHR[S].DBIndex].Valid <- 0

Branch if if (RF) execute target instruction
Receive if (reply message) S <- Req.SHR_Index

Table 3-2: Functional description of ISA instructions

43

3.3.2.3. Address mapping modes

When executing a memory access instruction, processors usually generate effective

addresses in their virtual address space. This address is translated in the processor’s

memory interface into the physical address before it is used by memory system. In

cache-based system, the resulting address is the address of the physical location in the

main memory (since it is the only addressable memory) and still might not be directly

useable for accessing local memories (which are used as caches). When memories are

arranged as caches, physical address is first sliced into a <tag, index, offset> triplet

and the resulting subfields are used to identify actual physical location(s) to be

accessed in the cache. We refer to the process of converting target address into the

address of physical location(s) where data might be found as address mapping.

Address translation from virtual to physical address space usually only occurs in the

processor interface. The complexity of this step varies from a simple identity mapping

(where physical address is the same as effective virtual address) all the way to paging

and hierarchies of translation look-aside buffers with different granularity of page

sizes.

The second step of the mapping, which is common to all controllers including the

processor interface logic, is converting the address into the address of the locations in

the local memories. Since size and structure of memories in each level of the hierarchy

is different this conversion is potentially different for each level. Complexity of this

conversion might also vary; it can be any thing from masking most significant bits of

the address to performing a full associative lookup on the local memory to find the

matching address.

Each controller needs to support more than one mapping function at the same time.

For example, a cache lookup operation involves searching all the ways of a cache

while a cache refill operation only involves accessing a single way of the set-

associative cache. The concept of address mapping is very similar to generation of the

effective addresses in the processor using a set of predefined addressing mode with

44

memory instructions. Addressing modes in the processor specify how the effective

address is generated based on contents of a registers and an immediate value. Mapping

modes specify which physical location(s) in the local memory are accessed based on

the processor generated address. We assume all data and state read/write operations

support three mapping modes:

- Direct: Treats received address as the absolute address of the local memory

- Cache: Received address is decomposed into <tag, index, offset> and all ways

of the cache in which the target address might reside are accessed

- Cache way: Received address is decomposed and used for accessing the cache,

but instead of all the ways, a specific way of the cache is accessed

3.4. SEQUENCE OF OPERATIONS

This section describes the commonly observed processing patterns when handling

protocol actions in the controllers and processor’s interface logic, and describes how

primitive operations are combined in order to process incoming request/reply

messages.

3.4.1. PROCESSOR INTERFACE LOGIC

Execution of any memory access instruction in the processor interface logic involves

taking the following (logical) steps (Figure 3-6):

1. Ordering: The first step is to enforce any ordering requirements dictated by the

memory protocol (e.g. memory consistency model), between memory accesses

issued from the same processor. This involves searching the status holding

registers and determining if there is another memory request that has been initiated

but not completed. If the request cannot be issued at this time due to an ordering

regulation, processor will be stalled until the collision is cleared.

45

2. Address translation and mapping: The second step is to determine which physical

locations in the memory might contain the data requested by processor, including

translation from virtual to physical address space.

3. State access: The next step is checking the state information associated with

memory location (if any) to determine whether requested data is present or

accessible. For example, when executing a Store instruction, the interface logic has

to find out whether a specific cache line is present in the cache or if it is has the

appropriate permissions before attempting to write data.

4. Data access: If the state information indicates that memory access can be carried

out, the physical location containing data is accessed and actual data read/wire

operation is performed.

5. Storing tracking information: If the data is not present in the local memory or

cache or if its state information indicates that the operation cannot be carried out, a

request message should be sent to the L1 controller to ask for assistance in

completing memory access. But before sending the actual request, necessary

tracking information is stored internally such that the request can be completed

after reply is received. This information includes the address of interested,

destination register inside processor, write data and type of the operation.

6. Sending request: After storing necessary information about the memory access

instruction, a request message is generated and sent to the L1 controller to ask for

assistance. This might involve fetching the requested data from the lower level

memory or adjusting the state such that processor’s operation can be completed.

46

2. Translation/
Mapping

3. State Access

4. Data Access

6. Send Request

Memory
Instruction Complete

Instruction

5. Store Tracking
Info

1. Retrieve
Tracking InfoReply 2. Free Status

Holding Reg.
Complete
Instruction

1. Ordering

Figure 3-6: Processing a memory access in processor’s interface logic

Steps for processing the reply are usually much simpler and involve returning data to

the processor’s destination register, as well as releasing any status holding register

used for storing tracking information.

Note that not all of the above steps are necessarily required for every memory access

instruction. For example, a prefetch instruction does not have a Data Access step, or if

the local memory of the processor is not organized as a cache memory the State

Access step might be completely omitted.

In order to reduce execution latency of memory access instruction and hence increase

the performance, the above steps might potentially be overlapped: translation from

virtual to physical address can take place in parallel with accessing the state

information, a very common technique in systems with virtually-indexed, physically-

tagged caches [35]. Another common example is execution of Load instructions in the

L1 cache by overlapping tag comparison with data read in the cache line and simply

discarding read data if the tag comparison fails.

3.4.2. HIGHEST-LEVEL CONTROLLER

The highest-level or L1 controller directly communicates with processor’s memory

interface logic. When processor cannot complete a memory access instruction it

notifies the L1 controller and asks for assistance in gathering required data. L1

controller also receives request messages from other controllers at the same or lower

level of the hierarchy. These can be data transfer requests or requests that search for

47

and update the state information of a specific data block in the associated local

memory. Each class of requests is handled by taking a common set of steps inside the

controller, very similar to the processor interface logic, as shown in Figure 3-7.

However there are a few minor differences, as described next.

The ordering step in the L1 controller orders the received request not only with respect

to the previous processor requests, but also with respect to requests received from

other controllers. Also, if the L1 controller is shared between processors, the received

request is ordered with respect to requests from other processors. After performing the

necessary steps, if a processor request is not completed successfully it is forward

downward in the hierarchy. Reply messages and request messages from other

controllers and are always successfully completed. Note that request and reply

messages perform the state and data accesses in reverse order; requests have to access

state first, since state information guards data. Reply messages have to update data

before adjusting the state and making it visible to the processors.

1. Ordering
Request

(proc.)
2. Allocate/Store

Tracking Info
3. State Access 4. Data Access

5. Send Request

6. Send Reply

7. Free Tracking
Structure

Request
(lower level)

Reply
(proc.)

1. Ordering
Request

(lower level)
2. Allocate/Store

Tracking Info
3. State Access 4. Data Access 5. Send Reply

6. Free Tracking
Structure

Reply
(lower level)

1. Retrieve
Tracking Info

Reply
(lower level)

2. Data Access 3. State Access 4. Send Reply

5. Free Tracking
Structure

Reply
(proc.)

a) Requests from processor

b) Requests from lower level controller

c) Replies from lower level controller

Figure 3-7: Steps for handling request/reply messages in L1 controller

Figure 3-7 illustrate the logical sequence of steps in handling each message type. In

practice, controllers might overlap and parallelize the steps (e.g. pipelining) in order to

48

increase performance. Also, depending on the memory model being mapped and

functionality of the received message, some of the above steps might be unnecessary

and hence omitted from the sequence.

3.4.3. LOWEST-LEVEL CONTROLLERS

The lowest level controller is the controller associated with the main memory. A

system might have multiple controllers at this level if main memory is distributed

and/or organized in separate banks. In such cases each controller is responsible only

for a subset of memory addresses. Controllers at this level receive data transfer

requests from higher-level controllers to read or write a data block. Like any other

system controller, main memory controllers are responsible for finding copies of data

blocks when multiple copies of data exist in the system, by sending messages to

controllers at the higher levels.

1. Ordering
2. Allocate/Store

Tracking Info 3. State Access

5. Data Access

4. Send Request

6. Send Reply

7. Free Tracking
Structure

Request
(higher level)

Reply
(higher level)

a) Requests from higher level controllers

Request
(higher level)

1. Retrieve
Tracking Info

Reply
(higher level)

2. Data Access 3. State Access 4. Send Reply

5. Free Tracking
Structure

Reply
(higher level)

b) Replies from higher level controllers

Figure 3-8: Steps for handling request/reply messages in main memory controller

Figure 3-8 shows the processing steps for handling request and reply messages in the

main memory controller. Steps of operations are the same as discussed for L1

controller.

49

3.5. SUMMARY

In this chapter we proposed a universal architecture for a memory system in a

multiprocessor setting. This system provides a set of basic, primitive memory

operations as well as a flexible means for combining and sequencing these operations

in the system controllers. A user can define her/his desired memory access semantics,

design a memory protocol that implements the desired model, and map the operations

and communications of the protocol on top of the available system resources.

In the universal memory system, we recognize three types of resources in the memory

hierarchy: storage elements, communication paths and control agents that utilize them.

The architecture defines a set of basic operations and state registers for system

controllers in terms of an abstract ISA. Controllers sequentially execute these

operations after receiving request or reply messages, very much the same way as a

processor executes instructions. The entire system operates by exchanging messages

between controllers at different levels of hierarchy.

The next chapter presents Smart Memories, a reconfigurable memory system

architecture, as a realization of the universal memory architecture discussed in this

chapter.

50

 51

4. SMART MEMORIES, A RECONFIGURABLE MEMORY

SYSTEM ARCHITECTURE

This chapter presents the Smart Memories architecture, an example implementation of

a universal memory system. Smart Memories [70] is a modular reconfigurable

architecture that instantiates common resources and implements the basic, primitive

operations of the memory system discussed in the previous chapter. It allows a user to

implement a memory access protocol by allocating resources and defining the

processing steps for protocol requests/replies via composing a sequences of basic

memory operations. These sequences of operations, called handler subroutines, are

executed by controllers in different parts of the system. The collaborative result of

their execution leads to completion of the desired protocol action.

The purpose of this chapter is to illustrate the implementation of the basic operations

and sequences discussed earlier. The first section of the chapter presents an overview

of the Smart Memories architecture and introduces the major components and their

role in the memory system. Section 4.2. briefly explains the processor elements used

in the Smart Memories architecture. Section 4.3. discusses main data and state storage

elements, the operations they support, and explains how they are incorporated into the

physical address space of the system while Section 4.4. presents the interconnect

infrastructure for connecting the local memories to processors. Sections 4.5. to 4.7.

discuss controller agents: Section 4.5. describes processor interface logic and its

operations, covering address translation and mapping functions, accesses to data and

state storage, detecting access faults and sending request messages. Section 4.6.

explains the organization and operations of the local memory controller (L1 or

protocol controller), and its flexible mechanisms for composing and sequencing

primitive operations. Section 4.7. briefly discusses the architecture and operations of

the main memory controller. Discussion about the system’s interconnection network,

its properties and capabilities is postponed to Appendix A.

52

4.1. OVERALL ARCHITECTURE

Figure 4-1 shows the overall architecture of the Smart Memories system. The system

consists of units called “Tiles”. Each Tile contains two processor cores and a shared

processor interface logic, 16 blocks of local memory, and a crossbar interconnect

which connects the processors to local memories. Tiles are grouped in groups of four

to form “Quads” . Tiles within the Quad share a local memory controller, also referred

to as the protocol controller. The shared controller provides the Quads with a generic

network interface which allows communication with other Quads and off-chip

memory controllers via a mesh-like network.

Memory Controller

Memory Controller

Processor Processor

Processor Interface (LSU)

Corssbar

M M MM M M MM

M M MM M M MM

Tile

Tile

Tile

Tile

Local
Memory

Controller

Quad Tile

Figure 4-1: Smart Memories hierarchical architecture

As shown in the figure, there are two levels of the hierarchy in the memory system:

the first level is comprised of local memories inside the Tiles and the shared protocol

controller in the Quad. Second level consists of the off-chip memory and associated

memory controllers. The system is capable of having multiple off-chip memory

modules and memory controllers.

All the communication between processors and main memory is performed through

the protocol and main memory controllers by exchanging messages over the network.

53

The network is capable of carrying short messages with no data or single data word

and long message with blocks of data. Maximum size of the data block within the

message is the same as maximum cache line size supported by the system.

The protocol controller in each Quad receives and handles request messages from the

processor interface logic in each Tile. After taking any necessary actions locally, if the

request is not satisfied it is forwarded to the main memory controller responsible for

the target address. The main memory controller enforces global properties of the

memory protocol by sending requests to and collecting replies from other Quads when

needed, in addition to accessing the main memory.

4.2. PROCESSORS

Smart Memories uses Xtensa LX2 processor cores from Tensilica as the basic

processing units in the Tiles. Xtensa LX2 is a 32-bit RISC machine with a 7-stage

pipeline and two cycle memory access latency. Tensilica processors can be configured

for dedicated application/environments in two major ways [66][67]:

• User can choose between many available optional features provided by Tensilica

such as MAC units, FPU, VLIW instruction issue, JTAG interface etc.

• User can add additional architectural registers, register files, interfaces, execution

units and custom instructions using Tensilica Instruction Extension (TIE)

language. Additional features are not only added to the final processor RTL but

also are seamlessly integrated with the rest of the software tool chain such as

instruction set simulator, assembler, compiler and debugger.

Figure 4-2 displays the architecture of the Xtensa LX2 processor core. Our specific

processor configuration includes a 32-bit integer multiplier and divider units, a 32-bit

single precision floating point unit, On-Chip Debug (OCD) and JTAG interfaces, the

instruction trace port and a 3-way FLIX/VLIW instruction issue using variable

instruction encoding [68].

54

In order to integrate the Xtensa LX2 core in the Smart Memories architecture we had

to extend the existing memory interfaces using the TIE language. We added an extra

memory interface port to the processor, called TIE port, similar to the existing

processor instruction and data ports. This port issues a 6-bit “TIE opcode” to the

memory interface logic which indicates what memory operation it intends to perform.

Our configurable processor interface logic (Load/Store Unit) receives accesses from

all three processor ports (instruction / data / TIE) and returns necessary replies after

completing the issued memory access instruction.

Using the TIE language we also added a few special memory access instructions to the

processor’s instruction set. These instructions have specific memory accesses

semantics and are briefly described below.

Figure 4-2: Xtensa LX2 processor architecture, from [78]

55

Synchronized Load (Sync Load): Treats a meta-data bit associated with data word as

a Full/Empty indicator and stalls the processor if this bit is zero (associated word is

“Empty”). If successful, turns off the bit to indicate that the data word is consumed.

Synchronized Store (Sync Store): Opposite of the above instruction; attempts to

write the data word and stalls the processor if Full/Empty bit indicates that location is

“Full”. When successful, sets the Full/Empty bit to one to indicate that there is a valid

data word available.

Future Load: Same as Sync Load above, but does not consume the data word (leaves

Full/Empty bit as one when successful).

Reset Load: Resets Full/Empty bit to zero and returns the data word to the processor

regardless of current status of Full/Empty indicator.

Set Store: Sets Full/Empty bit to one and writes data word regardless of current status

of Full/Empty indicator.

Meta Load: Reads the value of meta-data (control) bits associated with the data word.

These bits are described in the next section.

Meta Store: Writes the value of meta-data bits.

Raw Load: Special Load instruction which skips the address translation step in the

processor interface logic and treats processor issued address as physical address rather

than virtual.

Raw Store: Same as Raw Load instruction for writing data.

Raw Meta Load: Same as Raw Load instruction for reading meta-data bits.

Raw Meta Store: Same as Raw Meta Load instruction for writing meta-data bits.

56

FIFO Load: Reads data word from a memory mat that is configured as a FIFO; FIFO

status register in the interface logic is updated with FIFO status information, i.e.

whether FIFO was empty. Memory mats and their operations are discussed in the next

subsection.

FIFO Store: Writes a data word to a memory mat that is configured as FIFO; FIFO

status register is updated with FIFO status information, i.e. whether FIFO was full.

Safe Load: Reads a data word from the memory address but ignores virtual to

physical address translation errors if encountered.

Memory Barrier: Memory fence instruction that stalls the processor until all

outstanding memory accesses are completed.

Hard Interrupt Acknowledgement: Signal to the memory system that a hard

interrupt was received by the processor; is used only inside interrupt handler code.

Mat Gang Write: Does a column-wise write operation on one of the meta-data

columns in the memory mat (described further in the following section).

Conditional Mat Gang Write: Conditional column-wise write operation on one of

the meta-data columns in the memory mat.

Cache Gang Write: Same as Mat Gang Write, but is issued to all memory mats

forming the cache structure (Section 4.5.1. and Appendix B.1.1. describe how to set up

a cache structure using memory mats).

Conditional Cache Gang Write: Same as Conditional Mat Gang Write but is issued

to all memory mats forming the cache structure.

57

4.3. STORAGE ELEMENTS

The most important resources in the memory system are the storage elements or

memories themselves. Memories are used for storing application or user data and

associated state information. There are two distinct storage structures in the Smart

Memories architecture: the memory blocks within Tiles, called memory mats for the

local or L1 memories, and the main memory located outside of the chip (referred to as

off-chip memory).

4.3.1. RECONFIGURABLE MEMORY MAT

Memory mat is the basic element of storage in the Smart Memories system. It is an

array of 1024 words where each data word has 32 bits and is augmented by 6

additional bits of meta-data or control information. Internal organization of the

memory mat is depicted in Figure 4-3. A mat consists of data array (1024×32), meta-

data or control array (1024×6), pointer logic and Read-Modify-Write (RMW) logic

which provides atomic update the meta-data information. Adding the RMW logic

simplifies the manipulation of the state information associated with data: instead of

having controllers to read the state information and write new values, the internal

RMW logic performs necessary updates on the state information. Atomicity of this

operation further simplifies the state updates and allows effective implementation of

atomic memory accesses instructions such as Test & Set. Each of the components in

the memory mat is capable of performing a few independent operations and is

individually controlled by an external opcode signal.

58

Data Array
Control
Array

RMW
Logic

Pointer Logic

Control In [5:0] Data In [31:0]

Data Out [31:0]

Mask [3:0]

Data Match

Address
[9:0]

Control Out [5:0]

Mask [6:0]

Total Match

FIFO
Select

Head

Tail

Depth

Threshold

WE

Condition
Selection

Guard
Selection

IMCN In [1:0]

Guard

Condition

Data,
Control
Opcode

FIFO FullFIFO Error

PLA
Opcode

IMCN Out[1:0]

Decode

C
m

p

C
m

p

Data Match

Control Out
WE

IMCN In

Total Match

WE

Mask Mask[5:0]

M
ask[6]

Figure 4-3: Internal organization of memory mat

The main data array supports read, write and compare operations, using an internal 32-

bit comparator. It also supports byte-writes using a four bit input mask which specifies

which bytes should be written into the array. Compare operations behave similar to

read operations: they read the addressed word in the data array and send out the value

on the Data Out output, while they use the internal comparator to compare this data

with the Data In input and generate a Data Match signal as result of the comparison.

In addition to simple write operations, the data array supports conditional and guarded

write operations, where the write is performed only if the guard and/or condition

signals are activated. This an optimization to eliminate the branch operations in the

59

controllers that access the mat: instead of reading and comparing the state information

and accessing the data based on the result, controllers can issue a conditional data

access concurrent with the state access, where the data access is conditioned on having

the desired state. As it will be described in the rest of this section, these operations are

particularly useful when memory mats are used for implementing cache structures. A

three bit Data Opcode input dictates the operation of the data array, according to Table

4-1. Guard and condition signals can be configured in each memory mat separately

and are discussed later.

Operation Opcode Description
NOP 0 No operation, idle
Unused 1 Not used, similar to NOP
Read 2 Read accessed word
Compare 3 Read accessed word and compare it to input data
Guarded Write 4 Write accessed word if guard signal is active
Guarded
Conditional Write

5 Write accessed word if both guard and condition
signals are active

Unguarded Write 6 Write accessed word
Conditional Write 7 Write accessed word if condition signal is active

Table 4-1: Memory mat data array opcodes

The mat’s control array is a dual ported memory block that can supports atomic read-

modify-write operations. A read-modify-write access takes two cycles to complete:

read and modify operations occur in the first cycle while the write operation occurs in

the second cycle. The first port of the array is used for carrying out the external access,

while second port is used by the read-modify-write logic to update contents. An

internal forwarding logic forwards the updated contents to the Control Out output

when the same word is accessed in back to back cycles.

The control array supports read, write, compare, read-modify-write and compare-

modify-write operations. In addition, it receives the same guard and condition signals

as data array and supports guarded and conditional write and read-modify-write

operations. When performing compares, the content of the addressed location is

compared with the Control In input and result is reported by Total Match output. An

60

external Mask signal controls the bits that participate in the comparison. Note that the

Data Match signal from data array also participates in generating the final comparison

result, but it can be masked out using the Mask input.

Bits 2-0 of the control array support a special addressing mode. These bits are capable

of flash-setting or flash-clearing a whole column in a single cycle. In addition, bit 2 of

the array can be conditionally flash-set or flash-cleared based on the value stored in

column 1: bit 2 of every entry is set to one or zero if corresponding bit 1 in the same

entry is set to one. These operations, described in Section 4.2. as gang-write and

conditional-gang-write instructions, are particularly useful for flash clearing a cache

structure or conditionally clearing a transaction’s read and write sets after detection a

violation [27]. A four bit Control Opcode input specifies the operation of the control

array, as listed in Table 4-2.

When performing read-modify-write and compare-modify-write operations the

updated values of the control bits are supplied by RMW logic within the mat. This

logic is implemented as a lookup table with 64 entries4. The input signals to the

lookup table can be selected from values of the six output control bits, the data match

and total match signals generated by comparators, two control signals from inter-mat

communication network (described later), and an external four bit opcode signal called

PLA Opcode. Conceptually the PLA Opcode serves as command input for the RMW

logic and specifies how the output values are generated after receiving appropriate

inputs. These values are written back to the control array in the next clock cycle.

4 Total number of inputs to the RMW logic is 13 bits. A multiplexer chooses 6 bits from the input

signals for addressing the lookup table. Select signals for the multiplexer are derived from a
configuration register.

