
HIGH-RADIX INTERCONNECTION NETWORKS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

John Kim

March 2008

c© Copyright by John Kim 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(William J. Dally) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Mark Horowitz)

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Kunle Olukotun)

Approved for the University Committee on Graduate Studies.

iii

iv

Abstract

Over the past twenty years, the pin bandwidth available to a chip has increased by

approximately an order of magnitude every five years – a rate very similar to Moore’s

Law. This increasing pin bandwidth can be effectively utilized by creating high-radix

routers with large number of skinny ports instead of low-radix routers with fat ports.

The use of high-radix routers leads to lower cost and better performance, but high-

radix networks present many difficult challenges. This thesis explores challenges in

scaling to high-radix routers, including topology, routing, and router microarchitec-

ture.

Topology is a critical aspect of any interconnection network as it sets performance

bounds and determines the cost of the network. This thesis presents a cost-efficient

high-radix topology referred to as the flattened butterfly topology which exploits the

availability of high-radix routers. Compared to a folded-Clos topology, the flattened

butterfly provides approximately 2× reduction in cost per performance on balanced

traffic while maintaining the same cost per performance on adversarial traffic pat-

tern. Given the topology, routing determines the path between the source and its

destination. Proper routing is required to exploit the path diversity available in a

high-radix network and we discuss the advantages of using adaptive routing in high-

radix networks as well as how non-minimal routing is critical to properly exploiting

the flattened butterfly topology.

Conventional microarchitectures do not scale to high radix since the complexity of

the allocators in the routers scale quadratically with the radix. This thesis presents

a hierarchical router organization that results in a distributed, complexity-effective

v

microarchitecture and maintains high performance. As a case study, the implemen-

tation of this microarchitecture in the Cray YARC router with 64 ports will also be

presented.

With the recent increase in the number of cores on a single-chip, the on-chip

interconnection network that connects the on-chip cores and memory together will

become more critical in determining the overall performance and cost of the entire

chip. In the last part of this thesis, we expand the use of high-radix routers to on-chip

networks and show how high-radix routers and the flattened butterfly topology can

be mapped to on-chip networks.

vi

Acknowledgements

I am truly grateful as I finish this thesis. This thesis would not have been possible

without the support of many people. I feel I have put in a lot of effort but it is truly

through the grace of God that I write this acknowledgement section as I wrap up my

thesis. I thank God for the opportunity to undertake this work and the opportunity

to meet and come across the following people who made this thesis possible.

Graduate school at Stanford would not have been possible without the support of

my parents to get me here so I would like first thank my parents for their support.

Without their dedication and sacrifice, none of this would have been possible.

I am deeply indebted to my advisor Professor Bill Dally. I have been very fortunate

to be able to have worked under his guidance. His expertise and breadth of knowledge

provided great insights into research and made this thesis possible. I would like to

thank Professor Mark Horowitz and Professor Kunle Olukotun for serving on my

committee as well as providing feedback on the thesis. I would also like to thank

them for the different opportunities during the early days of my graduate school as

I had the opportunity to TA for Professor Olukotun for couple of quarters and had

the opportunity to work on the Smart Memories project under Professor Horowitz. I

would like to thank Professor Andrea Montanari for serving as the chair of my oral

committee.

I would like to thank Dr. Steve Scott and Dr. Dennis Abts of Cray for their

support in this research – especially Dennis with the constant e-mail exchanges to

understand the different issues and exchange ideas.

I would like to thank the current and the former members of the Concurrent

VLSI Architecture (CVA) group, for their help and support throughout these years.

vii

I especially thank the interconnecters (Brian, Ajrun, and Amit) and enjoyed the nu-

merous network subgroup meetings and the stimulating discussions. Many thanks to

Brian for his help in getting my first paper published. I would also like to acknowl-

edge Patrick, Amit, and Tim for being extremely supportive and understanding office

mates. I also thank James and David for proof reading parts of this thesis. I thank

Ji-young for his help in finalizing this thesis and allowing me to remotely submit the

thesis.

On a personal level, I would like to thank Pastor Park Jongwhan and his family

for their support and prayers during my years at Stanford. I am grateful for their

friendship. I would like to thank Pastor Seol and the members of Cornerstone Com-

munity Church for their support as well. I would also like to thank my family and

friends for their support, especially my parents-in-law for encouraging me to finish

my thesis in a timely and manner. And last but not least, to my wife Sun for her

love, patience, and support as I finished my thesis.

viii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Introduction to Interconnection Networks 1

1.2 Importance of Interconnection Networks 4

1.3 Technology Trend . 5

1.4 Contributions . 6

1.5 Outline . 7

2 Motivation for High-Radix Routers 9

2.1 Comparing High-Radix and Low-Radix Routers 9

2.2 Need for High-Radix Routers . 11

2.3 Summary . 16

3 Flattened Butterfly Topology 17

3.1 Existing High-Radix Topologies . 17

3.2 Topology Construction: Butterfly to Flattened Butterfly 20

3.3 Routing and Path Diversity . 22

3.4 Cost Model . 23

3.4.1 Cost Model . 24

3.4.2 Packaging and Cable length 27

3.4.3 Cost Comparison . 30

ix

3.5 Discussion . 34

3.5.1 Design Considerations . 35

3.5.2 Wire Delay . 37

3.5.3 Power comparison . 39

3.6 Related Work . 40

3.7 Summary . 43

4 Adaptive Routing in High-Radix Networks 44

4.1 Routing on High-Radix Folded-Clos Topology 45

4.1.1 Adaptive vs. Oblivious routing 45

4.1.2 Allocation Algorithms in Adaptive Routing 52

4.1.3 Cost Analysis . 58

4.2 Routing on Flattened Butterfly Topology 63

4.2.1 Routing Algorithm Descriptions 64

4.2.2 Evaluation & Analysis . 65

4.2.3 Comparison to Other Topologies 69

4.3 Related Work . 70

4.4 Summary . 70

5 Microarchitecture of a High-Radix Router 73

5.1 Baseline Architecture . 74

5.2 Extending the baseline to high radix 76

5.2.1 Switch Allocation . 76

5.2.2 Virtual Channel Allocation . 77

5.2.3 Performance . 80

5.2.4 Prioritized Virtual Channel Allocation 81

5.3 Fully Buffered Crossbar . 83

5.3.1 Switch and Virtual Channel Allocation 83

5.3.2 Crosspoint buffer credits . 84

5.3.3 Performance and area . 85

5.3.4 Fully Buffered Crossbar without per-VC buffering 86

5.3.5 Other Issues . 88

x

5.4 Hierarchical Crossbar Architecture 88

5.5 Simulation Results . 92

5.6 Case Study: Cray BlackWidow YARC router 94

5.7 Related Work . 98

5.8 Summary . 98

6 High-Radix Routers in On-Chip Networks 100

6.1 Background . 100

6.1.1 Cost of On-Chip Networks . 101

6.1.2 Latency in On-Chip Networks 103

6.2 Topology Description . 104

6.3 Routing and Deadlock . 105

6.4 Bypass Channels and Microarchitecture 106

6.5 Router Bypass Architecture . 109

6.5.1 Mux Arbiter . 110

6.5.2 Switch Architecture . 110

6.5.3 Flow Control . 111

6.6 Evaluation . 112

6.6.1 Performance . 112

6.6.2 Power Comparison . 118

6.7 Discussion . 119

6.7.1 Comparison to Generalized Hypercube 119

6.7.2 Scaling On-Chip Flattened Butterfly 122

6.7.3 Future Technologies . 122

6.7.4 Use of Virtual Channels . 123

6.8 Related Work . 125

6.9 Summary . 125

7 Conclusion and Future Work 127

7.1 Future Directions . 128

Bibliography 130

xi

List of Tables

2.1 Latency and cost comparison of the two networks shown in Figure 2.1.

The cost of the channels ignores the number of terminal channels as

the cost is dominated by the global channels in the network. 11

3.1 Cost breakdown of an interconnection network. 25

3.2 Technology and packaging assumptions used in the topology compar-

ison. The values are representative of those used in the Cray Black-

Widow parallel computer. 31

3.3 Different k and n parameters for a N = 4K network and the corre-

sponding k′ and n′ flattened butterfly parameter. 35

3.4 Power consumption of different components in a router. 40

4.1 Different values of precisions used to evaluate the impact of precision

in adaptive routing. Buffer depth of 16 entries is assumed. 60

4.2 Topology and Routing used in performance comparison. The VCs are

used to break routing deadlocks. 69

5.1 Nonuniform traffic pattern evaluated. 92

6.1 Routing algorithms used in simulation comparison. 112

xii

List of Figures

1.1 Different implementations of an interconnection network. An 8-node

network realized using (a) a bus, (b) a crossbar switch, (c) a ring, and

(d) a fat-tree (folded-Clos) network. 2

1.2 Router Scaling Relationship [24, 60, 27, 67, 4, 18, 53, 50, 29, 64, 71, 35].

The dotted line is a curve fit to all of the data. 5

2.1 16-node butterfly network example using (a) low-radix routers and (b)

high-radix routers. The high-radix network in (b) uses channel slicing

to provide the same terminal bandwidth. 10

2.2 Relationship between optimal latency radix and router aspect ratio.

The labeled points show the approximate aspect ratio for a given year’s

technology . 14

2.3 (a) Latency and (b) cost of the network as the radix is increased for

two different technologies. 15

3.1 Block diagram of a conventional butterfly topology with 3-stages. . . 18

3.2 Block diagram of a Clos topology. 18

3.3 Block diagram of a Folded-Clos (fat-tree) topology. 18

3.4 Block diagram of (a) 4-ary 2-fly butterfly and (b) 4-ary 2-flat – the

corresponding flattened butterfly with a single dimension, (c) 2-ary 4-

fly butterfly and (d) 2-ary 4-flat – the corresponding flattened butterfly

with three dimensions. 21

3.5 Network size (N) scalability as the radix (k′) and dimension (n′) is

varied in a flattened butterfly. 22

xiii

3.6 Block diagram of (a) a folded-Clos and the routers in each row as

outlined in the dotted box are combined to create a corresponding (b)

flattened Clos. 24

3.7 Cable Cost Data (2007). (a) Cost of Infiniband 4x and 12x cables as

a function of cable length and (b) cable cost model with the use of

repeaters for cable >6m. The model is based on the Infiniband 12x

cost model and the data point is fitted with a line to calculate the

average cable cost. 26

3.8 Block diagrams of a 16-ary 4-flat flattened butterfly. (a) Block diagram

of each router where 16 ports are used for the terminal nodes and 15

ports are used for connections in each dimension. (b) Topology block

diagram that can scale to more than 64K nodes. (c) A packaging block

diagram of the topology, with the connections for only the lower left

cabinet shown. 28

3.9 Sample cabinet packaging layout of 1024 nodes in (a) folded-Clos and

(b) hypercube topologies. Each box represents a cabinet of 128 nodes

and the hypercube is partitioned into two chassis. In the folded-Clos,

the router cabinet is assumed to be placed in the middle and for illus-

tration purpose only, the router cabinet is drawn taller. 29

3.10 The ratio of the link cost to total network cost. The cable overhead is

not included in this plot. 32

3.11 Average cable length of the different topologies as the network size is

increased. The cable overhead is not included in this plot. 32

3.12 Cost comparison of the different topologies. The bottom plot is the

same plot as the plot on the top with the x-axis zoomed in to display

the smaller networks more clearly. 33

3.13 Performance comparison for different N = 4K Flattened Butterflies

using (a) VAL and (b) MIN AD routing algorithms. 36

3.14 Cost Comparison of N = 4K Flattened Butterflies as n′ is increased. . 37

xiv

3.15 Examples of alternative organization of a 4-ary 2-flat flattened butterfly

by (a) using redundant channels and (b) increasing the scalability. The

dotted lines represent the additional links added by taking advantage

of the extra ports. 38

3.16 Power comparison of alternative topologies. The power consumption

for the interconnection network normalized to N is plotted as the N is

increased. 40

3.17 Block diagram of routers used in a 1K network for (a) flattened but-

terfly with one dimension and (b) (8,8,16) generalized hypercube. . . 41

4.1 Block diagram of a 1K node high-radix folded-Clos network with radix-

64 routers. P0-P1023 represents the terminals, R0-R31 represents the

first level routers, and R32-R63 represents the second level routers. . 45

4.2 Adaptive and oblivious routing comparison of the latency vs. offered

load in the folded-Clos network with (a) wc-UR traffic with infinite

buffers (b) wc-UR traffic with 16 buffers (c) bit reverse traffic pattern

and (d) bit complement traffic pattern. 47

4.3 Latency distribution of packets with an offered load of 0.9 with (a)

oblivious routing and (b) adaptive routing. 48

4.4 A snapshot of the maximum buffer size of the middle stage routers

in a 1K node folded-Clos network. The distribution is shown for (a)

