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Abstract

Uniprocessor performance scaling has ended because of power and complexity issues.

In order to continue to scale computer performance, future machines will be parallel

collections of processors. Thus the key problem in computing becomes how to pro-

gram these parallel machines, since unless the user applications leverage the parallel

hardware, application performance will not scale.

While creating a general multi-threaded parallel application is known to be diffi-

cult, many if not most performance critical applications have regular data parallelism,

which allows one to use parallel processors while maintaining a single thread of control

as a programming abstraction. In this ”Stream” programming abstraction, there is a

single control thread like before, but the operations are issued from this control thread

operate on blocks of data at a time rather than single values. This idea of launch-

ing block operations is actually an old programming model; vector machines used a

version of it. Adding a compiler managed buffer memory to stage data transfers and

chain operations we get a stream programming model.

Many interesting stream machines have been built, but each created their own

software system. These software systems all have to solve the same hard problems of

data partitioning and computation scheduling. We created a Stream Virtual Machine

(SVM) as a virtual machine layer to present a single abstraction to a common system

software framework. The SVM exposes key components of the underlying machines

such as the number and sizes of the stream memories, stream processors and Direct

Memory Access (DMA) engines. Each one of these components is characterized by

performance parameters that allow the system software to make informed decisions

for efficient mapping and scheduling of computations and data transfers. The SVM
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defines an API that a stream compiler will use as an output and that each machine

implements.

We evaluate the SVM and show it is an efficient abstraction for a number of

stream machines, including non-conventional stream engines like Graphics Proces-

sors Units (GPUs) and Chip Multi Processors (CMPs). On GPUs we’ve found that

performance parameters extracted through simple tests give good predictions of the

run-time of applications. To evaluate the performance overhead and scalability of

the SVM, we have implemented it on the Smart Memories chip multiprocessor. Data

parallel applications were written for streaming, then converted to SVM code using a

stream compiler, which were then compiled down to machine binary using our SVM

library implementation for Smart Memories. The applications have shown good per-

formance scaling as we increase the number of streaming processors and memories.

The overhead of the SVM API versus native calls is small, less than 0.5 percent in

most cases.
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Figure 1.1: Spec Int2000 performance by year of introduction

For the last 20 years, microprocessors have improved their performance at an
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CHAPTER 1. INTRODUCTION 2

average rate of 50% a year as seen in Figure 1.1. Processor designers have lever-

aged process scaling to scale clock frequency and create more complex architectures

that extracted more parallelisms from the instruction stream to improve performance.

However since 2004, the rate of improvement of single thread applications has dropped

because power constraints now limit the architectural improvements that can be de-

ployed [14].

Currently the only way to continue to scale computer performance at the historical

rate is to use the extra transistors provided by process scaling to build additional

processors on the die. While the advantage of these multiprocessor chips is obvious

for computers running server type applications which effectively need to execute many

different programs (one for each user) at the same time, the advantages for desktop

applications is less clear. Here the number of programs running simultaneously is

small so to improve the performance we have to deal with the challenge of having a

single application use multiple processors. Historically this has been a difficult task.

Rather than trying to create a universal parallel programming method, it is often

easier to try to solve the problem for a restricted application domain first. Look-

ing at the applications that are currently driving desktop performance requirements

the hardest, one notices that most of these applications deal with large amounts of

data. In the consumer sector, multimedia workloads are driving the purchase of new

computers and cell phones. Embedded systems are also seeing an increase in their

workload with more sensor data, higher data rates and more complex processing re-

quirements. In addition, many of these applications, not only deal with large data sets,

they also have large amounts of data parallelism - they apply the same computation

to a large number of data elements. To more easily describe this type of computa-

tion, many people have proposed using a “Stream” programming model [37][30] for

these type of applications. Stream programs extend normal programs by allowing

the programmer to gather data into a “stream” and then allow the programmer to

apply functions to streams as well as integer and floating point numbers. Examples

of stream like programming models include StreamIT from MIT [34], StreamC from

Stanford [1], Simulink from MathWorks [24], synchronous dataflow language from

UCB [18], etc.



CHAPTER 1. INTRODUCTION 3

This dissertation attempts to leverage both these trends, the growth of paral-

lel processor chips and the growing compute demands of data parallel applications,

by using the unique properties of steaming applications to greatly simplify mapping

these applications to parallel processors. There are many characteristics of streaming

applications that make mapping easier. Most important, the dataflow graph for most

stream programs can be statically analyzed. This means that the compiler can explic-

itly manage the memory hierarchy, prefetching the data that the application needs so

it never needs to stall waiting for memory. This prefetching allows these applications

to overlap computation and communication. It can further optimize communication

by knowing which data values really need to be written back to memory, and which

were simply temporary values and can be destroyed.

Given the large variety of both stream programming languages and parallel ex-

ecution models, this thesis proposes a Stream Virtual Machine (SVM), an abstract

machine that many systems could use to make porting stream applications easier, and

then evaluates the effectiveness of this model. To provide the needed context for this

discussion, the next chapter presents an introduction to previous stream processors

and the languages and programming systems that are used to program these architec-

tures. This diversity in languages and processors has led to the same concepts being

invented many times. The SVM provides a stream software abstraction that allows

many of the software tools to be shared between machines.

1.1 Research Contributions

The original research contributions of this thesis to the field of computer architecture

and stream processing are:

1. A stream machine abstraction that allows one to reason about how to map

stream program on different stream processors. This is the first attempt to make

stream programs and transformations portable across different implementations.

2. An API that allows for low-level mapping of stream applications onto stream

machines which allows for performance evaluation of stream applications on
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hardware.

3. Definition and methods of gathering of simple performance parameters that help

predict run-time of stream kernels, information that can be used by a stream

compiler.

4. Implementation and evaluation of the stream programming model on a chip

multiprocessor by using only general chip multiprocessor components.

1.2 Thesis Roadmap

Chapter 3 describes our stream software abstraction. It is a general way to program

many architectures with the stream programming model. It is both an abstraction

that generalizes streaming optimizations and a streaming application programming

interface (API). The SVM models the hardware at a higher level of abstraction. It has

a number of parameters that try to capture the essential features of the hardware so

that higher level software tools can generate code optimized for each stream processor.

Recent graphics processors are programmable and are now used for general pur-

pose computation as a stream-like processor. In order to evaluate if our stream

software abstraction is a reasonable virtual machine, Chapter 4 looks at mapping the

SVM to modern graphics processors. This will help us evaluate if the SVM model is

a flexible enough target to allow a compiler to make make good decisions on mapping

and scheduling the computation. The results were promising, and as graphics proces-

sors become more generally programmable [10] this model will match even better.

Chapter 5 then looks at mapping the SVM on today’s homogeneous chip multi-

processors. It looks at whether this mapping is possible, and what hardware is needed

in these machines to make this mapping efficient. To investigate possible trade-offs,

we use the Smart Memory design platform. Smart Memories is a chip multiproces-

sor designed to support different execution models including streaming. Since Smart

Memories was designed to have a very flexible memory system, we use it to explore

some implementations of SVM API calls needed to support streaming. This experi-

ence demonstrated the benefits of having a flexible memory system, since it allowed
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us to create features that were not anticipated in the original design. Finally we will

conclude by describing the benefits of stream processing on modern CMPs, and the

benefits of using a SVM to decouple high-level stream decisions from the detailed

hardware implementation.



Chapter 2

Stream Processing

In order to understand the appeal of stream programming, we first need to understand

the basic ”math” that underlies computer performance. As we will see in Section 2.1,

the performance really depends on two factors, one is the rate that the machine can

perform the average operation, and the other is the average number of operations

that the machine can find to execute in parallel. To scale performance, successive

processor generations have tried to improve both factors, increasing clock frequency

and mechanisms for increased parallelism at a great cost in complexity and increased

power dissipation. Interestingly, this processor review will show that data parallelism

is already being exploited in a small way. High-end uniprocessors used data paral-

lelism to improve their performance by converting it into instruction level parallelism

(ILP) that they can exploit.

Unfortunately power, complexity, and long cache miss wait times have made it

hard to continue to scale the performance of a single processor, and the industry

has moved to building multiple processors on each chip to continue to improve chip

performance. The traditional way to write programs for single cores does not lead

to improved performance on multi-processor systems and a new approach to write

parallel programs is needed for these machines. Fortunately for many data parallel

applications there is a nice programming model, called Streaming, that maps well

to these new parallel machines, providing a simple way to both extract parallelism

for the multiple processors, and hide the latency of the memory fetches. Section

6



CHAPTER 2. STREAM PROCESSING 7

2.2 describes this programming abstraction, and how it can be leveraged by parallel

machines.

Many machines have been built to exploit streaming applications, and Section 2.4

describes a few of these machines. Even though many of the hard problems that need

to be solved to map stream applications to processors do not depend on the hardware

details, each of these systems created their own software system, which both causes

researchers to have to duplicate effort, and prevents the initially primitive software

system from evolving into mature systems. After looking over the machines, it seems

possible to create a common Stream Virtual Machine which can represent any of these

systems. The next chapter describes this virtual machine in more detail.

2.1 Processor Performance

CPUtime =
IC × CPI

Clockrate
(2.1)

Equation 2.1 is the classical computer system performance equation, which relates

the execution time of a program to the product of the Instruction Count (IC) and

the average Cycles per Instruction (CPI) divided by the clock rate [7]. The instruc-

tion count depends on the instruction set architecture and the compiler technology

used. The instruction cost is unlikely to dramatically improve since the RISC versus

CISC debate has shown that complex instruction that decrease the instruction count

actually increase the cycles per instruction and are not helpful. In fact modern CISC

architectures now decompose complex instruction into simple ones. Performance im-

provements have come from an increase in the clock rate and a reduction in the CPI

which are described next.

2.1.1 Clock Rate

Increasing the clock frequency without hurting the average cycles per instruction has

been one of the main ways to improve performance. As Figure 2.1 shows we were

on a fast clock scaling curve which was the result of both process scaling and deeper

pipelines, but this trend has now slowed because of excessive power dissipation and
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Figure 2.1: Evolution of Processor Clock Rate

the limits of pipelining. Building machines with very deep pipelines is inefficient from

a power perspective [38], and since all machines are now power limited, both pipeline

depth and clock frequency have recently decreased. While clock rate will continue to

increase as integrated circuit technology scaling provides faster gates, this will be at

a much slower pace than before.

2.1.2 Parallel Issue

To decrease the average cycles per instruction, the application needs to have instruc-

tions that run in parallel (they don’t depend on each other) and the hardware needs to

have parallel functional units that can exploit this parallelism. Extracting parallelism

from the application consists of finding operations that have no mutual dependencies

and can be executed independently on available resources. This type of parallelism
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is called instruction level parallelism. Super-scalar architectures extract this paral-

lelism through a combination of hardware that detects independent instructions and

compilers which attempt to schedule them adjacently. VLIW architectures rely en-

tirely on compilers to explicitly schedule instructions that can run in parallel, in the

same issue slot, in order to simplify the hardware. To exploit this parallelism requires

building hardware that can fetch, schedule, execute, and retire multiple instructions

each cycle. Since instruction stalls are not uncommon, to achieve good performance

requires allowing the machine to execute instructions out of program order, which

further increases machine complexity. Even with this enhancement, the amount of

parallelism that can be exploited is limited and few processors issue more than 4

instructions per cycle[36][31].

Data level parallelism is not universal but is prevalent in classes of applications

in domains that deal with a lot of data: multimedia, digital signal processing and

scientific applications. While the amount of instruction-level parallelism is low, data

parallelism can be very large, as large as the dataset sometimes. In fact applications

that appear to have large ILP often are converting data parallelism to ILP by a

process called loop unrolling.

