SMART MEMORIES: A RECONFIGURABLE MEMORY SYSTEM
ARCHITECTURE

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Amin Firoozshahian

December 2008



O Copyright by Amin Firoozshahian 2009
All Rights Reserved



| certify that | have read this dissertation and that in my opirtiis fully
adequate, in scope and quality, as dissertation for the degree of Dbct
Philosophy.

(Mark Horowitz) Principal Advisor

| certify that | have read this dissertation and that in my opirtiis fully
adequate, in scope and quality, as dissertation for the degree of Dbct
Philosophy.

(Christos Kozyrakis)

| certify that | have read this dissertation and that in my opirtiis fully
adequate, in scope and quality, as dissertation for the degree of Dbct
Philosophy.

(Kunle Olukotun)

Approved for the University Committee on Graduate Studies







ABSTRACT

The move to chip level multiprocessors (CMP), where multiple processres are
integrated on the same die, fundamentally shifts the focus and camypliethe systems
towards the memory subsystem. The memory subsystem semes@snary means for
data storage, sharing and communication that processors need tonperaningful
computations. Moreover, appearance of innovative proposals for multippoceemory
systems, such as streaming and transactional memory, de®rslie semantics
requirements that need to be provided in the memory system imybgron. In this
dissertation we observe that while having different semanticeyatir memory models
in today's multiprocessors rely on very similar hardware resoarg®perations at the
implementation level. The different memory access semanticgeaierated by altering
how the primitive hardware operations are composed. We propose a ainmeraory
system architecture that implements the shared resourceexquits the common
operations, enabling a user to implement different memory protbgolprogramming™
the operations that occur in the memory system. The systemtsarfsssorage elements
for storing data and state information, communication channels féormpéng data
transfers and exchanging control messages, and associated agnivbiteh sequencing
and carry out control operations. We present Smart Memories @seete example of
such reconfigurable memory system and discuss its architecnate hardware
mechanisms that provide flexibility. We also explain how protocolsbeamapped to
this hardware substrate by providing a simple example. Our fhdws that the
performance impact of the flexible hardware mechanisms areraly small, less than
20% compared to an ideal memory system, in almost all casessatree different
memory models. The impact on the physical aspects of the systerare significant,
consuming 60% more dynamic power and twice the area in configucahteollers

compared to controllers specialized for a specific protocol.
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1. INTRODUCTION

Since the beginning days of computers, applications have alwaykeddarge

amounts of fast memory. However, as the memory quantity sedeasso did the
application demands. With the increasing gap between the operatjpeed ©f

processors and memory the only feasible way of creatinglusion of large, fast
memory was by organizing it into multiple levels of hierarchiyerefore, in addition
to storing application data, optimal transfer of the data betlesets of the hierarchy
has also been one of the crucial tasks of the memory systeérhas been studied

extensively in the literature.

The appearance of parallel machines, and most recently withmdaxgence of chip-
multiprocessors, has further increased the importance of memaeynsgisesign since
it serves as the primary means for data communication anchghmseiween multiple
processor cores. This communication and sharing not only incréespsrformance
requirements of the memory, but also interacts in many watfs the memory

hierarchy that was created to improve the effective perforenaficche memory.

Additional mechanisms are required to provide a consistent view sh#dred address
space and guarantee orderly completion of memory accessesdditiora to

performing data transfers between levels of hierarchy. efmeschanisms in the
memory system have to follow a specific set of rules to deowuch guarantees,

usually referred to asraemory access protocol

Memory protocols usually are exposed to the software in the foenmeimory model
which is the conceptual view of the shared address space and @samrsemantics

as seen by processors. The memory model in turn is dictatethebpystem’s
programming modelBesides the traditional sequential programming model for single
thread processors, various programming models have been propassedrghers to
simplify the difficult task of developing parallel programs. Eachlgpamming model

usually has its own view of the underlying memory and hence escitg specific
1



memory access semantics. These semantics can vary fiowple, software managed
memory hierarchy to very complex set of rules for providing atibynand isolation

guarantees between operations of concurrent threads and in memory system.

The distributed concurrent nature of these memory systems makés the
implementation in general a very challenging and expensive Tagk.complexity is
compounded if a machine must support more than one memory model. imgéyest
while the semantics required by various models are diverselissirtation will show
that they have considerable similarities at the hardwareemmggitation level. This
critical observation motivates the design and development of a univaesabry
system architecture that can be “programmed” or “configuedtr construction, in
order to efficiently support implementation of existing memory emdand hopefully

future ones, on the same hardware substrate.

This dissertation proposes an abstract architecture for a walivessnory system,
recognizing and identifying necessary resources and operaticaso Iproposes an
abstract instruction set architecture for the operations supported by treynssistem
controllers for implementing memory access protocols. In order nmugtrate the
feasibility and effectiveness of this approach to memory systiesign, the
dissertation presents the design and implementation of the mesigmsin the
Smart Memories multiprocessor, focusing on the reconfigurablerotiens that
implement the proposed abstract instruction set. Finally, it evaltia¢éeperformance
impact of the reconfigurable mechanisms added to the memorynsystenell as the

physical overheads of constructing configurable controllers.

To show the commonalities between hardware model implementationpieClza
reviews some of the important memory models implemented in today’s multiprocessor
systems in more detail, and highlights the hardware mechanistrar¢hased. Using

this information, Chapter 3 proposes a universal memory systemteatahe
constructed by implementing the set of common resources and opetisicussed in
Chapter 2. It explains the functionality of the resources and thatapes they export,

2



providing a set of basic, abstract operations that the memoryrsyste support.
Combining and composing these operations in different sequences implanhengs

class of memory protocols.

To make this design more concrete, in Chapter 4 we present tag Bi@mories
memory system architecture as an instance of the universabmpesystem. We
discuss system’s organization and components in detail and explaiftexiide

hardware mechanisms embedded within different system componentvidepthe
discussed abstract operations. In order to provide more insight anmdaiButhe
capabilities of the system, Appendix B discusses the detaispiémenting a simple
coherence protocol on top of the Smart Memories hardware. It espte steps of
sketching the protocol as a set of operations on local resources rmantugation
messages exchanged between different levels of hierarchylustichies how to carry

out those operations on the designated resources.

In Chapter 5 we discuss the Smart Memories test chip, SMA&H, its

characteristics. We evaluate the performance impact of the reconfeyurabhanisms

embedded in the architecture to provide the flexibility in composing and sequencing of

the operations, as well as their effect on physical charstitsrof the system, namely
area and power. Finally Chapter 6 presents our conclusions and providésrisréor

future research.






2. BACKGROUND AND MOTIVATION

The memory subsystem is a crucial part of any computeemysin addition to
managing data locality to provide the illusion of a large famtory, it also serves as
the main infrastructure for communication and data sharing in today’'s
multiprocessors. In this chapter we discuss how the integration & processor
cores in today’'s CMP systems affects the memory subsysteignd as well as the
implications of innovative parallel programming models on the systanemory
access semantics. Next, we review the characteristiosiagbr memory models
supported in the existing multicore processors, trying to understendnderlying
hardware mechanisms used in their implementation. We will seensiderable
similarity between these memory systems, both in terms oflde®l- hardware
resources and operations. The commonalities in resources and opeetiengssthe
bases for constructing a universal memory system architeceiesented in next

chapter.

2.1. MULTICORE PROCESSORS AND COMPLEXITY OF MEMORY SYSTEM

In the past decades, number of transistors in the integratedscinasibeen increasing
according to Moore’s Law. For microprocessor systems, thisasecequantity has
been successfully converted in to increased system performagseafing in
exceptional advances in the microprocessor and in general, in digitams industry.

Major reasons for this increased performance have been three-fold:

» Scaling of VLSI technology has made transistor's operatiopaked faster,

resulting in faster clock cycles for the devices in successive generations

* Number of pipeline stages in the modern processors has been edgreas
decreasing number of logic gates per pipeline stage, furtherematading faster

clock frequencies for microprocessors.
5



» By using architectural techniques such as wider issue windows avtd-onaer

executions, modern microprocessors have been successfully extractiagand

more instruction level parallelism (ILP) from the applicationsdeereducing total

number of clock cycles per application.

As a result of this steep performance increase, the tradiseqalkential programming

model has remained unchanged for a long time.
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Figure 2-1: Specint performance numbers

However, in the recent years performance of single chip micrepsocs has stopped

scaling

[33][34]. Figure 2-1 and Figure 2-2 display the SpecFP andInfpe

performance numbers for a various number of microprocessor famdlearly

demonstrating this slowdown. There are several for this slowdowrB3f8Ep]: gate

speeds are not increasing as fast in today’s submicron dabrictechnology. ILP

extraction has reached its limits; there is only diminishitgirn in increasing the
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issue width of the processor or making pipelines deeper. But mosttamihpr power
consumption has been the major concern. Processors simply have rohgichit

power consumption.

To alleviate these issues, microprocessor vendors have stargetintg more than
one processor core on the same die. Replicating cores is ati\atsmlution since it
allows one to use slightly less powerful, but much more powerefticores to get
around the power wall. Such “multicore” processors have become reamsin
recent years: Intel Xeon [36] and Quad-core Itanium [37], AMD roptg38],
Sony/Toshiba/IBM Cell [41], Sun Niagara [39] and Niagara-2 [4@] @amly a few

examples of the multicore processors in today’s market.

intel 486 Specfp 2006
intel pentium
100.00 1| Xintel pentium 2
@ intel pentium 3
+intel pentium 4
=intel itanium
Alpha 21064
Alpha 21164 -
B Alpha 21264
10.00 11 sparc -
SuperSparc
Sparcé4 ("] _+++
Mips [ | + +
+HP PA l+ +
Power PC °
AMD K6 +
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¢ AMD x86-64
®BM Power + X X X
= SUN UltraSPARC b SO
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X AMD Opteron +
0.10 +__ X AMD Phenom EEESARNEN x
+
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88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 07 08 09

Year of Introduction

Figure 2-2: SpecFP performance numbers

While this solution is conceptually simple, replicating a numbercafes, the
complexity in such systems shifts towards the memory subsysted the

communication mechanisms between the processors. Processors eseacathocal
7



memories to exploit temporal and spatial locality of the datpikg copies close for
the duration of computation. Results produced by the processors areaaled i
these local memories or caches. The difficulty arises when ggaiseneed to share
these results in order to cooperate in performing a meaningfuputation. Data
sharing involves implementing necessary communication and ordeedcigamsms to
keep caches and local memories consistent with each other imgaesemultiple
data copies. The added mechanisms usually are not trivial, bothpoaslbe and
physically, and if not carefully designed, might prove to be pedooa bottlenecks
or in the extreme case, introduce complex design errors that edehole system

useless.

In addition, modern processors issue a large number of memory opsratiorder to
overlap useful computation with memory accesses and tolerate lamgrgnaccess
latencies. Thus, in the multicore systems, the complexity otitiderlying memory
hierarchy increases with the number of cores; it has to aecepsatisfy more and
more requests as the number of cores in the system grows.rfateeenlarging
number of processor cores increases number of local storagesh&saowithin the
system, potentially increasing number of copies of a specificldack, which further

complicates the mechanisms utilized for memory coherence and consistency

However, in spite of all the architectural complexities, theomkmiting factor for
multicore processor performance is the software. While systgoerformance
potentially scales with the number of integrated cores, thioneahce has to be
exploited by the programmer. The sequential programming model whehbden
dominant so far has to be replaced with explicit parallel naraghing models to

utilize available resources, as is discussed next.

2.2. PROGRAMMING MODELS AND MEMORY ACCESS SEMANTICS

With the slowdown of single core performance and emergencenuficore
processors, the task of improving application performance falls oprdggammer’s
8



shoulder. The available additional cores must be utilized by softimaceder to
provide speedups for the running application. The traditional sequentiahpnogng
model must be replaced with an explicit parallel model. Traditigoenallel
programming model provides the user with the abilities of cre#tiregds that can be
executed on multiple processors. POSIX threads (Pthreads) [48{Hd3}NL macros
[44][45] are examples of such environments. They also provide uderthetlow-
level synchronization mechanisms such as locks, semaphores and ptorigiread
coordination. Hence, the programmer not only has to think about panafidiis/her
application, but also has to implement all coordination and orchestiattivities for
the concurrent threads in the application code itself, using the prowdetevel
mechanisms. More recent programming constructs such as OpenMP cal
[75][76] and Javasynchroni zed [74] directives allow the user to identify the
critical regions of the program without worrying about the det#ileandling actual
synchronization. However, at the lower level, these constructs ralgoon the

traditional locking mechanisms.

Moreover, after developing the first version of a parallel program usually difficult
to have it reach the desired level of performance. Obliviousdswiion and coarse-
grain data sharing between processor cores usually introduces ssargcexpensive
communication and serialization that reduces the performance of uti@ng

application.

In recent years, researchers have proposed innovative programodetsto address
the parallel programming productivity problem. Stream programgmjl] and
transactional memory [18][19], are among the accepted models fufoire
multiprocessors and will be introduced and discussed in this chaptee praposals,
while being effective for some classes of applications, fagravide a uniform and
general model that can be used across application domains. Morgainilyp each
model usually makes certain assumptions about the capabilitidee ainderlying
hardware, specifically in defining semantics of memory aesesBue to these

differences in the requirements of the memory system, uswalyd today’s existing
9



multicore processors assumes a particular programming model amdesr its
specific memory access semantics. While traditional x86 tanthres by Intel and
AMD implement conventional coherent shared memory, more recehitegtares
adopt new models: IBM Cell [41] employs a stream programming haodethe Sun

Rock [46] supports transactional memory.

2.3. CHARACTERISTICS OF MAJOR MEMORY MODELS

2.3.1. SREAMING MEMORY SYSTEMS

The stream programming model expresses the application in térommputational
kernels communicating via data streams [1]. A stream iqaesce of similar data
elements. A kernel is a compute function which performs thie sgerations on each
data element in the stream. Data streams are passed frdaroakto the other. Each
kernel consumes one or more input streams and produces one or moreweds.
Expressing the program in terms of kernels and streams exXpatbeparallelism and
communication patterns in an application. Figure 2-3 shows an exapyieation

expressed in the stream programming model.

Kernel

3x3
Convolution

3x3
Convolution

X7
Convolution
X7
Convolution

Stream

Figure 2-3. Example streaming application, stereo depth extraction

A stream programming model is mostly suitable for applicatwib lots of data

parallelism, where operations on one data element are largelyeimdient of other
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elements. Signal processing, graphics and media applicationseangost important
classes of such compute-intensive applications. These applicativasabandant
amount of parallel computations with a relatively high ratio of mai@® operations to

memory acCesses.

Streaming applications usually have regular, statically aablgzmemory access
patterns, with little or no global data reuse. Most of the lgcafit streaming
applications is in form of producer-consumer communication, where produced dat
stream is either passed to another compute kernel or used bgxthigeration of the

same kernel.

In the stream programming model, software is responsible foagag all memory
references and communications between compute kernels. No impteishiaring
and copying occurs in the system. This provides the memoryrsysta the potential
of achieving better performance and energy efficiency, since arsger and
compiler can orchestrate data accesses and communicationsughihnmre accuracy
and efficiency. Because system behaves proactively underaseftwontrol, all data
transfers can be started ahead of time and before the dataaflyaecquired. Such
overlapping of computation and communication/memory access (usualsecefo as
double buffering or Compute Transfer Parallelism, CPT [48]) |¢ad=etter latency
tolerance in the streaming systems and applications. Performémgory transfers
with better accuracy and variable granularity, results in reffreient usage of off-

chip memory bandwidth as well as better local storage occupation.

Because of its relative simplicity and the fact that alnafisispects of the system are
controlled by software, stream programming model has been chap@enumber of
different architectures, including general purpose architectui@seafnware
[49][50][51]) and GPUs [55]. Researchers also have proposed programminggasgua
and run-time environments that implement stream programming rtradsparently,
encapsulating the underlying hardware from the programmer. Exaroplésese
systems are Stream Virtual Machine [56], Streamlt [54] andu&a [57][58].

11



However, streaming model has been demonstrated to achieve betempace on
the streaming architectures, such as Imagine media proca$&5p][60] or Cell
Broadband Engine from Toshiba/Sony/IBM [41][48][61][62].

In a streaming memory system, local memories are exposkd software and can be
addressed explicitly. In some streaming systems localanesnare the only memory
available to the processors for fetching operands: off-chip gloleahory cannot be
directly accessed (such as Imagine and Cell). Hardware deova hierarchy of
storage locations and communication bandwidth to move data between Ra&
transfers between main and local memory are in the granudrigyreams, which
might be of arbitrary lengths. Therefore, hardware has to prdasgteand efficient
memory copy facilities to move data between local memoriebetween main
memory and local memories. Such transfers are usuallpadield to dedicated DMA
engines (e.g. Stream Controllers in Imagine, Memory Flow Cadertsah Cell), which
support a variety of addressing modes for memory gather/scafterations
(sequential, strided, indexed, etc.), as well as queuing mecharosnperforming
back-to-back transfers without the intervention from the main processor.

In general, a streaming memory system has simpler and morgy ea€icient
hardware since it avoids complications of cache management and adutrence

protocols, but instead pushes the complexity of memory management to the software

2.3.2. @HERENT SHARED MEMORY

While managing all the communication and data transfer in saftyatentially
provides better performance and power efficiency, it often proves iolweden on
the programmers. Rather than performing such explicit mamags, processors can
rely on caches to capture temporal and spatial locality of datesses. Since
hardware transparently provides the best-effort locality managencaches are
favorable for applications with dynamic control and unpredictable mearesses

which are difficult to statically analyze, such as desktop and enterppseadions.
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In cache-based system, all the local storage is used to iepleraches and off-chip
memory is the only directly accessible storage. The granulafitdata transfer
between on-chip and off-chip memories is a cache block. Hardwsreises a fixed
allocation and block replacement policy for transferring bloaksveen cache and
main memory. In these systems, off-chip memory address spafearned among
processors and all communication between processors is perfornreadiyg and

writing locations in the shared memory.

While this model simplifies communication, it complicates theesgshardware since
multiple copies of the same cache lines might be present in edifferaches.
Therefore, in cache-based systems, hardware is also respofwmiblgroviding

processors with a consistent view of the shared address spaocgpleynenting a
coherency protocol. Coherence protocols ensure that copies of aaeheeplicated
in the system are exactly the same by defining a set ef na be followed by

hardware at the times processors attempt to read or write shared memtopdoca

Coherence protocols either imply propagation of write data from onesgzwcs
cache to others (update-based protocols) or ensure that upon aricatiodj only
one copy of the cache line exists in the whole system (invalidatsed protocols)
[69]. In both cases, hardware has to locate all the current copiee chche line to
invalidate or update the data, as well as find the most up-to-olayenhen satisfying

a processor’'s read action. Depending on the scale of the sybiraedrch for a
specific cache line is either broadcasted to all possiblesh@yus-based, Symmetric
Multi Processarsystems) or a dedicated entity in the memory system ddiliectory,
keeps the sharing information to identify possible sharers whessaagegdirectory-
based, Distributed Shared Membrgystem). Upon a write, the system sends state

inquiry requests to identify sharers and invalidate copies or adjisstldipon a read,

! Symmetric Multi Processor (SMP) systems are tresan which main memory has equal distance (in
term of access time) from all processors. Typicalfiguration of such systems has a central shared
bus that connects all processors and main memory.

2 Distributed Shared Memory (DSM) systems are mudtipssors in which main memory is distributed
among processors. Processors are connected tot@clover an interconnection network.
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the same state inquiries locate and acquire the most up-toeggtéor the requesting
processor. Coherent shared memory systems also have to enforte serialization
property, serializing writes to the same location from differpmicessors, by
providing a serialization point. In SMP systems, the shared busfosetcessing
main memory serves both as a serialization point and as a lsbadeehanism for
sending state inquiry or data update requests. In DSM systems the hom
memory/directory controller serves as the serialization pohmtewalso identifying
potential sharers, and sends explicit, point-to-point state adjustmentdata

update/acquire messages to all the sharers.

In shared memory systems in addition to the coherence protocah(wlitates the
rules for accessing a specific memory location by all pgme} hardware has to
provide the set of regulations that governs ordering of memoryssascés different
memory locations. More specifically, hardware should clearly ifyetitie ordering
guarantees it provides for completing memory accesses issued diftenent
processors. This information is imperative for developing paralldlvacé, since
these rules define semantics for processors communicating viedshamory.
Collection of these ordering regulations is usually referredstsystem’smemory
consistency model[63]. The consistency model limits the implementation
optimizations that can be made, such as overlapping and re-orderingnadryn
operations, because they can disturb the order of memory accesses.

The shared memory programming model relies on low-level synchtomza
mechanisms such as locks and barriers to provide coordination fesasde shared
data. Implementation of these mechanisms is also part of the risitces of the
memory system. They are usually implemented by atomic realiyywrite
operations on the memory locations, such as Test & Set, Comparag @w.oad-
Locked/Store-Conditional. Memory system hardware should be capaplewdling
necessary atomicity guarantees in performing these operatuemsinethe presence of
interjecting accesses from other processors or actions by coheretommpr

14



Given the above issues, shared memory systems usually requirte od rsgher
complex hardware mechanisms. First of all, implementing aeciastolves providing
a correspondence mechanism between local storage and main memodgrirtoor
indicate which portions of the main memory currently exist in ¢aehe. Such
correspondence is commonly made by associating address thghevcache blocks.
In addition, each block should also have a state, indicating its pegssrmy-back
requirements and read/write permissions according to the cohepotecol.
Therefore, in addition to the data storage, hardware has to prexide space for

keeping the associated tags and state information.

Cache management and maintenance of coherence and consistencysrasdally
off-loaded to cache/coherence controllers in the shared memorymsysThese
controllers integrate all necessary facilities in one plde®y monitor and update state
information associated with cache lines, initiate and carrycobierence actions on
behalf of the processor, provide the necessary ordering betweenryrecoesses, and
include the necessary data transfer mechanisms to move cacheldtw&en caches
or between cache and main memory. In addition, they might also bgpeduwith
prefetch engines which recognize and detect streams of casbesmand initiate data

transfers prior to the processor’s data access.

Locality management, coherence, synchronization and memory congistedel are
strongly related in the context of a shared memory system. rasudt, while these
systems simplify the task of programmer by providing bestefiocality and

communication management behind the scene, they are often timesamgiex and

challenging to design and verify than streaming memory systems.

2.3.3. TRANSACTIONAL MEMORY

Speculation has proven to be a useful technique for extracting petfermance.
Out-of-order execution, branch prediction, value prediction [3][4][5], ate all

examples of speculative execution techniques commonly used in modegssmsc
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The common base for all these techniques is to speculatively predict the out@me of

operation before the operation is completed and launch the followingtigmesr using
this value. At the time where the actual result of the operasoknown, if it is
recognized that the speculation was incorrect, all the speclyatixecuted operations

are cancelled and execution is resumed with the actual result.

Speculative execution is also used as a relatively simple métnogarallelizing

sequential applications [6]. Thread Level Speculation (TLS) specijatexecutes
sections of an application concurrently as threads running on differesgors. The
concurrent execution does not consider the logical dependence between
segments. The underlying memory system hardware tracks suehdeéegies and
recognizes any dependence violation at run time. In case of aioml hardware
automatically re-executes the dependent sections afterdhiksréom their logically
earlier sections are produced. Parallel threads in sequeppltadions are created

from iterations of the loops or procedure calls [7].

In addition to speeding up sequential applications, TLS can also theéauspeed up
traditional parallel programs that use locks and barriers fachsgnization. In such
systems, a thread continues to execute the critical regionheofapplication

speculatively, assuming that it has successfully acquired resoessary locks
protecting the region [8]. When a collision is detected betweentiveads that have
entered the same critical region, the system rolls backxgmuted critical region and
re-executes it after acquiring necessary locks. This opttn@enhcurrency extraction
helps to remove the penalty of conservative synchronization and tegptailelism

whenever possible.

Many architectures for thread-level speculative systemge hlaeen proposed:
Multiscalar project [9][11], Stanford Hydra [7][12][13], CMU’s 8MPede [14][15]

as well as others [16][17]. These systems buffer speculatsedtsen the memory
system for two main reasons: first, they speculate over lseggons of the code
where register file is not large enough for storing the Wp8ee results. Second,
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hardware can relatively easily track all the dependences atettddependence

violations by observing loads and stores from different threads.

More recently, TLS proposals have been evolved from a simple speesiyamsm
into Transactional Memory (TM), an innovative programming model for Idpirey
parallel application [18][19]. This programming model finds its rooth@&Data Base
Management Systems (DBMS) [20] where all operations in theedhdatabase are
performed as atomic transactions. By definition, a transactioa sequence of
operations that appear to be executed atomically and instantanequestyfic3lly,

transactions in the TM systems have three major properties [19]:

» Atomicity: Operations within a transaction are either all catgal successfully or
none of them is executed. Hence, the transaction eittramitsas a whole or

abortswithout any visible side effect.

» Consistency: Each transaction starts its operations with a trsigew of the
shared data and leaves the system in a consistent statecarfigietion.
Consistency is defined with respect to the specific applicationsandture and

semantics of its shared data.

» Isolation: Transaction executes in such a way that it does notangveffect on
the concurrently running transactions. Particularly, this propemliesithat all of
the modifications of a transaction are hidden from other transactithin the

system and are made visible only after commit.

The isolation property of the transactions also implies thatahegerializable; for a
system running concurrent transactions, the produced result should bantkeas

produced byneexecution in which are all transactions run serially.

With these powerful abstraction mechanisms, transactional mestaimys to provide
a new paradigm to increase parallel programming productivitgr&®mming within a

transaction is much simpler since programmer writes sequexticed and is only
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concerned with correctness of results within a transaction’sescb@ansactional
semantics are provided by system hardware or runtime sofamdrprogrammer does
not need to be concerned with their implementation. This faciliteégslopment of
parallel programs by shifting programmer’s focus on optimithegparallel software

rather than “getting it right” at first place.

TM is most useful for applications with irregular synchron@atand low probability

of contention, where the dependences cannot be statically analyzecedintied by

the compiler or programmer. For such applications, TM allows pkzatien by
enabling optimistic concurrency: potentially dependent transactwasexecuted
concurrently and are only rolled-back and re-executed if themgesiependence. This
provides a better execution performance in contrast to conservatislerggization in
traditional shared memory model. Delegating all the correctisssgs to hardware
enables compiler or programmer to only identify potentially parakctions of the
application without being concerned about the details of coordination and

synchronization of their parallel execution.