oblivious and (b) adaptive routing at an offered load of 0.8 and the

buffer depth of the routers are 16 entries. 50

4.5 Routing comparison with nonuniformity in the traffic pattern. The

latency vs. offered load comparison of adaptive and oblivious routing

in the folded-Clos network is shown for when (a) half of the traffic is

routed using deterministic routing and (b) network with faults. . . . 51

4.6 Block diagram of a radix-8 3-stage folded-Clos network with a fault.

By using oblivious routing, the uplinks to the middle stages are not

load balanced. 52

xv

4.7 Adaptive routing comparisons with (a) infinite buffers and (b) 16 buffers

using wc-UR traffic pattern. 55

4.8 The impact on the saturation throughput as (a) radix and (b) packet

size is varied using the greedy routing algorithm. Higher radix and

smaller packet size limits the throughput of the greedy algorithm. . 56

4.9 Probability of two or more packets arriving in the same cycle as the

radix and the packet size is varied. 57

4.10 Randomized adaptive allocation algorithm comparison as n is varied

for sequential r(n) and greedy r(n). The lower bound of the algorithm

is shown by the sequential line. 58

4.11 Timeline of delay in adaptive routing in a high-radix folded-Clos network. 59

4.12 Latency comparison near saturation for network simulations with wc-

UR traffic using (a) 1 flit packets and (b) 10 flit packets as the precision

of allocation is varied . The network shown in Figure 4.1 was used for

the simulations. 61

4.13 Impact of precision with nonuniform traffic pattern. 62

4.14 Performance comparison with the use of precomputation. 63

4.15 Routing algorithm comparisons on the flattened butterfly with (a) uni-

form random traffic and (b) worst case traffic pattern. 67

4.16 Dynamic response comparison of the routing algorithms. 68

4.17 Topology comparisons of the flattened butterfly and the folded Clos

with (a) uniform random traffic and (b) worst case traffic pattern. . 71

5.1 Baseline virtual channel router. 74

5.2 (a) Packets are broken into one or more flits (b) Example pipeline of

flits through the baseline router. 75

5.3 Scalable switch allocator architecture. The input arbiters are localized

but the output arbiters are distributed across the router to limit wiring

complexity. A detailed view of the output arbiter corresponding to

output k is shown to the right. 76

xvi

5.4 Speculative pipeline with each packet assumed to be 2 flits. (a) spec-

ulation used on the pipeline shown in Figure 5.2(b) (b) high-radix

routers with CVA (c) high-radix routers with OVA. The pipeline stages

underlined show the stages that are speculative. 78

5.5 Block diagram of the different VC allocation schemes (a) CVA (b)

OVA. In each cycle, CVA can handle multiple VC requests for the same

output where as in OVA, only a single VC request for each output can

be made. CVA parallelize the switch and VC allocation while in OVA,

the two allocation steps are serialized. For simplicity, the logic is shown

for only a single output. 79

5.6 Latency vs. offered load for the baseline architecture 80

5.7 Block diagram of a switch arbiter using (a) one arbiter and (b) two

arbiters to prioritize the nonspeculative requests. 82

5.8 Comparison of using one arbiter and two arbiters for (a) 1VC (b) 4VC 83

5.9 Block diagram of a (a) baseline crossbar switch and (b) fully buffered

crossbar switch. 84

5.10 Latency vs. offered load for the fully buffered architecture. In both the

fully buffered crossbar and the baseline architecture, the CVA scheme

is used. 86

5.11 Latency vs. offered load for the fully buffered architecture for (a) short

packet (1 flit) and (b) long packet (10 flit) as the crosspoint buffer size

is varied . 87

5.12 Area comparison between storage area and wire area in the fully buffered

architecture. 88

5.13 Hierarchical Crossbar (k=4) built from smaller subswitches (p=2). . . 89

5.14 Comparison of the hierarchical crossbar as the subswitch size is varied

(a) uniform random traffic (b) worst-case traffic (c) long packets and

(d) area. k=64 and v=4 is used for the comparison. 90

5.15 Performance comparison on non-uniform traffic patterns (a) diagonal

traffic (b) hotspot traffic (c) bursty traffic. Parameters used are k=64,

v=4, and p=8 with 1 flit packets . 93

xvii

5.16 Network simulation comparison . 94

5.17 Block diagram of the Cray YARC router. 95

5.18 Die photo of the Cray YARC router (Courtesy Dennis Abts of Cray). 95

5.19 Block diagram of the Cray YARC router illustrating the internal speedup. 97

6.1 The use of concentration in interconnection networks – (a) 8 node (N0

- N7) ring with 8 routers (R0 - R7) without concentration, (b) 4 node

ring with 2-way concentrator and (c) the same topology as (b) with

the 2-way concentrator integrated into the router. 102

6.2 Latency of a packet in on-chip networks. 103

6.3 (a) Block diagram of a 2-dimension flattened butterfly consisting of

64 nodes. and (b) the corresponding layout of the flattened butter-

fly where dimension1 routers are horizontally placed and dimension2

router are vertically placed. 106

6.4 Routing paths in the 2D on-chip flattened butterfly. (a) All of the

traffic from nodes attached to R1 is sent to nodes attached to R2. The

minimal path routing is shown in (b) and the two non-minimal paths

are shown in (c) and (d). For simplicity, the processing nodes attached

to these routers are not shown. 107

6.5 Flattened butterfly router diagram with bypass channels in a (a) con-

ventional flattened butterfly router diagram and (b) flattened butterfly

with muxes to efficiently use the bypass channels. The router diagram

is illustrated for router R1 in Figure 6.4 with the connections shown

for only single dimension of the flattened butterfly. 108

6.6 Modification to the buffers introduced into the flow control with the

use of bypass channels. The additional bits of the buffers correspond

to V : valid bit, CNT : count of control packet, and CTL corresponds

to control packet content which contains a destination. 111

6.7 Throughput comparison of CMESH and FBFLY for (a) tornado and

(b) bit complement traffic pattern. 113

xviii

6.8 Latency comparison of alternative topologies across different synthetic

traffic pattern. 114

6.9 Node completion time variance for the different topologies (a) mesh

(b) CMESH and (c) flattened butterfly. 115

6.10 Performance comparison from SPLASH benchmark traces generated

from a distributed TCC simulator. 117

6.11 Power consumption comparison of alternative topologies on UR traffic. 119

6.12 Layout of 64-node on-chip networks, illustrating the connections for

the top two rows of nodes and routers for (a) a conventional 2-D mesh

network, (b) 2-D flattened butterfly, and (c) a generalized hypercube.

Because of the complexity, the channels connected to only R0 are shown

for the generalized hypercube. 120

6.13 Different methods to scale the on-chip flattened butterfly by (a) in-

creasing the concentration factor, (b) increasing the dimension of the

flattened butterfly, and (c) using a hybrid approach to scaling. 121

6.14 Block diagram of packet blocking in (a) wormhole flow control (b)

virtual channel flow control and (c) flattened butterfly. 123

6.15 Performance comparison as the number of virtual channels is increased

in the flattened butterfly. 124

xix

xx

Chapter 1

Introduction

1.1 Introduction to Interconnection Networks

An interconnection network can be defined as a “programmable system that enables

fast data communication between components of a digital system” [22]. Any time two

or more components of a digital system are connected, some form of an interconnec-

tion network is needed. An interconnection network involves sharing communication

resources among multiple terminals and provides a structured way to organize com-

munication among the different terminals.

Many different implementations of interconnection networks exist. A bus provides

a very simple interconnection network in which all terminals communicate through a

common bus as shown in Figure 1.1(a). However, as the number of terminals increases,

the bus architecture does not scale and it also becomes difficult to provide high

bandwidth. The crossbar is another implementation of an interconnection network

that is widely used in which all the terminals are connected to each other through

a single switch (Figure 1.1(b)). The crossbar provides point-to-point connections

but the complexity of a crossbar is approximately O(N2) where N is the number of

terminals connected to the crossbar.

To address these problems, multi-stage networks are often employed in intercon-

nection networks as N increases. In a multi-stage network, the terminals are con-

nected to routers that are in turn connected to other routers in the network. If there is

1

2 CHAPTER 1. INTRODUCTION

T0 T1 T2 T3 T4 T5 T6 T7

(a)

T0 T1 T2 T3 T4 T5 T6 T7

Crossbar

(b)

T0 T1 T2 T3 T4 T5 T6 T7

R0 R1 R2 R3 R4 R5 R6 R7

(c)

T0 T1 T2 T3 T4 T5 T6 T7

R0 R1 R2 R3

R4 R5 R6 R7

R8 R9 R10 R11

(d)

Figure 1.1: Different implementations of an interconnection network. An 8-node
network realized using (a) a bus, (b) a crossbar switch, (c) a ring, and (d) a fat-tree
(folded-Clos) network.

1.1. INTRODUCTION TO INTERCONNECTION NETWORKS 3

a one-to-one correspondence between terminals and routers, a direct network such as

the ring topology can be created(Figure 1.1(c)). If there are intermediate routers, the

resulting multi-stage network is an indirect network such as the folded-Clos topology

shown in Figure 1.1(d). However, unlike a bus or a crossbar, multi-stage networks

do not provide a direct connection between the terminals and thus require terminals

to send messages through one or more routers. As indicated from the four differ-

ent examples shown in Figure 1.1, different interconnection networks offer different

advantages and the optimal choice depends on the system requirements.

Regardless of the interconnection network being used, there are four common

aspects that must be considered in the design of any interconnection network. The

first three aspects deal with high-level network issues of an interconnection network.

• Topology - Topology is the roadmap of the network and defines how the channels

and routers are connected. Topology is critical since it sets performance bounds

for the network by determining the diameter of the network as well as the

bisection bandwidth.

• Routing - Given the topology of an interconnection network, routing determines

which path a packet takes from the source to its destination. An efficient routing

algorithm is critical for approaching the performance bounds of the topology

and load-balance the topology on adversarial traffic patterns.

• Flow Control - The flow control policy allocates the different resources in the

network such as the buffers and the channels as the packet progresses from

the source to its destination. Proper flow control is also required to prevent

deadlock and livelock in the network.

Another important aspect of an interconnection network is the microarchitecture

of the routers, which form the building block of an interconnection network.

• Microarchitecture - The microarchitecture defines how the router is organized,

and includes the buffer and switch organization as well as the allocators used.

4 CHAPTER 1. INTRODUCTION

These four aspects of an interconnection network determine how the interconnec-

tion network is implemented and impacts the performance and cost of the network.

In this thesis, we describe the use of high-radix routers within an interconnection

network and investigates topology, routing and router microarchitecture aspects of

high-radix networks. We next examine different applications which use interconnec-

tion networks and the importance of an interconnection network within a system is

also discussed.

1.2 Importance of Interconnection Networks

Interconnection networks are found across a wide range of applications – they are

widely used to connect processors and memories in multiprocessors [67, 68], as switch-

ing fabrics for high-end routers and switches [20], for connecting I/O devices [65], and

for on-chip networks [25]. Across these different applications, the performance of most

digital systems today is limited by their communication, not by their logic or memory.

Processor and memory technology have advanced according to Moore’s Law – with

the number of available transistors growing exponentially over time. This scaling has

made interconnection networks more critical as wire density has scaled at a slower

rate and wire delay has remained constant over time. Hence, the network has become

a major factor in determining the overall performance and cost of the system

In a multiprocessor computer system, as processor and memory performance con-

tinues to increase, the performance of the interconnection network plays a central

role in determining the overall performance, as well as the cost of the system. The

latency and bandwidth of the network largely establish the remote memory access

latency and bandwidth. This is also true for on-chip networks. As the number of

components being integrated on chip increases, the on-chip network that connects

these components will be critical for determining the performance benefits of future

multicore processors.

In addition to performance, the cost of an interconnection network can account

for as much as 1/3 of the overall system cost in large systems [61]. Thus, reducing

the cost of an interconnection network is crucial to the overall system cost. Similarly,

1.3. TECHNOLOGY TREND 5

0.1

1

10

100

1000

10000

1985 1990 1995 2000 2005 2010

year

b
an

d
w

id
th

 p
er

 r
o

u
te

r
n

o
d

e
(G

b
/s

)

Torus Routing Chip
Intel iPSC/2
J-Machine
CM-5
Intel Paragon XP
Cray T3D
MIT Alewife
IBM Vulcan
Cray T3E
SGI Origin 2000
AlphaServer GS320
IBM SP Switch2
Quadrics QsNet
Cray X1
Velio 3003
IBM HPS
SGI Altix 3000
Cray XT3
YARC

Figure 1.2: Router Scaling Relationship [24, 60, 27, 67, 4, 18, 53, 50, 29, 64, 71, 35].
The dotted line is a curve fit to all of the data.

the area and power concerns of future multicore processors needs to be addressed as

the number of cores increases. In this thesis, we focus on how technology impacts

interconnection networks and how the technology trend can be exploited to reduce

the cost as well as the latency of the interconnection network and result in a more

efficient system.

1.3 Technology Trend

Computer architecture is greatly impacted by technology as most notably illustrated

by the impact of Moore’s Law. As technology evolves, its impact on computer ar-

chitecture needs to be properly re-evaluated. A technology that has great impact

on interconnection networks is signaling technology and the resulting total pin band-

width. Advances in signaling technology have enabled new type of interconnection

networks based on high-radix routers which will be described in this thesis.

The trend of increase in pin bandwidth to a router chip is shown in Figure 1.2

6 CHAPTER 1. INTRODUCTION

which plots the bandwidth per router node versus time. Over the past 20 years, there

has been an order of magnitude increase in the off-chip bandwidth approximately

every five years – a rate very similar to Moore’s Law. This increase in bandwidth

results from both the high-speed signaling technology [34, 51] as well as the increase

in the number of signals available to a router chip. The advances in technology make

it possible to build single chips with 1Tb/s of I/O bandwidth today [32, 68], and by

2010, we expect to be able to put 20Tb/s of I/O bandwidth on a chip.

Most implementations have taken advantage of increasing off-chip bandwidth by

increasing the bandwidth per port rather than increasing the number of ports on the

chip. However as off-chip bandwidth continues to increase, this thesis will show it is

more efficient to exploit this bandwidth by increasing the number of ports — building

high-radix routers with thin channels — than by making the ports wider — building

low-radix routers with fat channels. We show that using high-radix routers reduces

hop count and leads to a lower latency and a lower cost interconnection network

solution.

1.4 Contributions

This thesis includes several key contributions to the design of high-radix interconnec-

tion networks. We first focus on off-chip interconnection networks utilizing high-radix

routers.

• Motivation for High-Radix Routers [45]. We describe how high-radix routers can

exploit the increasing pin bandwidth and reduce the diameter of the network –

resulting in both lower latency and lower cost.

• Flattened Butterfly Topology [43]. We propose a cost-efficient topology that can

exploit high-radix routers. The flattened butterfly approaches the cost of a con-

ventional butterfly network while providing similar performance/cost compared

to a folded-Clos on adversarial traffic patterns. On benign traffic patterns,

the flattened butterfly topology can provide 2× increase in performance/cost

compared to a folded-Clos.

1.5. OUTLINE 7

• Adaptive Routing in High-Radix Networks [42, 43]. High-radix networks present

different challenges in adaptive routing. We show how transient imbalance can

occur in a high-radix router with concentration and show how adaptive routing,

if done properly, provides benefits over oblivious routing in a high-radix folded-

Clos network. We also show how global adaptive routing is essential to fully

realize the benefits of the flattened butterfly topology.

• Hierarchical Router Microarchitecture [45, 68]. Conventional router microarchi-

tecture does not scale as the radix increases. We describe a router microarchi-

tecture that can scale efficiently to high radix with minimal loss in performance.

Because of its tiled organization, the microarchitecture is a complexity-effective

design and its implementation in the Cray YARC router is also described.

From off-chip interconnection networks, we extend the use of high-radix routers

to on-chip networks.

• Flattened Butterfly Topology for On-Chip Networks [40, 41]. Although on-chip

networks provide very different constraints compared to off-chip networks, the

use of high-radix routers in on-chip networks can provide similar benefits –

including lower latency and lower cost. We propose using the flattened butterfly

topology for on-chip networks and illustrate how it can be mapped as well as

the router microarchitecture.

