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Abstract 

Caulobacter crescentus is a model organism for studying asymmetrical bacteria cell cycle 

division. During cell cycle, a Caulobacter cell needs to accomplish processive molecular 

functions in the right sequence: It sheds its flagella, grows a stalk, replicates and segregates its 

chromosomes, and initiates cytokinesis to compartmentalize the two morphologically distinct 

daughter cells, all of which are coordinated by a genetic control circuit comprised of cascaded 

regulatory proteins that are expressed in an orderly and timely fashion. Non-genetic mechanisms 

like methylation-based promoter control, phospho-signal pathway and regulated proteolysis 

couples the succession of regulator expression back to the progression of various cell cycle 

processes, closing various feedback control loops. With advances in experimental technology, 

the understanding of this cellular regulatory system has improved to the level of complexity 

which is difficult for intuitive understanding, especially when dynamic behaviors resulting from 

feedback effects are concerned. 

To simulate the dynamic properties of the cell cycle feedback control, an in silico simulation 

model is constructed based on the concept of hybrid system from control theory. Mimicking the 

Caulobacter control structure in vivo, the hybrid model uses continuous ordinary differential 

equations (ODE) to model well-understood molecular reactions such as protein synthesis, but 

uses discrete event-driven finite state machines (FSM) to phenomenologically model complex 

cell processes and instantaneous reactions. Hybrid models create a flexible and extensible 

architecture capable of handling different levels of abstraction and lack of complete knowledge, 

the two biggest challenges of modeling biological systems. The model was validated by the 

consistency between simulation results and experimental measurements including protein and 
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mRNA concentration profiles. In silico mutants based on our model further managed to correctly 

predict phenotypes of various in vivo mutants. 

Because most biological systems have to survive under a variety of environmental, genetic, 

and stochastic perturbations, it has been postulated that their regulatory systems have to be quite 

robust, so a further analysis of the robustness property of the modeled cell cycle regulation can 

provide new biological insights. Unfortunately it is difficult for traditional methods like 

parameter sensitivity analysis to fully explore the design space and intuitively interpret the result 

when facing a complex model. By creating an equivalent asynchronous digital circuit 

representation of the cell cycle model, which maintains properties of interest, we were able to 

apply formal model checking techniques to exhaustively search the entire state space to identify 

the potential scenarios which causes the cell cycle to fail to complete. The analysis revealed that 

the top level control of the Caulobacter cell cycle regulation is extremely robust with very few 

cases of potential failures; furthermore, non-genetic mechanisms such as methylation based 

control of promoter activation and its remaining basal expression have been shown to play an 

important role for robustness under special circumstances. Model checking also verified that the 

modeled cell cycle is able to robustly switch into growth arrest when facing stress or starvation.  
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Chapter 1  
 

Introduction 

With advances in experimental technology, the understanding of cellular regulatory systems has 

improved to the level of complexity which is difficult for intuitive understanding, especially 

when dynamic behaviors resulting from feedback effects are concerned{Lauffenburger, 2000 

#829; McAdams, 1995 #787}. Such complexity hampers the exploration of further system level 

questions such as the underlying principles of these regulatory systems that provides 

evolutionary advantages. Mathematical modeling has long been used in engineering and other 

disciplines of science to synthesize existing information to describe a complex system through 

simulation. Facing the unique challenge in studying biological systems when complete 

knowledge is often not available, a successful modeling approach should be capable of 

incorporating both qualitative and quantitative descriptions into the complete description of a 

regulatory system by using different levels of abstraction. The abstraction also help engineering 

analysis from control theory and circuit design to reveal inconsistency and missing pieces in the 

knowledge base as well as provide clues to new experimental direction.  

In this work, we present a system model of Caulobacter cell cycle regulation which copes with 

different levels of abstraction by using the concept of hybrid system from control theory. We 

then demonstrate how we adapted a formal verification technique called symbolic model 

checking from asynchronous digital circuit design to examine the robustness of the cell cycle 

model, which provides insights into the design of the control circuit. 
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1.1 Mathematical modeling of biological systems 

Research in molecular biology typically provides a logic description of the inter-connections 

between the various genes and modules in a biological regulatory system, such as protein A 

activates or represses the expression of gene b. This level of description is often sufficient to 

explain the function of a stand alone pathway, but soon becomes overwhelming and non-intuitive 

for humans to follow when knowledge about the system accumulates and the description 

becomes more complex (Figure 1.1). Boolean networks {Huang, 1999 #833; Kauffman, 1969 

#834; Thomas, 2001 #819; Davidson, 2002 #835} have been proposed to simulate regulatory 

networks based on logic descriptions, but it falls short again when the modeled system contains 

feedback mechanisms because the behavior of such a system now depends on the dynamic 

characteristics of these mechanisms in addition to its static topology, which is beyond the scope 

of a conventional biological description.  

 

Figure 1.1 A regulatory network for sea urchin embryo development {Davidson, 2002 #835} 

The idea of building computational models of biological systems to capture their dynamic 

behavior have been around for ages {Turing, 1990 #836}, but practical concerns such as the 
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complexity of biological systems and the lack of means to characterize them has limited its 

success until recently. Advances in theoretical and experimental methods dealing with 

complexity {Weng, 1999 #837} and quantitative modeling has given rise to the emergence of a 

new discipline: systems biology {Ideker, 2001 #830}, which tries to evaluate roles of individual 

pathways and their interactions in the context of the overall system behavior by constructing 

dynamic mathematical models of systems and sub-systems {Ideker, 2001 #830; Kitano, 2002 

#831; Kitano, 2002 #832}. After validation these system models can then be used to make 

predictions on phenotypes and behaviors that are yet uncharacterized. The benefits of such 

models have encouraged efforts to construct whole cell simulation, in which an entire single cell 

organism is included in the model as a whole to understand system-wide functions {Schaff, 1999 

#838; Tomita, 1999 #839}. The advent of high-throughput measurements like the Microarray 

technology provides a convenient way to validate the gene expression profile predicted by the 

model as well as allow various bioinformatics tools including clustering, motif finding {Milo, 

2002 #840} and Baysian network {Friedman, 2000 #841} to suggest abstract models to fill in the 

gaps of current understandings of these biological systems. 

System models are traditionally constructed from the bottom-up by assembling experimental 

characterizations of individual pathways. This approach works well for smaller scale models of 

sub-systems, but in a more complex system, pathways not yet characterized by experiments and 

thus absent from the models often prevents holistic simulations from generating correct dynamic 

behaviors. The lack of levels of hierarchy and abstraction also makes models constructed from 

the bottom-up unintuitive and unsuitable for higher level analysis tools {Noble, 2003 #842}. In 

contrary, engineering models are regularly built from the top-down, in which abstract models of 

the complete system are progressively replaced by more detailed models of components parts. In 

the top-down approach, uncharacterized mechanism could remain as abstract models until more 

data are available, so the incompleteness of system knowledge does not become an inhibitor for 

model building. Abstraction hierarchy naturally introduced by the top-down approach also makes 

the model intuitive and extendable. To support this top-down approach and provide multiple 

levels of abstraction, hybrid systems {Alur, 2002 #790; Ghosh, 2004 #844; Mishra, 2003 #845; 

Schaft, 1999 #846; Amonlirdviman, 2005 #870}, a modeling methodology originated from 

control engineering, is a good candidate. It allows both discrete and continuous models to 

interact and simulate simultaneously. Therefore, detailed continuous models such as ordinary 
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differential equations {Turing, 1990 #836} and stochastic master equations {Arkin, 1998 #793; 

Gillespie, 2007 #860; McAdams, 1997 #843}, and abstract discrete models such as qualitative 

modeling {Kuipers, 1986 #847} and phenomenological models can be combined to construct a 

holistic system model that is able to simulate the dynamic behavior of an entire biological system 

{Bower, 2001 #848; de Jong, 2002 #849; Voit, 2000 #850}. Chapter 3 describes our approach to 

model the Caulobacter cell cycle as a hybrid system and the validation of this model is given in 

Chapter 4. 

1.2 Analysis of robustness 

Mathematical models are great for simulation the dynamic behaviors of regulatory systems. 

However, models are mostly built upon experimental observations made under typical lab 

conditions, under which many contingency pathways are not activated. 73% of the 6000 genes in 

the budding yeast Saccharomyces cerevisiae have shown to be nonessential by gene depletion 

mutations {Dwight, 2004 #851; Giaever, 2002 #852}. These nonessential genes are likely to play 

an essential role in organisms’ diverse natural habitats, especially when facing environmental or 

genetic perturbations {de Visser, 2003 #797; Alon, 1999 #789; Goulian, 2004 #801; Kitano, 

2004 #807; Kitano, 2007 #808}, but their roles are often underappreciated or even neglected in 

models built on data collected in regular lab conditions. Without knowing the specific conditions 

triggering the expression of these nonessential genes, it is difficult to design the right 

experiments to identify their contributions to the entire system. 

A well design engineering system has many considerations in addition to performing its 

essential tasks. For instance, to ensure robust operation of a silicon chip, certain design 

guidelines stipulates that additional circuitry should be included to react to hazardous conditions. 

We show in Chapter 5 that certain engineering tools developed to test and analyze the robustness 

of digital systems can be applied to models of biological systems as well. These tools helped us 

examine the robustness of such model {Savageau, 1971 #812} to discover potential mechanisms 

that contribute to the robustness of the overall system, thus enhancing its evolutionary 

competitiveness. By revealing how seemingly silent or redundant pathways are actually 

important, robustness analysis sheds light on the architecture, or “design” of regulatory systems 
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{von Dassow, 2000 #822; Von Dassow, 2002 #823; Ingolia, 2004 #805}. Such knowledge helps 

future endeavor in genetic engineering and synthetic biology. 

1.3 Caulobacter cell cycle regulation 

The organism modeled in this work is Caulobacter crescentus, a Gram-negative bacterium, and 

our model focuses on its cell cycle regulation. The cell cycle, or cell-division cycle, is the series 

of events that take place in a cell leading to its replication and division {Smith, 1973 #853}. 

Regulation of the cell cycle ensures orderly executions of these events and provides checks to 

prevent uncontrolled cell division.  

Caulobacter is a model for studying bacteria cell cycle regulation, since its asymmetrical 

cell division allows the growth of synchronized cell population for identifying cell cycle 

regulated factors. The Caulobacter cell cycle division goes through three distinct phenotypic 

stages: swarmer, stalked, and pre-division (Figure 1.2) to generate two morphologically different 

daughter cells: a motile swarmer daughter cell and a sessile stalked daughter cell (Figure 1.2). 

During the cell cycle progression, the cell has to complete complex molecular functions like 

flagellum formation, DNA replication and cytokinesis, each of which takes significant amount of 

time and has to be processed in parallel to maximize growth rate. These processive cell functions 

make the cell cycle directional; that is, it is impossible to “reverse” the cell cycle once it starts. 
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Figure 1.2 Caulobacter cell cycle progression 

A network of protein regulators regulate these functions to make sure that the molecular 

events that control the cell cycle are ordered and do not go out of control{Laub, 2007 #854; 

McAdams, 2003 #58}. Multiple feedback control loops are formed by the transcriptional and 

non-transcriptional pathways in the regulatory network, which have been meticulously identified 

and characterized by various labs including the Lucy and McAdams lab at Stanford University. 

The Caulobacter cell cycle regulation is a complex process embodying many of the challenges 

discussed in the previous sections {McAdams, 2003 #58}. The next chapter reviews what is 

currently known about the Caulobacter cell cycle, on which the hybrid model described in 

chapter 3 is based. 

 

 

 

Swarmer Stalked Predivision 
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Chapter 2  
 

Caulobacter cell cycle regulation 

Caulobacter crescentus is a Gram-negative, oligotrophic bacterium often found in nutrition-poor 

environments such as fresh water lakes and streams. Besides playing an important role in the 

carbon cycle, Caulobacter is a model organism for studying bacterial cell cycle regulation and 

asymmetrical division{McAdams, 2003 #58; Laub, 2007 #854}. Caulobacter cells divide 

asymmetrically, producing morphologically distinct daughters (Figure 1.2). One is a mobile 

"swarmer" cell that has a flagellum for swimming. The other is called a “stalked” cell because it 

has a long tubular stalk structure protruding from one pole that enables the cell to adhere to 

surfaces. A swarmer cell has to first shed its flagellum and grow a stalk to transform into a 

stalked cell before chromosome replication and cell division could begin. After division, the 

newly divided swarmer cell will swim away to search for new nutrient sources while the stalked 

daughter cell stays and keeps dividing. Therefore the dimorphic cell cycle of Caulobacter 

probably provides an advantage to compete in nutrient scarce environments. 

2.1 cell cycle stages 

The Caulobacter cell cycle progresses through three distinct stages: swarmer, stalked, and pre-

division (Figure 2.1A), during which the cell sheds its flagellum, grows a stalk, replicates its 

DNA, and divides. The swarmer daughter cell has a single polar flagellum, polar chemotaxis 

receptors, and polar pili, and it cannot initiate DNA replication until after the period of motility is 

http://en.wikipedia.org/wiki/Gram-negative
http://en.wikipedia.org/wiki/Oligotrophic
http://en.wikipedia.org/wiki/Bacterium
http://en.wikipedia.org/wiki/Carbon_cycle
http://en.wikipedia.org/wiki/Flagellum
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completed when swarmer-to-stalked cell differentiation is initiated. Swarmer-to-stalked cell 

differentiation involves the loss of the flagellum and the polar chemotaxis receptors, retraction of 

the pili, construction of a stalk at the cell pole previously occupied by the flagellum, and 

initiation of chromosome replication. In contrast, the stalked daughter cell initiates chromosome 

replication immediately after cytoplasmic compartmentalization during cytokinesis. This 

cytoplasmic compartmentalization event occurs after decatenation of the replicated 

chromosomes when the constriction of the FtsZ-ring leads to fission of the inner membrane that 

separates the cytoplasm into two distinct chambers about 20 min before completion of cell 

division {Goley, 2007 #855; Collier, 2007 #856}. The two daughter cells have identical 

genotypes, but different morphology cell fates. 

Cytoplasmic compartmentalization is the event that initiates the divergent genetic programs 

in each chamber, thus the next cell cycle effectively begins in each compartment at the instant of 

cytoplasmic compartmentalization, which is well before cell division {Goley, 2007 #855; Laub, 

2007 #854; Chen, 2007 #857}  
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Figure 2.1 Genetic circuit that drives cell cycle progression. (A) Schematic of the C. crescentus 

cell cycle showing changes in master regulatory protein concentrations that control activation of 

numerous modular functions that implement the cell cycle. Predivisional cells are 

compartmentalized about 20 min before cell separation {Judd, 2005 #858} (B) Western blots 

showing concentrations of the master regulatory proteins during the cell cycle {Collier, 2007 

#784; Collier, 2006 #783}. (C) Cascade of master regulators. DnaA, GcrA, CtrA, and CcrM 

form a cascade that control modules of cell cycle genes to drive the cell cycle forward. 

2.2 Master regulatory network 

Caulobacter has become an important model for studying the regulation of bacterial cell cycle 

because the lighter swarmer daughter cells can be separated from a mixed population in the 
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centrifuge to grow as a new synchronized cell population, which can then be sampled at different 

time points during the synchronized cell cycle progression to measure the temporal changes of 

various expression levels and distinguish cell cycle regulated proteins (Figure 2.1B). Groups or 

modules of proteins are synthesized during different stages of cell cycle progression to 

coordinate and perform modular functions such as chromosome replication and cytokinesis 

(Figure 2.1B). On top of the modules, a few master regulators form a central control circuit that 

switch these modular cell functions on or off in an orderly succession. These master regulators 

are transcriptional factors that regulate many downstream genes; that is, when the concentration 

levels of these regulator proteins in the cell become sufficiently high, it is statistically significant 

enough for the protein molecules to bind to the promoter regions of the downstream genes to 

either activate or repress their expression, which is the rate of mRNA transcription. mRNA 

serves as a template for protein synthesis, thus the levels of proteins translated from the 

downstream genes are controlled by these upstream master regulators.  

Molecular-level characterization of regulatory pathways controlling the Caulobacter 

crescentus cell cycle is progressing rapidly so that a nearly complete system level description of 

the control system is now possible. The cyclical genetic circuit comprised of the CtrA, GcrA, 

DnaA, and CcrM master regulatory proteins directly controls the temporal expression of over 

200 genes {Laub, 2002 #131; Holtzendorff, 2004 #33; Hottes, 2005 #782; Collier, 2007 #856} 

(Figure 2.1C). These proteins are present in succession as the cell cycle progresses (Figure 2.1A 

and Figure 2.1B). The cascade of regulatory factors starts with DnaA accumulation at the 

swarmer-to-stalked cell transition. DnaA is a replication initiation factor which promotes the 

unwinding of the double stranded DNA at oriC to initiate chromosome replication. DnaA also 

activates the transcription of multiple genes involved in DNA replication and cytokinesis as well 

as turning on the next gene in the cascade, gcrA (Figure 2.1C) {Hottes, 2005 #782; Collier, 2006 

#783}. GcrA regulates genes involved in chromosome replication and segregation and turns off 

dnaA as it activates ctrA transcription {Holtzendorff, 2004 #33}. In addition to binding to the 

five DNA binding sites that overlap with the binding sites of the replication initiation protein and 

thus inhibiting initiation of DNA replication, CtrA directly controls the transcription of genes 

required for polar organelle biogenesis and cytokinesis, while turning off the transcription of 

gcrA and activating the synthesis of the CcrM DNA methyltransferase {Reisenauer, 1999 #233}. 
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This cascade of top-level master regulators creates the forward-biased, cyclical genetic circuit – 

the core cell cycle engine – that organizes cell cycle progression.  

The core engine activates the different modules of proteins that implement the cell cycle, 

including several complex processive reactions that take extended time intervals to complete, 

particularly replication of the chromosome and cytokinesis as shown in the top half of Figure 2.2. 

The Caulobacter cell cycle control maximizes parallelism to shorten the required cell cycle time 

during growth phase. For example, C. crescentus DNA replication takes about 80 minutes in a 

typical lab condition. Even though compartmentalization of the inner membrane has to happen 

after the completion of chromosome replication and the decatenation of the newly replicated 

strands, the FtsZ ring, precursor to cytokinesis, starts forming at the division plane during 

chromosome replication and has to depend on a checkpoint to prevent premature 

compartmentalization {Degnen, 1972 #708}.  

2.3 Feedback mechanisms 

In Caulobacter’s natural habitat, due to environmental diversity and scarcity of nutrients, 

durations of these extended processive reactions vary significantly. To be in sync with the cell 

cycle, expression of the cascaded master regulators has to be tightly coupled to these processive 

reactions. Hence instead of being a stand-alone oscillator with a fixed period, the core engine has 

to be a control circuit with feedback signals to sense the processive reactions and express the 

master regulators “just in time”. Research has revealed three molecular feedback mechanisms for 

the regulatory network to sense the processive reactions. These mechanisms are methylation, 

phosphorylation, and proteolysis (Figure 2.2). 
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Figure 2.2 Schematic of the regulatory interconnections between the core cell cycle engine and 

cell cycle progression. (A) The duration of DNA replication and FtsZ-ring constriction in the cell 

cycle are approximately to scale. The core cell cycle engine below controls activation of the 

processive reactions that implement DNA replication and cell constriction, and feedback signals 

from these controlled processes synchronize the engine with their progression. Asterisks indicate 

CcrM methyltransferase target sites where the methylation state of the promoter region affects 

promoter activity {Collier, 2007 #784; Stephens, 1995 #350; Reisenauer, 2002 #104}. Cell stage 

is indicated by the cell-type icons on the perimeter. The outer circular band indicates by color 

coding the intervals of peak presence of DnaA, GcrA, CtrA, and CcrM. The orange arc on the 

next band indicates the interval when the CckA/ChpT pathway is active. Regulatory pathways 

are color coded by type:  Red: CtrA~P. Blue: GcrA. Green: DnaA. Orange: CckA/ChpT 

phosphosignaling. Purple: DNA methylation-state regulation of promoter activity. (B) The 

swarmer cell cycle has an additional motile phase after cell division. Chromosome replication 

remains repressed in the swarmer cell 
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Methylation 

The forward-biased cyclical cascade comprising the core DnaA/GcrA/CtrA/CcrM cycle is tightly 

coupled to chromosome replication through methylation (Figure 2.2). C. crescentus DNA 

replication involves two parallel reaction cascades, each with about two million reactions (the 

chromosome has about four million nucleotides), executed at two replication forks. The level of 

expression of three of the four cell cycle master regulator proteins, CcrM, CtrA and DnaA, is 

coupled to the progression of DNA replication by the DNA methylation-state change that occurs 

upon passage of a replication fork over their respective genes {Collier, 2007 #784; Stephens, 

1995 #350; Reisenauer, 2002 #104}. The dnaA gene is transcribed preferentially from a fully 

methylated promoter. This methylation state control of dnaA transcription is of particular interest 

owing to DnaA’s central role in the initiation of chromosome replication. The dnaA gene is near 

the chromosomal origin of replication (Cori), and upon passage of the replication fork it 

becomes hemimethylated, and thus down-regulated {Collier, 2007 #784}. The down-regulation 

of dnaA after the replication is initiated is significant to the robustness of the cell cycle because 

excessive amount of lingering DnaA might cause over-initiation of chromosome replication. The 

ctrA P1 promoter is activated when becoming hemi-methylated upon passage of the replication 

fork. Located approximately one-third of the way to Cori, the hemi-methylation of the ctrA P1 

promoter indicates that chromosome replication is well under way so CtrA can be safely 

translated without the risk of blocking chromosome replication initiation. Furthermore, the newly 

synthesized CtrA molecules can prevent over-initiation of chromosome replication on the newly 

replicated strands as well as safely start the processes of flagellum formation on the swarmer 

pole and cytokinsis in parallel to chromosome replication, thus shortening the overall cell cycle 

duration. The enzyme that remethylates the entire DNA, CcrM, only accumulates near the 

completion of DNA replication, and it is then rapidly both deactivated and cleared from the cell 

{Wright, 1997 #285; Shier, 2001 #173}. Re-methylation of the chromosome by CcrM later 

enables dnaA transcription in preparation for the next cell cycle (In many bacteria, including E. 

coli, the DNA methylase is not cell cycle dependent.). CcrM also fully-methylates the ctrA P1 

promoter to disable it after the positive auto-regulation loop of the ctrA P2 promoter takes over. 