61

Operation Opcode Description
NOP 0 No operation, idle
Unused 1 Not used, similar to NOP
Unguarded Read-
Modify-Write

2 Read accessed location and write back updated
contents from RMW logic

Guarded Compare-
Modify-Write

3 Read accessed location, compare it to input,
write back updated contents if guard signal is
active

Read 4 Read accessed location
Compare 5 Read accessed location and compare to input

data
Guarded Read-Modify-
Write

6 Read accessed location and write back updated
contents if guard signal is active

Guarded Conditional
Read-Modify-Write

7 Read accessed location and write back updated
contents if guard and condition signals are
active

Guarded Write 8 Write accessed location if guard signal is active
Guarded Conditional
Write

9 Write accessed location if both guard and
condition signals are active

Unguarded Write 10 Write accessed location
Unused 11 Not used, similar to NOP
Gang Write 12 Write specified column (2-0) with given data
Conditional Gang Write 13 Write column 2 with data if corresponding bit in

column 1 is one
Unguarded Conditional
Write

14 Write accessed location if condition signal is
active

Unused 15 Not used, similar to NOP

Table 4-2: Memory mat control array opcodes

Each memory mat is also equipped with a pair of head/tail pointers which make

memory mat suitable for implementing hardware FIFOs. An external control signal,

FIFO select, enables the FIFO behavior by selecting the address source for the data

and control arrays (Figure 4-3). Head and tail pointers are incremented when mat is

accessed in FIFO mode: read and compare operations increment the head pointer

while write operations increment the tail pointer. When performing guarded and

conditional write operations to the FIFO, the tail pointer is incremented only if guard

or condition signals are active.

62

Pointer logic has a configuration register that specifies the depth of the FIFO. When

the depth of the FIFO reaches this register, next write operation (which writes a full

FIFO) will cause the FIFO Error signal to become active. The same output signal is

activated when a read tries to access an empty FIFO. In addition to the depth register,

there is a user controller threshold register which sets up the FIFO warning threshold;

if the depth of the FIFO reaches this threshold, a FIFO Full signal is asserted to

inform the user that FIFO is becoming full.

Each mat can send and receive two bits over an inter-mat communication network

(IMCN). This network is a fast path for exchanging control and state information

between memory mats to implement composite storage structures such as caches. For

example, when memory mats are used as caches, IMCN propagates hit/miss

information from mats storing line tags to data storage mats so that they can take

appropriate action. IMCN_out outputs of the mat are controlled by separate

configuration registers and can be selected to be either one of the six control bits (of

the location accessed in the current cycle), or the results of the comparison operations

(data match or total match signals). IMCN_in inputs are used by the RMW logic in

generating new values for control bits or used as guard signals inside the mat.

IMCN can perform a logical OR operation on the control signals collected from

memory mats before feeding them back. This allows the control information from

more than one source mat to be combined before being passed to destination mats. As

an example, consider an implementation of a two-way set-associative cache that

implements an LRU replacement policy. The logical OR of the Total Match signals

from the tag storage mats is the cache hit/miss indicator. This hit/miss indicator is fed

back to the tag storage mats using IMCN to update the LRU information.

IMCN allows the contributing mats of a logical OR operation to be specified via a

configuration register. For each destination memory mat, the user can define which

source mats should participate in the logical OR operation. These setting are defined

separately for each IMCN bit, resulting in total of 32 mask registers in the IMCN.

63

Figure 4-4 shows how the logical OR operation is controlled when determining

IMCN_in signals for a memory mats.

IMCN0_Mask i [15:0]

{IMCN15_out[0], …, IMCN0_out[0]}

IMCNi_in[0] 16

16

16

Figure 4-4: Logical OR operation in IMCN

The guard signal in the mat can be selected to be any logic function of the two input

IMCN_in bits. In the above example of a cache, assuming that the hit/miss information

is broadcasted on the IMCN_in[0] , the guard signal is selected to be equivalent to

IMCN_in[0] . The condition bit, controlled by a separate configuration register, can be

selected to be any of the control bits read from control array. An example of using

condition bit is implementing special type of store operations which treats a meta-data

bit as a Full/Empty indicator for the word. This special “Synchronize Store”

(SyncStore) operation writes the data word only if associated Full/Empty control bit

indicates that location is empty. Data array uses a conditional write operation to

implement SyncStore, by setting the condition to be Full/Empty==1’b0. If the

condition is not evaluated to true the write operation is discarded.

In summary, even though data mats serve as basic storage units for data and state

information, they support a rich set of logical operations on data and state bits, which

allows optimizing and overlapping of data and state accesses from processors and

local memory controller. Having a dedicated network for exchanging control

information allows mats to be used for implementing composite memory structures

such as caches, where control information should be sent from one set of storage

64

elements to others. Details of how the memory mats are set up for implementing a

variety of cache structures are discussed more in Appendix B.

4.3.2. MAIN OFF-CHIP MEMORY

Off-chip memory serves as the main storage for application data and is controlled and

operated on by the off-chip memory controllers. Smart Memories supports multiple

off-chip memory modules, each one controlled by its dedicated memory controller.

System can be configured to have one, two, four, or eight separate memory

controllers. When there is more than one memory controller present in the system, the

addresses are interleaved between different controllers. System supports interleaving

factors of 16, 32, 64 or 128 bytes. Note that the interleaving factor should be at least

the same size as cache lines (if system implements caches).

Off-chip memory is viewed as an array of 32-bit words similar to memory mats, but

each word is associated with only four control bits. These four control bits map to bits

3-0 of control array in memory mats. In other words, when simply copying the words

from local memory mats to main memory, the four least significant bits of the control

array are saved in the four control bits and bits 6-5 are lost. When copying data from

off-chip memory to local memory mats, bits 6 and 5 in the destination memory mat

are written with zero. Similar to memory mats, the control bits in the off-chip memory

are used for storing state information associated with the memory word.

Main memory supports basic read and write operations, including byte writes. It also

can read and write four associated control bits along with or separate from the main

data word. However, unlike memory mats, there is no support for comparison or read-

modify-write operations. All of the accesses to the off-chip memory are handled by

the associated memory controller which interprets the received opcode field and

accesses appropriate bits in the memory accordingly.

65

4.3.3. PHYSICAL ADDRESS MAP

Since some memory models like streaming require the local memories be addressable

and exposed to the software, all the storage locations in the Smart Memories system

are mapped to a global physical address space which is shared by all processors. This

address space includes off-chip memory, all memory mats in the Tiles, and all the

configuration locations that control hardware. When accessing a memory location,

processors issue operations to a virtual address space. Translation between the virtual

address space and physical address space occurs in the processor interface logic, as

will be described later.

Figure 4-5 shows system’s virtual and physical address spaces. Total size of both

address spaces is 4GB and they are divided into 16 segments. Processors do not

generate any accesses to segment 0-3 of the virtual address space. Segments 4-7 of this

address space are dedicated to instruction code while segment 8-15 are used for

application data. Segments 0 and 1 of the physical address space are reserved

segments. Segment two contains all of the system’s configuration locations while

segment 3 contains all the Tile memory mats. Main (off-chip) memory is mapped to

segments 4-15. A segment table in the processor interface logic translates addresses

from virtual space to physical space by simply replacing the four most-significant bits

of the address.

66

Data

Instruction

0GB

1GB

2GB

4GB

Seg 4

Seg 7

Seg 8

Seg 15

Configuration

Memory Mats

Off-chip

Seg 2

Seg 3

Seg 4

Seg 15

Virtual Address
Space

Physical Address
Space

Figure 4-5: Virtual and physical address spaces

Memory mat addresses in segment 3 start from mat 0 in Tile 0 and Quad 0 and

continue by going to next Tile and Quad, as shows in Figure 4-6. Note that total size

of the existing memory mats in the system is usually much smaller than a whole

segment (256 MB). In such cases, the upper section of segment 3 will be empty.

Figure 4-7 shows how all the configuration registers are mapped in to physical address

space. Segment 2 starts by memory mat, configuration registers, followed by Tile,

local memory controller, and main memory controller configuration registers. The

address map can contain up to 64 Quads. However, there are usually much fewer

Quads present in a typical system configuration. In such systems, segment 2 of the

address space will not be contiguous and accesses to locations for the non-existing

Quads will cause undefined behavior.

67

Mat 0
Mat 1

Mat 15
...

Mat 0
Mat 1

Mat 15
...

Mat 0
Mat 1

Mat 15
...

...

Mat 0
Mat 1

Mat 15
...

...
...

0x3000_0000

0x3001_0000

0x3002_FFFF

0x3000_FFFF

0x3003_0000

0x3003_FFFF
0x3004_0000

0x3007_FFFF
0x3008_0000

0x3FFF_FFFF

Tile 0

Tile 3

Quad 0

Quad 1

Memory Mats

Segment 3

Figure 4-6: Mapping of memory mats in physical address space

68

Tile 0 Mat 0..15 Config.

Tile 3 Mat 0..15 Config.
...

...

Tile 0 Config.

Tile 3 Config.
...

Tile 0 Config.

Tile 3 Config.
...

...

Local Memory Controller 0

Local Memory Controller 63

...

Main Memory Controller 0

Main Memory Controller 15

Tile 0 Mat 0..15 Config.

Tile 3 Mat 0..15 Config.
...

...

0x2000_0000

0x2003_FFFF

0x20FC_0000

0x20FF_FFFF
0x2100_0000

0x2103_FFFF

0x21FC_0000

0x21FF_FFFF
0x2200_0000

0x2203_FFFF

0x22FC_0000

0x22FF_FFFF

0x2380_0000

0x2387_FFFF

0x23F8_0000

0x23FF_FFFF

Configuration

Segment 2
Quad 0

Quad 63

Quad 0

Quad 63

Figure 4-7: Mapping of configuration registers in physical address space

4.4. TILE CROSSBAR

There are two levels of interconnect in the Smart Memories system: the Tile crossbar

connects the memory mats to the processor interface logic and shared protocol

controller, while at next level, a generic network connects Quads to each other and to

off-chip memory controllers (Figure 4-1). Both of these interconnect mechanisms

satisfy the requirements explained in the previous chapter: they do not drop

communicated messages and preserve ordering between the two end points.

The Tile crossbar performs arbitration between different sources that attempt to access

memory mats and has a built-in multi-casting capability that can propagate control

signals to a combination of memory mats specified by a mask. Figure 4-8 shows the

69

interface signals of the crossbar. Each processor has two distinct ports to the crossbar

(instruction and data) and the protocol controller also has two separate ports. These

ports are routed through the crossbar to 16 memory mats and a Tile configuration

storage block.

M
a

t 0

M
a

t 1

M
a

t 1
5

M
a

t 1
6

Instr Port
P0

Data Port
P0

Instr Port
P1

Data Port
P1

Protocol Controller
Port 0

Protocol Controller
Port 1 Crossbar

To/From
 Processor Interface

T
ile

C
o

n
fig

u
ra

tio
n

Figure 4-8: Tile crossbar

Each processor port can potentially access three distinct set of mats simultaneously.

When memory mats implement a cache structure, a processor’s access to the cache has

to be routed to both tag and data storage mats. If the cache has more than one way,

there will be a set of mats storing tags (tag mats) and another set storing data portion

of the cache line (data mats). When implementing more complex storage structures, in

addition to the data and tag, auxiliary storage might be required to keep other pieces of

information. Hence, a third set of mats might be accessed to store or retrieve the

auxiliary information from each processor port5. Supporting three parallel accesses

allows processor interface logic and protocol controller to overlap accesses to state

and data storages. Parallel mat accesses and conditional operations on data and state

5 For example, a TCC cache [27] uses a FIFO structure to store the addresses of a transaction’s write

set. The addresses are written to the FIFO in parallel with accessing the cache.

70

bits inside the mat allows overlapping of logically sequential operation and data and

state information, hence reducing total number of clock cycles required for completing

memory accesses and improving the overall memory system performance.

Tile crossbar also acts as an arbiter between different sources when they want to

access the same memory mat. If there is a collision between the two processors’

accesses, the crossbar stalls one of them. The protocol controller is assumed to have a

higher priority for accessing memory mats and will stall colliding processors. Unlike

processors, the protocol controller ports can only access a single set of mats and the

set of mats they access are always disjoint. Therefore, they never collide with each

other and crossbar does not perform any arbitration between them.

4.5. PROCESSOR INTERFACE LOGIC

The processor interface logic or Load/Store Unit (LSU) translates the processor’s

memory access instruction into memory mat operations, detects success or failure of a

memory mat accesses and in case of failures, asks protocol controller for assistance in

completing processor’s instruction. In addition, it also translates the request’s virtual

address into the system’s physical address and identifies which memory mats the

access should be routed to.

Figure 4-9 illustrates the input/output signals for processor interface logic. Each

section of the interface is connected to instruction, data and TIE port of the processor

to receive the memory access instructions. The instruction port issues accesses to

instruction address space while the data port and the TIE port access the data portion

of the address space. The data port issues simple Load/Store instruction to memory

while the TIE port issues more sophisticated instruction such as synchronized accesses

or prefetch operations6. Data and TIE ports to the processor are 32-bits wide and

6 In general, all custom memory instructions added to processor core are issued from TIE port.

71

processor can only activate one of these ports at each cycle. The instruction port is 64-

bit wide and can be active along with the data or TIE port.

In
stru

c
tio

n
 P

o
rt 0

D
a

ta
 P

o
rt 0

T
IE

 P
o

rt 0

In
stru

c
tio

n
 P

o
rt 1

D
a

ta
 P

o
rt 1

T
IE

 P
o

rt 1

T
a

g
 A

cce
ss

D
a

ta
 A

cce
ss

A
u

x
 A

cce
ss

T
a

g
 A

cce
ss

D
a

ta
 A

cce
ss

A
u

x
 A

cce
ss

T
a

g
 A

cce
ss

D
a

ta
 A

cce
ss

A
u

x
 A

cce
ss

T
a

g
 A

cce
ss

D
a

ta
 A

cce
ss

A
u

x
 A

cce
ss

Processor 0 Interface Processor 1 Interface

I0 I1D0 D1

S
ta

ll 0

S
ta

ll 1

To/From
Protocol

Controller
Processor Interface Logic

Figure 4-9: Processor interface logic

The processor interface logic is connected to Tile crossbar with a set of four ports,

corresponding to instruction and data/TIE ports for each processor. As discussed

earlier, each crossbar port contains a set of three mat access ports. The processor

interface logic also has a port for communicating with the shared protocol controller in

the Quad. This port is shared between the instruction and data ports of both processors

(I0, D0, I1 and D1) and is used for sending request messages and receiving replies

from protocol controller. There is an internal arbitration logic that selects the next

available request message for sending to protocol controller.

As discussed in the previous chapter, in the universal memory system architecture, the

processor interface logic is viewed as the top-level controller which is closely

integrated with the processor’s data path. The rest of this section describes how the

72

processor interface logic implements address translation, memory access and

communication with L1 controller, mentioned earlier in this chapter.

4.5.1. SPECIFYING ADDRESS TRANSLATION AND MAPPING

Converting a processor’s virtual address to its physical location(s) has two steps:

translation and mapping. The first step is to translate the address from virtual to

physical address space, which is performed by using a segment table and simply

remapping the virtual segment number to a physical segment number by replacing

four most-significant bits of the address. The translation keeps the rest of the address

bits (segment offset) the same. A virtual segment can be mapped either to off-chip or

on-chip memory, but not to the configuration or reserved segments.

When a segment is mapped to on-chip memory mats (segment 3), a segment base

parameter specifies which memory mat the segment starts from. The base is expressed

in form of Quad ID / Tile ID / Mat ID. Since the size of the on-chip memory is much

less than a virtual segment size, a segment size parameter restricts the range of the

offset portion. If the offset exceeds the specified segment size, processor interface

logic throws an exception at the issuing processor. Both of the base and size

parameters are expressed in number of memory mats. Therefore a segment always

starts at the starting address of a memory mat and the size of it can only be an integer

multiple of mat size (4KB). Since memory mats are mapped contiguously in the

address space, a segment can be mapped to any contiguous number of mats in any

Quad/Tile. Each processor has its own segment table. Figure 4-10 shows the structure

of segment table. Since processors never issue any memory accesses to virtual

segments 0-3, these segments are omitted from segment table and are not

implemented.

The segment table also has a few additional features. First, it provides the system with

a simple protection mechanism. Each segment has separate Read (R) or Write (W)

permission bits. If a processor attempts a read or write operation without having

73

necessary permission it receives an exception. Segment table also specifies whether

the accessed memory segment is cached or not (C bit). Caching is only applied to off-

chip memory segments; caching any part of the on-chip memories is not allowed. The

On-Tile (OT) bit, if active, forces a memory access to an un-cached segment to be

routed to local Tile memories by ignoring the address bits that identify destination

Quad and Tile.

R W OT C Re-map Base Size

Seg 4

Seg 15

Seg 3-0

Virtual Address [31:28] Physical Address [31:28]

Processors never issue accesses to segments 0-3, hence
these segments are omitted

Figure 4-10: Processor’s segment table

As mentioned earlier, segment 2 of the physical address space is dedicated to

configuration locations. No virtual segment can be mapped to this physical segment. It

is only accessible by special memory operations, RawLoad/RawStore. These

operations ignore the segment table and directly access the physical memory. In other

words, the processor generated memory address is treated as the actual physical

address, which can be the off-chip memory address or address of a memory mat in the

system (depending on the segment number).

After translating a virtual address to a physical address, a second step determines

which physical location(s) should be accessed to complete the memory access

instruction. The mapping depends on the addressing mode of the memory operation

issued by processor, which is specified either by the segment table (by Cached/On-

Tile bits) or by the TIE opcode of the memory operation.

74

If the accessed memory segment is un-cached, the physical location accessed is

identified by the physical address. If this address lies in the Tile’s address region or if

it is forced to go to on-Tile memory mats by setting OT bit in the segment table, the

access is sent to the target memory mat specified by physical address. If the address

lies in a memory mat in a different Tile or Quad, a help request is composed and sent

to that Quad’s protocol controller to access the location on behalf of the processor.

The protocol controller sends back a reply to the interface logic after completing the

access.

If the accessed memory segment is cached, the configuration of the cache dictates

which memory mat(s) should be accessed. A set of cache configuration registers

specify the following cache parameters:

- Number of ways (maximum is 4 ways)

- Tag mats: which mat stores the address tags (for each way)

- Data mats: which mats store the cache line data (for each way)

- Cache line size: can be 16, 32, 64 or 128 bytes

- Number of data mats in each cache way: can be 1, 2, 4 or 8 mats

Provided this information, the interface logic can correctly slice the physical address

to the exact addresses for both tag and data mats and identify which memory mats to

route the access to. Figure 4-11 shows an example cache configuration, with two

ways, a 16-byte line size, and two data mats per each cache way. Total size of the

cache is 16KB. Memory mats 0 and 3 store cache tags and memory mats 1, 2, 4 and 5

store cache line data.

The address slicer inside the processor interface uses the cache configuration

information in order to generate the necessary signals for accessing cache. Table 4-3

lists these signals.

75

Tag Data 0, 2 Data 1, 3

M0 M1 M2

M3 M4 M5

Figure 4-11: An example two-way cache configuration

Parameter Description
Tag mat mask Identifies memory mats storing cache

tags, used by crossbar for routing
accesses to tag mats

Data mat mask Identifies memory mats storing cache
line data, used by crossbar for routing
accesses to data mats

Tag mat index Used as address input for tag mats
Data mat index Used as address input for data mats
Tags Actual cache tags, used as data input for

tag mats (for comparison)

Table 4-3: Cache access signals generated by address slicer

In addition to the segment table, the TIE opcode of the memory access instruction

issued by processor also might implicitly specify or affect the address mapping mode.

The TIE opcodes that have such effects are listed below:

RawLoad / RawStore: These opcodes completely bypass the segment table and

translation and are sent to the address specified by processor. In other words, the

processor generated address is considered as physical address for these opcodes and

no translation takes place. The mapping mode for these instructions is direct mapping

hence they never go to a cache.

76

FIFOLoad / FIFOStore: These opcodes should always be used for a virtual segment

that is mapped to on-chip memory. Segment table produces a mat number according

the base memory mat for the segment. This mat is then accessed as a FIFO: FIFO

select control signal is activated and mat’s input address is discarded.

Cache control instructions (DIWB, DIWBI): These instructions use the cache way

mapping mode and explicitly specify the cache way and index that they access.

Therefore, the access is not routed to all ways of the cache (if more than one). Instead

it only goes to the way specified by the instruction.

4.5.2. DEFINING MEMORY OPERATIONS

The processor interface logic defines the semantics of processor’s memory

instructions by specifying how these instructions should be carried out and what are

their associated success/failure conditions. If a memory access instruction fails for any

reason, the interface logic either throws an exception back at the processor or sends a

request message to protocol controller asking for assistance in completing the access.

The processor issues a TIE opcode for each memory access instruction, which

specifies the type of the instruction. The processor interface converts this opcode into

actual operations that memory mats must perform on their internal data and control

arrays. For each TIE opcode issued by processor, the interface logic generates data,

control and PLA opcodes for all sets of memory mats that should be accessed and

specifies the operations performed on data and associated state (control bits), as well

as how the state information should be updated if necessary. This mechanism is

referred to as opcode translation. For each memory access instruction, potentially three

sets of mats can be accesses (tag, data, auxiliary). Therefore, the opcode translation

mechanism specifies necessary control signals for each one of these sets. The crossbar

routes the generated control signals to all the memory mats within each set using its

multi-cast capability.

77

Necessary inputs for the opcode translation mechanism are the TIE opcode from

processor and the Cached and On-Tile bits from segment table. Each set of outputs

consists of Data, Control and PLA opcodes, as well as Control In, Mask and FIFO

select signals (Figure 4-12). These signals along with the mat mask and mat index

signals generated by the address translation and mapping logic provide all necessary

signals for accessing memory mats.