1.5 Outline

For the remainder of this thesis, we focus on the different aspects of high-radix inter-

connection networks. Chapter 2 discusses how the increasing pin bandwidth can be

efficiently utilized by the use of high-radix routers. Chapter 3 proposes a cost-efficient

topology referred to as flattened butterfly topology which is more cost-efficient than

alternative topologies. Adaptive routing on high-radix networks is discussed in Chap-

ter 4. A hierarchical router microarchitecture that can scale to high radix is presented

8 CHAPTER 1. INTRODUCTION

in Chapter 5. In Chapter 6, we extend the work on high-radix interconnection net-

works to on-chip networks and show how the flattened butterfly can provide a more

efficient on-chip network. Conclusions and future work are presented in Chapter 7.

Chapter 2

Motivation for High-Radix Routers

In this chapter, we describe the benefits of using high-radix routers and how they can

exploit the increasing pin bandwidth that was shown earlier in Section 1.3. Using a

simple conventional butterfly topology example, we illustrate the advantages of using

high-radix routers and how this reduces the diameter of the network – leading to lower

latency and lower cost. We also quantify the benefits of using high-radix routers using

analysis in this chapter.

2.1 Comparing High-Radix and Low-Radix Routers

In the design of an interconnection network, the radix or the degree of a router

significantly impacts the performance and cost of an interconnection network. With

the total pin bandwidth held constant, the bandwidth can be divided among a larger

number of ports to create a high-radix router with skinny channels or the bandwidth

can be divided among a smaller number of ports to create a low-radix routers with

fat channels.

In Figure 2.1, an example of a 16-node butterfly topology network is shown with

low-radix (radix-2) routers (Figure 2.1(a)) and high-radix (radix-4) routers (Fig-

ure 2.1(b)).1 By utilizing low-radix routers, the resulting butterfly network is a 4-stage

1For simplicity, radix-2 is used to illustrate low-radix and radix-4 is used to represent high-radix
routers but throughout this thesis, high radix refers to radix-64 and higher.

9

10 CHAPTER 2. MOTIVATION FOR HIGH-RADIX ROUTERS

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

(a)

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

(b)

Figure 2.1: 16-node butterfly network example using (a) low-radix routers and (b)
high-radix routers. The high-radix network in (b) uses channel slicing to provide the
same terminal bandwidth.

2.2. NEED FOR HIGH-RADIX ROUTERS 11

parameter low radix high radix

Latency (hop count) 4 2
Cost (# of channels) 96 32

Table 2.1: Latency and cost comparison of the two networks shown in Figure 2.1. The
cost of the channels ignores the number of terminal channels as the cost is dominated
by the global channels in the network.

network, while the use of high-radix routers results in only a 2-stage network and re-

duces the diameter of the network. The main difference between the two networks is

a trade-off in the bandwidth per channel and the diameter of the network. Since the

total pin bandwidth per router node is held constant, the amount of bandwidth per

channel is different for the two networks. The low-radix networks provides 2x band-

width per channel and thus, each terminal node receives 2x bandwidth compared to

the high-radix network. In order to provide the same amount of bandwidth to the

terminal nodes, the network can be duplicated to create another parallel network – a

technique often referred to as channel slicing [22].

The two networks shown in Figure 2.1 are compared using two metrics – perfor-

mance and cost. Performance is measured in terms of latency and can be approx-

imated by the number of hop counts in the network. The cost of the network can

be estimated by the number of channels in the network since the network cost is

often determined by the bandwidth (or the number of channels). The comparison

is summarized in Table 2.1. With the reduction in the diameter of the network by

using high-radix routers, not only is the latency of the network reduced but the cost

is also significantly reduced. In the following section, we provide a more analytical

description of the benefits of high-radix routers.

2.2 Need for High-Radix Routers

Many of the earliest interconnection networks were designed using topologies such

as butterflies or hypercubes, based on the simple observation that these topologies

minimized hop count. However, different analysis in the late 80s and early 90s showed

12 CHAPTER 2. MOTIVATION FOR HIGH-RADIX ROUTERS

that lower-radix networks provided better performance with many studies focusing

on the k-ary n-cube topology. 2

The analysis of both Dally [19] and Agarwal [3] showed that under fixed packag-

ing constraints, lower radix networks offered lower packet latency. Scott and Good-

man [69] later extended their studies and showed that if link pipelining is used in

the network, the wire latency can be decoupled from the router cycle time and as a

result, it tends to favor higher dimensionality for large networks. However, Scott and

Goodman also concluded that optimal dimension of a k-ary n-cube is limited since

higher dimension leads to a disadvantage of reduced channel width. Today, the fun-

damental result of these authors still holds — technology and packaging constraints

should drive topology design. What has changed in recent years are the topologies

that these constraints lead us toward.

To understand how technology changes affect the optimal network radix, consider

the latency (T) of a packet traveling through a network. Under low loads, this latency

is the sum of header latency and serialization latency. The header latency (Th) is the

time for the beginning of a packet to traverse the network and is equal to the number

of hops a packet takes times a per hop router delay (tr). Since packets are generally

wider than the network channels, the body of the packet must be squeezed across

the channel, incurring an additional serialization delay (Ts). Thus, total delay can be

written as

T = Th + Ts = Htr + L/b (2.1)

where H is the number of hops a packet travels, L is the length of a packet, and b is

the bandwidth of the channels. For an N node network with radix k routers (k input

channels and k output channels per router), the number of hops must be at least

2logkN .3 Also, if the total bandwidth of a router is B, that bandwidth is divided

among the 2k input and output channels and b = B/2k. Substituting this into the

2The n or the dimension of an k-ary n-cube correspond to the radix terminology that is used in
this thesis. Increasing the radix reduces the diameter of the network and similarly, increasing the
dimension (n) of a k-ary n-cube also reduces the diameter.

3Uniform traffic is assumed and 2logkN hops are required for a non-blocking network.

2.2. NEED FOR HIGH-RADIX ROUTERS 13

expression for latency from Equation 2.1

T = 2tr logk N + 2kL/B. (2.2)

Then, From Equation 2.2, setting dT/dk equal to zero and isolating k gives the

optimal radix in terms of the network parameters,

k log2 k =
Btr log N

L
. (2.3)

In this differentiation, we assume B and tr are independent of the radix k. Since

we are evaluating the optimal radix for a given bandwidth, we can assume B is

independent of k. The tr parameter is a function of k but has only a small impact

on the total latency and has no impact on the optimal radix. Router delay tr can

be expressed as the number of pipeline stages (P) times the cycle time (tcy). As

radix increases, tcy remains constant and P increases logarithmically. The number of

pipeline stages P can be further broken down into a component that is independent

of the radix (X) and a component which is dependent on the radix (Y log2 k). Thus

router delay (tr) can be rewritten as

tr = tcyP = tcy(X + Y log2 k). (2.4)

If this relationship is substituted back into Equation 2.2 and differentiated, the de-

pendency on radix k coming from the router delay disappears and does not change

the optimal radix.4 Intuitively, although a single router delay increases with a log(k)

dependence, the effect is offset in the network by the fact that the number of hop

count decreases as 1/ log(k) and as a result, the router delay does not effect the

optimal radix.

In Equation 2.2, we ignore time of flight for packets to traverse the wires that

make up the network channels. The time of flight does not depend on the radix(k)

and thus has minimal impact on the optimal radix. Time of flight is D/v where D

is the total physical distance traveled by a packet and v is the propagation velocity.

4If this detailed definition of tr is used, tr is replaced with Xtcy in Equation 2.3.

14 CHAPTER 2. MOTIVATION FOR HIGH-RADIX ROUTERS

1996

2003

2010

1991

1

10

100

1000

10 100 1000 10000

Aspect Ratio

O
pt

im
al

 R
ad

ix
 (

k)

Figure 2.2: Relationship between optimal latency radix and router aspect ratio. The
labeled points show the approximate aspect ratio for a given year’s technology

As radix increases, the distance between two router nodes (Dhop) increases. However,

the total distance traveled by a packet will be approximately equal since a lower-radix

network requires more hops.

From Equation 2.3, we refer to the quantity A = Btr log N
L

as the aspect ratio of

the router. This aspect ratio completely determines the router radix that minimizes

network latency. A high aspect ratio implies a “tall, skinny” router (many, narrow

channels) minimizes latency, while a low ratio implies a “short, fat” router (few, wide

channels).

A plot of the minimum latency radix versus aspect ratio, from Equation (2.3)

is shown in Figure 2.2. The points along the line show the aspect ratios from sev-

eral years. These particular numbers are representative of large supercomputers with

single-word network accesses5, but the general trend of the radix increasing signifi-

cantly over time remains.

Figure 2.3(a) shows how latency varies with radix for 2003 and 2010 technologies.

As radix is increased, latency first decreases as hop count, and hence Th, is reduced.

However, beyond a certain radix serialization latency begins to dominate the overall

latency and latency increases. As bandwidth, and hence aspect ratio, is increased,

5The 1991 data is from J-Machine [60] (B=3.84Gb/s, tr=62ns, N=1024, L=128bits), the 1996
data is from the Cray T3E [67] (64Gb/s, 40ns, 2048, 128), the 2003 data is from SGI Altix 3000 [71]
(0.4Tb/s, 25ns, 1024, 128) 2010 data is estimated(20Tb/s, 5ns, 2048, 256).

2.2. NEED FOR HIGH-RADIX ROUTERS 15

0

50

100

150

200

250

300

0 50 100 150 200 250
radix

la
te

n
cy

 (
n

se
c)

2003 technology 2010 technology

0

1

2

3

4

5

6

7

8

0 50 100 150 200 250
radix

co
st

 (
 #

 o
f

10
00

 c
h

an
n

el
s)

2003 technology 2010 technology

(a) (b)

Figure 2.3: (a) Latency and (b) cost of the network as the radix is increased for two
different technologies.

the radix that gives minimum latency also increases. For 2003 technology (aspect

ratio = 554) the optimum radix is 40 while for 2010 technology (aspect ratio = 2978)

the optimum radix is 127.

Increasing the radix of the routers in the network monotonically reduces the overall

cost of a network. Network cost is largely due to router pins and connectors and hence

is roughly proportional to total router bandwidth: the number of channels times their

bandwidth. For a fixed network bisection bandwidth, this cost is proportional to hop

count. Since increasing radix reduces hop count, higher radix networks have lower

cost as shown in Figure 2.3(b).6 Power dissipated by a network also decreases with

increasing radix. Power is roughly proportional to the number of router nodes in the

network. As radix increases, hop count decreases, and the number of router nodes

decreases. The power of an individual router node is largely independent of the radix

as long as the total router bandwidth is held constant. Router power is largely due

to I/O circuits and switch bandwidth. The arbitration logic, which becomes more

complex as radix increases, represents a negligible fraction of total power[79].

62010 technology is shown to have higher cost than 2003 technology because the number of nodes
is much greater.

16 CHAPTER 2. MOTIVATION FOR HIGH-RADIX ROUTERS

2.3 Summary

As technology evolves, its impact on interconnection networks needs to be re-evaluated.

With the increasing pin bandwidth available today, we have shown how the use of

high-radix routers exploits increased pin bandwidth by reducing the diameter of the

network – resulting in lower latency and lower cost. In the following chapter, we will

first look at an efficient topology that can take advantage of high-radix routers.

Chapter 3

Flattened Butterfly Topology

In this chapter, we first discuss existing topologies which can exploit high-radix routers

and their shortcomings. Then, we describe a cost-efficient topology that we refer to

as the flattened butterfly topology and how it can be derived from the conventional

butterfly. The advantages of the flattened butterfly compared to alternative topologies

are described. In the final section of this chapter, we describe a detailed cost model

for interconnection networks and provide a cost comparison of the flattened butterfly

to alternative topologies.

3.1 Existing High-Radix Topologies

The minimum diameter (D), the largest hop count between any two terminals, of the

network is

D ≥ logkN (3.1)

where N is the size of the network (or the number of terminals in the network) and

k is the radix of the routers. The butterfly network (k-ary n-fly) can achieve this

minimum diameter and take advantage of high-radix routers to reduce latency and

network cost [22] as shown in Figure 3.1. 1 However, there is no path diversity in a

1For simplicity, the diagrams are drawn with radix-2 (low-radix) routers but this thesis deals
with high-radix routers with radix 64 or higher.

17

18 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

T0
R0

T1

T2
R1T3

T4
R2T5

T6
R3T7

R4

R5

R6

R7

R8

R9

R10

R11

T0

T1

T2

T3

T4

T5

T6

T7

Figure 3.1: Block diagram of a conventional butterfly topology with 3-stages.

T0

T1

T2

T3

T4

T5

T6

T7

R8

R9

R10

R11

T0

T1

T2

T3

T4

T5

T6

T7

R0

R1

R2

R3

R4

R5

R6

R7

R12

R13

R14

R15

R16

R17

R18

R19

Load Balancing

Figure 3.2: Block diagram of a Clos topology.

T0

T1

T2

T3

T4

T5

T6

T7

R8

R9

R10

R11

R0

R1

R2

R3

R4

R5

R6

R7

Figure 3.3: Block diagram of a Folded-Clos (fat-tree) topology.

3.1. EXISTING HIGH-RADIX TOPOLOGIES 19

butterfly network which results in poor throughput for adversarial traffic patterns.

For example in Figure 3.1, for a particular traffic pattern where T0 sends traffic

to T1, and T4 sends traffic to T0, both of these traffic patterns will have to share

the bandwidth for channel (R4,R8) – resulting in a throughput degradation. In the

worst-case traffic pattern, the throughput of the butterfly network can be reduced by

a factor of
√

N . Also, a butterfly network cannot exploit traffic locality since every

packet needs to traverse D hop counts.

To add path diversity to a butterfly network and provide better performance, two

butterfly networks can be connected back-to-back to create a Clos network [17] as

shown in Figure 3.2. The first half of the Clos network is used for load balancing

and thus, provides many paths 2 between each pair of terminals. This path diversity

enables the Clos to route arbitrary traffic patterns with no loss of throughput. The

input and output stages of a Clos network can be combined or folded on top of one

another creating a folded-Clos or fat-tree [52] network which can exploit traffic locality

(Figure 3.3).

A Clos or folded-Clos network, however, has a cost that is nearly double that of

a butterfly network with equal capacity and also has greater latency than a butterfly

network. The increased cost and latency both stem from the need to route packets

first to an arbitrary middle stage switch and then to their ultimate destination. This

doubles the number of long cables in the network, which approximately doubles the

cost, and doubles the number of inter-router channels traversed, which drives up

latency.

The flattened butterfly topology exploits high-radix routers to achieve lower cost

than a folded-Clos on load-balanced traffic, and provides better performance and path

diversity than a conventional butterfly. In this chapter, we describe the flattened

butterfly topology in detail by comparing it to a conventional butterfly and show how

it is also similar to a folded-Clos.