Loop unrolling done by a compiler or dynamically in out-of-order processor allows

multiple iterations of a loop to be executed at the same time. If the loop was data

parallel, then these instructions will be independent and can be exploited as ILP in

a superscalar processor. The addition of a short vector unit to a processor allows

for further exploitation of data parallelism at the cost of aligning the memory and

moving the data to the short vector register file[35].

While it is possible to do this conversion, there are better methods of exploit-

ing this parallelism. The basic problem is that in the current programming model,

memory fetches are hard to disambiguate, and since control dependencies are hard to

predict, a lot of hardware and power is spent on speculating to speed up loops that

get executed very often. True data parallel sections are often easy to analyze leading

to much more efficient hardware implementations.
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2.1.3 Parallel Processors

Since exploiting ILP is power inefficient, CPU architect have moved to build explicitly

paralel systems. The size and complexity of the processors becomes a design option

as well as whether to use homogeneous processors or heterogeneous processor designs.

Simple CPUs with a core and a caches are quite small compared to current complex

uniprocessors. For the same die area as a complex core, tens to a hundred of the

simple cores can be built. The next design problems come from determining how

to build the memory system for so many cores, since many complex issues need to

be resolved, like what memory consistency model is needed, what interconnection

network will be used.

The answer on how many different cores, of which type, and how to build the

memory system will depend on the programming model. More complex cores makes

sense when the amount of parallelism is limited, but when it’s easy to generate parallel

computations, simple cores are the way to go. Applications with large amount of

data parallelism can leverage numerous simple cores but they need a programming

model that makes it easy. It is those applications that are a good fit is the stream

programming model.

2.2 Stream Programming

The problem with parallel machines is that reasoning about multiple threads of control

is difficult because of the need to communicate and synchronize properly. People have

a hard time getting the communication correct and debugging these problems is very

hard. The stream programming model allows the user to think about a single thread

of control in charge of delegating operations on large amounts of data in parallel.

In the stream programming paradigm streams are groups of identical data types

that are consumed and produced by kernels of computations. The data type of a

stream is not limited to a simple data type but can be an aggregation of data like a

C structure such that each stream element has the same size. Kernels are functions

with variables and flow control, but can only access data in the stream, they can’t
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contain references to main memory. A very strict model would require sequential

access to streams but a more relaxed model allows a certain window of visibility or

full indexed access to small streams [15]. Thus kernels are free of arbitrary memory

accesses with their attached high latency costs and the system can prefetch all the

streams required before a kernel gets to be executed. Applications with sufficient

data parallelism can amortize the costs of setting up kernels and completely hide the

cost of memory transfers.

2.2.1 Data Parallelism

An application exposes data parallelism when multiple data elements of the same

type can be produced independently. A finite impulse response (FIR) filter is a good

example where each output element is the result of a computation of a limited number

of input elements but each output element doesn’t depend on other output elements’

computations. The parallelism is easy to extract because in essence there is a single

thread of control with the same processing being applied to each data element

Among applications that have a lot data parallelism, we are interested in an

important subset, those that have a static analyzable dataflow. This static dataflow

can be analyzed by a compiler to reason about data movements and computations

allowing data movements to be scheduled in advance of the computation. This means

the data is prefetched before it is needed, overlapping the fetch time with computation,

thus the application can work at the maximal rate without having memory latency

wait times.

Most data intensive applications from the digital signal processing and multimedia

domains fall into this category because of the regular nature of the computations.

Exploiting data parallelism to improve performance is an old idea, in fact, vectors were

an early streaming model where the data parallelism was expressed at the instruction

level making a single instruction perform the same operation on vectors of data.

Vector instructions are then chained to compute output vectors in parallel. The data

parallelism of individual instruction is explicit which allows for parallel execution as

well as prefetching of future operands. Streaming extends this model to an kernel, a
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group of instructions and adds a memory hierarchy in front of the registers to stage

even more data elements. Streaming also adds the chaining of kernels through the

stream memory, to decompose steps in the productions of output. 1

In synchronous dataflow, instead of expressing the computation as parallel in-

structions, the process of generating a single data parallel result is decomposed into

separate tasks with static data movements. This does a good job of exploiting data

locality and spreading the workload across multiple processing elements although not

very equally. Another downside is that strict syncronous dataflow can only deal with

applications that have a predictable amount of computation which rules out applica-

tions with a data dependent amount of computation that cannot be determined at

compile time. More recent extensions to the synchronous dataflow to allow dynamic

rates lead to a stream astraction.

2.2.2 Stream Program Abstraction

Many signal processing applications are great candidates for streaming, starting with

any kind of filtering, fast Fourier transform (FFT) as well as convolutions in multi-

ple dimensions. Compression and decompression of video data and the generation of

three-dimensional graphics are both complete applications whose natural data paral-

lelism has made them successful in the stream programming model.

In the scientific domain we will look at how an application like molecular dynamic

requires some rethinking of the application to fit the streaming model. Molecular

dynamics is a physical simulation of particles where forces between particles are cal-

culated at each time step and moved as a result. Forces are only evaluated for particles

within a cutoff region to limit the calculation.

In the classical model for each molecule we loop through each other molecule,

compute the distance and if it is within the threshold range we compute the force

resulting from that molecule. Finally all the forces are summed for this molecule and

it’s position is updated. In order to fit the streaming model we will try to optimize

the memory accesses. Figure 2.2 shows how each iteration proceeds.

1which is again not new, and was pioneered by sychronous dataflow [18]
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Figure 2.2: Molecular Dynamics Stream Diagram

To avoid fetching data elements of the molecule that are not useful to compute

the position but used to compute the effective force, we will first compute in K1 the

distance of the molecule and if it is within range save the distance and generate the

memory index for the extra data elements required to compute the force. In kernel

K2, the force computation that only depends on the distance will take place while

the memory access fetches the required data elements for the final force computation

in kernel K3.

The stream implementation has allowed us to minimize memory transfers by fetch-

ing extra molecule data only for the ones that required a force computation. The

latency of the memory access has been hidden by further computation in kernel K2.

2.3 Stream Machines

With a programming model that exposes data parallelism with statically analyzable

data flows, it is possible to build a multiprocessor to efficiently execute these ap-

plications. A stream processor has a high number of compute unit and a memory

hierarchy that can be explicitly controlled.

As much as conventional processors are desired for their fast clock rates and low

memory latencies, stream processors strike a balance between their bandwidth and

parallel compute rate. The goal is not to waste the expensive part of the system,
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memory bandwidth, whereas the incremental cost of adding ALUs is small. For most

applications, the goal is to maximize the use of the memory bandwidth, although

there will always be certain applications for which we are limited by the compute

rate. This leads to an important metric for stream processors, the compute to memory

bandwidth ratio which is a measure of how many arithmetic operations are available

for each word of bandwidth to data stored outside of the chip.

What sets stream architectures apart from conventional processors is how they

handle data at the level of streams, doing bulk operations that gather and stage data

operands before they are operated on. With enough data parallelism the prefetching

of data can be done ahead of when it’s needed, hiding the memory latency as long

as there is enough memory bandwidth to cover the computation time of a previous

block. This technique, called double-buffering, allows the overlap of computation and

communication which is central to stream architectures.

Locality is exploited in stream processors by keeping temporary data inside the

chip and close to where it is needed. Unlike caches on conventional processors, the

data is explicitly moved from main memory to on-chip memory. Modern prefetchers

on caches which predict strided accesses can do a good job as long as the data being

accessed is contiguous or at a regular stride distance [5]. But they fail when the data

needed is indexed and the full data structure doesn’t fit in the cache.

FP/SSE

MMX int

Figure 2.3: ALU areas of Pentium 4 Northwood, Imagine and RAW
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Figure 2.3 shows die photos of a a conventional processor, the Pentium 4 North-

wood, and two stream processors, Imagine and RAW. The area of the die of the

ALUs is highlighted to show the respective proportion of area devoted to them. The

Pentium 4 Northwood has 512KB of on-die cache seen on the right, most of the other

area of the core is dedicated to speculation hardware. The Pentium 4 has three areas

of ALUs, the regular integer, MMX which provides integer short vectors and the float-

ing point and SSE floating point short vectors. The Imagine processor has 8 clusters

that contain 6 ALUs each, just left of it is a 128KB stream memory. RAW’s 16 tile

each contain an integer and floating point ALU in the middle, with some caches and

routing network logic.

2.3.1 Imagine

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Cluster

Stream

Memory

DMA

Engine

Figure 2.4: The Imagine Stream Processor

Imagine, shown in Figure 2.4, is a stream processor that was designed at Stanford

University in Bill Dally’s research group. In order to achieve a high level of utilization

of compute units, Imagine has eight identical compute clusters which exploit data

parallelism by executing the same instruction in a SIMD fashion. This saves on

instruction bandwidth and complexity for storing and issuing them. Inside each
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cluster a mix of six ALUs allows exploitation instruction-level parallelism within each

data paralel execution function.

The memory hierarchy of Imagine is split into three levels, registers, stream mem-

ory and main memory. Table 2.1 shows the hierarchy size per cluster and then total

for the eight cluster Imagine prototype. The stream memory provides buffering and

staging of stream data used as kernel operands.

Memory Per Cluster Total
32-bit register 272 2176
Stream memory 16kB 128kB

Table 2.1: Imagine memory hierarchy

Imagine has a stream load/store unit that allows for concurrent transfers in be-

tween the stream and main memory as well as processing of stream elements by the

clusters. The memory system of Imagine is designed to optimize high bandwidth

at all levels between the different levels of the memory hierarchy. Memory transfers

between the stream memory and main memory are aggregated for sequential access

to the main memory to benefit from DRAM improved sequential access. The stream

memory itself is designed as a much wider SRAM than the cluster’s access size with

some buffers such that sequential accesses to the stream memory can be done less

often which frees the stream memory for transfers with the main memory system or

other stream accesses.

StreamC and KernelC are the two languages that were created along with the

Imagine processor in order to program it. StreamC allows the composition of streams

and kernels and to string them together to constitute a full application. KernelC

allowed the programming of kernels with special stream accesses and ways to use the

inter-cluster communication network.

Although dedicated purpose ASICs have a higher density of ALUs, for a program-

mable processor, Imagine has a lot of ALUs to exploit DLP across it’s clusters and

both ILP and DLP through loop unrolling within them. To keep those ALUs supplied

with data, the memory system is simple and independently capable of moving data

at a high bandwidth during computation.
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2.3.2 RAW
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Figure 2.5: RAW Processor

A different approach to streaming was taken for the RAW chip microprocessor

designed at MIT in the research group of Anant Agarwal and Saman Amanrasinghe.

As seen in Figure 2.5, RAW has two special communication networks that enable the

processors to communicate directly through their register files. The first network is

statically routed which gives it a shorter latency while the second one dynamically

routed has lower throughput and greater latency. What makes RAW a stream ma-

chine is it’s high density of ALUs and high bandwidth dataflow networks to keep

them supplied with data.

Since each processor has it’s own program counter, it can execute different instruc-

tions and as such processors can be different steps in an execution pipeline where the

data is passed in the communication networks. RAW is a dataflow architecture and

is very well fitted to implement any synchronous dataflow programming model.

StreamIt [34] is the stream programming system that was designed to program the

raw processor which follows very much the synchronous dataflow model. Figure 2.6

shows a graphical depiction of a streamIt application. Each node is a kernel named

a filter and each link is a stream. Filters can peek and pop or push on a stream

depending if it’s an input or output stream.

Composed of a multitude of simple processors with a powerful communication net-

work, RAW exploits data and instruction level parallelism across it’s many cores. The
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Figure 2.6: FM radio application block diagram in StreamIt

bandwidth of the network connecting all the processors augments the data load/store

capacity of the processors through register to register communication. RAW is a very

different machine than Imagine but they both combine high number of ALUs and

high bandwidth networks to exploit properties of streams.