Opcode Translation

TIE Opcode

Cached On-Tile

Data Opcode

Control Opcode

PLA Opcode

Control bits

FIFO Select

From
Processor

From Segment Table

To Data Port
(crossbar)

To Tag Port

To FIFO Port

6

4

3

4

6

Figure 4-12: Inputs and outputs of the opcode translation mechanism

Logically, the translation mechanism is an array of configuration registers indexed

using processor issued TIE opcode. Depending on the TIE opcode and Cached and

On-Tile bits from segment table, each of the tag/data/aux accesses might be enabled or

disabled. For example, when a memory access goes to an un-cached memory segment

only the data access is activated, or when a cached segment is accessed, both tag and

data access are enabled. By modifying the contents of this table, a user can change the

operational semantics of each and every one of the processor memory access

instructions. Additionally, since the table receives the necessary information about the

configuration of the local memory mats from the segment table, cached and un-cached

accesses that use the same TIE opcode can be altered independently.

78

4.5.3. DETECTING ACCESS FAULTS

After sending control signals to the target memory mats, the crossbar returns the

responses back to processor interface logic, which analyzes the received signals and

determines whether the memory operation was successful or not. The signals returned

to the interface logic are Total Match, Data Match, Control Out, FIFO Full and FIFO

Error outputs of the accessed set of memory mats. If the access is routed to more than

one mat, the crossbar aggregates control signals from each set of accessed mats and

returns it back to the processor interface. In doing the aggregation, crossbar returns the

logical OR of the Total Match and Data Match signals for each set of the accessed

memory mats. The logical OR of Total Match output from all tag mats serves as the

hit/miss indicator when a cache structure is accessed.

Similar to opcode translation registers, a set of success or failure conditions are

defined for each one of the processor’s memory access instruction. These conditions

are expressed as a set of bit vectors for each set of the accessed memory mats. The

processor interface logic compares the returned control signals against these pre-

defined bit vectors and determines whether memory access was accomplished

successfully or not.

Logically this mechanism can be viewed as a content addressable table (Figure 4-13),

which receives the TIE opcode from processor, Cached and On-Tile bits from segment

table and the returned bit vectors from memory mats and produces a success/failure

result. In addition, it also indicates whether processor should be stalled or not, whether

a request message has to be sent to local memory controller, and the type of the

request message.

79

TIE Opcode, Stored Bit Vectors

Content Addressable
Table

TIE Opcode

Cached, On-Tile

Received Bit
Vector

Success/Failure

Stall

Message Enable

Message Type

Figure 4-13: Detecting success or failure of a memory operation

4.5.4. PROGRAMMABLE REQUEST MESSAGES

If a memory access instruction is not successfully completed, the processor interface

sends a request message to the protocol controller in the Quad to ask for assistance in

completing the access. Table 4-4 lists the information fields that are forwarded to the

protocol controller in the request message. The same mechanism that defines

success/failure conditions generates the message type and the message enable signals.

Field Description
Type Identifies type of the request
Opcode TIE opcode issued by processor as part of memory access

instruction
Sender ID Tile, processor and port ID of the sender
Address Physical address of the memory location being accessed
Data Write data, if memory access was a write
Byte Mask A 4-bit mask, which indicates which bytes should be written
Tag Info Information collected from tag mats if request is for servicing a

cache. Includes Total Match, Data Match and Control Out from
each way of the cache (32 bits total)

Blocking Indicates whether processor is stalled for the memory access or
not

Table 4-4: Fields of request messages to protocol controller

The type of the message and blocking indicator are extracted from the content

addressable table that detects the success or failure of the operation. The tag

80

information is supplied by crossbar, and the rest of the fields are extracted from the

original memory access instruction issued by processor. After composing, the message

is placed in a FIFO structure that implements the status holding registers. The head of

the FIFO participates in the arbitration for accessing a port to the protocol controller

and is sent to the protocol controller after winning the arbitration. The request sits in

the FIFO structure until the processor interface receives an acknowledgement signal

from the protocol controller. The acknowledgement indicates that controller has

received and registered the request and its processing is started processing.

In order to avoid having a large number of status holding registers inside the processor

interface logic, non-blocking memory access instructions (e.g. a Store instructions) are

taken out of the status holding registers after they are received and accepted by the

protocol controller. The processor interface then proceeds with sending the next

request message to the protocol controller. However, even though the status holding

register is released without waiting for the reply, a counter keeps track of the number

of outstanding requests sent to protocol controller. This counter is incremented after

sending a request message and is decremented after receiving a reply message. It

allows the processor interface logic to enforce ordering regulations that only require

knowledge about number of outstanding requests, e.g. memory fences, but since

complete information about non-blocking requests are not maintained, not all the

memory orderings are possible to enforce7.

For blocking memory access instructions (e.g. ones that need to return a result to

processor) access fault detection mechanism should stall the processor after detecting

the failure. In that case the information of the request is kept in the FIFO structure

until the actual reply is received. Usually all the read accesses from the processor are

blocking operations. Among the write instructions, FIFO Store, Sync Store and Set

Store are defined as blocking operations, while the rest of write accesses are treated as

7 Due to this limitation, the memory consistency model in the resulting architecture can only support

weak ordering and sequential consistency

81

non-blocking. A configuration register allows the user to control blocking or non-

blocking property of each type of the write operations separately.

4.5.5. INTERRUPT INTERFACE

The processor interface logic has an interrupt interface to each of the processors in the

Tile (Figure 4-14). Each processor receives a 16-bit active high interrupt signal, which

allows the processor interface logic to independently issue any combination of

interrupts to any of the processors.

Interrupts are generated in two different situations: First when an error occurs during

execution of a memory access instruction. For example, if the segment offset exceeds

the segment size (when a virtual segment is mapped to on-chip memory), or when

processor does not have the necessary permission to access the segment. In such cases

the processor interface kills the memory access instruction and generates an interrupt

for processor.

The second situation is when the memory system cannot handle a memory operation

on its own and needs to run a handler code on the processor in order to complete a

memory access. Such situations are usually encountered when implementing

complicated memory models such as transactional memory. For example, when a

transaction encounters a data dependency violation, or if it overflows its local write

buffer an interrupt is generated for the processor to run handler code and resolve the

situation in software. Such interrupts are programmable and are requested by the

protocol controller.

When sending an interrupt to processor, the protocol controller can select between

hard or soft interrupts; while soft interrupts are essentially normal interrupt requests,

hard interrupts force the receiving processor out of stall if processor is waiting on a

memory operation. When receiving hard interrupts, the processor interface logic un-

stalls the processor and immediately passes the interrupt signal to it. The only

exception is processor stalls due to instruction fetch; if processor is stalled on an

82

instruction fetch, the interface logic waits for the fetch reply in order to un-stall the

processor and then passes the interrupt.

Processor 0 Interface Processor 1 Interface

B
Interrup

t _
0

B
Interrup

t_1

LSU

cc_p
roc0_

int_ha
rd_

so
ft_sel_pu

lse

cc
_p

roc0_int_
pin_sel_pu

lse

cc_p
roc

0_raise_
int_pu

lse

cc_p
roc1_

int_ha
rd_

so
ft_sel_pu

lse

cc
_p

roc1_int_
pin_sel_pu

lse

cc_p
roc

1_raise_
int_pu

lse

From
Protocol Controller

Figure 4-14: Interrupt interface to processors

4.6. PROTOCOL CONTROLLER

The protocol controller in Smart Memories implements the L1 controller in the

universal memory system. The only slight difference with the abstract view shown in

Figure 3-1 is that the controller is shared between all the processors in a Quad. It

implements the memory ISA that discussed in the previous chapter. Conceptually,

each request message when received invokes a “subroutine” that executes a series of

basic operations. After completing the execution of the handler subroutine, either the

request message is serviced and the appropriate reply is sent back to the sending

processor’s interface logic or it is forwarded to the next level controller for completing

the request.

83

In this section we describe the organization of the protocol controller and its interfaces

to the Tiles and outside world. We elaborate on how it implements the abstract ISA

discussed in the previous chapter by presenting the structure of the status holding

registers and the embedded functional units which implement the basic memory

operations. We also explain how the controller is programmed and how a sequence of

basic operations can be put together to handle an incoming request or reply message.

4.6.1. ORGANIZATION

Figure 4-15 illustrates the internal organization of the protocol controller. The

execution core of the controller consists of three major units: tracking and serialization

(T-Unit), state update (S-Unit), and data movement (D-Unit). All basic memory

operations are implemented by these three units except the communication primitives,

which are implemented in processor and network interfaces. The tracking and data

movement units have dedicated storage structures: Status Holding Registers for

storing request tracking information and Data Buffers (Line Buffers) for storing blocks

of data. In addition, the controller is equipped with eight independent DMA channels

which essentially are programmable request generator engines, as well as a dedicated

interrupt unit which is responsible for sending interrupt requests to processors.

Communication with the processor interface logic in each Tile is handled by the

processor interface unit. This unit receives request messages from Tiles and sends

back replies when the sequence of operations in the controller is completed.

Communication over the network is handled by network interface unit.

84

DMADMA

T-Unit
(Tracking & Serialization)

S-Unit
(State update)

D-Unit
(Data movement)

MSHR USHR Line
Buffers

Processor Interface Network Interface

INT-Unit
(Interrupt)

DMA

To/From Tile Memory Mats

To/From Tile
Processors

To/From NetworkTo Tile
Interrupt interface

Figure 4-15: Internal organization of Quad’s Protocol Controller

The state update and data movement units have interfaces to access the Tiles memory

mats. These interfaces are connected to the Tile crossbar as shown in Figure 4-8. The

S-Unit interface is 32-bits wide while the D-Unit interface is 64-bits wide and can

access two adjacent memory mats in parallel. It also supports 32-bit accesses to a

single memory mat.

4.6.2. SEQUENCING OF ACTIONS

The conceptual programming model of the controller is set of subroutine calls,

triggered by an input message. Each subroutine composes a few basic operations and

is executed by one of the internal functional units. After executing its own subroutine,

each functional unit invokes another subroutine in the next functional unit by passing

an appropriate request to it. Functional units use a type field when invoking a

subroutine. This field essentially is the name of the function to be performed and

determines the operations to execute. A sequential execution semantic is maintained

within each subroutine.

85

Figure 4-16 depicts a conceptual execution model in the controller. Request message

foo invokes subroutine foo in the processor interface unit. This subroutine calls

subroutine A in T-Unit, which calls subroutine B in S-Unit and so on so forth. The

right side of the figure shows operations in the subroutine I of the D-Unit. Calls to

other subroutines are placed at the end and, as shown in the figure, two or more calls

to different units can be made concurrently at the end of a subroutine. The lower part

of the figure shows the internal steps of a call inside the controller. In this example,

processing of the message ends after the N-Unit sends a request message bar to the

main memory controller. The protocol controller then waits for the reply to this

request message from the memory controller and completes the processing by

executing another set of subroutines after receiving this reply.

Request Message foo:

T-Unit: Routine A

S-Unit: Routine B

D-Unit: Routine I

S-Unit: RoutineJ, N-Unit: Routine K

Op1

Op2

...
Call (S-Unit :: Routine J)
Call (N-Unit :: Routine K)

P-Unit T-Unit S-Unit D-Unit

P-Unit: foo

N-Unitfoo
A B I K

J

bar

1 2 3 4 5

5

6

Figure 4-16: Conceptual execution model of the protocol controller

4.6.3. SUPPORTED OPERATIONS

The operations within each unit are controlled by an internal configuration (or

program) memory. Similar operations in the controller’s ISA mentioned in the

previous chapter are grouped and mapped to a specific functional unit. The following

86

explains the grouping and the set of operations implemented by each of the internal

functional units.

Tracking Unit (T-Unit)

The tracking unit serves as the entry port to the execution core of the controller. All

request/reply messages that are received by the controller from processors, network or

internal DMA channels are passed to the T-Unit. It implements the operations in the

ISA that are related to management of internal data structures: allocation of the SHR

and data buffer entries, storing or retrieving the tracking information for the input

requests and replies, performing lookups in the SHR structure and enforcing any

serialization properties that might be required by the memory protocol.

The T-Unit consists of two independent parallel sections, CT (T-Unit, Cached) and

UT (T-Unit, Un-cached). The CT section handles memory requests that need a form of

serialization or ordering. Specifically when an input request needs to be checked

against already outstanding memory requests, such as cache misses or coherence

requests, it is handled by CT. In contrast, the UT is used for handling memory requests

that only need to store and retrieve their tracking information and do not obey any

specific ordering requirements. Such requests can be completed out of the issuing

order for performance reasons. DMA requests from DMA channels or un-cached

accesses from processors are examples of the latter group.8

Each of the CT and UT sections has its associated status holding registers for storing

tracking information of the received requests. CT uses Miss Status Holding Registers

(MSHR) and UT uses Un-cached request Status Holding Registers (USHR) for this

purpose. The major difference between the two structures is that MSHR provides an

associative lookup operation to check the address and sender of the received request

against already outstanding requests in a single cycle, while USHR only provides

read/write operations. In addition to the tracking information, these structures also

8 If out of order completion of processor’s un-cached requests is allowed by the implemented memory

consistency model

87

keep the internal status of the outstanding requests, which is checked and updated by

different functional units as the request is passed from one unit to the next.

After receiving an input request, the CT evaluates certain conditions by performing a

lookup operation on its associated status holding registers. The provided state

information includes whether:

- There is another request to the same memory address present in MSHR and the

index of the matching register (if a match is found)

- The new request can be merged with existing one (if a match is found) In other

words, are the two requests to the same address of the same type

- There is another request from the same processor present in the MSHR

- There are any available registers in the MSHR

- There are any available data buffers for the input request

After collecting this information, the CT proceeds to execute the operations specified

by the requests handling subroutine. Operations that are mapped to CT fall into three

major categories:

Request acceptance: A set of CT operations is used to decide whether to accept an

input request or not. Acceptance operations can evaluate any combination of state bits

mentioned above and decide either to accept or reject the input request. If a request is

not accepted, it is supplied again by the issuing unit (P-Unit, N-Unit or DMA channel)

and is retried in the next clock cycle.

Storing and retrieving tracking information: These operations manage the Miss

Status Holding Registers by allocating registers, writing tracking information into an

allocated register, or retrieving the tracking information of a request using the received

register index.

88

Handling data storage: In addition to the status holding registers, the CT manages

the line buffer structure which is used as temporary storage for data blocks. It

implements the necessary operations for allocating and writing data into data buffers.

The UT section of the T-Unit operates more or less the same way as CT. The

operations supported by UT are:

Request acceptance: The UT provides operations for checking the availability of the

Un-cached request Status Holding Registers. These operations are used to ensure that

there are available USHR entries before attempting to write tracking information into

the USHR.

Storing and retrieving tracking information: Similarly the UT provides operations

for allocating and managing USHR entries and writing/reading the necessary tracking

information about an input request.

A common set of operations supported by both the CT and UT sections of the T-Unit

is the ability to invoke another subroutine in the next functional unit. Such invocation

is performed by passing a type field along with the parameters of the received request.

CT can invoke a subroutine in S-Unit and D-Unit, while in addition to these two units

UT can invoke a subroutine in N-Unit, P-Unit and any one of the DMA channels.

State update unit (S-Unit)

This unit provides operations to access the Tile memory mats in order to read, write or

update state information. The S-Unit operates on the state information associated with

a block of data, such as tags and line state information in a cache structure. State

information associated with individual data words are accessed and operated on by D-

Unit. The S-Unit has a dedicated port to each Tile’s memory mats and similar to

processor’s interface logic, can access any number of memory mats in parallel using a

bit mask. In particular, it supports four mapping modes when accessing Tile memory

mats:

89

Direct: Access goes to a single memory mat, specified by the received memory

address

Cache: Access goes to all tag mats in a defined cache structure. It can be an

instruction or data cache of either processor in the Tile

Cache way: A single tag mat in the specified cache way is accessed

FIFO: A predefined FIFO mat is accessed

S-Unit supports the following operation:

Memory mat accesses: The S-Unit provides all necessary signals for the accessed

memory mats and always reads the state information back from the accessed mats. It

can update the state information using a plain write operation in the mat’s control

array or by using read-modify-write logic in the mat itself. Furthermore, the S-Unit

can send a memory mat access either to a single Tile or all the four Tiles

simultaneously. Simultaneous accesses to all Tiles are useful when looking for

specific cache blocks in all the Tiles (when implementing a shared memory model) or

invalidating/downgrading them upon receiving a cache miss or a coherence request.

Flow control: After the memory mats are accessed, the state information collected

from all the accessed mats (meta-data bits) is returned back to the S-Unit. Flow control

operations compare the received bit vector against a set of pre-define bit vectors and

invoke an appropriate subroutine in the next functional unit. One can think of this

operation as a case statement in high-level programming languages, where an

expression is compared against a set of labels and the action defined by the matching

label is executed. In our case, labels are pre-defined bit vectors and the action is a

subroutine invocation in a specific functional unit.

90

Data movement unit (D-Unit)

The D-Unit is a data movement engine which moves blocks of data between the Tile

memory mats and line buffers inside the protocol controller. It has a dedicated 64-bit

port to each Tile’s crossbar and can access a 64-bit word (two adjacent memory mats

in parallel) for faster block transfers. It supports the following operations:

Data block accesses: The D-Unit can transfer a block of memory from Tile memory

mats to the line buffer inside controller or vice versa. All necessary signals for the

memory mats are generated by D-Unit. Supported addressing modes for these accesses

are cache way or direct. In addition to single block read and block write operations,

the D-Unit supports transfer operations where a block is read from one Tile and is

written into another one. The operation is staged through the line buffer to minimize

the transfer latency.

Data word accesses: The D-Unit also can access a single memory mat in a specified

Tile. Similar to S-Unit accesses, all the necessary control signals for the memory mat

are generated. The D-Unit can read, write or update the state information in addition to

reading and writing the data word. Supported addressing modes for such accesses are

direct and cache way.

Flow control operations: D-Unit can read and compare the state information

associated with an individual data word against a set of pre-defined bit vectors.

Depending on the comparison results, it can invoke a subroutine in the next functional

unit (the same as S-Unit).

Network interface unit (N-Unit)

The network interface provides communication primitives to talk with other Quads or

main memory controllers. It consists of separate transmit and receive sections which

operate independently. The receiver receives messages, decodes them and passes each

message to the T-Unit. When the incoming message carries a data block, the receiver

places the received data in a line buffer entry before passing the message to T-Unit.

91

The transmitter receives requests from internal functional units to send desired

messages to an outside entity. It is capable of sending short messages, which at most

carry one data word, or long messages that contain a whole data block. When sending

a data block, the transmitter reads the data from specified internal line buffer entry. A

user can program the transmitter to send either short or long messages, adjust the

information fields that are sent in the message header (each message type might

require different information to be included in the message), and whether to release

the status holding register occupied by the request after sending the message (reply

messages to other controllers should release the register after they are sent). In

addition, a user can select which virtual channel to use.

Processor interface unit (P-Unit)

The processor interface unit is a very simple interface logic that consists of two parts:

the front-end and the back-end. The front-end of the P-Unit acts as a receiver, which

receives requests from processors in the Tiles, decides whether a request should be

passed to CT or UT section in the T-Unit, and arbitrates between received requests to

determine which request should be passed on. For each received processor request, a

user can program whether the request should be passed to CT or UT in T-Unit and

what subroutine in CT or UT should be invoked by the message. In other words, P-

Unit only supports call operations to pass input request to T-Unit. The back-end

simply passes the replies generated by internal functional units back to the originating

processors.

4.6.4. STATUS HOLDING REGISTERS AND DATA BUFFERS

As discussed in the previous chapter, controllers in the memory system should have

internal registers for keeping tracking information of the outstanding requests. The

protocol controller has status holding registers (MSHR and USHR) for storing the

tracking information of cached and un-cached requests respectively, as well as

temporary data storage (line buffers).

92

As was mentioned earlier, the status holding registers are divided into MSHR and

USHR structures and are managed by T-Unit. MSHR is used for storing requests that

need a form of ordering and serialization (e.g. cache miss requests) and information

stored in it are used by CT section in the T-Unit. Information stored in each MSHR

entry is divided into two categories: request tracking information and request status

information (Figure 4-17).

The tracking information holds different parameters of the request while status

information shows the current status of the request in the system and how the system

should handle it at each stage. Table 4-5 describes each of these information fields.

The MSHR has separate read and write ports and supports read and write operation on

each entry using separate indices. In addition, it has an associative lookup port based

on the Address and Requestor fields and can detect any entry that has a valid request

to the same address or is from the same requestor. The lookup port reports the result of

the matching back to CT in the Result Flag.

MSHR

Valid Address Op
code

Type Requestor Offset SizeRefillMergeState Way
No.

Status Information Tracking Information

Write Port

Read Port

Lookup Port

Figure 4-17: MSHR structure

93

Field Description
Address Stores the address of the memory request, which can be the address

of a memory word or a memory block, such as cache line address
Opcode TIE opcode of the memory request issued by processor
Type Type of the input request passed to CT (name of the subroutine

invoked in CT)
Requestor Specifies source of the request, Tile, processor and port ID

(instruction/data)
Offset If request is a cache miss, indicates the offset within the cache line
Size Size of the memory block, if request is for a block of memory
Valid Indicates whether this register contains a valid request
Refill For cache miss requests specifies whether requesting cache should

be refilled or not
State ACTIVE or OUTSTANDING. A request is in active state if it is

currently being processed inside controller. A request is in
outstanding state if it is waiting for a reply from other Quads or
main memory controllers

Way number For cache misses only, specifies the way of the cache which data
should be refilled

Merge An optimizing flag that says whether later requests to the same
memory address can be merged with this request or not

Table 4-5: Information fields in MSHR

The USHR is a similar structure operated by UT and only supports simple read and

write operations. It stores information about un-cached memory access request from

processor or DMA channels (Figure 4-18). Table 4-6 lists and explains the information

fields stored in the USHR.

USHR

Valid
Remote
Address

Local
Address

Remote
Opcode

Local
Opcode Requestor Size

Write Port

Read Port

Figure 4-18: USHR structure

94

Field Description
Remote
Address

Address of the memory location to be accesses (in other Quads or
main memory)

Local Address For DMA requests, specifies the local address for the DMA
transfer9

Remote Opcode TIE opcode for accessing remote memory location
Local Opcode TIE opcode for accessing local memory location
Size Size of the memory block, if request involves moving a block of

data
Requestor Identity of the requesting entity (Tile, Processor and Port ID for

processor, and channel number for DMAs)
Valid Flag that indicates whether the register contains a valid request

Table 4-6: Information fields in USHR

Registers in both MSHR and USHR structures are divided into two separate pools of

entries. The outgoing pool consists of entries which store tracking information for

requests generated in the Quad by processors or DMA channels. The incoming pool is

the set of entries used for storing tracking information of the requests received from

other Quads and main memory controllers. Allocation of registers to pools is

independently controlled for each structure via configuration registers in the T-Unit.