The late timing of the expression of the ccrM gene is ensured by the preferential expression of 

the hemi-methylated ccrM promoter and its activation by the synthesis of CtrA. These 

methylation switches of gene expressions are utilized by Caulobacter to couple the expression of 



 14 

the master regulators to different stages of chromosome replication, which assure that there is 

one and only one round of replication per cell cycle.  

Phosphorylation and proteolysis 

Asymmetric cell division depends on polar localized regulatory proteins and cytoplasmic 

compartmentalization, both of which are coupled to a sophisticated phospho-signal pathway 

involving CckA, DivK, PleC, ChpT, etc. The pathway rapidly switch on and off the master 

regulator CtrA through phosphorylation and rapid proteolysis {Domian, 1997 #290; Quon, 1996 

#329; Biondi, 2006 #786} (Figure 2.3). This feedback mechanism causes CtrA to be abundant in 

the swarmer and predivision cell, but absent from the stalked cell where chromosome is being 

replicated.  

 

Figure 2.3 The phospho-signal pathway in Caulobacter cell cycle regulation. (A) Diagram of the 

integrated genetic circuit controlling cell cycle progression and cellular asymmetry in 
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Caulobacter crescentus. Biochemical relationships between components are colour-coded as 

indicated in the key {Biondi, 2006 #786}. (B) Summary of sub-cellular localization patterns for 

CckA, PleC, DivJ, CtrA~P, DivK and DivK~P during cell cycle progression {Biondi, 2006 

#786}. (C) Proteolysis of CtrA molecules by ClpXP when RcdA is un-phosphorylated by CpdR 

through the phospho-pathway. 

In the swarmer cell, during the 20 min period of motility after cell separation (Figure 2.2B), 

a sufficient amount of growth factor is accumulated and through a yet unknown pathway, causes 

the phospho-signal pathway to rapidly unphosphorylate and degrade CtrA simultaneously, thus 

starting the swarmer to stalked transition and the initiation of chromosome replication.  

CtrA in the stalked daughter cell is rapidly depleted by the phospho-pathway right after 

compartmentalization to differentiate it from the swamer daughter cell which has high level of 

CtrA. The constriction of the FtsZ-ring that divides the cell is a complex cascade involving a 

changing set of many proteins {Margolin, 2005 #861}. Constriction is dependent on presence of 

the CtrA~P-activated FtsA and FtsQ proteins {Martin, 2004 #17; Wortinger, 2000 #200}. 

Constriction is first apparent late in chromosome replication and cell separation occurs about 25 

min after completion of replication. In C. crescentus cells, there are two constrictive mechanisms 

late in cytokinesis, one for the inner, and one for the outer, cell membrane. The inner membrane 

fissions about 20 min before completion of outer membrane constriction to divide the cytoplasm 

into two compartments {Judd, 2005 #858; Judd, 2003 #69}. This cytoplasm 

compartmentalization event triggers elimination of CtrA~P in the nascent stalked cell 

compartment, which both enables activation of DNA replication and precipitates major changes 

to the transcriptome since CtrA~P directly regulates transcription of about 95 genes {Laub, 2002 

#131; McGrath, 2006 #859; Iniesta, 2006 #785; Biondi, 2006 #786}. The dynamic localization 

of regulatory proteins and proteolytic subsystems to the cell poles is essential to asymmetric cell 

division {McAdams, 2003 #58; Collier, 2007 #856}. Immediately upon compartmentalization, 

differentiation begins owing to isolation of key phosphorylation dependent regulatory proteins 

from their cognate kinases {Iniesta, 2006 #785; McGrath, 2004 #35; Matroule, 2004 #19} and/or 

perhaps to differential sequestering of a phosphatase {Biondi, 2006 #786}. Large differences in 

binding affinity between the phosphorylated and unphosphorylated response regulators in the 

nascent daughter cell compartments cause gene expression profiles to diverge, and thus, 

differential development programs can proceed thenceforth, with profound consequences for the 



 16 

fates of the two daughter cells. Cytoplasmic compartmentalization disrupts the distributed 

phosphosignaling network involving polar localized CckA histidine kinase and cytoplasmic 

ChpT phosphotransferase to trigger rapid elimination of activated CtrA~P from the nascent 

stalked daughter cell so that chromosome replication can initiate (Figure 2.3A,B) {Iniesta, 2006 

#785; Biondi, 2006 #786; Jacobs, 1999 #248}. In contrast, elimination of CtrA~P from the 

swarmer cell is delayed until about 20 min after daughter cell separation when the CckA/ChpT 

pathway is disrupted by another mechanism. The distinctive identity of the subsequent daughter 

cells, each containing one of the chromosomes of the predivisional cell, begins at the instant of 

cytoplasmic compartmentalization{Judd, 2003 #69}. 

2.4 system model 

In this chapter, we outlined the molecular mechanisms that comprise the Caulobacter crescentus 

cell cycle control system. The details of the control circuitry have been characterized by many 

laboratories over several decades. Table 2.1 provides a roadmap to these papers and indicates 

where the molecular and genetic mechanisms of the key proteins in the model are characterized 

relating to the key proteins in the model.  

Table 2.1 Experiments done with Caulobacter cells and conclusions used to construct the 

model 

Protein Refs. Conclusion used to construct the model 

DnaA {Gorbatyuk, 

2001 #168} 

DnaA is necessary for the initiation of DNA replication  

DnaA {Hottes, 2005 

#782; Collier, 

2006 #783} 

DnaA activates gcrA transcription 

DnaA {Hottes, 2005 

#782} 

DnaA activates  ftsZ transcription 

DnaA {Hottes, 2005 

#782} 

DnaA activates dnaB transcription 

DnaA {Gorbatyuk, 

2005 #754} 

DnaA is subject to cell cycle-regulated proteolysis 

DnaA {Collier, 2007 

#784} 

dnaA transcription is activated when the dnaA promoter is fully-methylated 

FtsZ {Wang, 2001 

#169} 

FtsZ is necessary for cell constriction 

FtsZ {Kelly, 1998 

#267} 

FtsZ is subject to cell cycle-regulated proteolysis 

FtsA {Osley, 1977 

#658} 

FtsA is necessary for cell constriction 
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FtsA {Martin, 2004 

#17} 

FtsA is probably subject to cell cycle-regulated proteolysis 

FtsQ {Martin, 2004 

#17} 

FtsQ is subject to cell cycle-regulated proteolysis 

CcrM {Zweiger, 

1994 #373} 

CcrM is necessary for the methylation of the chromosome 

CcrM {Wright, 1996 

#318} 

CcrM is subject to cell cycle-regulated proteolysis 

CcrM {Stephens, 

1995 #350} 

ccrM transcription is probably repressed when the ccrM promoter is fully-

methylated 

CtrA {Quon, 1998 

#274} 

CtrA is necessary to block the initiation of DNA replication 

CtrA {Kelly, 1998 

#267} 

CtrA represses  ftsZ transcription 

CtrA {Wortinger, 

2000 #200} 

CtrA activates  ftsQA transcription 

CtrA {Holtzendorff, 

2004 #33; 

Collier, 2006 

#783} 

CtrA represses gcrA transcription 

CtrA {Domian, 

1999 #239} 

CtrA represses ctrA transcription from the ctrAP1 promoter 

CtrA {Domian, 

1999 #239} 

CtrA activates ctrA transcription from the ctrAP2 promoter 

CtrA {Reisenauer, 

1999 #249} 

CtrA activates  ccrM transcription 

CtrA {Domian, 

1997 #290} 

CtrA is subject to cell cycle-regulated proteolysis 

CtrA {Reisenauer, 

2002 #104} 

ctrA transcription is repressed when the ctrAP1 promoter is fully-methylated 

CtrA {Domian, 

1997 #290; 

Quon, 1996 

#329} 

CtrA needs to be phosphorylated to be active 

GcrA {Holtzendorff, 

2004 #33} 

GcrA activates dnaB transcription 

GcrA {Holtzendorff, 

2004 #33} 

GcrA activates ctrA transcription from ctrAP1 

GcrA {Holtzendorff, 

2004 #33} 

GcrA represses dnaA expression 

GcrA {Collier, 2006 

#783} 

GcrA is subject to cell cycle-regulated proteolysis 

CckA {Jacobs, 1999 

#248} 

The CckA signal activates the phosphorylation of CtrA 

CckA {Iniesta, 2006 

#785} 

The CckA signal represses the proteolysis of CtrA 

CtrA {Wortinger, 

2000 #200} 

CtrA is not synthesized in predivisional cells if replication is inhibited 

 

Several qualitative descriptions of various aspects of C. crescentus control system circuitry 

were available {Laub, 2007 #854; McAdams, 2003 #58; Biondi, 2006 #786} and a stalked cell 

cycle subcircuit model was reported {Li, 2008 #862}. Partially due to the difficulty of handling 
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lack of complete information and levels of abstraction, the subcircuit model did not include 

phosphorylation of CtrA by the phospho-signal pathway, which is critical for the feedback aspect 

of the control circuit.  

We wanted to develop a scalable simulation of control of the coupled swarmer and stalked 

cell cycles with emphasis on handling different levels of abstraction. The simulation model 

needed to predict the progress of the regulatory machinery into either compartment of the 

predivisional cell to shed light on the events related to asymmetry, because it was difficult to 

separate the two daughter comparments in vivo to observe them separately. It was necessary for 

the complete system model to include the key regulatory proteins as well as the lengthy 

molecular processes such as chromosome replication and cytokinesis to capture the dynamic 

behavior of the entire feedback control. The next chapter describes our implementation of the 

cell cycle model as a hybrid system. 
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Chapter 3  
 

Hybrid system modeling 

A complete system model has to include both subsystems of the Caulobacter cell cycle 

regulation, the regulatory genetic circuit and the cell function processes, to explore the dynamics 

of the cell cycle feedback control (Figure 3.1). The protein components of the genetic circuit 

subsystem include the four master regulator proteins (DnaA, GcrA, CtrA, and CcrM) that 

comprise the core cyclical circuit and DnaB, FtsZ, and FtsQA (Figure 3.1B). DnaB, FtsZ, and 

FtsQA are components of pathways that connect the core engine with DNA replication and 

cytokinesis. This is a parsimonious model of the cell cycle control circuitry. For example, DnaB 

is only one of the proteins in the replication complex whose synthesis is activated by DnaA 

{Hottes, 2005 #782}. FtsQA represents two proteins, FtsQ and FtsA (whose genes are in an 

operon), required for initiation of cell constriction. The cell process subsystem includes 

phenomenological models of the progress of chromosome replication and cell constriction 

(Figure 3.2B). These two subsystems determine the timing of the changes in the methylation 

state of the dnaA, ctrA, and ccrM promoter regions and of cell compartmentalization {Collier, 

2007 #784; Reisenauer, 2002 #104}. 
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Figure 3.1 C. crescentus cell cycle control system. (A) The red FtsZ ring at mid-cell constricts to 

divide the cell. Inner membrane fission compartmentalizes the cytoplasm about 18 min before 

daughter cell separation {Judd, 2005 #858}. (B) Schematic of cell cycle control. Top green 

rectangle: (i) Observed timing of the CckA-originated phosphosignal activity. (ii) Timing of Z-

ring appearance and constriction. (iii) Chromosome replication timing and methylation status. 

The bottom blue rectangle encloses the genetic circuit that drives cell cycle timing. The purple 

lines indicate effects of the DNA methylation state of sites in gene promoter regions (described 

in the text). For example, dnaA is maximally expressed when its promoter is fully methylated 

{Collier, 2007 #784}. Middle, dark green dashed rectangle: Conditions necessary within the cell 

cycle control system simulation to activate formation of the replisome and subsequent initiation 

of DNA replication. The dnaB gene is one of several replisome proteins components whose 

synthesis is activated by DnaA. Accumulation of FtsZ initiates formation of the FtsZ-ring. 

Expression of the ftsQA operon coincides with the initiation of the FtsZ-ring constriction. 

To handle the complexity of cell cycle reguation, the system simulation model should 

include several features: (i) a top-down, hierarchical approach able to handle different levels of 
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abstraction; (ii) a realistic architecture that mimics the in vivo feedback design of the cell’s 

control system (Figure 3.3A); (iii) a scalable organization designed for future incorporation of 

additional pathways; (iv) a flexible and parameterized design for in silico mutant simulation and 

in-depth analysis. 

3.1 Ordinary differential equation (ODE) 

With molecular level characterizations, it is now feasible to build a quantitative model of the 

Caulobacter cell cycle beyond previous qualitative descriptions. Ordinary differential equations 

(ODE) have been widely used for simulating the dynamics of regulatory systems by tracing 

protein and mRNA levels {Chen, 2004 #864; Novak, 2003 #865}, which enabled advanced 

analysis techniques like phase plane and bifurcation to explain observed behaviors {Novak, 2003 

#865; Kim, 2006 #863}. For Caulobacter, the entire cell cycle genetic circuit governing 

regulation of protein synthesis, proteolysis and activation of the Caulobacter regulatory network 

can be modeled by ODEs. The level of promoter activation (as a fraction of the maximum 

activation) is modeled using functions based on a Hill function approach {Rosenfeld, 2005 #866; 

Rosenfeld, 2002 #867}. Protein production (nM/second) is modeled by a multiplicative constant 

representing the maximum synthesis rate, times the fractional promoter activation. This is 

equivalent to assuming a constant average rate of protein production per mRNA. The following 

equations are standard Hill functions for modeling the protein synthesis rate of a gene whose 

promoter is either activated (Eq. 3.1) or repressed (Eq. 3.2). 
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where n is the Hill coefficient reflecting the cooperativity of the transcriptional factor, [Cd] is the 

concentration of the transcriptional factor that yields half-maximal expression, [Ct] is the 

concentration of the transcriptional factor, β is the maximal protein production rate , V is the 

volume of a C. crescentus  cell, and [C] is the concentration of the protein molecules synthesized 

from the regulated gene. 

Even though transcription and translation are innate stochastic processes {Rosenfeld, 2005 

#811}, in this approximation, stochastic effects are neglected in the model which assumes that 

the averaging effect of the number of protein synthesized in the time scale relevant to cell cycle 

makes the stochastic effects insignificant. Because with a short half-life transcribed mRNA 

levels usually reach equilibrium quickly and the rate of translation is proportional to the mRNA 

level, protein synthesis rate is proportional to the mRNA level in our models. 

Natural degradation or proteolysis of a protein is modeled by an exponential decay function 

with a half-life parameter: 

[ ] ln 2
[ ] [ ]

d C
C C

dt hl
      

(3.3) 

 

where hl is the half-life of the protein in min, and λ is the degradation rate constant in min
-1

. 

When combined, the above ODE equations describe the dynamics of various protein 

regulators in the regulatory system (Figure 3.2). The simulated protein and mRNA (proportional 

to the protein synthesis rate) levels can be compared to Western blot and Microarray 

measurements for validation purposes. Protein degradation rate, which is indicated by the half-

life parameter, can be measured by pulse-labeled immunoprecipitation. 
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Figure 3.2 A simplistic model of the dynamics of the CtrA level. The ctrA P1 promoter is 

activated by GcrA, repressed by CtrA~P, the phosphorylated form of CtrA and is repressed when 

fully-methylated (m=1). The ctrA P2 promoter is activated by CtrA~P, forming a positisve 

feedback loop. CtrA degrades slowly, but can be rapidly degraded by the proteolytic ClpXP 

complex (clpXP=1). The rate constants of phosphorylation of CtrA are decided by the presence 

of kinases. 

3.2 Hybrid system 

Despite all the successes ODE models have achieved, they have limitations when dealing with 

biological systems. To continuously track their dynamic behaviors, ODE models require detailed 

characterizations of the modeled biological processes with a great number of parameters, but 

most biological systems include processes that are not well characterized. In the case of the 

CckA/ChpT phosphosignaling pathway (Figure 2.3), mechanisms of the pathway are not 

completely identified, but the function of the pathway and the timing of its operation within the 

cell cycle are well characterized {Iniesta, 2006 #785}. Similarly, the time from onset to 

completion of DNA replication and the time from initial cell constriction to 

compartmentalization are known {Keiler, 2003 #91}. In these cases, building detailed ODE 

models is infeasible, nevertheless, including phenomenological, but functionally accurate, 

models with correct cell cycle timing is sufficient to holistically simulate Caulobacter cell cycle 

regulation. 
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In the Caulobacter cell, there also exist fast reactions that act more like switches, which 

happen almost instantaneously compared to protein synthesis. For instance, Cytoplasmic 

compartmentalization is essentially instantaneous {Judd, 2005 #858}. The promoter methylation 

state changes when the replication fork traverses promoters that involve this mechanism {Collier, 

2007 #784} are also instantaneous, as is the remethylation reaction. Each of these events triggers 

discrete changes in the network of gene transcription, phospho-signaling, and protein-level 

reactions that control the cell cycle. While the exact mechanistic models of these reactions are 

not available, “making up” continuous ODE models for these switch-like events tends to over-

complicate the system model; rather, reactions that occur essentially instantaneously should be 

modeled as discrete switching events, which leads to a hybrid system model.  

Concepts of hybrid system in control engineering help extend dynamic system models 

beyond the limitations of continuous ODE models. A hybrid system is a dynamic system that 

exhibits both continuous and discrete dynamic behavior — a system that can both flow 

(described by a differential equation) and jump (described by a difference equation) {Branicky, 

1998 #868; Alur, 2002 #790}. A typical instance in engineering is a real-time system where 

physical processes such as thermal and chemical reactions are controlled by embedded digital 

controllers. A hybrid system has the benefit of encompassing a larger class of systems within its 

structure, allowing for more flexibility in modeling dynamic phenomena{Lincoln, 2004 #883}. 

Much effort has been put into developing efficient software tools for modeling and performing 

formal verification for safety and stability analysis on hybrid systems{Amonlirdviman, 2005 

#870; Alur, 1993 #869}. 

In general, a hybrid system can be described by a few pieces of information. The state of the 

system consists of vector signals, which can change according to dynamic laws in the system 

data. The data includes a flow equation, f(x), which describes the continuous dynamics, a flow 

set, C, in which flow is permitted, a jump equation, g(x), which describes the discrete dynamics, 

and a jump set, D, in which discrete state evolution is permitted. 

The organization of the Caulobacter cell cycle feedback control in vivo can be partitioned 

into two subsystems: the cell cycle regulatory network and the lengthy cell processes (Figure 

3.3A). The regulatory network expresses different protein levels to control the cell processes; in 

http://en.wikipedia.org/wiki/Dynamic_system
http://en.wikipedia.org/wiki/Differential_equation
http://en.wikipedia.org/wiki/Difference_equation
http://en.wikipedia.org/wiki/Vector_%28spatial%29
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return when the processes reach certain distinct phases, feedback mechanisms such as 

methylation and the phospho-signal pathway act as fast switches to turn on or off gene 

expressions swiftly. These two subsystems can naturally be modeled as a hybrid system: 

continuous ODE equations, being the flow equation f(x), describe the well characterized 

regulatory network subsystem; successions of discrete states (called a state machine in 

engineering dialect), being the jump equation g(s), describe the subsystem of fast reactions and 

phenomenological processes with distinct phases (Figure 3.3B). 

Modeling Caulobacter cell cycle regulation as a hybrid system provides the system model 

with the capability of dealing with different levels of abstraction{Lincoln, 2004 #883}. Not well 

characterized or even hypothetical reactions can be included in the model as discrete 

phenomenological processes until further details are known. By integrating both subsystems into 

a single holistic simulation model, we are able to explore the dynamics of this close-loop 

feedback control. 