2.3.3 Other Stream Processors

Since 2001, graphics processors (GPUs) have started to expose a programming inter-

face and there has been more and more efforts to use them for for general purpose

computing. One of the first efforts, Cg[23] allowed programming kernels in a C-like

language but had to contend with limitations of the architecture such as no branching

and no scattered writes as the output of kernels. The Brook for GPU programming

system[4] was geared towards full application development with more control between

kernels and generated Cg for kernels. CUDA is the newest programming system[3]

for Nvidia GPUs, it combines full application development with C kernels with an

API to use specialized instructions. Scattered writes are permissible and it exposes

parallel thread which can share a small amount of state and do branching with small

performance loss as long as there are a certain number of threads taking a branch.
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The Cell processor[27] first introduced as the processor of a game console, the Play

Station 3, was also meant for general stream programming and many efforts have

produced systems for it. Sequoia[11] is a system that allows for efficient partition of

datasets and computation across multiple hierarchies of memory like the cell processor

in a single or multiple core configuration.

2.4 Common Features in Stream Machines

Stream machines are characterized by high ALU density and high bandwidth to link

their memory hierarchies but they do differ in their implementation details. An

abstraction that would describe a stream machine in terms of it’s essential stream

components could be used to create a general framework to help develop the software

tools needed to compile stream applications.

Stream processors are being designed and introduced at an increasing rate to

improve application performance. Despite the commonalities in their designs, appli-

cations are not portable on the different architectures and they don’t share a pro-

gramming language or system. Currently every new architecture brings it’s own

language and compiler re-inventing the wheel every time for all the known stream

optimizations.

What is needed is a unified stream programming model that can allow an appli-

cation to be compiled onto different architectures and the sharing of a framework of

compilers and languages. One approach to solving this problem is presented in the

next chapter.
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Stream Virtual Machine

The lack of a common high-level stream language to program stream architecture is

an impediment to shared research and growth of the stream programming paradigm.

Compilers are notoriously hard to design and debug and take a long time to develop

to a mature usable state. If every new stream architecture has to reinvent the entire

compiler wheel with their programming system, improvements will be slow. What

is needed is a common infrastructure that can enable the programming of different

stream processors using a choice of different stream programming languages.

This infrastructure needs to be light weight in it’s final implementation, with low

performance overhead, so that the programmability will not kill performance. In order

to allow improvements to the compiler and underlying architecture, the model needs

to be adaptable and capture the most basic operations characteristic to computations

with streams.

To address this issue, this chapter introduces the Stream Virtual Machine which

is both an an abstraction model used to describe a stream processor in terms of it’s

stream components, and an Application Programming Interface (API) that describes

how a stream computation can take place on these components. A general stream

compiler can then take a stream program in a high level language and an abstract

SVM model of a system and generate SVM API code for this machine. The stream

processor then only needs to implement the SVM API as a set of library calls, and

compile the SVM code as a regular compiler would do, without worrying about stream

20
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transformations, since this code is essentially uniprocessor code, the parallelization

and data blocking has already been handled by the stream compiler.

3.1 SVM Design

Our first task in creating the Stream Virtual Machine was to decide which level of

abstraction to use for the Stream Virtual Machine. In the spectrum of abstraction

levels in programming systems where algorithms are at the top and assembly is at the

bottom, the SVM goal of being a performance target argues to situate it close to the

hardware. Unfortunately, the need for portability on different processors argues in

the opposite direction, to high levels of abstraction. To resolve this conflict we took

advantage of the fact that all new machines generally have a native C compiler. In

some sense because our machine targets are high performance processors, the lowest

common denominator to them is the C programming language. We leverage the

fact that C is only a little higher than assembly. By generating C code for different

processors and having their C compiler generate the final assembly we hope the SVM

would incur small performance overhead without sacrificing portability.

As a result, our infrastructure splits up the compilation process of a stream pro-

gram into two parts as seen in Figure 3.1. The Stream Virtual Machine API is an

intermediate version of the code, namely C with SVM API calls that is produced by

a High Level Compiler (HLC). This compiler is a source to source compiler which

takes a high-level stream language program and a SVM machine model description,

and produces SVM API code specifically for the intended machine. The machine’s

Low Level Compiler (LLC) is a simple C compiler, and with it’s own implementation

of the SVM library finally produces the assembly code for the application.

The challenges of the SVM lie in defining an architectural and execution model

of stream programs that captures the essential characteristics common to stream

processors that are required to produce efficient code for them. The SVM API also has

to be simple and lightweight so that it doesn’t require much more work to implement

the calls of the general SVM API than the processor’s native calls. A model that

accomplishes these goals is described in the next section.
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Figure 3.1: Compilation Process

3.2 SVM Architectural Model

The first issue is the minimum set of resources that the SVM should have. Most virtual

machines have generally described a single processor with some resources such as

registers, stack and memory. In our case the stream paradigm requires a concurrency

of operations to enable the overlap of computation and memory operations. Thus

the SVM will have more than one thread of execution that will interact. The two

stream machines that were described in Section 2.3, were attached processors - they

assumed some control process was launching commands for it to execute, and there

were two types of execution that ran concurrently: computation and data movement.

This leads to a model with three threads of control.

Figure 3.2 shows the components of the SVM architectural model. There is a

control processor that initializes everything and will orchestrate the stream program
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Figure 3.2: SVM Machine Model

execution. The control processor is often a conventional processor as it does have ac-

cess to all of main memory and can initiate operations on the other two “processors”,

the stream and the Direct Memory Access (DMA) processors. The stream processor

does all the data intensive computation and can also initiate operations on the DMA

processor. The DMA engine provides memory transfers between main memory and

the local stream memory.

By giving each of the processors its own thread of control, the SVM allows the

control processor to run ahead of the actual data execution essentially prefetching

future operations for the data and memory execution units. These computations
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and memory transfers operations have some dependencies between them. Some de-

pendencies are straightforward producer-consumer dependencies but others relate to

resources constraints like the allocation of the local memories.

To deal with this autonomy, the SVM API allows the specification of the depen-

dencies between computation kernels and DMA transfers, as they are known at the

compile time of the stream program. The control processor can dispach operations to

other processors with their dependencies information such that the execution engines

are able to reorder computations for more efficient execution.

The stream local memory lies outside of the general memory map of the low-level

C-compiler and is allocated by the stream compiler as stream input and output data

for computation kernels on the stream processors.

3.2.1 SVM Parameters

For the SVM to work well as an architectural model, one must be able to abstract a

wide class of stream machine into this model. A high-level stream compiler should

not have to worry about specific details of an architecture but still be able to generate

efficient code for this architecture.

The set of parameters to describe a SVM needs to be small in order to make things

easier for a high-level stream compiler to reason about the system and make informed

decisions. The high-level stream compiler’s task is to parallelize the application and

schedule the memory transfers so that the data is local when needed and the overall

system bandwidth is minimized. The result of this optimization is a stream compu-

tation graph with all of it’s intricate details of memory transfers and computations

[1]. Blocking the data and allocating the stream memory requires knowledge of the

memory sizes. Scheduling computation kernels and memory transfers requires ap-

proximates of the time they will take to complete. Thus the following parameters are

used to characterize an SVM model:

Processors can be controlled by other processors (this is the case for stream

processors and DMA engines). DMA engines can only run special kernels which

will be described in the next section, otherwise processors can run user-defined code.
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These processors capable of running user-defined code are then characterized by such

factors as their register size, operating frequency, mix of functional units and SIMD

level.

Memories come in three different flavors: FIFOs, RAMs and caches. All types

are characterized by their size in bytes. RAMs are also defined by their coherence

with regards to other memories in the system and the bandwidth for different types

of accesses, namely sequential and random access.

Network Links connect one or many senders (processors, memories or network

links) to one or many receivers. Each network link is characterized with a bandwidth

and latency.

Stream processors take advantage of high bandwidth local RAM memories or

FIFOs that link stream processors together to reduce demands on global memory

bandwidth through re-use and producer-consumer locality.
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Figure 3.3: SVM Parameters
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Figure 3.3 shows the SVM machine model with it’s essential parameters. More

stream processors with their memories and DMA processors can be added. In a

stream machine with multiple stream processors, there can now be many different

possibilities of how an application will be mapped on the machine. For example one

kernel can be mapped in a data-parallel fashion across all the kernel processors or each

processor can expect a different kernel to form a pipeline, or for some applications, a

combination of the two approaches.

3.3 SVM API

In this section we will first introduce the general computation model used by the

SVM. Then we will present the specific calls that enable the implementation of the

execution model. Finally we will talk about the communication and synchronization

model required by the SVM API.

3.3.1 SVM Execution Model

The computational model of the SVM is centered around the control processor. It

initializes all the other processors and is the synchronization point for some critical

sections in the program where all processors need to wait for everyone else to be done.

Looking at a graph of a stream computation with streams connecting kernels, both

the transfers and computation kernels will be split across multiple stream processors.

Furthermore at the level of a single stream processor and DMA engine, because the

size of the stream data probably exceeds the small stream local memory, the transfers

and computations will need to be blocked. In order to overlap the computation and

data movements, the next data block will be fetched while the current one is being

processed by the stream processor, effectively double-buffering the computation.

It is possible to have different kernels running on adjacent stream processors where

the first one produces a stream to be consumed by the second one. Operations have

to be blocked and double-buffered as well to fit in local stream memories and overlap

each other.
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3.3.2 API Details

The SVM API is used to specify how the computation and data are partitioned, moved

and synchronized in the stream system. For example it specifies where computation

is scheduled and to which specific stream processors is assigned. The data behind

such computations is partitioned on the appropriate local memories. The API also

specifies how the data is moved among local memories or between local memories

and the global memory. Finally the API specifies the synchronization in between

computations and data movements.

There are many usability objectives that the SVM API fulfills, the most important

being that it supports efficient translation of API calls for various stream architec-

tures. The use of standard C enables low level compilers(LLC) to parse, analyze and

translate the API calls with minimum modifications. The C compiler requires only

local analysis of single thread code by LLC to translate calls. The use of C also allows

for the simple construction of a functional simulator through direct implementation

of the calls for easy verification or performance estimation.

In essence, an application expressed for a SVM using C and the SVM API con-

sists of a main() function for the control thread. This control thread can invoke

special functions on specific stream processors called Kernels. Kernels operate on

data located in the local memories of the stream processors as specified by Blocks

and Streams. Pre-defined kernels executed by DMA engines provide data movement.

Kernels synchronize with the control thread using special functions and with each

other using explicitly specified dependencies.

The SVM API is intended to express a specific mapping of an application derived

from portable code, not as a programming tool (though it could be used as such). It is

akin to a high-level assembly language. Constructs in some stream programming lan-

guages resemble those of the SVM API because such languages aim for a programming

model that resembles the execution model, but the constructs do not necessarily have

a one-to-one correspondence with SVM API constructs. For instance, the conceptual

kernels in an application written with a stream programming language are usually

not the same as the SVM API Kernels in a mapping of that application. The former

are based on a logical decomposition, the later are based on a hardware-optimized
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mapping.

An example of this would be in a filter application, a high-level programming

language might have a FIR filter kernel followed by a decimation kernel to downsample

filtered data to a lower rate. The high-level compiler will merge these two conceptual

kernels into a single one to reduce the amount of computation and data movement.

Finally the high-level compiler will split the merged kernel into many iterations to

block the data transfers such that they fit the local memory. Each one of these

iterations of the merged kernel will be an SVM Kernel call.