The (Outgoing) register allows the size of the pools to be adjusted by user when

configuring the system and allocating system resources. For each of the MSHR/USHR

structures, register indices between 0 and Outgoing-1 form the outgoing pool and the

rest form the incoming pool.

While the tracking information is stored in MSHR and USHR structures, data blocks

are stored in a different line buffer structure associated with the data movement unit.

Even though the structure is physically associated with the data movement unit, it is

allocated and managed by the T-Unit along with the MSHR and USHR structures.

A line buffer entry consists of 8, 32-bit data words (total of 32 bytes). Each data word

has 6 bits of meta-data or control information, similar to memory mats. These

additional bits facilitate the movements of meta-data information between different

95

mats when such transfers are necessary. In addition, each byte within the line buffer

has a byte valid bit which indicate that the location contains valid data (Figure 4-19).

Line Buffer

Valid
Byte

Valid3 Word3
Meta

Data3
Byte

Valid2 Word2
Meta

Data2
Byte

Valid1 Word1
Meta

Data1
Byte

Valid0 Word0
Meta

Data0

Bank 3 Bank 2 Bank 1 Bank 0

Write port
(N-Unit, Receiver)

Read port
(N-Unit, Transmitter)

Write port
(T-Unit)

Read/Write port 0

Read/Write port 1
(D-Unit)

Figure 4-19: Line buffer structure

The line buffer is accessed mainly by the data movement engine and the network

interface, since these are the major units involved in a data transfer operation. The

tracking unit also has a write port into the line buffer which is used for placing a

processor’s write data when receiving write requests from processor, e.g. a Store miss

request. Using the byte valid bits, the line buffer later can combine write data with the

rest of the cache line when it is received from main memory.

As mentioned before, functional units inside protocol controller communicate by

passing requests and invoking subroutines. Each functional unit internally has a

configuration (or program) memory which stores the subroutines for all the request

types it might receive. The configuration sets the operations that each functional unit

has to execute after receiving an input request and also specifies parameters for each

operation, such as the addressing mode for accessing memory mats or virtual channel

number for a network message that has to be sent.

The configuration memories of the protocol controller are mapped to the segment 2 in

the physical address space and are accessible from processors by issuing RawLoad

and RawStore instructions. In addition, the controller provides a configuration

9 A DMA transfer always moves data between a memory location inside the Quad (local) and a memory

location in other Quads or in off-chip memory (remote)

96

interface which through the Quad’s JTAG controller allows a user to access all the

configuration memories by issuing JTAG read/write operations even while the system

is operating.

4.7. MAIN MEMORY CONTROLLER

The main memory controller is the controller connecting Quads to the main, off-chip

memory. In addition to serving as the interface to main memory, it implements the

same basic memory operations mentioned in the previous chapter, with a structure

similar to the Quad’s protocol controller. When the system is configured with more

than one memory controller, the addresses are interleaved among different controllers.

Therefore all controllers are shared among all Quads in the system and act as lowest

level convergence/serialization point for memory requests they receive. The execution

model of the main memory controller is also the same as Quad’s protocol controller.

An incoming message triggers a set of operations in the network receiver and is then

passed from one functional unit to the other, until all necessary operations are

completed and a reply is returned to the originating Quad.

4.7.1. ORGANIZATION

Figure 4-20 shows the internal organization of the main memory controller. Similar to

protocol controller, related operations are mapped to the same functional units inside

the controller: the C-Req unit manages the status holding registers, performs

serialization operations, and generates necessary requests for Quads to inquire or

updated state information. The C-Rep unit gathers replies, composes the resulting state

information and decides how to proceed depending on the results. U-Req/Rep unit

handles requests that only need to access main memory without any serialization or

state update operations. There is a dedicated functional unit for implementing a fine-

grain synchronization protocol. This unit operates rather independent of the rest of the

controller. It has its own tracking structure and all of its supported operations are

related to managing and searching this storage structure.

97

The main memory controller communicates with Quads by exchanging messages over

the communication network. It uses the same network interface logic as the protocol

controller with separate transmitter and receiver sections.

C-Req

C-Rep Sync

U-Req/Rep
MQ

N
e

tw
o

rk In
te

rfa
ce

Memory Interface

Wait Q MSHR

Sync Q

To/From
Network

To/From Main Memory

Line
Buffer

Figure 4-20: Internal organization of main memory controller

A dedicated memory interface unit performs accesses to main memory. Functional

units that need to access main memory use a memory queue structure (MQ) which

drives this interface unit. Memory requests received by controller specify a global

physical memory address. Therefore, when memory is interleaved among more than

one controller, the memory interface unit makes necessary adjustments to the address

in order to access the correct data word or block in the associated memory bank. The

details of the operations and structure of status holding registers in memory controller

are more or less the same as Quad’s protocol controller and hence are not discussed

here.

98

4.8. MAPPING MEMORY PROTOCOLS

After describing the architecture of the memory system and the flexible mechanisms

embedded in different components, this section discusses the necessary steps for

implementing memory protocols using the hardware. Specifically it explains how to

provide the semantics requirements for a shared memory system, a streaming system

and a transactional memory system. While discussion in this chapter focuses on the

high-level usage of the flexible constructs, the details of configuring the hardware

structures and values that should be written to the configuration registers to provide a

specific functionality are described in Appendix B, as an example of implementing a

simple coherence protocol.

Necessary steps for mapping a protocol are:

1. Defining and associating state information: If the desired memory protocol

requires to have state information associated with data words or blocks, the first

step is to determine what this information is and how it is mapped and stored in the

local and main memory.

2. Allocating resources: This step essentially determines the configuration of the

memory mats in the Tile and how they are structured by setting up the

configuration registers in the processor interface logic. The address translation

mechanism which converts virtual addresses to physical addresses also is

configured at this step.

3. Defining memory operations: The next step determines the processor and

controller operations on the local and main memory, and defines the necessary

accesses that should be issued to memory mats. It also defines the success/failure

condition for each memory operation. The opcode translation table (Figure 4-12)

and content addressable table in Figure 4-13 in the processor interface logic, as

well as configuration memories in the S-Unit and D-Unit of the protocol controller

which access Tile memory mats, are populated at this step.

99

4. Defining and handling communication messages: The final step specifies the

messages that are exchanged between processor interface login and Quad’s

protocol controller, as well as between the protocol controller and main memory

controller. For each received message, the controllers should also be programmed

to carry out necessary operations. This involves developing appropriate

subroutines for each of the controller functional units and connecting them to each

other by making appropriate invocations.

4.8.1. STREAMING MEMORY SYSTEM

A stream memory system has the simplest hardware requirements among the

implemented models. When implementing streaming memory system, Tile local

memory mats serve as the storage for kernel code and local stores for streams. There is

no state information associated with data words or blocks. Segment table maps desired

segments of the virtual address space into memory mats in the Tiles.

Processors issue Load and Store operations which are translated by the opcode

translation mechanism to read and write accesses on the target mat’s data array. The

protocol controller serves the DMA requests that are generated by the DMA channels

by reading and writing data blocks in different Tiles. The DMA channels are

configured by processors via writes to their control registers. All operations on the

Tile memory mats by processors and protocol controller are successful.

Table 4-7 lists the communication messages that are exchanged between different

components for all three implemented memory models. Processors access memory

mats in other Tiles by sending a request message to the protocol controller. DMA

channels support sequential, strided and indexed gather/scatter operations. They issue

index read requests to acquire the address of the next data element and then generate

necessary gather/scatter requests to move the data blocks. Gather/Scatter replies are

sent by the main memory controllers or protocol controllers in the other Quads after

processing of the request message is completed.

100

Model Source Message Description
Cache Miss Read/Write miss request from a processor
Upgrade Miss Upgrade miss request (request for ownership)
Prefetch Prefetch for read or write from a processor

Proc.

Cache Control Invalidate/Writeback a specific cache line
Coherence
Request

Read, Read-Exclusive or Invalidate request for
specific cache line

Refill Returns cache line data to be refilled

Shared
Memory
(MESI
coherence)

Main
Mem
Cntrl

Upgrade Returns cache line ownership (no data)
Proc. Un-cached

Access
Direct access of a memory in another Tile

Index Read Read of index memory (indexed transfers)
DMA Gather Request for gathering data from another Quad or

main memory

DMA
Channel

DMA Scatter Request for scattering data to another Quad or
main memory

Gather Reply Reply for a gather request, contains actual data
Scatter Reply Acknowledgement for a previous scatter
Un-cached
Reply

Reply for direct memory access from processor

Net Gather Gather request from another Quad’s DMA

Streaming

Main
Mem
Cntrl /
Another
Quad

Net Scatter Scatter request from another Quad’s DMA
Cache Miss Read/Write miss request from a processor Proc.
FIFO Full Address FIFO full indicator, overflow occurred
FIFO Read Read store address from FIFO
Commit Read Read committed data from source cache

DMA
Channel

Commit Write Write committed data to other caches
Refill Returns cache line data to be refilled

TM
(TCC)

Main
Mem
Cntrl

Net Commit Committed data word from another Quad’s
transaction

Table 4-7: Communication messages for implemented memory models

The protocol controller handles gather/scatter messages by first storing the tracking

information of the request in the USHR (since no specific ordering between requests

are required), and invoking the appropriate subroutine in D-Unit or N-Unit. For

example, for scatter requests from a DMA channel, first D-Unit reads the data block

from the source memory mat in the Tile into the line buffer. Then it invokes

appropriate subroutine in the N-Unit to read the data from line buffer entry and send it

to the destination Quad or main memory controller as a scatter request. When the

scatter reply is received, it is passed to the T-Unit which de-allocates the USHR entry

after retrieving the tracking information and acknowledging the DMA channel.

101

4.8.2. SHARED MEMORY SYSTEM

When implementing a shared memory system, the local memory mats in the Tiles are

used for implementing instruction and data caches for processors. One mat per cache

way stores the address tags while the other mats store the cache line data, as shown in

Figure 4-11. Data array in the tag mats store the address tags while the control array

stores the cache line state: Valid, Modified and Shared/Exclusive bits for MESI

protocol. Configuration registers in the processor interface specify the exact

configuration of the caches in terms of size, number of ways, and line size. Segment

table maps the segments in the virtual address space into the caches by setting the C

bit.

Processors access caches using Load and Store instructions. Each instruction is

converted into a tag comparison operation on the tag mats and a data read/write

operation on the data mats. Crossbar routes these accesses to appropriate mats. Tag

mats compare the address tags and cache line state and generate a hit/miss signal

(Total Match output of the comparator). This indicator is sent back from each way to

the processor and is also sent over the IMCN to the associated data mats. For Store

instructions, the write operation on the data mat is guarded by this signal, so that the

write is discarded if there is no hit in the specific cache way.

The processor interface logic collects the state information extracted from each way of

the cache and determines the cache misses and upgrade misses. It sends request

messages to the protocol controller to refill the appropriate cache.

The protocol controller receives cache and upgrade miss requests from the processor

interface logic and coherence requests from the main memory controller. As the first

step for serving the request, the T-Unit looks up the MSHR structure, serializing the

request against already outstanding ones. After ordering the request appropriately, an

MSHR entry is allocated and the tracking information of the request is stored. Upon

receiving a cache refill, it retrieves the information about the cache miss such that the

data can be placed in the right location in the cache. S-Unit snoops the state of the

102

cache line in the other Tile caches to enforce coherence and check for the possibility

of cache-to-cache transfers. It also writes the new tags after refilling a new cache line

in the cache. The D-Unit extracts the evicted cache line from the cache, performs

cache-to-cache transfers by reading the cache line from one Tile’s cache into another’s

and writes the new cache line into the cache upon receiving a cache refill message.

The main memory controller fetches the cache lines or writes the lines received from

Quads back to main memory. It also serializes requests from different Quads and

sends coherence requests to enforce the coherence properties among the Quads.

Appendix B describes the details of implementing a simple MESI coherence protocol

for a single Quad system.

4.8.3. TRANSACTIONAL MEMORY SYSTEM

Smart Memories implements Transactional Coherence and Consistency (TCC) [27]

protocol as its transactional memory model. When implementing TCC, memory mats

implement the instruction and data caches for processor, very similar to the shared

memory model. The data cache of the processor is augmented with a FIFO that stores

the addresses of the transaction’s write set. The control array in the tag mats encode

the cache line state as Valid, Speculatively Read and Speculatively Modified.

Speculation indicators are used to avoid eviction of speculative cache lines since all

necessary dependency tracking information is stored in the cache. The control array of

the data mats in the cache are used to associate same Speculatively Read (SR) and

Speculatively Modified (SM) flags for each data word. These bits essentially mark the

transaction’s read and write sets in the cache and are used to detect conflicts between

transactions. Configuration of the cache and setup of the segment table in the

processor interface logic is similar to the shared memory model.

Processors once again issue Load and Store operations to the cache, but the opcode

translation mechanism issues necessary opcodes for the control array to appropriately

adjust the status of SR and SM bit associated with the data words. The hit/miss

103

indicator of each cache way is also forwarded to the FIFO mat to avoid placing

address of the stores that miss in the cache in the FIFO. In addition to detecting cache

misses, processor interface logic also monitors the address FIFO and notifies protocol

controller when it becomes full.

Protocol controller receives cache miss requests from processors and commit requests

from either a local DMA channel or another Quad’s committing transaction. Cache

misses are serviced by fetching the data from main memory and no snooping and

coherence action happens in the controller. Transaction commits are handled by DMA

channels similar to performing an indexed DMA operation: The address of a word is

extracted from the FIFO by S-Unit, data word is read from the committing

transaction’s cache and is written into the cache of other Tiles by D-Unit. The word is

also sent to main memory controller to be written into main memory. When writing

the committed word in a cache, D-Unit checks the SR bit of the word that is being

written. If the SR bit is set, a violation is detected between the two transactions and an

interrupt is sent to the violated processor. T-Unit appropriately serializes commits

against outstanding cache misses and stores and retrieves tracking information of the

cache miss requests.

A major differentiating factor for the TCC implementation on the Smart Memories is

that transactions’ arbitration for acquiring commit token occurs in software, by

accessing synchronization variables that are stored in shared local memory. Also, one

processor in each Tile is reserved for handling asynchronous events, such as overflow

of the hardware structures (cache and address FIFO), and transaction violation. This

processor does not execute the code for the actual transaction and runs the necessary

software handlers for resolving exceptional situations.

4.9. SUMMARY

In this chapter we explained Smart Memories, a scalable reconfigurable architecture

which implements a universal memory model described in the previous chapter. We

104

presented the different components in the system, including processors, Tile memory

mats and interconnect structure as well as memory system controllers. We discussed

the internal organization of the controllers, their internal status holding registers and

how the basic memory operations mentioned in the previous chapter as controller ISA

are mapped to their internal functional units. We also described how these resources

and operations are used in order to map specific memory protocols on the hardware.

Appendix B provides more insight about implementing protocols by illustrating the

details of mapping a simple coherence protocol on the hardware.

In general, while the hardware implementation of the ISA operations in the controllers

are not difficult, the challenge mostly is in providing a micro-architecture which

provides sufficient level of concurrency in processing request. Specifically in the case

of Smart Memories, since the Quad’s protocol controller is shared between eight

processors, it potentially can become a bottleneck if it cannot provide the necessary

throughput. Grouping related operations into separate functional units and passing

requests from one unit to other allowed us to divide a handler routine into smaller

subroutines carried out by each functional unit independently and hence provide a

macro-level pipeline for processing input messages. Successive memory requests

hence can be pipelined across different functional units to increase processing

throughput. Also, concurrent subroutine calls by a functional unit as shown in Figure

4-16 allows overlapping different operations of the same memory request, increasing

the level of concurrency and reducing the processing time.

As described, currently the Smart Memories system implements three different

memory models: coherent shared memory, streaming and transactional memory.

However it is possible to map other protocols that implement the same or even

different memory models using the same hardware resources. An interesting

experiment with this system is to create a comprehensive library of different memory

protocols that system users can choose from. This involves developing the necessary

hardware configurations as well as software interfaces, such as libraries and runtime

systems that applications need for execution. Having such a comprehensive collection

105

not only allows the user to simply try and choose the best memory protocol that

matches the desired programming model, but also allows direct comparison between

performance and power characteristics of the application when employing different

protocols or even different memory models.

The next chapter describes the results of implementing a single Quad of the Smart

Memories architecture in the context of SMASH test chip. It also presents our

evaluation of the architecture and the impact that the embedded reconfigurable

mechanisms have on the over all system performance. We also try to estimate the

power and area overhead that these mechanisms introduce in the Quad’s protocol

controller.

The interconnection mechanism between Quads and memory controllers in the Smart

Memories architecture is assumed to be a mesh-like network. The infrastructure

should satisfy the requirements mentioned in the previous chapter: being lossless and

preserving point-to-point ordering. In order to connect multiple SMASH chips we

developed a star topology and a central switch which allows connecting up to four

Quads and four memory controllers. A detailed description of the system interconnect

and central switch are discussed in Appendix A.

106

107

5. EVALUATION

The previous chapter explained the Smart Memories architecture and implementation

of the basic operations in the memory system. This chapter describes the

implementation results of the Smart Memories test chip, SMASH. It also evaluates the

impact of embedding reconfigurable features on the performance, area and power of

the resulting system.

5.1. TEST CHIP IMPLEMENTATION RESULTS

The SMASH test chip contains a complete Quad of the Smart Memories architecture,

including four Tiles and associated protocol controller. There are 8 processor cores

and total of 256KB of local memory in the test chip. The main memory controller and

interconnecting logic are mapped on an external FPGA.

The test chip is fabricated in ST Microelectronics 90 nm technology (ST90nmGP)

with worst-case clock cycle time of 5.5 ns (180MHz). Die dimensions are 7.77mm ×

7.77mm (60.5mm2) Figure 5-1 shows a plot of the die and Table 5-1 summarizes the

specifications of the test chip.

Figure 5-2 shows breakdown of the area for different modules in the test chip,

including Tiles, protocol controller, I/O pads and routing channels. Figure 5-3 shows

breakdown of the area for a single Tile and for functional units inside protocol

controller. As illustrated, most of the Tile area is taken by memory mats, since we

used regular flip-flops for implementing the gang-writable and conditional-gang-

writable meta-data bits in the control array.

108

Technology ST 90nm-GP (General Purpose)
Supply voltage 1.0 V
I/O voltage 2.5 V
Dimensions 7.77mm × 7.77mm
Total Area 60.5 mm2 (core size 51.7 mm2)
Clock cycle time 5.5 ns (181MHz)
Nominal power (estimate) 1320 mw (300mw for Tile, 120 mw in

protocol controller)
Number of transistors 55M
Number of Gates 2.9 M (600K in each Tile, 500K in

protocol controller)
Number of memory macros 128 (32 per Tile)
Signal pins 202
Power pins 187 (93 VDD, 94 VSS)

Table 5-1: Test chip specifications

Figure 5-1: SMASH die plot

109

Chip Area CC
12%

Tiles
65%

Routing
channels

8%

Pad ring
15%

Figure 5-2: SMASH test chip area breakdown

Figure 5-3: Area breakdown for Tile and local memory controller

Tile

lsu
5%

mats
57%

p0
13%

p1
13%

ureg
4%

xbar
4%stat-dbg

4%

Protocol controller

DMA 7..0
21%

D_Unit
26%

INT_Unit
1%

N_Unit
9%

LB
13%

S_Unit
10%

T_Unit
14%

P_Unit
2%

STAT
4%

110

5.2. PERFORMANCE OVERHEAD

In the Smart Memories system, local memory access times fit within the two-cycle

latency of the processor pipeline. This includes the traversal time in the processor

interface, crossbar and reconfiguration logic in the memory mats. Therefore, in our

performance evaluations, we focused on the performance impact of the flexible

mechanisms embedded in the controllers rather than the Tile’s local memory sub-

system.

In order to evaluate this performance impact, we back-annotated the Smart Memories

functional simulator with the latency numbers extracted from the actual controller

RTL. Then we created “ideal” controllers, where the overhead of the internal

controller actions in executing protocol operations is set to zero. In other words, the

operations that occur inside controller such as invoking a subroutine in a functional

unit, lookup and write of status holding registers, message composition and

decomposition in the interfaces, etc. will not incur any latency in the “ideal”

controller. However, the latency of operations performed by controller on the other

resources such as accesses to the local memory, communication over interconnect,

data transfers, etc. are accurately accounted for. This provides an “upper bound”

estimate on the performance of a controller. We then compare results gathered from

simulating our back-annotated controller model with this upper bound. This

experiment is performed for three major memory models mapped to the Smart

Memories hardware: a shared memory system using hierarchical MESI coherence

protocols, a streaming memory system, and a hardware transactional memory system

implementing Transactional Coherence and Consistency (TCC).

5.2.1. COHERENT SHARED MEMORY

We used a few kernels and applications from SPLASH-2 suite [47] parallelized using

ANL macros and an MPEG2 encoder application to evaluate the coherent shared

memory system. Table 5-2 describes these benchmarks and their corresponding

problem sizes.

111

Table 5-3 shows the details of our coherent shared memory system. For the MPEG2

video encoder application we used a 16KB instruction cache instead. In order to

ensure that system is not bandwidth limited and the overhead of reconfigurability is

not hidden by the latency incurred due to insufficient memory bandwidth, we assumed

two separate memory controllers per each Quad and added L2 cache banks between

the memory controller and off-chip memory to further improve main memory

bandwidth and latency. In the resulting system, each L2 bank caches only the

addresses mapped to the corresponding memory controller and does not need any

coherence mechanisms, but is shared by all the processors in the system.