 

Figure 3.3 Simulation model overview. (A) Organization of cell cycle control. The core cell 

cycle engine activates modular functions (e.g., chromosome replication and cytokinesis). 

Feedback signals from these functions pace progression of the engine. Internal and external 

signals feed into the engine and can also slow or stop the cell cycle. (B) The simulation model 

architecture mirrors organization of the cell cycle control system. The ODE module models the 

parts of the system that are described by ordinary differential equations (e.g., kinetic reaction 

equations for protein synthesis and degradation). The phenomenological models include 

progression of processive modular reaction systems (DNA replication and cytokinesis) and they 

generate feedback signals (e.g., methylation state of the ctrA and dnaA promoter regions) that 

change or update parameters in the Simulink integration. Phenomenological models also 

generate signals tied to simulation time or to conditional events within the simulation. Examples 
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include the ON or OFF state of the CckA-originated phosphosignal, satisfaction of conditions for 

activation of DNA replication, and the current cell stage (swarmer, stalk, or predivisional). 

3.3 Model implementation in Matlab 

The simulation model has a hierarchical architecture that mimics the organization of the cells 

regulatory control system (Figure 3.3). The simulation is constructed using the Matlab Simulink 

{Mathworks #871} and Stateflow  {Mathworks #872} tools that are widely used by control 

engineers to design, analyze, and simulate control systems. Simulink is a Matlab-integrated 

platform for simulation and design of dynamic systems with an interactive graphical 

environment. Stateflow is tightly integrated with Matlab and Simulink, and it is used to model 

discrete event-triggered changes in simulation parameters during progression of the simulation. 

The combination of Simulink and Stateflow gives an interactive simulation tool well suited for 

modeling of hybrid dynamic systems, that is, systems that include some elements describable by 

ordinary differential equations (ODEs) and other elements that are based on discrete states. This 

combination of features is well matched to requirements for simulation of the C. crescentus cell 

cycle control system. In addition, the modular architecture of models constructed with Simulink 

and Stateflow will facilitate extension of the C. crescentus cell cycle model to add additional 

mechanistic details as they are reported and to extend the cell cycle model to incorporate 

environmental sensor/response systems that affect operation of the cell cycle. Thus, this 

extensible modeling paradigm provides an approach applicable to construction of a whole cell 

model. The simulation files are available at: 
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http://www.stanford.edu/group/caulobacter/CellModel. 

The top level Matlab model file (Caulobacter.mdl) includes two major blocks. The Simulink 

subsystem models the core oscillatory circuit comprised of DnaA, GcrA, CtrA, and CcrM 

regulatory proteins and a parsimonious additional set of proteins (DnaB, FtsZ, and FtsQA) that 

are in the pathway for control of two key controlled subsystems, DNA replication and cell 

constriction (Figure 3.4). The Stateflow subsystem monitors progress of the Simulink cell cycle 

simulation to detect conditional events, and it contains phenomenological models of the 

operation of the two controlled processive subsystems. For example, the conditions to initiate 

DNA replication in the model are (DnaA AND DnaB) NOT CtrA (Figure 3.1 and Figure 3.4). 

(This logic is an abstraction representing necessary, but not necessarily sufficient, conditions for 

initiation of replication.)   The Stateflow subsystem monitors the changing levels of the various 

proteins modeled by the Simulink subsystem and detects satisfaction of the “initiate replication” 

conditions. When the “initiate replication” event is detected, the Stateflow model of DNA 

replication progression is initiated. Key outputs from this model are the timing (in the 

simulation) of replication of dnaA, ctrA, and ccrM genes. At the time of their replication, the 

promoter regions of these genes become hemimethylated. Their hemimethylation status is 

signaled to the Simulink model where it affects the rate of expression of these genes {Collier, 

2007 #784}.  

The Simulink system is an ordinary differential equation (ODE) solver with a graphical 

interface. Rates of protein synthesis and proteolysis and phosphorylation reactions within the 

regulatory protein circuit of the cell cycle engine are all modeled in Simulink as a system of 

ODEs. Principal outputs of the Simulink subsystem are estimated protein and mRNA levels 

versus time in the cell cycle. These changing protein levels and the cell cycle time are inputs into 

the Stateflow subsystem. The outputs of the Stateflow subsystem are values for binary switched 

parameters in the simulation model in the Simulink subsystem. Stateflow provides the capability 

to change parameter values in the ODEs in Simulink as the simulation progresses, that is, as the 

equations are being numerically integrated. As described above for the promoter methylation 

states and conditions for initiation of DNA replication, the Stateflow subsystem monitors the 

current (in simulation time) values of protein levels and switches the parameters when some 

condition is satisfied. Stateflow can also switch parameters at designated time points (in 

http://www.stanford.edu/group/caulobacter/CellModel
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simulation time) during simulation. Examples of switched parameter values provided to 

Simulink by the Stateflow subsystem include the DNA methylation state of methylation-

dependent promoters and the cell stage (swarmer, stalked, or predivisional) that is used in 

Simulink to sets protein half-lives to the values experimentally observed in synchronized cell 

populations.  

 

 

Figure 3.4 An illustration of the operation of the hybrid system model implemented in Matlab. 

The regulatory circuit is modeled using ODEs in the Simulink block on the bottom. The cell 

function processes (chromosome replication and cytokinesis) are modeled as discrete state 

machines in the Stateflow block on the top. The threshold levels for the protein regulators to 

initiate a cell process are indicated by the two boxes on top of the upward arrow. The feedback 

mechanism of methylation control is modeled as a binary switch indicated by the box on top of 

the downward arrow. 
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General modeling considerations 

We are modeling events and chemical reactions as they occur in a single cell reaction chamber. 

As was mentioned earlier, the phenomena leading to stochastic reaction rates and variations in 

progress of cell cycle events are not considered in this cell level simulation. However, the effect 

of stochastic variations in rates of progression of chemical cascades on the C. crescentus cell 

cycle is to cause dispersion in timing of events over the cell population, which we can reflect by 

convolving the single cell predictions of the protein and mRNA concentrations profiles with a 

Gaussian function. The results of the convolution approximate the corresponding experimentally 

observed dispersion patterns from cell population measurements. These convolved protein and 

mRNA profiles can then be compared to experimental results from Western blots or micro-array 

mRNA assays on cell populations. 

Models in the Simulink subsystem 

Where we know genetic mechanisms and bio-chemical reactions, we use explicit or approximate 

kinetic models in the form of ODEs in the Simulink subsystem. Where we do not know details, 

but we do know phenomenology such as signal timing or the average time to complete a process, 

phenomenological models were constructed within the Stateflow subsystem. An example is the 

model of the CckA-originated phosphosignal that controls CtrA proteolysis and its 

phosphorylation state. From experimental observations, we know that this signal is interrupted at 

the time of cytoplasmic compartmentalization {Judd, 2003 #69; Domian, 1997 #290} and at the 

swarmer-to-stalked cell transition. We also know the timing of these two events and the timing 

of reactivation of the phosphosignal path in the predivisional cell from experimental observation. 

We define a conditional event in Stateflow to switch this CckA-originated phosphosignal off and 

on in the Simulink simulation at the appropriate times. (The robustness analysis described in 

Chapter 5 investigated sensitivity to specific timing of the CckA phosphosignal and found that 

the architecture of the cell cycle control circuit provides for successful completion of the cell 

cycle even when the specific timing of this signal varies over a wide range.) This 

phenomenological modeling approach enables realistic simulation of the known circuitry and 

phenomenology even though biochemical mechanisms in the pathway are still incompletely 

characterized. 



 30 

Table A.1 in Appendix A shows the ODE models of all the protein regulators and the 

activation of their respective promoters. The effects of promoter methylation states are included 

in the promoter activation models, as are the cases where there are multiple promoters or 

multiple regulatory ligands. Instantaneous values for the binary switch parameters in the ODEs 

(e.g., the methylation state of a promoter) are determined by the Stateflow subsystem. The timing 

of initiation of CtrA proteolysis is determined by the Stateflow controlled phosphosignaling 

pathway originating at CckA. In other cases where there is experimental data for different half-

lives at different cell cycle stages, the respective half-life parameters are set to the observed 

values (by input from the Stateflow subsystem) as the cell cycle progresses. 

The model predicts the changing intracellular concentration of the regulatory proteins and 

mRNAs. In the model equations (Table A.1, Appendix A), protein and mRNA rates are in 

nM/sec. Where necessary conversions between molecules/sec per cell and nM/sec per cell were 

made using  

M molecules/sec = 
g avg

M

A V
nM/sec  (3.4) 

 

where Ag is Avagodro’s number in nmol
-1

 and Vavg  is the average value over the cell cycle of the 

Caulobacter cell volume in liters. Using 167.5 10  liters (0.75 μm
3
) for Vavg, the conversion 

factor 
1

g avgA V
 is 2.2. Since we simulate the molecular concentrations instead of the number of 

molecules/cell at the time of compartmentalization, concentrations of cytoplasmic proteins are 

initially equivalent in each of the new compartments. However, polar localized proteins can have 

significantly different concentrations in each compartment, which can differentially affect the 

subsequent evolution of the respective biochemical and genetic systems of the compartments. 

We compare our simulation prediction to experimental values obtained from Western blots. 

Each time point of the Western blots was normalized to the same cell mass (OD660nm) to 

facilitate comparisons with the in silico simulation predictions. 
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Models in the Stateflow subsystem 

The Stateflow subsystem includes models of four physical processes: cell stage, the CckA 

phosphosignal state (i.e., ON or OFF), the progression of chromosome replication, and the 

progression of cytokinesis (Figure 3.5). Chromosome replication and cytokinesis are processive 

models, that is, complex biochemical reactions that take extended time intervals to complete. The 

chromosome replication model computes the fractional completion of replication as a function of 

time after initiation, assuming a linear rate of replication. This model also determines the DNA 

methylation state of the promoters whose activity is affected by methylation and provides a 

corresponding input signal to the genetic circuit model and the Simulink subsystem. The 

fractional completion of cytokinesis is also modeled with a linear model that signals when 

cytoplasmic compartmentalization occurs and when daughter cell separation occurs. 



 32 

 

Figure 3.5 A conceptual drawing of the Stateflow subsystem. A pointed arrow with caption 

indicates that its corresponding binary output variable is switched and fed into the Simulink 

subsystem. A rounded arrow represents a triggering event for a state transition in one of the four 

processes. A dashed box represents a condition to be met by the genetic circuit in Simulink to 

trigger a new process. 
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Over a cell cycle, Stateflow functions as follows
*
:  

1. The cell is initially in the swarmer cell state (set isSW to 1).  

2. At 20 minute in simulation time (minSim), the cell transitions from the swarmer stage into 

the stalked stage (set isSW to 0 and set isST to 1). 

3. During the transition, the CckA phosphosignal is switched to start CtrA proteolysis by the 

ClpXP machinery (set clpXP to 1).  

4. When the CtrA level becomes low (through proteolysis) while the DnaA and DnaB levels 

are still high, chromosome replication is initiated.  

5. Chromosome replication is modeled as a linear process lasting 80 minutes. When a fully-

methylated promoter is replicated, it becomes hemi-methylated. Starting from the ori, the 

simulated progression of the replication fork reaches the dnaA, ctrA, and ccrM genes (at a 

time depending upon their position on the chromosome) and successively switches mdnaA, 

mccrM, and mctrA from 0 to 1 to indicate the promoter is then hemimethylated. Hemi-

methylation reduces dnaA expression while, it enables ctrA and ccrM expression. 

6. At 80 minSim (60 minSim into chromosome replication), the phosphosignal activates 

CckA again, switching cckA to 1. 

7. The Simulink model starts to synthesize CtrA again when mctrA is set to 0. When cckA is 

switched to 1, CtrA is phosphorylated into CtrA~P, the active form of CtrA, which  

activates the ftsQA promoter to synthesize FtsQ and FtsA. 

8. FtsQ and FtsA are required to start cytokinesis {Martin, 2004 #17}. Cytokinesis is 

modeled as a linear process that lasts 30 minutes from start of cell constriction to cell 

separation, with cytoplasmic compartmentalization occurring 18 min {Judd, 2003 #69} 

before cell separation.  

9. The cell cycle stage is changed from stalked to pre-division when cytokinesis starts (set 

isPD to 1 and isST to 0).  

10. 80 minSim after the replication is initiated, chromosome replication completes and the two 

chromosomes are separated. chro_rep is reset to 0 again. 

11. 12 minSim into cytokinesis, the inner membrane of the cell fissions, and the cytoplasm is 

compartmentalized. Chromosome replication has to complete before compartmentalization 

                                                 
*
  Specific numbers shown are parameterized in the simulation and could vary depending upon the particular 

case being studied. 



 34 

can take place, so the simulation checks if chro_rep has been reset to 0 before allowing 

compartmentalization to happen.  

12. Upon compartmentalization, the CckA phosphosignal is blocked in the nascent stalked 

daughter cell (set cckA to 0). The disappearance of the CckA phosphosignal activates CtrA 

proteolysis by the ClpXP machinery {Iniesta, 2006 #785} (set clpXP to 1). 

30 minSim after the initiation of cytokinesis, the two daughter cells are separated.  

Additional assumptions: 

1. No phosphatase signal. There could be a phosphatase signal that works in conjunction with 

the CckA phosphosignal to accelerate dephosphorylation of CtrA {Iniesta, 2006 #785; 

Biondi, 2006 #786}. If such a mechanism exists, it would increase the speed and reliability 

of elimination of CtrA~P. 

2. After the initiation of chromosome replication, there is a time window when DnaA is still 

present but CtrA is not yet re-synthesized. During this interval, we assume that there exists 

a mechanism to prevent excessive chromosome replication initiation in C. crescentus. The 

mechanism might involve control of the level of activation of DnaA by ATP as with E. 

coli DnaA. 

Model parameters 

The cell cycle simulation model has a total of 62 parameters. Among them, 29 parameters have 

experimentally measured values (Table A.2.A, Appendix A), 25 parameters have estimated 

nominal values, and 9 parameters are used for in-silico mutant simulations. The robustness 

analysis in Chapter 5 found that the cell cycle control circuit design will execute the cell cycle 

correctly over wide ranges of parameter values.  

We use data from {Keiler, 2003 #91} scaled to a 135 min swarmer cell generation time for 

the timing of the swarmer cell stage, and chromosome replication. Half-lives of DnaA, GcrA, 

and CtrA have been experimentally determined in swarmer cells and stalked cells{Collier, 2006 

#783; Domian, 1997 #290; Gorbatyuk, 2005 #754}, and the active regulation of CtrA proteolysis 

as a function of the cell cycle has been extensively studied {McGrath, 2006 #859; Iniesta, 2006 

#785}. The relatively small dilution effects of cell growth are assumed to be included in the 
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experimental protein half-life data. Pathways controlling DnaA and GcrA stability have not been 

characterized, so we modeled the observed dynamic control of DnaA and GcrA stability by 

setting their half-lives to the reported value at each stage in the cell cycle. Time-resolved 

measurements of protein phosphorylation states are possible, but with poor resolution, and in 

vivo kinetics of C. crescentus phosphorylation reactions are not available. We assume that the 

phosphosignaling reactions are fast enough that phosphorylation-related switching is much faster 

than switching by genetic mechanisms or protein degradation. The rationale for choice of all 

parameter values is in Appendix A. 

Even though the estimated parameter values and the postulations made in the model are 

supported by indirect experimental evidence, there might be alternative explanations for the 

same observations. In the next chapter, simulation results of the hybrid system model are 

compared with various experimental measurements to provide another level of validation where 

the impact of these estimations on the dynamic behaviors of the entire regulation system is 

evaluated. The robustness analysis described in Chapter 5 takes a step further to show that 

precise parameter values and detailed characteristics of the individual pathways are not essential 

to the operation of the Caulobacter regulatory system because the modeled feedback control 

scheme is robust to parameter variations. 
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Chapter 4  
 

Simulation results 

Comparing simulation results to experimental measurements is a crucial step to validate a system 

model before it is eligible to make predictions, because most reactions included in the model 

have only been identified by individual experiments. As a synthesis of all known literature, the 

in-silico model provides a unique platform to simulate the interactions between these reactions 

and assess their influence on the dynamic behavior of the entire system. Even though presented 

here as sequential steps, validation is actually interwoven into the progressive development of 

the Caulobacter cell cycle model, constantly suggesting clues for improvement. For example, the 

initial model did not include the methylation control of activation of the ctrA P1 promoter; as a 

consequence of lacking this crucial feedback mechanism, precise parameter values with little 

tolerance for variation are required for the core engine of the genetic circuit to stay in sync with 

the lengthy cell cycle processes and it was impossible for the simulation to match the measured 

protein and mRNA levels. All clues pointed to the seemingly premature activation of CtrA 

expression, which prompted us to include the methylation control in the model and  realize its 

role for the control scheme, which is to couple the genetic engine to progression of cell processes 

by expressing the master regulators “just in time” {McAdams, 2003 #58}. 

Dynamics of the hybrid system model can be verified by experimental measurements in 

three fronts: (i) protein level measurable by Western blots; (ii) mRNA level measurable by 
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Microarrays; (iii) phenomenological events or defective phenotypes observable through 

microscopy.  

4.1 Validation 

Protein level 

The western blot, also called immunoblot, is a method of detecting protein of interest in a given 

sample of cell using antibodies binding specifically to the target protein extract {Burnette, 1981 

#873}. This method is widely used in the fields of molecular biology, biochemistry and other 

molecular biology disciplines. Western blot does not provide the exact protein concentration 

level or the number of proteins molecules in a cell, but computational tools like ImageQuant 

{GE Healthcare #874} can estimate relative change of protein concentrations during cell cycle 

progression from a time series of western blot measurements (Figure 2.1B). With the exception 

of CtrA and CcrM, in vivo measurements of the number of protein molecules in the C. crescentus 

cell have not been published. Accordingly, we normalize protein concentrations to the maximum 

concentration when comparing simulation results to the measurements. 

The progression of protein and mRNA concentrations can be followed within the simulation 

into one or the other of the nascent daughter cell compartments. Figure 4.1A shows predicted 

concentrations of CtrA, CtrA~P, GcrA, DnaA, and CcrM as a function of time in the cell cycle 

from the instant of cell separation through cytoplasmic compartmentalization into the stalked 

daughter cell compartment until cell division. Figure 4.1B follows the protein concentrations into 

the swarmer daughter cell compartment. The ability to follow predictions of the distinctive 

molecular concentrations through the cell cycle and into either the swarmer or stalked daughter 

cell compartments is a unique aspect of this simulation. Experimental observations from 

synchronized populations (e.g., from Western blots and microarray assays) are averages over 

many cells, and measurements of samples taken late in the synchronized cell cycle always 

include signals from both the nascent swarmer and stalked daughter cell compartments. We 

make the single cell predictions of protein and mRNA levels comparable to observations in 

synchronized cell populations by (i) averaging the predictions from the swarmer and stalked 

daughter cell branches of the simulation (Figure 5.1A and Figure 5.2B), and (ii) convolving the 

http://en.wikipedia.org/wiki/Proteins
http://en.wikipedia.org/wiki/Antibody
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result with a Gaussian distribution with a 5 minute standard deviation to approximate dispersions 

in cell cycle stage among cells in experimental samples. Figure 4.1C shows the resulting protein 

level predictions (the curved lines) along with normalized experimental results quantified from 

Western blots (the circles) using ImageQuant.  

mRNA level 

By using an array containing many DNA samples, DNA microarray allows scientists to 

determine the expression levels of thousands of genes within a cell by measuring the amount of 

mRNA bound to each site on the array {Schena, 1995 #875}. Microarray gene expression assays 

have been performed on periodic samples from synchronized Caulobacter cell populations 

{McGrath, 2007 #876}. In Appendix B, we compare the mRNA levels from the microarray data 

to the promoter activation levels modeled by Hill functions in the simulation model. Figure 4.1D 

shows the temporal profiles of ctrA mRNA levels predicted by the Hill function approximation 

for gene activity. Experimental results from Affymetrix microarray assays of time samples from 

synchronized cell populations are shown for comparison.  
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Figure 4.1 Simulation of protein levels (normalized) during cell cycle progression. Panels (A) 

and (B) show predicted (normalized) levels of the master regulatory proteins tracked into the 

swarmer and stalked cell compartments, respectively, at the single cell level. After inner 

membrane compartmentalization at about 117 min, protein concentration levels diverge in the 

stalked and swarmer daughter cell compartments. (C) Circles: Observed protein levels in 

synchronized cells (quantified Western blots – Figure 2.1B). (The dotted lines are continuous 

approximations of the experimental levels.) Curves: Simulated protein levels made comparable 

with experimental observations by averaging results in (A and (B) and convolving with a 

Gaussian distribution to approximate random variation around an average in different cell’s 

progression through the cell cycle. The errors in the experimental values are approximately 

±10% of the peak value. Loss of synchrony degrades experimental data in predivisional cell. (D) 

Circles: Observed ctrA mRNA levels from Affymetrix microarray assays {McGrath, 2007 #876}. 