3.3.3 SVM API Constructs

This section introduces the SVM API constructs and explains how they meet the

objectives outlined above. The SVM API uses strict C syntax, but follows an object-

oriented paradigm that couples a struct type “class” with function “methods” that

perform related operations. All “methods” take a pointer to a struct “object” as the

first argument. Each “class” has an initialization “method” that serves as a construc-

tor. The terms class, method, and object are used henceforth without qualification.

The SVM specification document [25] contains a detailed description of all the calls.

Block and Stream: The SVM API uses Block and Stream objects to assign data

to specific hardware locations in the stream processors local memories and to refer

to locations in the global memory for DMA transfers. A block is simply an array

assigned to a location in a memory. A stream is a FIFO queue implemented as a

circular buffer assigned to a location in a memory. Blocks and Streams are initialized

with the following methods 1:

void svm_blockInit(svm_Block* b,

mm_Mem ramLocation, size_t address,

size_t capacity, size_t elementSize);

void svm_streamInitRAM(svm_Stream* s,

mm_Mem ramLocation, size_t address,

1Some SVM calls simplified/modified here and in example for explanatory purposes.
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size_t capacity, size_t elementSize);

Blocks implement random-access read and write methods; streams implement

blocking peek, pop, and push methods. Both blocks and streams have layout con-

straints that enable meaningful aliasing of blocks and/or streams within memory (e.g.,

one block can refer to a region of another block).

Kernels: The SVM API uses Kernel objects to map functions, usually corre-

sponding to some portion of a computation intensive loop, to stream processors.

Each specific function is represent by a Kernel “subclass” that “inherits” from the

Kernel class by enclosing the struct used for Kernel class inside its own struct and

calling Kernel methods either directly or from within its own methods. A typical

Kernel subclass is initialized using a method of the form:

void svm_kernelSubclassInit(

kernelSubclass* k,

mm_Proc procLocation,

kernel specific arguments);

DMA Kernels: The SVM API uses special pre-defined DMA kernel subclasses

to describe DMA transfers. DMA kernels are executed by DMA engines rather than

stream processors. DMA kernels include move (equivalent to memcpy), strided record

copies (read a records, advance b records, repeat), and indexed scatter and gather

(read records from within a block given a block or stream of indices). Each kind of

DMA kernel has variations to handle block to block and, stream to stream, block to

stream, and stream to block transfers. For example, a move DMA kernel for a stream

to stream transfer is initialized using the following method:

void svm_moveS2SInit(svm_MoveS2S* k,

mm_Proc dmaLocation, svm_Stream* srcStr,

svm_Stream* destStr, size_t length);

Kernel dependencies: The SVM API uses explicit dependencies to provide

flexible synchronization between kernels, including DMA kernels, independent of the
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control thread. Prior to execution, a kernel may be marked as dependent on another

kernel using the following method:

void svm kernelAddDependence(svm Kernel* k,

svm Kernel* dependsOnKernel);

Kernel control: The SVM API uses kernel methods to provide synchroniza-

tion between kernels and the control thread. The simplest and most common form of

synchronization is for the control thread to execute a kernel using the svm KernelRun

method and wait for it to finish executing using the svm kernelWait method. svm kernelRun

does not immediately execute a kernel, it enqueues it for execution on a specific proces-

sor. When that processor finishes executing a kernel it selects an enqueued kernel as

the next kernel to execute only if all kernels it depends on have finished executing.

More rarely, the control thread may asynchronously pause or end a kernel’s exe-

cution using the svm kernelPause or svm kernelEnd methods. In some cases a kernel

may pause itself using svm kernelPause; svm kernelWait allows a control thread to

wait for a kernel to finish executing or pause itself. If a kernel is paused, the control

thread can interact with it by altering the fields of the kernel object then calling

svm kernelRun again to resume execution.

3.3.4 SVM API Example

Consider mapping an application to a simple SVM as shown in Figure 3.4. The

application filters then compresses the image by a constant ratio. The simple SVM

consists of one master processor and two stream processors as shown in Figure 3.4.

The application may be mapped in several ways, depending on capabilities of the

hardware. For explanatory purposes, assume the two optimal Kernels consist of the

filtering and compression stages. The Kernels may then be time-multiplexed such

that each processor executes both kernels on half the data, or space-multiplexed such

that one processor executes each kernel on all the data. Data transfers could use

blocks or streams for DMA. Figure 3.5 illustrates these possibilities. The SVM API

can be used to specify any of the four mappings shown, as well as others not shown.



CHAPTER 3. STREAM VIRTUAL MACHINE 31

Filter


Compress


StreamProc1
 StreamProc1


LocalMem1
 LocalMem2


GlobalMem
MasterProc1


DMA1
 DMA2


Figure 3.4: Simple example application and target SVM

3.3.5 SVM API Implementation

The SVM API efficiently maps applications to varied streaming architectures. Its

constructs exploit the nature of streaming architectures at a level of abstraction that

allows straightforward translation to a specific architecture while still leaving some

room for architectural innovation.

The control thread/kernel division exploits the heterogeneity of stream architec-

tures that contain simple RISC master processors and stream processors but as we

will see later, also works for homogeneous processor systems. The SVM API is de-

signed to capture computation intensive loops in Kernels and assign them to stream

processors.

The SVM API is designed to enable a stream processor to execute kernels in

rapid succession with minimum intervening overhead. Separating initialization of a

kernel from execution enables the control thread to transmit the kernel arguments to
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Figure 3.5: Possible mappings of example

a stream processor before the previous kernel finishes. Explicitly encoding the depen-

dencies between kernels allows the stream processor and DMA engine to synchronize

directly using an architecture-specific method without the master processor acting as

“middle man”. The DMA engine and stream processor may communicate through

the local memory or use a hardware scoreboard (as in the Imagine architecture).

Regardless of implementation, such direct communication allows a DMA load to be

followed more immediately by a kernel execution, for instance.

The SVM was adopted as a standard within the Darpa Polymorphous Computing

Architecture (PCA) project. This project included many funded computer architec-

ture projects: Stanford Smart Memories [32], MIT Raw [33], UT Austin Trips [29]
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and USC Monarch [9]. Given that these were all quite different parallel architectures,

the SVM had to go through many iterations of revising details of the API call to

satisfy all the architectures that they could implement the SVM efficiently. At the

same time there was a lot of pressure to keep the SVM model and it’s parameters

and the API small and simple in order to make it easy to implement and to generate

code for by a high-level stream compiler.

Before going through the process of compiling a stream program down to the SVM

API and running it on a machine, a lot of questions still remain about the design

of the SVM. One of the first question was wether the SVM machine model with it’s

simple parameters can allow good estimates of runtime for the high-level compiler to

make good decisions, which we will address in the next chapter by looking at how

well the SVM models real Graphics Processor Units (GPUs).



Chapter 4

SVM study on Graphics Processors

In the two-level compilation model, the HLC generates SVM code without knowing

the detailed features of the specific stream processor targeted. To produce high

performance code, the HLC uses the values of the SVM parameters that describe the

topology and performance features of the targeted processor at the abstract level of

the SVM (see Section 3.2).

SVM Parameter Imagine Merrimac
Local Memory Capacity 256 kB 1 MB
Global to Local Memory Bandwidth 2.3 GB/s 38 GB/s
Local to Register Memory Bandwidth 19.2 GB/s 256 GB/s
Register File Bandwidth 326.4 GB/s 1.5 TB/s
Peak GFLOPS 24 128
SIMD Degree 8 16

Table 4.1: SVM parameters for two stream processors

For stream processors that implement an execution model similar to that of the

SVM, the values for the SVM parameters are fairly obvious by looking at their block

diagram. Table 4.1 presents the SVM parameters for the Imagine [16] and Merrimac

[6] stream processors. Nevertheless, for processors that use alternate organizations,

the SVM parameters that characterize their behavior with stream applications are

less apparent and can require an experimental approach. In addition we are interested

in whether the SVM model will have sufficient fidelity to be a good representation for

34
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the overall system. To test out the SVM in this situation, the next section explores

modeling graphics processors (GPUs) as a SVM.

4.1 GPUs for Streaming Computations

GPUs are custom processors for high-bandwidth 3D graphics for personal computers.

Their basic task is to transform a set of triangles that describe a scene into a rasterized

image under the control of an API like OpenGL or Direct3D. During the past decade,

the computation capabilities of GPUs has exploded to hundreds of GFLOPS as the

demand for more realistic 3-D images expanded. Modern GPUs are also equipped

with a large, high-bandwidth frame buffer (hundreds of MBytes) and a dedicated,

high-speed interface to the main memory controller of the computer (GBytes/sec).

Harnessing the computational power of GPUs for stream applications is enabled

by the fact that GPUs are becoming more programmable. Previous generation GPUs

allowed application programmers to write code for two parts of the graphics pipeline,

the vertex engine that typically operates on geometric vertices [20] and the fragment

engine that typically performs shading and blending operations on the output pixels.

Several researchers have demonstrated impressive application performance by pro-

gramming fragment engine in assembly or low level languages like Cg [23]. Current

GPUs have unified their shading architectures so that the same hardware is used both

for vertex and fragments[22]. New programming systems like CUDA make it easy to

write parallel code to run on the GPU and the control from the host CPU [3] [26].

The basic components of a personal computer with a programmable GPU fit

within the SVM architecture model as shown in Figure 4.1. The main CPU is the

SVM master processor, the memory controller is the SVM DMA engine, the main

memory is the SVM global memory, the frame buffer as the SVM local memory, and

the fragment engine with its registers as the SVM stream processor with its local

register file. Hence, it is possible to target GPUs as a stream processor with the

two-level compilation model. Using a compiler like the one for Cg as the LLC, the

two-level compilation model has the potential to allow general, high level, stream

applications to be easily targeted to GPU hardware.
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Figure 4.1: Graphics Processors mapped to SVM

To explore the feasibility of this approach, the next section will look at how we

can extract SVM performance parameters from simple experiments and then validate

if the SVM model can accurately predict performance from the simple parameters,

versus the actual run-time of small applications.

4.1.1 Characterization Methodology

GPU Tech Trans Mem Clock Texture Mem
(um) (M) Bw (MHz) MB

(GB/s)
Nvidia GeForceFX 0.13 130 27.2 450 256
5900 Ultra
ATI Radeon 0.15 107 21.8 380 256
9800 Pro

Table 4.2: GPU published specs

In this study, we investigate the SVM model parameters for the best graphics

processors available in 2003, the ATI Radeon 9800 Pro and the Nvidia GeForceFX

5900 Ultra. The public characteristics of the two GPUs are listed in Table 4.2.
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Certain SVM parameters such as the frame buffer capacity are easy to obtain

from datasheets. On the other hand, sustained GFLOPS and bandwidth parameters

are difficult to calculate from advertised peak rates due to the irregular nature of the

GPU organization. Fragment engines use packed (SIMD) arithmetic to achieve high

computational throughput. However, that generation of GPU’s instruction set did

not include any control flow instructions such as branches1, which complicates com-

putations with conditional statements. Memory accesses to program data must use

texture load and store instructions into the two dimensional frame buffer. Further-

more, load accesses are first filtered by a cache optimized for the spacial locality of

texture accesses where an individual access interpolates a texture sample by looking

into neighboring values in a two dimensional space. Finally, fragment programs un-

dergo recompilation when loaded on the GPU. The vendor-provided loaders perform

dynamic reallocation of register and expand or transform assembly instructions into

native operations of the graphics engine.2

To accurately estimate the SVM model parameters for the two GPUs, we use a

series of micro-benchmarks. Each micro-benchmark targets a specific performance

feature of the GPU, such as its sustained performance in the presence of conditionals

or the sustained bandwidth from the local memory to the local register file. We wrote

the benchmarks in OpenGL ARB fragment program assembly [2] or compiled them

from Cg. Special care was necessary to ensure that the loader does not optimize away

the resource constraint we are trying to measure in each case. The test platforms were

both high end workstations, containing a 3GHz Pentium 4 with a 800MHz front-side

bus, 2GB of 400MHz DDR DRAM and an AGP 8x bus, running Windows XP and

latest release drivers from the graphics card vendors.
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Figure 4.2: Instructions per second

4.1.2 Micro-Kernel Analysis

Compute Unit

Figure 4.2 shows the number of SIMD instructions per second that can be executed for

each of different compute operations3. Many of these instructions operate on all four

components of the data. This measurement was made using only one live register,

because we will see later that the number of live registers can have an impact on the

peak instruction throughput.