There have been many implementations of the transactional menupgspd by
researchers. These implementations are usually categorize@énclasses. Software
Transactional Memory or STM systems [21][22][23] implememideaations purely in
software and a runtime system, without requiring any modificatmise underlying
hardware. While STM systems are easier to develop and maingaeatdegree of
flexibility in terms of transaction sizes or different opemaal policies, their
performance is poor compared to hardware TM systems due to rumtamieeads for

tracking transaction read/write sets and managing commit/undo logs.

Hardware Transactional Memory (HTM) systems directly iimq@et transactional
semantics in the hardware. LogTM [24][25][26], Transactional Coheresud
Consistency (TCC) [27][28] and UTM/LTM [29] are example impleragahs of
HTM systems. While achieving better performance compared b §/stems, HTM
systems usually are limited by fixed amount of hardwareuregs available for
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tracking transactions, e.g. limited buffering space foraasaction’s modifications.
HTM systems therefore cannot handle arbitrarily large traiosesctand fall back to
software mechanisms when a transaction overflows hardwareusgsicin such

situations they usually suffer from the same performance penali&EBVsystems.

Hybrid transactional memory systems (HyTM) rely on a fewdifications in the
underlying hardware system in order to support transactions eégctibut
implement most of the system in software. [30][31][32] are exesnmlf these
systems.

Hardware implementations of transactional memory, like TL$eBys rely heavily

on memory system to provide the key capabilities:

* Tracking: The memory system has to provide mechanisms to kedp dfa
transactions’ read and write sets. These sets are the mkoatipns that are read
or written by a transaction, and are used for detecting depensidratigeen the
transactions to decide when a transaction commits or aborts. Theryngystem
hardware maintains these sets by associating meta-datateirgormation with
the memory locations touched by each transaction. Tracking can foerpesd at
different granularities, such as cache line or memory word, ndépg on the
system.

» Buffering/Logging: All speculative results produced by a tratsacshould be
buffered somewhere inside the memory system and kept hidden from other
transactions. The memory system has to propagate these changbe t
architecturally visible state only when a transaction sutidgssommits. Most of
the HTM systems use the processor’s cache for bufferirgnaaction’s write set,
since it can be accessed very fast and is private, hence thécatmhis can be
kept isolated from other transactions. Alternatively, if the wgxlatre done in
place, undo logs for the modified locations should be kept elsewhere in the

memory so that the effects of the transaction can be rolled back if it aborts.
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» Detecting conflicts: The memory system has to detegt @otential conflict
between any two running transactions in the system. This tasicasnplished by
cross checking a transaction’s write set against other ttamss read and write
sets. A conflict is detected if both transactions modify saramory location or a
transaction modifies a memory location that is previously readagther
transaction. Conflict detection can happen early (eagerly) [19Nwhemory
locations are accessed or late (lazily), when a tramsatiintended to commit its

modifications.

» Committing/Aborting: Committing a transaction’s modifications banperformed
eagerly, by propagating all the modifications at commit time dmmrmemory and
other transactions [27] or lazily, by allowing them to remain llcmad be
discovered by the underlying sharing mechanism (e.g. cohereotoeq) when
they are needed. In case of aborting a transaction, all the afpezwuhodifications
should be discarded, without any side effects. If updates are donaci fhe
locations should be overwritten with their previous values extraotedthe undo

log.

Given the above roles, in HTM systems the memory subsystem hardhaarto
provide extra storage for the necessary state information hasalffering space for
speculative modifications or alternatively undo logs. It also haprowide the

necessary facilities for detecting accesses to sharetrgdocations, very similar to
the coherence mechanisms in the shared memory systems. |n staoe

implementations of the HTM rely on existing coherence protocols ftectieg

conflicting accesses [24]. In addition, hardware has to have funatyofaal keeping

intermediate changes of a transaction isolated from other ¢teorsaand atomically
make them visible at commit time or completely discard them at abortTimeeefore,

in general, the implementation of the memory system hardwarel T is more

complicated than shared memory systems since it has dehtatactions with the
system software.
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2.4. COMMONALITIES BETWEEN MODELS

When considering all the memory models discussed above, one can observe
similarities between them, most importantly requiring simil@sources for
implementing the desired functionality. First and foremost, all nsodelve a
hierarchy of storage elements: data storage for storingdas@rand state storage for
keeping associated meta-data along with it. They utilize conuatiom resources
(channels and message send/receive engines) for data trdretfeeen storages and
coordination of accesses to shared data. Lastly, in all the mdaets is a set of
external logic entities or controller agents for implementicgesas protocol and
providing assistance in completing processors’ memory referehaisslogic usually
serves as request generator and/or performs control, sequencinghetliliag
operations in order to execute protocol actions. DMA engines inmgtriganemory
system, cache/coherence controllers and prefetch engines id shamgory systems
and cache/commit controllers in HTM systems are instanctdgesé external control

agents.

Furthermore, the operations performed on these common resourcesareesl
similar. One can recognize such similarity at two levalsthe high level, many
protocol actions that implement the discussed memory models haveathe
conceptual functionality. Table 2-1 lists a few of these actiopscifying their
memory model and specific protocol, indicating which other actibag tesemble.
For example, a DMA transfer between the local memoriefeftwo processors is
very much like a cache to cache transfer performed in anyidatiah based
coherence protocol: while there are extra actions for chedmagwriting the state
information, both of the operations essentially copy data from orsqathjocation to
another. As another example, the committing of modifications ofnaacsion in the
TCC HTM is very much like a scattered DMA operation in strgammgramming
model: source addresses are read from an auxiliary struct&@ éssociated with the
cache in TCC, or index memory in streaming), data elementeadefrom the source

memory (L1 cache in TCC and local memory in streaming) amdaattered to main
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memory as well as other caches or local stores. Other exanapé the commit

operation which update the word in the destination cache exactbathe way as an

update-based coherence protocol.

# | Mode Protocol Action Similar
to
1 | Streaming DMA block read (main mem. to local mem. 5
2 DMA block write (local mem. to main mem. 6
3 DMA transfer from one local mem to another 7
4 DMA indexed scatter 10
5 | Coherent | Any Cache refill 1
6 | Shared WB caches Write-back (cache spill) 2
7 | Memory | Invalidation | Cache to cache transfer 3
based
8 Invalidation | Snoop, coherence downgrade/invalidate 11,12
based
9 Update based Updating word in destination caches 10
10| HTM TCC Commit - updating data in other caches and 4, 9
main mem.
11 TCC Conflict detection (lazy) - checking for 8
violation in destination cache upon commit
12 LogTM Conflict detection (eager) - checking for 8
violation upon receiving coherence request

Table 2-1: Similarities between different protocol actions

At a lower level, the primitive memory operations that are lwoed to form the

protocol actions are the same in all of the above models. Theséiywioperations

can be categorized into five different classes, as described below:

1. Data/State read and write — Accessing data and staagesdior performing data

model

communication infrastructure

22

transfers, state inquiries and updates, according to the specific protoool acti

Communication — Sending and receiving request/reply messagesvailabla

Ordering — Guaranteeing a specific order between requeststlfimmmame or

different processors, according to the specific protocol or meroomngistency



4. Tracking — Keeping track of the outstanding requests in thensysb that each
request can be completed after the corresponding reply is récdiles is also

necessary for enforcing ordering between different requests

5. Interpretation of state information — The major differentiatingtdr among
memory models; indicates how the state associated withsdatetipreted and the

flow of control is changed according to the specific interpretation

These operations are essentially the basic blocks for composinggbrattions. One
can describe the activities occurring in the memory sysiardware upon receiving
any protocol request/reply message as a composition of the abovéomgsena the
appropriate sequence. Given the common set of resources and theiatedsoc
primitive operations as well as the strong similarities obseivehe composition of
operations to form protocol actions, the interesting challenge is to construct sainive

memory system that can be “programmed” to implement a given memory.model

Having a programmable memory system not only allows execufppdcations
developed for different memory models on the same hardware subsiatalso
allows the user to tailor the memory system to the specigdsef the application,
potentially achieving better performance. Also, the late bindihgctual memory
protocol to the system hardware makes it possible to fix implatnenterrors by
changing the memory system “program”, potentially avoiding experises in the
underlying hardware and costly chip re-spins.

Considering this common ground between different memory models discudbesl
chapter, the following chapter presents our proposal for the rsaivmemory system
architecture. We explain system’s resources and operationsoia details and
express the primitive operations discussed in this chapter asisémuction set

architecture for the controlling agents in the memory system.
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3. AUNIVERSAL ARCHITECTURE FOR MEMORY
SYSTEMS

After reviewing the major memory systems used in today’s multic@eepsors in the
previous chapter and recognizing common resources and operations in their
implementation, in this chapter we propose a universal memoryrsysthitecture
which enables the realization of different classes of memoryIsiodehe same set of

hardware resources.

Executing a processor's memory access instruction involves panfpran set of
actions in the memory system hardware.“rAemory model” defines the set of
requirements that should be satisfied by the memory system exeuting each
memory access instructions. ‘anemory protocol” expresses the set of rules that
should be followed by the hardware when executing a memory aos#sgtion, so

that the semantics requirements of the memory model are fulfilled.

The design philosophy of the universal memory system is verjasitoithe concept
of reduced instruction set (RISC) architectures for microprocgssostead of
providing a fixed sequence of actions in the hardware that conforrasspecific
memory model (or protocol), a universal memory system providest afsbasic,
primitive memory operations as well as flexible means for com@piand sequencing
these operations. The flexibility enables one to develop or adopt anmemdel that
is best suited for a specific application and implement it indvaare by

“programming” or “configuring” the underlying resources.

In order to construct such a generic model, we first have to digm¢he major tasks

of the memory system and recognize the necessary hardwamecess The next step

is defining a comprehensive set of operations on these resourcebedimdl step is

to provide mechanisms that allow meaningful composition and coordination of

operations in order to implement the desired memory protocol. Noteirthadr
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discussion we concentrate on thactional characteristicef the memory system and
operations that it performs internally, rather that on its quamétatharacteristics,

such as size of memories or available bandwidth of the communication channels.

3.1. A BRIEF REVIEW OF MEMORY SYSTEM TASKS

The primary task of the memory system is to store appmicatata. Processors view
the memory as a linear array of storage locations wheleleeation is identified by a
unique address. Applications require a large, fast memory. Howewveday’'s VLSI
fabrication technology, as the size of the memory increases sdatslaesess time. In
reality, the only economically feasible approach to provide anahusf large, fast
memory is by organizing it as a hierarchy of locations: srfedl memories closer to

the processors and larger but slower memories farther from processors.

When running an application, the data should be brought into the closest memory (also
referred to as local, levell, or L1 memories or caches) in dodehe processor to

operate on it faster. Thereforepe of the crucial tasks of the memory system is to

transfer data between levels of the hierarchy in order to bringlaset to the

processor Transfer involves copying the desired data from larger, slon@mories
that are located farther from processor to smaller, fastarames closer to processor,
and copying it back to the main storage after processing finiBla¢a.transfers also
might copy data from a processor’s private memory to anotheegsocs private
memory, when the two processors are sharing data or commugicktiorder to
exploit spatial locality of the data accesses and amortizevitrdead associated with
the transfer, such data copy operations usually involve a feweadjaiemory words,

referred to as a data block, or in the systems with caches, a cache line.

Data transfer operations can be explicitly initiated by tbiwsre via executing
memory copy instruction, or implicitly by hardware, when a menaaigess cannot be
satisfied in local memory, for example after detectingaehe miss. In cache based

systems, the hardware allocation policy decides where to pleke baes in caches at
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different levels of hierarchy and establishes a correspondemnwedrethe locations in
the cache and main memory. In addition, the hardware has to dduoatleewa cache
line should be copied back when being replaced or can simply be dvemwim order
to facilitate such decisions, cache based systems assoo&tgedata or state

informationwith cache lines to establish their correspondence with locatiomsin

memory, express their validity, and whether they need to be copidd drac
replacement. This state information is inquired, observed, and update@rbgryn

system hardware when executing memory access instructions.

In most cache based systems, processors are unaware ofadafersr and state
adjustments that occur inside memory system, and simply viemeheory as a linear
storage array. However, in order to assist the hardware andvechtter
performance, modern processors often include instructions for éyglhdiiating data
transfers and adjusting state information in their caches iatugdevels of hierarchy.
Most common examples of such instructions are prefetch instrudmstrsictions for

locking cache lines or explicitly invalidating and/or writing them back.

Furthermore, in shared memory multiprocessor systems, whepeoa##ssors view
the same linear memory array, multiple copies of the samebttatla might exist in
the caches of different processors. In such settings, it isedpmomsibility of the
memory system hardware to provide a coherent view of the umdgrayray of
addresses despite the fact that multiple copies of the samesadight be present.
As mentioned in the previous chapter, this coherent view is providéollbying a
certain set of predefined rules when accessing a memonyolocaommonly known
as a“coherence protocol’ Invalidation-based coherence protocols have dominated
shared memory multiprocessor systems. In these systemsatiéngbrmation of the
cache line is extended to contain access permissions: whether loae data can be
read or written by the processor. When executing Store instructh@rdware
guarantees that the only copy of the cache line is with thimgvprocessor and when
executing Load instructions, hardware finds the most up-to-date capg ofche line

to read the data from.
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As discussed above, the associated state information plays ana¢ssenin guiding
hardware and helping in making correct decision about data tramsfedata access.

Therefore another major task of memory system is to provide mechanisms fogstor

inquiring, interpreting and adjusting the state information associated with data as

well as finding potential data copieState updates can be initiated when processors
access memory locations (e.g. cache misses), by expldéegsor instructions (e.g.
invalidation or ownership prefetch instruction), or by following et of rules
dictated by memory access protocol (e.g. coherence actions).

In addition to the coherence protocol, which imposes specific rulesstablishing
order between memory accesses to the same addresses, arsraeg system has
to provide the user with a series of regulations that govern the @irdempletion of
memory operations issued to different memory locations. These rdesnonly
known asmemory consistency modgelrovide a base for programmers and compiler
writers to reason about correctness of the developed program or gdnmathine
code. Consistency model dictates semantics of concurrent exeaitioremory
accesses issued by different processors in a multiprocesgemsgind specifies how
processors can synchronize their communication via accessesréa shamory.
Many consistency models have been proposed and utilized by modkpracessor

systems over the past years [63].

As part of the consistency model, modern processors have exmdiciictions for
enforcing order between the accesses they issue to memorg ifils&sictions are
usually known asnemory barriersor memory fences€xecution of such instructions
involves preventing a processor from issuing any new memory operatidnall
previously issued memory operations (from the same processograpéeted. Hence

the third major task of the memory system is providing the orderingapigms

dictated by the consistency model, coherence protocol and memory barrier

instructions.
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Given these three important tasks of the memory system, theofrébe chapter
discusses a universal memory system architecture that ngpromiges the necessary
means for efficiently fulfilling these tasks, but also offeday@tability in supporting

memory semantics of various programming models.

3.2. GENERAL ARCHITECTURE

Figure 3-1 shows high-level logical organization of the universamory system. It
consists of distinct memory elements arranged in levels ofrbley, connected by
communication channels. There are three main elements in the@rpneystem:
memories as storage locations, their associated controllers,candhunication
channels connecting the controllers together. In actual implementatiomgregemight
be organized and grouped differently, however the logical view oinaplgmentation
is similar to Figure 3-1. Note that in this figure we assymaeessors are located at
the top and main memory at the bottom. Memories and controllers c¢imgee
processors hence are referred to as higher-level memoreemiollers and the ones

farther from processor are referred to as lower level ones.

The execution model of the system is based on exchanging medsstgeen the
different components. Operations start by processors emittingprganstructions to
their corresponding Load/Store Unit (LSU). At each level of hodrgr controllers
receive and decode messages, then execute a set of operationsddheneiteived
message. Executed operations might include accesses to the émeatyras well as
composing and sending new messages to other controllers. The combiriedfrine
operations executed by all controllers involved, results in our desuécbme,
satisfying a processor's memory request in compliance withsygEem’s memory
model.
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Figure 3-1: High-level architecture of the memory system

Four major categories of messages are recognized in the system:

Data Transfer Requests: Data transfers involve copying a block of data from one
memory location to another. Data transfer messages usuallyl wlavwnwards
(towards main memory) in the memory hierarchy, attemptingdd/write data blocks
from/to larger, slower memories to faster smaller ones. Thigyt also copy data
between memories at the same level of hierarchy. Transfprests can be short
messages that attempt to acquire a data block for the local mmesnch as cache
misses and DMA gather requests, or long messages writing dldak to a remote

memory such as write-backs and DMA scatter requests.

Data Transfer Replies: Transfer replies are either long messages carryingesseql
data block, such as cache refills or short acknowledgement mgsadgmating that

data copy operation is completed (e.g. write-back acknowledgements).
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State Inquiry/Update Requests. The purpose of these messages is to query and
adjust the state information associated with a data blocks. Thaysaally sent by a
controller to the controllers in the same or higher level and trapelard in the
hierarchy, where data copies are located. These messagsodrecontaining no
data, but depending on the state information they acquire, their corraspaagly
might contain data in addition to the acquired state information. Mastmon

examples of such messages are coherence requests or bus snoops requests.

State Inquiry/Update Replies. Reply messages for state inquiries contain the state
information of the target data block. They also might bring back the data portioe of
target block depending on the state in which they find it. Exampkesegties to

coherence messages that carry data and/or ownership information.

In the following, we describe the memory system resources anchffabilities that

they should provide in more details.

3.2.1. SORAGE ELEMENTS

Memories at each level of hierarchy must not only store thecapiph data, but also
keep the state information that system associates with data. Our logobell does not
make any specific assumptions about organization of the memosastatevel, such
as granularity of the data storage (word, byte, etc.), sizbeofnemory, number of
banks, or even number of state bits associated (However we awmintkeere are
enough state bits available to implement the desired memory mddhd).only

requirement is that all the storage locations have unique addezssss the system
and are addressable by each and every processor. If procesgarseomain memory
addresses (e.g. when local memories are used as caches)t gz devel of the
hierarchy controllers convert the processor generated addrdss tmitjue physical
address of the local memory they are associated with beferapding to access the

local memory.

31



Memories at each level of the hierarchy should support the bast and write
operations on the data and state information they store. As beviiscussed later in
this chapter, data accesses in the memories are usualdedeby accesses to their
associated state information. This is due to the fact thatisfatenation oftentimes
protects the data by encoding necessary access permissiong 8géonpting the
data access, processors and controllers must check the statafionto ensure that
they have the required permissions. Therefore, as an optimizatiometheries can
overlap data and state accesses, provided that the data acmestitioned on having
correct state information. This necessitates support for conditipesations on data
in the memories, as well as the basic means for propagatingxahdnging state
information between them. Given such optimizations, sequential operainoitise
state and data can be converted into concurrent operations, retheciatency of the
overall memory access time which is particularly advantagemuisif memories due
to the frequent processors accesses. The next chapter presemthitecture of a
basic storage element which enables conditional operations and exabfatiye
necessary state information, mostly based on the work by Ken Mai et. al. [71][70]

3.2.2. ®MMUNICATION CHANNELS

Communication channels are used for exchanging messages and movibgtwatn
different memories in the system. In some systems in additothe memory
hierarchy there also exists a bandwidth hierarchy in the mesyatgm where the

available bandwidth decreases as traveling downward in the hierarchy [1][2].

In practical systems communication channels might be implementedny ways: as
shared busses or a type of interconnection network with point-to-pointatmmse In

our model we do not assume any particular structure for the deamany specific

latency/bandwidth assumptions associated with communication mechanisms

However, we require the communication infrastructure to satisfy two recgmts:
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1. Lossless channels: we assume that any communication chanmestéidishes
a connection does not drop exchanged messages; at the abstract level,
communications are assumed to be lossless. It is the sole rédpygrs the
underlying channel implementation to either guarantee deliveryes$ages or

recover from failures by using retransmissions or any other recoverydgaehni

2. Point-to point ordering: We do not require any of the channels to be
completely ordered, however, we assume that point-to-point communication
between any two entities on a channel are ordered. That is, m@nagrof
messages occurs in a point-to-point connection between source and
destination. If the underlying channel provides virtualization tsesliand
communication occurs over virtual channels, the assumption is that
communications between any two points over any virtual channel isedrder
This assumption simplifies satisfying the ordering requireméatisa memory

consistency model might place on the memory system hariware

3.2.3. ASSOCIATED CONTROL LOGIC

We assume that at each level of the hierarchy there assotiated controlling agent
that executes the necessary operation to satisfying a prdosessmory request.
While memories and communication channels are considered passwarces
controllers are active resources of memory system, issuingtioperghat utilize the
passive resources. The processor’s interface to the memoemsytbie Load/Store
unit, is considered to be the top-level control logic, communicatinecttyr with
processor’s data-path. The following summarizes major tasks abtiteollers in the

universal memory system architecture:

* Address mapping/trandation: Controllers, including LSU, map an effective

address generated by the processor to the address of phgsat#dri(s) in the

# A common technique for providing such ordering rosa unordered physical interconnect is using
timestamps or sequence numbers, similar to TCR@obor timestamp snooping [77]
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local memory, where the requested data might reside. The mostoroexample
of such mapping occurs in set-associative cache structuress wbetrol logic
extracts the cache set index from the received addresseeskas all the ways in
the set to see whether data is available or not. In addition tm#pping phase, a
translation operation might also occur (typically only in the praresgerface
logic) which converts the effective memory address from virdalress space to
the system-wide, physical address space. Other controllers mephysical
address into addresses in the appropriate locations in their asdotoatl

memory.

Buffering and scheduling: Controllers schedule and perform all data read/write
operations from/to the memories at each level of the hieraiingy take all
necessary actions for buffering data and sending/receivingovér the

communication channels when data transfer is required.

Message composition/decomposition: Control agents are also responsible for
generating, sending, receiving and decoding messages used fortingqaesl

transmitting data blocks and/or associated state information.

Finding data copies. When it comes to finding copies of replicated data blocks
and performing state adjustments, each controller is responsilfiading copies
and updating state information in its own sub-tree. The sub-treecohtsoller
contains memory associated with it and all higher-level memdhes are
connected to this controller. (Figure 3-2). Controller can locafges either by
broadcasting inquiry messages to nodes in its sub-tree or byngebpi sharing

information internally as done by directory controllers in DSM systems.
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Messages 2 and 4 are state inquiry messages looking for copies,
resulted from data transfer messages 1 and 3

Figure 3-2: Finding data copies by searching controller’s sub-trees

* Tracking and ordering: Controllers, including the processor’s interface logic,
keep necessary tracking information about memory requestsdbeiye and are
currently processing. This information is used for completing resjuatier
receiving corresponding replies. Keeping this information is atsergial for
enforcing any ordering constraint dictated by the memory stamgy model or

coherence protocol.

Controllers are the operating agents in the memory systeme wiegimories and
communication paths provide means for storing and moving data, the actual
operations for reading/writing as well as sending/receivaitg dnd state information

are performed by the system controllers. The next sectionilescthe general
architecture of these controllers and elaborates on the oper#tieysshould be
capable of performing. Afterwards, we discuss how these basictiopsraould be
combined for handling protocol actions and request/reply messages. evieige
memory protocol at the implementation level is decomposed into af gEtmitive
operations, a user can map a wide variety of memory protocols on this universal model
by appropriately defining protocol messages and sequence ofiopgraach must

perform.
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3.3. CONTROLLERS

The above mentioned tasks for controllers can be decomposed into albseticof
operations on the memory resources. This section explains the ganohitdcture of
memory system controllers, the state maintained within them,hendet of abstract
operations they provide. These abstract operations either #ifettternal controller
state or operate on the local memories and communication charnmelarchitectural
state of the controllers and the set of operations effectivéilyedean Instruction Set
Architecture (ISA). The next section explains how theseunstms are put together

in order to handle protocol actions and request/reply messages.

3.3.1. QRGANIZATION

Figure 3-3 shows the internal organization of a controller. It hesfaces to the
communication paths and memory, a set of internal status holdingersgis keep
tracking information of memory requests as well as data bufterdemporarily
storing data blocks. The memory interface has an address mappikghabes used

for accessing local memory. All the interfaces can acttesinternal data buffers in
order to read/write data. A sequencing mechanism coordinatdgealictions within
the controller, including receiving incoming and sending outgoing message
managing tracking information in the status holding registessjng local memory

accesses and interpreting the collected state information.

The communication interfaces are used for composing outgoing mesaades
decoding incoming ones. They should contain the necessary flow coethbhmsms
to stall further communication when the interface runs out of the rbsfface.
However, the utilized flow control mechanism should independently coetjakests

and replies, to avoid circular buffer dependency and deadlock [69].
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Figure 3-3: Internal organization of a controller

A set of internal status holding registers hold the trackingrmmftion of the requests
that are currently being handled by controller or the requestsaatbataiting for a
reply from lower levels of the hierarchy. For each requestagesthat is received, the
controller allocates a register and records the necessaikyngainformation. This
information is retrieved and used for completing the processing whenesponding
reply is received. It is also used for enforcing any necessdgying between memory
requests. We do not assume any specific mechanism for assocedumests and
replies. This association can be realized by tagging thesesgaled reply messages or
by guaranteeing that requests are processed in order, vlbieis aontrollers to use a

simple in-order queue structure for storing and retrieving tracking infarmat

Controller operations are triggered by an incoming messages fedeived and
decoded at one of the communication interfaces and then is passed centiz
sequencing logic. The sequencer executes (or schedules) theangagserations for
handling the message which depends on the type of message recba/execution
model of the controller is assumed to be sequential; each operatilmgically

completed by the controller before moving to the next one in the sequence.
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The main memory controller at the bottom level of the hierarctsy tha same
organization, as other system controllers with the exceptionttibalyi has a single
communication interface and channel. The processor interface Hogiever, has a
slightly different organization (Figure 3-4). It does not requitta taffers, since there
are no block transfers from/to processor’'s data path. However, itesadarapping
and translation logic is more sophisticated and contains mechafosrasenverting

addresses from virtual space to physical space (e.g. Tiandlaok-aside Buffers or
TLBs). However its controlling logic is generally much simg@ad is integrated with

the processor’s pipeline.