2One for each middle-stage switch in the Clos.

20 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

3.2 Topology Construction: Butterfly to Flattened

Butterfly

We derive the flattened butterfly by starting with a conventional butterfly (k-ary n-

fly) and combining or flattening the routers in each row of the network into a single

router. Examples of flattened butterfly construction are shown in Figure 3.4. 4-ary

2-fly and 2-ary 4-fly networks are shown in Figure 3.4(a,c) with the corresponding

flattened butterflies shown in Figure 3.4(b,d). The routers R0 and R1 from the first

row of Figure 3.4(a) are combined into a single router R0′ in the flattened butterfly

of Figure 3.4(b). Similarly, routers R0, R1, R2, and R3 of Figure 3.4(c) are combined

into R0′ of Figure 3.4(d). As a row of routers is combined, channels entirely local to

the row, e.g., channel (R0,R1) in Figure 3.4(a), are eliminated. All other channels of

the original butterfly remain in the flattened butterfly. For example, channel (R0,R3)

in Figure 3.4(a) becomes channel (R0′,R1′) in Figure 3.4(b). Because channels in a

flattened butterfly are symmetrical, each line in Figures 3.4(b,d) represents a bidirec-

tional channel (i.e. two unidirectional channels), while each line in Figures 3.4(a,c)

represents a unidirectional channel.

A k-ary n-flat, the flattened butterfly derived from a k-ary n-fly, is composed of
N
k

radix k′ = n(k − 1) + 1 routers where N is the size of the network. The routers

are connected by channels in n′ = n − 1 dimensions, corresponding to the n − 1

columns of inter-rank wiring in the butterfly. The lowest dimension corresponds to

the right most column of inter-rank wiring and the corresponding dimension increases

as the column moves from right to left. In each dimension d, from 1 to n′, router i is

connected to each router j given by

j = i +
[

m −
(⌊

i

kd−1

⌋

mod k
)]

kd−1 (3.2)

for m from 0 to k − 1, where the connection from i to itself is omitted. For example,

in Figure 3.4(d), R4′ is connected to R5′ in dimension 1, R6′ in dimension 2, and R0′

in dimension 3.

The number of nodes (N) in a flattened butterfly is plotted as a function of

3.2. TOPOLOGY CONSTRUCTION: BUTTERFLY TO FLATTENED BUTTERFLY21

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

R0'

R1'

R2'

R3'

I0

I1

I2

I3

I4

I5

I6

I7

R1

R3

O0

O1

O2

O3

O4

O5

O6

O7

I8

I9

I10

I11

I12

I13

I14

I15

R5

R7

O8

O9

O10

O11

O12

O13

O14

O15

R0

R2

R4

R6

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

(a) (b)

I0

I1

I2

I3

I4

I5

I6

I7

R3R2
O0

O1

O2

O3

O4

O5

O5

O7

I8

I9

I10

I11

I12

I13

I14

I15

O8

O9

O10

O11

O12

O13

O14

O15

R1R0
R0'

R1'

R2'

R3'

R4'

R5'

R6'

R7'

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

O0

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

{ {{{

dimension 1

{

dimension 2

{

dimension 3

(c) (d)

Figure 3.4: Block diagram of (a) 4-ary 2-fly butterfly and (b) 4-ary 2-flat – the
corresponding flattened butterfly with a single dimension, (c) 2-ary 4-fly butterfly
and (d) 2-ary 4-flat – the corresponding flattened butterfly with three dimensions.

22 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

n'=1

n'=2

n'=3
n'=4

0

4000

8000

12000

16000

20000

0 32 64 96 128
radix (k')

M
ax

im
um

 s
iz

e
of

 th
e

ne
tw

or
k

(N
)

Figure 3.5: Network size (N) scalability as the radix (k′) and dimension (n′) is varied
in a flattened butterfly.

number of dimensions n′ and switch radix k′ in Figure 3.5. The figure shows that

this topology is suited only for high-radix routers. Networks of very limited size can

be built using low-radix routers (k′ < 16) and even with k′ = 32, many dimensions

are needed to scale to large network sizes. However with k′ = 61, a network with just

three dimensions scales to 64K nodes.

3.3 Routing and Path Diversity

Routing in a flattened butterfly requires a hop from a node to its local router, zero or

more inter-router hops, and a final hop from a router to the destination node. If we

label each node with a n-digit radix-k node address, an inter-router hop in dimension

d changes the dth digit of the current node address to an arbitrary value, and the

final hop sets the 0th (rightmost) digit of the current node address to an arbitrary

value. Thus, to route minimally from node a = an−1, . . . , a0 to node b = bn−1, . . . , b0

where a and b are n-digit radix-k node addresses involves taking one inter-router hop

for each digit, other than the rightmost, in which a and b differ. For example, in

Figure 3.4(d) routing from node 0 (00002) to node 10 (10102) requires taking inter-

router hops in dimensions 1 and 3. These inter-router hops can be taken in either

3.4. COST MODEL 23

order giving two minimal routes between these two nodes. In general, if two nodes

a and b have addresses that differ in j digits (other than the rightmost digit), then

there are j! minimal routes between a and b. This path diversity derives from the fact

that a packet routing in a flattened butterfly is able to traverse the dimensions in any

order, while a packet traversing a conventional butterfly must visit the dimensions in

a fixed order – leading to no path diversity.

Routing non-minimally in a flattened butterfly provides additional path diversity

and can achieve load-balanced routing for arbitrary traffic patterns. Consider, for

example, Figure 3.4(b) and suppose that all of the traffic from nodes 0-3 (attached

to router R0′) was destined for nodes 4-7 (attached to R1′). With minimal routing,

all of this traffic would overload channel (R0′,R1′). By misrouting a fraction of this

traffic to R2′ and R3′, which then forward the traffic on to R1′, load is balanced. With

non-minimal routing, 3 a flattened butterfly is able to match the load-balancing (and

non-blocking) properties of a Clos network – in effect acting as a flattened folded-

Clos. To illustrate how the flattened butterfly can be also referred to as a flattened

folded-Clos, a 3-stage folded-Clos is shown in Figure 3.6(a). The routers in each row

of the folded-Clos, as highlighted with a dotted box, can be combined to generate

a flattened folded-Clos as shown in Figure 3.6(b). With only one middle stage, the

resulting flattened folded-Clos is identical to a one dimensional flattened butterfly

but increasing the number of stages of folded-Clos corresponds to higher dimension

flattened butterfly.

3.4 Cost Model

In this section, we compare the cost of the flattened butterfly topology to three

alternative high-radix topologies – conventional butterfly, folded-Clos, and hypercube.

We first present a cost model which takes into account the main components of an

interconnection network, the routers and the cables, and incorporates the packaging

hierarchy of the network into the cost model. We also describe the packaging of the

3We discuss non-minimal routing strategies for flattened butterfly networks in more detail in
Section 4.2.

24 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

I0

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

(a) (b)

Figure 3.6: Block diagram of (a) a folded-Clos and the routers in each row as outlined
in the dotted box are combined to create a corresponding (b) flattened Clos.

topologies and use them to estimate the length of the cables. Using our cost model,

we compare the cost of the different topologies and describe the cost advantages of the

flattened butterfly. In the cost comparison, we hold the performance on load-balanced

traffic (i.e. bisection bandwidth) constant to provide a fair comparison.

3.4.1 Cost Model

The system components, processing nodes and routers, are packaged within a pack-

aging hierarchy. At the lowest level of the hierarchy are the compute modules (con-

taining the processing nodes) and routing modules (containing the routers). At the

next level of the hierarchy, the modules are connected via a backplane or midplane

printed circuit board. The modules and backplane are contained within a cabinet.

A system consists of one or more cabinets with the necessary cables connecting the

router ports according to the network topology. The network cables may aggregate

multiple network links into a single cable to reduce cost and cable bulk.

3.4. COST MODEL 25

Component Cost

router $390
router chip $90
development $300

links (cost per signal 6Gb/s)
backplane $1.95
electrical $3.72 + $0.81 `
optical $220.00

Table 3.1: Cost breakdown of an interconnection network.

Network cost is determined by the cost of the routers and the backplane and ca-

ble links. The cost of a link depends on its length and location within the packaging

hierarchy (Table 3.1). In 2007, a link within the backplane4 is about $1.95 per differ-

ential signal5, whereas a cable connecting nearby routers (routers within 2m) is about

$5.34 per signal, and an optical cable is about $220 per signal6 to connect routers

in a distant cabinet. Inexpensive backplanes are used to connect modules in the

same cabinet over distances that are typically less than 1m. Moderate cost electrical

cables connect modules in different cabinets up to lengths of 5-10m.7 Transmitting

signals over longer distance require either an expensive optical cable or a series of

electrical cables connected by repeaters that retime and amplify the signal. Because

optical technology still remains relatively expensive compared to electrical signaling

over copper, our cost analysis uses electrical signaling with repeaters as necessary for

driving signals over long distances.

Router cost is divided into development (non-recurring) cost and silicon (recur-

ring) cost. The development cost is amortized over the number of router chips built.

4We assume $3000 backplane cost for 1536 signals, or $1.95 per backplane signal which includes
the GbX connector cost at $0.12 per mated signal to support signal rates up to 10 Gb/s [6].

5To provide signal integrity at high speed, signals are almost always transmitted differentially -
using a pair of wires per signal.

6Pricing from www.boxfire.com – $480 for 20 meter 24 strand terminated fiber optic cable results
in $20 per signal for the cost of the cable. Although optical transceiver modules have a price goal
of around $200, that has not yet been achieved with current modules costing $1200 and up.

7In our analysis, we will assume that a 6m cable is the longest distance that can be driven
at full signalling rate of 6.25 Gb/s, based on SerDes technology similar to that used in the Cray
BlackWidow [68].

26 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

Cost = 0.7261 x length + 5.8519

Cost = 0.8117 x length + 3.7285

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12

Cable Length (meters)

C
os

t (
$)

Infiniband 4X Infiniband 12X

(a)

Cost = 1.3964 x length + 2.1622

0

10

20

30

40

0 5 10 15 20 25 30

Cable Length (meters)

C
os

t (
$)

 p
er

 p
ai

r

(b)

Figure 3.7: Cable Cost Data (2007). (a) Cost of Infiniband 4x and 12x cables as a
function of cable length and (b) cable cost model with the use of repeaters for cable
>6m. The model is based on the Infiniband 12x cost model and the data point is
fitted with a line to calculate the average cable cost.

3.4. COST MODEL 27

We assume a non-recurring development cost of ≈$6M for the router which is amor-

tized over 20k parts, about $300 per router. The recurring cost is the cost for each

silicon part which we assume to be ≈$90 per router using the MPR cost model [55]

for a TSMC 0.13µm 17mm×17mm chip which includes the cost of packaging and

test.

The cost of electrical cables can be divided into the cost of the wires (copper)

and the overhead cost which includes the connectors, shielding, and cable assembly.

Figure 3.7(a) plots the cost per differential signal for Infiniband 4x and 12x cables as a

function of distance. The cost of the cables was obtained from Gore [30]. The slope of

the line represents the cable cost per unit length ($/meter) and the y-intercept is the

overhead cost associated with shielding, assembly and test. With the Infiniband 12x

cables, the overhead cost per signal is reduced by 36% because of cable aggregation –

Infiniband 12x contains 24 wire pairs while Infiniband 4x contains only 8 pairs, thus

12x cable is able to amortize the shielding and assembly cost. 8

When the cable length exceeds the critical length of 6m, repeaters need to be

inserted and the cable cost with repeaters is shown in Figure 3.7(b), based on the

Infiniband 12x cable cost. When length is 6m, there is a step in the cost which reflects

the repeater cost. Since the cost of the repeaters is dominated by the extra connector

cost, the increase in the cost function is approximately the additional connector cost.

The linear cost model shown in Figure 3.7(b) is used for all cables.

3.4.2 Packaging and Cable length

Figure 3.8 shows a possible packaging of a 16-ary 4-flat (k′ = 61, n′ = 3) flattened

butterfly network. Each router has channels to 16 terminal nodes and to 45 other

routers, 15 in each of three dimensions (Figure 3.8(a)). Figure 3.8(b) shows how

the routers connected in dimension 1 are packaged in a subsystem containing 256

nodes.9 The like elements from 16 of these dimension 1 subsystems are connected in

8It is interesting to note that the 12x has a slightly higher wire cost per unit length. The
Infiniband 4x is a commodity cable whereas the 12x cables needed to be custom ordered – thus,
resulting in the higher price.

9We assume packaging 128 nodes per cabinet as in Cray BlackWidow. Hence a dimension 1
subsystem requires two cabinets connected by short cables.

28 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

15

15
15

dimension 1
connections

dimension 2
connections

dimension 3
connections

router

P0 P1 P15

(a)

dimension 1

R0

P0 P1 P15

dimension 2

15 15 15

dimension 3 connections

R1

P16 P17 P31

R15

P240 P241 P255

(b)

dimension 2
dimension 1

dimension 3

(c)

Figure 3.8: Block diagrams of a 16-ary 4-flat flattened butterfly. (a) Block diagram of
each router where 16 ports are used for the terminal nodes and 15 ports are used for
connections in each dimension. (b) Topology block diagram that can scale to more
than 64K nodes. (c) A packaging block diagram of the topology, with the connections
for only the lower left cabinet shown.

3.4. COST MODEL 29

E

R
o

ut
er

 C
ab

in
e

t

~E/2

(a) (b)

Figure 3.9: Sample cabinet packaging layout of 1024 nodes in (a) folded-Clos and (b)
hypercube topologies. Each box represents a cabinet of 128 nodes and the hypercube
is partitioned into two chassis. In the folded-Clos, the router cabinet is assumed to
be placed in the middle and for illustration purpose only, the router cabinet is drawn
taller.

dimensions 2 forming a subsystem with 4,096 nodes. Up to 16 of these subsystems can

be combined in dimension 3 leading to a network with up to 65,536 nodes. A possible

packaging of this configuration is shown in Figure 3.8(c) where each box represents

a pair of cabinets that contains a dimension 1 subsystem. Dimension 2 is mapped

across the columns, and dimension 3 is mapped across the rows. The connections are

only shown for the lower left cabinet.

From Figure 3.8(c), the maximum cable length (Lmax) of the flattened butterfly

topology will be approximately equal to the length of one edge (E) of the 2-D cabinet

layout. The average global cable length (Lavg) for connections in dimensions 2 and 3

is approximately Lmax/3 = E/3. Dimension 1 connections between nodes are made

over backplanes or very short (1-2m) cables between nodes in different cabinets. It

can be seen that the Lmax and the Lavg of the butterfly will be the same as that of

the flattened butterfly since the flattened butterfly’s channels were derived from the

channels in the conventional butterfly.