The ATI hardware is consistent at 3G instructions per second (12 Gflops) for most

operations, with only a few exceptions. These exceptions are assumed to be caused

by functions that are implemented in multiple instructions (up to 10 for trigonometric

functions). The 3G instruction rate matches the published specs for the ATI part:

380MHz with eight fragment pipelines gives theoretical maximum performance of 3.04

G Instructions/s.

The Nvidia hardware has more variation in performance. It implements most

combinations of multiplies and additions at 5G Inst/s (20 Gflops) while all other

instructions are performed at less than 2.5G Inst/s. Given the GeForceFX clock

1The opposite constraint is true for the vertex engine.
2More recent GPUs have relaxed these constraints in a unified shader model
3Instruction description available in [2]
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is supposed to be at 450MHz with four fragment pipelines, this suggests that each

pipeline has three Multiply-Add units for a theoretical throughput of 5.4G Inst. All

other instructions seem to benefit from only one functional unit per pipeline, also

trigonometric functions benefit from some acceleration that bring their throughput

up to 2G Inst/s.

Reductions

Because there can be no shared variables within a kernel between elements, there is

no way to program the GPU to do reductions in a single pass. So reductions have to

be implemented as multiple passes where we read in a number of elements and reduce

these elements together to produce a smaller stream, and so forth till we produce a

single value. While the multiple passes do add some overhead for small streams, for

large streams the time is dominated by the first round of reduction, and from our

experiments a reduction rate of 0.3 G Inst/s is seen, about a tenth of the potential of

the machines.

Conditionals

In streaming applications, conditionals occur when the amount of work differs on a

per element basis in the stream. Because stream architectures are data parallel, there

are two ways to deal with this: predication and conditional streams. Short branches

are good candidates for predication because the overhead of predicated instructions

is low compared to the one of splitting a kernel.

Conditional streams are more useful for long branches where operations on the

different element are substantially different. In this case, the elements of a streams

are classified into two separate streams depending on whether or not they are taking

the branch. Then two different kernels are applied to the two streams [17]. This

method suffers from the overhead of the split into two kernels and recombination into

a single stream at the end (if the join is necessary), but it is faster if a large amount

of work must be done for a small number of elements.
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On graphics processors, predication can be implemented by using a KILL instruc-

tion which stops any processing for the stream element depending on the test value.

Like many predication schemes, killing a fragment does not reduce the run-time of

the fragment program, since all operations are still performed, just the results are not

used.

The ATI hardware presents a way to implement conditional streams, since it does

a visibility check (Z-buffer) before operating on a fragment. One could then have the

sorting kernel set this value and have the hardware cull the fragment automatically,

assuming the Z-buffer check was very fast. Unfortunately the interaction between the

rasterizer, which produces fragments in blocks, the visibility test and the fragment

program pipeline makes this scheme less useful for general computation. A simple

experiment shows the problem. First create a simple checkerboard pattern of visibility

over a area. When the checker-board squares are less than 4 on a side, the run-time

of the program is the same as if all fragments were visible. Since in graphics visibility

is often correlated, the hardware checks to see if any of the data in the 4x4 block

being scheduled needs work. If it does, the entire block is scheduled.

Figure 4.3 shows a graph of both hardware conditional methods for a long branch

(60 Instructions). The graph plots the rate of useful SIMD instructions vs the pro-

portion of a branch taken. If the machine handled conditionals perfectly it would be

constant at 3G Inst/s. For conditional streams, the best case is where the fragments

taking the branch are adjacent, as for the random distribution, fragments taking the

branch were randomly distributed. The additional cost of a pass is about 17ms,

the difference between conditional stream and predication when the branch is always

taken.

There is little advantage for hardware conditional streams unless the branch is

expected to be taken less than 10% or the application has a strong correlation between

taking the branch and their location (like visibility in graphics).

Local Register File

In both graphics processors the architectural size of the register file is 32 registers (of

four floats each). This limitation is enforced by the graphics card driver. We will now
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Figure 4.3: Predication vs Conditional

look at how the bandwidth between local registers and the compute units affects the

machine performance.

In a machine with a fully connected register file, we would expect the instructions

per second to remain constant independently of the number of live register. Figure

4.4 shows that ATI’s register organization matches our expectation with performance

unchanged as the number of live registers is increased (only MUL is shown for simplic-

ity) The data for Nvidia clearly indicates a hierarchical register organization, since

performance drops dramatically as the number of live registers increases.

On Nvidia, most instructions’ performance falls off sharply once more than three

live registers are used, just like MUL instruction in Figure 4.4. Dot product (DP3)

instructions which take two vectors and produce a scalar value degrade in performance

much slower than MUL instruction. The less dramatic cutoff in performance for

dot products leads us to believe that this performance limitation is a register write

bandwidth issue. For the ATI chip, the register bandwidth is roughly 179 GB/s.



CHAPTER 4. SVM STUDY ON GRAPHICS PROCESSORS 42

0 5 10 15 20 25 30

Number of Live Registers	

0

1000

2000

3000

4000

5000
M

ill
io

n 
of

 S
IM

D
 I

ns
tr

uc
ti

on
s 

pe
r 

se
co

nd

Nvidia DP3
Nvidia MUL
ATI MUL

Figure 4.4: Impact of Live Registers on FLOPS

Nvidia’s local register bandwidth is a function of the number of live registers

Local Memory

The local stream memory on the GPU is the graphics memory which is nominally

256MB on our graphics card. Some of this space is used by the frame buffers, and

vertex data. The actual size of streams that can be present is 176MB out of 256MB

for both architectures. Individual streams (textures) can be at most 4k by 4k (of 4

floats) on Nvidia and 2k by 2k on ATI. Textures in one dimension are also limited to

2k for ATI and 4k for Nvidia, making them useful only for small streams.

GPU’s memory systems have a cache to capture spacial locality in texture accesses

where an individual access interpolates a texture sample by looking at neighboring
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values. GPUs use the texture cache as a bandwidth amplifier like many DLP proces-

sors. Unfortunately, if we truly are streaming data out of the local memory, and only

reading it once, this cache will not help our memory performance.
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Figure 4.5: Strided Memory Bandwidth

Figure 4.5 shows the effective memory bandwidth when varying the access stride

and the number of textures accessed in a kernel (all accessed with the same stride).

ATI’s memory access seem optimized for accessing a single texture at unit stride

while Nvidia is optimized for two textures at unit stride. ATI with 19.6GB/s for

single texture, unit stride reaches close to its theoretical bandwidth of 21.8 GB/s.

Nvidia reaches its maximal bandwidth with two textures at unit stride, 16.9 GB/s

which is farther from it’s own theoretical bandwidth of 27.2 GB/s.

The effective bandwidth for both architectures drops significantly at a stride of 4,

ATI maintains the same bandwidth for a stride of 8, while Nvidia drops further and
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remains stable at a stride of 16. We guess that a cache line for ATI is a square of size

4 by 4 (vectors of four floats) while it is a 8 by 8 square for Nvidia. If ATI prefetches

more than two cache lines on a miss, then the bandwidth would fall as it does to a

half from a stride of 8 to a stride of 16.

Unit stride is the default access mode for most stream computation where multiple

streams can be accessed at the same time as input. Assuming kernels with two input

streams the effective unit stride bandwidth for both architectures is 16 GB/s.

Another important bandwidth parameter is when the local memory is being ac-

cessed randomly with each kernel loop generating an index. Because we have multiple

parallel instances generating a random address, there is possibility of both reuse in

the cache, as well as bank conflicts in the memory system.
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Figure 4.6: Random Memory Bandwidth

Figure 4.6 shows the random access memory bandwidth. The experiment is set

up to read a texture normally (single stride) and use the texture data as an address
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to sample possibly multiple other textures. The data in the starting texture was

initialized to random values. The size of the texture being randomly accessed is

shown on the X axis, and is the size of one side of a square texture.

Both ATI and Nvidia hardware behave as expected increasing the effective mem-

ory bandwidth when the accessed texture is small. ATI and its cache amplifies its

bandwidth to better than the external bandwidth (21.8GB/s) with textures of lower

than 8 by 8 (1kB). The drop in bandwidth from 8 on a side to 16 leads us to believe

that the texture cache size is between 1kB and 4kB. More than 1 texture get into

each other’s way and lower the effective bandwidth. Maybe the most surprising part

of the graph is that the ATI chip achieves half the theoretical bandwidth on random

accesses to a large texture, where the cache is not providing much benefit.

The Nvidia hardware is again optimized for two textures, and achieves more than

3x bandwidth gain for small textures. The same drop-off in effective bandwidth from

a texture side of 8 to 16 suggests that Nvidia texture cache size is also between 1kB

and 4kB.

This data indicates that these machine can achieve close to their peak memory

performance if the accesses are customized for each machine, and that random accesses

to small data structures will be quite effective. The latter is important if we want to

implement small lookup tables for use in some of our kernels.

Global Memory

In the worst-case, the Global Memory will be placed in the processor’s memory and

be visible to both the host CPU and the stream co-processor. It would store streams

that either don’t fit the local memory and/or need to be manipulated by the host

processor.

Today the host memory is connected to a memory controller chipset which has

private links to both the processor and the graphic processor. The current generation

graphics link is called AGP 8x which has a peak bandwidth of 2GB/s.

On GPUs, most transfers between the host memory and the graphics memory are

to transfer textures to the graphics processor, and not to transfer data from the GPU

back to host memory. In addition, sometimes the textures for an application can
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exceed the storage available in the graphics memory. As a result, the graphics driver

usually makes itself a copy of the texture in the host’s memory in case that texture is

evicted from the graphics memory and needs to be re-transfered later. Since we need

to send all data to the graphics processor as textures, this copying by the driver will

slow down the effective transfer rate.

Architecture Global Mem to Local Mem to
Local Mem Global Mem

Nvidia 350 MB/s 181 MB/s
ATI 920 MB/s 125 MB/s

Table 4.3: Global to Local Memory Bandwidths

Table 4.3 shows the bandwidth for data transfer between main memory and the

graphic memory in both directions. ATI does better in global to local memory while

Nvidia does better in local to global memory. Overall, local to global memory band-

width is much lower than global to local memory bandwidth, although we cannot

see any reason why other than the drivers are not optimized for it as it is not in the

critical path of graphics applications.

4.1.3 Analysis

SVM Parameter ATI Nvidia
Local Memory Capacity 176 MB 176 MB
Global to Local Memory Bandwidth 0.92 GB/s 0.35 GB/s
Local to Global Memory Bandwidth 0.13 GB/s 0.18 GB/s
Local to Register Memory Bandwidth 16 GB/s 16 GB/s
Register File Bandwidth 179 GB/s F(#reg)
Peak GFLOPS 12 Gflops F(#reg)
SIMD Degree 4x4 ?

Table 4.4: SVM parameters for two stream processors

Our use of micro-kernels has enabled us to extract key machine model parameters

for the use of GPUs as stream processors in table 4.4. The complex nature of GPUs
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requires us to consider expanding our performance parameters to better capture the

capabilities of the machine in terms of types of memory access and dependence on

such things as number of live registers. Given these complexities, we were encouraged

the SVM model still performed well as the next section will show

4.2 SVM Validation

The first optimizing high level compiler is presently in development (Reservoir Labs’

R-Stream compiler), but not yet available. Hence, we compare hand-written SVM

code running on a simulator that estimates run-times based on machine model para-

meters to low-level code running on respective architectures.