Data Address Control

Processor

? Data Path

Processor

————— Interface
Address CE&EET
Transla_tion | | €=\ Sequencing /<P Holding
Mapping . Registers
— I
Y & #
Memory Interface Communication Interface |

A A

Communication Channel

Figure 3-4: Organization of processor interface

3.3.2. NSTRUCTION SET ARCHITECTURE

Upon receiving a message, controller executes a sequence otlicliosts” that
perform certain operations on the memory system resources intorgescess the

received message, very much like executing an interrupt handler in a processor

3.3.2.1. Internal State
The internal state of the controller consists of tracking infaonaabout outstanding

memory requests, blocks of data being transferred by the centralhd a few
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information fields for managing controller operations. Status holdigisters keep
the necessary tracking information about the received requestse Bigushows the

necessary information fields that should be kept within each register. THdsefi

Valid: Indicates that this register contains information of a valid réques

- Source address: address of the location in which the data shoultchedfe

from, can be a local or global address depending on the type of the request

- Destination address: address of the destination where data sleouldtten

into, can be a local or global address depending on the type of the request
- Type: Type of the request
- Requestor: Identifies the source of the request, e.g. processor IDYPort

- Data Buffer index: The index of associated data buffer. Adiiarely each
status holding register can be statically associated wittiaabddfer and use

the same index.

i Vi State i Data i} { Vi State | Data

V Type ;SrcAddr DstAddrE Requestor DB Index | Valid in n i on i iof o | o

Status Holding Register Data Buffer

Figure 3-5: Information fields in SHR and data buffer entries

Since each memory request can potentially involve a datadramsich SHR entry
should have access to a temporary data buffer. Data buffers cdtalath words of
the memory blocks that are being read or written by contréligientially there is a
valid bit per each data element (word or byte) to identify drethat element is valid

or not. Information fields for a Data Buffer entry includes (Figure 3-5):
- Valid: Indicates that this entry is allocated and associated with Bnh SH

- Datai: ith data word within data block
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- Statei: State information associated with data word
- Vi: Valid indicator for data element

In addition to SHRs and data buffers, controller needs three sepegseers for

storing the result of its instructions. These registers are:

- Accumulator (AC)Temporary location for storing the data or state information

that controller is currently working on

- Result_Flag (RF)Stores the result of the executed instruction, for example a

state comparison instruction or SHR allocation instruction.

- SHR_Index (S)Stores the index of a SHR entry. It can be the next available
SHR entry, index of the entry indicated by received messagky (reessages),
or index of the matching entry when executing a SHR lookup instruction.

The usages of these special registers are discussed in the next subsection.

3.3.2.2. Instructions

Controllers perform a set of primitive operations on their intestadke as well as local
memory and communication resources. These operations are perforragdciting
corresponding “memory instructions”. Controller instructions are dividéal five
categories. Data and state access instructions are performgue docal memory
addresses using the memory interface. Send/receive operatioazearged by the
communication interfaces. Instructions related to internal statlecontrol flow are
performed by the central sequencing logic. While the exadhsyand semantics of
each operation/instruction depends on the actual implementation of tmelleona

summery of the instructions is listed in Table 3-1.

Table 3-2 describes the effect of these instructions on the ihtennioller state. In

this table,SHR andDB indicate the status holding register and data buffer structures

Reqg means input request to the controller &ni$ the size of a data block. Note that
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when writing a word into data buffer, both state and data fadltlse word are written

and V flag is set to one.

entry

2S

it

e

Category | Instruction Description
Data Word Read Reads a word from local memory into data buffer or
Accumulator
Word Write | Writes a word to from data bufferAccumulatorto local
memory
Block Read | Reads a data block from local memory to a data buffer
Block Write | Writes a data block from a data buffer entry to local
memory
State State Read Reads state information associated with data into
Accumulator
State Write Writes state information associated with data with
Accumulatorcontents
Tracking | Load AC Loads an immediate value into fkecumulator
Info / Compare Comparets_ccumulatorcontents W_ith a predefined bit
pattern. AdjustfResult Flagaccordingly
Internal SHR Allocates next available SHR entry by setting its Valid bit to
State Allocate one and §toring its inde>_< in tIBHR Indexegigter_. If there
is no available entry, adjusts tResult Flagto indicate that
allocation was not successful.
SHR Write Writes different fields of the SHR by a request’s tracking
information
SHR Search | Searches SHR structure to find an entry with matching
fields (typically memory address or requestor). Adjusts
Result Flagaccordingly If a matching entry is found, storé
the index of it in th&SHR Indexegister
SHR Free Releases a status holding register by setting its Vatd b
zero
DB Allocate | Allocates next available data buffer entry by setting its
Valid bit to one and storing its index in thppropriate field
in the SHR entry. If there is no available entry, adjusts tf
Result Flagto indicate that allocation was not successful
DB Free Releases a status holding register by setting its Vatil b
zero
Flow Branch if Checks thResult Flagand changes flow of control
Control depending on its status
Comm. Send Sends a message on a given communication interface

Table 3-1: Controller instruction set (ISA)
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Message receive is another basic operations performed by conatmminterfaces.
However it is not performed as result of executing an instruatiaine controller.
Receivers accept messages and pass them over to the seqgtrahcing logic for
processing without relying on any specific receive instructioie Lthe interrupt
handling in a normal processor, where receiving an interrupt causpsottessor to
jump to the beginning of the interrupt handler, receiving a messages execution
of a sequence of instructions in the controller which form the apptepmessage
handler. If the receiver detects that the message is a refdgds the index of the
SHR entry corresponding to the request intoSKER _Indexegister before passing the

message to the sequencing logic.

Instruction Operation

Word Read | DB[ SHR[ S] . DBl ndex] [ Req. Addr ess%.] <- Men{ Req. Addr ess]
Or: AC <- Men{ Req. Addr ess] . Dat a

Word Write | Menf Req. Addr ess] <- DB[ SHR] S] . DBI ndex] [ Req. Addr ess%.]
Or: Menf Req. Address] . Data <- AC

Block Read | DB[ SHR[ S] . DBl ndex] [ L-1: 0] <-
Meni ((Req. Address/ L) *L) +L- 1: Req. Address/ L) *L]

Block Write | Menf ((Req. Address/ L) *L) +L- 1: Req. Address/ L) *L] <-
DB[ SHR[ S] . DBl ndex] [ L-1: 0]

State Read | AC <- Menf Req. Address]. State

State Write | Men] Req. Address] . State <- AC

Load AC AC <- I mmedi ate

Compare RF <- (AC == I mmedi at e)
SHR S <- next available entry
Allocate SHR[S].Valid <- 1

RF <- available 2 0 : 1

SHR Write | SHRIS] <- Req

SHR Search| S <- match entry
RF <- match ?2 1 : 0

SHR Free SHR[S].Valid <- 0

DB Allocate | SHR[ S] . DBl ndex <- next available entry
DB[ SHR[ S] . DBl ndex] . Valid <- 1

DB Free DB[ SHR[ S] . DBl ndex] . Valid <- 0

Branch if if (RF) execute target instruction

Receive if (reply messag8) <- Req. SHR | ndex

Table 3-2: Functional description of ISA instructions
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3.3.2.3. Address mapping modes

When executing a memory access instruction, processors usualhatgeatective
addresses in theuirtual address space. This address is translated in the processor’s
memory interface into thphysicaladdress before it is used by memory system. In
cache-based system, the resulting address is the addresbfysical location in the
main memory(since it is the only addressable memory) and still might edtitectly
useable for accessing local memories (which are used asyadhen memories are
arranged as caches, physical address is first sliced intaga index, offset> triplet

and the resulting subfields are used to identify actual phykicalkion(s) to be
accessed in the cache. We refer to the process of convergey &dress into the

address of physical location(s) where data might be fouaddressmapping

Address translation from virtual to physical address space ysadll occurs in the
processor interface. The complexity of this step varies &@mple identity mapping
(where physical address is the same as effective virtuaésg)dall the way to paging
and hierarchies of translation look-aside buffers with differenbudeaity of page

sizes.

The second step of the mapping, which is common to all controllewgling the
processor interface logic, is converting the address into thesadalr¢he locations in
the local memories. Since size and structure of memories in each levehadrtdrehy
is different this conversion is potentially different for eackele Complexity of this
conversion might also vary; it can be any thing from masking sigsificant bits of
the address to performing a full associative lookup on the localonyeto find the

matching address.

Each controller needs to support more than one mapping function at teeissn
For example, a cache lookup operation involves searching all the afaysache
while a cache refill operation only involves accessing a singly of the set-
associative cache. The concept of address mapping is very sorgi@neration of the
effective addresses in the processor using a set of predetideessing mode with

43



memory instructions. Addressing modes in the processor specify hoeffdotive
address is generated based on contents of a registers and alai@waue. Mapping
modes specify which physical location(s) in the local memoeyaacessed based on
the processor generated address. We assume all data andastateites operations

support three mapping modes:
- Direct: Treats received address as the absolute address of thedoawalym

- Cache: Received address is decomposed into <tag, index, offisetH avays
of the cache in which the target address might reside are accessed

- Cache way: Received address is decomposed and used forragtiessiache,

but instead of all the ways, a specific way of the cache is accessed

3.4. SEQUENCE OF OPERATIONS

This section describes the commonly observed processing pattbams handling
protocol actions in the controllers and processor’s interface lagicdascribes how
primitive operations are combined in order to process incoming réwdgt

messages.

3.4.1. ROCESSOR INTERFACE LOGIC

Execution of any memory access instruction in the processofaicgelogic involves
taking the following (logical) steps (Figure 3-6):

1. Ordering: The first step is to enforce any ordering remergs dictated by the
memory protocol (e.g. memory consistency model), between memoegsas
issued from the same processor. This involves searching the siaitling
registers and determining if there is another memory retjpegshas been initiated
but not completed. If the request cannot be issued at this time doeotdaing

regulation, processor will be stalled until the collision is cleared.
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Address translation and mapping: The second step is to determotephlysical
locations in the memory might contain the data requested by processoding

translation from virtual to physical address space.

State access: The next step is checking the state infornessmtiated with
memory location (if any) to determine whether requested dafareisent or
accessible. For example, when executing a Store instruction, the integeckeas
to find out whether a specific cache line is present in the aarctiat is has the
appropriate permissions before attempting to write data.

Data access: If the state information indicates that meawmgss can be carried
out, the physical location containing data is accessed and aectizalread/wire

operation is performed.

Storing tracking information: If the data is not present inltital memory or
cache or if its state information indicates that the operatanat be carried out, a
request message should be sent to the L1 controller to ask foamssisn
completing memory access. But before sending the actual reqezsissary
tracking information is stored internally such that the reqoastbe completed
after reply is received. This information includes the addressnteirested,

destination register inside processor, write data and type of the operation.

Sending request: After storing necessary information about émeorg access
instruction, a request message is generated and sent to the Ildll@otdrask for
assistance. This might involve fetching the requested data fronowles level

memory or adjusting the state such that processor’s operation can be completed.

45



CS. Store Tracking) ) ( 6 Send Request
M Info : q )—)
InstrSg:i?)rrzl 1. Ordering  —3{ 2 U:S;ilsgon/ )—)( 3. State Access)<
w Complete
4. Data Access N
Instruction
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Figure 3-6: Processing a memory access in processor’s interface lo

Steps for processing the reply are usually much simpler and inketlvaning data to
the processor’'s destination register, as well as releasingtatus holding register

used for storing tracking information.

Note that not all of the above steps are necessarily reqoireyery memory access
instruction. For example, a prefetch instruction does not have aADe¢ss step, or if
the local memory of the processor is not organized as a caehwmn the State

Access step might be completely omitted.

In order to reduce execution latency of memory access insimuatid hence increase
the performance, the above steps might potentially be overlappegiation from
virtual to physical address can take place in parallel witkhessing the state
information, a very common technique in systems with virtually-irdeyphysically-
tagged caches [35]. Another common example is execution of Load irsteuict the
L1 cache by overlapping tag comparison with data read in the taehand simply

discarding read data if the tag comparison fails.

3.4.2. HGHEST-LEVEL CONTROLLER

The highest-level or L1 controller directly communicates with @ssor's memory
interface logic. When processor cannot complete a memory astassction it

notifies the L1 controller and asks for assistance in gatheriggireel data. L1
controller also receives request messages from other contatldre same or lower

level of the hierarchy. These can be data transfer requesggugsts that search for
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and update the state information of a specific data block in theiassb local
memory. Each class of requests is handled by taking a commohsseps inside the
controller, very similar to the processor interface logic, la@ws in Figure 3-7.

However there are a few minor differences, as described next.

The ordering step in the L1 controller orders the received regaesnly with respect
to the previous processor requests, but also with respect to retpmsted from
other controllers. Also, if the L1 controller is shared between psocs, the received
request is ordered with respect to requests from other procesfierperforming the
necessary steps, if a processor request is not completed fulbcesss forward
downward in the hierarchy. Reply messages and request messagesother
controllers and are always successfully completed. Note that stequel reply
messages perform the state and data accesses in rederseeguests have to access
state first, since state information guards data. Reply mesdsave to update data

before adjusting the state and making it visible to the processors.

Request

5. Send Request
d (lower level)

Request —)( 1. Ordering )—)(2' Alloc.alelsmre)—)( 3. State Access)—)( 4. Data Access
(proc.) Tracking Info

a) Requests from processor

Reply
(proc.)

6. Send Reply

Structure
Request Repl
q —}( 1. Ordering )—)(2' A”oc.alelsmre)—)( 3. State Access)—)( 4. Data Access)—)( 5. Send Reply )—} ply
(lower level) Tracking Info (lower level)
b) Requests from lower level controller
Structure

Reply —p( L Retieve N 3" 5 pata Access }—( 3. State Access —( 4. Send Reply }—Fp Reply
(lower level) Tracking Info (proc.)
i 5. Free Trackil
c¢) Replies from lower level controller

Figure 3-7: Steps for handling request/reply messages in L1 controller

Figure 3-7 illustrate théogical sequence of steps in handling each message type. In
practice, controllers might overlap and parallelize the stepspipgjining) in order to
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increase performance. Also, depending on the memory model being mapped
functionality of the received message, some of the above stgps Inei unnecessary

and hence omitted from the sequence.

3.4.3. LIOWEST-LEVEL CONTROLLERS

The lowest level controller is the controller associated with main memory. A
system might have multiple controllers at this level if maiemory is distributed
and/or organized in separate banks. In such cases each contraigrdasible only
for a subset of memory addresses. Controllers at this leveiveedata transfer
requests from higher-level controllers to read or write a detek. Like any other
system controller, main memory controllers are responsiblerfdinfy copies of data
blocks when multiple copies of data exist in the system, by sendaggages to

controllers at the higher levels.

Request

4. Send Request .
d (higher level)

5. Data Access )—)( 6. Send Reply )—} Rgply
(higher level)
Structure
Reply N ( T.Retiieve ) ) ( ) 3 C ) 3 ( Reply
. : 2. Data Access 3. State Access 4.Send Repl .
(higher level) Tracking Info ind (higher level)
. . 5. Free Tracking
b) Replies from higher level controllers

Request 2. Allocate/Store
(higher level) —}( 1. Ordering )—)( Tracking Info )—)(3. State Access

a) Requests from higher level controllers

Figure 3-8: Steps for handling request/reply messages in main memanileont

Figure 3-8 shows the processing steps for handling request andnegdages in the
main memory controller. Steps of operations are the same as s@idctm L1
controller.
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3.5. SUMMARY

In this chapter we proposed a universal architecture for a mesystgm in a
multiprocessor setting. This system provides a set of basic, tiggminemory
operations as well as a flexible means for combining and seqgetheise operations
in the system controllers. A user can define her/his desissdary access semantics,
design a memory protocol that implements the desired model, anchenapdrations

and communications of the protocol on top of the available system resources.

In the universal memory system, we recognize three typessofirces in the memory
hierarchy: storage elements, communication paths and control adggntsilize them.

The architecture defines a set of basic operations and stagtere for system
controllers in terms of an abstract ISA. Controllers sequenti@decute these
operations after receiving request or reply messages, very mecame way as a
processor executes instructions. The entire system operateshgnging messages

between controllers at different levels of hierarchy.

The next chapter presents Smart Memories, a reconfigurableonnesystem
architecture, as a realization of the universal memory acthite discussed in this

chapter.
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4. SMART MEMORIES, A RECONFIGURABLE MEMORY
SYSTEM ARCHITECTURE

This chapter presents the Smart Memories architecture, arpkexenplementation of
a universal memory system. Smart Memories [70] is a modulanfigurable
architecture that instantiates common resources and implerhenbasic, primitive
operations of the memory system discussed in the previous chaptlrwh a user to
implement a memory access protocol by allocating resourcesdafiding the
processing steps for protocol requests/replies via composinguerses of basic
memory operations. These sequences of operations, called handtmutiselsy are
executed by controllers in different parts of the system. THabwohtive result of

their execution leads to completion of the desired protocol action.

The purpose of this chapter is to illustrate the implementatidheobasic operations
and sequences discussed earlier. The first section of theeclpaesents an overview
of the Smart Memories architecture and introduces the nocajoponents and their
role in the memory system. Section 4.2. briefly explains the pracet=ments used
in the Smart Memories architecture. Section 4.3. discusses maiardhastate storage
elements, the operations they support, and explains how they are incatpotatthe
physical address space of the system while Section 4.4. prékenisterconnect
infrastructure for connecting the local memories to processocsioSe 4.5. to 4.7.
discuss controller agents: Section 4.5. describes processor interfaceand its
operations, covering address translation and mapping functions, acteskda and
state storage, detecting access faults and sending requesage® Section 4.6.
explains the organization and operations of the local memory contihlle or
protocol controller), and its flexible mechanisms for composing amgieseing
primitive operations. Section 4.7. briefly discusses the architeahdeperations of
the main memory controller. Discussion about the system’s amteection network,
its properties and capabilities is postponed to Appendix A.
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4.1. OVERALL ARCHITECTURE

Figure 4-1 shows the overall architecture of the Smart Memsystem. The system
consists of units calledTiles”. Each Tile contains two processor cores and a shared
processor interface logic, 16 blocks of local memory, and a crogsfeaconnect
which connects the processors to local memories. Tiles are grougeoups of four

to form“Quads”. Tiles within the Quad share a local memory controller, ataned

to as the protocol controller. The shared controller provides the Qutida generic
network interface which allows communication with other Quads anethasf

memory controllers via a mesh-like network.

Memory Controller

nananally - Y/ooonooan
e
- .

/ Memory / |
Memory Controller

Controller b=—=—— Processor Interface (LSU) |

Tile Tile

Processor Processor

—_—— = e

Quad Tile

Figure 4-1: Smart Memories hierarchical architecture

As shown in the figure, there are two levels of the hieranchize memory system:
the first level is comprised of local memories inside tHesTand the shared protocol
controller in the Quad. Second level consists of the off-chip mematyassociated
memory controllers. The system is capable of having multiplehgp memory

modules and memory controllers.

All the communication between processors and main memory isrped through

the protocol and main memory controllers by exchanging messagethevestwork.
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The network is capable of carrying short messages with noodaiagle data word
and long message with blocks of data. Maximum size of the datk Witltin the

message is the same as maximum cache line size supported by the system.

The protocol controller in each Quad receives and handles requesigas from the
processor interface logic in each Tile. After taking any reaxgsactions locally, if the
request is not satisfied it is forwarded to the main memory atartresponsible for
the target address. The main memory controller enforces globalripespef the

memory protocol by sending requests to and collecting repliesdtben Quads when

needed, in addition to accessing the main memory.

4.2. PROCESSORS

Smart Memories uses Xtensa LX2 processor cores from Tensiicthe basic
processing units in the Tiles. Xtensa LX2 is a 32-bit RISC machiith a 7-stage
pipeline and two cycle memory access latency. Tensilica parsesan be configured

for dedicated application/environments in two major ways [66][67]:

» User can choose between many available optional features proywideshbilica
such as MAC units, FPU, VLIW instruction issue, JTAG interface etc.

» User can add additional architectural registers, regidesy, finterfaces, execution
units and custom instructions using Tensilica Instruction Extengidi)
language. Additional features are not only added to the final paycB31 but
also are seamlessly integrated with the rest of the seftteari chain such as

instruction set simulator, assembler, compiler and debugger.

Figure 4-2 displays the architecture of the Xtensa LX2 processe. Our specific
processor configuration includes a 32-bit integer multiplier and dividis, a 32-bit
single precision floating point unit, On-Chip Debug (OCD) and JTA&rfates, the
instruction trace port and a 3-way FLIX/VLIW instruction issuangsvariable

instruction encoding [68].
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In order to integrate the Xtensa LX2 core in the Smart Me&rs@rchitecture we had
to extend the existing memory interfaces using the TIE layjggu&/e added an extra
memory interface port to the processor, called TIE port,laimo the existing
processor instruction and data ports. This port issues a 6-bit dptiede” to the
memory interface logic which indicates what memory operationtéhds to perform.
Our configurable processor interface logic (Load/Store Ueitgives accesses from
all three processor ports (instruction / data / TIE) and retuensssary replies after

completing the issued memory access instruction.

Using the TIE language we also added a few special memoegamstructions to the
processor’s instruction set. These instructions have specific memocesses

semantics and are briefly described below.

Instruction IRAM1
Xtensa LX2 Cache | mamo |
System Bus
Instruction Fetch / Decade |
Base ISA «—»| SDRAM
|GPIO) ] xecution Pipeline ;
TIE = : L
Ports X . ]
G BN v 00 H el g L0

- .
o |- (11T
Slave
(FIFO) Interface
TIE Queue T
Interface ]
RTL or
=
Tl N TracePort [l User-deiined | I B e » | Memory
: TIE Lookup
Interface
" RTLor ™
coP
e L
. Base ISA Feature l Designer-Defined Extensions Data
. Configurable Functions External RTL & Peripherals Cache DRAMo
| Optional Function . Memories & Caches m
. Dptional & Configurable m

Figure 4-2: Xtensa LX2 processor architecture, from [78]
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Synchronized Load (Sync Load): Treats a meta-data bit associated with data word as
a Full/Empty indicator and stalls the processor if this bitei® associated word is

“Empty”). If successful, turns off the bit to indicate that the data word isucoed.

Synchronized Store (Sync Store): Opposite of the above instruction; attempts to
write the data word and stalls the processor if Full/Emptynbditates that location is
“Full”. When successful, sets the Full/Empty bit to one to inditadéthere is a valid

data word available.

Future Load: Same as Sync Load above, but does not consume the data word (leaves

Full/Empty bit as one when successful).

Reset Load: Resets Full/Empty bit to zero and returns the data word to thegs@c
regardless of current status of Full/Empty indicator.

Set Store: Sets Full/Empty bit to one and writes data word regardlessria@ntistatus

of Full/Empty indicator.

Meta Load: Reads the value of meta-data (control) bits associatedheittiata word.

These bits are described in the next section.
Meta Stor e Writes the value of meta-data bits.

Raw Load: Special Load instruction which skips the address translatignirsttne
processor interface logic and treats processor issued addmsgsasl address rather

than virtual.
Raw Store: Same as Raw Load instruction for writing data.
Raw Meta Load: Same as Raw Load instruction for reading meta-data bits.

Raw Meta Store: Same as Raw Meta Load instruction for writing meta-data bits.
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FIFO Load: Reads data word from a memory mat that is configured as@; HIFO
status register in the interface logic is updated withCFistatus information, i.e.
whether FIFO was empty. Memory mats and their operations sgesdied in the next

subsection.

FIFO Store: Writes a data word to a memory mat that is configured B®;HFIFO

status register is updated with FIFO status information, i.e. whether FIE@lva

Safe Load: Reads a data word from the memory address but ignores virtual to

physical address translation errors if encountered.

Memory Barrier: Memory fence instruction that stalls the processor until all

outstanding memory accesses are completed.

Hard Interrupt Acknowledgement: Signal to the memory system that a hard
interrupt was received by the processor; is used only inside interrupt handler code.

Mat Gang Write: Does a column-wise write operation on one of the meta-data

columns in the memory mat (described further in the following section).

Conditional Mat Gang Write: Conditional column-wise write operation on one of

the meta-data columns in the memory mat.

Cache Gang Write: Same as Mat Gang Write, but is issued to all memory mats
forming the cache structure (Section 4.5.1. and Appendix B.1.1. describe how to set up

a cache structure using memory mats).

Conditional Cache Gang Write: Same as Conditional Mat Gang Write but is issued

to all memory mats forming the cache structure.
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4.3. STORAGE ELEMENTS

The most important resources in the memory system are thegestetements or
memories themselves. Memories are used for storing applicatieiseordata and
associated state information. There are two distinct storagetses in the Smart
Memories architecture: the memory blocks within Tiles, cafteamory matgor the

local or L1 memories, and the main memory located outside of th€reffierred to as

off-chip memory

4.3.1. RECONFIGURABLE MEMORY MAT

Memory mat is the basic element of storage in the Smart Mesnsystem. It is an
array of 1024 words where each data word has 32 bits and is aegmant6
additional bits of meta-data or control information. Internal orgaoizabf the
memory mat is depicted in Figure 4-3. A mat consists of daay §1024x32), meta-
data or control array (1024x6), pointer logic and Read-Modify-WR®&IW) logic
which provides atomic update the meta-data information. Adding the R4
simplifies the manipulation of the state information associatéd @ata: instead of
having controllers to read the state information and write new sathe internal
RMW logic performs necessary updates on the state informatiomiéity of this
operation further simplifies the state updates and allows e#eichplementation of
atomic memory accesses instructions such as Test & Set.oE#th components in
the memory mat is capable of performing a few independent apesasnd is

individually controlled by an external opcode signal.
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Figure 4-3: Internal organization of memory mat

bit comparator. It also supports byte-writes using a four bit imask which specifies

which bytes should be written into the array. Compare operations bsimaNer to

read operations: they read the addressed word in the data arragndrmausthe value

on theData Outoutput, while they use the internal comparator to compare this data

with theData Ininput and generate@ata Matchsignal as result of the comparison.

In addition to simple write operations, the data array supports camalittnd guarded
write operations, where the write is performed only if guard and/or condition

signals are activated. This an optimization to eliminate thechraperations in the
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controllers that access the mat: instead of reading and compagistate information
and accessing the data based on the result, controllers caraissuelitional data
access concurrent with the state access, where the dats igoo@sditioned on having
the desired state. As it will be described in the rest ofsétsion, these operations are
particularly useful when memory mats are used for implemen#ingecstructures. A
three bitData Opcodenput dictates the operation of the data array, according to Table
4-1. Guard and condition signals can be configured in each memory mat separately
and are discussed later.

Operation Opcode Description

NOP No operation, idle

Unused Not used, similar to NOP

0
1
Read 2 Read accessed word
3
4

Compare Read accessed word and compare it to input data
Guarded Write Write accessed worduiard signal is active
Guarded 5 Write accessed word if botQuard and condition
Conditional Write signals are active

Unguarded Write 6 Write accessed word

Conditional Write 7 Write accessed worddnditionsignal is active

Table 4-1: Memory mat data array opcodes

The mat's control array is a dual ported memory block that can sspggorhic read-
modify-write operations. A read-modify-write access takes tycles to complete:
read and modify operations occur in the first cycle while theewperation occurs in
the second cycle. The first port of the array is used for carrying out téra@xaccess,
while second port is used by the read-modify-write logic to updatgents. An
internal forwarding logic forwards the updated contents toGbetrol Out output

when the same word is accessed in back to back cycles.