It is more difficult for the hybridization probes on the DNA microarray to differentiate the 

activation level of the ctrA P1 and P2 promoter due to the noise level present in the experiment. 

Because the activation of ctrA expression is a critical piece in the puzzle, a lacZ reporter gene 

was first genetically inserted into the Caulobacter chromosome behind the ctrA P1 promter and 

then the P2 promoters. These two genetic constructs allow a pulse-label immunoprecipitation 

assay of Beta-galactosidase (the protein synthesized from the lacZ gene) to report the activation 

level of P1 and P2 separately, which are compared to our simulated levels (Figure 4.2). 



 41 

 

Figure 4.2 The top-left plot shows the expression levels of ctrA P1 and ctrA P2 separately during 

the cell cycle (A) Activation levels of ctrA P1 and P2 promoters measured separately using a 

pulse-label immunoprecipitation assay of Beta-galactosidase {Reisenauer, 2002 #104}. (B) 

Activation level of ctrA P1 predicted by the Hill function approximation in the model. (C) 

Activation level of ctrA P1 predicted by the Hill function approximation in the model. 

Phenomenological events or defective phenotypes 

The discrete part of the hybrid model outputs the timing of the critical cell cycle events of the 

processive reactions during cell cycle progression. These processive reactions are often initiated 

when the master proteins levels cross certain thresholds and when these reactions reach certain 

critical stages, they conversely affect the expression level (mRNA) level of involved genes 

through methylation and the phospho-pathway. Figure 4.3 displays both the continuous protein 

patterns and the discrete stages of the cell processes simulated by the hybrid system model, 

demonstrating the operation of the cell cycle feedback control. The timing of the discrete events 

have been confirmed by microscopic images from various literature.  
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Figure 4.3 Simulated dynamics of the hybrid system model tracking into the stalked 

compartment (A) Protein concentration from the continuous ODE models in Simulink (B) State 

variables from the discrete phenomonlogical model in Stateflow (C) A cartoon showing cell 

cycle progression corresponding to (A) and (B) 
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4.2 In silico mutant strain 

Shown in the previous section and Appendix B, patterns of protein and mRNA concentrations 

predicted by the wild-type strain simulation using nominal kinetic parameter values 

characteristic of cells in log growth phase (Appendix A) agree with various measurements within 

experimental error, particularly after recognizing loss of synchrony in the predivisional cell data. 

To further validate the hybrid control simulation of the in vivo cell cycle control system, we 

created in silico mutant strain simulations that emulate several laboratory C. crescentus mutant 

strains. Besides validation of the model, another objective of these comparisons was to 

understand the reasons for the experimentally observed phenotypes in greater depth. Additional 

details of these simulations including graphs of the in silico simulation datasets are online at 

http://www.stanford.edu/group/caulobacter/CellModel. 

Table 4.1 shows the four mutants that were simulated and the changes that were made to the 

wild-type model to create the mutant simulation. In each case, the simulation predicts (i) the 

concentration profile of each protein in the model in single cells as a function of cell cycle time 

when followed into either the swarmer or the stalked compartment of the predivisional cell, (ii) 

whether the cell can progress through each stage of the cell cycle, and (iii) whether DNA 

replication and cytokinesis occur normally.  

Table 4.1: mutant phenotypes 

Characteristics of 

mutant strains 

Genotypes of 

mutant 

strains 

Refs Phenotypes 

in vivo 

Parameters changed from 

wild-type parameters for 

mutant simulations 

Strain where GcrA 

can be depleted 

(LS3707) 

CB15N 

gcrA 

Pxyl::gcrA 

{Holt

zendo

rff, 

2004 

#33} 

The cell cycle is 

arrested at the stalked 

cell stage, and cells 

finally die in the 

absence of GcrA. 

Maximum GcrA synthesis rate 

from the gcrA promoter 

pgcrA=0nM/s 

Strain that 

accumulates CcrM 

constitutively 

(LS1) 

CB15N 

PlacZ::ccrM 

{Zwe

iger, 

1994 

#373} 

Cells are slightly 

elongated and 

accumulate 

supplementary copies 

of the chromosome. 

CcrM synthesis rate from a 

constitutive promoter added in 

the model 

pccrMoe=100nM/s 

Strain that can 

accumulate stable 

and constitutively 

active mutant CtrA 

proteins 

CB15N 

pXylX:: 

ctrAD51E3Ω  

{Dom

ian, 

1997 

#290} 

Cells do not initiate 

DNA replication and 

do not divide. Cells 

elongate before 

dying. 

Binary switch controlling the 

phosphorylation state of CtrA 

and the protein half-life of 

CtrA under active proteolysis 

by ClpX 
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isAlwaysCtrAP=1 

hlCtrAf=200 min 

Strain where the 

ctrA gene is moved 

to a position next 

to the terminus of 

replication of the 

chromosome 

(LS3355) 

CB15N 

ctrA2::pAR3

58 

 

{Reis

enaue

r, 

2002 

#104} 

Cell size is 

sometimes irregular 

Relative location of the ctrA 

gene on the chromosome 

zpctrA=1 

 

The simulation predictions for all cases checked were consistent with the in vivo 

phenotypes. Simulation results and their relation to the mutant strains in Table 4.1 are as follows:  

GcrA depletion strain: The simulation predicts that CtrA~P will not re-accumulate after the 

stalked cell stage, so FtsQA does not accumulate enough to initiate cytokinesis. As a result, the 

cell cycle arrests at the stalked cell stage in the simulation (Figure 4.4). The simulated levels of 

DnaA and CtrA suggest that DNA replication may still happen in these cells before cell death. 

Strain with constitutive accumulation of CcrM: The simulation predicts that the re-accumulation 

of CtrA in pre-divisional cells will be delayed ~20 minutes, while DnaA will accumulate at high 

concentrations throughout the cell cycle. This suggests that over-initiation of DNA replication 

may take place in these mutant cells as is observed experimentally. As a consequence, the re-

accumulation of FtsQA and cytokinesis will be delayed. Strain with constitutive accumulation of 

CtrA~P: The simulation predicts that accumulating CtrA~P will block the initiation of DNA 

replication. Since cytokinesis is blocked when DNA replication is blocked, the cells will arrest 

after the stalked cell stage as observed in vivo. Strain with the ctrA gene moved next to the DNA 

replication terminus: The simulation predicts that CtrA re-accumulation in predivisional cells 

will be delayed by ~15 minutes as is observed. As a consequence, the synthesis of FtsQA and 

cytokinesis will also be delayed, so that the cell cycle will be slightly longer than for wild-type 

cells. The consistency between the predictions from simulation of the in silico mutants and the in 

vivo phenotypes provides additional evidence that our model corresponds to the biological cell 

cycle control circuitry. Moreover, the predictions from in silico mutant simulations provide 

quantitative insights into how the cell cycle is affected by a given mutation. 
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Figure 4.4 In silico GcrA depletion mutant are arrest as stalked cells. The top part shows the state 

variables from Stateflow. The defective phenotype is drawn intuitively at the bottom. 

 The simulations were performed using the Matlab-based simulation of the wild-type C. 

crescentus cell cycle control system. We used the same differential equations, parameter values, 

and initial conditions as for wild-type cells, except for those parameters that were changed to 

simulate a mutation of interest. Time varying intracellular concentration levels are predicted for 

the eight different proteins included in the model.  

The consistency of the simulation results with these experimental observations illustrated 

that out hybrid simulation model is capable of capturing the dynamic bahaviors of the in vivo cell 

cycle regulatory circuit. The next chapter analyzes the robustness of the cell cycle control and 

shows that the cell cycle will operate correctly even if there is wide variation in kinetics of 

reaction rates in different pathways. 
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Chapter 5  
 

Robustness 

The cell cycle control system of the organism has to be reliably competitive over the entire range 

of potential environmental circumstances, or the organism will not survive. A relatively more 

robust organism that can survive a bit wider temperature range or a bit longer period of 

starvation has a major evolutionary advantage. Biological regulatory systems often possess 

mechanisms for robustness that are only expressed under unusual or stress conditions to make 

the regulatory system robust, or insensitive to environmental changes, genetic mutations, 

stochastic fluctuations, and noise {de Visser, 2003 #797; Goulian, 2004 #801; Kitano, 2004 #807; 

Kitano, 2007 #808; Rosenfeld, 2005 #811; Thatcher, 1998 #818}, but models of regulatory 

systems are usually based on observations and measurements made under typical laboratory 

conditions, making them incapable of investigating these contingent mechanisms. For example, 

73% of the 6000 genes in the budding yeast Saccharomyces cerevisiae have shown to be 

nonessential by gene depletion mutations {Dwight, 2004 #851; Giaever, 2002 #852}. These 

nonessential genes are likely to be part of pathways that play an essential role in diverse habitats 

when facing environmental or genetic perturbations {Thatcher, 1998 #818}, but their roles will 

be dismissed in models built solely on data collected under regular lab conditions. Therefore it is 

always challenging for biologists to thoroughly evaluate the robustness of a regulatory system. 

This chapter presents a novel approach to exploring cell cycle robustness by leveraging a system 

verification methodology from digital circuit design. In addition to proving that the Caulobacter 
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cell cycle is extremely robust, this method revealed nuances in the regulation scheme that 

contribute to the robustness under unusual circumstances. 

5.1 Robustness analysis on system model 

It has been proposed that robustness can be used as a criterion to test if a model of a regulatory 

network is realistic {Morohashi, 2002 #810; Savageau, 1971 #812}, because a model that lacks 

tolerance for parameter variation suggests that important pieces of the regulatory system is 

missing or modeled incorrectly, otherwise the corresponding organism will not be able to survive 

in the wild. Furthermore, checking how a model behaves over the entire parameter space may 

identify robustness-enhancing mechanisms not expressed under laboratory conditions as well as 

insights on the structure of the modeled regulatory network. 

Measurements in vivo shows that a synchronized population of Caulobacter cells originated 

from the same strain and living in the same controlled lab environment becomes increasingly 

unsynchronized during cell cycle progression, confirming that the cell cycle regulation has to 

tolerate various speed of cell cycle progression, probably due to environment (local crowdedness) 

and minor genetic mutations accumulated after several generations (Figure 5.1) {Judd, 2003 

#69}. The cell cycle time of Caulobacter cells living in different media in the lab could vary 

significantly, e.g. 90 minutes in PYE whereas 150 minutes in M2G, which indicates the 

influence of nutrient levels on cell processes and protein synthesis. In their natural habitat with 

much more diluted media, Caulobacter cells are subject to far greater perturbations and 

starvations, thus to be a competitive species, the regulatory system has to be robust; that is to 

always copy the chromosomes and divide the cells successfully regardless of the duration of cell 

cycle. 
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Figure 5.1 Measurements illustrating the loss of synchrony during cell cycle progression. 

Fraction of swarmer cells, stalked cells, and early and late predivisional cells present in the 

synchronized population as a function of time. Cell type was determined by morphology. 

Seventy-five minutes into the cell cycle, the population consists primarily of stalked cells. As the 

cell cycle progresses, stalked cells develop into predivisional cells, which then divide to form 

new swarmer and stalked cells (hatching) {Judd, 2003 #69}. 

Robustness has been predominantly analyzed by exploring parameter sensitivities based on 

the premise that a robust model should be insensitive to the precise values of its parameters 

{Alon, 1999 #789; Barkai, 1997 #794; Ingolia, 2004 #805; Stelling, 2004 #816; von Dassow, 

2000 #822; Yi, 2000 #827}. We performed a limited parameter sensitivity analysis on a subset of 

the parameters in the simulation, and the results suggested that the operation of the cell cycle 

control is robust. However, parameter sensitivity analysis and stochastic simulations like Monte 

Carlo {Fishman, 1995 #877} do have their limitations: (i) It is often computationally intensive to 

exhaustively search the entire parameter space to identify all failure cases. (ii) It is often not 

trivial to interpret the results: why specific sets of parameter values can cause a regulatory circuit 

to malfunction? (iii) Parameter sensitivity analysis seldom provides clues to robustness-

enhancing mechanisms not yet included in the model. Even though the parameter sensitivity 

analysis provided an initial assessment of the robustness of cell cycle regulation, it fell short as a 

diagnostic tool for analyzing the robustness of the model under all possible perturbations faced 

by Caulobacter cells in their natural environment. 
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In contrast, when testing an engineering model, engineers usually adopt a “top-down” view 

of the system from a functional perspective rather than a “bottom-up” view with individual 

parameters. Specialized tools have been developed to exhaustively identify hazardous conditions 

in engineered systems and follow up with potential solutions. One set of tools are called 

symbolic model checking, which has been used to analyze robustness of asynchronous circuits, 

circuits without a clock signal to synchronized all the signals {Clarke, 1986 #878; Batt, 2007 

#879; Burch, 1990 #887; McMillan, 1992 #889}. As a naturally evolved asynchronous system 

“engineered” with biological rather electrical components, can Caulobacter cell cycle regulation 

be analyzed by symbolic model checking as well? To answer this question, we have to examine 

the operational principles of electrical engineering system applicable to symbolic model 

checking and find out if they are still valid for Caulobacter cell cycle regulation.  

5.2 Discrete abstraction for model checking 

Model checking generally refers to verifying whether a structure is a model of a given logical 

formula. Methods have been developed to algorithmically verify formal systems. This is 

achieved by verifying if the structure, often derived from a hardware or software design, satisfies 

a formal specification, typically a temporal logic formula {Clarke, 1981 #884; Queille, 1982 

#885; Emerson, 1985 #896}. Symbolic model checking makes a discrete representation of the 

system structure using a formula in propositional logic, often in some forms of binary decision 

diagrams (BDDs) {Hu, 1993 #886; Burch, 1992 #888; McMillan, 1992 #889}. 

How does symbolic model checking manage to identify hazard cases in engineering systems 

without sweeping through all parameters? Instead of characterizing the exact shape of a signal 

which is heavily influenced by many parameters, the level of the signal is divided into discrete 

regions corresponding to its functional role. For example, a signal level is considered “high” 

when it is above the activation threshold of its downstream devices, and “low” vice versa (Figure 

5.2A, Figure 5.2B). Progressive processes are also divided into discrete states and treated as state 

machines, which is exactly how we treated the phenomenological models in our hybrid system 

representation of cell cycle regulation.  

http://en.wikipedia.org/wiki/Structure_%28mathematical_logic%29
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Formal_system
http://en.wikipedia.org/wiki/Hardware
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Temporal_logic
http://en.wikipedia.org/wiki/Binary_decision_diagram
http://en.wikipedia.org/wiki/Binary_decision_diagram
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Different from some previous work using Boolean network which treat ongoing reactions as 

instantaneous and simulate them in synchronized steps, the dynamics of the signals are captured 

by introducing the notion of timing and delay in the system abstraction for symbolic model 

checking (Figure 5.2C, Figure 5.2D). Timing refers to the time instant when an event occurs, i.e. 

when a signal crosses a threshold or a state machine transitions into the next state. The concept 

of delay refers to the response time for a downstream output signal to cross its threshold after its 

input signal crosses the activation threshold (Figure 5.2D) or the transition time for a state 

machine to enter the next state after the initiating condition is satisfied. 

 

Figure 5.2 Discrete abstraction of electronic signals. (A) A schematic of a CMOS inverter which 

outputs an inverse signal. (B) A steady state transfer function curve with output level plotted 

against the input level. The exact shape of the curve depends on tens or hundreds of device 

parameters. The blue shaded areas are “flat” saturation regions that could be abstracted into two 

discrete regions: “high” and “low”. The dashed lines mark the threshold region between the 

discrete regions, in which neither the input nor the output could be defined as high or low. An 

analog device such as an amplifier operates in this range. (C) A transition of the input causes a 

transition of the output. (D) The dynamic response characteristics of the inverter could be 

captured by a delay variable which marks the time lapsed between the input and the output level 

crossing the threshold regions. 

This discrete abstraction of signals and processes allow algorithms like symbolic model 

checking to investigate effects of parameter variation by exploring timing and delay variation 

instead of inspecting individual device parameters {Hu, 1993 #886; Burch, 1990 #887; Burch, 

1992 #888; McMillan, 1992 #889}. The effects of parameter variation on the steady state 

transfer functions are captured by varying threshold levels and the effects on the dynamic 
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behavior are captured by varying delays. Furthermore, variation of threshold levels ultimately 

translates into delay variation as well because an altered threshold level means that now it takes 

the same signal less or more time to cross it, with the extreme case where the threshold level is 

changed so much that it exceeds the maximum or minimum signal level so the delay becomes 

infinite.  

A caveat of this abstraction method is that the discrete representation preserves all properties 

of interest only when the operation of the original continuous system adhere to certain principles: 

(i) The steady state transfer function curve of every signal has a sigmoidal shape (Figure 5.2B) 

so that the noise or signal value uncertainty gets attenuated when devices are cascaded (in other 

words, noise does not become amplified during cascading) (ii) If we freeze the inputs and wait 

long enough, in the steady state all signals and processes end up residing in one of their discrete 

states, even though the transitions can take a long time to reach this state. When these two 

conditions are met, a system is considered to be a discrete or “digital” system which can be 

safely abstracted for symbolic model checking without risking losing properties of interest. 

The explanation of the first principle needs a little elaboration. The sigmoidal shape of the 

transfer function has two saturation regions separated by a threshold region with a slope 

(derivative) bigger than 1, therefore when an input signal falls into the threshold region due to 

noise or signal degradation, the output signal gets “pushed” back out into the discrete (saturation) 

regions, thus preserving the integrity of the signal. This is essential for the discrete abstraction 

because otherwise if the slope is less than 1, in a cascade, signals keeps getting degraded and 

eventually falls into the threshold region, making “1” or “0” meaningless. In such a system, noise 

or stochastic variation gets amplified until all assumptions on a digital system are violated.   

In the discrete representation, the finite number of system states owing to the discrete state 

variables makes it computationally feasible to exhaustively search the entire state space for 

potential failures in the operation when parameters vary }{Alur, 2000 #880; Casagrande, 2007 

#881; Batt, 2007 #879; Mysore, 2007 #882; Lincoln, 2004 #883}. Moreover, the transformation 

of the originally continuous state space into a discrete one makes it unnecessary to examine 

detailed dynamic characteristics of the signals; rather what only matters is if and when a signal 

crosses its threshold or a state machine transitions into the next state. In other words, by checking 
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the timing and causality of the critical events rather than the exact shape of signal curves, the tool 

is able to abstract the model from the functional perspective and examine the collective effects of 

all parameters on the final outcome. If the timing variation of a critical event exceeds certain 

limits, either happening too early or too late, its downstream events could be disrupted and the 

intended actions might never take place properly.  

One common case that causes unwanted outcomes in an electrical circuit is race (Figure 5.3) 

{McClusky, 1986 #809}. When multiple signal chains (pathways) lead to inputs of a logic gate 

to make a decision, parameter variation affect the timing delay of each signal chain and thus the 

order of the arrivals of these signals at the inputs, which can generate unexpected intermediate 

outcomes called glitches. In a combinational logic circuit with no feedback, glitches do not cause 

malfunctions since the signals always settle into the correct final values. However, if there exist 

feedback loops in the circuit, the glitches might change the final outcome of the feedback loops, 

causing the operation to wander into unwanted states and eventually fail. A well designed circuit 

should deploy extra circuitry to prevent these hazards (failures) from occuring under parameter 

variations. Symbolic model checking has been used by design engineers to identify all potential 

timing hazards in the design and report the step-by-step signal sequence leading to a hazard.  

 

Figure 5.3 Race and glitch in electrical circuits. The green digits are current state of the inputs 

into the AND gate. The red digits are upcoming signals passing down through the two signal 

chains. The top chain is usually slower owing to the extra buffer, but parameter variation could 

result in an early arrival of its signal (the orange digit), causing the AND gate to output 1 

temporarily before settling back to 0, forming a glitch (shown in red). 

We postulated that Caulobacter cell cycle regulation is a robust system and our preliminary 

parameter sensitivity analysis has shown that the hybrid system model was somewhat insensitive 

to parameter variations. Still, many questions remained unanswered: i) how robust the cell cycle 

regulation is (how many potential failures cases can be caused by parameter variations)? ii) What 
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are the exact conditions or deviation of parameter values that lead to incorrect replication and 

division in our model? iii) Can these conditions provide clues to in vivo mechanisms not yet 

included in our simulation model? iv) Do the non-essential mechanisms in the simulation model 

contribute to robustness in any way? To answer these questions using symbolic model checking, 

we first need to check that the Caulobacter cell cycle regulation system do adhere to the 

operational principles of the engineering systems that makes it eligible for discrete abstraction 

with timing. 