App. Problem Size Description
FFT 216 data points Complex 1-D Fast Fourier Transform
LU 512×512 matrix 16×16 block Dense matrix LU factorization
Radix 220 keys, radix=1024 Integer radix sort
Cholesky tk15.O Blocked sparse matrix factorization
Barnes 16K particles Barnes-Hut hierarchical N-body method
MP3D 30K particles Rarefield fluid flow simulation
FMM 16K particles N-body adaptive fast multi-pole method
Mpg2enc 10 CIF frames (foreman) MPEG2 video encoder

Table 5-2: Coherent shared memory benchmarks

I-cache 8KB, 2-way associative, 32B line size, 1 port (per processor)
D-cache 16KB, 2-way associative, 32B line size, 1 port (per processor)
Local Memory None
Protocol controller 28 MSHRs (24 for processor requests, 4 for coherence

requests)
L2-cache (unified) 4MB, 4-way, 32B line size, 10 cycle access latency, banked

among main memory controllers
Switch latency 5 cycles
Memory controller 2 controllers per Quad, 32 MSHRs each
Main memory 100 cycle access latency

Table 5-3: System parameters for coherent shared memory model

Figure 5-4 and Figure 5-5 depict the speedups we have achieved by both using the

idealized controllers (dashed line) and our real controllers (solid line) and compares

them to the linear speedup. Average overhead across all benchmarks is slightly grater

112

than 15%. As the system scales beyond a single Quad (more than 8 processors) the

difference between ideal and real controllers becomes more visible. The reason is due

to more controllers getting involved in providing coherence across multiple Quads,

and hence latency of the controllers actions affect the overall latency of servicing

cache misses.

Figure 5-4: Performance impact in coherent shared memory model (kernels)

Radix

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

FFT

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

LU

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

du
p

Linear

Real

Ideal

Cholesky

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

du
p

Linear

Real

Ideal

113

Figure 5-5: Performance impact in coherent shared memory model (applications)

Figure 5-6 shows the breakdown of execution cycles of the parallel section of the three

best-case kernels and two worst-case applications in a system with 32 processors,

illustrating the effect of the controller latency on the processor stall time. Execution

times are normalized to the execution time when using real controllers. The effect of

the increased latencies becomes more visible when there are a lot of reads and updates

to the shared data which are handled by the controllers without access to the next level

of the hierarchy (for example MP3D). In contrast, when most of the cache misses are

serviced by fetching the data from main memory or L2 cache, internal latency of the

controller is effectively hidden by the long latency of the L2 or main memory access.

MP3D

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

Barnes

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

MPEG2Enc

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

du
p

Linear

Real

Ideal

FMM

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

114

Note controller’s latency also affects the cycles processors spend on synchronization.

This is due to the fact that synchronization accesses are considered modifying

operations and cause coherence actions in order to acquire ownership of the cache

lines. Ideal controllers effectively complete coherence actions faster and therefore

cause processors to spend less time on synchronization stalls.

Execution Time Breakdwon

0

20

40

60

80

100

MP3D Barnes FFT LU Radix

%

exec time fetch stall load stall store stall sync stall

Figure 5-6: Breakdown of execution time (shared memory benchmarks)

5.2.2. STREAMING

Table 5-4 lists the applications we used to evaluate the impact of reconfigurability in

streaming model and Table 5-5 shows the details of them memory system. Each

processor has an instruction cache and a small private data cache for storing runtime

variables and stack. There are 20KB of private local memory per processor. There is

an additional 4KB shared local memory for all the processors in the system, used for

storing synchronization variables. For stereo depth extraction and MPEG2 video

115

encoder application we used 24KB of local memory instead and in the configuration

used for MPEG2 video encoder, the two Tile processors share an 8K data cache

instead of having separate data caches. The protocol controller contains 8 DMA

channels with each processor having its own dedicated channel. L2 cache and off-chip

memory have the same parameters as before.

App. Problem Size Description
179.art SPEC reference data set Image recognition
Bitonic 219 32-bit keys Bitonic sort
Merge 219 32-bit keys Merge sort
Depth 352x288 CIF image pair Stereo depth extraction
Mpg2enc 10 CIF frames (foreman) MPEG2 video encode

Table 5-4: Streaming benchmarks

I-cache 8KB, 1-way associative, 32B line size, 1 port (per processor)
D-cache 4KB, 1-way associative, 32B line size, 1 port (per processor)
Local Memory 20KB per processor, 4KB shared between all processors
Protocol controller 28 MSHRs (24 for processor requests, 4 for coherence

requests), 8 DMA channels (one per processor)
L2-cache (unified) 4MB, 4-way, 32B line size, 10 cycle access latency, banked

among main memory controllers
Memory controller 2 controllers per Quad, 32 MSHRs each
Main memory 100 cycle access latency

Table 5-5: System parameters for streaming memory model

Figure 5-7 shows the scaling of the streaming applications, comparing the

performance of the system with upper bound limit. Worst-case overhead imposed in

this case (MPEG2 video encode) is less than 14%. Due to the latency tolerance nature

of the streaming applications and overlapping of computation with the data transfer,

streaming applications are much closer to the upper bound limit. Also, since the

application data is managed explicitly by software and hardware does not perform any

implicit state manipulation operations (unlike coherent shared memory system),

latency of controller actions does not impose a visible overhead for these benchmarks.

116

Figure 5-7: Performance impact in streaming model

179.art

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

Bitonic Sort

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

Merge Sort

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

Depth

0

5

10

15

20

25

30

0 5 10 15 20 25 30

processors

sp
ee

d
u

p

Linear

Real

Ideal

MPEG2Enc

0

5

10

15

20

25

30

0 5 10 15 20 25 30
processors

sp
ee

d
u

p

Linear

Real

Ideal

117

5.2.3. TRANSACTIONAL COHERENCE AND CONSISTENCY

As mentioned in section 4.8. the transactional memory model that is mapped on the

Smart Memories hardware is transactional coherence and consistency (TCC) [27].

Table 5-6 shows the details of the memory system used for evaluating TCC

benchmarks. In TCC mode one of the processors in the Tile is used as support

processor to handle asynchronous events such as cache or address FIFO overflows and

transaction violation. This processor does not run a separate transaction. Therefore,

local caches are shared between the two processors. In the normal operational mode,

the support processor is stalled, waiting to start execution of necessary handlers if

required. In case of a cache or address FIFO overflow, the main processor is stalled

and support processors starts execution; hence there is not much collision between the

two processors for accessing L1 caches.

The L1 data cache also has a 1K entry Store Address FIFO, which keeps the addresses

of the words written during the transaction. The FIFO suppresses duplicate writes such

that if a single word is written multiple times by the transaction, the address is only

stored once in the FIFO. Similar to the streaming system configuration, there is a 4KB

local memory that is used for keeping synchronization variables. This memory is

shared by all the processors in the system. The protocol controller has 24 status

holding registers for storing outstanding memory requests and 4 DMA channels, one

per each Tile used as commit controllers to broadcast transaction’s write set to other

caches and main memory. The rest of the memory system is similar to other memory

models.

Table 5-7 lists the applications used for evaluating transactional memory model. In

these applications, we have separated the address space into “TCC coherent” and

“TCC buffered” regions. The coherent space is the shared data between the

transactions; the part of the transaction’s write set that is in the coherent space is

broadcasted to other transactions at commit time and is used for violation detection.

On the other hand, the TCC buffered space is the transaction’s private data and is not

shared with other transactions. The part of the transaction’s write set that is mapped to

118

buffered space is not broadcasted at commit time and is kept in the cache. It is

committed lazily to the main memory upon evicting the cache lines. However, this

part is discarded from the cache, similar to the coherent addresses, when a data

dependence violation is detected.

Separation of the transaction’s shared and private data achieves better utilization of the

store address FIFO associated with data cache (since TCC buffered writes are not

placed in this FIFO) and helps in reducing overflows by filling up the FIFO. It also

reduces number of committed words by the transaction shortening the commit period,

where transactions are serialized against each other.

I-cache 16KB, 2-way associative, 32B line size, 1 port (shared between
two processors)

D-cache 32KB, 4-way associative, 32B line size, 1K entry Store Address
FIFO, 1 port (shared between two processors)

Local Memory 4KB, shared between all processors
Protocol controller 24 MSHRs (for processor requests), 4 DMA channels (one per

Tile)
L2-cache (unified) 4MB, 4-way, 32B line size, 10 cycle access latency, banked

among main memory controllers
Memory controller 2 controllers per Quad, 32 MSHRs each
Main memory 100 cycle access latency

Table 5-6: System parameters for hardware transactional memory model

App. Problem Size Description
Barnes 8K particles N-Body application
MP3D 30K particles Particle simulator

Table 5-7: Transactional memory benchmarks

Figure 5-8 shows the scaling performance of the two benchmarks for transactional

memory model. While Barnes has a few writes to shared data and hence a few

violations, MP3D performs a lot of writes and transactions encounter a considerable

number of violations. Worst-case performance impact of the reconfigurable controllers

however is relatively small (slightly less than 20% for MP3D) compared to the ideal

controller.

119

Figure 5-9 shows breakdown of the execution time for worst case of the two

benchmarks (16 processor case for Barnes and 8 processor case of MP3D). Note that

in this case the execution time is measured only for the processors that actually

execute the transaction and not for the support processors. Unlike the shared memory

model, controllers do not perform any coherence actions in this case and fetch cache

lines directly from main memory, successfully masking the internal controller

latencies. However, the load stalls for MP3D is decreased by almost 13% in case of

ideal controllers, decreasing the total number of execution cycles. This decrease is due

to the large number of data cache misses in MP3D (almost 34% miss rate compared to

Barnes with almost 3% miss rate), which puts more pressure on the controller and

increases the dependence on the controller latencies.

Figure 5-8: Performance impact in transactional memory model

Table 5-8 summarizes the performance impact for all benchmarks in different models.

Given that the upper bound corresponds to an idealized controller with zero cycles for

its internal actions, the overall performance impact of reconfigurable controllers would

be even less compared to any realistic controller for each of the memory models.

MP3D

0

2

4

6

8

10

12

14

16

0 5 10 15

processors

s
p

ee
d

u
p

Linear

Real

Ideal

Barnes

0

2

4

6

8

10

12

14

16

0 5 10 15

processors

sp
ee

d
u

p

Linear

Real

Ideal

120

Execution Time Breakdown

0

20

40

60

80

100

MP3D Barnes

%

overflow stall

sync stall

store stall

load stall

fetch stall

exec time

Figure 5-9: Breakdown of execution time (TM benchmarks)

Model Application Overhead % Average %
FFT 10.63
Radix 13.71
LU 8.65
Cholesky 18.4
Barnes 24.11
MP3D 48.38
FMM 6.92

Coherence

MPEG2Enc 14.43 15.1
179.art 7.49
Bitonic sort 1.87
Merge sort 0.5
Depth 0.06

Streaming

MPEG2Enc 13.97 1.42
Barnes 8. 82 Transactions
MP3D 19.78 12.8

Overall average 6.72

Table 5-8: Performance overhead of reconfigurable controllers

121

5.3. PHYSICAL OVERHEAD

In addition to the performance overhead, incorporating reconfigurable mechanisms in

a design also affects its physical aspects such as timing, area and power. While a

precise evaluation of the physical impact of the reconfigurability is a difficult task

(since it requires comparing the reconfigurable system with a specific, non-

reconfigurable one), we performed a series of simple experiments to estimate this

impact in our system.

Our focus was on the area and power overhead induced by the reconfigurable protocol

controller. In these experiments, we tailored the protocol controller to a specific

memory protocol by initializing and fixing all internal configuration memories to the

operations required by the specific protocol and converted the memories into constant

values. Our synthesis tool then removed the memories and propagated the constant

values into the logic, eliminating unnecessary logic and creating an “instance” of the

controller tailored to that specific memory protocol.

Figure 5-10 shows the area for each of the functional unit in the protocol controller

and compares it with specific controller instances created to support coherence (CC),

streaming (STR) and transactional memory (TCC) protocols. Internal resources such

as number of entries in MSHR/USHR structures, number of line buffers and virtual

channel buffers for network messages are kept exactly the same for the baseline and

specialized instances. However, DMA channels are not used in the coherence

controller and therefore are omitted altogether. Also, in our transactional memory

protocol, only one processor in each Tile runs the main transaction, thus only four

DMA channels are used in the TCC controller. In the streaming controller each

processor has its own dedicated DMA channel, same as the baseline controller, but

configuration of the DMA channels are fixed to only provide gather/scatter operations.

Aside from number of DMA channels, since the internal resources are kept the same

for all controllers, most of the area reduction (both combinational and non-

combinational) comes from simplifying and removing the flexibility in the major

122

functional units, namely D-Unit, S-Unit and T-Unit. The major reason for such

substantial decrease in the area is the fact that in our implementation, all configuration

memories were constructed using flip-flops. This simple, but inefficient way of

building memories not only uses more transistors to store configuration information,

but also consumes a lot of routing resources to connect the flops to output

multiplexers, as well as connecting them to the system clock. In the case of specialized

controllers, flops and their routing resources are removed during synthesis, reducing

both combinational and non-combinational area. Note that since the MSHR and

USHR structures are accounted as part of the T-Unit, the area reduction in T-Unit is

not as much as the other two units.

0

0.2

0.4

0.6

0.8

1

1.2

DMA D_Unit INT_Unit LB N_Unit P_Unit STAT S_Unit T_Unit

m
m

2

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

B
a

s
e

C
C

S
T

R

T
C

C

Non-Comb.

Comb.

Figure 5-10: Area comparison for protocol controller functional units

Figure 5-11 compares the total combinational and non-combinational area of the

baseline controller with each specialized instance. As illustrated, almost half of the

area savings is achieved by removing the configuration memories (non-combinational

logic). The combinational area savings come from two separate sources: first, since

some of the configuration memories in the functional units are organized as TCAMs,

eliminating the configuration storage also saves the area consumed by TCAM

123

comparators. The rest of the savings in combinational area is achieved by propagating

the constant values and optimizing combinational logic of functional unit itself.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

m
m

2

Non-Comb.

Comb.

Non-Comb. 2.01 1.07 1.19 1.12

Comb. 2.18 0.87 1.10 0.99

Baseline CC STR TCC

Figure 5-11: Comparison of total area between controllers

Table 5-9 lists the estimated dynamic and worst-case leakage power consumption for

the baseline as well as specialized controllers, reported by our synthesis tool. While

not accurate, these estimates provide an insight about the power overhead of

embedded reconfigurable mechanism. Most of the increase in the power of the

baseline controller is due to leakage in the configuration memory structures, but it also

has a higher dynamic power. Most of the excess dynamic power is consumed by the

read ports of the configuration memories and TCAMs, which are accessed every clock

cycle, and comparators in the TCAM structures.

Power (mW) Baseline CC STR TCC
Dynamic 170 101 115 111
Leakage 450 189 230 214
Total 620 290 345 325

Table 5-9: Power comparison for baseline and specialized controllers

124

5.4. SUMMARY

While Smart Memories allows mapping of different memory protocols, the flexible

mechanisms added to provide reconfigurability impact both the performance and

physical characteristics of the system. Our studies show that while the performance

overhead induced by these mechanisms is modest, less than 20% in most of the cases,

the increase in the system’s area and power is not negligible. However, most of this

increase is resulted from our poor implementation of system’s configuration storage,

using flip-flops for implementing memories and TCAMs. These inefficiencies can be

removed and a better implementation of the system can be achieved by using memory

macros and custom structures, as shown by Mai et al for the case of a reconfigurable

memory mat [71].

 125

6. CONCLUSIONS

The emergence of multicore architectures places an increased emphasis on the design

of the memory system since it implements the communication and data sharing

between processor cores. The paradigm shift from traditional sequential programming

to explicitly parallel programs introduces a major productivity challenge in developing

parallel software. Researchers have tried to address this problem by proposing

innovative models such as programming with streams and transactional memory.

Deployment of any multicore processor hence involves the adaptation of such a

parallel programming model, which usually places a set of strict requirements on the

functionality of the memory system. Therefore, the existing multicore architectures

usually are optimized for, if not restricted to, realizing and implementing a single

parallel programming model.

In this dissertation, we observe that the basic hardware operations and resources

employed for implementing different memory models in today’s multicore

architectures are the same, with the only differentiating factor being in the

combination and sequencing of these primitive operations. This observation is

supported by studies comparing the performance of the memory systems in modern

multiprocessors [28][64]. These studies demonstrate that different memory systems

can achieve similar levels of performance, given intelligent management of the

resources, since they intrinsically rely on the same operations at the implementation

level. For example while a stream memory model relies on the programmer’s

knowledge for orchestrating communications and data movements, coherent shared

memory systems try to imitate the same level of intelligence by employing

sophisticated coherence controllers and prefetch engines that automate data

communication and transfer and eliminate the programmers effort for handling such

transfers explicitly.

126

Based on the above observations, we propose a universal memory system architecture

that extends the notion of “programmability” from the processor core to the memory

system hardware. The programmability not only enables supporting multiple

programming models on the same hardware substrate, but also allows a user to tailor

the underlying memory system to the application of interest and potentially achieve

better levels of performance and efficiency. We identify the necessary hardware

resources, namely storage elements, communication channels and their associated

controllers as operating agents in the universal memory system. We propose a set of

basic operations and state registers for the controllers and describe how the request

and reply messages in the memory system can be processed in each controller by

combining these basic operations.

With this framework in place, we present Smart Memories, a reconfigurable memory

system architecture as a first implementation. Our performance study shows that the

overhead of the added flexibility in the system is small, less than 20% slowdown in

clock cycles compared to an idealized controller for almost all cases across three

different memory models. However, our simple but inefficient way of implementing

storage structures for system’s configuration induces significant area and power

overheads.

While creating a better implementation of this reconfigurable multicore architecture is

a very interesting engineering task, a more attractive challenge is to understand how

much and what kind of reconfigurability is useful for patching a system after

construction. In practical systems, a specialized architecture always performs better

and has less physical cost than a reconfigurable one. Hence the major advantage of

reconfigurable architectures is in being able to alter the functionality of the system

after implementation, in order to fix design errors or integrate new functions. The key

question therefore is whether one can achieve the same advantage by integrating small

amounts of flexibility into a specialized system, which allows patching potential

design errors or modifying and upgrading the system’s functionality.

127

Another challenge is while Smart Memories architecture provides a large degree of

freedom in configuring and using hardware resources, one can always find or develop

protocols that cannot be mapped on this system. This problem can be due to resource

constraints, such as insufficient hardware resources, or requiring special functional

units that are not provided in the system. Alternatively it can be due to absence of

support for the information fields that a protocol requires to communicate between

different components and necessary operations to act upon them. For example, while

Smart Memories supports all necessary mechanisms for implementing a Token

Coherence protocol [65], such as token counting, un-ordered communication for

exchanging transient requests, serialization operations for persistent requests, etc., it

lacks the watchdog mechanisms that are used to trigger persistent requests and avoid

starvation. Another example is STAMPede’s TLS protocol [14], where coherence

messages carry epoch numbers, a processor’s speculation degree, in order to decide

whether to acquire a cache line and invalidate the owner or not.

An attractive approach for alleviating this problem, as well as addressing the design

efficiency issues, is pushing the abstract framework discussed in this dissertation into

the memory system design phase. The designer can then construct a memory system

by means of allocating necessary resources and implementing desired protocols by

composing the basic memory operations at the design stage. The design framework

provides the user with necessary resources, mechanisms and operations to choose

from, which can be considered as programming a virtual memory system. When

realizing the actual implementation, the design tools can identify and analyze utilized

resources in the virtual system and optimize away the unused flexibility, which leads

to a much more efficient system implementation. Such design framework can also be

augmented with additional resources and state information, as well as hardware

mechanisms and operations, which allows implementing specialized memory system

protocols. This eliminates designer’s concern about the physical and performance cost

of the reconfigurable mechanisms to control resources, as well as unused system

resources and operations that might consume area and power.

128

Smart Memories provides a basis for constructing such an extensible memory system

design framework. Separation of the data path and control in processor interface logic

and memory system controllers, microcode based implementation of the control logic,

and use of standard interfaces for inter-module communication, makes it easier for the

design to be automatically extended. New functional elements can be added to data

paths while their controlling bits can be added to configuration memories.

Configuration memories can also be extended both to accommodate new control bits

as well as more entries for new operations. Existing interfaces can be augmented with

new information fields that are added to interfaces and routed between different

components and modules. Such system extensions have been successfully realized for

commercial reconfigurable processors such as Tensilica [66][67][68]. Providing the

same extensibility for designing memory systems is naturally the next logical step in

providing a higher level of abstraction for computer system design.

An important element in designing such a framework is providing suitable interfaces

for memory system designer to express a memory system specification. Implementing

memory protocols requires decomposing protocol actions into logically distinct

operations carried out by separate system components, as well as communication

messages exchanged between them. Due to this distributed and decentralized nature,

protocol design is a challenging and error-prone task. Developing a simple language

for describing memory protocols in form of a “memory system program” expressed in

form of the ISA instructions, raises the level of abstraction in protocol design and

helps in detecting logical protocol errors. A compilation framework can then analyze

and generate necessary control signals for the virtual memory system, which is then

used by the design tools to eliminate unnecessary hardware components and construct

the desired memory system. The compiler can also apply optimization techniques to

memory programs, such as fusing commonly encountered sequences of operations into

a single operation, as well as verify the generated control information to reveal

inconsistencies or conflicts in using available hardware resources.

129

Such language and compilation framework would be even beneficial for the current

Smart Memories system and SMASH test chip. The current method of configuring the

system requires manual development of the bit patterns uploaded into different

memory system components. The compiler which could read in the protocol

description and generate necessary bit patterns to for uploading into different

components, would greatly simplifies the task of system configuration and eliminate

many errors.