The control array supports read, write, compare, read-modife-varid compare-
modify-write operations. In addition, it receives the s@uard andconditionsignals
as data array and supports guarded and conditional write andnoehiy-write

operations. When performing compares, the content of the addressadnldsat

compared with th€ontrol Ininput and result is reported Bytal Matchoutput. An
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externalMasksignal controls the bits that participate in the comparison. thatethe
Data Matchsignal from data array also participates in generating tiaé domparison

result, but it can be masked out usingMeskinput.

Bits 2-0 of the control array support a special addressing modseTits are capable
of flash-setting or flash-clearing a whole column in a siegtde. In addition, bit 2 of
the array can be conditionally flash-set or flash-cleared basédeovalue stored in
column 1: bit 2 of every entry is set to one or zero if corresponding ibithe same
entry is set to one. These operations, described in Section 4.2n@svigi@ and
conditional-gang-write instructions, are particularly useful fastl clearing a cache
structure or conditionally clearing a transaction’s read anck\8ats after detection a
violation [27]. A four bitControl Opcodenput specifies the operation of the control
array, as listed in Table 4-2.

When performing read-modify-write and compare-modify-write apens the
updated values of the control bits are supplied by RMW logic withenniat. This
logic is implemented as a lookup table with 64 ertri@he input signals to the
lookup table can be selected from values of the six output controlhigtdata match
and total match signals generated by comparators, two comgnals from inter-mat
communication network (described later), and an external four bit opcode cadjedl
PLA Opcode Conceptually théLA Opcodeserves as command input for the RMW
logic and specifies how the output values are generated aftevingcappropriate

inputs. These values are written back to the control array in the next clock cycle.

* Total number of inputs to the RMW logic is 13 bi#s multiplexer chooses 6 bits from the input
signals for addressing the lookup table. Selechadsy for the multiplexer are derived from a
configuration register.
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Operation Opcode Description

NOP 0 No operation, idle

Unused 1 Not used, similar to NOP

Unguarded Read- 2 Read accessed location and write back upd

Modify-Write contents from RMW logic

Guarded Compare- 3 Read accessed location, compare it to input,

Modify-Write write back updated contents gluard signal is
active

Read 4 Read accessed location

Compare 5 Read accessed location and compare to
data

Guarded Read-Modify- | 6 Read accessed location and write back upd

Write contents ifguardsignal is active

Guarded Conditional 7 Read accessed location and write back upd

Read-Modify-Write contents if guard and condition signals are
active

Guarded Write 8 Write accessed locatioguairdsignal is active

Guarded Conditional 9 Write accessed location if botQuard and

Write conditionsignals are active

Unguarded Write 10 Write accessed location

Unused 11 Not used, similar to NOP

Gang Write 12 Write specified column (2-0) with given data

Conditional Gang Write| 13 Write column 2 with data if correspondingil]
column 1 is one

Unguarded Conditional | 14 Write accessed location dondition signal is

Write active

Unused 15 Not used, similar to NOP

Table 4-2: Memory mat control array opcodes

Each memory mat is also equipped with a pair of head/tail pointeish make

memory mat suitable for implementing hardware FIFOs. An eXteorarol signal,

FIFO select enables the FIFO behavior by selecting the address sourdeefdata

and control arrays (Figure 4-3). Head and tail pointers are iecrtech when mat is

accessed in FIFO mode: read and compare operations incrementath@dieter

while write operations increment the tail pointer. When perforngngrded and

conditional write operations to the FIFO, the tail pointer is menmeted only if guard

or condition signals are active.
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Pointer logic has a configuration register that specifiesiépth of the FIFO. When
the depth of the FIFO reaches this register, next write operétihich writes a full
FIFO) will cause thd=IFO Error signal to become active. The same output signal is
activated when a read tries to access an empty FIFO. Incadthtthe depth register,
there is a user controller threshold register which sets uplft Warning threshold;

if the depth of the FIFO reaches this threshol&lIO Full signal is asserted to
inform the user that FIFO is becoming full.

Each mat can send and receive two bits ovemger-mat communication network
(IMCN). This network is a fast path for exchanging control atate information
between memory mats to implement composite storage strustuwresas caches. For
example, when memory mats are used as caches, IMCN propagdtesshit
information from mats storing line tags to data storage matkhatothey can take
appropriate action.IMCN_out outputs of the mat are controlled by separate
configuration registers and can be selected to be either one sikthentrol bits (of
the location accessed in the current cycle), or the results abthparison operations
(data match or total match signalBYICN_in inputs are used by the RMW logic in

generating new values for control bits or useduwesrd signals inside the mat.

IMCN can perform a logical OR operation on the control signalkeaeldd from

memory mats before feeding them back. This allows the control infiam&om

more than one source mat to be combined before being passed taidastiads. As
an example, consider an implementation of a two-way set-asseciedche that
implements an LRU replacement policy. The logical OR ofTtbal Matchsignals
from the tag storage mats is the cache hit/miss indicatos.hitimiss indicator is fed
back to the tag storage mats using IMCN to update the LRU information.

IMCN allows the contributing mats of a logical OR operation tcspecified via a
configuration register. For each destination memory mat, thecasedefine which
source mats should participate in the logical OR operation. Betseg are defined
separately for each IMCN bit, resulting in total of 32 maskstegs in the IMCN.
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Figure 4-4 shows how the logical OR operation is controlled when ndeiag

IMCN_insignals for a memory mats.

IMCNi_in[0]

s [ IMCNO_Maski[150] |

{IMCN15_out[0], ..., IMCNO_out[O]}

Figure 4-4: Logical OR operation in IMCN

The guard signal in the mat can be selected to be any logic functidheofwo input
IMCN_in bits. In the above example of a cache, assuming that the hit/miss information
is broadcasted on th&CN _in[0], the guard signal is selected to be equivalent to
IMCN_in[0]. Theconditionbit, controlled by a separate configuration register, can be
selected to be any of the control bits read from control arrayeample of using
conditionbit is implementing special type of store operations whichsr@aneta-data

bit as a Full/Empty indicator for the word. This special “Sypoime Store”
(SyncStore) operation writes the data word only if associatetERmyty control bit
indicates that location is empty. Data array uses a conditiontd wperation to
implement SyncStore, by setting the condition to be Full/Empty==1'bhd

conditionis not evaluated to true the write operation is discarded.

In summary, even though data mats serve as basic storage unitsaf@ndastate

information, they support a rich set of logical operations on datatatel bits, which

allows optimizing and overlapping of data and state accesses drocessors and

local memory controller. Having a dedicated network for exchangiagtrol

information allows mats to be used for implementing composite mestargtures

such as caches, where control information should be sent from owné Stetrage
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elements to others. Details of how the memory mats are setrumplementing a

variety of cache structures are discussed more in Appendix B.

4.3.2. MAIN OFF-CHIP MEMORY

Off-chip memory serves as the main storage for applicationadiatas controlled and
operated on by the off-chip memory controllers. Smart Memories dsppaitiple
off-chip memory modules, each one controlled by its dedicatedonyecontroller.
System can be configured to have one, two, four, or eight separenteory
controllers. When there is more than one memory controller prestmg gystem, the
addresses are interleaved between different controllers.ndgstgports interleaving
factors of 16, 32, 64 or 128 bytes. Note that the interleaving fabtarld be at least

the same size as cache lines (if system implements caches).

Off-chip memory is viewed as an array of 32-bit words simdamemory mats, but
each word is associated with only four control bits. These fouratdiits map to bits
3-0 of control array in memory mats. In other words, when simplyiocggire words
from local memory mats to main memory, the four least siganti bits of the control
array are saved in the four control bits and bits 6-5 are lost. \B4@nng data from
off-chip memory to local memory mats, bits 6 and 5 in the desimamtiemory mat
are written with zero. Similar to memory mats, the controlibithe off-chip memory

are used for storing state information associated with the memory word.

Main memory supports basic read and write operations, includingaites. It also
can read and write four associated control bits along with or sedasan the main
data word. However, unlike memory mats, there is no support forartsop or read-
modify-write operations. All of the accesses to the off-chip mgnaoe handled by
the associated memory controller which interprets the receiveddepiteld and

accesses appropriate bits in the memory accordingly.
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4.3.3. HYSICAL ADDRESS MAP

Since some memory models like streaming require the locabnesrbe addressable
and exposed to the software, all the storage locations in the Blaarbries system
are mapped to a global physical address space which is $lyaaidorocessors. This
address space includes off-chip memory, all memory mats in teg, Bind all the
configuration locations that control hardware. When accessing aomdorcation,
processors issue operations to a virtual address space. Transtdn@en the virtual
address space and physical address space occurs in the pratestarei logic, as

will be described later.

Figure 4-5 shows system’s virtual and physical address spaeots. size of both
address spaces is 4GB and they are divided into 16 segmentsssBrecdo not
generate any accesses to segment 0-3 of the virtual address spamntSdg7 of this
address space are dedicated to instruction code while segment 8-1Searr for
application data. Segments 0 and 1 of the physical address smacesarved
segments. Segment two contains all of the system’s configurkications while
segment 3 contains all the Tile memory mats. Main (off-chiginry is mapped to
segments 4-15. A segment table in the processor interface lagstates addresses
from virtual space to physical space by simply replacingabemost-significant bits

of the address.
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2GB
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Seg 2 Configuration
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Virtual Address Physical Address
Space Space

Figure 4-5: Virtual and physical address spaces

Memory mat addresses in segment 3 start from mat O inOTéed Quad O and
continue by going to next Tile and Quad, as shows in Fig@eNbte that total size
of the existing memory mats in the system is usually mucHleamnthan a whole
segment (256 MB). In such cases, the upper section of segmettit 3 vempty.

Figure 4-7 shows how all the configuration registers are mapgedohysical address
space. Segment 2 starts by memory mat, configuration regigtéosved by Tile,

local memory controller, and main memory controller configuratiagisters. The
address map can contain up to 64 Quads. However, there are usudtlyfaweac

Quads present in a typical system configuration. In such systegraeat 2 of the
address space will not be contiguous and accesses to locatiohg foort-existing

Quads will cause undefined behavior.
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Figure 4-6: Mapping of memory mats in physical address space
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Figure 4-7: Mapping of configuration registers in physical address space

4.4. TILE CROSSBAR

There are two levels of interconnect in the Smart Memorigsrayshe Tile crossbar
connects the memory mats to the processor interface logic ameld speotocol
controller, while at next level, a generic network connectsd®t@ each other and to
off-chip memory controllers (Figure 4-1). Both of these interconmeechanisms
satisfy the requirements explained in the previous chapter: theyotiodrop

communicated messages and preserve ordering between the two end points.

The Tile crossbar performs arbitration between different sotihe¢sttempt to access
memory mats and has a built-in multi-casting capability tlaat gropagate control

signals to a combination of memory mats specified by a maglré-#4-8 shows the
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interface signals of the crossbar. Each processor has twuctstirts to the crossbar
(instruction and data) and the protocol controller also has two sepandse These
ports are routed through the crossbar to 16 memory mats and eomfiguration
storage block.

(@]
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£ = 2 o 9
Y -
-~ | e
o g o S O

Protocol Controller

Port 0 ‘ )

Protocol Controller
Port1 Crossbar

I

Instr Port Data Port Instr Port Data Port
PO PO P1 P1
To/From
Processor Interface

Figure 4-8: Tile crossbar

Each processor port can potentially access three distinct seatefsimultaneously.
When memory mats implement a cache structure, a processor’s acitessdche has
to be routed to both tag and data storage mats. If the cache hashiamorone way,
there will be a set of mats storing tags (tag mats) andhanseét storing data portion
of the cache line (data mats). When implementing more complexgststaictures, in
addition to the data and tag, auxiliary storage might be required tokempieces of
information. Hence, a third set of mats might be accessed to atardrieve the
auxiliary information from each processor porBupporting three parallel accesses
allows processor interface logic and protocol controller to guestzcesses to state

and data storages. Parallel mat accesses and conditional @t data and state

® For example, a TCC cache [27] uses a FIFO stredtuistore the addresses of a transaction’s write
set. The addresses are written to the FIFO in lehrith accessing the cache.
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bits inside the mat allows overlapping of logically sequential ¢jperand data and
state information, hence reducing total number of clock cycles eghiar completing

memory accesses and improving the overall memory system performance.

Tile crossbar also acts as an arbiter between different sowigcen they want to
access the same memory mat. If there is a collision betéeetwo processors’
accesses, the crossbar stalls one of them. The protocol cons@ksumed to have a
higher priority for accessing memory mats and will stalliding processors. Unlike
processors, the protocol controller ports can only access a sihgiErats and the
set of mats they access are always disjoint. Therefore,nénvsr collide with each

other and crossbar does not perform any arbitration between them.

4.5. PROCESSOR INTERFACE LOGIC

The processor interface logic or Load/Store Unit (LSU) traesldbhe processor’s
memory access instruction into memory mat operations, detectssumcfailure of a
memory mat accesses and in case of failures, asks protocalllesrior assistance in
completing processor’s instruction. In addition, it also translatesetigest’s virtual
address into the system’s physical address and identified valgenory mats the

access should be routed to.

Figure 4-9 illustrates the input/output signals for processorfacee logic. Each
section of the interface is connected to instruction, data angdrtEof the processor

to receive the memory access instructions. The instruction poesisaccesses to
instruction address space while the data port and the TIE porsdbeedata portion

of the address space. The data port issues simple Load/Stovetiostto memory
while the TIE port issues more sophisticated instruction suchnabnized accesses

or prefetch operatiofisData and TIE ports to the processor are 32-bits wide and

® In general, all custom memory instructions adaegrocessor core are issued from TIE port.
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processor can only activate one of these ports at each cyclmstituetion port is 64-

bit wide and can be active along with the data or TIE port.

l€—» SS220Vy Be |
€ SS920V BleQ
l€—¥» SS820Y XNy
l€—» sS220Vy Be |
l€—3» SS90V kleQ
l€—¥» SS920VY XNy
l€—» SS90V Be |
€ SS90V kleQ
l€—¥» SS920VY XNy
€ SS90V Be |
l€—>» SS90V elRQ
l€— SS920VY XNy

)
H_j H_j | H_j H_j
To/From 10 DO | 11 D1
Protocol :
<—> Processor In#erface Logic
Controller g
Processor 0 Interface 1 Processor 1 Interface
5 W) — (7)) =3 o = (9]
2 2 m B 2 2 m B
= [ = = [ =
s s 3 o s o 3 =
= - o S = -
b ° v "
] ]
o -

Figure 4-9: Processor interface logic

The processor interface logic is connected to Tile crossbaransdt of four ports,
corresponding to instruction and data/TIE ports for each processor.sAssskd
earlier, each crossbar port contains a set of three matsapods. The processor
interface logic also has a port for communicating with the shared pratmaobller in
the Quad. This port is shared between the instruction and data plooth girocessors
(10, DO, I1 and D1) and is used for sending request messagescanng replies
from protocol controller. There is an internal arbitration logic gelects the next

available request message for sending to protocol controller.

As discussed in the previous chapter, in the universal memory sgsthitecture, the
processor interface logic is viewed as the top-level contralleich is closely

integrated with the processor’s data path. The rest of thimisetescribes how the
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processor interface logic implements address translation, memcrgss and

communication with L1 controller, mentioned earlier in this chapter.

4.5.1. PECIFYING ADDRESS TRANSLATION AND MAPPING

Converting a processor’s virtual address to its physical locaj)idigs two steps:
translation and mapping. The first step is to translate the adftoessvirtual to
physical address space, which is performed by using a segnbémtatad simply
remapping the virtual segment number to a physical segment nlyhbeplacing
four most-significant bits of the address. The translation keep®shef the address
bits (segment offset) the same. A virtual segment can be magpedto off-chip or

on-chip memory, but not to the configuration or reserved segments.

When a segment is mapped to on-chip memory mats (segment &marg base
parameter specifies which memory mat the segment stants Trhe base is expressed
in form of Quad ID / Tile ID / Mat ID. Since the size dkton-chip memory is much
less than a virtual segment size, a segment size pararestiects the range of the
offset portion. If the offset exceeds the specified segment piocessor interface
logic throws an exception at the issuing processor. Both of the Wabkesize
parameters are expressed in number of memory mats. Theresegmeent always
starts at the starting address of a memory mat and #efsizcan only be an integer
multiple of mat size (4KB). Since memory mats are mapped gianisly in the
address space, a segment can be mapped to any contiguous numbey iof angt
Quad/Tile. Each processor has its own segment table. Figure 4-16 gfestructure
of segment table. Since processors never issue any memorssexd® virtual
segments 0-3, these segments are omitted from segment tadbleara not

implemented.

The segment table also has a few additional features.iEpsbyides the system with
a simple protection mechanism. Each segment has separate fjeadWrite (W)

permission bits. If a processor attempts a read or write tiperaithout having
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necessary permission it receives an exception. Segmentalablspecifies whether
the accessed memory segment is cached or not (C bit). Caslonky applied to off-
chip memory segments; caching any part of the on-chip memsnes allowed. The
On-Tile (OT) bit, if active, forces a memory access to anaamed segment to be
routed to local Tile memories by ignoring the address bitsitleattify destination
Quad and Tile.

R|W|OT|C Re-map Base Size

Seg 15

Virtual Address [31:28] —p| —>» Physical Address [31:28]

Seg 4

Seg 3-0

Processors never issue accesses to segments 0-3, hence
these segments are omitted

Figure 4-10: Processor’s segment table

As mentioned earlier, segment 2 of the physical address spadedicated to
configuration locations. No virtual segment can be mapped to thiscphgsgment. It
is only accessible by special memory operations, RawlLoad/RasvSidrese
operations ignore the segment table and directly access thegbmsimory. In other
words, the processor generated memory address is treated astudle paysical
address, which can be the off-chip memory address or addresseshary mat in the

system (depending on the segment number).

After translating a virtual address to a physical addresscand step determines
which physical location(s) should be accessed to complete theomemccess
instruction. The mapping depends on the addressing mode of the mematyooper
issued by processor, which is specified either by the segmelet (oy Cached/On-
Tile bits) or by the TIE opcode of the memory operation.
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If the accessed memory segment is un-cached, the physiedlofo@ccessed is
identified by the physical address. If this address lies iilleés address region or if
it is forced to go to on-Tile memory mats by setting OTibithe segment table, the
access is sent to the target memory mat specified bygahysidress. If the address
lies in a memory mat in a different Tile or Quad, a help rsigisecomposed and sent
to that Quad’s protocol controller to access the location on behdilegbrocessor.
The protocol controller sends back a reply to the interface Idgic @mpleting the

access.

If the accessed memory segment is cached, the configuratidre afathe dictates
which memory mat(s) should be accessed. A set of cache configuragisters

specify the following cache parameters:

Number of ways (maximum is 4 ways)

- Tag mats: which mat stores the address tags (for each way)

- Data mats: which mats store the cache line data (for each way)

- Cache line size: can be 16, 32, 64 or 128 bytes

- Number of data mats in each cache way: can be 1, 2, 4 or 8 mats

Provided this information, the interface logic can correctlyeslie physical address
to the exact addresses for both tag and data mats and idelmitity neemory mats to
route the access to. Figure 4-11 shows an example cache cordiguwgitih two
ways, a 16-byte line size, and two data mats per each cachelTetal size of the
cache is 16KB. Memory mats 0 and 3 store cache tags and meraiyL n2, 4 and 5

store cache line data.

The address slicer inside the processor interface uses atttee aconfiguration
information in order to generate the necessary signals for asgessihe. Table 4-3

lists these signals.
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Figure 4-11: An example two-way cache configuration

Parameter

Description

Tag mat mask

Identifies memory mats storing cach
tags, used by crossbar for routing
accesses to tag mats

D

Data mat mask

Identifies memory mats storing cach
line data, used by crossbar for routing
accesses to data mats

D

Tag mat index

Used as address input for tag mats

Data mat index

Used as address input for data mats

Tags

Actual cache tags, used as data inpu

tag mats (for comparison)

t for

Table 4-3: Cache access signals generated by address slicer

In addition to the segment table, the TIE opcode of the memorysastssuction

issued by processor also might implicitly specify or affaetaddress mapping mode.

The TIE opcodes that have such effects are listed below:

RawLoad / RawStore: These opcodes completely bypass the segment table and

translation and are sent to the address specified by processathelr words, the

processor generated address is considered as physical addibesdoopcodes and

no translation takes place. The mapping mode for these instructidmsasmapping

hence they never go to a cache.
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FIFOLoad / FIFOStore: These opcodes should always be used for a virtual segment
that is mapped to on-chip memory. Segment table produces a mat nucinelira
the base memory mat for the segment. This mat is then adcasse FIFO: FIFO

select control signal is activated and mat’s input address is discarded.

Cache control instructions (DIWB, DIWBI): These instructions use the cache way
mapping mode and explicitly specify the cache way and indexthiegt access.
Therefore, the access is not routed to all ways of the ¢dahere than one). Instead

it only goes to the way specified by the instruction.

4.5.2. DEFINING MEMORY OPERATIONS

The processor interface logic defines the semantics of @@tes memory
instructions by specifying how these instructions should be daoué and what are
their associated success/failure conditions. If a memory aictstasction fails for any
reason, the interface logic either throws an exception batle girbcessor or sends a
request message to protocol controller asking for assistance in comtietagress.

The processor issues a TIE opcode for each memory accessctiostr which
specifies the type of the instruction. The processor interface itsrkies opcode into
actual operations that memory mats must perform on their intdataland control
arrays. For each TIE opcode issued by processor, the intéofficegenerates data,
control and PLA opcodes for all sets of memory mats that shoulibdessed and
specifies the operations performed on data and associated etdtel(bits), as well
as how the state information should be updated if necessary. Thisnsetha
referred to as opcode translation. For each memory access instruction, iptantia
sets of mats can be accesses (tag, data, auxiliary).fategrthe opcode translation
mechanism specifies necessary control signals for each onesefdets. The crossbar
routes the generated control signals to all the memory m#igveiach set using its
multi-cast capability.
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Necessary inputs for the opcode translation mechanism are theptliie from
processor and th€achedand On-Tile bits from segment table. Each set of outputs
consists of Data, Control and PLA opcodes, as well as Control Isk lsllad FIFO
select signals (Figure 4-12). These signals along with thenmaak and mat index
signals generated by the address translation and mapping logic pativideessary

signals for accessing memory mats.

From Segment Table
Cached On-Tile

L

From 4
Processor —43 Control Opcode
33 Data Opcode
TIE Opcode —~—p| 43 PLA Opcode To Data Port

(crossbar)

L3 Control bits
Opcode Translation » FIFO Select

> To Tag Port
> To FIFO Port

Figure 4-12: Inputs and outputs of the opcode translation mechanism

Logically, the translation mechanism is an array of configumaregisters indexed
using processor issued TIE opcode. Depending on the TIE opcodéaahddand
On-Tilebits from segment table, each of the tag/data/aux accegg@som enabled or
disabled. For example, when a memory access goes to an un-carhedyraegment
only the data access is activated, or when a cached segmaenessed, both tag and
data access are enabled. By modifying the contents of thés tabker can change the
operational semantics of each and every one of the processor mewcuweys
instructions. Additionally, since the table receives the necesdarynation about the
configuration of the local memory mats from the segment tabthed and un-cached

accesses that use the same TIE opcode can be altered independently.
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4.5.3. DETECTING ACCESS FAULTS

After sending control signals to the target memory mats, theslmoseturns the
responses back to processor interface logic, which analyzesctieeck signals and
determines whether the memory operation was successful or naighiaés returned

to the interface logic ar€otal Match, Data Match, Control Out, FIFO FudhdFIFO
Error outputs of the accessed set of memory mats. If the acoesgad to more than
one mat, the crossbar aggregates control signals from each amtessed mats and
returns it back to the processor interface. In doing the aggregatsspar returns the
logical OR of theTotal Matchand Data Matchsignals for each set of the accessed
memory mats. The logical OR @btal Matchoutput from all tag mats serves as the

hit/miss indicator when a cache structure is accessed.

Similar to opcode translation registers, a set of successilaref conditions are
defined for each one of the processor's memory access instrudtiese Tonditions
are expressed as a set of bit vectors for each set of tegesadcmemory mats. The
processor interface logic compares the returned control signalssadghese pre-
defined bit vectors and determines whether memory access ecasng@ished

successfully or not.

Logically this mechanism can be viewed as a content addresabldgFigure 4-13),
which receives the TIE opcode from procesS@chedandOn-Tile bits from segment
table and the returned bit vectors from memory mats and produsaescess/failure
result. In addition, it also indicates whether processor should betstalnot, whether
a request message has to be sent to local memory controletha type of the

request message.
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—» Stall
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Vector
—» Message Type

Content Addressable
Table

Figure 4-13: Detecting success or failure of a memory operation

4.5.4. ROGRAMMABLE REQUEST MESSAGES

If @ memory access instruction is not successfully completedpribcessor interface

sends a request message to the protocol controller in the Quadfts assistance in

completing the access. Table 4-4 lists the information fieldsatieaforwarded to the

protocol controller in the request message. The same mechanisndetiees

success/failure conditions generates the message type and the mesbbgsignals.

ACCESS

Field Description

Type Identifies type of the request

Opcode TIE opcode issued by processor as part of memory &
instruction

Sender ID Tile, processor and port ID of the sender

Address Physical address of the memory location being accessed

Data Write data, if memory access was a write

Byte Mask | A 4-bit mask, which indicates which bytes should be written

Tag Info Information collected from tag mats if request isdervicing a
cache. IncludeJotal Match Data Matchand Control Outfrom
each way of the cache (32 bits total)

Blocking Indicates whether processor is stalled for the memmgsa or
not

Table 4-4: Fields of request messages to protocol controller

The type of the message and blocking indicator are extracted fine content

addressable table that detects the success or failure of thati@perThe tag
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information is supplied by crossbar, and the rest of the fieldexracted from the
original memory access instruction issued by processor. Aftepasing, the message
is placed in a FIFO structure that implements the status halegisters. The head of
the FIFO participates in the arbitration for accessing a pdtie protocol controller
and is sent to the protocol controller after winning the arbitrafibe. request sits in
the FIFO structure until the processor interface receive<lamwaledgement signal
from the protocol controller. The acknowledgement indicates thatatient has

received and registered the request and its processing is started pgocessi

In order to avoid having a large number of status holding regiatade the processor
interface logic, non-blocking memory access instructions (eStpr& instructions) are
taken out of the status holding registers after they arevezt@ind accepted by the
protocol controller. The processor interface then proceeds with setitgngext
request message to the protocol controller. However, even though ttre leilding
register is released without waiting for the reply, a coukgeps track of the number
of outstanding requests sent to protocol controller. This counter mmeated after
sending a request message and is decremented after receiepty anessage. It
allows the processor interface logic to enforce ordering reguotathat only require
knowledge about number of outstanding requests, e.g. memory fences, leut sinc
complete information about non-blocking requests are not maintained, | nibie al
memory orderings are possible to enfdrce

For blocking memory access instructions (e.g. ones that needuta eetresult to
processor) access fault detection mechanism should stall thespoo after detecting
the failure. In that case the information of the request is kefiteirFIFO structure
until the actual reply is received. Usually all the read aasefrom the processor are
blocking operations. Among the write instructions, FIFO Store, Stoce and Set

Store are defined as blocking operations, while the rest of ag@iesses are treated as

" Due to this limitation, the memory consistency o the resulting architecture can only support
weak ordering and sequential consistency
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non-blocking. A configuration register allows the user to control blockingon-

blocking property of each type of the write operations separately.