Packaging of the folded-Clos and the hypercube are shown in Figure 3.9. For the

30 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

folded-Clos, Lmax is approximately E/2 since the cables only need to be routed to a

central routing cabinet (Figure 3.9(a)). Lavg for the Clos is approximately Lmax/2 =

E/4. The hypercube has similar Lmax cable lengths as the folded-Clos (Figure 3.9(b)).

The diagram illustrates only the global cables – inter-cabinet connections for the

higher dimensions in the hypercube. Each node of the hypercube connects to a single

node in each dimension of the network, thus the longest cable will be E/2, the next

longest cable will be E/4 and so forth. The cable lengths are a geometric distribution,

which can be summed to arrive at the average cable length, Lavg of approximately

(E − 1)/log2(E). Because of the logarithmic term, as the network size increases, the

average cable length is shorter than the other topologies.

The length of an edge (E) in a cabinet packaging layout can be estimated as

E =

√

N

D
. (3.3)

where N is the number of nodes and D is the density of nodes (nodes/m2).

3.4.3 Cost Comparison

The assumptions and the parameters used in the topology cost comparison are shown

in Table 3.2. In determining the actual cable length for both Lmax and Lavg , we

add 2m of cable overhead – 1m of vertical cable run at each end of the cable. We

multiply a factor of 2 to the depth of the cabinet footprint to allow for spacing between

rows of cabinets. Based on these parameters and the cost model described earlier,

we compare the cost of conventional butterfly, folded-Clos, hypercube, and flattened

butterfly topologies while holding the random bisection bandwidth constant.

In Figure 3.10, the ratio of the link cost to the total interconnection network

cost is shown. The total cost of the interconnection network is dominated by the

cost of the links. Because of the number of routers in the hypercube, the routers

dominate the cost for small configurations.10 However, for larger hypercube networks

10The router cost for the hypercube is appropriately adjusted, based on the number of pins
required. Using concentration in the hypercube could reduce the cost of the network but will
significantly degrade performance on adversarial traffic pattern and thus, is not considered.

3.4. COST MODEL 31

parameter value

radix 64
of pairs per port 3
nodes per cabinet 128
cabinet footprint 0.57m x 1.44m
D (density) 75 nodes/m2

cable overhead 2m

Table 3.2: Technology and packaging assumptions used in the topology compari-
son. The values are representative of those used in the Cray BlackWidow parallel
computer.

(N > 4K), link cost accounts for approximately 60% of network cost. For the other

three topologies, link cost accounts for approximately 80% of network cost. Thus,

it is critical to reduce the number of links to reduce the cost of the interconnection

network.

The average cable length (Lavg) of the different topologies is plotted in Figure 3.11)

as the network size is varied, based on the cable length model presented in Sec-

tion 3.4.2. For small network size (<4K), there is very little difference in Lavg among

the different topologies. For larger network size, Lavg for the flattened butterfly is

22% longer than that of a folded-Clos and 54% longer than that of a hypercube.

However, with the reduction in the number of global cables, the flattened butterfly is

still able to achieve a cost reduction compared to the other topologies.

We plot the cost per node of the four topologies in Figure 3.12 as the network

size is increased. In general, the butterfly network provides the lowest cost while

the hypercube and the folded-Clos have the highest cost. The flattened butterfly,

by reducing the number of links, gives a 35-53% reduction in cost compared to the

folded-Clos.

A step increase occurs in the cost of the folded-Clos when the number of stages

increases. For example, increasing the network size from 1K to 2K nodes with radix-

64 routers requires adding an additional stage to the network to go from a 2-stage

folded-Clos to a 3-stage folded-Clos. The flattened butterfly has a similar step in the

cost function when the number of dimensions increases. For example, a dimension

32 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

Folded Clos

Flattened
ButterflyConventional

Butterfly

Hypercube

0

0.2

0.4

0.6

0.8

1

0 5000 10000 15000 20000 25000 30000
Network size (N)

%
 o

f l
in

k
co

st

Figure 3.10: The ratio of the link cost to total network cost. The cable overhead is
not included in this plot.

Flattened
Butterfly,

Conventional
Butterfly

Folded Clos

Hypercube

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000

Network Size (N)

A
ve

ra
g

e
ca

b
le

 le
n

g
th

 (
m

)

Figure 3.11: Average cable length of the different topologies as the network size is
increased. The cable overhead is not included in this plot.

3.4. COST MODEL 33

Folded Clos

Hypercube

Butterfly

Flattened
Butterfly

0

40

80

120

160

200

0 1000 2000 3000 4000
Network size

co
st

($
)

pe
r n

od
e

Folded Clos

Hypercube

Butterfly

Flattened
Butterfly

0

50

100

150

200

250

300

350

0 10000 20000 30000
Network size

co
st

($
)

pe
r

no
de

Figure 3.12: Cost comparison of the different topologies. The bottom plot is the same
plot as the plot on the top with the x-axis zoomed in to display the smaller networks
more clearly.

must be added to the network to scale from 1K to 2K nodes. However, the cost

increase is much smaller (approximately $40 per node increase compared to $60 per

node increase for the folded-Clos) since only a single link is added by increasing the

number of dimension – whereas in the folded-Clos, two links are added.

For small networks (<1K), the cost benefit of flattened butterfly compared to the

folded-Clos is approximately 35% to 38%. Although the flattened butterfly halves

the number of global cables, it does not reduce the number of local links from the

processors to the routers. For small networks, these links account for approximately

34 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

40% of the total cost per node – thus, total reduction in cost is less than the expected

50%.

For larger networks (>1K), the cost benefit is greater than 40% and at N = 4K,

the cost is reduced by about 53%. The cost reduction of more than 50% is the result

of the packaging locality that can be exploited with the flattened butterfly. With the

flattened butterfly, dimension 1 connections are contained within a pair of adjacent

cabinets and made with short links. In the folded-Clos, however, the corresponding

links are routed to a central cabinet requiring global links. In addition, the number of

links are actually reduced by more than 1/2 in the flattened butterfly – for example,

with N = 1K network, the folded-Clos requires 2048 links while the flattened butterfly

requires 31 x 32 = 992 links, not 1024 links. For even larger network sizes (16K-32K),

the cost benefit reduces to 40 - 45% since the flattened butterfly requires higher

average cable length as shown in Figure 3.11.

Although the flattened butterfly was constructed from the conventional butterfly,

the conventional butterfly is a lower cost network for 1K < N < 4K. With radix-64

routers, the conventional butterfly can scale to 4K nodes with only 2 stages (e.g. only

one inter-router link per node). Because the flattened butterfly shares the radix of

its router across stages (dimensions), it has a smaller effective radix (e.g., k = 16

for k′ = 61) resulting in more stages for the same number of nodes. However, when

N > 4K, the butterfly requires 3 stages with all of the inter-router links being global –

thus, the cost of the flattened butterfly becomes very comparable to the conventional

butterfly.

3.5 Discussion

This section discusses trade-offs in the design parameters of the flattened butterfly, the

impact of wire delay, and provides a power consumption comparison of the alternative

high-radix topologies which include hypercube, folded-Clos, and the conventional

butterfly networks.

3.5. DISCUSSION 35

k n k′ n′

64 2 127 1
16 3 46 2
8 4 29 3
4 6 19 5
2 12 12 11

Table 3.3: Different k and n parameters for a N = 4K network and the corresponding
k′ and n′ flattened butterfly parameter.

3.5.1 Design Considerations

Fixed Network Size (N)

For a network with N = 4K nodes, Table 3.3 shows several values of k′ and n′

along with the corresponding values of k and n. The performance of the different

configurations on uniform random (UR) traffic using the Valiant’s (VAL) routing

algorithm [77] is shown in Figure 3.13(a). 11 As k′ decreases, the diameter of the

network and hence latency increases. Because the bisection bandwidth is constant

across configurations, throughput remains constant at 50% of capacity.

An additional affect of increased dimensionality is the increase in the number of

virtual channels needed to avoid deadlock. With VAL, all of the networks require

only 2 VCs to avoid deadlock. However, with adaptive routing, the number of VCs

needed is proportional to n′. Figure 3.13(b) compares the performance of the different

configurations using minimal adaptive (MIN AD) routing with the total storage per

physical channel (PC) held constant at 64 flit buffers. As with VAL, the networks

with higher n′ have higher latency. However, since the total storage per PC is di-

vided among n′ VCs, increasing n′ decreases the storage per VC and hence decreases

throughput. The figure shows that throughput degrades about 20% as n′ is increased

from 1 to 5.

Using the same cost model described in Section 3.4, the cost per node is compared

for the different configurations in Figure 3.14. As n′ increases, the average cable length

11Details of alternative routing algorithms on the flattened butterfly topology is presented in
Section 4.2.1 and the simulation setup is described in Section 4.2.2.

36 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered load

La
te

nc
y

(c
yc

le
s)

n'=11 n'=5 n'=3 n'=2 n'=1

0

10

20

30

40

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

n'=11 n'=5 n'=3 n'=2 n'=1

(a) (b)

Figure 3.13: Performance comparison for different N = 4K Flattened Butterflies
using (a) VAL and (b) MIN AD routing algorithms.

and hence average cost per cable, decreases as shown in the line plot of Figure 3.14.

However, this decrease in cost per cable is more than offset by the increase in the

number of links and routers as n′ increases. The cost per node increase by 45% from

n′ = 1 to n′ = 2 and increases by 300% from n′ = 1 to n′ = 5. Thus, for a given

N , the highest radix (and lowest dimensionality) that can be realized results in the

highest performance and lowest cost.

Fixed Radix (k)

To build a flattened butterfly topology with radix-k routers, the smallest dimension

(n′) of the flattened butterfly should be selected that meets the scaling requirement

of the network – e.g.

⌊

k

n′ + 1

⌋(n′+1)

≥ N. (3.4)

Based on the value of n′ selected, the resulting effective radix (k′) of the topology

is

k′ =

(⌊

k

n′ + 1

⌋

− 1

)

(n′ + 1) + 1. (3.5)

3.5. DISCUSSION 37

0

50

100

150

200

n'=1 n'=2 n'=3 n'=5 n'=11

C
o

st
 (

$)
 p

er
 N

o
d

e

0

2

4

6

8

10

12

A
ve

ra
g

e
C

o
st

 (
$)

 p
er

 C
ab

le

router link Avg. Cable Cost

Figure 3.14: Cost Comparison of N = 4K Flattened Butterflies as n′ is increased.

However, depending on value of n′ selected, k′ may be smaller than k – thus providing

extra ports in the router. For example, with radix-64 routers, a flattened butterfly

with n′ = 1 only requires k′ = 63 to scale to 1K nodes and with n′ = 3 only requires

k′ = 61 to scale to 64K nodes. The extra ports can be used to increase the size of the

network or can be used as redundant ports. An example of expanding a 4-ary 2-flat

using radix-8 routers are shown in Figure 3.15. Since 4-ary 2-flat requires radix-7

routers, an extra port can be used to increase the scalability from N = 16 to N = 20

(Figure 3.15(b)). The extra port can also be used to double the bandwidth between

local router nodes (Figure 3.15(a)) which can increase the bandwidth to neighboring

router nodes. However, taking advantage of the extra ports does not fundamentally

change any characteristics of the topology. The use of redundant links will add some

additional cost to the network but the cost advantage of the flattened butterfly and

the need for global adaptive routing on the topology are still applicable.

3.5.2 Wire Delay

As shown in Figure 3.11, the flattened butterfly increases the average length of the

global cables and can increase the wire delay. However, longer wire delay does not

necessarily lead to longer overall latency since the wire delay (time of flight) is based

on the physical distance between a source and its destination. As long as the packaging

38 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

O
0

O
1

O
2

O
3

O
4

O
5

O
5

O
7

O
8

O
9

O
10

O
11

O
12

O
13

O
14

O
15I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I1

0

I1
1

I1
2

I1
3

I1
4

I1
5

R0' R1' R2' R3'

I1
6

I1
7

I1
8

I1
9

O
0

O
1

O
2

O
3

O
4

O
5

O
5

O
7

O
8

O
9

O
10

O
11

O
12

O
13

O
14

O
15I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I1

0

I1
1

I1
2

I1
3

I1
4

I1
5

R0' R1' R2' R3'

I1
6

I1
7

I1
8

I1
9

R4'

(a)

(b)

Figure 3.15: Examples of alternative organization of a 4-ary 2-flat flattened butterfly
by (a) using redundant channels and (b) increasing the scalability. The dotted lines
represent the additional links added by taking advantage of the extra ports.

of the topology have minimal physical distance, the time of flight is approximately

the same regardless of the hop count. Direct networks such as torus or hypercube

have minimal physical distance between two nodes but indirect networks such as

folded-Clos and the conventional butterfly have non-minimal physical distance that

can add additional wire latency. However, since there are no intermediate stages in

the flattened butterfly, the packaging is similar to a direct network with minimal12

distance physical distance and does not increase the overall wire delay. For this reason,

the wire delay of a flattened butterfly may be smaller than that of an equivalent

folded-Clos. For local traffic such as a traffic pattern where each node associated

with router Ri sends traffic to a node associated with router Ri+1, the folded-Clos

needs to route through middle stages – incurring 2x global wire delay where as the

flattened butterfly can take advantage of the packaging locality and the minimum

physical distance to provide lower delay.

12Minimal distance here means minimal Manhattan distance and not the distance of a straight
line between the two endpoints.

3.5. DISCUSSION 39

3.5.3 Power comparison

The power consumption of an interconnect network is an increasing concern. The to-

tal power consumption of an interconnection network is the sum of two components:

Pswitch and Plink. Pswitch is the power consumed internal to the router, including the

switch, the arbitration logic, and the routing logic, and is proportional to the total

bandwidth of the router. The complexity of arbitration and routing is increased with

the larger number of ports in a high-radix router but Wang et al. has shown that

these components have negligible impact on the overall power [79]. Plink is the power

required to drive the links between the routers and is often the dominating compo-

nent of the total power consumed by an interconnection network. In the Avici TSR

Router [20], 60% of the power budget in the line card is dedicated to the link circuitry

and approximately 45% of the power in YARC router [68] is consumed by the seri-

alizer/deserializer(SerDes). Depending on the medium (e.g. cables, backplane, etc),

Plink can vary significantly. Using the same SerDes, the power consumed to drive

a local link (Plink gl) is 20% less than the power consumed to drive a global cable

(Plink gg) with the reduction in power coming from the equalizer and the transmit-

ter/receiver [13]. For a router in an indirect topology, depending on where in the

topology the router is used, a SerDes might need to drive a local link or a global link.