130

 131

APPENDIX A: SMASH INTERCONNECTION NETWORK

In the general Smart Memories system Quads and memory controllers are connected

via a mesh like network. This requires each Quad to have a network router in order to

route packets received from its neighbors to their appropriate destinations. In our

implementation of Smart Memories and the SMASH test chip, we simplified all the

network architecture by settling on a star topology, as shown in Figure A-1. In this

topology, all the connections are made by a central switch and Quads do not have the

routing capabilities. They simply send and receive packets to/from the switch and only

have to properly identify the destination for each message. This topology supports

maximum of four Quads and four memory controllers. In addition, one can create a

simplified version of the system by directly connecting a single Quad to a single

memory controller without any additional interfacing. This allows creating a minimum

system with reduced communication overhead. However, the network switch is

required if the user needs more than one Quad or one memory controller to be

enabled. In this appendix we describe the properties of our implemented interconnect

mechanism and explain the internal architecture of the network switch and its

capabilities.

132

Quad 0

Quad 1

Quad 2

Quad 3

MC 0

MC 1

MC 2

MC 3

Network
Switch

Figure A-1: Star interconnection topology in SMASH

A.1. INTER-QUAD NETWORK

Inter-Quad network in the SMASH system is organized as a star. All communications

between Quads or between a Quad and a main memory controller are routed through a

central switch referred to as the Network Switch. Communication between the switch

and each Quad or memory controller is full-duplex using dedicated transmit and

receive channels. Each physical communication channel is virtualized into separate

virtual channels, with each virtual channel having its own dedicated buffering space at

the receiving end.

Packets are divided into units of transmission called flits. Each flit contains 72 bits of

information and is transferred from source to destination in a single clock cycle. The

system uses a credit based flow control mechanism; whenever a flit is consumed at the

destination by routing it (in the switch) or passing to execution core (in Quads or

memory controller), a credit is sent for the source entity. Credit counting mechanism

at sources ensures that they do not attempt sending a packet unless there is enough

buffering space (credit) at the destination to buffer the whole packet.

The clock rate of the communication on the network, or I/O Clock, can be adjusted to

be equal to, 1/2, 1/4 or 1/8 of the system clock. Each Quad and memory controller

133

receives a two-bit static control signal which dictates the ratio between system and I/O

clocks.

A.2. NETWORK SWITCH ARCHITECTURE

The network switch is an 8×8 input-queued switch connecting four Quads to four

memory controllers. Quads are connected to ports 0-3 of the switch and memory

controllers are connected to ports 4-7 (Figure A-2). The switch fabric is an 8×8

crossbar controlled by a scheduler. The switch operates at system’s I/O Clock speed.

Fabric

Scheduler

In0

In1

In2

Out0

Out1

Out7

...

...

From Quad 0

From Quad 1

From MC 3

To Quad 0

To Quad 1

To MC 3

Figure A-2: Organization and connections of the network switch

Each input port in the switch has eight separate virtual channel buffers to store packets

on each virtual channel separate from others (Figure A-3). Whenever a virtual channel

buffer becomes full, credit based flow control mechanism causes back pressure on the

source, preventing it from sending more packets. At each clock cycle, each virtual

channel in an input port sends requests to scheduler asking for specific outputs. The

scheduler sends back a grant signal and an output channel number in response. The

input port then extracts the head flit from the buffer and sends it to the designated

output port.

134

VC 0 Buffer

VC 7 Buffer

D
e

-m
u

x

M
u

x

...

...

From Channel To Fabric

Requests
(To Scheduler)

Grants
(From Scheduler)

Figure A-3: Input port of the network switch

Each output port (Figure A-4) has a buffer for a single flit per virtual channel, as well

as the credit counters for downstream destination. The output port receives flits from

the fabric whenever the scheduler indicates there is an incoming flit for this port. The

scheduler also specifies the virtual channel on which the flit is traveling. The output

port puts the flit in the buffer and sends it to the destination whenever there is credit on

the specified virtual channel. If there is not enough credit for sending the flit the

output port signals the scheduler that its buffer is full and it cannot accept any more

flits. This stops the scheduler from granting requests to this output on the specific

virtual channel, stalling the input ports’ virtual channel buffer.

135

VC 0

VC 7

D
e

-m
u

x

M
u

x

...From Fabric To Channel

Full Indicators
(To Scheduler) ..

.

VC Select
(From Scheduler)

Credit
Counters

Arb

Figure A-4: Output port of network switch

The scheduler determines the connections between each pair of input/output ports at

any given cycle. It receives eight request vectors from each input port, one per virtual

channel. The request vector indicates which output ports the input is making a request

for. It also receives the full indicators for each virtual channel from all output ports.

The scheduler then generates a match matrix, which indicates which input/output pairs

should be connected at that clock cycle. It also specifies the virtual channel number of

each connection.

In order to perform the scheduling decisions, the scheduler logic internally runs eight

concurrent iSLIP schedulers [72], and combines their output match results. Each iSLIP

scheduler receives requests related to a single virtual channel and produces a match

matrix according to that virtual channel. Match matrices from all schedulers are then

combined according to the priorities specified for virtual channels, as shows in Figure

A-5.

136

iSLIP Scheduler
(One per VC)

Combiner

...Input
Request Vectors

Intermediate
Match Matrices
(One per VC)

Final Match
Matrix

+
VC ID

Figure A-5: Network switch scheduling logic

A.3. ENFORCING PRIORITIES

The network can prioritize traffic sent on one virtual channel over the others. Such

prioritization is essential when the same physical network is used to carry different

types of traffic, since reply messages should always have priority over request

messages to avoid deadlock in the system [69]. The system provides a very flexible

way of defining priorities: for each virtual channel, an 8-bit mask specifies the other

channels that have priority over it. In other words, a one bit in position i of the mask

for channel j indicates that traffic on virtual channel j can be blocked by traffic on

virtual channel i.

When no priority relation is established between two virtual channels, system utilizes

a fair, round robin arbitration when serving requests from these two channels.

Priorities are enforced in all arbitration points in the system: when a message sending

request is passed to transmitter, at the network switch and in the receivers, when a

received message is to be passed to the execution core. Each entity (Quad, memory

controller and network switch) has its own set of priority mask registers. These

137

registers should be configured with the same values in order to guarantee correct

prioritization over the communication channels.

A.4. BROADCAST / MULTI-CAST CAPABILITIES

The network switch in the SMASH system provides basic broadcast/multi-cast

capabilities. These capabilities are very useful when implementing memory models

that need to send inquiries or updates to all entities in the system. For example, when

updating state of the cache line in an invalidation based coherence protocols or

updating a memory word in update based coherence protocols, messages have to be

sent to all the Quads that (might) contain the specific word.

The switch supports a limited form of multicasting a message to multiple destinations.

Note that the switch is aware of the fact that Quads are always connected to ports 0-3

and memory controllers to ports 4-7. This information is leveraged by the switch in

order to generate messages for desired destination. Each packet has a three bit

multicast field in the header which specifies which destinations the message should be

sent to, if packets should be sent to more than one destination. These bits are:

- Bit [0] – Quad broadcast: Indicates that message should be broadcasted to all the

Quads in the system (ports 0-3).

- Bit [1] – memory controller broadcast: Indicates that message should be

broadcasted to all memory controllers in the system (ports 4-7).

- Bit [2] – Except destination: When this bit is set, switch does the broadcasting to

Quads or memory controllers, but does not send the message to the entity specified

in the destination field of the message. This is particularly useful when a message

should be sent to all Quads (or memory controllers) except one; For example,

when broadcasting a coherence request in serving a cache miss, memory controller

wants to enquire state of the cache line in all Quads except the one that originated

138

the cache miss. This bit allows the custom multicasting that is commonly used in

memory protocols.

139

APPENDIX B: IMPLEMENTING A SIMPLE PROTOCOL

Chapter 4 described the Smart Memories architecture as an example implementation

of the universal memory system. This appendix explains how the embedded

reconfiguration features are used for implementing a memory protocol by presenting a

simple example. We consider a system with only a single Quad and a single memory

controller and explain the necessary steps for configuring the system to implement

caches and a MESI coherence protocol between Quad processors.

Configuration process is divided in to three major steps: the first step is to allocate

necessary memory resources, including defining and associating necessary state

information with cache lines as well as allocating necessary storage structures for data

and state information. Second step involves defining memory operations that can be

performed on memory locations by processors as well as protocol controller. The

definitions include update of the state information (if necessary) as well as success and

failure conditions for each memory access. Last step is defining communication

messages between different controllers and programming controllers at each level to

handle defined messages such that requests are served and properties of the MESI

coherence protocol are enforced appropriately. The following sections elaborate on

these three steps.

B.1. ALLOCATING RESOURCES

The first step of the configuration process is to allocate necessary system resources.

These resources are mainly storage structures used for storing data and state

information. In addition, one should also specify address translation and mapping

mechanisms in the processor interface logic and controllers.

140

B.1.1. STATE AND DATA STORAGES

In our example of shared memory system with MESI coherence protocol [69], we

assume processors have instruction and data caches with parameters as Table B-1.

Memory mats in the Tile are used for storing both data and state information of the

cache, including tags and cache line state. Before attempting to allocate storage for

state information, we have to specify what state information is required and how it

should be associated with the user data.

Cache Size Ways Line
Size

Data Mats
(per way)

Tag Mats
(per way)

Total
Mats

Data 32KB 2 32B 4 1 10
Instruction 8KB 1 32B 2 1 3

Table B-1: Cache parameters for example configuration

Mapping state information

Since we need to have identifying tags for each cache line, we store these tags in a

separate memory mat per cache way. Tags are stored in the data array of the memory

mat10, which supports a comparison operation. Each processor access to the cache

sends a compare operation to the data array of the tag mat comparing the address tags

with the stored tags. It treats the result of comparison (Total Match output of the mat)

as hit/miss signal. Since each cache in our configuration has two ways, two tag mats

are required (one per each cache way) and multicast mechanism of the Tile crossbar

sends the tag comparison request to both of these memory mats.

In our simple MESI coherence protocol, each cache line has four main states:

Modified, Exclusive, Shared and Invalid. Figure B-1 shows how these states are

mapped into the control (meta-data) bits in memory mats. In addition to these four

states, we need an intermediate state, Reserved, which indicates that location is

reserved for the incoming cache line. The state bits are stored in the control array of

the tag mat and are accessed along with the tags in the data array. Tag mats do both

10 Data array in the mat is 32-bits wide and hence it has enough bits for storing the tag bits extracted

from a 32-bit address. Unused bits are filled with zero.

141

tag and state comparison on each processor access and if either of the tag or line state

does not match the desired value, Total Match output of the mat will be inactive,

indicating a miss in the specific cache way.

R V EM Tag

Exculsive/Shared
Valid

Modified
Reserved

Control Array Data Array

R V E M State

1 x x x Reserved

0 0 x x Invalid

0 1 0 0 Shared

0 1 1 0 Exclusive

0 1 1 1 Modified

Figure B-1: Mapping and encoding of state information

Allocating memory mats

After determining how to map the state information to memory mats, we need to

allocate mats for storing cache line data and state. This is simply done by

programming the cache configuration registers inside the processor interface logic, as

described in section 4.5.1. Figure B-2 and Figure B-3 show the configuration of the

instruction and data caches in the processor interface logic. Note that these caches are

shared between the two processors therefore values loaded into the configuration

registers are the same for both processors.

In addition, the following configuration registers are also programmed:

- The IMCN output of tag mats in both caches is set to be the Total Match signal.

This transmits hit/miss indication from tag mat in each cache way to

corresponding data mats.

142

- The guard signal for guarded operations in data mats is set to be IMCN input. This

way, modifying operations in the data mats (i.e. writes) are guarded by hit/miss

indicator in corresponding tags and hence are discarded if the corresponding tag

mat reports a miss.

M3 M4 M5

Tag Word 0 Word 1

Word 4 Word 5
Word 3

Word 6

Word 2

Word 7

Tag Mats Data Mats

Instruction Cache

I_Cache_Info:
01235 47 611 8

xxx 10 01 01

I_Cache_Way0_Info:
01458

100110100

I_Cache_Way1_Info: 0xxxxxxxx

I_Cache_Way2_Info: 0xxxxxxxx

I_Cache_Way3_Info: 0xxxxxxxx

IMCN

Total
Match Guard

Figure B-2: Example instruction cache settings

143

M6 M7 M8

Tag

M11 M12 M13

Word 0 Word 1
Word 5Word 4

Tag Mats Data Mats

Data Cache

Word 2
Word 6

Word 3
Word 7

M9 M10

M14 M15

D_Cache_Info:
01235 47 611 8

xxx 01 01 10

D_Cache_Way0_Info:
01458

101100111

D_Cache_Way1_Info: 110111100

D_Cache_Way2_Info: 0xxxxxxxx

D_Cache_Way3_Info: 0xxxxxxxx

IMCN

Total
Match

Guard

Figure B-3: Example data cache settings

B.1.2. ADDRESS TRANSLATION AND MAPPING

As discussed earlier, obtaining physical address of memory location(s) to access for

processor’s memory access instructions involves two steps: translation from virtual to

physical address space and slicing generated physical address to obtain tags and

indices for memory mats. Second step of the mapping is done by setting up cache

configuration registers discussed above. These registers provide necessary control

signals for the address slicing logic inside the processor interface, which generates

tags and indices for accessing memory mats. First step of the mapping, the translation,

is performed by segment table.

Figure B-4 shows an example configuration of the segment table. All instruction

segments (4-7) are mapped to off-chip memory segments 11-14 and are accessed via

instruction cache. Data segments 8-13 in virtual address space are also mapped to off-

chip memory (segments 4-9) and are set to be accessed via data cache. Segment 15

144

contains the I/O region; it has an identity mapping and is accessed via un-cached

memory access instructions (Cached bit is set to zero). Segment 14 is mapped to

memory mats 0-2 inside the Tile (Segment 3 in physical address space). All

instruction segments have read only permissions while all data segments have

read/write permission.

R W OT C Re-map Base Size

Seg 4

Seg 15

Seg 5
Seg 6
Seg 7
Seg 8
Seg 9
Seg 10
Seg 11
Seg 12
Seg 13
Seg 14

1
1
1
1
1
1
1
1
1
1
1
1

1
1
1
1

1
1
1
1

0
0
0
0

x
x
1
0

x
x
x
x

x
x
x
x

1
1
1
1
1
1
1
1
1
1
0
0 15

3
9
8
7

14
13
12
11

6
5
4

x
0
x
x
x
x
x
x
x

x
3
x
x
x
x
x
x
x
x
x
x

x
x
x

Figure B-4: Example setting for segment table (address translation)

B.2. DEFINING MEMORY ACCESSES

After associating the state information with data and allocating necessary memory

mats, next step in configuring the system is defining accesses to local and main

memories. Local memory mats are accessed by processor interface logic and protocol

controller while off-chip memory is accessed only by main memory controller. There

is division of the tasks between these three entities:

• Processor interface logic carries out processor accesses to memory mats, such as

load/store instructions or any other memory instruction that might be issued by

processor (e.g. prefetch instructions).

145

• Protocol controller performs cache refills, write-backs and handles coherence

operations such as snooping caches and updating state information. It also

communicates with main memory controller to write-back or fetch cache lines.

• Main memory controller receives write-backs from Quad and writes data to main

memory or reads data from main memory and sends it back to Quad’s protocol

controller.

The following subsections describe how necessary accesses are defined for memory

mats and off-chip memory.

B.2.1. ACCESSES TO LOCAL MEMORY MATS

Processor interface accesses local memories when processor issues a memory access

instruction to its cache or local memory. Protocol controller accesses them when it

receives a request from a Tile processor that involves reading/writing data or adjusting

state of cache lines. In our simple example, we assume that processor can only issue

Load, Store, Prefetch for Read and Prefetch for Write instructions to memory. Loads

and Stores might access the cache, go directly to off-chip memory (segment 15) or

access local memory directly (segment 14 which is mapped to memory mats 0-2). We

also know that protocol controller has to implement MESI coherence protocol and

therefore it has to snoop and adjust the state of cache line in Tiles when it receives

cache miss requests.

Table B-2 shows the configuration of processor interface for assumed processor

accesses to caches. The configuration table defines operations for both tag mats and

data mats in each cache (instruction fetch is treated the same as Load). Load and Store

instructions access tag and data mats at the same time. Prefetch instructions check the

status of cache line by only accessing tag mats. For each access, operations on data

array and control array are specified. When RMW logic in the mat is used to update

line state, the figure also shows how the state bits are updated.

146

Tag Mats Data Mats TIE
Opcode Data

Op
Cntr
Op

PLA
Op

Cntr
Bits

Mask Data
Op

Cntr
Op

PLA
Op

Cntr
Bits

Mask

Load Cmp Cmp NOP 0xx1xx 1100100 Read NOP NOP 6’bx 7’bx

Store Cmp CMW M←1
if TM

0xx11x 1100110 Guard
Write

NOP NOP 6’bx 7’bx

Prefetch
Read

Cmp Cmp NOP 0xx1xx 1100100 NOP NOP NOP 6’bx 7’bx

Prefetch
Write

Cmp Cmp NOP 0xx11x 1100110 NOP NOP NOP 6’bx 7’bx

Table B-2 : Processor interface operations on memory mats (cached)

Load instruction compares the cache tags and ensures that cache line is not in Invalid

or Reserved state by comparing V bit with 1’b1 and R bit with 1’b0. The other control

bits are ignored since the Mask input disables comparison operation for them. In data

mats, Load instruction reads the data from data array and does not do any operation on

control array.

Store instruction performs the same tag compare operations on the data array and

control array of the tag mat but it also checks the E bit to ensure that it has write

permission (Exclusive or Modified states). Instead of normal compare, it uses a

Compare-Modify-Write operation on the control array to set the M bit if Total Match

(TM) is activated which converts the line to Modified state in case of hit. On the data

mats, Store uses a Guarded Write operation to write data word only if the guard signal

is active. Guard is set to be the IMCN input which propagates Total Match signal

from tag mat to data mats. Similar to Load instruction, no operation is defined for

control array in data mat.

Prefetch operations only access the tag mat in order to compare the tags and line state.

Prefetch for Read checks only the V and R bits to ensure that line is in a valid state and

is not reserved. Prefetch for Write also checks the E bit to see whether cache has

ownership of the line or not.

In our example setting of segment table, there are two segments that are marked as un-

cached. The first segment is segment 15 which is mapped to off-chip memory and

147

second segment is segment 14 mapped to memory mats 0-2 in the Tile. For accesses

that go to segment 15, LSU does not access the local memory mats and instead sends a

request message to protocol controller to read/write the memory address of interest.

For accesses to segment 14 (un-cached, on-Tile), it accesses the target mat the same

was as data mats in the caches. Table B-3 lists un-cached operation of LSU on the

memory mats.

Segment TIE
Opcode

Data Op Cntrl
Op

PLA
Op

Cntrl
Bits

Mask Comment

14 Load Read NOP NOP 6’bx 7’bx --

14 Store Unguard
Write

NOP NOP 6’bx 7’bx --

15 Load NOP NOP NOP 6’bx 7’bx Message to
controller

15 Store NOP NOP NOP 6’bx 7’bx Message to
controller

Table B-3: Processor interface operations on memory mats (un-cached)

Protocol controller is responsible for servicing cache misses by writing back evicted

cache lines and refilling new lines into the cache. In addition, it has to enforce the

coherence properties and adjust the line states in all of the Quad caches according to

MESI protocol. Hence, we can define the following accesses for protocol controller:

- Eviction: Put a cache line in the reserved state by turning on the R bit

- Write-back: Read cache line tags and data and send it to main memory controller

- Line read: Read data portion of the cache line from cache, used when doing a

cache-to-cache transfer between to Tiles

- Refill: Write cache line tags and data when requested line received from memory

controller or found in another Tile’s cache

- Search (Snoop): Read cache line state and atomically updates it (using Read-

Modify-Write operations) to comply with the MESI protocol

148

Table B-4 and Table B-5 present the details of the protocol controller accesses to tag

and data mats. There is a major difference between accesses from processor interface

logic and protocol: While processor interface accesses tag and data mats concurrently

when carrying out a memory instruction, protocol controller accesses tag and data

separately when processing a request. The reason is that controller has separate

functional units for accessing data and line state information, and each has its own

dedicated port to Tile memory mats. Therefore, tag and data accesses for any give

request inside controller are carried out at different times, since request is passed from

one functional unit to the other. Note that controller still might issue concurrent

accesses to tag and data mats at the same cycle but these accesses will correspond to

different requests.

Tag Mats Operation
Data Op Control Op PLA Op Control

Bits
Mask

Eviction Read Unguarded
Write

NOP 100000 7’bx

Tag Read Read NOP NOP 6’bx 7’bx
Tag Write Unguarded

Write
Unguarded
Write

NOP M: 001110
E: 000110
S: 000100

7’bx

Snoop-Read Comp Comp E, M←0 if TM 0xx11x 7’bx
Snoop-ReadEx Comp Comp V←0 if TM 0xx11x 7’bx

Table B-4: Protocol controller operations on tag mats

Data Mats Operation
Data Op Control Op PLA Op Control

Bits
Mask

Read Read NOP NOP 6’bx 7’bx
Write Unguarded

Write
NOP NOP 6’bx 7’bx

Table B-5: Protocol controller operations on data mats

For cache line evictions, controller writes the state bits in the tag mats and sets the R

bit to one. This indicates that line is in Reserved state and there is a refill pending. For

write-backs, controller reads the tags as well as data using Read and Tag Read

operations. It then sends the extracted cache line to memory controller. When there is

149

a possibility to service a cache miss by doing a cache-to-cache transfer, controller

reads the cache line from another Tile’s cache and refills it in the destination cache.

This is similar to the write-back operation, but no tag read is required. When doing

Tag Writes, controller writes both tag and state into the tag mat using unguarded

writes. Exact value of the control bits depends on the state in which controller refills

the cache line. As part of the refill, controller also writes the data portion of the cache

line into data mats using unguarded write operations on the data array. For snoops,

controller uses the Read-Modify-Write logic in the tag mats to update the state bits.

Two types of snoops are possible: “Read Exclusive” invalidates the cache line by

setting the V bit to zero, while “Read” only degrades the cache line by setting the E

and M bits to zero.