4.55. NTERRUPT INTERFACE

The processor interface logic has an interrupt interfacecto @ahe processors in the
Tile (Figure 4-14). Each processor receives a 16-bit activeihigrrupt signal, which
allows the processor interface logic to independently issue camybination of

interrupts to any of the processors.

Interrupts are generated in two different situations: First wheari@r occurs during
execution of a memory access instruction. For example, if tiraesd offset exceeds
the segment size (when a virtual segment is mapped to on-chiprg)emr when
processor does not have the necessary permission to access thietskgsuch cases
the processor interface kills the memory access instructidrganerates an interrupt

for processor.

The second situation is when the memory system cannot handle a neeoation
on its own and needs to run a handler code on the processor in orderpletecam
memory access. Such situations are usually encountered wheemiemping
complicated memory models such as transactional memory. For exawiptn a
transaction encounters a data dependency violation, or if it overileviccal write
buffer an interrupt is generated for the processor to run handleracodeesolve the
situation in software. Such interrupts are programmable and quested by the

protocol controller.

When sending an interrupt to processor, the protocol controller can betesten
hard or soft interrupts; while soft interrupts are essentially normal fofrrequests,
hard interrupts force the receiving processor out of stall ifgesar is waiting on a
memory operation. When receiving hard interrupts, the processdiaggdogic un-
stalls the processor and immediately passes the interruptl $mna The only

exception is processor stalls due to instruction fetch; if procassstalled on an
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instruction fetch, the interface logic waits for the fetch yaplorder to un-stall the

processor and then passes the interrupt.

From
Protocol Controller
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Figure 4-14: Interrupt interface to processors

4.6. PROTOCOL CONTROLLER

The protocol controller in Smart Memories implements the L1 coetrofi the

universal memory system. The only slight difference with theratistiew shown in
Figure 3-1 is that the controller is shared between all the ggore in a Quad. It
implements the memory ISA that discussed in the previous chapmirceftually,

each request message when received invokes a “subroutine” thatesxaceries of
basic operations. After completing the execution of the handler subroeitiner the

request message is serviced and the appropriate reply is sk&ntobthe sending
processor’s interface logic or it is forwarded to the nestlleontroller for completing
the request.
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In this section we describe the organization of the protocol cterteoid its interfaces
to the Tiles and outside world. We elaborate on how it implembatalistract ISA
discussed in the previous chapter by presenting the structure ofatbe Bblding
registers and the embedded functional units which implement the tesnory
operations. We also explain how the controller is programmed and hayuense of

basic operations can be put together to handle an incoming request or reply message.

4.6.1. QRGANIZATION

Figure 4-15 illustrates the internal organization of the protocolraert The

execution core of the controller consists of three major ungiskitrg and serialization
(T-Unit), state update (S-Unit), and data movement (D-Unit). Ekic memory
operations are implemented by these three units except the corattmmprimitives,

which are implemented in processor and network interfaces. THentyaand data
movement units have dedicated storage structuséstus Holding Registersor

storing request tracking information aDdta Buffers (Line Bufferdpr storing blocks
of data. In addition, the controller is equipped with eight independent Divnels
which essentially are programmable request generator enginegllaas a dedicated
interrupt unit which is responsible for sending interrupt requestpréoessors.
Communication with the processor interface logic in each iSilbandled by the
processor interface unit. This unit receives request mes$agesTiles and sends
back replies when the sequence of operations in the controller is etethpl

Communication over the network is handled by network interface unit.
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Figure 4-15: Internal organization of Quad’s Protocol Controller

The state update and data movement units have interfaces te tiecddes memory
mats. These interfaces are connected to the Tile crosshaovais & Figure 4-8. The
S-Unit interface is 32-bits wide while the D-Unit interfase64-bits wide and can

access two adjacent memory mats in parallel. It also suppoitg 82cesses to a

single memory mat.

4.6.2. SQUENCING OF ACTIONS

The conceptual programming model of the controller is set of subroutihg,

triggered by an input message. Each subroutine composes a few basimopand
is executed by one of the internal functional units. After exeguts own subroutine,
each functional unit invokes another subroutine in the next functional ypéssing
an appropriate request to it. Functional units ustype field when invoking a
subroutine. This field essentially is the name of the function tpdsormed and
determines the operations to execute. A sequential executiansens maintained

within each subroutine.
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Figure 4-16 depicts a conceptual execution model in the controguelRt message
foo invokes subroutindoo in the processor interface unit. This subroutine calls
subroutineA in T-Unit, which calls subroutin® in S-Unit and so on so forth. The
right side of the figure shows operations in the subrodtiokthe D-Unit. Calls to
other subroutines are placed at the end and, as shown in the figuoe, tveoe calls

to different units can be made concurrently at the end of a suteotitie lower part

of the figure shows the internal steps of a call inside the ctartrah this example,
processing of the message ends after the N-Unit sends atretpssagdar to the
main memory controller. The protocol controller then waits for rénygy to this
request message from the memory controller and completes thesgngcdoy

executing another set of subroutines after receiving this reply.

Request Message foo: ,/ Opl
P-Unit: foo ,/’ Op2
T-Unit: Routine A il
e Call (S-Unit :: Routine J)

S-Unit: Routine B 7
D-Unit: Routinel £==—"""""
S-Unit: Routine J, N-Unit: Routine K

© hO, 19 @ &) (&

foo —» p_ynit P T-Unit »| S.Unit »| D-Unit > N-unit [ bar

Call (N-Unit :: Routine K)

Figure 4-16: Conceptual execution model of the protocol controller

4.6.3. YPPORTED OPERATIONS

The operations within each unit are controlled by an internal agatign (or
program) memory. Similar operations in the controller's ISA meetioin the

previous chapter are grouped and mapped to a specific functional unfolldlagng
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explains the grouping and the set of operations implemented hyoédke internal

functional units.

Tracking Unit (T-Unit)

The tracking unit serves as the entry port to the executionofdhe controller. All
request/reply messages that are received by the controlherpitocessors, network or
internal DMA channels are passed to the T-Unit. It implemt@r@operations in the
ISA that are related to management of internal datatstes: allocation of the SHR
and data buffer entries, storing or retrieving the tracking irdtion for the input
requests and replies, performing lookups in the SHR structure and egfacy

serialization properties that might be required by the memory protocol.

The T-Unit consists of two independent parallel sections, CT (T-@ached) and
UT (T-Unit, Un-cached). The CT section handles memory requests tlthariean of
serialization or ordering. Specifically when an input request need tohecked
against already outstanding memory requests, such as caches misseherence
requests, it is handled by CT. In contrast, the UT is used for handling memorstseque
that only need to store and retrieve their tracking informationdandot obey any
specific ordering requirements. Such requests can be completed the ssuing
order for performance reasons. DMA requests from DMA channelsnarached

accesses from processors are examples of the lattergroup.

Each of the CT and UT sections has its associated status hadisters for storing
tracking information of the received requests. CT WMiss Status Holding Registers
(MSHR) and UT use$Jn-cached request Status Holding Regisig/SHR) for this
purpose. The major difference between the two structures is thdRMBovides an
associative lookup operation to check the address and sender of thedeeguest
against already outstanding requests in a single cycle, W8ldR only provides

read/write operations. In addition to the tracking information, tistsectures also

8 If out of order completion of processor’s un-cathequests is allowed by the implemented memory
consistency model
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keep the internal status of the outstanding requests, which is checkegdated by

different functional units as the request is passed from one unit to the next.

After receiving an input request, the CT evaluates certain consliby performing a
lookup operation on its associated status holding registers. The prosidtd

information includes whether:

- There is another request to the same memory address preseSHiR Bhd the

index of the matching register (if a match is found)

- The new request can be merged with existing one (if a maticunsl) In other

words, are the two requests to the same address of the same type
- There is another request from the same processor present in the MSHR

- There are any available registers in the MSHR

There are any available data buffers for the input request

After collecting this information, the CT proceeds to exethweoperations specified
by the requests handling subroutine. Operations that are mapped t G feoree

major categories:

Request acceptance: A set of CT operations is used to decide whether to accept an
input request or not. Acceptance operations can evaluate any combofagtate bits
mentioned above and decide either to accept or reject the inputtrdfjaegquest is

not accepted, it is supplied again by the issuing unit (P-UnitnNer DMA channel)

and is retried in the next clock cycle.

Storing and retrieving tracking information: These operations manage the Miss
Status Holding Registers by allocating registers, writragking information into an
allocated register, or retrieving the tracking information mcuest using the received

register index.
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Handling data storage: In addition to the status holding registers, the CT manages
the line buffer structure which is used as temporary storageddta blocks. It

implements the necessary operations for allocating and writing datdata buffers.

The UT section of the T-Unit operates more or less the sanyeawaCT. The

operations supported by UT are:

Request acceptance: The UT provides operations for checking the availabilityhef t
Un-cached request Status Holding Registers. These operation®dr® @nsure that
there are available USHR entries before attempting to watking information into
the USHR.

Storing and retrieving tracking information: Similarly the UT provides operations
for allocating and managing USHR entries and writing/readingéicessary tracking

information about an input request.

A common set of operations supported by both the CT and UT sectionsTeihie
is the ability to invoke another subroutine in the next functional unit. Bwolcation
is performed by passingtgpefield along with the parameters of the received request.
CT can invoke a subroutine in S-Unit and D-Unit, while in addition to ttvesainits

UT can invoke a subroutine in N-Unit, P-Unit and any one of the DMA channels.

State update unit (S-Unit)

This unit provides operations to access the Tile memory matsen tordead, write or
update state information. The S-Unit operates on the state etformassociated with
a block of data, such as tags and line state informationcache structure. State
information associated with individual data words are accessed arategpen by D-
Unit. The S-Unit has a dedicated port to each Tile’s memory @at similar to
processor’s interface logic, can access any number of menaisyimparallel using a
bit mask. In particular, it supports four mapping modes when acceB&ngemory

mats:
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Direct: Access goes to a single memory mat, specified by theivext memory

address

Cache: Access goes to all tag mats in a defined cache strudiugan be an

instruction or data cache of either processor in the Tile

Cache wayA single tag mat in the specified cache way is accessed
FIFO: A predefined FIFO mat is accessed

S-Unit supports the following operation:

Memory mat accesses. The S-Unit provides all necessary signals for the accessed
memory mats and always reads the state information back froactessed mats. It
can update the state information using a plain write operation im#éts control
array or by using read-modify-write logic in the mat its€lurthermore, the S-Unit
can send a memory mat access either to a single Tile othallfour Tiles
simultaneously. Simultaneous accesses to all Tiles are usékh Jooking for
specific cache blocks in all the Tiles (when implementingaaesi memory model) or

invalidating/downgrading them upon receiving a cache miss or a coherencg.reque

Flow control: After the memory mats are accessed, the state informetidetted
from all the accessed mats (meta-data bits) is returned back to the SlanitoRtrol
operations compare the received bit vector against a set depne- bit vectors and
invoke an appropriate subroutine in the next functional unit. One can thitiksof
operation as aase statement in high-level programming languages, where an
expression is compared against a set of labels and the actioaddkefi the matching
label is executed. In our case, labels are pre-defined bit veatdrshe action is a

subroutine invocation in a specific functional unit.
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Data movement unit (D-Unit)

The D-Unit is a data movement engine which moves blocks of datedrethe Tile

memory mats and line buffers inside the protocol controller. It lbedecated 64-bit
port to each Tile’s crossbar and can access a 64-bit word @jaceat memory mats

in parallel) for faster block transfers. It supports the following operations

Data block accesses: The D-Unit can transfer a block of memory from Tile memory
mats to the line buffer inside controller or vice versa. All nemgssignals for the
memory mats are generated by D-Unit. Supported addressing modes foctesses
are cache wayor direct. In addition to single block read and block write operations,
the D-Unit supports transfer operations where a block is read dra@mTile and is
written into another one. The operation is staged through the liner haffminimize

the transfer latency.

Data word accesses: The D-Unit also can access a single memory mat in a specified
Tile. Similar to S-Unit accesses, all the necessary cosijobls for the memory mat
are generated. The D-Unit can read, write or update the state informationtionaiddi
reading and writing the data word. Supported addressing modes for seskescare

directandcache way

Flow control operations. D-Unit can read and compare the state information
associated with an individual data word against a set of pieedebit vectors.
Depending on the comparison results, it can invoke a subroutine in thieimetional

unit (the same as S-Unit).

Network interface unit (N-Unit)

The network interface provides communication primitives to talk wiher Quads or

main memory controllers. It consists of separate transmit ar@iveesections which

operate independently. The receiver receives messages, decodesdhgasses each
message to the T-Unit. When the incoming message carries blalzkathe receiver

places the received data in a line buffer entry before passing the messdgpeitto T
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The transmitter receives requests from internal functional uoitsend desired
messages to an outside entity. It is capable of sending shaagess which at most
carry one data word, or long messages that contain a whole ddta\Wwloen sending
a data block, the transmitter reads the data from specifiechattiine buffer entry. A
user can program the transmitter to send either short or longagess adjust the
information fields that are sent in the message header (eadageet/pe might
require different information to be included in the message), anchamgt release
the status holding register occupied by the request after getidinmessage (reply
messages to other controllers should release the registerttaterare sent). In

addition, a user can select which virtual channel to use.

Processor interface unit (P-Unit)

The processor interface unit is a very simple interface libgitconsists of two parts:
the front-end and the back-end. The front-end of the P-Unit actsea=iaer, which
receives requests from processors in the Tiles, decides evlettequest should be
passed to CT or UT section in the T-Unit, and arbitrates betveeeived requests to
determine which request should be passed on. For each received proegsest, a
user can program whether the request should be passed to CT orTJUnit and
what subroutine in CT or UT should be invoked by the message. In othds,ir
Unit only supportscall operations to pass input request to T-Unit. The back-end
simply passes the replies generated by internal functionalhagtsto the originating

processors.

4.6.4. SATUS HOLDING REGISTERS AND DATA BUFFERS

As discussed in the previous chapter, controllers in the memoryrsgsieuld have
internal registers for keeping tracking information of the ontiteg requests. The
protocol controller has status holding registers (MSHR and USbiR3toring the
tracking information of cached and un-cached requests respgcta®lwell as

temporary data storage (line buffers).
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As was mentioned earlier, the status holding registers are diunde MSHR and
USHR structures and are managed by T-Unit. MSHR is useddiong requests that
need a form of ordering and serialization (e.g. cache miss tsjjaesl information
stored in it are used by CT section in the T-Unit. Informationest in each MSHR
entry is divided into two categories: request tracking inforonaéind request status

information (Figure 4-17).

The tracking information holds different parameters of the mqwédile status
information shows the current status of the request in the systdrhow the system

should handle it at each stage. Table 4-5 describes each of these information fields.

The MSHR has separate read and write ports and supports read t@nolperation on
each entry using separate indices. In addition, it has an assotkup port based

on the Address and Requestor fields and can detect any erthatha valid request

to the same address or is from the same requestor. The lookup port reportsttioé resul
the matching back to CT in thiesult Flag

Status Information Tracking Information
VaJid'State lMer elRefiII a1 Type ! Address op 1 Rel uestorloffsetl Size
| | V€198) 0. YPe | code | "9 | |
Lookup Port —| ! ! ! : ! ! !
Write Port —] :
Read Port €— I\iSHR

Tw
I N
]
|
|
I
I
|
|
I
|
|
1
I

Figure 4-17: MSHR structure
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Field Description

Address Stores the address of the memory request, which can be the 3
of a memory word or a memory block, such as cache line addré

Opcode TIE opcode of the memory request issued by processor

Type Type of the input request passed to CT (name of the subrouting
invoked in CT)

Requestor Specifies source of the request, Tile, processor and port ID
(instruction/data)

Offset If request is a cache miss, indicates the offset within the taehe

Size Size of the memory block, if request is for a block of memory

Valid Indicates whether this register contains a valid request

Refill For cache miss requests specifies whether requesting cache sk
be refilled or not

State ACTIVE or OUTSTANDING. A request is in active state if it is
currently being processed inside controller. A request is in
outstanding state if it is waiting for a reply from other Quads or
main memory controllers

Way number For cache misses only, specifies the way of the cache which @
should be refilled

Merge An optimizing flag that says whether later requests to the same

ata

memory address can be merged with this request or not

Table 4-5: Information fields in MSHR

The USHR is a similar structure operated by UT and only suppontsle read and

write operations. It stores information about un-cached memory ammpssst from

processor or DMA channels (Figure 4-18). Table 4-6 lists and explains the atifmmm
fields stored in the USHR.

I Remote | Local [ Remote | Local | K
Vaﬂd| Address g Address g Opcode g Opcode 3 Requestor | Size
t ¥ ¥ + ¥

Write Port —3» | | | | |
Read Port <€— T i T r T

Figure 4-18: USHR structure
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Field Description

Remote Address of the memory location to be accesses (in other Quads or

Address main memory)

Local Address | For DI?\/IA requests, specifies the local address for the DMA
transfe

Remote Opcode¢ TIE opcode for accessing remote memory location

Local Opcode TIE opcode for accessing local memory location

Size Size of the memory block, if request involves moving a block of
data

Requestor Identity of the requesting entity (Tile, Processor and Paot ID f
processor, and channel number for DMAS)

Valid Flag that indicates whether the register contains a valid request

Table 4-6: Information fields in USHR

Registers in both MSHR and USHR structures are divided into tparate pools of
entries. Theoutgoing pool consists of entries which store tracking information for
requests generated in the Quad by processors or DMA channeiac®hengpool is

the set of entries used for storing tracking information of theeasts received from
other Quads and main memory controllers. Allocation of registergobls is
independently controlled for each structure via configuration regigtethe T-Unit.
The Qutgoing register allows the size of the pools to be adjusted by usen w
configuring the system and allocating system resourcesdeébr of the MSHR/USHR
structures, register indices betwdeandOutgoing-1form the outgoing pool and the

rest form the incoming pool.

While the tracking information is stored in MSHR and USHR simes, data blocks
are stored in a different line buffer structure associatell thi# data movement unit.
Even though the structure is physically associated with thendet@ment unit, it is

allocated and managed by the T-Unit along with the MSHR and USHR structures.

A line buffer entry consists of 8, 32-bit data words (total of 324)ytEach data word
has 6 bits of meta-data or control information, similar to menmmats. These

additional bits facilitate the movements of meta-data informdatietaveen different
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mats when such transfers are necessary. In addition, eaclibyite the line buffer

has a byte valid bit which indicate that the location contains valid data (Figure 4-19).

] Bank 3
e
Byte
vaml Valid3 5 Word3
T

Bank 2 1 Bank 1 1 Bank O

(] (]
T Meta [ Byte T Meta | Byte

T Meta
1 Data2 | valid1
{

{_Data3
+

Byte 1 Meta

Valid2 Wordo

Word2 Wordl | pata1 | valido 4 | Datao
| } |

Write port —
(T-Unit) ) ! : | ' | ! Write port
| | (N-Unit, Receiver)
Read/Write port 0 €| ILine Bl#fer
Read port

Read/Write port 1 <¢—p]
(D-Unit)

|

(N-Unit, Transmitter)

Figure 4-19: Line buffer structure

The line buffer is accessed mainly by the data movemenherand the network
interface, since these are the major units involved in a datdetrayseration. The
tracking unit also has a write port into the line buffer whiclussd for placing a
processor’s write data when receiving write requests from gsocee.g. a Store miss
request. Using the byte valid bits, the line buffer later carbammwrite data with the

rest of the cache line when it is received from main memory.

As mentioned before, functional units inside protocol controller commenicgat
passing requests and invoking subroutines. Each functional unit inyehresl a
configuration (or program) memory which stores the subroutinealifdhe request
types it might receive. The configuration sets the operationse#wh functional unit
has to execute after receiving an input request and also spgmfi@meters for each
operation, such as the addressing mode for accessing memorgrmatgal channel

number for a network message that has to be sent.

The configuration memories of the protocol controller are mapped setgment 2 in
the physical address space and are accessible from procdegssssiing RawlLoad

and RawsStore instructions. In addition, the controller provides a cortfmura

° A DMA transfer always moves data between a mertargtion inside the Quad (local) and a memory
location in other Quads or in off-chip memory (reé&)o
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interface which through the Quad’s JTAG controller allows a tserccess all the
configuration memories by issuing JTAG read/write operations evgle the system

is operating.

4.7. MAIN MEMORY CONTROLLER

The main memory controller is the controller connecting Quads tmé#ie, off-chip
memory. In addition to serving as the interface to main memomplkements the
same basic memory operations mentioned in the previous chapter, siithicture
similar to the Quad’s protocol controller. When the system is gorgd with more
than one memory controller, the addresses are interleaved amargrdiffontrollers.
Therefore all controllers are shared among all Quads isytstem and act as lowest
level convergence/serialization point for memory requests theiweedde execution
model of the main memory controller is also the same as Qpeaatscol controller.
An incoming message triggers a set of operations in the neteoekver and is then
passed from one functional unit to the other, until all necessaryatapes are

completed and a reply is returned to the originating Quad.

4.7.1. QRGANIZATION

Figure 4-20 shows the internal organization of the main memoryotientrSimilar to
protocol controller, related operations are mapped to the same functiotsainside
the controller: the C-Req unit manages the status holding regigperforms
serialization operations, and generates necessary requestsuidds @ inquire or
updated state information. The C-Rep unit gathers replies, composesuhimg state
information and decides how to proceed depending on the results. U-ReqiiRep
handles requests that only need to access main memory withouéralization or
state update operations. There is a dedicated functional unit fanmapting a fine-
grain synchronization protocol. This unit operates rather independdre mddt of the
controller. It has its own tracking structure and all of its suppooperations are

related to managing and searching this storage structure.
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The main memory controller communicates with Quads by exchangsgages over

the communication network. It uses the same network interface dsdilee protocol

controller with separate transmitter and receiver sections.

To/From Main Memory
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Memory Interface
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Figure 4-20: Internal organization of main memory controller

A dedicated memory interface unit performs accesses to mamory. Functional

units that need to access main memory use a memory queue st{d@jrevhich

drives this interface unit. Memory requests received by contrspiecify a global

physical memory address. Therefore, when memory is interleamedgamore than

one controller, the memory interface unit makes necessary aéjust to the address

in order to access the correct data word or block in the assbai@®ory bank. The

details of the operations and structure of status holding registaresmory controller

are more or less the same as Quad’s protocol controller and &enoet discussed

here.
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4.8. MAPPING MEMORY PROTOCOLS

After describing the architecture of the memory systemthadlexible mechanisms
embedded in different components, this section discusses the necssgasryfor

implementing memory protocols using the hardware. Specificalbxptains how to

provide the semantics requirements for a shared memory sysstraaaing system
and a transactional memory system. While discussion in this cHapteses on the
high-level usage of the flexible constructs, the details of comfiguihe hardware
structures and values that should be written to the configuraticsteesgto provide a
specific functionality are described in Appendix B, as an exawipieplementing a

simple coherence protocol.
Necessary steps for mapping a protocol are:

1. Defining and associating state information: If the desired ongnprotocol
requires to have state information associated with data worbdldks, the first
step is to determine what this information is and how it is mapped and stored in the

local and main memory.

2. Allocating resources: This step essentially determinescdhéguration of the
memory mats in the Tile and how they are structured by gettim the
configuration registers in the processor interface logic. dthdress translation
mechanism which converts virtual addresses to physical addressesis

configured at this step.

3. Defining memory operations: The next step determines the poocessl
controller operations on the local and main memory, and defines tessaeg
accesses that should be issued to memory mats. It also defirmgtiess/failure
condition for each memory operation. The opcode translation table (Fgl2e
and content addressable table in Figure 4-13 in the processorcetértac, as
well as configuration memories in the S-Unit and D-Unit of tletqmol controller

which access Tile memory mats, are populated at this step.
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4. Defining and handling communication messages: The final stepfiespethe
messages that are exchanged between processor interface logiQuadts
protocol controller, as well as between the protocol controllernag@ica memory
controller. For each received message, the controllers should gisodgrammed
to carry out necessary operations. This involves developing appropriate
subroutines for each of the controller functional units and connectingttheath

other by making appropriate invocations.

4.8.1. SREAMING MEMORY SYSTEM

A stream memory system has the simplest hardware requienaendng the
implemented models. When implementing streaming memory systdm,|obal

memory mats serve as the storage for kernel code and local storesdorsstfhere is
no state information associated with data words or blocks. Segabasimaps desired

segments of the virtual address space into memory mats in the Tiles.

Processors issue Load and Store operations which are translatde lmpcode
translation mechanism to read and write accesses on the tagetdata array. The
protocol controller serves the DMA requests that are genebgtdte DMA channels
by reading and writing data blocks in different Tiles. The DMAarutels are
configured by processors via writes to their control regstall operations on the

Tile memory mats by processors and protocol controller are successful.