5.3 Discrete representation of Caulobacter cell cycle 

regulation 

Perturbations introduced in vivo or parameter variation in silico can affect a cell signal 

(regulatory protein) by changing its level or timing (Figure 5.4A). For example, the Caulobacter 

cell cycle accommodates various rates of progression caused by nutrient availability, temperature 

fluctuation, and ligand binding affinity due to genetic mutations. In the case of protein synthesis, 

each one of the various parameters could affect the protein synthesis and degradation rates, 

generating different characteristic curves. From Chapter 3, we know that protein synthesis and 

degradation corresponding to a repressive promoter can be approximated by the following 

approximation: 
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where [A] is the level of the repressive transcriptional factor and [B] is the level of accumulated 

protein. Variation of the synthesis or degradation rate results in different accumulation rates of 

the targeted protein B, thus after the level of its repressor A goes down, it takes different amount 

of response time, or delay, for protein regulator B to reach the threshold level of affecting 

downstream promoters (Fig. 5A). Stochastic variation or noise of the threshold level also leads to 
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difference in the delay. Hence the dynamic property of this repressive promoter with its 

corresponding accumulation of protein B can be captured by using the concept of delay without 

losing properties of interest as far as transcriptional regulation is concerned.  

The steady state transfer function of [B] vs. [A] is achieved by setting
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The steady state transfer function curve between the output level and the input level shows a 

sigmoidal shape due to the hill function approximation with cooperativity 1n   (Figure 5.4B). 

The two saturation regions separated by a transition region allows us to practice the same 

exercise as we did to digital engineering systems and divide the operating space into two discrete 

regions separated by a threshold region. When the output protein level is above the threshold 

region, it is statistically significant enough to activate or repress downstream promoters, and 

when the level is below, it is statistically insignificant for influencing downstream promoter. If 

the output level is within the threshold region region (the steep part of the S shaped curve), or in 

other words, right on the threshold, the process of regulating downstream promoters become 

stochastic and subject to probability, which is obviously undesirable for the regulatory systems 

that tries to produce a deterministic outcome. 

The higher the cooperativity n is, the steeper the threshold regions is, which suppresses 

noise propagation and increases noise margin when the signals are cascaded (Figure 5.4C). This 

might explain why high cooperativity such as dimers and trimers are so common in biological 

reactions, especially in regulatory systems, because they form more noise resistant, and 

therefore, better devices for signal propagation and performing logic. As long as the input signal 

of a cascade is within the discrete operation region (either “low” or “high”), it is guaranteed that 

the signals along the cascade leading to the final outcome will all reside in the discrete regions 

when the final steady state is reached, without the risk of getting stuck in the threshold region.  
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Figure 5.4 Discrete abstraction of transcriptional regulation. (A) An illustration of effects of 

parameter variation on the dynamic response of a regulator. Different accumulation rates of 

regulator B due to parameter variation causes deviation from the normal delay it takes regulator 

B to cross the threshold for affecting downstream regulators. (B) A steady state transfer function 

curve plotting [B] against [A]. Similar to Figure 5.2B, the operation region can also be divided 

into two discrete regions (shaded by blue) separated by a threshold region (separated out by the 

dashed lines). The steepness of the threshold region is decided by the cooperativity of the A 

binding site on the b promoter, a coefficient in Hill approximation. (C) In a cascade of regulators, 

discrete abstraction stays valid because the shape of the Hill function keeps the noise margin and 

preserves the discrete regions. The level of the regulator A results in two outcomes from the 

cascade (shown in red and green digits on the left), and the steady state transfer functions 

guarantee that the two operating points (circles and dashed lines in red and green respectively) 

stay in the discrete regions and never slip into the threshold regions. 
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The outcome of the Caulobacter cell cycle regulation is discrete and deterministic – 

replicate the chromosome and divide the cell. The cell cycle cannot have a partial product such 

as 70% completion for 70% of regular expression levels. In vivo measurements have indicated 

that the promoters for the master regulator genes are much stronger than the minimum level and 

there are regulated proteolysis and/or phosphorylation to disable master regulators to ensure that 

the levels of the master regulators will never reside in the threshold regions in steady states 

{Quon, 1996 #329; Judd, 2003 #69}. Therefore, the regulatory network does follow the 

guidelines for a logic circuit, even though the time scale of this biological circuit is much longer 

than a typical electrical circuit.  

Our examination has shown that the Caulobacter cell cycle regulation indeed adheres to the 

two operating principles required for valid discrete abstraction without loss of properties of 

interest. These unique properties of the Caulobacter cell cycle regulation allows us to make an 

equivalent asynchronous digital circuit representation of the control circuit
1

, making it 

compatible to robustness analysis using symbolic model checking. 

5.4 Timing verification 

This section describes the robustness analysis of the C. crescentus cell cycle control circuitry 

using symbolic model checking. First, the concept of timing analysis of the C. crescentus cell 

cycle as a finite state system is described. Then we describe conceptually how the converted cell 

cycle model represented by discrete state variables is analyzed by NuSMV {Clarke, 1986 #878; 

Cimatti, 2002 #890}, a tool for symbolic model checking. As stated previously, timing analysis 

has long been used in engineering to check the robustness of electrical circuits, and to determine 

if the circuit will always generate the correct logic outcome regardless of its environment and 

                                                 
1
 The applicability of symbolic model checking to cell cycle regulation cannot be taken for granted regarding 

other biological systems. For instance, metabolic networks have been shown to optimize its fluxes to yield 

maximum growth, a quantity rather than a discrete decision. Therefore, the entire metabolic network cannot be 

abstracted into a discrete representation, even though some of its enzymatic control might still behave as digital 

circuits. Another example is the phage λ lysis-lysogeny decision circuit, in which fluctuations in rates of gene 

expression lead to non-deterministic bifurcation helped by positive feedback {Arkin, 1998 #793; McAdams, 1997 

#843}.  
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random variation in parameter values. NuSMV was used to check the robustness of the C. 

crescentus cell cycle control circuit to identify hazardous conditions, that is, potential situations 

where the circuit might not complete the cell cycle. 

We based the equivalent asynchronous digital circuit representation of the cell cycle 

regulation on the validated hybrid system simulation model described in Chapter 3, which allows 

the symbolic model checking software to exhaustively search the finite state space for potential 

failures brought upon by parameter variations. Figure 5.5 illustrates the rationale underlying our 

approach to deriving the discrete abstraction from the hybrid simulation model and application of 

the model checking methodology for robustness analysis. The figure shows eight events in an 

interval centered on the time of daughter cell separation that will occur in a stalked cell cycle and 

affect operation of the control circuit. The events occur at times labeled by the Ti’s. T1, for 

example, is the time of cytoplasmic compartmentalization that interrupts the CckA/ChpT 

phosphosignal and precipitates elimination of CtrA~P. The specific timing of events and the 

intervals between the events will depend on the kinetic parameters of the system, whether in vivo 

or in silico. (Owing to stochastic variation in reaction rates from cell to cell in a population, 

actual reaction rates in different cells will vary and consequently cells will show dispersion in the 

rate of progression through the cell cycle.) Thus, the rate of production of any protein X will 

depend on the kinetic parameters of its transcription and translation, and the time for X to 

activate a dependent process will depend on the kinetics of its binding at a target site that 

determine the concentration range for action. The rate of production of X will also depend on 

availability of substrates (e.g., amino acids) that will vary with environmental nutrient levels. 

There is a minimum average cell generation time under optimal high nutrient conditions. Under 

either carbon or nitrogen starvation, the cell cycle comes to a controlled stop (see below), 

suggesting that there is also a maximum to the sustainable generation time. Thus, a defining 

element of the robustness of the C. crescentus cell cycle control is its ability to achieve reliably 

correct ordering of cell cycle functions between these extremes of cell growth rate. Our method 

for exploring this using symbolic model checking is to consider variation of the event times (i.e., 

the Ti’s in Figure 5.5) directly, rather than individual variation of the many kinetic parameters 

that determine the times. This approach to robustness analysis is more computationally efficient 

and complete than using a Monte Carlo method to explore the parameter space. 
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For example, consider the particular situation shown in Figure 5.5, in which the condition 

for activation of DNA replication involving the CtrA, DnaA, and DnaB proteins is satisfied at T3. 

After a delay, the dnaA gene is duplicated at T4. Consequently, its promoter region becomes 

hemimethylated and the rate of dnaA transcription is greatly reduced {Collier, 2007 #784}. 

Although there are essential ordering relationships between some timing events, for example: 

T2 > T1, T4 > T3, T6 > T5, T6 > T4, and T8 > T7, the lengths of the various inter-event 

intervals, or delays, are determined by the specific reaction rates that occur by chance in each 

cell under the prevailing environmental conditions. 

To facilitate exploration of the effects of timing variations, we simplify the protein 

concentration profiles as shown in Figure 5.5 so that they are either ”low” (under the thresholds 

of downstream sites of action) or ”high” (above the thresholds of downstream sites of action) 

because as described previously, other than time and direction of traversing the threshold region, 

details of the temporal profile of these variables are not significant to the operation of the circuit. 

This yields a discrete logic abstraction of the signaling and the time points that identify the 

timing of the transitions between the two states (e.g., T5 and T6 in Fig. 3A). 

Other events can also be characterized as binary signals or finite state machines with 

discrete stages. For example in Figure 5.5, the cell changes from not-compartmentalized to 

compartmentalized at T1, and the dnaA promoter changes from methylated to hemimethylated at 

T4. This simplification of the cell cycle control circuit by using discrete signal levels with 

discrete transition timing produces an abstraction of the biological circuit equivalent to an 

asynchronous sequential digital circuit – a network of logic elements and simple state machines 

with variable delays. Within this abstraction, it is only necessary to examine each distinctive 

ordering of events to determine whether the circuit will function correctly. Following electrical 

circuit analysis procedures for similar problems, we use a software model checking tool to search 

the immense space of all feasible orderings of the Ti’s for cases where the circuit might fail. This 

approach using a symbolic model checker {Clarke, 1986 #878; Burch, 1990 #796; Burch, 1990 

#887} is used to check for correct operation of concurrent systems such as electrical circuits and 

network protocols; we use it to check the cell cycle control circuit, which is also a concurrent 

system. The model checker we used, NuSMV {Cimatti, 2002 #890}, takes as input the logic 

description of the C. crescentus cell cycle model (created from the validated simulation model as 
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described above) and a specification of the limitations on ordering of transitions that must apply 

for a viable cell. The program checks all feasible orderings of the transition times and notifies the 

user of any event timing “hazards” where the specification would be violated. A detailed 

discussion on the implementation of the cell cycle regulation model compatible to NuSMV can 

be found in Appendix D and online scripts at 

http://www.stanford.edu/group/caulobacter/CellModel. 

 

 

Figure 5.5 Stalked cell cycle events affecting control circuit operation in the interval around cell 

separation. Graphs show protein concentration patterns. Gray bands: “Threshold” ranges relating 

to initiation of DNA replication. [CtrA] above the band represses initiation; below, it does not. 

The dotted CtrA line illustrates the binary signal abstraction used in the robustness analysis. 

Thus, T2 approximates the time when [CtrA] transitions from repressing to not-repressing 

initiation. Other Ti’s are times of other events. The robustness analysis examined the effect of all 

patterns of Ti orderings on cell cycle control. 

In the NuSMV input language, a system is described as a collection of state variables 

ranging over finite sets of discrete values representing states, along with rules for updating these 



 60 

variables as the system progresses through different states. For instance, a state variable is 

assigned to represent the state of chromosome replication, which can take on different discrete 

values indicating pre-replication, initiation of replication, and the middle of replication. A 

progression of states of the system through time is called a path and the system may be able to 

progress through many possible paths. In NuSMV, a current state may have many alternative 

successor states.  

A strict mathematical discussion of the model checking algorithms used by NuSMV is 

beyond the scope of this thesis {Cimatti, 2002 #890}. However, Figure 5.6 intuitively illustrates 

how model checking extracts the timing information from the discrete representation of the cell 

cycle and exhaustively examines the possible ordering of events to identify failure cases. As 

shown in Figure 5.6A, at time T0, the chromosome replication fork passes through and hemi-

methylates the dnaA promoter, causing the DnaA level to drop below its threshold at a later time 

T2. Meanwhile, GcrA is being synthesized and its level will rise above its threshold at time T1. 

The replication fork continues to advance after T0 and will pass the ctrA promoter at T3. In a 

normal wild-type simulation with nominal parameter values, T2 happens before T1 and T3, but 

when parameter variation is taken into consideration, any one of the three events at T1, T2, and T3 

could happen first after T0. To explore all three timing scenarios, which cover every possible 

parameter variation, symbolic model checking essentially construct a tree graph in the discrete 

state space (Figure 5.6B). From the root vertex corresponding to the discrete state variables at T0, 

three separate paths lead to three different states, each of which matches one of the scenarios. In 

this example, if T2 precedes T1 and T3, the cell cycle regulation enters a dead-end state because 

both DnaA and GcrA levels stay low, leaving no signals to activate CtrA. A regular simulation 

with set parameter values is equivalent to following one specific path in this tree graph and will 

never be able to identify a potential failure case such as T2. The tool then enters the node T1 and 

T3 separately to compute the next possible states and keep tracking of every single path until it 

either returns to the root T0, or gets stuck in a leaf (dead end) node or a local loop. The later two 

cases clearly indicate that there are potential hazards in the regulation system and the path 

leading to the hazard is reported by NuSMV.  
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Figure 5.6 A conceptual illustration of how symbolic model checking examines timing. (A) A 

cartoon depicting the events happening at the four time points: hemi-methylation of the dnaA 

promoter (T0), GcrA level rise to high (T1), DnaA level falls to low (T2), and hemi-methylation 

of the ctrA P1 promoter (T3). (B) A state transition table showing the three possible paths (red 

arrows) leading to the successor states from the instant state at T0. Each successor state (shown 

by a circled Ti) corresponds to a next event after T0. One of them (shaded T2) is a undesirable 

state with no regulators left to continue the cell cycle. The top row indicates the discrete levels of 

the regulators corresponding to the states and the left column indicates the position of the 

regulation fork. 

The path leading back to T0 does not guarantee successful completion of the cell cycle. A 

challenge in any method for assessing biological robustness is defining requirements for 

successful operation of the modeled system. For the C. crescentus cell cycle control, the key 

functionality of the control circuit is to ensure that actions that affect completion of the cell cycle 

-- cell growth, chromosome replication, asymmetric cell division, and so forth -- repeatedly 

occur in the proper order. This includes ordering of expression of the seven proteins in the model 

(Figure 3.1), switching of the CckA/ChpT phosphosignaling pathway, and activation of DNA 

replication followed by cell constriction, compartmentalization into nascent swarmer and stalked 

cell compartments, and cell division. Thus, we required that all feasible orderings of the event 

Ti’s the model system would successfully produce an unbounded succession of Stalked → 

DNAreplication → Compartmentalization → (Swarmer OR Stalked) states as occurs in the tree 

of descendent daughter cells of an initial swarmer cell. This criterion is written in computational 

tree logic (CTL) to cover all possible paths in the state space {Clarke, 1981 #884; Queille, 1982 

#885; Emerson, 1985 #896}. For the subset of cell cycle subsystems we model, and for the 

asynchronous logic abstraction of the model, satisfaction of this requirement is evidence that the 

cell cycle control is robust. 
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A hazard detected by the model checking can be a biological possibility that has acceptably 

low probability of occurrence, or it may represent a feature of the biological system that prevents 

the hazard from occurring, but is missing in the simulation model. 

5.5 Model checking results 

The model checking program exhaustively checked the enormous number of alternative possible 

Ti combinations, and only two potential hazards were identified. Considering that the discrete 

regulatory system model has about 400,000 possible discrete states and a far greater number of 

possible timing scenarios, this result suggested that overall design of the cell cycle control circuit 

has been optimized by evolutionary selection to operate over a wide range of nutrient conditions 

and to be resistant to stochastic variations in time to complete various subsystem operations or 

signaling pathways. Further, it is evidence that conclusions relating to operation of the cell cycle 

control based on the simulation model do not depend on the exact parameter values for the 

simulation.  

Biological implications of NuSMV identified timing hazards  

Hazard scenarios identified by the NuSMV timing analysis could be either (i) actual hazards in 

the Caulobacter cell cycle control that are so unlikely to occur that they do not affect fitness, or 

(ii) indicative of mechanisms that are in the cell’s control system, but missing in the model. Two 

cases where the timing analysis led to refinements in the model are: The two hazards identified 

both relate to repressive feedback signals (GcrA repression of DnaB expression and CtrA 

repression of FtsZ expression, see Figure 3.1). In both of these cases, the hazards are caused by 

anomalously slow synthesis of the protein coupled with anomalously fast synthesis of the 

repressive feedback signal, which blocks cell cycle progression. Both cases appear to have 

relatively low probability of occurring, and there also may be undiscovered aspects of the 

regulation of both DnaB and FtsZ that eliminate the hazard. 

Methylation_based control 

We also examined the incremental contribution of the methylation-based control of the ctrA P1 

promoter to robustness of the cell cycle control. When we simulated an in silico mutant where 
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full-methylation does not repress the ctrA P1 promoter, the cell cycle operated correctly, 

however, applying the model checking program to this in silico mutant identified an additional 

hazard: in this mutant, CtrA could to be synthesized too early, leading to premature repression of 

FtsZ and thus failure of cytokinesis. This suggests that although this methylation-based 

mechanism is not essential, it contributes to fitness of the organism by assuring correct operation 

of the cell cycle in the fraction of cells where stochastic variation produces anomalously early 

expression of CtrA.  

The DNA methylation-based control of dnaA transcription also contributes to robustness of 

cell cycle control by reducing its expression during DNA replication so that the likelihood of 

over-initiation of replication is reduced. However, the methylation-based repression of dnaA is 

not complete, so that some expression remains {Collier, 2007 #784}. The remaining expression 

was initially regarded as an undesirable trait but too insignificant to play any functional role in 

cell cycle regulation. Moreover, the reported basal expression was suspected to be a 

measurement artifact having arisen from the loss of synchrony in the cell population and the 

wild-type simulation generated indistinguishable results with or without the remaining basal 

expression in the hybrid system model.  

The robustness analysis revealed that the remaining basal expression of the methylation-

based control plays an important role in cell cycle regulation by avoiding a failure situation 

analogous to a class of timing hazard called glitch disappearance in electrical circuit design 

(Figure 5.7A, Figure 5.7B). With nominal kinetic parameter values, there are usually enough 

GcrA molecules in the cell to activate the ctrA P1 promoter when it gets hemi-methylated 

(Figure 5.7C) during chromosome replication, but unusually slow DNA replication or fast DnaA 

degradation could give rise to a situation where GcrA is depleted prematurely before hemi-

methylation of the ctrA P1 promoter (Figure 5.7D). Then, CtrA would not re-accumulate in 

predivisional cells to activate the synthesis of FtsQA, and cell constriction would not occur.  
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Figure 5.7 A hazard identified by the robustness analysis of a cell cycle model without remaining 

basal expression of the methyaltion-based control. (A) The gcrA promoter is activated by DnaA 

and repressed by CtrA~P. (B) A logic gate representation of the promoter. The state transition 

table shows that GcrA signal only temporarily asserts, forming a pulse or a glitch. (C) A 

simulation with normal parameter values shows enough GcrA to activate ctrA transcription. (D) 

A simulation with faster DnaA proteolysis confirms the identified hazard by showing that a 

resulting weaker GcrA pulse causes GcrA to be depleted before activating the hemi-methylated 

ctrA P1 promoter. The hazard has also been confirmed by a simulation with slower DNA 

replication (not shown). 

Symbolic model checking discovered that the low-level synthesis of DnaA by the dnaA 

basal expression, however, can restart GcrA synthesis and, in turn, CtrA synthesis to rescue the 

cell (Figure 5.8). Mutant strains mimicking the identified failure situation in vivo were still able 

to replicate and divide with a defective phenotype of elongated cells (Figure 5.8A, Figure 5.8B) 

{Collier, 2007 #784}, because it takes extra time (thus extra growth for the cell before division) 

for the basal expression to accumulate enough DnaA to activate GcrA and CtrA to rescue the cell 

cycle from this otherwise deadly hazard (Figure 5.8C, Figure 5.8D). Follow up in silico mutant 

simulation with the remaining basal expression confirmed the experimental observation. So in 

this case, rather than an undesirable trait or a measurement artifact, the “leaky” expression from 

a supposedly OFF methylation-based control is actually an evolved design feature to prepare the 

biological circuit for contingencies.  
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Figure 5.8 Remaining basal expression of the methylation-based control keeps cell cycle 

regulation robust. (A) Western blots of the three master regulators measured from three in vivo 

strains. The column marked titled WT is the wild-type strain, Δ is a dnaA depletion strain, and 

UM is a strain that keeps the methylation-based control OFF by preventing methylation of the 

promoter. As a control, the dnaA depletion strain (Δ) essentially removes the remaining basal 

expression and the western blots show that the synthesis of the master regulators is completely 

stopped. The remaining basal expression of dnaA in the UM strain still allows a low level of 

synthesis as shown by the UM column. (B) Microscopic cell images of the three strains. WT 

shows the wild-type cells, Δ shows the dnaA depletion strain which has stopped dividing and 

become filamentous, and UM shows elongated but still dividing cells, confirming the western 

blots in (A) that the remaining basal expression circumvents the hazard. (C) A schematic of the 

dnaA and gcrA promoter. Remaining expression from the OFF methylation-based control allows 

accumulation of DnaA and GcrA. (D) An in silico mutant simulation of UM showing how the 

remaining basal expression of dnaA allow accumulation of GcrA and, in turn, CtrA. 