However, for direct topologies and for the flattened butterfly, a dedicated SerDes

can be used to exploit the packaging locality – e.g. have separate SerDes on the

router chip where some of the SerDes are used to drive local links while others are

used to drive global links and reduce the power consumption. For example, a SerDes

that can drive <1m of backplane only consumes approximately 40mW [80] (Plink ll),

resulting in over 5x power reduction. The different power assumptions are summarized

in Table 3.4 and the power comparison for the different topologies are shown in

Figure 3.16.

The comparison trend is very similar to the cost comparison that was shown

earlier in Figure 3.12. The hypercube gives the highest power consumption while the

conventional butterfly and the flattened butterfly give the lowest power consumption.

For 1K node network, the flattened butterfly provides lower power consumption than

the conventional butterfly since it takes advantage of the dedicated SerDes to drive

40 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

Component Power

Pswitch 40 W
Plink gg 200 mW
Plink gl 160 mW
Plink ll 40 mW

Table 3.4: Power consumption of different components in a router.

Folded Clos

Flattened
Butterfly

Hypercube

Butterfly

0

2

4

6

8

10

0 5000 10000
Network Size (N)

P
ow

er
 p

er
 n

od
e

(W
)

Figure 3.16: Power comparison of alternative topologies. The power consumption for
the interconnection network normalized to N is plotted as the N is increased.

local links. For networks between 4K and 8K nodes, the flattened butterfly provides

approximately 48% power reduction, compared to the folded-Clos because a flattened

butterfly of this size requires only 2 dimensions while the folded-Clos requires 3 stages.

However, for N > 8K, the flattened butterfly requires 3 dimensions and thus, the

power reduction drops to approximately 20%.

3.6 Related Work

The flattened butterfly is similar to a generalized hypercube [10] (GHC) topology.

The generalized hypercube is a k-ary n-cube network that uses a complete connection,

rather than a ring, to connect the nodes in each dimension. In the 1980s, when this

topology was proposed, limited pin bandwidth made the GHC topology prohibitively

3.6. RELATED WORK 41

31

router

P0 P1 P31

dimension 1
connections

x dimension
16

8
8

router

P0

z dimension

y dimension

(a) (b)

Figure 3.17: Block diagram of routers used in a 1K network for (a) flattened butterfly
with one dimension and (b) (8,8,16) generalized hypercube.

expensive at large node counts. Also, without load-balancing global adaptive routing,

the GHC has poor performance on adversarial traffic patterns.

The flattened butterfly improves on the GHC in two main ways. First, the flat-

tened butterfly connects k terminals to each router while the GHC connects only a

single terminal to each router. Adding this k-way concentration makes the flattened

butterfly much more economical than the GHC - reducing its cost by a factor of k,

improves its scalability, and makes it more suitable for implementation using high-

radix routers. For example, routers used in a 1K node network of a flattened butterfly

with one dimension and a (8,8,16) GHC are shown in Figure 3.17. With 32-terminal

nodes per router, the terminal bandwidth of the flattened butterfly is matched to the

inter-router bandwidth. In the GHC, on the other hand, there is a mismatch between

the single terminal channel and 32 inter-router channels. If the inter-router channels

are of the same bandwidth as the terminal channel, the network will be prohibitively

expensive and utilization of the inter-router channels will be low. If the inter-router

channels are sized at 1/32 the bandwidth of the terminal channel, serialization latency

will make the latency of the network prohibitively high and the overall bandwidth of

the router will be low, making poor use of the high-pin bandwidth of modern VLSI

42 CHAPTER 3. FLATTENED BUTTERFLY TOPOLOGY

chips.

The second improvement over the GHC, which will be discussed in detail in Chap-

ter 4, is the use of non-minimal globally-adaptive routing to load-balance adversarial

traffic patterns and the use of adaptive-Clos routing with sequential allocators to re-

duce transient load imbalance. These modern routing algorithms enable the flattened

butterfly to match the performance of a Clos network on adversarial traffic patterns.

In contrast, a GHC using minimal routing is unable to balance load and hence suffers

the same performance bottleneck as a conventional butterfly on adversarial traffic.

The Cray BlackWidow network [68] implements a high-radix modified folded-Clos

topology using radix-64 routers. The network introduces sidelinks that connect neigh-

boring subtrees together directly instead of using another stage of routers. A Rank1.5

BlackWidow network is similar to a one-dimensional flattened butterfly. However, the

size of the routing table and packaging constraints limit the scalability of the Rank1.5

BlackWidow network to 288 nodes. Also, the BlackWidow router uses minimal rout-

ing and does not load balance across the sidelinks like the flattened butterfly with

non-minimal routing. As the BlackWidow network scales to larger numbers of nodes,

Rank2.5 and Rank3.5 networks are hybrids that resemble a flattened butterfly at the

top level but with folded-Clos subnetworks at the lower levels. The flattened butterfly

topology introduced in this paper extends the concept of sidelinks to create a topol-

ogy where every link is a sidelink and there are no uplinks or downlinks to middle

stage routers. Our work also improves upon the BlackWidow network by using global

adaptive non-minimal routing to load-balance sidelinks.

The Flat Neighborhood Networks (FNN) [26] is an interconnection network pro-

posed for clusters that is flat – i.e. there is only a single router between every pair

of nodes. FNN partitions the terminal node bandwidth among the multiple routers

and thus, provides a single intermediate hop between any two nodes. However, the

network leads to an asymmetric topology and is very limited in its scalability.

To increase the path diversity of the butterfly network, alternative butterfly net-

works have been proposed. Additional stages can be inserted to the butterfly net-

work [72] but adding additional stages to the butterfly ultimately leads to a Clos

network. Dilated butterflies [47] can be created where the bandwidth of the channels

3.7. SUMMARY 43

in the butterflies are increased. However, as shown in Section 3.4.3, the network cost

is dominated by the links and these methods significantly increase the cost of the

network with additional links as well as routers.

3.7 Summary

Existing topologies such as the conventional butterfly or the folded-Clos (fat-tree)

can exploit high-radix routers. However, conventional butterfly has limited path

diversity which can lead to performance degradation while the folded-Clos provides

high performance but incurs approximately a 2× increase in cost. In this chapter, we

presented a topology called the flattened butterfly which approaches the path diversity

of a folded-Clos while approaching the cost of a conventional butterfly. By eliminating

the intermediate middle stages, the flattened butterfly provides a more cost-efficient

topology compared to a folded-Clos. Through a detailed cost model, we showed the

cost advantages of the flattened butterfly compared to alternative topologies. In

the next chapter, we will discuss the impact of routing on high-radix networks and

present the benefits of proper adaptive routing on such high-radix networks. We will

also provide a performance comparison of the alternative high-radix topologies.

Chapter 4

Adaptive Routing in High-Radix

Networks

In this chapter, we focus on routing in high-radix networks. Routing, which deter-

mines the path a packet takes from its source to its destination, can be classified as

either adaptive routing, where the network state is used to determine the route, or

oblivious routing, where the routing decision is made randomly or deterministically.

Adaptive routing is often used as it provides higher performance. However, high-radix

routers presents unique challenge in adaptive routing because of the large number of

ports. Proper adaptive routing can reduce latency and provides less variance in the

distribution of packet latency.

In Section 4.1, we first discuss the benefits of adaptive routing in a high-radix

network by evaluating the folded-Clos topology, which provides high-path diversity

where all paths are minimal. Even with all minimal paths, we show the benefits of

adaptive routing, especially when nonuniformities in the network traffic exist with

the presence of deterministic routing as well as faults in the network. Since the

large number of ports in a high-radix router can impact the router cycle time, we

also introduce randomization in the allocation algorithms to simplify the routing

decision with minimal loss in performance. To reduce the implementation cost, we

show how reduced precision simplifies the comparison logic and precomputation of

the allocations minimizes the impact on the router pipeline delay.

44

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 45

R0

P0 P1 P31

R1

P32 P33 P63

R31

P992 P993 P1023

R32 R33 R63

Figure 4.1: Block diagram of a 1K node high-radix folded-Clos network with radix-64
routers. P0-P1023 represents the terminals, R0-R31 represents the first level routers,
and R32-R63 represents the second level routers.

In Section 4.2, we present the benefits of using global adaptive routing in the

flattened butterfly topology which introduces non-minimal routing. We show how

the use of non-minimal routing is critical to fully exploit the path diversity in the

flattened butterfly and evaluate global adaptive routing against alternative routing

algorithms.

4.1 Routing on High-Radix Folded-Clos Topology

4.1.1 Adaptive vs. Oblivious routing

In this section, we compare adaptive and oblivious routing on a high-radix folded-Clos

network and discuss the benefits of adaptive routing. We show how adaptive routing

is particularly beneficial with limited buffering and nonuniformities in the network

traffic. We assume an ideal adaptive routing in this section using the sequential

allocation algorithm. The different allocation algorithms will be discussed in Sec-

tion 4.1.2.

Performance Evaluation

In this section, we provide additional simulation results to compare adaptive and

oblivious routing. We use a cycle-accurate simulator to evaluate the performance

46 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

of adaptive and oblivious routing in a folded-Clos network. We perform open-loop

simulations [22] to evaluate the network and assume that the system has enough

latency hiding so that the offered load is not affected by message latency.1 We simu-

late a single-cycle input-queued router and the packets are injected using a Bernoulli

process. The simulator is warmed up under load without taking measurements un-

til steady-state is reached. Then a sample of injected packets are labeled during a

measurement interval. The sample size was chosen such that the measurements are

accurate to within 3% with 99% confidence. The simulation is run until all measure-

ment packets are delivered.

As we will discuss in Chapter 5, the design of input-queued routers is problematic

as the number of ports increase in high-radix routers. However, in order to generalize

the results, we use input-queued routers and provide sufficient switch speedup so that

the routers do not become the bottleneck in the network. We use radix-64 routers

and create a 3-stage folded-Clos network with 1K nodes as shown in Figure 4.1.

We evaluate the network performance using the worst-case uniform random (wc-UR)

traffic pattern – each source sends traffic to a random destination whose common

ancestor is the root of the network – as well as permutation traffic patterns. Credit-

based flow control is used between routers to maintain the buffer information of

downstream routers. Since we are focusing on the routing of the network, we assume

only a single virtual channel [23] and use a packet size of 1 flit. Longer packet sizes

generally follow the same trend in the comparison but when necessary to clarify some

of the results, we vary the packet size.

Infinite Buffers

The simulation results comparing adaptive and oblivious routing with infinite buffers

is shown in Figure 4.2(a). The throughput is identical as both routing algorithms

achieve nearly 100% throughput with adaptive routing resulting in lower latency at

higher loads. For oblivious routing, the middle stages are chosen randomly – thus,

with sufficient buffering, the expected or the average load across all the outputs will

1As an example, the processors in the BlackWidow system [68] can support thousands of out-
standing global memory references and provide latency hiding.

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 47

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1

Offered load

La
te

nc
y

(c
yc

le
s)

oblivious adaptive

0

5

10

15

20

25

30

35

40

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

oblivious adaptive

(a) (b)

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

oblivious adaptive

0

5

10

15

20

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

oblivious adaptive

(c) (d)

Figure 4.2: Adaptive and oblivious routing comparison of the latency vs. offered load
in the folded-Clos network with (a) wc-UR traffic with infinite buffers (b) wc-UR
traffic with 16 buffers (c) bit reverse traffic pattern and (d) bit complement traffic
pattern.

48 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

0 10 20 30 40 50 60 70

Latency

N
um

be
r

of
 p

ac
ke

ts

0.0E+00

5.0E+04

1.0E+05

1.5E+05

2.0E+05

2.5E+05

3.0E+05

3.5E+05

0 10 20 30 40 50 60 70

Latency

N
um

be
r

of
 p

ac
ke

ts

(a) (b)

Figure 4.3: Latency distribution of packets with an offered load of 0.9 with (a) obliv-
ious routing and (b) adaptive routing.

be the same. Thus, oblivious routing results in the same throughput as adaptive

routing with infinite buffers.

However, adaptive routing provides lower latency at higher offered loads since the

routing decisions are made adaptively each cycle to load balance across the uplinks.

To illustrate the benefit of adaptive routing, we plot the distribution of packet latency

in Figure 4.3 for oblivious and adaptive routing at an offered load of 0.9. The average

latency of oblivious routing is approximately 38% higher than adaptive. In addition,

adaptive routing has a tighter latency distribution with a standard deviation that is

20% less than that of oblivious routing. As a result, the poor instantaneous decisions

of oblivious routing lead to higher average latency and a larger latency distribution

of the packets compared to adaptive routing. Reducing the variance in the packet

latency is significant as it will improve the global synchronization time across the

whole system.

Other traffic patterns such as bit reverse permutation [22] follows the same trend

as the wc-UR traffic pattern (Figure 4.2(c)). With a congestion-free traffic pattern [33]

such as the bit complement permutation, adaptive routing results in a constant delay

regardless of the offered load [7] while congestion increases latency at higher offered

load with oblivious routing (Figure 4.2(d)).

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 49

Finite Buffers

When buffering is limited, the throughput of oblivious routing suffers compared to

adaptive routing as shown in Figure 4.2(b) when the input buffers are limited to 16

entries.2 Adaptive routing provides approximately 10% higher throughput as oblivi-

ous routing does not consider the state of network – i.e. the randomly selected output

maybe not be available because of lack of buffer space.

The poor instantaneous load-balancing of oblivious routing can be shown by a

snapshot of the buffer utilization of the middle stage routers during simulation. For

each middle stage router, we plot the size of the input buffer with the highest oc-

cupancy in Figure 4.4 at an offered load of 0.8. The average queue utilization is

under 1 for both routing algorithms (0.78 for oblivious and 0.33 for adaptive) but the

distribution of the maximum queue occupancy is different. With oblivious routing,

some of the buffers are filled to capacity (16 entries) and average of the maximum

buffer depth is approximately 5 entries. In contrast, the average of the maximum

buffer depth is only 3 entries with adaptive routing and the maximum value is only

7, or roughly 50% of the capacity. Because of this imbalance in buffer utilization,

oblivious routing results in not only higher latency but also lower throughput with

limited buffering.

Nonuniformity - Presence of Deterministic Traffic

Additional benefits of adaptive routing can be observed in the presence of nonuni-

formity. Because of the symmetry in the topology, nonuniformity can not be created

by the traffic pattern itself since the traffic can be distributed across all the middle

stages.