Table 4-7 lists the communication messages that are exchangeeebetifferent
components for all three implemented memory models. Processoss aneenory
mats in other Tiles by sending a request message to the protodobller. DMA
channels support sequential, strided and indexed gather/scatteramzeréliey issue
index read requests to acquire the address of the next data etardehen generate
necessary gather/scatter requests to move the data blocks./Szttier replies are
sent by the main memory controllers or protocol controllers irother Quads after

processing of the request message is completed.
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Model Sour ce M essage Description
Shared Proc. Cache Miss Read/Write miss request from a processor
Memory Upgrade Miss| Upgrade miss request (request for ownership
(MESI Prefetch Prefetch for read or write from a processor
coherence) Cache Control| Invalidate/Writeback a specific cache line
Main Coherence Read, Read-Exclusive or Invalidate request for
Mem Request specific cache line
Cntrl Refill Returns cache line data to be refilled
Upgrade Returns cache line ownership (no data)
Streaming | Proc. Un-cached Direct access of a memory in another Tile
Access
DMA Index Read Read of index memory (indexed transfers)
Channel| DMA Gather | Request for gathering data from another Quad
main memory
DMA Scatter | Request for scattering data to another Quad o
main memory
Main Gather Reply | Reply for a gather request, contains actual da
Mem Scatter Reply | Acknowledgement for a previous scatter
Cntrl / Un-cached Reply for direct memory access from processof
Another | Reply
Quad Net Gather Gather request from another Quad’'s DMA
Net Scatter Scatter request from another Quad’s DMA
™ Proc. Cache Miss Read/Write miss request from a processor
(TCC) FIFO Full Address FIFO full indicator, overflow occurred
DMA FIFO Read Read store address from FIFO
Channel| Commit Read | Read committed data from source cache
Commit Write | Write committed data to other caches
Main Refill Returns cache line data to be refilled
Mem Net Commit Committed data word from another Quad’s
Cntrl transaction

Table 4-7: Communication messages for implemented memory models

or

a

The protocol controller handles gather/scatter messages bgtbrsng the tracking

information of the request in the USHR (since no specific orgdsetween requests

are required), and invoking the appropriate subroutine in D-Unit orniN-&or

example, for scatter requests from a DMA channel, first O-téaids the data block

from the source memory mat in the Tile into the line buffemer it invokes

appropriate subroutine in the N-Unit to read the data from line rberfifiey and send it

to the destination Quad or main memory controller as a scatjeese When the

scatter reply is received, it is passed to the T-Unit whichlldeates the USHR entry

after retrieving the tracking information and acknowledging the DMA channel
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4.8.2. $IARED MEMORY SYSTEM

When implementing a shared memory system, the local memosyimtte Tiles are
used for implementing instruction and data caches for process@sn@inper cache
way stores the address tags while the other mats storadhe kine data, as shown in
Figure 4-11. Data array in the tag mats store the addressvialg the control array
stores the cache line state: Valid, Modified and Shared/Exclusteefor MESI
protocol. Configuration registers in the processor interface ifgpd¢le exact
configuration of the caches in terms of size, number of ways, aadize. Segment
table maps the segments in the virtual address space intocties day setting the C
bit.

Processors access caches using Load and Store instructionsinEacttion is
converted into a tag comparison operation on the tag mats and aeddftarite
operation on the data mats. Crossbar routes these accesses to atppnogis. Tag
mats compare the address tags and cache line state and ganbitAteiss signal
(Total Matchoutput of the comparator). This indicator is sent back from eachtavay
the processor and is also sent over the IMCN to the associatethaistaFor Store
instructions, the write operation on the data mat is guardedi®gignal, so that the
write is discarded if there is no hit in the specific cache way.

The processor interface logic collects the state informatitvact®d from each way of
the cache and determines the cache misses and upgrade. rhissesls request

messages to the protocol controller to refill the appropriate cache.

The protocol controller receives cache and upgrade miss requestth&@rocessor
interface logic and coherence requests from the main memoryplbentAs the first
step for serving the request, the T-Unit looks up the MSHR staycderializing the
request against already outstanding ones. After ordering thestezpopriately, an
MSHR entry is allocated and the tracking information of the retgigsestored. Upon
receiving a cache refill, it retrieves the information altbetcache miss such that the

data can be placed in the right location in the cache. S-Unit snoogsatbeof the
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cache line in the other Tile caches to enforce coherence acH fir the possibility
of cache-to-cache transfers. It also writes the newatigs refilling a new cache line
in the cache. The D-Unit extracts the evicted cache line ttmmcache, performs
cache-to-cache transfers by reading the cache line fromile’'® cache into another’s

and writes the new cache line into the cache upon receiving a cache refdgmess

The main memory controller fetches the cache lines or whiedines received from
Quads back to main memory. It also serializes requests froeratiff Quads and
sends coherence requests to enforce the coherence properties amoQgatls.
Appendix B describes the details of implementing a simple Mi&Bé&rence protocol

for a single Quad system.

4.8.3. TRANSACTIONAL MEMORY SYSTEM

Smart Memories implements Transactional Coherence and CongiDC) [27]
protocol as its transactional memory model. When implementing, fit&hory mats
implement the instruction and data caches for processor, verarsimithe shared
memory model. The data cache of the processor is augmentea RIFO that stores
the addresses of the transaction’s write set. The control iarithe tag mats encode
the cache line state as Valid, Speculatively Read and Speelyjat/odified.
Speculation indicators are used to avoid eviction of speculative tiaelsesince all
necessary dependency tracking information is stored in the cauheomtrol array of
the data mats in the cache are used to associate same 3pdyguRgad (SR) and
Speculatively Modified (SM) flags for each data word. Thesedstentially mark the
transaction’s read and write sets in the cache and araasketect conflicts between
transactions. Configuration of the cache and setup of the segnidat itathe

processor interface logic is similar to the shared memory model.

Processors once again issue Load and Store operations to the cadhe, dpdode
translation mechanism issues necessary opcodes for the corayotcaappropriately
adjust the status of SR and SM bit associated with the data widrdshit/miss
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indicator of each cache way is also forwarded to the FIFO tmmavoid placing
address of the stores that miss in the cache in the FIF@ditoa to detecting cache
misses, processor interface logic also monitors the addre@sarié notifies protocol

controller when it becomes full.

Protocol controller receives cache miss requests from processbiommit requests
from either a local DMA channel or another Quad’s committing &etien. Cache
misses are serviced by fetching the data from main memmtyna snooping and
coherence action happens in the controller. Transaction commharaieed by DMA
channels similar to performing an indexed DMA operation: The asldriea word is
extracted from the FIFO by S-Unit, data word is read from ¢benmitting
transaction’s cache and is written into the cache of other Byié3-Unit. The word is
also sent to main memory controller to be written into main angmVhen writing
the committed word in a cache, D-Unit checks the SR bit of the Wt is being
written. If the SR bit is set, a violation is detected betwhernwo transactions and an
interrupt is sent to the violated processor. T-Unit appropriateigliges commits
against outstanding cache misses and stores and retrievesgriadé&imation of the

cache miss requests.

A major differentiating factor for the TCC implementation on 8meart Memories is
that transactions’ arbitration for acquiring commit token occurssoftware, by
accessing synchronization variables that are stored in sharédnecery. Also, one
processor in each Tile is reserved for handling asynchronous es@citsas overflow
of the hardware structures (cache and address FIFO), and tiamsackation. This

processor does not execute the code for the actual transaction arlermesessary

software handlers for resolving exceptional situations.

4.9. SUMMARY

In this chapter we explained Smart Memories, a scalable igucaible architecture
which implements a universal memory model described in the presi@apmer. We
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presented the different components in the system, including processonmsemory
mats and interconnect structure as well as memory systenoléenstr We discussed
the internal organization of the controllers, their internalustiblding registers and
how the basic memory operations mentioned in the previous chaptantedler ISA
are mapped to their internal functional units. We also describedhesg resources
and operations are used in order to map specific memory protocols bartiveare.
Appendix B provides more insight about implementing protocols by illusgrahe
details of mapping a simple coherence protocol on the hardware.

In general, while the hardware implementation of the ISA operatmotieicontrollers
are not difficult, the challenge mostly is in providing a micro-daecture which
provides sufficient level of concurrency in processing request. fRadlgi in the case
of Smart Memories, since the Quad’s protocol controller is shiaedgdeen eight
processors, it potentially can become a bottleneck if it cannot prtwdeecessary
throughput. Grouping related operations into separate functional units asidgpas
requests from one unit to other allowed us to divide a handler routmesnmaller
subroutines carried out by each functional unit independently and hencdepeovi
macro-level pipeline for processing input messages. Successivermeeaguests
hence can be pipelined across different functional units to incrpas®essing
throughput. Also, concurrent subroutine calls by a functional unit as shokigure
4-16 allows overlapping different operations of the same memorysgdonereasing

the level of concurrency and reducing the processing time.

As described, currently the Smart Memories system implemiméz different
memory models: coherent shared memory, streaming and transactienabry.
However it is possible to map other protocols that implement the saneven
different memory models using the same hardware resourcesint#&resting
experiment with this system is to create a comprehensiveyibfaifferent memory
protocols that system users can choose from. This involves devetbpimgcessary
hardware configurations as well as software interface$, asdibraries and runtime

systems that applications need for execution. Having such a comsgirgheollection
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not only allows the user to simply try and choose the best menmotgcpl that
matches the desired programming model, but also allows direct deorpaetween
performance and power characteristics of the application wherogimgpldifferent

protocols or even different memory models.

The next chapter describes the results of implementing a Sihgde of the Smart
Memories architecture in the context of SMASH test chip. $o gbresents our
evaluation of the architecture and the impact that the embedded igecable

mechanisms have on the over all system performance. We alto @stimate the
power and area overhead that these mechanisms introduce in the Quo&atslpr

controller.

The interconnection mechanism between Quads and memory controlleesSmart
Memories architecture is assumed to be a mesh-like network.infitastructure
should satisfy the requirements mentioned in the previous chapter:lbsstess and
preserving point-to-point ordering. In order to connect multiple SMABKSs we
developed a star topology and a central switch which allows connectitg fopr

Quads and four memory controllers. A detailed description of thensysterconnect

and central switch are discussed in Appendix A.
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5. EVALUATION

The previous chapter explained the Smart Memories architecturenplementation
of the basic operations in the memory system. This chapter hkEscthe
implementation results of the Smart Memories test chip, SMASHSso evaluates the
impact of embedding reconfigurable features on the performarez,aad power of

the resulting system.

5.1. TEST CHIP IMPLEMENTATION RESULTS

The SMASH test chip contains a complete Quad of the Smartokilesnarchitecture,
including four Tiles and associated protocol controller. ThereBgpeocessor cores
and total of 256KB of local memory in the test chip. The main mgmantroller and

interconnecting logic are mapped on an external FPGA.

The test chip is fabricated in ST Microelectronics 90 nm techgo{83 90nmGP)
with worst-case clock cycle time of 5.5 ns (180MHz). Die dimensavas/.77mm X
7.77mm (60.5mf) Figure 5-1 shows a plot of the die and Table 5-1 summarizes the

specifications of the test chip.

Figure 5-2 shows breakdown of the area for different modules in #teclp,
including Tiles, protocol controller, 1/0O pads and routing channels. &igt8 shows
breakdown of the area for a single Tile and for functional units ingrdéocol
controller. As illustrated, most of the Tile area is taken maory mats, since we
used regular flip-flops for implementing the gang-writable and conditiparag-
writable meta-data bits in the control array.
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Technology

ST 90nm-GP (General Purpose)

Supply voltage 1.0V

I/O voltage 25V

Dimensions 7.77mm X 7.77mm

Total Area 60.5 mm(core size 51.7 mfh

Clock cycle time

5.5 ns (181MHz)

Nominal power (estimate)

1320 mw (300mw for Tile, 120 mw in
protocol controller)

Number of transistors

55M

Number of Gates

2.9 M (600K in each Tile, 500K in
protocol controller)

Number of memory macros

D

128 (32 per Tile)

Signal pins

202

Power pins

187 (93 VDD, 94 VSS)

Table 5-1: Test chip specifications

Figure 5-1: SMASH die plot
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Figure 5-3: Area breakdown for Tile and local memory controller
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5.2. PERFORMANCE OVERHEAD

In the Smart Memories system, local memory access tiinesthin the two-cycle
latency of the processor pipeline. This includes the traversalitintiee processor
interface, crossbar and reconfiguration logic in the memory niaexefore, in our
performance evaluations, we focused on the performance impact dfesige

mechanisms embedded in the controllers rather than the Tilels no@mory sub-

system.

In order to evaluate this performance impact, we back-annotat&htag Memories
functional simulator with the latency numbers extracted fromattteal controller
RTL. Then we created “ideal” controllers, where the overheadhef internal
controller actions in executing protocol operations is set to zerothler words, the
operations that occur inside controller such as invoking a subroutindéuimc@onal
unit, lookup and write of status holding registers, message congmosatind
decomposition in the interfaces, etc. will not incur any latencythim “ideal”
controller. However, the latency of operations performed by controfiethe other
resources such as accesses to the local memory, communicatiomtekennect,
data transfers, etc. are accurately accounted for. This providéspaer bound”
estimate on the performance of a controller. We then compauv#ts gathered from
simulating our back-annotated controller model with this upper bound. This
experiment is performed for three major memory models mappethet Smart
Memories hardware: a shared memory system using hierdrdWiE&l coherence
protocols, a streaming memory system, and a hardware transactiemary system

implementing Transactional Coherence and Consistency (TCC).

5.2.1. ®HERENT SHARED MEMORY

We used a few kernels and applications from SPLASH-2 suite [4dlledered using
ANL macros and an MPEG2 encoder application to evaluate the colstanetd
memory system. Table 5-2 describes these benchmarks and theispooding

problem sizes.
110



Table 5-3 shows the details of our coherent shared memory systetheRdPEG?2
video encoder application we used a 16KB instruction cache indteamtder to
ensure that system is not bandwidth limited and the overheadaffigurability is
not hidden by the latency incurred due to insufficient memory bandwigtlassumed
two separate memory controllers per each Quad and added he lcacks between
the memory controller and off-chip memory to further improve main ongm
bandwidth and latency. In the resulting system, each L2 bank cachgsthe
addresses mapped to the corresponding memory controller and does ch@ngee

coherence mechanisms, but is shared by all the processors in the system.

App. Problem Size Description
FFT 2° data points Complex 1-D Fast Fourier Transform
LU 512x512 matrix 16x16 block Dense matrix LU factorization
Radix 2% keys, radix=1024 Integer radix sort
Cholesky| tk15.0 Blocked sparse matrix factorization
Barnes 16K particles Barnes-Hut hierarchical N-body method
MP3D 30K particles Rarefield fluid flow simulation
FMM 16K particles N-body adaptive fast multi-pole method
Mpg2enc| 10 CIF frames (foreman) MPEG2 video encoder

Table 5-2: Coherent shared memory benchmarks

I-cache 8KB, 2-way associative, 32B line size, 1 port (per processor)

D-cache 16KB, 2-way associative, 32B line size, 1 port (per processor)

Local Memory None

Protocol controllen 28 MSHRs (24 for processor requests, 4 for coherence
requests)

L2-cache (unified)] 4MB, 4-way, 32B line size, 10 cycle accessidgiebanked
among main memory controllers

Switch latency 5 cycles
Memory controller| 2 controllers per Quad, 32 MSHRs each
Main memory 100 cycle access latency

Table 5-3: System parameters for coherent shared memory model

Figure 5-4 and Figure 5-5 depict the speedups we have achigvaatibusing the
idealized controllers (dashed line) and our real controllers (Sak) &nd compares

them to the linear speedup. Average overhead across all benchmslilglstig grater
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than 15%. As the system scales beyond a single Quad (more thane8spreg the
difference between ideal and real controllers becomes mobdevi$he reason is due
to more controllers getting involved in providing coherence acrosspheulfuads,
and hence latency of the controllers actions affect the ovatelicy of servicing

cache misses.
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Figure 5-4: Performance impact in coherent shared memory model (kernels
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Figure 5-5: Performance impact in coherent shared memory model (appbgat

Figure 5-6 shows the breakdown of execution cycles of the parallel sectionlufehe

best-case kernels and two worst-case applications in a systén82 processors,

illustrating the effect of the controller latency on the promessall time. Execution

times are normalized to the execution time when using real denstol'he effect of

the increased latencies becomes more visible when therdodref aeads and updates

to the shared data which are handled by the controllers withoegsto the next level

of the hierarchy (for example MP3D). In contrast, when most@icache misses are

serviced by fetching the data from main memory or L2 cachesnit latency of the

controller is effectively hidden by the long latency of the L2 or main mesuogss.
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Note controller’s latency also affects the cycles procesgmead on synchronization.
This is due to the fact that synchronization accesses are aeasideodifying

operations and cause coherence actions in order to acquire ownershée aaiche
lines. Ideal controllers effectively complete coherence actiaster and therefore

cause processors to spend less time on synchronization stalls.

Execution Time Breakdwon

Oexec time Efetch stall Oload stall W store stall B sync stall
) . .-
80
60
S
40
20
0
MP3D Barnes FFT LU Radix

Figure 5-6: Breakdown of execution time (shared memory benchmarks)

5.2.2. SREAMING

Table 5-4 lists the applications we used to evaluate the impaetarffigurability in
streaming model and Table 5-5 shows the details of them memasmsy&ach
processor has an instruction cache and a small private d&ia foscstoring runtime
variables and stack. There are 20KB of private local memorypnoeessor. There is
an additional 4KB shared local memory for all the processors isystem, used for

storing synchronization variables. For stereo depth extraction andGRIREdeo
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encoder application we used 24KB of local memory instead and in thgue@tion
used for MPEG2 video encoder, the two Tile processors share an &Kcatdte
instead of having separate data caches. The protocol controtitains 8 DMA
channels with each processor having its own dedicated channel. L2aoact#-chip
memory have the same parameters as before.

App. Problem Size Description
179.art SPEC reference data sét  Image recognition
Bitonic 2" 32-bit keys Bitonic sort
Merge 27 32-bit keys Merge sort
Depth 352x288 CIF image paif  Stereo depth extraction
Mpg2enc 10 CIF frames (foreman) MPEG2 video encode

Table 5-4: Streaming benchmarks

I-cache 8KB, 1-way associative, 32B line size, 1 port (per processor)
D-cache 4KB, 1-way associative, 32B line size, 1 port (per processor)
Local Memory 20KB per processor, 4KB shared between all processors

Protocol controllerf 28 MSHRs (24 for processor requests, 4 for coherence
requests), 8 DMA channels (one per processor)

L2-cache (unified)] 4MB, 4-way, 32B line size, 10 cycle access hatdranked
among main memory controllers

Memory controller| 2 controllers per Quad, 32 MSHRs each

Main memory 100 cycle access latency

Table 5-5: System parameters for streaming memory model

Figure 5-7 shows the scaling of the streaming applications,pa&ong the
performance of the system with upper bound limit. Worst-caseneadrimposed in
this case (MPEG2 video encode) is less than 14%. Due to theyladdgr@ance nature
of the streaming applications and overlapping of computation with tiaetidansfer,
streaming applications are much closer to the upper bound limit. Alse the
application data is managed explicitly by software and haeldaes not perform any
implicit state manipulation operations (unlike coherent shared mermsysiem),

latency of controller actions does not impose a visible overhead for these benchmarks.
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5.2.3. TRANSACTIONAL COHERENCE AND CONSISTENCY

As mentioned in section 4.8. the transactional memory model thaapped on the
Smart Memories hardware is transactional coherence and eoisifTCC) [27].

Table 5-6 shows the details of the memory system used for emglu&@CC

benchmarks. In TCC mode one of the processors in the Tile is gsedpaort
processor to handle asynchronous events such as cache or addresgdrile@s and
transaction violation. This processor does not run a separate tramsdterefore,
local caches are shared between the two processors. In thal mperational mode,
the support processor is stalled, waiting to start execution oksegehandlers if
required. In case of a cache or address FIFO overflow, the maiespovds stalled
and support processors starts execution; hence there is not mucbrcbhiisveen the

two processors for accessing L1 caches.

The L1 data cache also has a 1K entry Store Address RIRiCh keeps the addresses
of the words written during the transaction. The FIFO suppresses duplidgate such
that if a single word is written multiple times by thensaction, the address is only
stored once in the FIFO. Similar to the streaming system aoafign, there is a 4KB
local memory that is used for keeping synchronization variables. emory is
shared by all the processors in the system. The protocol conthaler24 status
holding registers for storing outstanding memory requests and 4 EiMAnels, one
per each Tile used as commit controllers to broadcast trarsactrite set to other
caches and main memory. The rest of the memory systemilardo other memory
models.

Table 5-7 lists the applications used for evaluating transactioaalory model. In
these applications, we have separated the address space into 6héent’ and
“TCC buffered” regions. The coherent space is the shared dateedretthe
transactions; the part of the transaction’s write set that the coherent space is
broadcasted to other transactions at commit time and is used fationotietection.
On the other hand, the TCC buffered space is the transaction’sepilata and is not

shared with other transactions. The part of the transaction’s setithat is mapped to
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buffered space is not broadcasted at commit time and is kept icathe. It is
committed lazily to the main memory upon evicting the cache.lidesvever, this
part is discarded from the cache, similar to the coherent addrewhen a data
dependence violation is detected.

Separation of the transaction’s shared and private data achieves bettgrantibf the
store address FIFO associated with data cache (sincebli@€red writes are not
placed in this FIFO) and helps in reducing overflows by filling lugp EIFO. It also
reduces number of committed words by the transaction shortenicgrtimait period,

where transactions are serialized against each other.

I-cache 16KB, 2-way associative, 32B line size, 1 port (shared betwee
two processors)

D-cache 32KB, 4-way associative, 32B line size, 1K entry Store Addre
FIFO, 1 port (shared between two processors)

Local Memory 4KB, shared between all processors

Protocol controller 24 MSHRs (for processor requests), 4 DMA channels (one per
Tile)

L2-cache (unified)] 4MB, 4-way, 32B line size, 10 cycle accessdgiebanked
among main memory controllers

Memory controller| 2 controllers per Quad, 32 MSHRs each

Main memory 100 cycle access latency

Table 5-6: System parameters for hardware transactional memory model

App. Problem Size Description
Barnes 8K particles N-Body application
MP3D 30K particles Particle simulator

Table 5-7: Transactional memory benchmarks

Figure 5-8 shows the scaling performance of the two benchmarkeafwactional
memory model. While Barnes has a few writes to shared datahance a few
violations, MP3D performs a lot of writes and transactions encoantensiderable
number of violations. Worst-case performance impact of the reconfigurabtell=ryst
however is relatively small (slightly less than 20% for MP8Dinpared to the ideal

controller.
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Figure 5-9 shows breakdown of the execution time for worst casteoftwo
benchmarks (16 processor case for Barnes and 8 processor casg8f Méte that
in this case the execution time is measured only for the maseshat actually
execute the transaction and not for the support processors. Unlike tee steamory
model, controllers do not perform any coherence actions in thisacastetch cache
lines directly from main memory, successfully masking the inteomamtroller
latencies. However, the load stalls for MP3D is decreasednigst13% in case of
ideal controllers, decreasing the total number of execution cyidiesdecrease is due
to the large number of data cache misses in MP3D (almost 3484 atescompared to
Barnes with almost 3% miss rate), which puts more pressure ocotheller and

increases the dependence on the controller latencies.
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Figure 5-8: Performance impact in transactional memory model

Table 5-8 summarizes the performance impact for all benchnmadierent models.
Given that the upper bound corresponds to an idealized controller withyodes for
its internal actions, the overall performance impact of reconfigurable dergralould

be even less compared to any realistic controller for each of the memorigmode
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Figure 5-9: Breakdown of execution time (TM benchmarks)

Model Application | Overhead % | Average %

Coherence FFT 10.63

Radix 13.71

LU 8.65

Cholesky 18.4

Barnes 24.11

MP3D 48.38

FMM 6.92

MPEG2Enc 14.43 15.1
Streaming 179.art 7.49

Bitonic sort 1.87

Merge sort 0.5

Depth 0.06

MPEG2Enc 13.97 1.42
Transactions | Barnes 8. 82

MP3D 19.78 12.8
Overall average 6.72

Table 5-8: Performance overhead of reconfigurable controllers
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5.3. PHYSICAL OVERHEAD

In addition to the performance overhead, incorporating reconfiguradd@anisms in
a design also affects its physical aspects such as timieg,aamd power. While a
precise evaluation of the physical impact of the reconfigunabd a difficult task
(since it requires comparing the reconfigurable system with ecifgp non-
reconfigurable one), we performed a series of simple experinb@rgstimate this

impact in our system.

Our focus was on the area and power overhead induced by the reaii@gunotocol
controller. In these experiments, we tailored the protocol contrtdlea specific
memory protocol by initializing and fixing all internal configuoatimemories to the
operations required by the specific protocol and converted the menaneconstant
values. Our synthesis tool then removed the memories and propagated thetcons
values into the logic, eliminating unnecessary logic and creatintynstance” of the

controller tailored to that specific memory protocol.

Figure 5-10 shows the area for each of the functional unit in tteqm controller
and compares it with specific controller instances createdgpost coherence (CC),
streaming (STR) and transactional memory (TCC) protocols. Ihtezsaurces such
as number of entries in MSHR/USHR structures, number of line buffied virtual
channel buffers for network messages are kept exactly the farthe baseline and
specialized instances. However, DMA channels are not used in theewcohe
controller and therefore are omitted altogether. Also, in camsactional memory
protocol, only one processor in each Tile runs the main transactionphugour
DMA channels are used in the TCC controller. In the streamongraler each
processor has its own dedicated DMA channel, same as the baseiinaler, but

configuration of the DMA channels are fixed to only provide gather/scatter apexati

Aside from number of DMA channels, since the internal resourcelsegtethe same
for all controllers, most of the area reduction (both combinational raow

combinational) comes from simplifying and removing the flexibility the major
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functional units, namely D-Unit, S-Unit and T-Unit. The major reason sluch
substantial decrease in the area is the fact that in our iraptation, all configuration
memories were constructed using flip-flops. This simple, but oieffi way of
building memories not only uses more transistors to store confuiaformation,
but also consumes a lot of routing resources to connect the flops to output
multiplexers, as well as connecting them to the system clock. In the cgsec@lized
controllers, flops and their routing resources are removed during sigmtheducing
both combinational and non-combinational area. Note that since the MSHR and
USHR structures are accounted as part of the T-Unit, the edeation in T-Unit is

not as much as the other two units.
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Figure 5-10: Area comparison for protocol controller functional units

Figure 5-11 compares the total combinational and non-combinational fthe o
baseline controller with each specialized instance. As illigstraalmost half of the
area savings is achieved by removing the configuration mesn@r@-combinational
logic). The combinational area savings come from two separateesodirst, since
some of the configuration memories in the functional units are aemr@is TCAMS,

eliminating the configuration storage also saves the area cedsioy TCAM
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comparators. The rest of the savings in combinational areaiesvad by propagating

the constant values and optimizing combinational logic of functional unit itself.
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Figure 5-11: Comparison of total area between controllers

Table 5-9 lists the estimated dynamic and worst-case legi@ager consumption for
the baseline as well as specialized controllers, reported bgyathesis tool. While
not accurate, these estimates provide an insight about the power ovefhead
embedded reconfigurable mechanism. Most of the increase in the powbe of
baseline controller is due to leakage in the configuration mestiargtures, but it also
has a higher dynamic power. Most of the excess dynamic peveensumed by the
read ports of the configuration memories and TCAMs, which aressedevery clock

cycle, and comparators in the TCAM structures.