Halting and restarting the cell cycle. 

The DnaA protein is strategically located in the circuit to simultaneously activate DNA 

replication and the GcrA-CtrA-CcrM pathway at the beginning of each cell cycle (Figs. 1C, S1) 

{Hottes, 2005 #782; Gorbatyuk, 2001 #168; Collier, 2006 #783}. Elimination of DnaA halts the 

cell cycle {Gorbatyuk, 2001 #168}, and control of DnaA stability is a mechanism used to halt 

the C. crescentus cell cycle in response to stress {Gorbatyuk, 2005 #754}. When C. crescentus 

cells are starved for carbon or nitrogen, DnaA is rapidly proteolyzed, and relief of the starvation 

rapidly restabilizes DnaA {Gorbatyuk, 2005 #754}. We used model checking to assess whether 

this DnaA stability-dependent method of halting and restarting the cell cycle is robust by adding 
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an additional switch in the model to modulate DnaA stability. This analysis showed that the cell 

cycle stops and restarts correctly regardless of when DnaA stability changes during the cell cycle. 

In this chapter, formal verification using symbolic model checking has demonstrated the 

robustness of the Caulobacter cell cycle regulation, which leverages various mechanisms to 

complete cell cycle division under unusual or altering conditions. The hazards identified in the 

wild type and mutant models provided biological insights into the robustness property of the 

regulation system, especially the role of methylation-based control of promoters of master 

regulators.  

Furthermore, the roles of the various pathways in the regulatory network can be categorized by 

examining their corresponding in silico depletion mutant using both hybrid simulation and 

symbolic model checking. If a depletion mutant is unable to complete its cell cycle in the hybrid 

simulation, its corresponding pathway must be essential to the organism. On the other hand, if no 

cell cycle defects are observed in the hybrid simulation, but the deletion mutant gives rise to new 

hazards in symbolic model checking, the corresponding pathway must contribute to the 

robustness of the cell cycle even though it is not essential. Moreover, if the depletion is neither 

essential nor contributive to robustness, but results in a lengthier cell cycle, the corresponding 

pathway must be responsible of enhancing the efficiency of the regulation system, thus 

improving the fitness of the organism. This exercise helps us understand the structure of the 

regulatory network from the design perspective. For example, the methylation based promoter 

controls have been shown to be a robustness mechanism, while some of the regulated proteolysis 

mainly help shorten the cell cycle. 

In addition to helping answer many of the questions about the Caulobacter cell cycle, our 

approach also opened new doors to further exploration. The next chapter will recapitulate the 

novel aspects of our approach as well as describe potential new research directions. 
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Chapter 6  
 

Summary and discussion 

Caulobacter cell cycle is regulated by a genetic circuit of master regulators which is 

synchronized to progression of lengthy cell processes through feedback mechanisms such as 

methylation-based promoter control and phosho-signal pathway. It is still an ongoing process 

trying to reverse engineer the Caulobacter cell cycle regulation system, but a combination of 

simulation using hybrid system control model and robustness analysis using symbolic model 

checking presented in this work has greatly enhanced our understanding of the underlying 

principles of this biological system. Modeling cell cycle control as a hybrid system allowed us to 

deal with different levels of abstraction to incorporate pathways and cell processes with only 

incomplete knowledge. A higher level discrete representation of the simulation model was 

developed for symbolic model checking methods to fully assess the impact of parameter 

variation on the modeled cell cycle control. With new experimental evidence emerging, constant 

update and expansion is anticipated for the model to make more detailed predictions.  

6.1 Conclusion 

Mimicking the in vivo control architecture of Caulobacter cell cycle regulation, the hybrid 

system model has been validated by experimental measurements, including western blots, 

Micorarray, and fluorescent microscopic images, of wild-type and various mutant strains. The 

simulation confirms that non-transcriptional feedback mechanisms such as metheylation-based 
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control, phospho-signal pathway, and regulated proteolysis are critical for synchronizing the 

cascade of master regulators to the lengthy cell cycle processes in a “just-in-time” way.  

Only included as an abstract binary signal in the simulation model, the phospho-signal 

pathway is a critical switch for turning on and off CtrA and is an active research area where 

multiple kinases and phosphatases including CckA, DivK, DivJ, PleC and ChpT have been 

identified {Jacobs, 1999 #248; Jacobs, 2001 #174; Iniesta, 2006 #785; Quon, 1996 #329; Biondi, 

2006 #786}. However, the system level simulation points to two missing pieces of information in 

the current understanding which are critical for solving the puzzle from the perspective of top 

level control: (i) which factor triggers the phospho-pathway to unphosphorylate and proteolyze 

CtrA at swarmer-to-stalked transition; (ii) which factor triggers the pathway to re-localize CckA 

and phosphorylate CtrA in pre-division cells. The answers to these two questions will have many 

implications regarding the timing and robustness of the regulation scheme. 

Phosphorylation and proteolysis of CtrA originate from the same pathway and were shown 

by in silico and in vivo mutants to be redundant processes, without either of which cells are still 

able to divide. The redundancy, however, provide two advantages for the regulation: robustness 

and fitness. Perturbation to either one of them does not stop cell cycle progression while 

combination of the two accelerates the progression by making the CckA-CtrA switch more 

efficient. 

With the exception of CtrA, in the model the regulated proteolysis of the other three master 

regulators, DnaA, GcrA, and CcrM are currently activated by an abstract signal indicating one of 

the three cell cycle stages: swarmer, stalked, and pre-division, because they are based on half-

live measurements in different cell cycle stages. A more realistic model should include the actual 

protein regulators that trigger the molecular proteolysis machineries such as ClpXP and Lon to 

degrade the master regulators. The combination of simulation results with Microarray 

measurements should provide some clues to these regulators because their expression is 

supposed to coincide with transition into a new cell cycle stage. Nevertheless, subsequent 

robustness analysis showed that the proteolysis is not essential to cell cycle because the control is 

insensitive to their timing. We postulate that they are for fitness reasons -- accelerate cell cycle 

progression by minimizing unnecessary “wait” time.  
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A comprehensive robustness analysis using symbolic model checking exhaustively searched 

the entire state space of the model and showed that the top level control of Caulobacter cell 

cycle regulation is extremely robust. Both identified hazards correspond to highly unlikely 

situations which might still be compensated by mechanisms in vivo not yet included in the model. 

A careful examination of the regulation system ensures that no properties of interest were lost 

regarding dynamic operation when an equivalent asynchronous discrete representation was 

constructed based on the hybrid system model for model checking. Three aspects of cell cycle 

regulation has enabled this discrete abstraction with timing: (i) The sigmoidal shape of the Hill 

function approximation of regulator expression levels ensures the output of any cascaded signal 

pathways always settles into one of the saturation (discrete) regions in the presence of noice. (ii) 

Over-expression and proteolysis guarantees that regulator levels eventually settles above or 

below their respective thresholds for activating downstream regulators and the final outcome of 

the cell cycle regulation is discrete with finite number of states.. 

Analysis of in silico mutants further revealed the important role played by methylation-

based control of the promoters. A novel revelation was that the remaining basal expression of 

methylation-based control serves as a “time out” control for contingency by re-accumulating 

necessary master regulators when cell cycle inadvertently enters a potential hazard. Robust 

analysis also verified that Caulobacter cell cycle regulation could react to stress and starvation 

conditions any time during the cell cycle by starting and halting the control circuit completely 

hazard free. This capability is probably crucial for Caulobacter cells to survive in their natural 

habitat where nutrients are scarce. 

6.2 Discussion and future work 

The current model only contains ordinary differential equations to model reactions in respect to 

time. However, polar localization of kinases and proteolysis machineries as well as 

compartmentalization of the inner membrane has a spatial component to it in addition to time. 

For instance, there has been hypothesis that the kinase localized at the swarmer pole and the 

phosphatase localized at the stalked pole work synergistically to form a rapid bi-stable switch, 

and compartmentalization tips the balance towards opposite directions in the swarmer and the 

stalked compartments. To model these diffusion processes correctly, partial differential equations 
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could be used to take concentration gradient within the cell into consideration. Since diffusion is 

generally much faster than protein synthesis, the more detailed partial differential equations with 

finer simulation time step are not expected to topple, but rather complement, any conclusions 

drawn from the current model which treat them as abstract binary signals. These additions could 

demonstrate the scalability of the hybrid system model. 

Asynchronous circuits are usually more challenging to design than synchronous circuits 

because without a synchronization clock it is very difficult to prevent timing hazards from 

happening. However, asynchronous circuits only respond when necessary, make them more 

power efficient, which is an important criteria for biological circuits. To avoid timing hazards, 

asynchronous designers often follow certain design principles to minimize such risks, and 

fundamental mode asynchronous state machines (FMASM) is one of the major design 

approaches {McClusky, 1986 #809}. In an FMASM, inputs into a state machine could only 

changes after the state machine has settled into a stable state. This technique greatly reduces the 

number of paths in the design space and simplifies the design by avoiding potential hazardous 

states. A close examination of Caulobacter cell cycle regulation suggests that its “design” 

features resembles an FMASM because the regulator levels settle and are held steady until a next 

event triggers one of the feedback mechanisms. So far all evidence has supported this 

observation, but we still need to understand the missing pieces such as the source for swarmer-

to-stalked transition and CckA relocalization before a conclusion can be reached. 

So far we have mainly checked robustness in a narrow sense: timing robustness of the 

control circuit. However, to be robust sometimes also means to be versatile to dramatic 

environmental changes, where a regulation system has to resort to additional circuitry and switch 

on/off entire subsystems for alternative strategies. Halting and re-starting cell cycle under stress 

or starvation is one example. It has been well documented that different modules of genes get 

turned on when cells live under different kinds of stress conditions or food sources, some may 

involve small non-coding RNAs {Landt, 2008 #891}. It will be interesting to develop analysis 

methods to understand how the whole design space is partitioned so that the control circuit works 

robustly within each partition, but when parameter variation becomes significant enough, the 

system will switch to a different mode of operation. 
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As mentioned previously, Caulobacter cell cycle regulation is found to be robust and does 

not depend on the regulated proteolysis of some of the master regulators. On the other hand, 

mutant strains without these mechanisms will surely lose to wild-type strains in a competition 

test because the resulting prolonged cell cycle duration. Hence efficiency is also crucial to fitness 

of a species. Combination of simulation and symbolic model checking has helped us to discern 

the three layers of cell cycle regulation: essential pathways, mechanisms for robustness, and 

apparatus for efficiency.  

From a design perspective, robustness is often a tradeoff that is associated with a cost. In 

electrical circuits, additional circuitry means extra area and power consumption. For a biological 

circuit, what are the extra costs for an additional pathway or mechanism that makes the 

regulation more robust or more efficient? First, there is energy cost, because it consumes energy 

to express genes, synthesize and proteolyze proteins. In the case of regulated proteolysis of the 

master regulators, the cell has to weigh the benefit of the faster growth rate against the higher 

energy consumption. It makes sense in such circumstances because nutrients are usually 

available when a cell decides to divide, so the extra energy consumption is a small price to pay 

for a cell to divide as fast as possible against its competitors before food runs out. Secondly, 

there is storage cost, because the cell has to spend extra energy and time to copy and maintain 

additional genomic information for these functionalities. Nevertheless, given the length of a 

typical genome, it is usually not a significant price to pay for enhancing survivability or 

competitiveness, as shown by the prevalence of horizontal gene transfer between 

microorganisms, which provides cells with the building blocks to improve functionalities {Price, 

2008 #892}. A counter example may be seen in organisms living in highly stable, predictable or 

specialized environment where such diversity may not be necessary. Lastly, there is opportunity 

cost, since these proteins could be rewired to form other functional units, which has been shown 

to happen frequently during evolution {Price, 2007 #893}. Robustness is only one aspect of a 

competitive biological organism, which also has to be efficient and versatile to take full 

advantage of the environment. So evolution pressure indeed behaves like an architect of an 

engineering system, constantly weighing the various tradeoffs against a customer specification 

and driving the system to be optimal. A more comprehensive analysis that takes into account all 

the design features of a biological system would require a further expansion of the system model 

as well as an enrichment of the current analytical methods. 
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Appendix A  

 

Regulator Models and Parameters 

The online site (http://www.stanford.edu/group/caulobacter/CellModel) includes the detailed and 

commented graphic implementation of the hybrid system model in Simulink and Stateflow. A 

tutorial is also provided on the same site for readers who want to understand and simulate the 

model. The tutorial consists of four sections: introduction, description of the continuous 

regulatory network model, description of the discreet cell function model, and scripts for 

automated simulation. 

A.1 ODE models of master regulators 

In the Simulink subsystem approximate kinetic models in the form of ODEs are used to 

predict the changing intracellular concentration of the regulatory proteins and mRNAs. Table 

A.1 shows the models within the simulation governing regulation of protein synthesis, 

proteolysis and activation {Rosenfeld, 2005 #811}. Stochastic effects are neglected in the single 

cell model as noted above. The level of promoter activation (as a fraction of the maximum 

activation) is modeled using functions based on a Hill function approach. Protein production 

(nM/second) is modeled by a multiplicative constant representing the maximum synthesis rate, 

times the fractional promoter activation. This is equivalent to assuming a constant average rate of 

protein production per mRNA. The effects of promoter methylation states are included in the 

promoter activation models, as are the cases where there are multiple promoters or multiple 
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regulatory ligands. Instantaneous values for the binary switch parameters in the ODEs (e.g., the 

methylation state of a promoter) are determined by the Stateflow subsystem. Proteolysis is 

modeled by an exponential decay function with a half-life parameter. The timing of initiation of 

CtrA proteolysis is determined by the Stateflow controlled phosphosignaling pathway originating 

at CckA. In other cases where there is experimental data for different half-lives at different cell 

cycle stages, the respective half-life parameters are set to the observed values (by input from the 

Stateflow subsystem) as the cell cycle progresses. 

In the model equations in Table A.1, protein and mRNA rates are in nM/sec. Where 

necessary conversions between molecules/sec per cell and nM/sec per cell were made using  

M molecules/sec = 
g avg

M

A V
nM/sec  

where Ag is Avagodro’s number in nmol
-1

 and Vavg  is the average value over the cell cycle of the 

Caulobacter cell volume in liters. Since we simulate the molecular concentrations instead of the 

number of molecules/cell at the time of compartmentalization, concentrations of cytoplasmic 

proteins are initially equivalent in each of the new compartments.  

Table A.1 Models used in the Simulink subsystem for protein production and activation levels 
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Where n is the Hill coefficient, [Cd] is the concentration of the 

transcriptional factor that yields half-maximal expression, [Ct] is 
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the concentration of the transcriptional factor, β is the maximal 

protein production rate , V is the volume of a C. crescentus  cell. 

β/ V for a specific gene remains approximately constant 

throughout the cell cycle because the effect of cell growth on 

concentrations is compensated by the increase of gene copy 

numbers.  

In the simulation model, n is a unit-less number, [Cd] and [Ct] are 

expressed in nM (nanomolar), β/V is expressed in nM/s 

(nanomolar per second).  
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Where hl is the half-life of the protein in min, and λ is the 

degradation rate constant in min
-1
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Specific forms for individual genes. 
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We estimate from {Reisenauer, 2002 #104} that expression for 

the ctrA P1 promoter is repressed by about 7-fold when the 

promoter is fully-methylated compared to when it is hemi-

methylated. 

  is the relative basal expression level of a fully-methylated 

(OFF) ctrA P1 promoter compared to that of a hemi-methylated 

(ON) ctrA P1 promoter. mctrA is the methylation state of the ctrA 
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P1 promoter. mctrA=0 when it is fully-methylated and the maximal 

ctrA P1 expression level is ηβ1. mctrA=1 when it is hemi-

methylated and the maximal ctrA P1 expression level is β1. β2 is 

the maximal expression level of the ctrA P2.  

clpXP=1 when the clpXP proteolysis machinery is active and  

clpXP=0 when it is inactive. The m and clpXP binary switches are 

set by inputs from Stateflow. The infinitesimal value ε is added to 

avoid divide-by-zero errors in the numerical integration routines. 

Since we assume that the speed of phosphorylation is far greater 

than the speed of protein synthesis when the phosphosignal is on, 

we use a linear equation to approximate the Michaelis-Menten 

rate equation for phosphorylation: 

1 32

[ ~ ]
[ ] [ ] [ ~ ]

d CtrA P
k cckA CtrA k CtrA k CtrA P

dt
      

k1 is the phosphorylation rate of CtrA with the CckA 

phosphosignal present. The cckA binary switch from Stateflow is 

set to 1 when the CckA phosphosignal is active, and 0 when the 

CckA phosphosignal is inactive. k2 is the phosphorylation rate of 

CtrA without the CckA phosphosignal (presumably very low). k3 

is the de-phosphorylation rate of CtrA~P.   
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λsw is decided by the half-life of GcrA in swarmer cells, which is 

shorter than the half-life of GcrA in the stalked and pre-division 

cell stages. During the simulation, while the cell is in the swarmer 

stage, the binary variable isSW from Stateflow is set to 1. 
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Expression of dnaA is repressed by about 3-fold when the dnaA 

promoter is hemi-methylated {Collier, 2007 #784} compared to 

fully-methylated. 

In the simulation model, κ is the relative expression of a hemi-

methylated (OFF) dnaA promoter compared to that of a fully-

methylated (ON) dnaA  promoter. mdnaA is the methylation state of 

the dnaA promoter. When mdnaA is 0, signifying that dnaA is fully-

methylated, the maximal expression level is β. If mdnaA is 1, or 

dnaA is hemi-methylated, the maximal expression level is κβ. 

Given the that there is one putative DnaA binding site in the 

sequence upstream of the dnaA coding sequence, it has been 

hypothesized that dnaA transcription is auto-regulated by DnaA 

{Zweiger, 1994 #374}, although this hypothesis does not affect 

the simulation outcome in any significant way. DnaA synthesis is 

also repressed by GcrA {Holtzendorff, 2004 #33}, probably by a 

post-transcriptional mechanism. We have approximated this effect 

with a Hill function. 

DnaA proteolysis is also cell cycle regulated {Gorbatyuk, 2001 

#168}. The proteolysis rate is set by the cell cycle stage 

parameters, isSW and isST. 
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There is a second ftsA only promoter which is relatively weak and 

ignored by the model {Sackett, 1998 #263}. 
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The ftsZ promoter is activated by DnaA {Hottes, 2005 #782} and 

repressed by CtrA~P {Kelly, 1998 #267}. 

FtsZ has a shorter half-life in the pre-divisional stage which is 

modeled by an added degradation term activated only in the 

predivisional cell stage, when isPD is set to 1 by the Stateflow 

cell stage monitor. 
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The dnaB promoter is activated by DnaA {Hottes, 2005 #782} 

and repressed by GcrA {Holtzendorff, 2004 #33}. 

We assume that the effects of growth in the cell volume can be neglected. Cell growth 

causes continuous dilution of the protein concentration and is thus computationally similar to a 

protein degradation term with half-life equivalent to the cell generation time (assumed to be 135 

min). Since regulatory protein half-lives are observed to be much less than the generation time, 

this dilution effect is negligible. In the case of protein synthesis, a gene producing a constant 

average rate of molecules/second would produce twice the incremental protein concentration/sec 

(nM/sec) in the small initial cell compared to the rate per gene in the larger cell near cell 

division. However, over the course of the cell cycle, each gene is duplicated so that the gene 
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dosage is doubled and thus the rate of protein production from activated genes is also doubled 

compensating for the larger cell volume.  

A.2 Parameters 

The cell cycle simulation model has a total of 62 parameters. Among them, 29 parameters have 

experimentally measured values (Table A.2A), 25 parameters have estimated nominal values 

(Table A.2B), and 9 parameters are used for in-silico mutant simulations. The robustness 

analysis as described in the main text found that the cell cycle control circuit design will execute 

the cell cycle correctly over wide ranges of parameter values.  

We use data from {Keiler, 2003 #91} scaled to a 135 min swarmer cell generation time for 

the timing of the swarmer cell stage, and chromosome replication. With the exception of CtrA 

and CcrM, in vivo measurements of the number of protein molecules in the C. crescentus cell 

have not been published, and in vitro studies to measure ligand-promoter binding kinetics are 

only available for a few CtrA binding sites {Siam, 2003 #61; Quon, 1998 #274}. Accordingly, 

we normalize protein concentrations (from quantified Western blots) to the maximum 

concentration, and we assume that all promoters are activated at a small fraction of the peak level 

of the activating ligand(s). We used a parameterized Hill-function type model of gene activation 

that yields good agreement between observed (normalized) mRNA temporal profiles from 

microarray assays and predicted values from the simulation. Half-lives of DnaA, GcrA, and CtrA 

have been experimentally determined in swarmer cells and stalked cells {Collier, 2006 #783; 

Domian, 1997 #290; Gorbatyuk, 2005 #754}, and the active regulation of CtrA proteolysis as a 

function of the cell cycle has been extensively studied {McGrath, 2006 #859; Iniesta, 2006 

#785}. The relatively small dilution effects of cell growth are assumed to be included in the 

experimental protein half-life data. Pathways controlling DnaA and GcrA stability have not been 

characterized, so we modeled the observed dynamic control of DnaA and GcrA stability by 

setting their half-lives to the reported value at each stage in the cell cycle. Time-resolved 

measurements of protein phosphorylation states are possible, but with poor resolution, and in 

vivo kinetics of C. crescentus phosphorylation reactions are not available. We assume that the 

phosphosignaling reactions are fast enough that phosphorylation-related switching is much faster 
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than switching by genetic mechanisms or protein degradation. The rationale for choice of all 

parameter values is in Section C. 