We are leveraging work done on porting stream application to GPUs from [4] where

part of the Brook streaming language was compiled down to GPUs. This system was

used to generate low-level GPU code and to serve as framework to hand-write the

SVM code (kernels and control code).

The SVM simulator is an implementation of the SVM API that runs SVM code

correctly and estimates the run-time of an application. Run-time estimates are based

on the bandwidth requirements of the different levels of memory hierarchy and the

computation run-times of kernels. Sometimes, computation and DMA transfers over-

lap up to a synchronization point, like when a kernel A is running while kernel B’s

input data is loaded, kernel B has to wait for A to complete and it’s data to be loaded.

The SVM simulator takes into account the greater run-time of the dependencies.

The SVM simulator evaluates kernel run-times using a linear model, each kernel

having a startup and tear-down cost independent of the number of stream elements

to be consumed, and a incremental cost with the number of stream elements to be

consumed. So in addition to the SVM API code, the SVM simulator requires the

linear cost function of each kernel. The kernel schedule from a low-level compiler

would be ideal, but for the GPUs they were estimated looking at the fragment pro-

gram instructions requirements in terms of memory, local registers and arithmetic

instructions.

The three architectures we will be looking at are Imagine [16], a dedicated stream
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architecture and the GPUs from both ATI and Nvidia. The SVM code for both GPUs

differ only in their kernel costs functions and their bandwidth for different types of

accesses. The SVM code for Imagine differs from the GPU SVM code in that it has a

smaller local stream memory which forces some applications to be further strip-mined

when they do not completely fit the local stream memory. Also Imagine has some

support for reductions which has to be implemented as multiple passes on the GPU.

The Imagine hardware evaluation was done using its native programming system of

StreamC, KernelC [16] run on the cycle accurate simulator.

4.2.1 Validation Results

Three kernels were chosen and evaluated for different input data sets sizes to compare

how the SVM simulator, calibrated with the machine model parameters extracted

through micro-kernels, compares to the actual run-times: Image Segmentation, 2D

FFT and Matrix Vector-Multiply.

Matrix Vector Multiply contains a reduction in one dimension which on the GPU

have to be implemented in multiple passes which favor dimensions which are a multiple

of 4, the reduction factor. Figure 4.7 shows the comparisons of run times for the

architectures and their SVMs. The ATI hardware incurs a greater cost when executing

reductions by redirecting an output stream as the input stream of the next kernel.

This is reflected in the high cost even for low dimensions. It is also very sensitive to

the number of reduction passes necessary visible in the sawtooth behavior.

This kernel is bandwidth limited for all architectures, with a high initial cost for

reductions on the ATI hardware. The SVM simulator tracks fairly well the perfor-

mance behavior although it does not capture the sensitivity to the dimensions on the

ATI hardware.

FFT is an example of a kernel which shows almost identical performance behavior

on all 3 architectures as shown in Figure 4.8. At small dimensions, the runtime

is dominated by a one time startup cost that we didn’t model very well from our

experiments, specially for the Nvidia part. Although the SVM simulator is not very

accurate for the small dimensions, it tracks well the performance of larger data-sets.



CHAPTER 4. SVM STUDY ON GRAPHICS PROCESSORS 49

Figure 4.9 compares the run-time of the image segmentation kernel on the actual

GPUs and their estimated run-time by the SVM simulator. Unfortunately a native

Imagine implementation was not completed in time. This kernel is compute limited

and scales linearly with the number of pixels to be processed. On both GPUs the

kernel costs functions based on the arithmetic ops, local register used and stream

memory access pattern are quite close to the actual ones.

We have learned from this experiment that it is possible to model and predict the

run-time of stream kernels using simple performance parameters. This first genera-

tion of programmable GPUs has required a few of these parameters to include other

factors such as memory access pattern for memory bandwidth and register usage for

computation rate on the Nvidia one. The memory bandwidth requirement still hold

for current GPUs because of the nature of their memory system that is optimized

for the common case of accessing big continuous blocks of memory, but performance

degradation due to register size has been solved. Being able to predict the run-time of

kernels will allow a stream compiler to make better decisions on dividing computation

and communication.

4.3 Conclusion

Although from 2003 to 2007, graphics processors have evolved quite a bit and have

become even more friendly to general computation [10][22], they remain specialized

processors with impressive performance mostly for their graphics purpose. The SVM

has proved to be an accurate model in predicting kernel performance from perfor-

mance parameters extracted using simple micro-kernel experiments. With these pa-

rameters, it means that a high-level stream compiler can make good decision about

blocking partitioning and splitting data and kernels.

Now that we’ve established the SVM as a simple parametrized model that provides

enough information to estimate kernel run-times, we need to talk about implementa-

tion of the SVM API. In the next chapter we present the implementation of the SVM

on a multiprocessor system, Smart Memories.
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Figure 4.7: Matrix Vector Multiply run-times for different architectures (solid) vs
their SVM (dashed)
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Figure 4.8: 2D FFT run-times for different architectures (solid) vs their SVM (dashed)
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Chapter 5

Streaming on Smart Memories

This chapter explores implementing a streaming application on a homogeneous chip

multiprocessor, exploring both what hardware is needed to efficiently implement the

SVM API, and what advantages are gained by customizing the memory system for

streaming applications. To enable us to be more concrete in this discussion, we will

use the Smart Memory (SM) multiprocessor as the evaluation platform. It is a system

with a very flexible memory system which allows us to create new memory config-

urations easily. The first section of this chapter will give an overview of the Smart

Memory architecture, focusing on the flexible memory system and DMA engine, since

we will use both in the SVM implementation.

With this background on Smart Memory, Section 5.2 describes some of the con-

figurations that were considered for stream execution. This section describes both

different hardware configurations and different ways of slicing the computation over

the processors. It will also show how certain resource ratios affect the optimal method

of slicing an application over the processors.

Section 5.3 then goes into detail on how the API calls were implemented focusing

mostly on synchronization and how the SVM execution model was used. This im-

plementation provides estimates for the costs/overheads of these operations. These

numbers are then used in Section 5.4 to evaluate the overhead of the SVM on this

machine, and the benefits of customizing the memory system for streaming. Maybe

not surprising, but most of the benefits come from the application partitioning and

53



CHAPTER 5. STREAMING ON SMART MEMORIES 54

prefetching the data, so a cache coherent chip multiprocessor running a streaming

application has only a small overhead to our customized SVM implementation.

5.1 Smart Memories

Quad

Tile

Tile

CC/
DMA

Tile

Tile

Tile

CPU CPU

Load Store

M M
…

Crossbar

Figure 5.1: Smart Memories Quad and Tile

Smart Memories is a modular architecture that keeps local communication paths

short. The smallest unit is the tile which contains two processors and some config-

urable memory mats interconnected by a crossbar. The number of processors and

memory mats in a tile is configurable but we’ll concentrate here on the first imple-

mentation of Smart Memories which has this specific configuration: two processors

and sixteen memory mats.

The processors of Smart Memories are Tensilica LX synthesizeable cores, config-

urable processors that allow for customized instructions to be added[12]. Up to three

instructions can be issued at a time with VLIW-like instructions when possible, while
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not giving up the short instructions encoding when it is not[8]. Given the modular

architecture of Smart Memory, the processors could even be easily replaced by a fu-

ture generation Tensilica processor as long as the interfaces remained the same. In

fact during the lifetime of the Smart Memories project, a single issue processor was

first used and then upgraded to the VLIW capable processor.

The next step up from the tile in the architectural hierarchy is the quad which

contains four tiles and a cache controller and direct memory access (DMA) engine

to communicate with the outside network. Quads are then linked together by an

intercommunication network using low swing wires[13]. Figure 5.1 shows the orga-

nization of the quad and tile. Also attached to the network are memory controllers

that interface large banks of memory with the network.

5.1.1 Flexible Memory System

Smart Memory is unusual compared to most multiprocessors in that it has a flexible

memory system. This flexibility is enabled by different parts of the system, from

special memory instructions in the Tensilica processor, the routing of the memory

access on the tile, to the handling of the memory transaction by the cache controller

on the quad and finally the memory controller attached to the network.

Most machines have a defined protocol for the memory system that dictates the

routing and handling of memory transaction based on the operation and the address.

For a system like the Raw[33] chip multiprocessor, there is one level of caches for in-

structions and data but no coherency between other caches of the system and proces-

sor communicate using a separate network writing and reading to FIFOs. Classical

chip multiprocessors use some form of cache coherency using a directory or another

protocol. The Imagine processor[16] has stream memory system that gets accessed

only by the DMA engine and the stream processor. We explore here how the different

parts of the Smart Memory architecture contribute to the flexible memory system.
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Memory Mats

As the basic configurable memory unit, a memory mat consists of 4kB of SRAM

with some peripheral logic to allow it to fill different roles. A memory mat can

be configured to be used as a basic scratch memory, a FIFO or as part of a cache

containing tags or data for the cache. This programmability has some overheads in

terms of area and power over a specialized memory unit but if it is implemented using

custom circuits these overheads have been found to be in the order of 15 percent for

area and 20 percent for power [21]. For every word (32 bits) some meta-data bits are

kept that are used for different purposes depending on the use of the memory mat.

As an example, a memory mat containing tag data would use meta-data to keep track
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of a cache line as valid and to implement the replacement policy.

Figure 5.2 shows the components of a memory mat on Smart Memory with the

additional parts that enable the memory mat to be more than a simple SRAM in

gray. The pointer logic is used in the fifo mode to keep track of the head and tail

pointers for a number of FIFOs implemented on the memory mat.

DMA Engine

A Direct Memory Access engine is integrated to the cache controller to offload from

processors the bulk transfers of data. It is particularly useful in gathering and scat-

tering data in between local memory on a tile and the outside.

The DMA engine supports different types of operations which are differentiated

by the way the addresses are generated and the mapping between the contiguous data

on the tile and its origin or destination on the outside. Besides the obvious transfer

of a single block of data, the DMA engine supports two addressing modes: strides

and indexed accesses.

Strided accesses specify a record size and stride in between two successive records

that are to be gathered or scattered. A good example for their use is to get a column

of elements from a matrix that has been stored in a row major way. Strides are

also useful for decimating filters, allowing one to express the skipping of every other

elements in a simple and compact way that minimize usage of on-chip memory and

address generation from the processing element.

For any other distribution of records, it is possible to use indices in a tile’s memory

as the location of each of the records to be transferred. A common non-trivial memory

access patterns is the butterfly combination while computing the discrete Fourier

transform using the Cooley-Turkey FFT algorithm. Address indices can be computed

in advance by a processor on a memory mat used as scratch memory. In the case of

an unstructured mesh of elements each element can contain a list of other elements to

which it is connected to which can be used as indices to fetched connected elements.

DMA transfers are configured and initiated by writing to memory-mapped regis-

ters, with a final write to a control register that starts the DMA transfer. As part

of the configuration of a DMA transfer, one can tell the DMA controller the memory
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address to write to and the data to be written when the operation completes. In this

way, it is possible to notify a processor of the completion of the DMA transfer. The

write can either allow a requesting processor to trigger an interrupt call on itself, or

it can the free a lock that a processor will eventually wait on. Thus without having

to poll the DMA controller and generate extra memory traffic, it is possible to be

efficiently alerted of the completion of a DMA transfer.

There could be multiple DMA transfers simultaneously from within the same

quad, using named DMA channels. The serialization point of the quad, the network

interface can only send a single message per cycle, so in effect having multiple DMA

channels will cause simultaneous transfers to be interleaved.