Power (mW) Baseline CcC STR TCC
Dynamic 170 101 115 111
Leakage 450 189 230 214
Total 620 290 345 325

Table 5-9: Power comparison for baseline and specialized controllers
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5.4. SUMMARY

While Smart Memories allows mapping of different memory progcthle flexible

mechanisms added to provide reconfigurability impact both the pexfmenand

physical characteristics of the system. Our studies showwthig¢ the performance
overhead induced by these mechanisms is modest, less than 2@t iof the cases,
the increase in the system’s area and power is not negligibleeer, most of this
increase is resulted from our poor implementation of systeamfiguration storage,
using flip-flops for implementing memories and TCAMs. These iciefficies can be
removed and a better implementation of the system can be achieusthgynemory
macros and custom structures, as shown by Mai et al for theottaseconfigurable

memory mat [71].
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6. CONCLUSIONS

The emergence of multicore architectures places an increaggtasis on the design
of the memory system since it implements the communication atel sharing
between processor cores. The paradigm shift from traditional rsgaygrogramming
to explicitly parallel programs introduces a major productivitglienge in developing
parallel software. Researchers have tried to address this rprdife proposing
innovative models such as programming with streams and transaatenaory.
Deployment of any multicore processor hence involves the adaptaticoucbf a
parallel programming model, which usually places a set ot s&fpirements on the
functionality of the memory system. Therefore, the existing iouukt architectures
usually are optimized for, if not restricted to, realizing anglémenting a single

parallel programming model.

In this dissertation, we observe that the basic hardware operamhsesources
employed for implementing different memory models in today'siticore
architectures are the same, with the only differentiatingtof being in the
combination and sequencing of these primitive operations. This observation i
supported by studies comparing the performance of the memorynsystemodern
multiprocessors [28][64]. These studies demonstrate that differemtony systems
can achieve similar levels of performance, given intelliger@nagement of the
resources, since they intrinsically rely on the same operadiotiee implementation
level. For example while a stream memory model relies on ptiogrammer’s
knowledge for orchestrating communications and data movements, cobeazatl
memory systems try to imitate the same level of intelloge by employing
sophisticated coherence controllers and prefetch engines that tatafata
communication and transfer and eliminate the programmers é&fohiandling such

transfers explicitly.
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Based on the above observations, we propose a universal memory axdtgacture
that extends the notion of “programmability” from the processoce tmithe memory
system hardware. The programmability not only enables supportinlgipie
programming models on the same hardware substrate, but also allsss ta tailor
the underlying memory system to the application of interest anctmbte achieve
better levels of performance and efficiency. We identify theessmary hardware
resources, namely storage elements, communication channels andsgegiated
controllers as operating agents in the universal memory systenprdfiese a set of
basic operations and state registers for the controllers andbeebow the request
and reply messages in the memory system can be processechicosdroller by

combining these basic operations.

With this framework in place, we present Smart Memories, @fgurable memory
system architecture as a first implementation. Our perfacmatudy shows that the
overhead of the added flexibility in the system is smalk tean 20% slowdown in
clock cycles compared to an idealized controller for almost adeg across three
different memory models. However, our simple but inefficient wayrgfiementing
storage structures for system’s configuration induces signifieegd and power

overheads.

While creating a better implementation of this reconfigurafuléticore architecture is
a very interesting engineering task, a more attractiveestg#l is to understand how
much and what kind of reconfigurability is useful for patching aesystfter
construction. In practical systems, a specialized architeefurays performs better
and has less physical cost than a reconfigurable one. Henceajbie atdvantage of
reconfigurable architectures is in being able to alter the iimadity of the system
after implementation, in order to fix design errors or integnate functions. The key
guestion therefore is whether one can achieve the same advantatggsting small
amounts of flexibility into a specialized system, which allowsclnag potential
design errors or modifying and upgrading the system'’s functionality.
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Another challenge is while Smart Memories architecture provadkesge degree of
freedom in configuring and using hardware resources, one can dincys develop
protocols that cannot be mapped on this system. This problem can be dseutce
constraints, such as insufficient hardware resources, or reqspegal functional
units that are not provided in the system. Alternatively it lsardue to absence of
support for the information fields that a protocol requires to commenizatween
different components and necessary operations to act upon them. Forexahigl
Smart Memories supports all necessary mechanisms for irapterg a Token
Coherence protocol [65], such as token counting, un-ordered communication for
exchanging transient requests, serialization operations folstggtsiequests, etc., it
lacks the watchdog mechanisms that are used to trigger persexjeests and avoid
starvation. Another example is STAMPede’s TLS protocol [14], whelerence
messages carry epoch numbers, a processor’s speculation degrekey ito atecide

whether to acquire a cache line and invalidate the owner or not.

An attractive approach for alleviating this problem, as wekddressing the design
efficiency issues, is pushing the abstract framework discusgéd dissertation into
the memory system design phase. The designer can then constreictoaynsystem
by means of allocating necessary resources and implemensirgdd@rotocols by
composing the basic memory operations at the design stage. Tige tlamework
provides the user with necessary resources, mechanisms and opdmtamse
from, which can be considered as programmingireual memory system. When
realizing the actual implementation, the design tools can idemidyanalyze utilized
resources in the virtual system and optimize away the unusedbilitgxiwhich leads
to a much more efficient system implementation. Such desigrewank can also be
augmented with additional resources and state information, as svdlamware
mechanisms and operations, which allows implementing specializatbm system
protocols. This eliminates designer’s concern about the physicglesftimance cost
of the reconfigurable mechanisms to control resources, as welhwsed system

resources and operations that might consume area and power.

127



Smart Memories provides a basis for constructing such an extemsbhi@ry system
design framework. Separation of the data path and control in procetstade logic
and memory system controllers, microcode based implementatibe obntrol logic,
and use of standard interfaces for inter-module communication, malaser for the
design to be automatically extended. New functional elements caddesl to data
paths while their controlling bits can be added to configuration memori
Configuration memories can also be extended both to accommodatenizal bits
as well as more entries for new operations. Existing intesfear be augmented with
new information fields that are added to interfaces and routed detaiéferent
components and modules. Such system extensions have been succesfifzdly fia
commercial reconfigurable processors such as Tensilica [66/7]Providing the
same extensibility for designing memory systems is ndyuifa next logical step in

providing a higher level of abstraction for computer system design.

An important element in designing such a framework is providingidei interfaces
for memory system designer to express a memory systenficgeam. Implementing
memory protocols requires decomposing protocol actions into logichditinct
operations carried out by separate system components, as wahasunication
messages exchanged between them. Due to this distributed and tizedni@ure,
protocol design is a challenging and error-prone task. Developimgpdeslanguage
for describing memory protocols in form of a “memory systengaim” expressed in
form of the ISA instructions, raises the level of abstraction atoppl design and
helps in detecting logical protocol errors. A compilation framewark then analyze
and generate necessary control signals for the virtual merngsigns, which is then
used by the design tools to eliminate unnecessary hardware compamegsnstruct
the desired memory system. The compiler can also apply optiomzatchniques to
memory programs, such as fusing commonly encountered sequences of opiettations
a single operation, as well as verify the generated comfotmation to reveal

inconsistencies or conflicts in using available hardware resources.
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Such language and compilation framework would be even beneficidhdocurrent
Smart Memories system and SMASH test chip. The current methmahbfuring the
system requires manual development of the bit patterns uploaded ifecerdif
memory system components. The compiler which could read in the protocol
description and generate necessary bit patterns to for uploading fftcerdi
components, would greatly simplifies the task of system configaraind eliminate

many errors.
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APPENDIX A: SMASH INTERCONNECTION NETWORK

In the general Smart Memories system Quads and memory ¢enstrate connected
via a mesh like network. This requires each Quad to have a networkiroatder to
route packets received from its neighbors to their appropriatnatésns. In our
implementation of Smart Memories and the SMASH test chip, meléied all the
network architecture by settling on a star topology, as showngimrd=iA-1. In this
topology, all the connections are made by a central switch and Qoads have the
routing capabilities. They simply send and receive packets toffrerawitch and only
have to properly identify the destination for each message. Thisogpslupports
maximum of four Quads and four memory controllers. In addition, one cateae
simplified version of the system by directly connecting alsirQuad to a single
memory controller without any additional interfacing. This allovesasing a minimum
system with reduced communication overhead. However, the networkhsigit
required if the user needs more than one Quad or one memory cortwoler
enabled. In this appendix we describe the properties of our implednenérconnect
mechanism and explain the internal architecture of the netwaitch and its

capabilities.
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Figure A-1: Star interconnection topology in SMASH

A.1l. INTER-QUAD NETWORK

Inter-Quad network in the SMASH system is organized as aAdtaommunications
between Quads or between a Quad and a main memory contrelteusted through a
central switch referred to as the Network Switch. Commuicdietween the switch
and each Quad or memory controller is full-duplex using dedicatedntit and
receive channels. Each physical communication channel is lagdanto separate
virtual channels, with each virtual channel having its own dedicatedringffepace at

the receiving end.

Packets are divided into units of transmission cdliesi Each flit contains 72 bits of
information and is transferred from source to destination in aesoigtk cycle. The
system uses a credit based flow control mechanism; whenditds @bnsumed at the
destination by routing it (in the switch) or passing to executioe ¢or Quads or
memory controller), a credit is sent for the source entity. €oedinting mechanism
at sources ensures that they do not attempt sending a packetthatess enough

buffering space (credit) at the destination to buffer the whole packet.

The clock rate of the communication on the network, or I/O Clock, cadljosted to
be equal to, 1/2, 1/4 or 1/8 of the system clock. Each Quad and memomlleontr
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receives a two-bit static control signal which dictates #ie between system and 1/O

clocks.

A.2. NETWORK SWITCH ARCHITECTURE

The network switch is an 8x8 input-queued switch connecting four Quafigirto
memory controllers. Quads are connected to ports 0-3 of thehsaitd memory
controllers are connected to ports 4-7 (Figure A-2). The switbhicfas an 8x8

crossbar controlled by a scheduler. The switch operates at systemlsdOseed.

Scheduler
I
|
A 4
From Quad 0 — o » »{ outo — To Quad 0
FromQuad1 —p{ in1 > »| outt —p To Quad 1
From MC 3 —3»{ n2 » » out7 —» TOMC 3

Fabric

Figure A-2: Organization and connections of the network switch

Each input port in the switch has eight separate virtual channer®udf store packets
on each virtual channel separate from others (Figure A-3). Wheaewdual channel
buffer becomes full, credit based flow control mechanism caus&pbassure on the
source, preventing it from sending more packets. At each dypdle, each virtual
channel in an input port sends requests to scheduler asking fdicspatputs. The
scheduler sends back a grant signal and an output channel number in reEpense.
input port then extracts the head flit from the buffer and sentisthe designated
output port.
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Figure A-3: Input port of the network switch

Each output port (Figure A-4) has a buffer for a single flitypeual channel, as well
as the credit counters for downstream destination. The output peneagdlits from

the fabric whenever the scheduler indicates there is an incohtifay this port. The
scheduler also specifies the virtual channel on which the fliaieling. The output
port puts the flit in the buffer and sends it to the destination whenever there i®oredit
the specified virtual channel. If there is not enough credit fodieg the flit the
output port signals the scheduler that its buffer is full andnhcgaccept any more
flits. This stops the scheduler from granting requests to this oatptihe specific

virtual channel, stalling the input ports’ virtual channel buffer.
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Figure A-4: Output port of network switch

The scheduler determines the connections between each pair of inputfmustpust
any given cycle. It receives eight request vectors frorh ggaut port, one per virtual
channel. The request vector indicates which output ports the inpukisgrearequest
for. It also receives the full indicators for each virtual chaffmeh all output ports.
The scheduler then generates a match matrix, which indwhtel input/output pairs
should be connected at that clock cycle. It also specifiegitiobal channel number of

each connection.

In order to perform the scheduling decisions, the schedulerildgimally runs eight
concurrent iISLIP schedulers [72], and combines their output match results. Edeh iSLI
scheduler receives requests related to a single virtual chantdigdroduces a match
matrix according to that virtual channel. Match matrices frdnscedulers are then
combined according to the priorities specified for virtual channslshaws in Figure
A-5.
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Figure A-5: Network switch scheduling logic

A.3. ENFORCING PRIORITIES

The network can prioritize traffic sent on one virtual channel oveothers. Such
prioritization is essential when the same physical networkead us carry different
types of traffic, since reply messages should always hawitpriover request
messages to avoid deadlock in the system [69]. The system proweeg thexible

way of defining priorities: for each virtual channel, an 8-bésk specifies the other
channels that have priority over it. In other words, a one bit in positf the mask

for channelj indicates that traffic on virtual channekcan be blocked by traffic on

virtual channel.

When no priority relation is established between two virtual chansydtem utilizes
a fair, round robin arbitration when serving requests from these ctvemnels.
Priorities are enforced in all arbitration points in the syst@hen a message sending
request is passed to transmitter, at the network switch and ired¢baers, when a
received message is to be passed to the execution core. riEdg{@uad, memory
controller and network switch) has its own set of priority mastisters. These
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registers should be configured with the same values in order tange@ correct

prioritization over the communication channels.

A.4. BROADCAST / MULTI-CAST CAPABILITIES

The network switch in the SMASH system provides basic brodduastcast
capabilities. These capabilities are very useful when implengemiemory models
that need to send inquiries or updates to all entities in thensyStg example, when
updating state of the cache line in an invalidation based cohepeontcols or
updating a memory word in update based coherence protocols, messagés ba

sent to all the Quads that (might) contain the specific word.

The switch supports a limited form of multicasting a messagautbple destinations.
Note that the switch is aware of the fact that Quads ar@yalconnected to ports 0-3
and memory controllers to ports 4-7. This information is leveragethdgwitch in
order to generate messages for desired destination. Each pasket three bit
multicast field in the header which specifies which destinatiosmsnessage should be

sent to, if packets should be sent to more than one destination. These bits are:

- Bit [0] — Quad broadcast: Indicates that message should be broadcaatethe
Quads in the system (ports 0-3).

- Bit [1] — memory controller broadcast: Indicates that messsigeuld be

broadcasted to all memory controllers in the system (ports 4-7).

- Bit [2] — Except destination: When this bit is set, switch dbesbroadcasting to
Quads or memory controllers, but does not send the message to thepaditied
in the destination field of the message. This is particularlfulsden a message
should be sent to all Quads (or memory controllers) except onegxXeonple,
when broadcasting a coherence request in serving a cachenissry controller

wants to enquire state of the cache line in all Quads exoepne that originated
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the cache miss. This bit allows the custom multicasting shedimmonly used in

memory protocols.
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APPENDIX B: IMPLEMENTING A SIMPLE PROTOCOL

Chapter 4 described the Smart Memories architecture as arplexanplementation
of the universal memory system. This appendix explains how the embedded
reconfiguration features are used for implementing a memorgquidby presenting a
simple example. We consider a system with only a single Quaé &ingle memory
controller and explain the necessary steps for configuringykiers to implement

caches and a MESI coherence protocol between Quad processors.

Configuration process is divided in to three major steps: thestiegt is to allocate
necessary memory resources, including defining and associagicgssary state
information with cache lines as well as allocating necesstargge structures for data
and state information. Second step involves defining memory operationsathae
performed on memory locations by processors as well as protontblter. The
definitions include update of the state information (if necessary) as walcasss and
failure conditions for each memory access. Last step is dgfie@mmunication
messages between different controllers and programming corgratl@ach level to
handle defined messages such that requests are served and propehedESI
coherence protocol are enforced appropriately. The following secatiabsrate on

these three steps.

B.1. ALLOCATING RESOURCES

The first step of the configuration process is to allocate sapgsystem resources.
These resources are mainly storage structures used for suailag and state
information. In addition, one should also specify address translation andngappi

mechanisms in the processor interface logic and controllers.
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B.1.1. SATE AND DATA STORAGES

In our example of shared memory system with MESI coherermequl [69], we

assume processors have instruction and data caches with pasaasefEable B-1.
Memory mats in the Tile are used for storing both data and stitrmation of the
cache, including tags and cache line state. Before attemptiatjotate storage for
state information, we have to specify what state informatioeqsired and how it

should be associated with the user data.

Cache Size Ways Line DataMats | TagMats | Total
Size (per way) (per way) Mats
Data 32KB | 2 32B 4 1 10
Instruction| 8KB 1 32B 2 1 3

Table B-1: Cache parameters for example configuration

Mapping state information

Since we need to have identifying tags for each cache linstowe these tags in a
separate memory mat per cache way. Tags are stored in déhardgt of the memory
mat®, which supports a comparison operation. Each processor access tohbe cac
sends a compare operation to the data array of the tag matrouytpa address tags
with the stored tags. It treats the result of compari$ota{ Matchoutput of the mat)

as hit/miss signal. Since each cache in our configuration has &y® two tag mats

are required (one per each cache way) and multicast mechantben Bile crossbar

sends the tag comparison request to both of these memory mats.

In our simple MESI coherence protocol, each cache line has four shates:
Modified, Exclusive, Sharednd Invalid. Figure B-1 shows how these states are
mapped into the control (meta-data) bits in memory mats. In adddidmese four
states, we need an intermediate st&eserved which indicates that location is
reserved for the incoming cache line. The state bits aredsin the control array of

the tag mat and are accessed along with the tags in thardaya Tag mats do both

1 Data array in the mat is 32-bits wide and hend®i enough bits for storing the tag bits extracted
from a 32-bit address. Unused bits are filled wvzitho.
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tag and state comparison on each processor access andribkitieetag or line state
does not match the desired vallatal Match output of the mat will be inactive,

indicating a miss in the specific cache way.

Modified

R.eserved t$ \Valid
i i | Exculsive/shared
| I
IRy MV iE) || Tag
Control Array Data Array
R V E M State
1 x x x [Reserved
0 0 x x|Invalid
0 1 0 O] Shared
0 1 1 O |Exclusive
0 1 1 1 |Modified

Figure B-1: Mapping and encoding of state information

Allocating memory mats

After determining how to map the state information to memoagsmwe need to
allocate mats for storing cache line data and state. Thisimply done by
programming the cache configuration registers inside the prodessidace logic, as
described in section 4.5.1. Figure B-2 and Figure B-3 show the catfiuof the
instruction and data caches in the processor interface logictiNdtthese caches are
shared between the two processors therefore values loadechéntmonfiguration

registers are the same for both processors.
In addition, the following configuration registers are also programmed:

- ThelIMCN output of tag mats in both caches is set to belTttal Matchsignal.
This transmits hit/miss indication from tag mat in each caevsy to

corresponding data mats.
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Theguardsignal for guarded operations in data mats is set tMG& input. This
way, modifying operations in the data mats (i.e. writes)gar@ded by hit/miss
indicator in corresponding tags and hence are discarded if the codigpteg

mat reports a miss.

IMCN
A
l\/-ll—:ttcar: Guard
\ 4 \ 4
Tag Word 0 Word 1
N Word 2 Word 3
Word 4 Word 5
Word 6 Word 7
M3 M4 M5
Tag Mats Data Mats

Instruction Cache

11 8 7 6 5 4 3 2 1 0

|_Cache_Info: | xx | 10 | 01 | 01 .
8 5 4 1

|_Cache Way0_Info: | 0100 | 0011
|_Cache_Wayl_Info: | XXXX : XXXX
|_Cache_Way2_Info: | XXXX : XXXX
|_Cache_Way3_Info: | XXXX : XXXX

Figure B-2: Example instruction cache settings
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IMCN

Total
Match || m11 Guard w115 M13 y M14 y M15
I I I I I
Tag \‘ Word 0 H Word 1 H Word 2 H Word 3 H
Word 4 H Word 5 H Word 6 H Word 7 H
M6 M7 M8 M9 M10
Tag Mats Data Mats
Data Cache

11 8 7 6 5 4 3 2 10
D_Cache_lnfo:| XXX : 01 : 01 : 10 '
8 5 4 1

D_Cache_Way0_Info: | 0111 | 0110 1 |
D_Cache_Wayl_Info: | 1100 | 1011 1 |
D_Cache_Way2_Info: | XXXX : XXXX : 0 |
D_Cache_Way3_Info: | XXXX : XXXX : 0 |

Figure B-3: Example data cache settings

B.1.2. ADDRESS TRANSLATION AND MAPPING

As discussed earlier, obtaining physical address of memortido(s) to access for
processor’'s memory access instructions involves two steps: trandtam virtual to

physical address space and slicing generated physical sddresbtain tags and
indices for memory mats. Second step of the mapping is done hygsefticache

configuration registers discussed above. These registers prostgssary control
signals for the address slicing logic inside the procesgerface, which generates
tags and indices for accessing memory mats. First step ofapping, the translation,

is performed by segment table.

Figure B-4 shows an example configuration of the segment tablaengtiuction
segments (4-7) are mapped to off-chip memory segments 11-14 aaccassed via
instruction cache. Data segments 8-13 in virtual address spaals@rmapped to off-

chip memory (segments 4-9) and are set to be accessed vieadaga 8egment 15
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contains the 1/O region; it has an identity mapping and issaedevia un-cached
memory access instruction€gchedbit is set to zero). Segment 14 is mapped to
memory mats 0-2 inside the Tile (Segment 3 in physical addspase). All
instruction segments have read only permissions while all dajmesgs have

read/write permission.

Seg 15
Seg 14
Seg 13
Seg 12
Seg 11
Seg 10
Seg 9
Seg 8
Seg 7
Seg 6
Seg 5
Seg 4

Figure B-4: Example setting for segment table (address translation)

B.2. DEFINING MEMORY ACCESSES

After associating the state information with data and allogatiecessary memory
mats, next step in configuring the system is defining accesséscal and main
memories. Local memory mats are accessed by processtagatiogic and protocol
controller while off-chip memory is accessed only by main mgnaontroller. There

is division of the tasks between these three entities:

* Processor interface logic carries out processor accesseemory mats, such as
load/store instructions or any other memory instruction that nioghissued by

processor (e.g. prefetch instructions).
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» Protocol controller performs cache refills, write-backs and l@ndbherence
operations such as snooping caches and updating state information. It also

communicates with main memory controller to write-back or fetch cacés. li

e Main memory controller receives write-backs from Quad and svdtga to main
memory or reads data from main memory and sends it back to Qupadocol

controller.

The following subsections describe how necessary accessdsfaned for memory

mats and off-chip memory.

B.2.1. ACCESSES TO LOCAL MEMORY MATS

Processor interface accesses local memories when processes & memory access
instruction to its cache or local memory. Protocol controller aesethem when it
receives a request from a Tile processor that involves readitiggndata or adjusting
state of cache lines. In our simple example, we assume thaspooacan only issue
Load, Store, Prefetch for Read and Prefetch for Write ingtngcto memory. Loads
and Stores might access the cache, go directly to off-chip mefs®gynent 15) or
access local memory directly (segment 14 which is mappedrtmrgenats 0-2). We
also know that protocol controller has to implement MESI coherermeqat and
therefore it has to snoop and adjust the state of cache lindegWhen it receives

cache miss requests.

Table B-2 shows the configuration of processor interface for assyraessor
accesses to caches. The configuration table defines operatiobstii tag mats and
data mats in each cache (instruction fetch is treated the aafnoad). Load and Store
instructions access tag and data mats at the same timdclPietructions check the
status of cache line by only accessing tag mats. For eaelssa®mperations on data
array and control array are specified. When RMW logic in théimused to update

line state, the figure also shows how the state bits are updated.
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TIE Tag Mats Data Mats
Opcode | Data | Cntr | PLA Cntr Mask Data | Cntr | PLA | Cntr | Mask

Op Op Op Bits Op Op Op Bits
Load Cmp | Cmp | NOP | Oxxlxx| 1100100 Read NOP NOP 6'hx 7'bx
Store Cmp CMW | M<1 | Oxx11x | 1100110| Guard NOP | NOP| 6'bx 7'bx
if TM Write

Prefetch | Cmp | Cmp | NOP | Oxxlxx| 1100100 NOP NOP NOP 6bx  7bx
Read

Prefetch | Cmp | Cmp | NOP | Oxx11x| 1100110 NOPR NOP NOP 6’hx 7'bx
Write

Table B-2 : Processor interface operations on memory mats (cached)

Load instruction compares the cache tags and ensures thatlicecis not innvalid

or Reservedtate by compariny bit with 1’b1 andR bit with 1'b0. The other control
bits are ignored since tiaskinput disables comparison operation for them. In data
mats, Load instruction reads the data from data array and does mot dpeaation on

control array.

Store instruction performs the same tag compare operations on tharday and
control array of the tag mat but it also checks Ehbit to ensure that it has write
permission Exclusive or Modified states). Instead of normal compare, it uses a
Compare-Modify-Write operation on the control array to setMheit if Total Match
(TM) is activated which converts the lineMwodified state in case of hit. On the data
mats, Store uses a Guarded Write operation to write data word tdmguard signal

is active.Guard is set to be the IMCN input which propagaiestal Match signal
from tag mat to data mats. Similar to Load instruction, no adperas defined for

control array in data mat.

Prefetch operations only access the tag mat in order to cotheati@gs and line state.
Prefetch for Read checks only teandR bits to ensure that line is in a valid state and
is not reserved. Prefetch for Write also checksEhieit to see whether cache has

ownership of the line or not.

In our example setting of segment table, there are two segthantare marked as un-
cached. The first segment is segment 15 which is mapped tdipflreemory and
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second segment is segment 14 mapped to memory mats 0-2 in thi€ofilccesses
that go to segment 15, LSU does not access the local memory mats and imgtead se
request message to protocol controller to read/write the meatuhess of interest.
For accesses to segment 14 (un-cached, on-Tile), it acchssesdet mat the same
was as data mats in the caches. Table B-3 lists un-cachestiopeof LSU on the

memory mats.