Naming conventions for Hill function parameters are as follows: 

The default value of Hill coefficient n for all promoters is denoted by hcDef (In the current 

model, all the promoters share the same default Hill coefficient value). The default concentration 

of a transcriptional factor ([Cd]) that yields half-maximal expression is denoted by cHalfDef. The 

concentration of CtrA~P that yields half-maximal expression in the CtrA~P-regulated genes is 

different from the default value cHalfDef and is denoted by cHalfCtrA. The maximum protein 

synthesis rate divided by the cell volume, β/V, is converted to nanomolar per second (nM/s) and 

denoted by pX for protein X. The half-life of protein X is denoted by hlX. The initial 

concentration of protein X is denoted by cX0. 

For comparison to experimental values, estimated protein concentration profiles are 

normalized to a peak value of one, and experimental values are normalized the same way. 

Ligand activation levels at downstream binding sites are assumed to be a small fraction of the 

peak concentration of that ligand. 

Concentration vs. number of protein molecules per cell 

In the model, we chose to simulate the concentration levels rather than the number of protein 

molecules per cell. The number of protein molecules per cell is converted to the protein 

concentration, using:  

[ ]
g avg

M
C

A V



  (A.1) 

where [C] is the protein concentration in nM (nmol/L), M is protein molecules per cell, Ag is the 

Avogadro’s number (6.022x10
14

 nmol
-1

), and Vavg is the average volume over a cell cycle of a C. 

crescentus cell in liters. 

During cell cycle progression, the C. crescentus cell grows larger. In the simulation, we used 

the average volume of the C. crescentus cell to calculate the molecular concentrations. The 

doubling of the cell volume over the cell cycle is compensated by the doubling of gene copy 
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number as well by DNA replication. The dilution of protein concentration by growth is 

comparable to a 135 min half life (for our assumed swarmer cell cycle time) which is well longer 

than the regulatory protein half lives and thus can be neglected. 

During cell cycle progression, the volume of a C. crescentus cell grows from around 0.5 μm
3
 

in early swarmer stage to around 1.2 μm
3
 in pre-divisional stage. We take 0.75 μm

3
 as Vavg. 

Therefore, 
14 16

[ ] 2.2  (nM)
6.022 10 7.5 10g avg

M M
C M

A V 
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   
 (A.2) 

 

 

Notes for Table A.2B -- parameters with estimated values 

Measurements of these parameters are currently unavailable so we estimated nominal values. 

The simulation predictions are not sensitive to most of these parameters for reasons outlined 

below. 

These parameters fall into six categories. 

1. Initial regulatory protein concentrations 

The cell cycle simulation is relatively insensitive to these initial levels, because after one 

or two simulated cell cycles the concentrations in swarmer cells stabilize with other values 

which are determined by other parameters in the model. 

2. Protein concentration ranges of action (or thresholds) that control cell functions such as 

DNA replication, cytokinesis and DNA methylation. 

Many cell functions are initiated when a regulatory protein is synthesized and its level 

rises about a range of action at a downstream binding site. We selected the thresholds to be 

well below the peak levels (assumed to be the usual situation for bacterial genetic 

regulatory links). Change in an assumed threshold value will change the time of a 

regulatory reaction. The sensitivity of cell cycle outcome to timing variations was explored 

and shown to be low as part of the robustness analysis as described in the main text.  

3. Protein synthesis rates from an activated gene 
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The protein synthesis rate depends on both the rate of transcript initiation and the average 

number of proteins produced from each mRNA. Both these rates vary in both average 

values for different genes and stochastically between cells in a population at any given 

instant. We used nominal synthesis rates chosen to be representative for bacterial 

promoters.  Differences in actual values would affect delays in downstream gene 

activation or repression and the peak values of protein concentrations in the simulation. 

Since comparisons to experimental values are done by comparing the pattern of 

normalized predicted and experimental values, the peak concentration values are not 

significant. Doubling of gene dosage and offsetting dilution by cell growth are also factors 

to be considered. Our confidence in this approach was reinforced by the agreement 

between the simulation predictions of patterns of mRNA and protein concentrations with 

experimental values (Fig. 2 and http://www.stanford.edu/group/caulobacter/CellModel). 

Further, the robustness analysis showed that the cell cycle circuit design has evolved by 

selection to be insensitive to variations in signal pathway timing. 

4. Hill function parameters 

We used the same concentration for half-maximal expression for all proteins except for 

CtrA as a transcriptional factor, for which we used a slightly higher concentration for half-

maximal expression, based on the measured concentration of CtrA in the C. crescentus cell. 

We used a Hill coefficient equal to 2 for all protein regulators. 

5. Protein half-lives 

The half-life of DnaB has not been experimentally measured. Furthermore, DnaB 

represents a collection of replication initiation proteins. As long as this half-life value is 

not extremely small, it has no effect on the simulation outcome. In other words, as long as 

DnaB or the other replication initiation proteins it represents are not degraded too rapidly 

during the initiation of chromosome replication (~ 5 minutes), the model is not sensitive to 

this value. 

6. Rate constants for phosphorylation of CtrA 

Phosphorylation is assumed to be fast relative to protein synthesis and degradation and 

thus to act as a rapid switch, so within this constraint the simulation is not sensitive to the 

specific phosphorylation rate parameters. 
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With the exception of CtrA and CcrM, in vivo measurements of the number of protein 

molecules in the C. crescentus cell have not been published, and in vitro studies to measure 

ligand-promoter binding kinetics are only available for a few CtrA binding sites {Siam, 2003 

#61; Quon, 1998 #274}. Accordingly, we normalize protein concentrations (from quantified 

Western blots) to the maximum concentration, and we assume that all promoters are activated at 

a small fraction of the peak level of the activating ligand(s). We used a parameterized Hill-

function type model of gene activation that yields good agreement between observed 

(normalized) mRNA temporal profiles from microarray assays and predicted values from the 

simulation (http://www.stanford.edu/group/caulobacter/CellModel). 

 

Table A2: Parameter values 

Table A.2.A Model parameters with experimentally measured values 

Symbol Parameter Value Units Source or rationale 

cCcrM0 Concentration of CcrM in 

swarmer cells 

0 nM {Stephens, 1996 #326} 

cCtrA0 Concentration of CtrA in 

swarmer cells 

20900 nM 9500 CtrA molecules are present in the 

swarmer cell {Quon, 1996 #329} or 

about 20900 nM. 

cFtsA0 Concentration of FtsA in 

swarmer cells 

0 nM {Martin, 2004 #17} 

cFtsZ0 Concentration of FtsZ in 

swarmer cells 

0 nM {Kelly, 1998 #267} 

cGcrA0 Concentration of GcrA in 

swarmer cells 

0 nM {Holtzendorff, 2004 #33} 

cMethylCcrM Concentration of CcrM during 

chromosome methylation  

6600 nM 3000 molecules in the late PD cell 

{Berdis, 1998 #268} or about 6600 nM.  

hlCcrMc CcrM half-life 15 min {Wright, 1996 #318} 

hlCtrAc CtrA half-life 52 min Measured in mixed population 

{McGrath, 2006 #859}. 

hlCtrAf CtrA half-life during 

proteolysis by ClpXP 

3 min CtrA half-life is less than 5 minutes in 

the stalked cell {Domian, 1997 #290} 

hlDnaA_sw DnaA half-life in the swarmer 

cell 

45 min {Gorbatyuk, 2005 #754} 

hlDnaAc DnaA half-life in the stalked 

cell 

100 min {Gorbatyuk, 2005 #754} 

hlDnaAc_starve DnaA half-life during 

starvation 

10 min The half-life of DnaA is 10 minutes 

during carbon starvation and 15 minutes 

during nitrogen starvation {Gorbatyuk, 

2005 #754}. 

hlFtsAc_st FtsA half-life in the stalked 

cell 

55 min {Martin, 2004 #17} 

hlFtsAc_sw FtsA half-life in the swarmer 13 min {Martin, 2004 #17} 
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cell 

hlFtsZc FtsZ half-life in the swarmer 

cell and the stalked cell 

80 min {Kelly, 1998 #267} 

hlFtsZc_pd FtsZ half-life in the pre-

divisional 

20 min {Kelly, 1998 #267} 

hlGcrAc_st GcrA half-life in the stalked 

cell 

42 min {Collier, 2006 #783} 

hlGcrAc_sw GcrA half-life in the swarmer 

cell 

10.5 min {Collier, 2006 #783} 

pctrAP1MethRatio The ratio of transcription rates 

between the fully-methylated 

and the hemi-methylated ctrA 

P1 promoter. 

0.15  {Reisenauer, 2002 #104} 

pdnaAMethRatio The ratio between the hemi-

methylated transcription rate 

and the fully-methylated 

transcription rate from the 

dnaA promoter. 

0.3  {Collier, 2007 #784} 

This ratio is used in the model to 

approximate the transcription rate of the 

hemi-methylated dnaA promoter. 

tcckA_reloc Time between the initiation of 

chromosome replication and 

CckA re-localization 

60 min {Iniesta, 2006 #785}   

CckA is relocalized approximately 80 

minutes into the cell cycle. The swarmer 

stage takes 20 so CckA relocalizes 60 

minutes into chromosome replication. 

tchro Time required for 

chromosome replication 

80 min {Keiler, 2003 #91} 

Scaled for a 135 minute cell cycle. 

tftzRing Time required for cytokinesis  30 min {Thanbichler, 2006 #894} 

tftzRingPinOff Time between the start of 

constriction and  

compartmentalization 

12 min {Judd, 2003 #69; Thanbichler, 2006 

#894} 

tMethylWindow Average time for the DNA to 

be methylated once CcrM 

concentration reaches 

cMethylCcrM 

10 min Since there is a 20 minute window 

{Berdis, 1998 #268} when DNA is 

being methylated by a high 

concentration of active CcrM molecules, 

we chose 10 minutes as the average time 

it takes for the chromosome to be 

methylated. 

 

tsw2st Duration of the swarmer stage 20 min {Keiler, 2003 #91} 

Scaled for a 135 minute cell cycle. 

zpctrA The relative location of the 

ctrA gene on the chromosome 

0.3  0 is the ori, and 1 is the terminus of the 

chromosome {Nierman, 2001 #177}. 

zpccrM The relative location of the 

ccrM gene on the 

chromosome 

0.25  0 is the ori, and 1 is the terminus of the 

chromosome {Nierman, 2001 #177}. 

zpdnaA The relative location of the 

dnaA gene on the 

chromosome 

0.1  0 is the ori, and 1 is the terminus of the 

chromosome {Nierman, 2001 #177}. 

 

Table A.2.B Model parameters with estimated values 

Symbol Parameter Value Units Source or rationale 
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cChroCtrA CtrA threshold level for 

initiating DNA replication   

110 nM There are 5 CtrA binding sites in the Cori. 

CtrA blocks DNA replication by binding to 

these sites {Quon, 1998 #274}. 50 CtrA 

molecules per cell are assumed to be adequate 

to ensure blocking, which translates into 110 

nM. 

cChroDnaA DnaA threshold level for 

initiating DNA replication   

440 nM DnaA is necessary for replisome assembly 

{Gorbatyuk, 2001 #168}. The simulation is 

not sensitive to this value as long as it is a 

small fraction of the maximum DnaA 

level.440 nM corresponds to 200 molecules 

per cell. 

cChroDnaB DnaB threshold for initiating 

DNA replication   

440 nM This concentration is equivalent to 200 

molecules per cell. 
 

cCtrAP0 Initial concentration of 

CtrA~P 

10450 nM This concentration is consistent with the 

observation that phosphorylation of CtrA is 

less active in the swarmer stage {Jacobs, 2003 

#84}. 

cCytoFtsQA FtsQA threshold for initiating 

cytokinesis 

660 nM This concentration is equivalent to 300 

molecules per cell. 

cDnaA0 Initial concentration of DnaA 2200 nM This concentration is equivalent to 1000 

molecules per cell. 

cDnaB0 Initial concentration of DnaB 2200 nM This concentration is equivalent to 1000 

molecules per cell. 

cHalfCtrA Concentration of CtrA~P that 

yields half-maximal 

expression of CtrA-regulated 

genes. 

1760 nM This concentration is equivalent to 800 

molecules per cell. 

cHalfDef Default level of 

transcriptional factors that 

yields half-maximal 

expression of target genes 

660 nM This concentration is equivalent to 300 

molecules per cell. 

cZringFtsZ Minimum level of FtsZ 

required for forming the FtsZ 

ring 

660 nM This concentration is equivalent to 300 

molecules per cell. 

hcDef Default Hill function 

coefficient 

2  This default value is assumed for all protein 

synthesis in the model, including CtrA. 

For future model development, promoter-

specific hill coefficient can be specified as 

hcX for protein X. 

hlCcrMc_sw CcrM half-life in the swarmer 

cell 

3 min The half-life of CcrM in Table 2A was 

measured in a mixed population. Western blot 

of CcrM shows that CcrM is fully depleted in 

the swarmer cell in a relatively short time, so 

the half-life of CcrM is estimated to be 3 

minutes in the swarmer cell. 

hlDnaAc_degrade DnaA half-life during 

chromosome replication 

initiation 

15 min The levels of DnaA decrease during the early 

stage of chromosome replication, as seen on 

Western blots of DnaA as a function of the 

cell cycle. 

hlDnaBc DnaB half-life 10 min DnaB in this model represents a collection of 

proteins that are responsible for initiating 

chromosome replication.  
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hlPhos_f_e Time for half of the CtrA 

molecules to be 

phosphorylated when the 

cckA signal is ON. 

0.1 min The value is chosen because phosphorylation 

reactions are much faster than transcription 

and degradation reactions. 

hlPhos_f_ne Time for half of the CtrA 

molecules to be 

phosphorylated when the 

cckA signal is OFF. 

150 min CtrA is not actively phosphorylated without 

the active kinase CckA. {Jacobs, 1999 #248} 

hlPhos_r_np Time for half of the CtrA~P 

molecules to become 

dephosphorylated without 

phosphatase present 

3 min We assume that CtrA gradually becomes 

inactive when the cckA signal is OFF. 

p1ctrA Maximum synthesis rate of 

CtrA from the ctrA P1 

promoter 

6.6 nM/s The maximum expression level of p2ctrA is 

roughly 3 times that of p1ctrA {Reisenauer, 

2002 #104}. 

P2ctrA Maximum synthesis rate of 

CtrA from the ctrA P2 

promoter 

19.8 nM/s The maximum expression level of p2ctrA is 

roughly 3 times that of p1ctrA {Reisenauer, 

2002 #104}. 

pccrM Maximum synthesis rate of 

CcrM from the ccrM promoter 

13.2 nM/s Estimated from western blots and {Berdis, 

1998 #268} 

pdnaA Maximum synthesis rate of 

DnaA from the dnaA 

promoter 

1.76 nM/s The absolute value does not affect simulation 

outcome after normalization. 

pdnaB Maximum synthesis rate of 

DnaB from the dnaB promoter  

1.1 nM/s The absolute value does not affect simulation 

outcome after normalization. 

pftsA Maximum synthesis rate of 

FtsA from the ftsQA promoter 

1.1 nM/s The absolute value does not affect simulation 

outcome after normalization. 

pftsZ Maximum synthesis rate of 

FtsZ from the ftsZ promoter  

1.1 nM/s The absolute value does not affect simulation 

outcome after normalization. 

pgcrA Maximum synthesis rate of 

GcrA from the gcrA promoter 

2.2 nM/s The absolute value does not affect simulation 

outcome after normalization. 
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Appendix B  

 

Simulated mRNA levels vs Microarray 

measurements 

We used a parameterized Hill-function type model of gene activation that yields good agreement 

between observed (normalized) mRNA temporal profiles from microarray assays and predicted 

values from the simulation. 

mRNA predictions versus observed 

This appendix provides a comparison of simulated mRNA levels versus time in the Caulobacter 

crescentus cell cycle and experimentally observed mRNA levels. All mRNA levels are 

normalized to a maximum value of 1. With the exception of the ctrA P1 and P2 promoters, mRNA 

levels for comparison are from microarray gene expression assays performed on periodic 

samples from synchronized Caulobacter cell {McGrath, 2007 #876}. We the mRNA levels from 

the microarray compare data to the promoter activation levels modeled by Hill functions in the 

simulation model. 

The ability to predict the distinctive molecular level progression of the cell cycle into the 

swarmer and stalk daughter cell compartments is a unique aspect of the simulation model. 

Experimental observations from synchronized populations (e.g., from microarray assays) are 

averages over many cells, and measurements later in the synchronized cell cycle always include 

signals from both swarmer and stalked daughter cells. Our single cell predictions of protein and 
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mRNA levels are made comparable to observations in synchronized cell populations by (i) 

averaging the predictions from the swarmer and stalked daughter cell branches of the simulation, 

and (ii) convolving the result with a Gaussian distribution with a 5 minute standard deviation.  

The Affymetrix microarray data for mRNA levels and the simulation predictions for mRNA 

levels are presented in the layout shown below in Figure B.1. 
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Figure B.1 Simulated mRNA levels vs. Microarray measurements (A) The layout for presenting 

the Affymetrix microarray data for mRNA levels and the simulation predictions for mRNA 

levels. (B) Comparison for gcrA expression (C) Comparison for dnaA expression (D) 

Comparison for ftsQA expression (E) Comparison for ftsZ expression (F) Comparison for ccrM 

expression (G) Comparison for total ctrA expression. The total ctrA mRNA level combines both 

the ctrA P1 and ctrA P2 expression. (I) Comparison for ctrA P1 activation level. The top-left plot 

shows the expression levels of ctrA P1 and ctrA P2 separately during the cell cycle using a pulse-

label immunoprecipitation assay of Beta-galactosidase {Reisenauer, 2002 #104}. (J) Comparison 

for ctrA P2 activation level.  

In the simulation model we assume that ccrM expression is completely switched off when 

enough CcrM molecules are synthesized and the chromosomes are remethylated. The actual 

mechanism for terminating ccrM expression is somewhat puzzling in that it is repressed when 

remethylated, and it would seem that this could happen immediately upon first production of 

CcrM. The higher levels of mRNA in the late cell seen in the microarray data probably is the 

result of loss of synchronization of the cell population in the late portion of the experiment. 
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Appendix C  

 

In silico mutant simulation 

This section describes in silico mutant strain simulations that emulate several laboratory C. 

crescentus mutant strains. The objectives of these comparisons were to validate the simulation 

model and to understand the reasons for the experimentally observed phenotypes in greater 

depth. Additional details of these simulations including graphs of the in silico simulation datasets 

are online at http://www.stanford.edu/group/caulobacter/CellModel. 

Table C.1 shows the four mutants that were simulated and the changes that were made to the 

wild-type model to create the mutant simulation. In each case, the simulation predicts (i) the 

concentration profile of each protein in the model in single cells as a function of cell cycle time 

when followed into either the swarmer or the stalked compartment of the predivisional cell, (ii) 

whether the cell can progress through each stage of the cell cycle, and (iii) whether DNA 

replication and cytokinesis occur normally.  

The simulation predictions for all cases checked were consistent with the in vivo 

phenotypes. Simulation results and their relation to the mutant strains in Table S4 are as follows:  

GcrA depletion strain: The simulation predicts that CtrA~P will not re-accumulate after the 

stalked cell stage, so FtsQA does not accumulate enough to initiate cytokinesis. As a result, the 

cell cycle arrests at the stalked cell stage in the simulation. The simulated levels of DnaA and 

CtrA suggest that DNA replication may still happen in these cells before cell death. Strain with 

constitutive accumulation of CcrM: The simulation predicts that the re-accumulation of CtrA in 
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pre-divisional cells will be delayed ~20 minutes, while DnaA will accumulate at high 

concentrations throughout the cell cycle. This suggests that over-initiation of DNA replication 

may take place in these mutant cells as is observed experimentally. As a consequence, the re-

accumulation of FtsQA and cytokinesis will be delayed. Strain with constitutive accumulation of 

CtrA~P: The simulation predicts that accumulating CtrA~P will block the initiation of DNA 

replication. Since cytokinesis is blocked when DNA replication is blocked, the cells will arrest 

after the stalked cell stage as observed in vivo. Strain with the ctrA gene moved next to the DNA 

replication terminus: The simulation predicts that CtrA re-accumulation in predivisional cells 

will be delayed by ~15 minutes as is observed. As a consequence, the synthesis of FtsQA and 

cytokinesis will also be delayed, so that the cell cycle will be slightly longer than for wild-type 

cells. The consistency between the predictions from simulation of the in silico mutants and the in 

vivo phenotypes (Table S4) provides additional evidence that our model corresponds to the 

biological cell cycle control circuitry. Moreover, the predictions from in silico mutant 

simulations provide quantitative insights into how the cell cycle is affected by a given mutation.  