There could be advantages to interleave such transactions in order to give the

interconnection network a more uniformed traffic pattern. Though in our case most

traffic goes straight to the memory controllers and cache lines are inter-leaved between

different memory controllers giving most access patterns a uniformed distribution

unless they are the worst case stride and always hit the same memory controller.

5.1.2 Smart Memories Use Cases

To understand how the flexible memory mats, tile crossbar and cache controller can

work in a real configuration we will look at the most common configuration, system-

wide coherent L1 caches and how to implement fast synchronization operations.

Cache Coherent Configuration

Instruction and data caches are separate and connect to the processor through two

different processor ports. The caches can be shared among the two processors in each

tile but since the caches can only handle a single access per cycle it means that one

of the processors will be stalled when both processors have a cache access.

In order to implement a cache using memory mats, some will be configured as

mats containing tags and some will contain data. The parameters to choose from in

designing our caches will cache line size, associativity and cache size. In the simplest

configuration we will have a single tag mat and a single data mat, where the cache
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line size is a single 32 bits word, and is a direct mapped cache. To increase the cache

line size, we can either add another data mat in parallel or shift the address bits to

the tag mat so that data words now map to one tag. To add more associativity to

our single-word line size direct mapped cache we will add another tag and data mat

in parallel such that accesses will be tested in parallel.

The processor load/store unit and the memory mats have to be configured to know

what to do on a cached memory access. The tag mats are accessed in parallel with

a compare operation with the address value. The tag mats are programmed to use

some of the address to lookup their RAM, if the tag stored at that address matches

and the meta-data bit containing valid is high, the tag mat asserts its output that

goes out to other memory mats. The data mats were are also accessed in parallel at

the same time as the tag mats. If the output of the associated tag mat goes high

indicating a hit, the data mat will return the data value to the load/store unit. No

result indicates a miss, at which point the load/store unit initiates a miss to the cache

controller.

Memory Configuration Cache Data Mats Cache Tag Mats Total Memory Mats
two 8kB one-way I-cache 2 1 6
shared 64kB two-way D-cache 8 2 10
Total 16

Table 5.1: Smart Memories sample cache configuration

The first major choice is the size of the cache line for both the instruction and

data cache. Since the memory map of the system separates the instruction and data

segments it is possible to have different cache line sizes for both. The instruction port

of our processor is 64 bits wide (eight bytes) so it is our natural minimal cache line

size. So at a minimum the instruction cache will use two memory mats to contain

the data and another mat to contain the tags. If we wish to have more associativity

for the same cache line size we need to add another three mats, two more for data

and another one for tags. The data cache can have a cache line size of a four bytes

because it is the size of data port as well. The larger cache line size amortizes the

cost of the tag mat across more data mats but reduces the possible associativity of
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the cache. Table 5.1 shows the memory mat usage for a sample cache configuration

of two 8kB direct mapped instruction caches and a shared 64kB two-way data cache.

Synchronization Operations

Something that was not exploited in the configuration of memory mats as caches

was the configurability of the processors. The Tensilica LX allows us to add special

operations, and in our case we will add special types of loads and stores instructions

to support fast synchronization methods.

We’ve seen that the meta-data bits in the tag mats are used to save such informa-

tion such as if the cache line is valid. In the data-mats or any other mat configured

as a regular SRAM they could be used for other purposes. By using one of the meta-

data bits as a lock on the current word we can implement a system that provides

single word locking. This does require that every word in the rest of the memory

system keeps that meta-data bit around including when a word is written back from

the cache.

We will create three new memory operations to implement fast single word locks.

Safe-load will stall the process if the safe meta-data bit is not set; if it is set, it will

unset it and return with the value. Safe-store stalls when the safe meta-data bit is

set; if is unset, it sets and it and writes it’s value to that location. Finally, always-

safe-store never stalls, always sets the safe meta-data bit and writes it’s word at the

location.

Some of the implementation details require the memory controller to keep track

of each processor stalled on a memory operation. Successful safe write and loads are

propagated to the appropriate memory controller too wake a processor waiting on

that memory access. The process of waking is fast, just a re-issue of the instruction.

It is also possible to keep track of the local quad processors which are blocked on a

such access and when the access is to a local tile, wake the appropriate quad processor.

With these instructions it is possible to implement all kinds of fine grain locks

that are fast and efficient. We will see in Section 5.3 that we will build upon them to

implement synchronization of the SVM library.
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5.2 SVM on Smart Memories

The Smart Memories memory mats can be configured in many different ways by

configuring them to perform different memory operations. At a higher level the

memory mats will be configured to act as caches, FIFOs and static SRAM.

To implement the Stream Virtual Machine on Smart Memories, we will have to

decide how to use the memory resources and create a SVM model to be used by the

high-level compiler to generate a SVM source file that will be recompiled using our

SVM library.

Control

Processor

8kB

I Cache

Stream
Processor0

8kB

D Cache

4kB

SVM

Sync

8kB
I Cache

16kB

Stream

Memory

DMA/
Cache

Controller

Main

Memory

4kB

stack

Key

Execution engine

Scratch Memory

Cache

Figure 5.3: Smart Memories SVM Mapping

Figure 5.3 shows the configuration of a Smart Memories tile as the simplest stream

system possible - a single stream processor. The control processor has some amount

of instruction and data cache to help with bookkeeping and a small amount a scratch

SRAM to help communicate and synchronize with the stream processor and DMA

engine. As seen in the previous section, the instruction cache needs a width of 64

bits since that is the instruction port size for the VLIW processor. So at a minimum

the cache line has to be 64 bits, using two data mats, with another memory mat

containing the tags as a one-way cache.

The stream processor requires some amount of instruction memory which could

be SRAM but that would require pre-loading kernel codes ahead of time, and some
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smart partitioning for codes that don’t fit the SRAM. Using an instruction cache

eliminates both these issues at a minimal performance hit. The stream memory’s size

is the main parameter passed to the high-level compiler generating SVM API code.

The DMA engine will bring data in and out of the stream memory and the stream

processor will operate on the given data. Finally, to avoid running out of registers for

temporary variables in the stream processor, a separate scratch SRAM is allocated

and given to the low-level compiler as the stack location.

Table 5.2 shows the allocation of the sixteen memory mats on a tile for this

particular configuration. The unit of the stream processor which is separated in the

dashed box can be replicated many times, two per tile as it uses eight memory mats,

half of a tile’s memory resources. Because of the quantized nature of the allocation

of memory mats as tags or data ressources and the limited number of mats that

are avaiable on our prototype, we end up with caches that have a significand area

overhead for the tags. Dedicated caches on processors have cache lines that are 128

bytes wide whereas our cache line size are 4 or 8 bytes wide. Our overhead for tags

is in the area of 50% to 100% whereas a conventional cache would have an overhead

of 5% to 10%.

Memory Configuration Cache Data Mats Cache Tag Mats Total Memory Mats
8kB one-way I-cache 2 1 3
8kB two-way D-cache 2 2 4
4kB Sync SRAM 1
8kB one-way I-cache 2 1 3
16kB Stream SRAM 4
4kB Stack SRAM 1
Total 16

Table 5.2: Smart Memories mat usage in stream system

5.3 SVM API

The SVM execution model has different threads of control that can run out of sync as

the operations they are waiting on complete potentially out-of-order. Next we’ll look
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at how we solved some of these issues on Smart Memories, including issues of syn-

chronization and waiting, as well as how to deal with a very simple non-autonomous

DMA engine.

5.3.1 Sync Operations

The first issue we’ll address is low overhead synchronization. This will enable some

tasks to wait on others to complete before they can start. For example, a kernel must

wait for the DMA fetching it’s data to complete before it can start. To allow kernels

to work on small blocks of data, this synchronization must be efficient.

A first naive solution might have a waiting thread of control poll a memory location

to check if the other task has completed, but this solution is inefficient both in terms of

power dissipation and memory bandwidth usage. Using interrupts to wake a process

from a waiting state also won’t work since each interrupt service routine is in the

order of 50 instructions. For small tasks this overhead is too high.

Instead we use the capabilities of the Smart Memories flexible memory to solve

this problem efficiently. We use the safe memory instructions described in Section

5.1.2. By having different resources issue safe writes to a specific memory location for

each task, any waiting processor that has a blocked safe-load will be awaken, giving

almost instantaneous synchronization.

5.3.2 Simple DMA Controller

As we’ve seen in the previous section on the design of Smart Memories that the DMA

engine was deliberately kept simple with no capability for queuing request, only the

capability to launch as many transfers as there are DMA channels, monitor their

progress and notify other tasks when the DMA completes by issuing a final memory

write of programmable type, address and data.

In our execution model of having the stream processor control all of it’s DMA

transfers within a double-buffered loop, most likely there will be more than a single

transfer to be launched at each instance. Also in Smart Memories, four processors

share a DMA engine with many DMA channels but most likely less than one per
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processor. So the queuing issue is further complicated by issues of synchronization

and possible concerns for arbitration.

With the large number of simple processors systems like Smart Memory provide,

we can dedicate a processor to orchestrate DMA transfers, monitor completion of

DMA transfers and start the ones that are waiting. In order to handle having multiple

stream processors initiate transfers at the same time with little overhead, we will use a

memory mat as a FIFO. By writing a single pointer to a data structure that contains

a DMA transfer request, many DMA requests can happen at the same time without

any interruption from the requesting stream processors.

The processor managing the DMA engine can then launch any DMA transfer by

copying the necessary configuration register to start the DMA transfer on a free DMA

channel. Another memory mat can also be used as a FIFO in which DMA channels

write their ID upon completion of the transfer in order to have CPU clean up after

the transfer and start the next transfer.

In this simplified model, the CPU managing the DMA engines has to do a lot of

polling on both FIFOs for new and completed DMA transfers which generates a lot

of memory traffic. While this traffic is local to the tile, the processor is still wasteful

of energy. Again we can use the Smart Memories synchronization memory operations

to enable fast and energy efficient memory synchronization.

By using a memory mat as scratch memory, a single word can be used to syn-

chronize the DMA service process to incoming work. Rather than polling the queue,

the DMA manager does a safe-load of the word, which means that it will block until

someone else does a safe-write to that same word. When work is generated, either

by the stream processors or the control processor, they issue an always-safe write to

the synchronization word. We use an always-safe-write, whose behavior will be that

if the safe bit is already set in the word the write doesn’t complete but is reported as

successful and thus doesn’t block the issuing processor, since it is possible that other

work has already arrived. Since we are using this location to “wake up” the processor,

there is no need to record how much work is waiting. On “wake up”, the DMA man-

ager services both FIFOs for incoming DMA requests and completed DMA transfers,

then issue a safe read to the synchronization word. This read puts the processor to
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sleep until more work arrives. There is a race condition between writing to the FIFO

and the “wake up” location since the FIFO write needs to complete first. We handle

this race by placing both the FIFO and the “wake up” location on the same tile since

all operations are ordered in a tile.

As DMA requests will come from multiple stream processors to use the limited

resource of the DMA engine, we could conceive of a need for arbitration. In the

case of applications running in a time-multiplexed mode and all stream processors

execute in parallel with the same expected execution time, the policy desired will be

one of equality. Whereas in a space-multiplexed execution model, with some stream

processors having more load than others and are expected to set the critical path of

execution, we would like higher priority for their transfers.

In the end, we found that arbitration gave little benefits because the policy desired

generally occurred at the steady state. For a policy of equality between kernels that

have identical execution time, they will get staggered in time, starting as soon as the

last transfer they were waiting for completes, then issue their next commands when

they complete their kernel.