Segment TIE DataOp | Cntrl | PLA Cntrl M ask Comment
Opcode Op Op Bits
14 Load Read NOP | NOP | 6'bx 7'bx
14 Store Unguard | NOP NOP 6’bx 7’bx --
Write

15 Load NOP NOP NOP 6'bx 7’bx Message tg
controller

15 Store NOP NOP NOP 6'bx 7’bx Message tg
controller

Table B-3: Processor interface operations on memory mats (un-cached)

Protocol controller is responsible for servicing cache missesribywgvback evicted
cache lines and refilling new lines into the cache. In additionastto enforce the
coherence properties and adjust the line states in all ofubd €@aches according to
MESI protocol. Hence, we can define the following accesses for protocol ¢éemtrol

- Eviction: Put a cache line in the reserved state by turning oR Hie
- Write-back:Read cache line tags and data and send it to main memory controller

- Line read:Read data portion of the cache line from cache, used when doing a

cache-to-cache transfer between to Tiles

- Refill: Write cache line tags and data when requested line recem@dniemory

controller or found in another Tile's cache

- Search (Snoop)Read cache line state and atomically updates it (using-Rea
Modify-Write operations) to comply with the MESI protocol
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Table B-4 and Table B-5 present the details of the protocol contealtersses to tag
and data mats. There is a major difference between asdesseprocessor interface
logic and protocol: While processor interface accesses tagaaadnats concurrently
when carrying out a memory instruction, protocol controller accesgesind data
separately when processing a request. The reason is that contadleseparate
functional units for accessing data and line state informationeaold has its own
dedicated port to Tile memory mats. Therefore, tag and daesses for any give
request inside controller are carried out at different timasegiequest is passed from
one functional unit to the other. Note that controller still miggsue concurrent
accesses to tag and data mats at the same cycle buaticesses will correspond to

different requests.

Operation Tag Mats
Data Op Control Op PLA Op Control Mask
Bits
Eviction Read Unguarded | NOP 100000 7'bx
Write
Tag Read Read NOP NOP 6’bx 7'bx
Tag Write Unguarded Unguarded | NOP M: 001110 | 7'bx
Write Write E: 000110
S: 000100
Snoop-Read Comp Comp EAMIif TM | Oxx11x 7’bx
Snoop-ReadEx Comp Comp M if T™M Oxx11x 7'bx
Table B-4: Protocol controller operations on tag mats
Operation Data Mats
Data Op Control Op PLA Op Control Mask
Bits
Read Read NOP NOP 6'bx 7'bx
Write Unguarded| NOP NOP 6'bx 7'bx
Write

Table B-5: Protocol controller operations on data mats

For cache line evictions, controller writes the state bits irtafanats and sets the

bit to one. This indicates that line isReservedtate and there is a refill pending. For

write-backs, controller reads the tags as well as data ust#agl Rnd Tag Read

operations. It then sends the extracted cache line to memory Emt¥dhen there is
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a possibility to service a cache miss by doing a cachadbectransfer, controller
reads the cache line from another Tile’s cache and rdfililsthe destination cache.
This is similar to the write-back operation, but no tag readqgsimed. When doing
Tag Writes, controller writes both tag and state into the tag uming unguarded
writes. Exact value of the control bits depends on the state chwbntroller refills
the cache line. As part of the refill, controller also writes data portion of the cache
line into data mats using unguarded write operations on theadaty. For snoops,
controller uses the Read-Modify-Write logic in the tag matsipdate the state bits.
Two types of snoops are possible: “Read Exclusive” invalidatexdbke line by
setting theV bit to zero, while “Read” only degrades the cache line byngethieE
andM bits to zero.

FAILURE CONDITIONS AND REQUEST MESSAGES

Part of defining the memory accesses is specifying whanemory access is
successful. As discussed before, when a memory accessrigjsest message is sent
by processor interface to protocol controller, asking for assistAben defining
accesses to local memory mats by processor interface angl protocol controller,
user has to define corresponding success/failure conditions for sadss. In
addition, we have to specify whether a request message haseattend what is the
type of the request for each failure condition. For processorfanéeraccesses

specifically we also have to indicate whether issuing processor has todx atadot.

Table B-6 shows processor interface settings that definessuocdailure conditions
and message types that are sent to protocol controller, in lrasspiecific failure
condition is encountered. Note that these conditions are defined &wsasdo caches
only. Un-cached accesses to memory mats (segment 14) ares awapessful. Un-
cached accesses to off-chip memory (segment 15) are alwayscessful and result
in sending a message to protocol controller. The table only shows returned tidorma

from two ways of the cache, since in our configuration a cachathaost two ways.
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Prefetch for Read and Prefetch for Write operations have thesardiions as Load

and Store and therefore are not shown in the table.

TIE Way 0 Way 1 Succ | Stll | Msg Type

Opcode | TM | DM | Cntrl | TM | DM | Cntrl | ess?

Load 1 1 Oxx1xx X X XXXXXX Y N N --

Load X X XXXXXX 1 1 Oxx1xx Y N N --

Load 0 X XXXXXX 0 X XXXXXX N Y Y Cache
Miss

Store 1 1 Oxx11x X X XXXXXX Y N N --

Store 0 1 Oxx10x X X XXXXXX N N Y Upgrade
Miss

Store X X XXXXXX 1 1 Oxx11x Y N N --

Store X X XXXXXX 0 1 0xx10x N N Y Upgrade
Miss

Store 0 X XXXXXX 0 X XXXXXX N N Y Cache
Miss

Table B-6: Success/Failure conditions for LSU operations on caches

In the table above, Way0 and Wayl are state bit vectors returneddgomats in
ways 0 and 1 of the cache (for instruction cache there is no wastefdre only
information returned from wayO is consideredM stands forTotal Match output
(comparison result for both data and control arrays in the iD&t)jndicatesData
Match output (comparison result for mat’s data array) @odtrol are control bits read
from control arraySuccessolumn indicates the result of the access if that specific bit
pattern in encountere&tall indicates whether processor has to be stalled oMz,
says whether a message should be sent to protocol controll@iypadpecifies the

message type.

Note that table is searched from bottom to top and content ofsthetching entry is
taken as output. Therefore, entries in the table are implicittyifized: each entry has
priority over the entries lower to it. For example, by looking &t bottom two
entries, one can notice that last entry for Store opcode (cad® oovers the
previous one (upgrade miss). In other words, the state bit vectbe ientry with
upgrade miss is a special case (subset) of the state lot ¥@cthe cache miss case.

However, since the table is searched from bottom to top, the outpuienthe last

150



matching entry when an upgrade misses is encount®ata (MatchandV bit are
active, butE bit is not, or in other words, line is valid and tags are madcHuat there

is no ownership).

Also note that theStall column defines store accesses to be non-blocking, meaning
that even when a store fails either due to a cache miss ordepaguas, processor is
not stalled and keeps executing later instructions. This is bepausessor interface
keeps necessary information about the failed Store instruction aan@damplete it
without stalling the processor. However, for Load instructions gwnceessor needs
the data word to load into the target register the access dammaimpleted without

processor being stalled.

In our simple example, memory mat accesses defined for protocdtoller are
always successful and therefore there is no need to define suckioccotalle for

protocol controller accesses.

B.2.2. ACCESSES TO MAIN MEMORY

Main memory in this example is either accessed via insbructi data caches to refill
a cache line or by direct, un-cached accesses that go meesed5. For cache
accesses, main memory controller has to supply cache linegedilleel into caches,
or it receives cache lines that are being written back feaches. This involves
reading and writing blocks of memory. For un-cached accesses smigla word in
the memory is read or written at a time. Therefore, all mamory controllers have
to provide is simple read/write accesses to main memory addrdgigin memory
controller can then perform a series of such read/writesaeseon successive

addresses to do block read/writes.

B.3. COMMUNICATION MESSAGES

Third and last step in the system configuration process is toedgfotocol messages

that are exchanged between levels of hierarchy and specifyheyare handled at
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each level. We mentioned what messages are sent from proggssface logic to
protocol controller when a local memory access fails. Thisoseetaborates on these
messages as well as messages exchanged between protocollecoatrd main
memory controller. It also specifies the details of the oeratvithin each controller

to handle messages.

B.3.1. DEFINING COMMUNICATION MESSAGES

Table B-7 lists all the request/reply messages exchangeediefpvocessor interface
and protocol controller. It also explains the purpose of each messdg®mnditions in

which it is sent. Information fields of these messages weiided in section 4.5.4.
Protocol controller receives request messages from all prosesstihe Quad and
sends a reply back for each message it receives. The tablistalfoe possible replies
from controller to processors. Note that there is no type fielthforeply messages,
the table only indicates whether controller sends back data toustr gnd

acknowledgement about requested operation being completed.

Message Type Direction Description

Cache Miss

LSU- Controller

Cache line is not present in the cache

Upgrade Miss

LSU- Controller

Cache line is present, but cache does
have ownership to

Un-cached Access

LSY> Controller

Direct accesses to off-chip memory

Reply Data

Controller» LSU

Returns data word to processor (Loads

4
N

Reply Ack.

Controller—» LSU

Returns acknowledgement indicating
requested operation is complete (Store

and Prefetches)

not

Table B-7: Messages between processor interface and protocol controller

Similarly, communications messages exchanged between dochimain memory

controller are listed in Table B-8. Information carried by eadssage is listed and
described in Table B-9.
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Message Type Direction Description

Cache Miss Locab Main | Sent when cache line is not present in the
cache and needs to be fetched from main
memory

Write-back Local-> Main | Sent when cache line ishodified state ang
main memory copy has to be updated

Un-cached Request Locat Main | Sent for direct accesses to off-chip memo

Refill Main — Local | Returns requested data cache line

Un-cached Reply Mair> Local | Returns requested data word that is read
from off-chip memory or Store
acknowledgement

Table B-8: Messages between protocol controller and main memory controller

Field Description

Source ID ID of sender entity

Destination 1D ID of receiver entity

Type Type of the message

Address Address of word or cache line of interest

Requestor Tile ID, processor ID and port ID of the requesting processor

Opcode TIE opcode issued by processor

Data A single data word (for un-cached requests) or a data block (for
cached requests)

Byte Mask For un-cached Stores, identifies which bytes should be written
to main memory

Size Size of the data block, if message carries a data block

SHR Index Index of the status holding register (MSHR/USHR) that
contains request’s information. Used for retrieving the tracking
information when reply is received

Line State State in which line should be refilled in cache

Table B-9: Fields of messages between protocol and main memory controller

B.3.2. $ECIFYING PRIORITIES

While messages between processor interface and protocol cordrellexchanged on

the dedicated channel between them, messages between protoamlercamid main

memory controller are exchanged over the general intercoanewiwork. Since this

interconnect is used by all Quads and memory controllers in shensyat times it can
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potentially be congested, blocked or un-accessible for sending paekgtsermore,
oblivious usage of available (virtual) channels might createuleircdependency

between messages waiting in system buffers and hence create a deadlock.

General strategy for avoiding deadlock in lossless interconnectiovonks is to
separate messages into requests and replies. By definition [69][T8ply is a
message that will not generate another message as a resules®e however, are
messages that might generate other messages when processeas Sysially
guarantee deadlock free communication by reserving enough bufferatg gor

replies and limiting number of request messages that can be generated.

Smart Memories architecture uses similar strategy figrisg requests and replies to
different virtual channels. Assigning virtual channel numbers tesages and setting
up priorities between channels is one of the user’s responsibilitiea configuring
the system. In our simple example, we assign virtual channel 1)(%€ carrying
replies and virtual channel 2 (VC2) for carrying requests.celecache miss and un-
cached access requests are assigned to VC2, while write-béitkand un-cached
reply messages are assigned to VC1. Note that write-back isle@mtsas a reply by
this definition, since it does not generate any other message vaiieg processed.
Priorities for the virtual channels are adjusted by setting gorstion registers in
protocol controller and main memory controller network interfacesvels as the

central network switch.

System relies on the back pressure mechanism provided by thecitdkel scheme in
order to limit number of outstanding request messages, as descigpendix A.
Whenever the network buffers of the request virtual channeilie dip, controllers
will not be able to generate and send further requests. Howevearthgyaranteed to
process messages on other virtual channels, the reply virtualetharour example,
such that there is no circular dependency between requests amd @apli system

always is guaranteed to make forward progress.
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B.3.3. RROGRAMMING PROTOCOL CONTROLLER

For each communication message received by protocol controllehasdo define
necessary processing steps in handling it. Protocol controllevescmiessages from
processor interface logic in each Tile and main memory contrdle discussed
earlier, the execution model of the controller is by defining arkihlg subroutines for

each of the relevant functional units. Each input message invokes @ a@hai
subroutine executions that complete its handling. In this sectioneseride how
communication messages are handled inside protocol controller, whatssries of
subroutines invokes for each message, and how the subroutines are defined for internal

functional units.

First thing is to define the processing steps for each inputagessnd determine
which functional unit is responsible for executing that step. TRBH® breaks down
the processing steps required for each message received bgopratntroller and
identifies functional units that should participate in handling it.

In example system protocol controller accomplishes two majdks:tasne is

supporting caches by performing cache refills, doing write-baoiks enforcing

coherence protocol properties. Another task is handling un-cacbesisas to off-chip
memory. Tracking information for requests that are related taltbge tasks is kept
separately. Coherence protocol imposes serialization requirearengguests that for
the same cache lines. More specifically, writes to the shretion have to be
serialized. This implies that local controller has to compheeline address of the
incoming cache miss requests against already outstanding cédes rand serialize
them if they target the same cache line. This task is accameliby the tracking unit
(T-Unit, cached section), using associative search capabdititee MSHR structure.
In contrast to the cache miss requests, there is no suchzsgigalirequirement on un-
cached memory accesses; the only requirement is to store apofpacking

information such that a reply can be sent back to requestieggsar after un-cached
access is completed. Hence controller can store tracking irtformfar un-cached

accesses in USHR.
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M essage Unit Operations

Cache Miss (from | P-Unit | - Receive/decode message, pass to T-Unit, cached
processor - Pass reply data/Ack to processor, release MSHR
interface) entry
T-Unit | - Serialize against outstanding cache/upgrade misses
- Allocate MSHR and line buffer entries, store
tracking information in MSHR

S-Unit | - Perform cache line eviction in the source cache
- Snoop other Tile’s caches and update cache line
state

- Read cache tags in source cache if write-back is
necessary

D-Unit | - Do a cache to cache transfer (if possible)

- Read cache line data if write-back is necessary
N-Unit | - Send cache miss message to main memory
controller

- Send write-back message to main memory
controller, if necessary

Upgrade Miss P-Unit | - Receive/decode message, pass to T-Unit, cached
(from processor - Pass reply Ack to processor, release MSHR entry
interface) T-Unit | - Serialize against outstanding cache/upgrade misses

- Allocate MSHR and line buffer entries, store
tracking information in MSHR

S-Unit | - Snoop other Tile’s caches and update cache line
state
- Change cache line stateNodifiedin source cache
D-Unit | - Write data word into source cache

Un-cached Access P-Unit | - Receive/decode message, pass to T-Unit, un-cached
(from processor | N-Unit | - Send un-cached access message to main memory
interface) controller

Refill (from main | P-Unit | - Pass reply data/Ack to processor, release MSHR
memory entry

controller) T-Unit | - Retrieve tracking information from MSHR
S-Unit | - Write tags, adjust cache line state in source cache
D-Unit | - Write data portion of line in source cache

N-Unit | - Receive/decode message, pass to T-Unit cache

[®X

Un-cached Reply | P-Unit | - Pass data/Ack to processor, release USHR entry

(from main T-Unit | - Retrieve tracking information from USHR
memory N-Unit | - Receive/decode message, pass to T-Unit un-cached
controller)

Table B-10: Breakdown of message handling steps in protocol controller
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After performing appropriate serialization and storing thekirag information, cache
miss request is passed to S-Unit. S-Unit manipulates the istatenation in Tile
caches: for cache miss requests it evicts cache linpsithyig them inrReservedtate
and snoops other caches to adjust the cache line state and skeerwaheache-to-
cache transfer is possible. For refill operations, it writeshe tags and adjusts cache
line state. S-Unit is not used for handling un-cached memorysascesice there is

not state information to be operated on.

D-Unit handles all data access operations: it reads evictdok dexes from source
cache if write-back is necessary, refills new lines into ¢hehes when they are
received from main memory controller, and potentially does a daeba&ehe transfer

from one Tile to another.

N-Unit sends request messages to main memory controller andeseegid decodes
reply messages. Similarly P-Unit receives request mességen e processor
interface, decodes them and passes them to appropriate part ofUthie & also

sends back replies (data or acknowledgement) to processor interface [Oigs i

Figure B-5 shows the flow of operations inside protocol controlleedch one of the
above messages. It also shows the subroutines that are calle imégo perform a
processing step. After executing a subroutine in a functional ugiiesé might be
passed to one unit or more depending on the conditions that are evaluated. Fo
example in case of a cache miss, if S-Unit finds a valid obpycache line in another
Tile's cache, it performs a cache-to-cache transfer othemvsends the miss request

to main memory controller. Solid lines in the figure representdtis that are always

made; dotted lines indicate that only one of the calls is made.
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Cache Miss
(Main mem controller)

N-Unit:
Write-back

N-Unit:
Cache Miss
D-Unit:
Write-back

S-Unit:
Read Miss

T-Unit (Cached)
Read Miss

Write-back
(Main mem controller)

Cache Miss P-Unit: ()
(LSU) Cache Miss /\
D-Unit y Repl
T ey A Repl Ug:cmd s
Write Miss Write Miss ‘ $-t0-8 Transfer . ply (Lsv)
D-Unit ‘ S-Unit:
$-to-$ Transfer Tag Write
P-Unit Reply
Reply Cached (LSU)
Upgrade Miss P-Unit: T-Unit (Cached) S-Unit: D-Unit
Upgrade Miss Upgrade Miss Upgrade Miss Critical Word
(Lsu) P9 Pg Py Write

S-Unit:
Tag Write

N-Unit:
Un-cached
Access

P-Unit:
Un-cached
Access

T-Unit
(Un-cached)
Un-cached Acces:

Un-cached Access
(Main memory)

P-Unit:
Reply Cached

S-Unit
Tag Write

Un-cached Access
(LSU)

Reply
(LSU)

Refill N-Unit: T-Unit (Cached) D-Unit:
(Main mem controller) Refill Refill Line Write

T-Unit
(Un-cached):
Un-cached Repl

Un-cached Reply
(Main mem controller)

Reply
(LSV)

P-Unit:
Reply Un-cached

N-Unit:
Un-cached Reply

Figure B-5: Flow of operations for processing messages in protocol controller

Figure B-6 to Figure B-10 list subroutines for each one of the imadtunits in the
controller in as a pseudo-code. Each subroutine might call one or mooeitsws in
other functional units after it completes all of its operationseNoat parameters of
the input message such as memory address, write data, requasix, in

MSHR/USHR structures, etc. are passed along with the each subroutine or.ocati
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P-Unit:
Cache Mss:
if (TIE Qpcode is READ)
Call T-Unit(cached)::Read M ss
el se
Call T-Unit(cached)::Wite Mss

Upgrade M ss:
Call T-Unit(cached):: Upgrade M ss

- cached Access:
| T-Unit (un-cached): : Un-cached Access

& RIS

i

Cached:
d reply to processor
ease MBHR entry

7 B¢

ply Un-cached:
nd reply to processor
| ease USHR entry

8¢

Figure B-6: P-Unit subroutines

T-Unit (cached):

Read Mss:

MBHR Lookup ( Addr ess)

if (exists request to same Address)
Do not accept

if (No available entry in MSHR
Do not accept

if (No available entry in Line buffer)
Do not accept

Alocate MBHR entry

Alocate Line buffer entry

Store tracking information in MBHR

Call S UWit::Read Mss

Upgr ade M ss:

MBHR Lookup ( Addr ess)

if (exists request to sanme Address)
Do not accept

if (No available entry in MSHR
Do not accept

Alocate MSHR entry

Store tracking information to MBHR

Call S Unit::Upgrade Mss

T-Unit (un-cached):

Un- cached Access:
if (No available entry in USHR
Do not accept
Alocate USHR entry
Store tracking information in USHR
Call N Unit::Un-cached Access

Figure B-7: T-Unit subroutines (cached and un-cached parts)

Wite Mss:

MBHR Lookup (Address)

if (exists request to sane Address)
Do not accept

if (No available entry in MSHR
Do not accept

if (No available entry in Line buffer)
Do not accept

| Allocate MBHR entry

] Allocate Line buffer entry

] Store tracking information to MBHR

| Store wite data in Line buffer

| Call SWnit::Wite Mss

Refill:
Retrieve tracking infornation fromMSHR
Call DUWnit::Line Wite

Un- cached Reply:
trieve tracking information fromUSHR
|

Re
Call P-Unit::Reply
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S-Unit:

Read M ss:
Send Evict to requesting cache
Send Snoop-Read to other caches
if (found in other caches)
if (BEvicted line is Mdified)
Call DUWit::Wite-back & $-To-$ transf

Upgrade M ss:
Send Snoop- ReadEx to other caches

Call DWit::Citical Wrd Wite

r

el se
Call DUit::$-To-$ transfer
el se Tag Wite:
if (BEvicted line is Mdified) Send Refill to source cache

Call D Wit::Wit-eback
Call N UWnit::Cache Mss

Wite Mss:
Send Evict to requesting cache
Send Snoop- ReadEx to other caches
if (found in other caches)
if (Bvicted line is Mdified)
Call DUWit::Wite-back & $-To-$ transf
el se
Call DUnit::$-To-$ transfer
el se
if (Bvicted line is Mdified)
Call D Unit::Wite-back
Call NWnit::Cache Mss

r

—— e e e (D o — e — e e e () - -

Figure B-8: S-Unit subroutines

D-Unit:

Wi t e- back:

for (i=0 to Size-1)
Send Line Read to requesting cache
Wite word into Line buffer

Call NUnit::Wite-back

$-to-$ transfer:
for (i=0 to Size-1)
Send Read to source cache
Wite word into Line buffer
for (i=0 to Size-1)
Read word from Line buffer
Send Wite to requesting cache
S Unit::Tag Wite
P-Unit:: Reply

|
|
|
|
|
|
Wite-back & $-to-$ transfer: :
for (i=0 to Size-1) )
Send Read to requesting cache I
Wite word into Line buffer
Call N-Unit::Wite-back ILine Wite:
for (i=0 to Size-1) :for (i=0 to Size-1)
|
|
|
|
|
|
|
|
|
)

Send Read to source cache Read word from Line buffer

Wite word into Line buffer Send Wite to requesting cache
for (i=0 to Size-1) Il SUit::Tag Wite

Read word from Line buffer Il P-Unit::Reply

Send Wite to requesting cache
Call S Uit::Tag Wite

. itical Wrd Wite:
Call P-Unit::Reply

o
Read word from Line buffer

Send Wite to requesting cache
Call SUWit::Tag Wite

Call P-Unit::Reply

Figure B-9: D-Unit subroutines
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N-Unit (Transmitter):

Cache M ss:
Send Cache M ss nessage

Wi t e- back:

Send Wite-back message

for (i=0 to Size-1)
Read word from Li ne buffer
Send word

Un- cached Access:
Send Un-cached Access message

N-Unit (Receiver):

Refill:
for (i=0 to Size-1)

Wite word to Line buffer
Call T-Unit(cached):: Refill

Un- cached Reply:
Cal | T-Unit(un-cached):: Un-cached Reply

Figure B-10: N-Unit subroutines (receiver and transmitter)

B.3.4. RROGRAMMING MAIN MEMORY CONTROLLER

Programming main memory controller is very similar to programymprotocol
controller. Table B-11 shows the breakdown of steps in handling input medsage

main memory controller and Figure B-11 shows the flow of operations.
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M essage Unit Operation description

Cache Miss | Network Intf. | - Receive/decode message, pass to C-Req

- Send reply message back to protocol controller
C-Req - Allocate MSHR and memory queue entries, store
tracking information in MSHR

- Issue memory read request to memory queue
C-Rep - Initiate reply process when memory access is complete
- Release MSHR entry

Memory Intf. | - Read cache line from memory

Write-back | Network Intf. | - Receive/decode message, pass to C-Req

C_Req - Allocate MSHR and memory queue entries, store
tracking information in MSHR

- Issue memory write request to memory queue
C-Rep - Release MSHR entry when memory access is complete
Memory Intf. | - Write cache line to memory

Un-cached | Network Intf. | - Receive/decode message, pass to U-Reg/Rep
Access - Send reply message back to protocol controller
U-Reg/Rep | - Allocate memory queue entry, issue memory access to
memory queue
-Initiate reply process when memory access is complete
Memory Intf. | - Read/Write word from/to memory

Table B-11: Breakdown of message handling steps in main memory controller

Mem Interface:
Line Read

Net Interface:
Cache Miss

C-Req:

Cache Miss Cache Miss

C-Rep Net Interface: .
MSHR Release Refill Refill

C-Rep
MSHR Release

Mem Interface:
Line Write

Net Interface:
Write-back

C-Req:

Write-back Write-back

g D G T G e
=t )Lt () —(

Mem Interface:
Word Read

Net Interface:
Un-cached
Access

U-Req/Rep
Un-cached
Access

U-Req/Rep Net Interface:
Un-cached Access Un-cached Reply

Un-cached Reply

Mem Interface:
Word Write

Figure B-11: Flow of operations for processing messages in main meomrglier

162



B.4. SUMMARY

As illustrated by the simple example of coherent shared memodel, there are
three major steps in implementing a memory protocol on the Smamolkies
hardware platform. In first step, user should allocated resouncedring data and
associated state information. This involves defining state infaomahiat should be
associated with data, allocating physical storage locationsrewdata and state
information are stored, and defining translation/mapping functions pghaduces
address of physical location(s) corresponding to processor’s virtual addresses

Second step is defining accesses for local and off-chip men{onesoth data and
state information), specifying success/failure condition faheaemory access, and
defining request messages that should be issued if an accesEsis.conditions are
specified in terms of bit vectors that are compared withe dbets returned from
memory mats. Following this step, user has to define all comntiomcanessages
between all levels of hierarchy, specify their priorities wtrameling on interconnect,
and program protocol controller and main memory controller to apptelgrisandle
each and every message. Controllers employ a simple s&pprocessing method
that involves defining subroutines for functional units and then chaimpgopriate

subroutines together to handle a specific input message.

While our example is very simplistic it shows all the neasssteps of the system
configuration. Smart Memories is capable of implementing aetyarof memory
models, including coherent shared memory, streaming and transactional cohedence a
consistency (TCC). The system by no means is limited to thesently implemented
protocols: When implementing shared memory models, system can suppous va
coherence protocols such as MSI, MESI or MOESI or updated basedagtsotoc
both single Quad and multi-Quad configurations. It is capable of supgdryibrid
memory models, for example combining streaming and caches; usioges
simplifies accesses to instruction code and runtime stack, strdaming operations
and DMA accesses are used for accessing application datathieweh Transactional
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Coherence and Consistency [27] has been chosen to be primary hardnsaetional
memory protocol, user can implement other HTM protocols such as Ldg#Mor

change various parameters in a transactional memory systeémasigranularity of
conflict detection between transactions (word vs. cache line),nsystenmit policy

(eager vs. lazy) and conflict detection policy (optimistic vs. pessimistic
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