FAILURE CONDITIONS AND REQUEST MESSAGES

Part of defining the memory accesses is specifying when a memory access is

successful. As discussed before, when a memory access fails a request message is sent

by processor interface to protocol controller, asking for assistance. When defining

accesses to local memory mats by processor interface logic and protocol controller,

user has to define corresponding success/failure conditions for each access. In

addition, we have to specify whether a request message has to be sent and what is the

type of the request for each failure condition. For processor interface accesses

specifically we also have to indicate whether issuing processor has to be stalled or not.

Table B-6 shows processor interface settings that define success or failure conditions

and message types that are sent to protocol controller, in case that specific failure

condition is encountered. Note that these conditions are defined for accesses to caches

only. Un-cached accesses to memory mats (segment 14) are always successful. Un-

cached accesses to off-chip memory (segment 15) are always unsuccessful and result

in sending a message to protocol controller. The table only shows returned information

from two ways of the cache, since in our configuration a cache has at most two ways.

150

Prefetch for Read and Prefetch for Write operations have the same conditions as Load

and Store and therefore are not shown in the table.

Way 0 Way 1 TIE
Opcode TM DM Cntrl TM DM Cntrl

Succ
ess?

Stll Msg Type

Load 1 1 0xx1xx x x xxxxxx Y N N --

Load x x xxxxxx 1 1 0xx1xx Y N N --

Load 0 x xxxxxx 0 x xxxxxx N Y Y Cache
Miss

Store 1 1 0xx11x x x xxxxxx Y N N --

Store 0 1 0xx10x x x xxxxxx N N Y Upgrade
Miss

Store x x xxxxxx 1 1 0xx11x Y N N --

Store x x xxxxxx 0 1 0xx10x N N Y Upgrade
Miss

Store 0 x xxxxxx 0 x xxxxxx N N Y Cache
Miss

Table B-6: Success/Failure conditions for LSU operations on caches

In the table above, Way0 and Way1 are state bit vectors returned from tag mats in

ways 0 and 1 of the cache (for instruction cache there is no way1, therefore only

information returned from way0 is considered). TM stands for Total Match output

(comparison result for both data and control arrays in the mat), DM indicates Data

Match output (comparison result for mat’s data array) and Control are control bits read

from control array. Success column indicates the result of the access if that specific bit

pattern in encountered, Stall indicates whether processor has to be stalled or not, Msg

says whether a message should be sent to protocol controller and Type specifies the

message type.

Note that table is searched from bottom to top and content of the last matching entry is

taken as output. Therefore, entries in the table are implicitly prioritized: each entry has

priority over the entries lower to it. For example, by looking the last bottom two

entries, one can notice that last entry for Store opcode (cache miss) covers the

previous one (upgrade miss). In other words, the state bit vector in the entry with

upgrade miss is a special case (subset) of the state bit vector for the cache miss case.

However, since the table is searched from bottom to top, the output will be the last

151

matching entry when an upgrade misses is encountered (Data Match and V bit are

active, but E bit is not, or in other words, line is valid and tags are matching, but there

is no ownership).

Also note that the Stall column defines store accesses to be non-blocking, meaning

that even when a store fails either due to a cache miss or upgrade miss, processor is

not stalled and keeps executing later instructions. This is because processor interface

keeps necessary information about the failed Store instruction and can complete it

without stalling the processor. However, for Load instructions since processor needs

the data word to load into the target register the access cannot be completed without

processor being stalled.

In our simple example, memory mat accesses defined for protocol controller are

always successful and therefore there is no need to define such condition table for

protocol controller accesses.

B.2.2. ACCESSES TO MAIN MEMORY

Main memory in this example is either accessed via instruction or data caches to refill

a cache line or by direct, un-cached accesses that go to segment 15. For cache

accesses, main memory controller has to supply cache lines to be refilled into caches,

or it receives cache lines that are being written back from caches. This involves

reading and writing blocks of memory. For un-cached accesses only a single word in

the memory is read or written at a time. Therefore, all main memory controllers have

to provide is simple read/write accesses to main memory addresses. Main memory

controller can then perform a series of such read/write accesses on successive

addresses to do block read/writes.

B.3. COMMUNICATION MESSAGES

Third and last step in the system configuration process is to define protocol messages

that are exchanged between levels of hierarchy and specify how they are handled at

152

each level. We mentioned what messages are sent from processor interface logic to

protocol controller when a local memory access fails. This section elaborates on these

messages as well as messages exchanged between protocol controller and main

memory controller. It also specifies the details of the operations within each controller

to handle messages.

B.3.1. DEFINING COMMUNICATION MESSAGES

Table B-7 lists all the request/reply messages exchanged between processor interface

and protocol controller. It also explains the purpose of each message and conditions in

which it is sent. Information fields of these messages were described in section 4.5.4.

Protocol controller receives request messages from all processors in the Quad and

sends a reply back for each message it receives. The table also lists the possible replies

from controller to processors. Note that there is no type field for the reply messages,

the table only indicates whether controller sends back data to or just and

acknowledgement about requested operation being completed.

Message Type Direction Description
Cache Miss LSU → Controller Cache line is not present in the cache
Upgrade Miss LSU → Controller Cache line is present, but cache does not

have ownership to
Un-cached Access LSU → Controller Direct accesses to off-chip memory
Reply Data Controller → LSU Returns data word to processor (Loads)
Reply Ack. Controller → LSU Returns acknowledgement indicating

requested operation is complete (Stores
and Prefetches)

Table B-7: Messages between processor interface and protocol controller

Similarly, communications messages exchanged between local and main memory

controller are listed in Table B-8. Information carried by each message is listed and

described in Table B-9.

153

Message Type Direction Description
Cache Miss Local → Main Sent when cache line is not present in the

cache and needs to be fetched from main
memory

Write-back Local → Main Sent when cache line is in Modified state and
main memory copy has to be updated

Un-cached Request Local → Main Sent for direct accesses to off-chip memory
Refill Main → Local Returns requested data cache line
Un-cached Reply Main → Local Returns requested data word that is read

from off-chip memory or Store
acknowledgement

Table B-8: Messages between protocol controller and main memory controller

Field Description
Source ID ID of sender entity
Destination ID ID of receiver entity
Type Type of the message
Address Address of word or cache line of interest
Requestor Tile ID, processor ID and port ID of the requesting processor
Opcode TIE opcode issued by processor
Data A single data word (for un-cached requests) or a data block (for

cached requests)
Byte Mask For un-cached Stores, identifies which bytes should be written

to main memory
Size Size of the data block, if message carries a data block
SHR Index Index of the status holding register (MSHR/USHR) that

contains request’s information. Used for retrieving the tracking
information when reply is received

Line State State in which line should be refilled in cache

Table B-9: Fields of messages between protocol and main memory controller

B.3.2. SPECIFYING PRIORITIES

While messages between processor interface and protocol controller are exchanged on

the dedicated channel between them, messages between protocol controller and main

memory controller are exchanged over the general interconnection network. Since this

interconnect is used by all Quads and memory controllers in the system, at times it can

154

potentially be congested, blocked or un-accessible for sending packets. Furthermore,

oblivious usage of available (virtual) channels might create circular dependency

between messages waiting in system buffers and hence create a deadlock.

General strategy for avoiding deadlock in lossless interconnection networks is to

separate messages into requests and replies. By definition [69][73] a reply is a

message that will not generate another message as a result. Requests, however, are

messages that might generate other messages when processed. Systems usually

guarantee deadlock free communication by reserving enough buffering space for

replies and limiting number of request messages that can be generated.

Smart Memories architecture uses similar strategy by assigning requests and replies to

different virtual channels. Assigning virtual channel numbers to messages and setting

up priorities between channels is one of the user’s responsibilities when configuring

the system. In our simple example, we assign virtual channel 1 (VC1) for carrying

replies and virtual channel 2 (VC2) for carrying requests. Hence, cache miss and un-

cached access requests are assigned to VC2, while write-back, refill and un-cached

reply messages are assigned to VC1. Note that write-back is considered as a reply by

this definition, since it does not generate any other message when being processed.

Priorities for the virtual channels are adjusted by setting configuration registers in

protocol controller and main memory controller network interfaces as well as the

central network switch.

System relies on the back pressure mechanism provided by the flow control scheme in

order to limit number of outstanding request messages, as describe in Appendix A.

Whenever the network buffers of the request virtual channel are filled up, controllers

will not be able to generate and send further requests. However, they are guaranteed to

process messages on other virtual channels, the reply virtual channel in our example,

such that there is no circular dependency between requests and replies and system

always is guaranteed to make forward progress.

155

B.3.3. PROGRAMMING PROTOCOL CONTROLLER

For each communication message received by protocol controller, user has to define

necessary processing steps in handling it. Protocol controller receives messages from

processor interface logic in each Tile and main memory controller. As discussed

earlier, the execution model of the controller is by defining and linking subroutines for

each of the relevant functional units. Each input message invokes a chain of

subroutine executions that complete its handling. In this section we describe how

communication messages are handled inside protocol controller, what is the series of

subroutines invokes for each message, and how the subroutines are defined for internal

functional units.

First thing is to define the processing steps for each input message and determine

which functional unit is responsible for executing that step. Table B-10 breaks down

the processing steps required for each message received by protocol controller and

identifies functional units that should participate in handling it.

In example system protocol controller accomplishes two major tasks: one is

supporting caches by performing cache refills, doing write-backs and enforcing

coherence protocol properties. Another task is handling un-cached accesses to off-chip

memory. Tracking information for requests that are related to the above tasks is kept

separately. Coherence protocol imposes serialization requirements on requests that for

the same cache lines. More specifically, writes to the same location have to be

serialized. This implies that local controller has to compare the line address of the

incoming cache miss requests against already outstanding cache misses and serialize

them if they target the same cache line. This task is accomplished by the tracking unit

(T-Unit, cached section), using associative search capabilities of the MSHR structure.

In contrast to the cache miss requests, there is no such serialization requirement on un-

cached memory accesses; the only requirement is to store appropriate tracking

information such that a reply can be sent back to requesting processor after un-cached

access is completed. Hence controller can store tracking information for un-cached

accesses in USHR.

156

Message Unit Operations
P-Unit - Receive/decode message, pass to T-Unit, cached

- Pass reply data/Ack to processor, release MSHR
entry

T-Unit - Serialize against outstanding cache/upgrade misses
- Allocate MSHR and line buffer entries, store
tracking information in MSHR

S-Unit - Perform cache line eviction in the source cache
- Snoop other Tile’s caches and update cache line
state
- Read cache tags in source cache if write-back is
necessary

D-Unit - Do a cache to cache transfer (if possible)
- Read cache line data if write-back is necessary

Cache Miss (from
processor
interface)

N-Unit - Send cache miss message to main memory
controller
- Send write-back message to main memory
controller, if necessary

P-Unit - Receive/decode message, pass to T-Unit, cached
- Pass reply Ack to processor, release MSHR entry

T-Unit - Serialize against outstanding cache/upgrade misses
- Allocate MSHR and line buffer entries, store
tracking information in MSHR

S-Unit - Snoop other Tile’s caches and update cache line
state
- Change cache line state to Modified in source cache

Upgrade Miss
(from processor
interface)

D-Unit - Write data word into source cache
P-Unit - Receive/decode message, pass to T-Unit, un-cached Un-cached Access

(from processor
interface)

N-Unit - Send un-cached access message to main memory
controller

P-Unit - Pass reply data/Ack to processor, release MSHR
entry

T-Unit - Retrieve tracking information from MSHR
S-Unit - Write tags, adjust cache line state in source cache
D-Unit - Write data portion of line in source cache

Refill (from main
memory
controller)

N-Unit - Receive/decode message, pass to T-Unit cached
P-Unit - Pass data/Ack to processor, release USHR entry
T-Unit - Retrieve tracking information from USHR

Un-cached Reply
(from main
memory
controller)

N-Unit - Receive/decode message, pass to T-Unit un-cached

Table B-10: Breakdown of message handling steps in protocol controller

157

After performing appropriate serialization and storing the tracking information, cache

miss request is passed to S-Unit. S-Unit manipulates the state information in Tile

caches: for cache miss requests it evicts cache lines by putting them in Reserved state

and snoops other caches to adjust the cache line state and see whether a cache-to-

cache transfer is possible. For refill operations, it writes cache tags and adjusts cache

line state. S-Unit is not used for handling un-cached memory accesses since there is

not state information to be operated on.

D-Unit handles all data access operations: it reads evicted cache lines from source

cache if write-back is necessary, refills new lines into the caches when they are

received from main memory controller, and potentially does a cache-to-cache transfer

from one Tile to another.

N-Unit sends request messages to main memory controller and receives and decodes

reply messages. Similarly P-Unit receives request messages from e processor

interface, decodes them and passes them to appropriate part of the T-Unit. It also

sends back replies (data or acknowledgement) to processor interface logic in Tiles.

Figure B-5 shows the flow of operations inside protocol controller for each one of the

above messages. It also shows the subroutines that are called in each unit to perform a

processing step. After executing a subroutine in a functional unit, request might be

passed to one unit or more depending on the conditions that are evaluated. For

example in case of a cache miss, if S-Unit finds a valid copy of a cache line in another

Tile’s cache, it performs a cache-to-cache transfer otherwise it sends the miss request

to main memory controller. Solid lines in the figure represent the calls that are always

made; dotted lines indicate that only one of the calls is made.

158

P-Unit:
Cache Miss

T-Unit (Cached):
Read Miss

T-Unit (Cached):
Write Miss

S-Unit:
Read Miss

S-Unit:
Write Miss

N-Unit:
Write-back

P-Unit:
Reply Cached

D-Unit:
$-to-$ Transfer

D-Unit:
Write-back

D-Unit:
Write-back &

$-to-$ Transfer

N-Unit:
Cache Miss

Cache Miss
(LSU)

Cache Miss
(Main mem controller)

Write-back
(Main mem controller)

Reply
(LSU)

P-Unit:
Upgrade Miss

Upgrade Miss
(LSU)

T-Unit (Cached):
Upgrade Miss

S-Unit:
Upgrade Miss

S-Unit:
Tag Write

D-Unit:
Critical Word

Write

P-Unit:
Reply Cached

S-Unit:
Tag Write

Reply
(LSU)

P-Unit:
Un-cached

Access

Un-cached Access
(LSU)

T-Unit
(Un-cached):

Un-cached Access

N-Unit:
Un-cached

Access

Un-cached Access
(Main memory)

N-Unit:
Refill

Refill
(Main mem controller)

T-Unit (Cached):
Refill

D-Unit:
Line Write

S-Unit:
Tag Write

P-Unit:
Reply Cached

Reply
(LSU)

N-Unit:
Un-cached Reply

Un-cached Reply
(Main mem controller)

T-Unit
(Un-cached):

Un-cached Reply

P-Unit:
Reply Un-cached

Reply
(LSU)

Figure B-5: Flow of operations for processing messages in protocol controller

Figure B-6 to Figure B-10 list subroutines for each one of the functional units in the

controller in as a pseudo-code. Each subroutine might call one or more subroutines in

other functional units after it completes all of its operations. Note that parameters of

the input message such as memory address, write data, requestor, index in

MSHR/USHR structures, etc. are passed along with the each subroutine invocation.

159

Cache Miss:

if (TIE Opcode is READ)
 Call T-Unit(cached)::Read Miss
else
 Call T-Unit(cached)::Write Miss

Upgrade Miss:
Call T-Unit(cached)::Upgrade Miss

Un-cached Access:

Call T-Unit(un-cached)::Un-cached Access

P-Unit:

Reply Cached:
Send reply to processor
Release MSHR entry

Reply Un-cached:

Send reply to processor
Release USHR entry

Figure B-6: P-Unit subroutines

Read Miss:

MSHR Lookup (Address)
if (exists request to same Address)
 Do not accept

if (No available entry in MSHR)
 Do not accept
if (No available entry in Line buffer)
 Do not accept

Allocate MSHR entry
Allocate Line buffer entry
Store tracking information in MSHR

Call S-Unit::Read Miss

Write Miss:
MSHR Lookup (Address)

if (exists request to same Address)
 Do not accept
if (No available entry in MSHR)

 Do not accept
if (No available entry in Line buffer)
 Do not accept

Allocate MSHR entry
Allocate Line buffer entry
Store tracking information to MSHR

Store write data in Line buffer
Call S-Unit::Write Miss

T-Unit (cached):

Upgrade Miss:

MSHR Lookup (Address)
if (exists request to same Address)
 Do not accept

if (No available entry in MSHR)
 Do not accept
Allocate MSHR entry

Store tracking information to MSHR
Call S-Unit::Upgrade Miss

Refill:
Retrieve tracking information from MSHR

Call D-Unit::Line Write

Un-cached Access:

if (No available entry in USHR)
 Do not accept
Allocate USHR entry

Store tracking information in USHR
Call N-Unit::Un-cached Access

T-Unit (un-cached):

Un-cached Reply:
Retrieve tracking information from USHR
Call P-Unit::Reply

Figure B-7: T-Unit subroutines (cached and un-cached parts)

160

Read Miss:
Send Evict to requesting cache
Send Snoop-Read to other caches
if (found in other caches)

 if (Evicted line is Modified)
 Call D-Unit::Write-back & $-To-$ transfer
 else

 Call D-Unit::$-To-$ transfer
else
 if (Evicted line is Modified)

 Call D-Unit::Writ-eback
 Call N-Unit::Cache Miss

S-Unit:

Upgrade Miss:
Send Snoop-ReadEx to other caches

Call D-Unit::Critical Word Write

Write Miss:

Send Evict to requesting cache
Send Snoop-ReadEx to other caches
if (found in other caches)

 if (Evicted line is Modified)
 Call D-Unit::Write-back & $-To-$ transfer
 else

 Call D-Unit::$-To-$ transfer
else
 if (Evicted line is Modified)
 Call D-Unit::Write-back

 Call N-Unit::Cache Miss

Tag Write:
Send Refill to source cache

Figure B-8: S-Unit subroutines

D-Unit:

Write-back:
for (i=0 to Size-1)
 Send Line Read to requesting cache

 Write word into Line buffer
Call N-Unit::Write-back

Write-back & $-to-$ transfer:

for (i=0 to Size-1)
 Send Read to requesting cache
 Write word into Line buffer

Call N-Unit::Write-back
for (i=0 to Size-1)
 Send Read to source cache

 Write word into Line buffer
for (i=0 to Size-1)
 Read word from Line buffer
 Send Write to requesting cache

Call S-Unit::Tag Write
Call P-Unit::Reply

$-to-$ transfer:

for (i=0 to Size-1)
 Send Read to source cache
 Write word into Line buffer

for (i=0 to Size-1)
 Read word from Line buffer
 Send Write to requesting cache

Call S-Unit::Tag Write
Call P-Unit::Reply

Line Write:
for (i=0 to Size-1)
 Read word from Line buffer
 Send Write to requesting cache

Call S-Unit::Tag Write
Call P-Unit::Reply

Critical Word Write:
Read word from Line buffer

Send Write to requesting cache
Call S-Unit::Tag Write
Call P-Unit::Reply

Figure B-9: D-Unit subroutines

161

Cache Miss:
Send Cache Miss message

N-Unit (Transmitter):

Write-back:
Send Write-back message
for (i=0 to Size-1)

 Read word from Line buffer
 Send word

Un-cached Access:

Send Un-cached Access message

Refill:
for (i=0 to Size-1)
 Write word to Line buffer

Call T-Unit(cached)::Refill

N-Unit (Receiver):

Un-cached Reply:
Call T-Unit(un-cached)::Un-cached Reply

Figure B-10: N-Unit subroutines (receiver and transmitter)

B.3.4. PROGRAMMING MAIN MEMORY CONTROLLER

Programming main memory controller is very similar to programming protocol

controller. Table B-11 shows the breakdown of steps in handling input messages to

main memory controller and Figure B-11 shows the flow of operations.

162

Message Unit Operation description
Network Intf. - Receive/decode message, pass to C-Req

- Send reply message back to protocol controller
C-Req - Allocate MSHR and memory queue entries, store

tracking information in MSHR
- Issue memory read request to memory queue

C-Rep - Initiate reply process when memory access is complete
- Release MSHR entry

Cache Miss

Memory Intf. - Read cache line from memory
Network Intf. - Receive/decode message, pass to C-Req
C_Req - Allocate MSHR and memory queue entries, store

tracking information in MSHR
- Issue memory write request to memory queue

C-Rep - Release MSHR entry when memory access is complete

Write-back

Memory Intf. - Write cache line to memory
Network Intf. - Receive/decode message, pass to U-Req/Rep

- Send reply message back to protocol controller
U-Req/Rep - Allocate memory queue entry, issue memory access to

memory queue
-Initiate reply process when memory access is complete

Un-cached
Access

Memory Intf. - Read/Write word from/to memory

Table B-11: Breakdown of message handling steps in main memory controller

Net Interface:
Cache MissCache Miss C-Req:

Cache Miss
Mem Interface:

Line Read
C-Rep:

MSHR Release
Net Interface:

Refill Refill

Net Interface:
Write-backWrite-back C-Req:

Write-back
Mem Interface:

Line Write
C-Rep:

MSHR Release

Net Interface:
Un-cached

Access
Un-cached Access

U-Req/Rep:
Un-cached

Access

Mem Interface:
Word Read

U-Req/Rep:
MQ Release

Mem Interface:
Word Write

Net Interface:
Un-cached Reply Un-cached Reply

Figure B-11: Flow of operations for processing messages in main memory controller

163

B.4. SUMMARY

As illustrated by the simple example of coherent shared memory model, there are

three major steps in implementing a memory protocol on the Smart Memories

hardware platform. In first step, user should allocated resources for storing data and

associated state information. This involves defining state information that should be

associated with data, allocating physical storage locations where data and state

information are stored, and defining translation/mapping functions that produces

address of physical location(s) corresponding to processor’s virtual addresses.

Second step is defining accesses for local and off-chip memories (on both data and

state information), specifying success/failure condition for each memory access, and

defining request messages that should be issued if an access fails. These conditions are

specified in terms of bit vectors that are compared with state bits returned from

memory mats. Following this step, user has to define all communication messages

between all levels of hierarchy, specify their priorities when traveling on interconnect,

and program protocol controller and main memory controller to appropriately handle

each and every message. Controllers employ a simple step by step processing method

that involves defining subroutines for functional units and then chaining appropriate

subroutines together to handle a specific input message.