The nonuniformity can result from deterministic routing being used in the net-

work. In a shared-memory multiprocessor, it is often necessary to ensure ordering

of requests to a given cache-line memory address because of the memory consistency

model. Therefore, deterministic routing such as that used by the Cray BlackWidow

216 buffer entries are sufficient to cover the credit latency.

50 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

0

2

4

6

8

10

12

14

16

Routers in the middle stage of the network

M
ax

im
um

 b
uf

fe
r

si
ze

0

2

4

6

8

10

12

14

16

Routers in the middle stage of the network

M
ax

im
um

 b
uf

fe
r

si
ze

(a) (b)

Figure 4.4: A snapshot of the maximum buffer size of the middle stage routers in
a 1K node folded-Clos network. The distribution is shown for (a) oblivious and (b)
adaptive routing at an offered load of 0.8 and the buffer depth of the routers are 16
entries.

network[68], can be used to provide in-order delivery of all request packets at a cache-

line address granularity for a source-destination pair. Since response packets in the

network do not require ordering they can be routed using either oblivious or adaptive

routing. By taking into account the congestive state of the network, adaptive routing

avoids any nonuniformities that may be introduced as a result of deterministic routing

of the request traffic. Oblivious routing does not take into account these potential

nonuniformities and may randomly select an output port which has a substantial

amount of deterministic request traffic en route. In effect, the adaptive routing will

“smooth out” any nonuniformities in the traffic pattern to load balance the set of

available links.

To illustrate this nonuniformity, we simulate a traffic pattern where each node i

sends traffic to (i + k) mod N where k is the radix of the routers and N is the total

number of nodes. Using this traffic pattern, 50% of the traffic is routed using deter-

ministic routing and the remaining 50% of the traffic is routed either adaptively or

obliviously. The simulation result is shown in Figure 4.5(a). With oblivious routing,

the throughput is limited to under 70% but with adaptive routing, 100% throughput

can be achieved. The deterministically routed traffic cause nonuniform channel loads

in the various middle stages since deterministic routing does not exploit the path

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 51

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

oblivious adaptive

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
Offered load

L
a

te
n

cy
 (

cy
cl

e
s)

oblivious adaptive

(a) (b)

Figure 4.5: Routing comparison with nonuniformity in the traffic pattern. The latency
vs. offered load comparison of adaptive and oblivious routing in the folded-Clos
network is shown for when (a) half of the traffic is routed using deterministic routing
and (b) network with faults.

diversity and is routed through the same middle stage. Adaptive routing allows the

other traffic to be routed around these nonuniform loads while oblivious routing can

not avoid the nonuniformity, leading to lower throughput.

Nonuniformity - Faults in the Network

Nonuniformity can also be created by oblivious routing in the presence of faults in

the network. An example is shown in Figure 4.6. Assume that the downlink from

R4→R0 is faulty3 and we observe the wc-UR traffic generated from nodes connected

to R1. Any traffic generated for R0 can not be routed through R4 since they can not

reach its destination, resulting in the traffic being load balanced across the other three

routers (R5-R7). However, traffic destined for R2 and R3 will be equally distributed

across all four uplinks. As a result, the uplink from R1→R4 will be underutilized

while the other three uplinks will be over utilized – limiting the throughput of the

network. To load balance appropriately, the traffic for R2 and R3 should utilize the

R1→R4 uplink more so that the traffic is balanced.

3The corresponding uplink will also need to be disabled.

52 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

R4

R0

P0 P1 P3P2

R1

P4 P5 P7P6

R2

P8 P9 P11P10

R3

P12 P13 P15P14

R5 R6 R7

Figure 4.6: Block diagram of a radix-8 3-stage folded-Clos network with a fault. By
using oblivious routing, the uplinks to the middle stages are not load balanced.

To evaluate the impact of faults on adaptive and oblivious routing, we simulate

a faulty network with the 1K network shown in Figure 4.1 with approximately 1.5%

of the links between stage1 and stage2 routers (16 of the 1024 links) assumed to be

faulty. The simulation results on this network with the wc-UR traffic pattern is shown

in Figure 4.5(b). By load balancing appropriately across the healthy links, adaptive

routing leads to approximately 2× improvement in throughput.4

4.1.2 Allocation Algorithms in Adaptive Routing

Adaptive routing in a folded-Clos requires an allocation algorithm since the outputs

(middle stages) need to be appropriately assigned to the inputs. We discuss the

different allocation algorithms and compare their performances in this section.

Algorithm Description

To load balance in a folded-Clos network, adaptive routing selects the middle stage

with the least amount of congestion – i.e. middle stage with the largest amount of

buffering available. Since simulation is done with input-queued routers, credits from

the downstream routers are used to load-balance. Thus, middle stages with more

credits (more buffer space) is preferred over those with fewer credits.

4In the simulation setup, we assumed 16 of the 32 links connected to R32 and R33 of Figure 4.1
are faulty. Different simulation setup will result in different amount of benefit using adaptive routing.

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 53

We evaluate the following four allocation algorithms. Unless stated otherwise, ties

(equal credit counts) are broken randomly.

• sequential : Each input i makes its adaptive decision after inputs 0 through i−1

have made their decisions and updated the state of the network. The allocation

algorithm assigns outputs to each input one at a time, taking into account the

previous allocations of this cycle. To provide fairness, starting input is selected

randomly each cycle.

• greedy : Each input adaptively selects an output independently. As a result,

each input does not take into account the routing decisions made by the other

inputs in the same cycle.

• sequential r(n) : A randomized version of sequential with n samples. Each

input i selects n random outputs and adaptively selects among the n random

outputs after inputs 0 through i − 1 have made their routing decision. When

n = 1, sequntial r(1) is similar to oblivious routing and sequntial r(k) is similar

to the sequential algorithm where k is the radix of the router.

• greedy r(n) : A randomized version of greedy with n samples. Each input

selects n random outputs and adaptively selects among them. greedy r(k) is

identical to greedy and greedy r(1) is identical to oblivious routing.

In the sequential and the sequential r(n) allocation algorithms, if multiple out-

puts have the same credit count, the ties are broken randomly. However, if one of

the outputs with the same credit count has already been selected by a previous input

in the same cycle, we provide priority to the other outputs. For example, if four

outputs {O0,O1,O2,O3} have a credit count {2,2,2,3}, the first input (I0) would select

O3. The credit count for O3 would be decremented by 1, resulting in a credit count

of {2,2,2,2}. For the next input (I1), all of the credits are equal and it can select

any output to load balance. However, since O3 has been selected by another input,

we provide preference to the other three outputs (O0,O1,O2). Using this policy to

break ties simplifies the switch scheduling by not overloading an output and reduces

congestion.

54 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

Algorithm Comparison

We simulate the different allocation algorithms using the simulation setup described

in Section 4.1.1. For the randomized allocation algorithms, we use n = 2. The

allocation algorithms are compared in Figure 4.7 using the wc-UR traffic pattern.

The results for other traffic patterns follow the same trend.

With unlimited buffering, sequential provides the best performance as it leads

to the lowest latency (Figure 4.7(a)). The sequential r(2) performs comparable to

sequential but leads to slightly higher latency near saturation (approximately 10%

higher at an offered load of 0.95). The greedy r(2) also provides the same throughput

but leads to higher latency, approximately 60% higher at an offered load of 0.95.

The difference in latency between greedy r(2) and sequential is minimized with

limited buffering (Figure 4.7(b)). With unlimited buffers, greedy r(2) might ran-

domly select a bad output – i.e. an output which has a lot of packets. However,

with limited buffering, if bad outputs are selected, the packet can be stalled when

the buffers are full and allocation is re-attempted in the next cycle to avoid the bad

outputs. Thus, the latency difference is less than 20% at an offered load of 0.85 near

saturation.

Regardless of the amount of buffering, the greedy algorithm performs poorly and

saturates at less than 60%. With the greedy algorithm, each input makes its routing

decision independent of the other inputs. Thus, the routing decision might be an

optimal local decision but could be a poor global decision in attempting to load

balance. To illustrate this behavior, we use the same example from Section 4.1.2. If

the credit count was {2,2,2,3} for the four outputs {O0,O1,O2,O3} and if a new packet

arrives at all four inputs, all of the inputs would select O3. This allocation would be

an optimal local decision for the four inputs but does not globally load balance across

all the outputs and leads to a poor allocation. As a result, congestion is created at

an output and the poor allocation decision creates a head-of-line blocking effect [39]

and limits the throughput of the router.

It is worth noting that the greedy algorithm is not problematic with low-radix

routers but becomes problematic with high-radix routers. The throughput of the

greedy algorithm is compared in Figure 4.8(a) on a 4K network as the radix of the

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 55

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Offerd load

La
te

nc
y

(c
yc

le
s)

greedy greedy_r(2) sequential_r(2) sequential

(a)

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

greedy greedy_r(2) sequential_r(2) sequential

(b)

Figure 4.7: Adaptive routing comparisons with (a) infinite buffers and (b) 16 buffers
using wc-UR traffic pattern.

56 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150

Radix

S
at

ur
at

io
n

th
ro

ug
hp

ut

0.5

0.6

0.7

0.8

0.9

1

0 50 100 150

Packet size (flits)

S
at

ur
at

io
n

th
ro

ug
hp

ut

(a) (b)

Figure 4.8: The impact on the saturation throughput as (a) radix and (b) packet size
is varied using the greedy routing algorithm. Higher radix and smaller packet size
limits the throughput of the greedy algorithm.

routers is varied between radix-4 and radix-128 with a single flit packet. Lower

radix networks achieve almost 100% throughput but the throughput drops to under

80% with radix-16 and beyond radix-32, the throughput is under 60%. The packet

size also impacts the performance of greedy algorithm as large packet size increases

throughput (Figure 4.8(b)). Since the routing decision is made only for the head flit

of a packet, increasing packet size decreases the probability of having 2 or more new

packets arriving in the same cycle – reducing the chance of output collision from the

poor routing decision. In Figure 4.9, we plot this probability as a function of offered

load. The probability approaches 1 very quickly for radix-64 router which explains the

poor performance of high-radix routers for the greedy algorithm using 1-flit packets.

However, the probability gradually approaches 1 for radix-8 router, With a packet

size of 8-flits in a radix-64 router, the probability is reduced and behaves very similar

to a radix-8 router with 1-flit packets. Thus, it is the ratio between the radix and the

packet length that determines the performance of greedy algorithm.

To evaluate the impact of the parameter n, we vary n in the randomized allocation

algorithms (sequential r(n) and greedy r(n)) and plot the latency at an offered load

of 0.9 in Figure 4.10. When n = 1, the randomized allocation algorithms are identical

to oblivious routing since only 1 randomly selected output is used. As n increases from

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 57

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Offered load

P
ro

b
ab

ili
ty

 o
f

2
o

r
m

o
re

 in
p

u
ts

 w
it

h

p
ac

ke
t

ar
ri

va
ls

radix-64, 1flit pkt radix-8, 1flit pkt radix-64, 8flit pkt

Figure 4.9: Probability of two or more packets arriving in the same cycle as the radix
and the packet size is varied.

1 to 2, there is approximately 10% reduction in latency for greedy r(n). However, as

n is increased further, the latency increases significantly and is beyond the scale of

the plot. As n approaches 32, the allocation algorithm behaves like greedy and the

network is no longer stable as the offered load of 0.9 exceeds the throughput.5 Similar

to greedy r(1), sequential r(1) behaves identical to oblivious routing. By increase n

from 1 to 2, there is over 20% reduction in latency with sequential r(1). However,

increasing n from 2 to 32 results in less than 10% reduction in latency. Thus, most

of the performance gain can be achieved by using only two samples.

The randomized algorithm were implemented assuming that the random choices

are not necessarily unique - e.g. for sequential r(2), the two randomly selected out-

puts can be the same output. Simulations show that the uniqueness of the random

choices has minimal impact on the latency of the allocation algorithm. As a result,

sequential r(32) latency is slightly higher than the sequential but by less than 1%.

5Although radix-64 routers is used in the simulation, only 32 output selections are possible in
routing upstream in the folded-Clos. Thus, the maximum size of n is 32.

58 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

sequential

10

12

14

16

18

20

0 10 20 30
Number of random choices (n)

La
te

nc
y

(c
yc

le
s)

greedy_r(n) sequential_r(n)

Figure 4.10: Randomized adaptive allocation algorithm comparison as n is varied for
sequential r(n) and greedy r(n). The lower bound of the algorithm is shown by the
sequential line.

4.1.3 Cost Analysis

Although adaptive routing provides performance benefits, the cost of implementation

complexity, in terms of router latency and area, needs to be considered. For deter-

ministic routing or source routing where only bit manipulation is required or oblivious

routing where only a random number needs to be generated, the routing pipeline de-

lay will be minimal. However, earlier work showed that introducing adaptive routing

can increase the complexity and the cycle time of a router [14]. The larger number of

ports in a high-radix router can further increase the routing complexity. For example,

the Cray YARC router requires 4 clock cycles for the routing decision [68].

A timeline of adaptive routing in a high-radix network is shown in Figure 4.11.

The three main components to the latency of adaptive routing in high-radix routers

are the following:

1. Collecting the network state (e.g. availability of the outputs and the output

credit information) as well as requests from each input.

2. Allocation based on the network state and the requests.

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 59

Collect
requests and
network state

Allocation Result distribution/
Update network

state

Routing Delay

Figure 4.11: Timeline of delay in adaptive routing in a high-radix folded-Clos network.

3. Updating the network state and distributing the outputs assigned to each input.

In this section, we provide a qualitative comparison of the different adaptive alloca-

tion algorithms discussed in Section 4.1.2. Then, we evaluate two different techniques

that reduce the complexity of adaptive routing in a high-radix folded-Clos network.

By using imprecise queue information, the complexity of the route allocation can be

reduced. The precomputation of the allocations can effectively hide the router la-

tency of adaptive routing. We evaluate their impact on performance and show that

there is minimal performance loss. The use of imprecision can be used for all four of

the algorithms but the precomputation can only be used for greedy and greedy r(n)

algorithm since they are distributed algorithms.

Algorithm Cost Comparison

Among the adaptive algorithms discussed in Section 4.1.2, sequential requires a cen-

tralized routing structure that collects all of the requests, performs the allocation,

and distributes the results. The complexity of such routing structure grows as O(k2)

and becomes prohibitively expensive to implement. The sequential r(n) routing al-

gorithm, even with n = 2, still requires a central routing structure since each input

is routed sequentially.

The greedy algorithm does not require a centralized structure as the routing

logic can be duplicated at each input and be distributed. However, the routing

algorithm still requires the distribution of the output information to all of the inputs.