The simulations are performed using the Matlab-based simulation of the wild-type C. 

crescentus cell cycle control system. We use the same differential equations, parameter values, 

and initial conditions as for wild-type cells, except for those parameters that are changed to 

simulate a mutation of interest. Time varying intracellular concentration levels are predicted for 

the eight different proteins included in the model.  
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Table C.1 mutant phenotypes 

Characteristics of 

mutant strains 

Genotypes of 

mutant 

strains 

Refs Phenotypes 

in vivo 

Parameters changed from 

wild-type parameters for 

mutant simulations 

Strain where GcrA 

can be depleted 

(LS3707) 

CB15N 

gcrA 

Pxyl::gcrA 

{Holt

zendo

rff, 

2004 

#33} 

The cell cycle is 

arrested at the stalked 

cell stage, and cells 

finally die in the 

absence of GcrA. 

Maximum GcrA synthesis rate 

from the gcrA promoter 

pgcrA=0nM/s 

Strain that 

accumulates CcrM 

constitutively 

(LS1) 

CB15N 

PlacZ::ccrM 

{Zwe

iger, 

1994 

#373} 

Cells are slightly 

elongated and 

accumulate 

supplementary copies 

of the chromosome. 

CcrM synthesis rate from a 

constitutive promoter added in 

the model 

pccrMoe=100nM/s 

Strain that can 

accumulate stable 

and constitutively 

active mutant CtrA 

proteins 

CB15N 

pXylX:: 

ctrAD51E3Ω  

{Dom

ian, 

1997 

#290} 

Cells do not initiate 

DNA replication and 

do not divide. Cells 

elongate before 

dying. 

Binary switch controlling the 

phosphorylation state of CtrA 

and the protein half-life of 

CtrA under active proteolysis 

by ClpX 

isAlwaysCtrAP=1 

hlCtrAf=200 min 

Strain where the 

ctrA gene is moved 

to a position next 

to the terminus of 

replication of the 

chromosome 

(LS3355) 

CB15N 

ctrA2::pAR3

58 

 

{Reis

enaue

r, 

2002 

#104} 

Cell size is 

sometimes irregular 

Relative location of the ctrA 

gene on the chromosome 

zpctrA=1 
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Figure C.1 shows the simulation results from the hybrid system model for a wild-type strain, 

which serves as a reference for the discussion of mutant simulations. 

 

Figure C.1 Wild-type simulation (A) Protein concentration tracking into the stalked compartment. 

(B) Outputs from Stateflow tracking into the stalked compartment. (C) Protein concentration 

tracking into the swarmer compartment. (D) Outputs from Stateflow tracking into the swarmer 

compartment. 

1. GcrA depletion strain 

C. crescentus mutant previously constructed 

A mutant strain expressing the gcrA gene conditionally was previously constructed 

{Holtzendorff, 2004 #33}. In this strain (gcrA Pxyl::gcrA), the gcrA gene was deleted from its 

native location on the chromosome, but the strain carries a copy of the gcrA gene under the 

control of the xylose-inducible Pxyl promoter. When a this mutant strain is grown in a media 
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containing glucose, which turns off the Pxyl promoter, all cells in the population are arrest as 

stalked cells, and finally die about 6 hours after the switch to glucose media. It was also observed 

that CtrA levels become very limiting before cell death, while DnaA levels increase, when GcrA 

is depleted. 

Changes of model parameters to simulate this mutant 

To simulate this mutant in silico, we used the same equations (Table A.1), the same initial 

protein concentrations, and the same parameters (Table A.2A and A.2B) as for wild-type cells, 

except that we changed the value of the “pgcrA” parameter (maximum GcrA synthesis rate from 

the gcrA promoter) in Table A.3C from 6.9 nM/s to 0 nM/s at time 0 min.  

Results of the mutant simulation 

In this mutant simulation, we observed that the levels of GcrA remain null at all times of the cell 

cycle, which prevents the activation of the ctrAP1 promoter by GcrA in stalked cells, and 

therefore the re-accumulation of CtrA after the stalked cell stage of the cell cycle. As a 

consequence, CtrA is not present in cells after the stalked cell stage so it cannot activate the 

synthesis of CcrM and FtsQA (Fig. C.2). The absence of FtsQA after the stalked cell stage 

blocks progression of cell constriction, so the cells cannot become pre-divisional cells. All these 

results are in agreement with the phenotype observed in vivo {Holtzendorff, 2004 #33} and the 

simulation helps explain, at a molecular level, how the cell cycle of a single cell is arrested at the 

stalked cell stage in vivo when GcrA is depleted. 

We also observed that the minimal levels of DnaA and DnaB during the mutant cell cycle 

are not as low as the wild-type cells, while the CtrA~P level is insignificant after 40 minutes into 

the simulation. Since the levels of DnaA and DnaB are over the minimal values required for 

DNA replication (“cChroDnaA” and “cChroDnaB” are above 1380nM), we predict that it could 

lead to over-initiation of DNA replication events in the arrested stalked cells. The model does not 

simulate such events, because of the assumption that no event of initiation of DNA replication 

could take place if CtrA cannot re-accumulate in cells after the stalked cell stage. 
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Figure C.2 In silico mutant simulation of the GcrA depletion strain. (A) Protein concentration 

timelines (B) Outputs from Stateflow. 

2. ccrM constitutively expressed 

C. crescentus mutant previously constructed 

A mutant strain that expresses ccrM constitutively was previously constructed {Zweiger, 1994 

#373}. This strain contains a second copy of the ccrM gene under the control of the constitutive 

PlacZ promoter integrated at the ccrM locus on the chromosome. These mutant cells are 

sometimes longer than wild-type cells, they sometimes constrict asymmetrically, and their cell 

cycle is slightly slowed down. These cells also often accumulate more than two chromosomes, 

showing a defect in the control of chromosome replication initiation. 

Changes of model parameters to simulate this mutant 

To simulate this mutant in silico, we used the same equations (Table S2), the same initial protein 

concentrations and the same parameters (Table S3A and S3B) as for wild-type cells, except that 

we added a constitutively activated promoter by setting the “pccrMoe” parameter (CcrM 

synthesis rate from the constitutive promoter) in Table S3C to a value greater than 0. In the 

simulation shown here, “pccrMoe” was set to 100nM/s at time 0 min. 
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Simulation result: Tracking the stalked compartment: 

In this mutant simulation, we observed that the levels of the DNA methylase CcrM remain high 

at all times of the cell cycle, which maintains the dnaA and the ctrAP1 promoters fully-

methylated at all times during the simulation. As a consequence, the re-accumulation of CtrA in 

pre-divisional cells is delayed ~20 minutes, while the DnaA accumulates at high concentrations 

throughout the cell cycle.  

The delayed re-accumulation of CtrA~P in pre-divisional cells in turn delays the 

accumulation of FtsQA, which delays progression of cell constriction during the mutant cell 

cycle, compared to the wild-type cell cycle. Since progression of cell constriction is delayed, the 

overall mutant cell cycle is ~20 minutes longer than the wild-type cell cycle in our simulations, 

which is in agreement with the phenotypes observed in vivo {Zweiger, 1994 #373}. Although the 

simulation model does not simulate cell growth, we predict that mutant cells will be elongated 

since their cell cycle is slower but their growth should not be affected compared to wild-type 

cells. This logical prediction is also in agreement with the phenotypes observed in vivo.  

The high accumulation of DnaA in the mutant simulation promotes the accumulation of 

DnaB at a concentration which is above the minimal threshold that is necessary for the initiation 

of DNA replication (“cChroDnaB” is 1380 nM). The high accumulation of DnaA and DnaB, 

together with the delayed accumulation of CtrA~P, could promote additional initiation of DNA 

replication events in these mutant cells. This quantitative simulation would explain why multiple 

chromosomes are observed to accumulate in mutant cells in vivo {Zweiger, 1994 #373}.  

Simulation result: Tracking the swarmer compartment: 

In this mutant simulation, we observe that the levels of CcrM remain high at all times of the cell 

cycle, except in swarmer cells (f. Since DNA replication is still efficiently repressed by CtrA~P 

in swarmer cells (“cChroCtrA” is 345nM), the chromosome is never hemi-methylated by the 

passage of the replication fork in swarmer cells, even if the CcrM DNA methylase does not 

accumulate efficiently in swarmer cells. Like during the stalked compartment simulation, the 

dnaA and the ctrAP1 promoters are maintained fully-methylated at all times of the cell cycle, so 

the results of the phenotype simulations are comparable when following both compartments of 

the cell. 
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Figure C.3 In silico mutant simulation of strain with ccrM constitutively expressed. (A) Protein 

concentration tracking into the stalked compartment. (B) Outputs from Stateflow tracking into 

the stalked compartment. (C) Protein concentration tracking into the swarmer compartment. (D) 

Outputs from Stateflow tracking into the swarmer compartment. 

3. Permanently phosphorylated and stable CtrA 

C. crescentus mutant previously constructed  

A mutant strain producing a constitutively active and stable mutant CtrA protein was previously 

constructed {Domian, 1997 #290}. This strain contains a high copy-number plasmid carrying a 

mutant ctrA gene that encodes a ctrAD51E3Ω (pXylX::ctrAD51E3Ω) mutant protein. 

CtrAD51E3Ω is active at all time without phosphorylation, mimicking CtrA~P, and is not 

subject to proteolysis by ClpXP. These mutant cells showed a dramatic increase in the 

population size of G1 cells and a corresponding decrease in the population size of G2 cells, 
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indicating that DNA replication initiation is blocked in most cells. Prior to cell death, cells 

continued to elongate, forming filaments. 

Changes of model parameters to simulate this mutant 

To simulate this mutant in silico, we used the same equations (Table S2), the same initial 

concentrations and the same parameters (Table S3A an S3B) as for the wild-type cells, except 

that “isAlwaysCtrAP” (a binary switch) in Table S3C was set to 1 and “hlCtrAf” (the half-life of 

CtrA during active proteolysis by ClpXP) was set to a value greater than “hlCtrAc” (the half-life 

of CtrA without active proteolysis), 200 min in this case. 

Results of the mutant simulation 

In this mutant simulation, we observed that the levels of CtrA~P increase very fast after the two 

switches were changed, and then remain high at all times of the cell cycle. Since the levels of 

CtrA~P are above the maximum threshold to allow the initiation of DNA replication 

(“cCroCtrA” is 345 nM), the replication of the chromosome is not initiated during the swarmer-

to stalked cell transition, even though the levels of DnaA and DnaB are higher than in wild-type 

cells. We also observed that the levels of FtsZ and FtsQA are higher in the mutant cells than in 

wild-type cells, but progression of cell constriction is not initiated in the G1 arrested cells, 

because we have made the assumption that progression of cell constriction is blocked until the 

replication of the chromosome is complete in our model. Still growing but not able to divide, we 

predict that the cells will become elongated and filamentous before they die. Hence, this in silico 

mutant simulation agrees with the in vivo phenotypes and helps explain what is happening in the 

cell at a molecular level. 
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Figure C.4 In silico mutant simulation of train with permanently phosphorylated and stable CtrA. 

(A) Protein concentration timelines (B) Outputs from Stateflow. 

4. Move the ctrA gene to a chromosomal position next to the terminus 

C. crescentus mutant previously constructed 

The ctrA gene is located at a chromosomal location next to the origin of replication, and its 

transcription is activated when the ctrAP1 promoter becomes hemi-methylated by the passage of 

the replication fork, soon after the initiation of replication. A mutant strain was constructed 

{Reisenauer, 2002 #104}, where the ctrA gene was moved to a position next to the terminus, and 

deleted at its native position. The distribution of length of these mutant cells was somewhat 

broader than the distribution of wild-type cells, and the re-accumulation of CtrA in early pre-

divisional cells is delayed for ~15 minutes. 

Changes of model parameters to simulate this mutant 

To simulate this mutant in silico, we used the same equations (Table S2), the same initial protein 

concentrations and the same parameters (Table S3A an S3B) as for the wild-type cells, except 

that we changed the value of the “zpctrA” parameter (the relative location of the ctrA gene on the 

chromosome) in Table S3C from 0.3 to 1.  

Simulation results: Tracking the stalked compartment: 

In this mutant simulation, we observed that CtrA~P re-accumulation in pre-divisional cells is 

delayed by ~15 minutes, because the ctrAP1 promoter is kept fully-methylated for a longer time 
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period of the cell cycle. This result shows that our model is very quantitative, since it simulates 

the same delay in CtrA re-accumulation as observed in vivo {Reisenauer, 2002 #104}. We also 

observe that the delay in CtrA re-accumulation retards the accumulation of FtsQA, which delays 

progression of cell constriction by ~15 minutes. Overall, the cell cycle of stalked cells now takes 

~125 minutes to complete instead of ~115 minutes for the wild-type stalked cell cycle. 

Simulation results: Tracking the swarmer compartment: 

We observed that the results of the phenotype simulations are comparable when following both 

compartments of the cell. Overall, the cell cycle of swarmer cells now takes ~150 minutes to 

complete instead of ~135 minutes for the wild-type swarmer cell cycle. 

 

Figure C.3 In silico mutant simulation of strain with the ctrA gene next to the terminus. (A) 

Protein concentration tracking into the stalked compartment. (B) Outputs from Stateflow 

tracking into the stalked compartment. (C) Protein concentration tracking into the swarmer 

compartment. (D) Outputs from Stateflow tracking into the swarmer compartment. 
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The commands in Matlab to simulate these in silico mutants are listed in 

http://www.stanford.edu/group/caulobacter/CellModel, and the involved parameters are shown in 

Table C.2. 

Table C.2 Parameters for mutant simulations and simulation controls 

Symbol Parameter Value Units Source or rationale 

isAlwaysCtrAP If set to 1, CtrA is always in 

its active form.  

0  It is for mutant simulations that mimic an 

always active CtrA. 

pccrMoe Synthesis rate of the 

constitutive promoter driving 

ccrM expression in mutant 

simulation 

0 nM/s Set to a non-zero number such as 100 for 

mutant simulation. 

pctrAoe Synthesis rate of the 

constitutive promoter driving 

ctrA expression in mutant 

simulation 

0 nM/s Set to a non-zero number such as 100 for 

mutant simulation. 

pdnaAoe Synthesis rate of the 

constitutive promoter driving 

dnaA expression in mutant 

simulation 

0 nM/s Set to a non-zero number such as 100 for 

mutant simulation. 

pgcrAoe Synthesis rate of the 

constitutive promoter driving 

gcrA expression in mutant 

simulation 

0 nM/s Set to a non-zero number such as 100 for 

mutant simulation. 

pxylose For mutant simulation, if 

pxylose is 1, the constitutive 

promoter is enabled at the 

time specified by txylose. 

0  Provides an extra switch to activate or 

deactivate the constitutive promoter during a 

mutant simulation. 

t_trackST At time t_trackST, the 

simulation switches the type 

of the cell it tracks according 

to t_trackST 

1  Simulation program parameter 

trackST A binary switch that sets the 

simulation to track the stalked 

cell (=1) or the swarmer cell 

(=0) 

0  Simulation program parameter 

txylose Time to induce the 

constitutive promoter in 

mutant simulation. 

1 min The value determines the time point when a 

constitutive promoter is induced in mutant 

simulations. 

 

http://www.stanford.edu/group/caulobacter/CellModel
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Appendix D  

 

Implementation in NuSMV 

In the C. crescentus model in NuSMV {Cimatti, 2002 #890}, the state variables and update rules 

for the modular cell cycle functions are organized as a set of individual finite state machines. 

Some transitions have to wait until specific external conditions (e.g., a regulatory protein reaches 

a threshold, or a state machine reaches a certain state) are met before other transitions can be 

executed. There are state machines to model the steps of chromosome replication, the 

methylation states of certain promoters, stages of cell division, regulatory protein levels, and the 

phosphorylation state of various proteins.  

The NuSMV input files used for the robustness checking of the C. crescentus cell cycle 

control circuit are available online at http://www.stanford.edu/group/caulobacter/CellModel. 

Additional information on the NuSMV implementation is provided in the embedded comments 

in the NuSMV input files. The README file explains how to run the input file, Caulobacter.txt, 

using NuSMV. 

The example below is a simplified version of the chromosome replication state machine in 

the C. crescentus model that illustrates the modeling concepts. 

The VAR declaration below defines a state variable that can have one of a list of possible 

values (which appear in the order that the states progress), according to the "init" and "next" 

functions specified later. In NuSMV, text after "--" are comments. 
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VAR 

chromosome_replication_state : {  

    pre_replication,     -- single chromosome before replication starts 

    chromosome_rep_init,     -- initiation of chromosome replication 

    dnaA,       -- the replication fork replicates the dnaA gene,  

       -- many states in between. See the full model for 

    -- omitted intermediate states. 

    chromosome_rep_end -- the completion of chromosome replication 

                              -- and decatenation of the replicated 

                              -- chromosomes 

}; 

 

The ASSIGN declaration defines the actual replication state machine by specifying the 

initial state values (in the init declaration), and how the state variable is updated on each step (in 

the next declaration). The next declaration is used to determine the state values for the next step. 

The state machines in the C. crescentus model adhere to a particular convention: immediate 

transitions for instant reactions are written first, and then there are slow transitions with delays, 

which will not be evaluated until schedule determines the delay is over.  

ASSIGN 

-- The C. crescentus  cell starts in the "pre_replication" state, where 

-- there is a single chromosome before cell cycle division starts. 

init(chromosome_replication_state) := pre_replication; 

 

next(chromosome_replication_state) := case 

    -- The next transition is immediate, since, after the  

    -- decatenation of the two replicated chromosomes, the inner 

    -- membrane compartmentalization instantly separates them in 

    -- two compartments. 

    chromosome_replication_state = chromosome_rep_end  

 & (cytokinesis_state = Compartmentalization)  : pre_replication; 

 

-- The schedule determines if the delay is over. 

-- Every transition below this must wait for the delay. 

    !(schedule = chromosome_replication_delay) : chromosome_replication_state; 

  

    -- chromosome replication is initiated when CtrA_P is low, DnaA  

    -- is high, DnaB is high.  

    chromosome_replication_state = pre_replication & !CtrA_P & DnaA  

 & DnaB  

 : chromosome_rep_init;  

    -- The dnaA gene is close to the ori. 

    chromosome_replication_state = chromosome_rep_init : dnaA; 

    -- The replication fork finishes replicating the rest of 

    -- of the chromosome. 

    chromosome_replication_state = dnaA : chromosome_rep_end 

    -- If none of the above conditions is met, stay in the current state. 

    1 : chromosome_replication_state; 

esac; 
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NuSMV allows nondeterministic assignment, which means that a set of possible alternative 

values can be specified for a variable. Nondeterministic assignment allows the schedule variable 

to take on any of the state machines at each step; this enables the model to consider all possible 

delays. 

The protein regulatory network is also modeled as a collection of small state machines, 

called “regulators,” which correspond to logic gates in computer design. Below is generic 

NuSMV model for a regulator, which is instantiated for various proteins. When 

promoter_activity is 1, the promoter of the regulatory gene is activated. After an arbitrary delay, 

the accumulated protein level becomes 1 (high). 

MODULE Regulator(promoter_activity, init_level, delay) 

VAR level : boolean; 

ASSIGN 

   init(level) := init_level; 

   next(level) :=  

   case 

     !delay : level; 

     1 : promoter_activity; 

esac; 

 

The generic gate model is instantiated for the gcrA promoter, which is active when ctrA_P is 

0 and DnaA is 1. The protein level GcrA is then asserted after an arbitrary delay included in the 

gate model. 

gcrA : Regulator(!CtrA_P & DnaA, 0, (schedule = gcrA_delay));  

GcrA := gcrA.level; 

This is a discrete abstraction of gcrA regulation. In a continuous ODE model it would be:  
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Where n, [Cd] and β are Hill function parameters, V is the cell volume, and hl is the half-life of 

GcrA. 

In the NuSMV model for the C. crescentus cell cycle control circuit, a dialect of temporal logic 

called CTL (for "Computation Tree Logic") {Clarke, 1981 #884; Queille, 1982 #885; Emerson, 

1985 #896} is used to check whether the cell cycle is completed successfully. For example, the 
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CTL statement " SPEC AG AF (cytokinesis_state = Divide & (AF cytokinesis_state != Divide) );  

"  states that the cell divides repeatedly under all modeled conditions in perpetuity. More 

complicated checks were added to check if paths pass the critical cell cycle stages in the right 

succession order. 
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