While our example is very simplistic it shows all the necessary steps of the system

configuration. Smart Memories is capable of implementing a variety of memory

models, including coherent shared memory, streaming and transactional coherence and

consistency (TCC). The system by no means is limited to these currently implemented

protocols: When implementing shared memory models, system can support various

coherence protocols such as MSI, MESI or MOESI or updated based protocols on

both single Quad and multi-Quad configurations. It is capable of supporting hybrid

memory models, for example combining streaming and caches; using caches

simplifies accesses to instruction code and runtime stack, while streaming operations

and DMA accesses are used for accessing application data. Even though Transactional

164

Coherence and Consistency [27] has been chosen to be primary hardware transactional

memory protocol, user can implement other HTM protocols such as LogTM [24] or

change various parameters in a transactional memory system, such as granularity of

conflict detection between transactions (word vs. cache line), system commit policy

(eager vs. lazy) and conflict detection policy (optimistic vs. pessimistic).

 165

BIBLIOGRAPHY

[1] Khailany, B., Dally, W.J., Rixner, S., Kapasi, U.J., Mattson, P., Namkoong, J.,

Owens, J.D., Towles, B., and Chang, A., Imagine: Media Processing with

Streams, IEEE Micro, Vol. 21, Issue 2, pp. 35-46, March/April 2001.

[2] Ahn, J.H., Dally, W.J., Khailany, B., Kapasi, U.J., Das, A., Evaluating the

Imagine Stream Architecture, Proceedings of the 31st Annual International

Symposium on Computer Architecture (ISCA-31), pp. 14-25, Munich,

Germany, June 2004.

[3] Lipasti, M., Wilkerson, C., Shen, J.P., Value Locality and Load Value

Prediction, Proceedings of the 7th International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS-VII),

pp.138-147, Cambridge, MA, October 1996.

[4] Lipasti, M., Shen, J.P., Exceeding the Dataflow Limit via Value Prediction,

Proceedings of the 29th International Symposium on Microarchitecture

(MICRO-29), pp. 226-237, Paris, France, December 1996.

[5] Rychlik, B., Faistl, J., Krug, B., Shen, J.P., Efficacy and Performance Impact

of Value Prediction, Proceedings of the 7th International Conference on

Parallel Architectures and Compilation Techniques (PACT’98), pp. 148-154,

Paris, France, October 1998.

[6] Prabhu, M., Olukotun, K., Using Thread-Level Speculation to Simplify

Manual Parallelization, Proceedings of the 9th Symposium on Principles and

Practice of Parallel Programming (PPoPP’03), pp. 1-12, San Diego, CA, 2003.

[7] Hammond, L., Willey, M., Olukotun, K., Data Speculation Support for a Chip

Multiprocessor, Proceedings of the 8th Conference on Architectural Support for

166

Programming Languages and Operating Systems (ASPLOS-VIII), pp. 58-69,

San Jose, CA, October 1998.

[8] Rajwar, R., Goodman, J., Speculative Lock Elision: Enabling Highly

Concurrent Multithreaded Execution, Proceedings of the 34th Annual

International Symposium on Microarchitecture (MICRO-34), pp. 294-305,

Austin, TX, 2001.

[9] Sohi, G., Breach, S., Vijaykumar, T.N., Multiscalar processors, Proceedings of

the 22nd Annual International Symposium on Computer Architecture (ISCA-

22), pp. 414-425, Italy, 1995.

[10] Franklin, M., Sohi, G., ARB: A Hardware Mechanism for Dynamic

Reordering of Memory References, IEEE Transactions on Computers, Vol. 45,

No. 5, pp. 552-571, May 1996.

[11] Gopal, S., Vijaykumar, T.N., Smith, J.E., Sohi, G., Speculative Versioning

Cache, IEEE Transactions on Parallel and Distributed Systems, Vol. 12, Issue

12, pp. 1305-1317, 2001.

[12] Hammond, L., Hubbert, B., Siu, M., Prabhu, M., Chen, M., Olukotun, K., The

Stanford Hydra CMP, IEEE Micro, Vol. 20, Issue 2, pp. 71-84, March/April

2000.

[13] Olukotun, K., Hammond, L., Willey, M., Improving the Performance of

Speculatively Parallel Applications on the Hydra CMP, Proceedings of the 13th

International Conference on Supercomputing, pp. 21-30, Rhodes, Greece,

1999.

167

[14] Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C., A Scalable Approach to

Thread-Level Speculation, Proceedings of the 27th International Symposium on

Computer Architecture (ISCA-27), pp. 1-12, Vancouver, Canada, June 2000.

[15] Steffan, J.G., Colohan, C.B., Zhai, A., Mowry, T.C., Improving Value

Communication for Thread-Level Speculation, Proceedings of 8th International

Symposium on High-Performance Computer Architecture (HPCA-8), pp. 65-

75, Cambridge, MA, February 2002.

[16] Zhang, Y., Rauchwerger, L., Torrellas, J., Hardware for Speculative

Parallelization of Partially-Parallel Loops in DSM Multiprocessors,

Proceedings of 5th International Symposium on High-Performance Computer

Architecture (HPCA-5), pp. 135-139, Orlando, FL, January 1999.

[17] Cintra, M., Martinez, J.F., Torrellas, J., Architectural Support for Scalable

Speculative Parallelization in Shared-Memory Multiprocessors, Proceedings of

27th International Symposium on Computer Architecture (ISCA-27), pp. 13-24,

Vancouver, Canada, June 2000.

[18] Herlihy, M., Moss, J.E.B., Transactional Memory: Architectural Support for

Lock-Free Data Structures, Proceedings of 20th International Symposium on

Computer Architecture (ISCA-20), pp. 289-300, San Diego, CA, 1993.

[19] Larus, J.R., Rajwar, R., Transactional Memory, Morgan & Claypool, 2007.

[20] Ramakrishnan, R., Gehrke, J., Database Management Systems, New York:

McGraw-Hill, 2000.

168

[21] Shavit, N., Touitou, D., Software Transactional Memory, Proceedings of 14th

Symposium on Principles of Distributed Computing (PODC14), pp. 204-213,

Ottawa, Canada, August 1995.

[22] Harris, T., Fraser, K., Language Support for Lightweight Transactions,

Proceedings of 18th Conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA-18), pp. 388-402, Anaheim, CA,

October 2003.

[23] Herlihy, M., Luchangco, V., Moir, M., Scherer III, W.N., Software

Transactional Memory for Dynamic-Sized Data Structures, Proceedings of

22nd Symposium on Principles of Distributed Computing, Boston, MA, July

2003.

[24] Moore, K.E., Bobba, J., Moravan, M.J., Hill, M.D., Wood, D.A., LogTM: Log-

Based Transactional Memory, Proceedings of 12th International Symposium on

High-Performance Computing (HPCA-12), pp. 254-265, Austin, TX, February

2006.

[25] Moravan, M.J., Bobba, J., Moore, K.E., Yen, L., Hill, M.D., Liblit, B., Swift,

M.M., Wood, D.A., Supporting Nested Transactional Memory in LogTM,

Proceedings of 12th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-XII), pp. 359-370,

San Jose, CA, October 2006.

[26] Yen, L., Bobba, J., Marty M.R., Moore, K.E., Volos, H., Hill, M.D., Swift,

M.M., Wood, D.A., LogTM-SE: Decoupling Hardware Transactional Memory

from Caches, Proceedings of 13th International Symposium on High-

169

Performance Computer Architecture (HPCA-13), pp. 261-272, Phoenix, AZ,

February 2007.

[27] Hammond, L., Wong, V., Chen, M., Carlstrom, B.D., Davis, J.D., Hertzberg,

B., Prabhu, M., Wijaya, H., Kozyrakis, C., Olukotun, K., Transactional

Memory Coherence and Consistency, Proceedings of 31st International

Symposium on Computer Architecture (ISCA-31), p. 102, Munich, Germany,

June 2004.

[28] McDonald, A., Chung, J., Chafi, H., Minh, C.C., Carlstrom, B.D., Hammond,

L., Kozyrakis, C., Olukotun, K., Characterization of TCC on Chip

Multiprocessors, Proceedings of 14th International Conference on Parallel

Architecture and Compilation Techniques (PACT’05), pp. 63-74, September

2005.

[29] Ananian, C.S., Asanovic, K., Kuszmaul, B.C., Leiserson, C.E., Lie, S.,

Unbounded Transactional Memory, Proceedings of 11th International

Symposium on High-Performance Computer Architecture (HPCA-11), pp.

316-327, San Francisco, CA, February 2005.

[30] Damron, P., Fedorova, A., Lev, Y., Luchangco, V., Moir, M., Nussbaum, D.,

Hybrid Transactional Memory, Proceedings of 12th International Conference

on Architectural Support for Programming Languages and Operating Systems

(ASPLOS-XII), pp. 336-346, San Jose, CA, October 2006.

[31] Kumar, S., Chu, M., Hughes, C.J., Kundu, P., Nguyen, A., Hybrid

Transactional Memory, Proceedings of 11th Symposium on Principles and

Practices of Parallel Programming (PPoPP’06), pp. 209-220, New York, NY,

March 2006.

170

[32] Saha, B., Adl-Tabatabai, A.R., Jacobson, Q., Architectural Support for

Software Transactional Memory, Proceedings of 39th International Symposium

on Microarchitecture (MICRO-39), pp. 185-196, Orlando, FL, December

2006.

[33] Horowitz, M., Dally, W., How Scaling Will Change Processor Architecture,

Digest of Technical Papers, IEEE International Solid-State Circuits Conference

(ISSCC), pp. 132-133, San Francisco, CA, 2004.

[34] Agarwal, V., Hrishikesh, M.S., Keckler, S.W., Burger, D., Clock Rate versus

IPC: The end of the Road for Conventional Microarchitectures, Proceedings of

27th International Symposium on Computer Architecture (ISCA-27), pp. 248-

259, Vancouver, Canada, June 2000.

[35] Patterson, D.A., Hennessy, J.L., Computer Architecture: A Quantitative

Approach (fourth edition), Morgan Kaufmann, 2006.

[36] Rusu, S., Tam, S., Muljono, H., Ayers, D., Chang, J., Cherkauer, B., Stinson,

J., Benoit, J., Varada, R., Leung, J., Limaye, R. D., Vora, S., A 65-nm Dual-

Core Multithreaded Xeon® Processor With 16-MB L3 Cache, IEEE Journal of

Solid-State Circuits, Vol. 42, Issue 1, pp. 17-25, January 2007.

[37] Stackhouse, B., Cherkauer, B., Gowan, M., Gronowski, P., Lyles, C., A 65nm

2-Billion-Transistor Quad-Core Itanium® Processor, Digest of Technical

Papers, IEEE International Solid-State Circuits Conference (ISSCC), pp. 92-

93, San Francisco, CA, February 2008.

[38] Dorsey, J., Searles, S., Ciraula, M., Johnson, S., Bujanos, N., Wu, D.,

Braganza, M., Meyers, S., Fang, E., Kumar, R., An Integrated Quad-Core

171

Opteran™ Processor, Digest of Technical Papers, IEEE International Solid-

State Circuits Conference (ISSCC), pp. 102-103, San Francisco, CA, February

2007.

[39] Kongetira, P., Aingaran, K., Olukotun, K., Niagara: A 32-Way Multithreaded

Sparc Processor, IEEE Micro, Vol. 25, Issue 2, pp. 21-29, March/April 2005.

[40] Nawathe, U.G., Hassan, M., Yen, K.C., Kumar, A., Ramachandran, A.,

Greenhill, D., Implementation of an 8-Core, 64-Thread, Power-Efficient

SPARC Server on a Chip, IEEE Journal of Solid-State Circuits, Vol. 43, Issue

1, pp. 6-20, January 2008.

[41] Pham, D.C., Aipperspach, T., Boerstler, D., Bolliger, M., Chaudhry, R., Cox,

D., Harvey, P., Harvey, P.M., Hofstee, H.P., Johns, C., Kahle, J., Kameyama,

A., Keaty, J., Masubuchi, Y., Pham, M., Pille, J., Posluszny, S., Riley, M.,

Stasiak, D.L., Suzuoki, M., Takahashi, O., Warnock, J., Weitzel, S., Wendel,

D., Yazawa, K., Overview of the Architecture, Circuit Design, and Physical

Implementation of a First-Generation Cell Processor, IEEE Journal of Solid-

State Circuits, Vol. 41, Issue 1, pp. 179-196, January 2006.

[42] Lewis, B., Berg, D. J., Multithreaded Programming with Pthreads, Prentice

Hall, 1998.

[43] Nichols, B., Buttlar, D., Farrell, J.P., Pthreads Programming, O’Reilly 1996.

[44] Lusk, E.L., Overbeek, R.A., Use of Monitors in FORTRAN: A Tutorial on the

Barrier, Self-scheduling DO-Loop, and Askfor Monitors, Tech. Report No.

ANL-84-51, Rev. 1, Argonne National Laboratory, June 1987.

172

[45] Lusk, E.L., Overbeek, R.A., Portable Programs for Parallel Processors, Holt,

Rinehart and Winston Inc., 1987.

[46] Tremblay, M., Chaudhry, S., A Third-Generation 65nm 16-Core 32-Thread

Plus 32-Scout-Thread CMT SPARC© Processor, Digest of Technical Papers,

IEEE International Solid-State Circuits Conference (ISSCC), pp. 82-83, San

Francisco, CA, February 2008.

[47] Woo, S.C., Ohara, M., Torrie, E., Singh, J.P., Gupta, A., The SPLASH-2

Programs: Characterization and Methodological Considerations, Proceedings

of 22nd International Symposium on Computer Architecture (ISCA-22), pp. 24-

36, Santa Margherita Ligure, Italy, June 1995.

[48] Gschwind, M., The Cell Broadband Engine: Exploiting Multiple Levels of

Parallelism in a Chip Multiprocessor, International Journal of Parallel

Programming, Vol. 35, No. 3., pp. 233-262, June 2007.

[49] Gummaraju, J., Erez, M., Coburn, J., Rosenblum, M., Dally, W.J.,

Architectural Support for Stream Execution Model on General-Purpose

Processors, 16th International Conference on Parallel Architectures and

Compilation Techniques (PACT’07), pp. 3-12, Brasov, Romania, September

2007.

[50] Gummaraju, J., Coburn, J., Turner, Y., Rosenblum, M., Streamware:

Programming General-Purpose Multicore Processors Using Streams,

Proceedings of 13th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS-XIII), pp. 297-

307, Seattle, WA, March 2008.

173

[51] Gummaraju, J., Rosenblum, M., Stream Programming on General-Purpose

Processors, Proceedings of 38th International Symposium on Microarchitecture

(MICRO-38), pp. 343-354, Barcelona, Spain, November 2005.

[52] Taylor, M.B., Kim, J., Miller, J., Wentzlaff, D., Ghodrat, F., Greenwald, B.,

Hoffman, H., Johnson, P., Lee, J.-W., Lee, W., Ma, A., Saraf, A., Seneski, M.,

Shnidman, N., Strumpen, V., Frank, M., Amarasinghe, S., Agarwal, A., The

Raw Microprocessor A Computational Fabric for Software Circuits and

General Purpose Programs, IEEE Micro, Vol. 22, Issue 2., pp. 25-35,

March/April 2002.

[53] Taylor, M.B., Psota, J., Saraf, A., Shnidman, N., Strumpen, V., Frank, M.,

Amarasinghe, S., Agarwal, A., Lee, W., Miller, J., Wentzlaff, D., Bratt, I.,

Greenwald, B., Hoffmann, H., Johnson, P., Kim, J., Evaluation of the Raw

Microprocessor An Exposed-Wire-Delay Architecture for ILP and Streams,

Proceedings of 31st International Symposium on Computer Architecture

(ISCA-31), pp. 2-13, Munich, Germany, June 2004.

[54] Thies, W., Karczmarek, M., Amarasinghe, S., StreamIt a Language for

Streaming Applications, Proceedings of the 11th International Conference on

Compiler Construction, pp. 179-196, 2002.

[55] Buck, I., Foley, T., Horn, D., Sugerman, J, Fatahalian, K., Houston, M.,

Hanrahan, P., Brook for GPUs: Stream Computing on Graphics Hardware,

ACM Transactions on Graphics, Vol. 23, No. 3, pp. 777-786, August 2004.

[56] Labonte, F., Mattson, P., Thies, W., Buck, I., Kozyrakis, C., Horowitz, M., The

Stream Virtual Machine, Proceedings of 13th International Conference on

174

Parallel Architectures and Compilation Techniques (PACT’04), pp. 267-277,

Antibes Juan-les-Pins, Frances, September-October 2004.

[57] Fatahalian, K., Knight, T., Houston, M., Erez, M., Horn, D., Leem, L., Park,

J.Y., Ren, M., Aiken, A., Dally, W.J., Hanrahan, P., Sequoia: Programming the

Memory Hierarchy, Proceedings of the Conference on Supercomputing

(SC’06), p. 4, November 2006.

[58] Knight, T., Park, J.Y., Ren, M., Houston, M., Erez, M., Fatahalian, K., Aiken,

A., Dally, W.J., Hanrahan, P., Compilation for Explicitly Managed Memory

Hierarchies, Proceedings of the 12th Symposium on Principles and Practices of

Parallel Programming (PPoPP’07), San Jose, CA, March 2007.

[59] Kapasi, U.J., Rixner, S., Dally, W.J., Khailany, B., Jung Ho Ahn Mattson, P.,

Owens, J.D., Programmable Stream Processors, IEEE Computer, Vol. 36,

Issue 8, pp. 54-62, August 2003.

[60] Khailany, B., Dally, W.J., Chang, A., Kapasi, U.J., Namkoong, J., Towels, B.,

VLSI Design and Verification of the Imagine Processor, Proceedings of the

20th International Conference on Computer Design (ICCD’02), p. 289,

Freiburg, Germany, September 2002.

[61] Kahle, J.A., Day, M.N., Hofstee, H.P., Johns, C.R., Maeurer, T.R., Shippy, D.,

Introduction to the Cell Multiprocessor, IBM Journal of Research and

Development, Vol. 49, No. 4/5, pp. 589-604, July/September 2005.

[62] Flachs, B., Asano, S., Dhong, S.H., Hofstee, H.P., Gervais, G., Kim, R., Le, T.,

Liu, P., Leenstra, J., Liberty J., Michael, B., Oh, H., Mueller, S.M., Takahashi,

O., Hatakeyama, A., Watanabe, Y., Yano, N., Brokenshire, D.,A., Peyravian,

175

M., To, V., Iwata, E., The Microarchitecture of the Synergistic Processor for a

Cell Processor, IEEE Journal of Solid-State Circuits, Vol. 41, No. 1, January

2006.

[63] Adve, S.V., Gharachorloo, K., Shared Memory Consistency Models: A

Tutorial, IEEE Computer, Vol. 29, Issue 12, pp 66-76, December 1996.

[64] Leverich, J., Arakida, H., Solomatnikov, A., Firoozshahian, A., Horowitz, M.,

Kozyrakis, C., Comparing Memory Systems for Chip Multiprocessors,

Proceedings of 34th International Symposium on Computer Architecture

(ISCA-34), pp. 358-368, San Diego, CA, June 2007.

[65] Martin, M.M.K., Hill, M.D., Wood, D.A., Token Coherence: Decoupling

Performance and Correctness, Proceedings of 30th International Symposium on

Computer Architecture (ISCA-30), pp. 182-193, San Diego, CA, June 2003.

[66] R. Gonzalez, Configurable and Extensible Processors Change System Design,

Hot Chips 11, Stanford, CA, August 1999.

[67] A. Wang, E. Killian, D. Maydan, C. Rowen, Hardware/software instruction set

configurability for system-on-chip processors, Proceedings of the 38th Design

Automation Conference (DAC-38), pp.184-188, Las Vegas, NV., June 2001.

[68] D. Jani, G. Ezer, J. Kim, Long Words and Wide Ports: Reinventing the

Configurable Processor, Hot Chips 16, Stanford, CA, August 2004.

[69] Culler, D.E., Singh, J.P., Gupta, A., Parallel Computer Architecture: A

Hardware/Software Approach, Morgan Kaufman, 1998.

176

[70] Mai, K., Paaske, T., Jayasena, N., Ho, R., Dally, W.J., Horowitz, M., Smart

Memories: A Modular Reconfigurable Architecture, Proceedings of 27th

International Symposium on Computer Architecture (ISCA-27), pp.161-171,

Vancouver, Canada, June 2000.

[71] Mai, K., Ho, R., Alon, E., Dean, L., Kim, Y, Patil, D., Horowitz, M.,

Architecture and Circuit Techniques for a Reconfigurable Memory Block,

Digest of Technical Papers, IEEE International Solid-State Circuits Conference

(ISSCC), pp. 542-543, San Francisco, CA, February 2004.

[72] McKeown, N., The iSLIP Scheduling Algorithm for Input-Queued Switches,

IEEE/ACM Transactions on Networking (TON), Vol. 7, Issue 2, pp.188-201,

April 1999.

[73] Dally, W.J., Towels, B., Principles and Practices of Interconnection Networks,

Morgan Kaufman, 2004.

[74] Gosling, J., Joy, B., Steele, G., Bracha, G., The JavaTM Language

Specification, Third edition, Addison-Wesley, 2005.

[75] OpenMP Official Web Site, http://openmp.org/wp/

[76] Chandra, R., Menon, R., Dagum, L., Kohr, D., Maydan, D., McDonald, J.,

Parallel Programming in OpenMP, Morgan Kaufman, 2001.

[77] Martin, M.M.K., Soring, D.J., Ailamaki, A., Alameldeen, A.R., Dickson,

R.M., Maur, C.J., Moore, K.E., Plakal, M., Hill, M.D., Wood, D.A.,

177

Timestamp Snooping: An Approach for Extending SMPs, Proceedings of the

9th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS-IX), pp.25-36, Cambridge, MA,

October 2000.

[78] Tensilica official website, Xtensa LX2 processor family product brief,

http://www.tensilica.com/pdf/xtensa_LX2_April07.pdf