For space-multiplexed kernels, at steady-state all non-critical path kernels will

complete and will wait for the critical path kernel too be done to push or pull data

to/from it. Given that the computation is not bandwidth limited the DMA engine

will also be idle, then upon the critical path kernel completion, it will issue it’s DMA

commands which will be executed first in order, as if they had higher priority.

The overheads of implementing an arbitration on the DMA manager can be eval-

uated when looking at which one of the FIFO service would suffer. Since most of the

work would come when there is a lot of contention, the main risk would be to delay

servicing a completed DMA transfer and issuing the next one. As in the reasoning

behind having only two DMA channels to keep the network interface busy during the

switching of a transfer, as long as DMA transfers would be longer than the total time

to service them, the performance cost would be minimal.
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DMA Manager outside Quad

Dedicating a processor per Quad to manage the DMA engine of the Quad sacrifices

one eight of computing power to system management issues which is an expensive

cost. There is nothing that prevents a processor from managing DMA engines in

other Quads, the only cost would be extra latency for each inter-quad transfers in

between the Quad with the Stream Processor and DMA Engine to the Quad of the

DMA manager. Since this latency needs to be hidden by the operation of the other

channel, this increases the requirement for long DMA transfers

With only one DMA manager controlling multiple DMA engines access, it cannot

let all requests wait in a single FIFO: a request for an idle DMA engine could be stuck

waiting behind requests for a busy DMA engine. A separate FIFO for each different

DMA engine is needed. Each memory mat on Smart Memories can be configured as

a single FIFO of 1024 words or two FIFOs of 512 words. The FIFO for completions

doesn’t need to be split since completed requests have to wait for the DMA manager

to perform maintenance on them, so there is no separate contention for completed

transfers.

In a large system, having more DMA transfers to manage causes more contention

for the DMA manager so the number of DMA managers will have to be scaled to

prevent it from becoming a bottleneck for the application.

5.4 Performance Study

Ground Moving Target Indicator (GMTI)[28] is a test application meant to represent

future workloads of avionics. As part of the Polymorphous Computing Architecture

(PCA) program, MIT-LL has developed a version of the GMTI application meant to

stress future computing architecture on such a workload. The front-end of the appli-

cation consisting mostly of signal processing is called the Integrated Radar Tracker

(IRT).

Most of the processing is composed of classical signal processing algorithms such

as fast Fourier transform and finite impulse filters. But there are also a lot of matrix
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Figure 5.4: Full Smart Memories system configured for streaming

manipulation and solvers. The input data is 16-bit integers but the computation is

all done in floating point in order to accommodate the expanding dynamic range of

the intermediate results.

5.4.1 GMTI Kernel description

1. The time delay equalization (TDE) stage compensates for differences in the

transfer fucntion between channel.

2. The adaptive beam forming stage transforms the filtered data into the beam-

space domain to allow detection of target signals coming from a particular set

of directions of interest while filtering out spatially-localized interference.
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Figure 5.5: GMTI application

3. The pulse compression stage filters the data to concentrate the signal energy

of a relatively long transmitted radar pulse into a relatively short pulse response.

4. The doppler filtering stage processes the data so that the radial velocity of

targets relative to the platform can be determined.

5. The space time adaptive processing stage is a second beamforming stage

which removes further interference and ground clutter interference.

6. The target detectio stage uses constant false-alarm rate (CFAR) detection to

compare a radar signal response to its surrounding signal responses to determine

whether a target is present and uses target grouping to eliminate multiple target

reports that are actually just one target.
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7. The target parameter estimation stage estimates target positions in order

to pass them to the tracking algorithms.

5.4.2 Application Performance

The GMTI application was written for the R-stream high-level compiler[19] in such a

way that the application could also be compiled by a regular C compiler to produce a

regular single thread application in order to compare application run-times between

streaming and a single-thread version. Three different data set sizes were also selected

to represent different types of workload based on the size of the input radar data which

are summarized in Table 5.3. Na

Category Small Medium Large
FFT size 64 512 4096
TDE filter taps 12 32 36
Nch channels 6 8 9
Nrg range gates 36 450 2691
Npri pulse repetition interval 15 48 31
Nbm beam 4 4 7
Npc filter taps pulse compression 12 32 167
Ndop Doppler bins 14 47 30
Nstag pri staggers 2 2 2
Ncnb clutter null beams 4 2 5
Parallelism for TDE and Adaptive Beam Forming
NchxNrgxNpri 3.2k 173k 751k
Parallelism for Pulse Compression
NbmxNrgxNpri 2.1k 86k 584k
Parallelism for Doppler Filter
Nbmx(Nrg + Npc − 1)xNpri 2.8k 86k 584k
Parallelism for STAP
Nbmx(Nrg + Npc − 1)xNdopxNstag 5.3k 181k 1.2M
Parallelism for Target Detection
Ncnbx(Nrg + Npc − 1)xNdop 2.6k 45k 429k

Table 5.3: GMTI data set

The GTMI application was compiled using the R-stream compiler for the different
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data set sizes for different number of stream processors to evaluate the scaling of

the streaming model for different data set sizes. The streaming execution model

used was the one supported by the R-stream compiler, which is time multiplexing

the kernels. Graph 5.6 shows the speedups of running the different dataset sizes

on different number of stream processors. The scaling is very good for the GMTI

application but it is important to remember that if we are comparing the scaling for

equal computing resources, the streaming model in Smart Memories always uses two

additional processors, the control processor and the DMA engine manager.

2 1.04E+02 1.26E+02 1.41E+02

4 2.03E+02 2.46E+02 2.52E+02

0 1.19E-01 1.32E-01 1.39E-01 Theoretical

1 1.35E-01 1.63E-01 1.82E-01

2 1.30E-01 1.57E-01 1.77E-01

4 1.27E-01 1.54E-01 1.57E-01

0%

5%

10%

15%

20%

P
e
rc

e
n

ta
g

e
 o

f 
M

F
L

O
P

S
 

u
s
e
d

GMTI SVM Speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Small Medium Large

D
a

ta
s

e
t 

S
iz

e

1 Stream Proc

2 Stream Proc

4 Stream Proc

Figure 5.6: GMTI speedups vs single thread case



CHAPTER 5. STREAMING ON SMART MEMORIES 71

There is good concurrency of data transfers and computation in the GMTI appli-

cation, since in fact most data transfers are small compared to the computation times.

Graph 5.7 shows for a two stream processor configuration the overlay of computation

kernels and DMA transfers on the two DMA channels.

• GMTI is a radar application contains 7 kernels

Stream
Proc 0

Stream
Proc 1

DMA
Channel 0

DMA
Channel 1

Time

Figure 5.7: GMTI application run-time resource usage
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5.4.3 Overheads of Virtualization

The decision to use a high-level compiler to generate SVM API code instead of using

direct primitive of the underlying architecture allows the high-level compiler to be

relieved of knowing of the specifics of each stream architecture but the cost comes in

terms of performance. We can evaluate an upper bound on the performance loss due

to using the SVM API by evaluating the number of instructions that run code for the

SVM, managing data structures that are intrinsic to the SVM and are not essential to

manipulating the underlying hardware constructs. Although this code is not always

in the critical path, in the worst case it always is and evaluating the proportion of

this code with regards to the overall number of cycles of the application runtime we

have an upper bound for the performance penalty of the SVM API.

Figure 5.8 shows a graph of the ratio of SVM API instructions over the run-time in

cycles of the application GMTI application for different dataset sizes and number of

stream processors. As expected, the impact is greater on smaller dataset sizes running

on the largest number of stream processors since thereis the least application work

on each processor. As the dataset size increases the double-buffered super kernels are

getting amortized across more iterations and the performance penalty limit is less.

The overhead of the SVM API is quite reasonable, and the upper bound on the

GMTI application for any combination of the larger dataset is below 0.3%.

5.4.4 Streaming Advantage

A lot of the advantages of streaming come from blocking the application to sizes that

fit the small local memories and chaining operations to preserve the locality of the

blocking. These same properties are beneficial and will be exploited on cache systems

as well. In many ways comparing an unoptimized application using caches to a stream

version is unfair to the cache systems.

In order to get a fairer view of the advantage of stream hardware, we can use

the SVM API code generated by the Stream compiler and run it on a system with

caches. All that is needed is to change the kernels that load and store data because

we will no longer prefetch data using a DMA into a dedicated memory space. Instead
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Figure 5.8: SVM Overheads for GMTI application

we modify the code by replacing the calls to streamLoad and StreamStore with the

proper memory address calculation.

In order for the cache system to benefit from the stream blocking and locality

their cache size will be made the same size as the stream memory. For a given size

stream memories are simpler and smaller in die area than caches. This makes the

cache system a little more resource expensive.

Figure 5.9 shows the result of this run-time comparison for the GMTI application.

The Stream configuration of Smart Memories is faster but only by an average of five

percent. The SVM configuration benefits from prefetching of data through the DMA

engine but on an architecture with hardware predictive prefetching this advantage

would diminish. As the computation is more and more dominated by the stream

portion of the application (larger datasets) the improvement increases and it decreases
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vs a cache configuration

with more stream processors.

An important caveat is that we didn’t explore rebalancing the ratio of computa-

tion and memory bandwidth for both the stream and conventional processor. For a

dedicated stream processor, memory bandwidth ressources are more expensive than

additional ALUs on the die, so it is in the interest of the processor to be memory

bandwidth limited for most cases by adding ALUs. In our test system, adding ALUs

to our processor in the form of a short vector unit would have required modifying

the load/store system for any real improvement in performance and unfortunately

this option was not explored. The performance of computation limited kernels could

have been improved on a stream processor of equivalent die area by adding ALUs to

compensate for the added cache overhead of conventional processors.



Chapter 6

Conclusion

New programming models are needed to effectively use future parallel systems. Stream

programming is one such model. By retaining a “single thread of control” this com-

putational model is easier to understand and reason about than normal threaded ap-

plications. By having the kernels that this thread controls operate on large “streams”

of data, it also exposes sufficient parallelism to leverage modern machines. While this

general compute model has been widely adapted, hardware implementations are all

slightly (or not just slightly) different, and many stream languages have been pro-

posed. This leads to each group working on their own software system, which leads

to difficulties in sharing infrastructure, and slows down the overall streaming software

development.

To address this issue, we introduced the Stream Virtual Machine (SVM), an ab-

straction layer that allows one to share some of the compiler infrastructure. This

layer can model most stream hardware, and should allow Steam software systems to

compile into SVM code, and then need a simpler SVM to native code translation. By

defining the abstraction level as a C-language API, it is easy for different underlying

architectures to implement the SVM and for a stream compiler to generate SVM

code. However, for this model to be useful it must be to possible to accurately model

the underlying performance and resource constraints of the native hardware.

The SVM machine model’s simple parameters of execution rate and bandwidths

has shown to be a good predictor of the run-time of simple kernels as was shown in

75
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our study on graphics processors. By extracting the performance parameters through

very simple experiment we were able to predict the application run-time of simple

kernels very accurately which would help a high level stream compiler being fed such

performance parameters make good decisions.

The SVM also clarifies some of the important implementation issues for hardware

to support streaming efficiently. The base SVM model has three threads of control

– one for the control processors which issues kernel operations, one for the DMA

engine, which fetches the needed data, and one for the kernel execution. By mapping

the SVM onto the Smart Memory chip multi-processor, we showed that the entire

interface could be implemented using just a few specialized memory structures that

were available using Smart Memory’s flexible memory system. Using this system we

were able to show that while using local memory (stream register files) saves hardware

overhead, for many applications it provides only a modest performance boost over

caches.

The Stream Virtual Machine is a good abstraction layer to allow stream programs

to be portable across different architectures without much performance loss over a

native implementation. The fact that there is only a small performance advantage

of stream memories over caches makes it an interesting programming target even for

common chip multiprocessors which lack a good application base of parallel programs.
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