In addition, the comparison logic at each input needs to compare all the outputs,

60 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

number
of bits

Description

0 no buffer depth information
used – only whether an out-
put is available or not

1 only the MSB is used
2 two MSBs is used
3 three MSBs is used
4 full buffer information is

used

Table 4.1: Different values of precisions used to evaluate the impact of precision in
adaptive routing. Buffer depth of 16 entries is assumed.

requiring a significant amount of logic. The greedy r(n) algorithm can simplify the

implementation as only n comparisons need to be made. Simulation earlier showed

that n = 2 performs well – thus, only a single comparison is needed.

Precision in Adaptive Routing

The buffer depth (credits) is used to load-balance properly in adaptive routing and

results so far assumed that the full information was available – i.e. the exact buffer

depth was available from the credits. For a buffer with q entries, log2q bits are needed

to obtain the exact buffer information. However, log2q bit comparators can be costly

with the larger number of ports in a high-radix router. As a result, the YARC router

only uses 1 or 2 bits of information to make its adaptive decision [68].6

Table 4.1 describes the different values of precisions that are used to evaluate the

impact of the precision. We assume a buffer depth of 16 and use the sequential

algorithm in our evaluation. Using 0 bits of information corresponds to an allocation

which does not consider the queue depth but considers only whether an output is

available or not.7 An output is not available if another input with a multi-flit packet is

transmitting to the output or if the downstream buffer is full. By using only the most

6The routing decision at the input buffers of YARC use 1 bit to select the row buffer and 2 bits
are used to select the output within the column.

7This adaptive allocation is similar to the adaptive routing used in CM-5 [53].

4.1. ROUTING ON HIGH-RADIX FOLDED-CLOS TOPOLOGY 61

0

5

10

15

20

25

oblivious 0bit 1bit 2bits 3bits 4bits

Precision of Buffer Depth

La
te

nc
y

(c
yc

le
s)

0

5

10

15

20

25

30

35

40

oblivious 0bit 1bit 2bits 3bits 4bits

Precision of Buffer Depth

La
te

nc
y

(c
yc

le
s)

(a) (b)

Figure 4.12: Latency comparison near saturation for network simulations with wc-UR
traffic using (a) 1 flit packets and (b) 10 flit packets as the precision of allocation is
varied . The network shown in Figure 4.1 was used for the simulations.

significant bit (MSB), the adaptive information will be used to differentiate whether

the buffer has more or less than 8 entries. By using 2 bits, the buffer information

is defined in granularity of 4 entries – e.g. 00 corresponds to less than 4 entries, 01

corresponds to 4 or more entries but less than 8 entries, and so forth. Using 3 bits

results in a finer granularity and 4 bits allows the exact queue information to be used.

We plot the latency near saturation throughput as the precision is varied in Fig-

ure 4.12. With single flit packets, there is a significant difference between oblivious

and adaptive routing but only a small difference between any of the different precision

schemes – the difference between 0 bits and 4 bits is less than 10% (Figure 4.12(a)).

With longer packets, the precision has more significant impact on the latency as 4

bits of precision can reduce the latency by over 60%, compared to using 0 bits (Fig-

ure 4.12(b)). However, by using only 2 or 3 bits of precision, the latency can still be

reduced by over 40% compared to using 0 bits.

For the uniform traffic patterns, the throughput is very similar regardless of the

precision used and difference in latency near saturation was compared. However, with

the nonuniformity such as the one discussed in Section 4.1.1, the different precision

results in different throughput as shown in Figure 4.13. Using 0 bit of information

still outperforms oblivious routing (see Figure 4.5(b)) but results in approximately

62 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
Offered load

La
te

nc
y

(c
yc

le
s)

0bits 1bits 2bits 3bits 4bits

Figure 4.13: Impact of precision with nonuniform traffic pattern.

15% reduction in throughput, compared to using all 4 bits. By using only 2 bits of

precision, the difference can be reduce by half and 3 bits of precision performs nearly

identical to using all 4 bits of precision.

Precomputation

To reduce the impact of adaptive routing on the router latency, the allocation can

be precomputed. By using the queue information in the previous cycle, the routing

decision can be precomputed and be available when a new packet arrives. The pre-

computation of allocations can be utilized with minimal loss in performance for the

following reasons.

• The queue depth will change minimally from cycle to cycle.

• When full precision is not used, the change in the credit will have minimal

impact – e.g. if only the 2 bits are used for adaptive decisions, the change in

the lower 2 bits will have minimal impact.

• With the use of randomization, even if some of the data is stale, it might not

impact the results.

4.2. ROUTING ON FLATTENED BUTTERFLY TOPOLOGY 63

10

20

30

40

50

0.3 0.35 0.4 0.45 0.5 0.55 0.6
Offered load

La
te

nc
y

(c
yc

le
s)

precompute2 precompute1 no precomputation

Figure 4.14: Performance comparison with the use of precomputation.

The performance comparison with precomputation is shown in Figure 4.14 us-

ing greedy r(2) algorithm. We compare the performance without precomputation

to precompute1, where the output is calculated in the previous cycle, and precom-

pute2 where the output is calculated in 2 cycle advance. The comparison is shown

for the nonuniform traffic from Section 4.1.1 with a 10 flit packets using only 2 bits

of precision. Both precompute1 and precompute2 perform comparable to no pre-

computation, with precompute2 resulting in approximately 10% higher latency near

saturation. With minimal loss in performance, precompute2 will allow an extra cycle

to distribute the routing information – further minimizing the impact of wires and

reduce the router pipeline delay as the routing results can be computed in advance.

4.2 Routing on Flattened Butterfly Topology

In this section, we describe routing algorithms for the flattened butterfly and compare

their performance on different traffic patterns. We also compare the performance of

the flattened butterfly to alternative topologies.

64 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

4.2.1 Routing Algorithm Descriptions

We evaluate the flattened butterfly on five routing algorithms: minimal adaptive

(MIN AD), Valiant’s non-minimal oblivious algorithm (VAL), the UGAL non-minimal

adaptive algorithm (UGAL), a variant of UGAL using sequential allocation (UGAL-

S), and non-minimal adaptive routing in a flattened Clos (CLOS AD). We describe

each briefly here. We consider routing in a k-ary n-flat where the source node s,

destination node d, and current node c are represented as n-digit radix-k numbers,

e.g., sn−1, . . . , s0. At a given step of the route, a channel is productive if it is part

of a minimal route; that is, a channel in dimension j is productive if cj 6= dj before

traversing the channel, and cj = dj after traversing the channel.

We assume an input-queued virtual channel router [22]. Adaptive algorithms esti-

mate output channel queue length using the credit count for output virtual channels

which reflects the occupancy of the input queue on the far end of the channel. For

MIN AD and UGAL, the router uses a greedy allocator: during a given routing cy-

cle, all inputs make their routing decisions in parallel and then, the queuing state is

updated en mass. For UGAL-S and CLOS AD, the router uses a sequential allocator

where each input makes its routing decision in sequence and updates the queuing

state before the next input makes its decision.

Minimal Adaptive (MIN AD): The minimal adaptive algorithm operates by choos-

ing for the next hop the productive channel with the shortest queue. To prevent

deadlock, n′ virtual channels (VCs) [23] are used with the VC channel selected based

on the number of hops remaining to the destination.

Valiant (VAL) [77]: Valiant’s algorithm load balances traffic by converting any

traffic pattern into two phases of random traffic. It operates by picking a random

intermediate node b, routing minimally from s to b, and then routing minimally from

b to d. Routing through b perfectly balances load (on average) but at the cost of

doubling the worst-case hop count, from n′ to 2n′ and destroying any locality. While

any minimal algorithm can be used for each phase, our evaluation uses dimension

order routing. Two VCs, one for each phase, are needed to avoid deadlock with this

algorithm.

Universal Globally-Adaptive Load-balanced (UGAL [73], UGAL-S) : UGAL chooses

4.2. ROUTING ON FLATTENED BUTTERFLY TOPOLOGY 65

between MIN AD and VAL on a packet-by-packet basis to minimize the estimated

delay for each packet. The product of queue length and hop count is used as an

estimate of delay. With UGAL, traffic is routed minimally on benign traffic patterns

and at low loads, matching the performance of MIN AD, and non-minimally on

adversarial patterns at high loads, matching the performance of VAL. UGAL-S is

identical to UGAL but with a sequential allocator.

Adaptive Clos (CLOS AD): Like UGAL, the router chooses between minimal and

non-minimal on a packet-by-packet basis using queue lengths to estimate delays. If

the router chooses to route a packet non-minimally, however, the packet is routed as

if it were adaptively routing to the middle stage of a Clos network. A non-minimal

packet arrives at the intermediate node b by traversing each dimension using the

channel with the shortest queue for that dimension (including a “dummy queue” for

staying at the current coordinate in that dimension). Like UGAL-S, CLOS AD uses

a sequential allocator. The routing is identical to adaptive routing in a folded-Clos

where the folded-Clos is flattened into the routers of the flattened butterfly. Thus,

the intermediate node is chosen from the closest common ancestors and not among

all nodes. As a result, even though CLOS AD is non-minimal routing, the hop count

is always equal or less than that of a corresponding folded-Clos network.

4.2.2 Evaluation & Analysis

We use cycle accurate simulations to evaluate the performance of the different routing

algorithms in the flattened butterfly. We simulate a single-cycle input-queued router

switch with sufficient switch speedup so that the routers do not become the bottleneck

in the network and use the simulation setup described earlier in Section 4.1.1. We

simulate a 32-ary 2-flat flattened butterfly topology (k′ = 63, n′ = 1, N = 1024).

Simulations of other size networks and higher dimension flattened butterfly follow the

same trend and are not presented due to space constraints. We simulate single-flit

packets8 and assume the total buffering per port is 32 flit entries. Although input-

queued routers have been shown to be problematic in high-radix routers[45], we use

8Different packet sizes do not impact the comparison results in this section.

66 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

input-queued routers but provide sufficient switch speedup in order to generalize the

results and ensure that routers do not become the bottleneck of the network.

We evaluate the different routing algorithms on the flattened butterfly using both

benign and adversarial traffic patterns. Uniform random (UR) traffic is a benign

traffic pattern that balances load across the network links. Thus, minimal routing

is sufficient for such traffic patterns and all of the routing algorithms except VAL

achieve 100% throughput (Figure 4.15(a)). VAL achieves only half of network capac-

ity regardless of the traffic pattern9[74]. In addition, VAL adds additional zero-load

latency with the extra hop count associated with the intermediate node.

We also simulate an adversarial traffic pattern where each node associated with

router Ri sends traffic to a randomly selected node associated with router Ri+1. With

this traffic pattern, all of the nodes connected to a router will attempt to use the same

inter-router channel. Non-minimal routing is required to load balance this traffic

pattern by spreading the bulk of the traffic across the other inter-router channels.

Figure 4.15(b) compares the performance of the routing algorithms on this pattern.

MIN is limited to 1/32 or approximately 3% throughput while all of the non-minimal

algorithms achieve 50% throughput (the maximum possible on this traffic).

With the adversarial traffic pattern, CLOS AD provides much lower latency near

saturation — nearly half the latency of UGAL-S at an offered load of 0.45. This

reduction in latency is analogous to the reduction in latency achieved by adaptive

routing compared to oblivious routing in a Clos network as shown in Section 4.1.

Because CLOS AD adaptively picks the intermediate node, it is able to dynamically

load balance traffic across the intermediate nodes and links. VAL, UGAL, and UGAL-

S obliviously pick the intermediate node which balances average traffic across nodes

and links but results in transient load imbalance that increases latency.

To highlight the effects of transient load imbalance, Figure 4.16 shows the time

required by each algorithm to deliver a batch of traffic normalized to batch size. We

use the adversarial traffic pattern described earlier. As the batch size increases, the

normalized latency approaches the inverse of the routing algorithm throughput. For

9The capacity of the network (or the ideal throughput for UR traffic) is given by 2B/N where B
is the total bisection bandwidth and N is the total number of nodes [22]. For the flattened butterfly,
similar to the butterfly network, B = N/2, thus the capacity of the flattened butterfly is 1.

4.2. ROUTING ON FLATTENED BUTTERFLY TOPOLOGY 67

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Offered load

L
at

en
cy

 (
cy

cl
es

)
VAL MIN UGAL UGAL-S CLOS AD

(a)

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

Offered load

L
at

en
cy

 (
cy

cl
es

)

MIN VAL UGAL UGAL-S CLOS AD

(b)

Figure 4.15: Routing algorithm comparisons on the flattened butterfly with (a) uni-
form random traffic and (b) worst case traffic pattern.

68 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

0

5

10

15

20

25

30

35

1 10 100 1000 10000
Batch size (Packets) per node

La
te

nc
y

(c
yc

le
s

-
no

rm
al

iz
ed

 to

ba
tc

h
si

ze
 p

er
 n

od
e)

MIN UGAL VAL UGAL-S CLOS AD

Figure 4.16: Dynamic response comparison of the routing algorithms.

small batch sizes, however, batch latency is affected by transient load imbalance. On

these small batches, UGAL performs very poorly because of the greedy nature of

its allocator. When the minimal queue is short, all inputs pick the minimal queue

(overloading this output) before the queuing state is updated. With UGAL-S, the

transient load imbalance due to greedy allocation is eliminated, but transient load

imbalance across intermediate nodes remains. VAL also shares this transient load

imbalance. CLOS AD eliminates both sources of transient load imbalance.

Both CLOS AD and UGAL-S require sequential allocations which can increase

the router clock cycle or the pipeline depth if they are implemented sequentially.

However, these algorithms can be implemented using parallel prefix schemes [49] to

speed up the computation. Although CLOS AD provides performance benefit over

UGAL-S, it leads to a higher complexity implementation since it requires comparing

the depth of all of the non-minimal queues. Techniques to reduce the complexity of

adaptive routing in high-radix Clos networks have been discussed in Section 4.1 and

can be implemented on the flattened butterfly as well.

4.2. ROUTING ON FLATTENED BUTTERFLY TOPOLOGY 69

4.2.3 Comparison to Other Topologies

We compare the performance of the flattened butterfly to three other topologies :

the conventional butterfly, the folded Clos, and the hypercube. We use a network

of 1024 nodes – thus, the conventional butterfly is built using 2 stages of radix-32

routers, the folded-Clos network is a 3-stage network using radix-64 routers, and the

hypercube is a 10 dimensional hypercube. The bisection bandwidth is held constant

across the four topologies. The routing algorithms used for each of the topologies are

described in Table 4.2 and the performance comparison is shown in Figure 4.17. For

the different topologies, the total buffer storage is held constant i.e. the product of

the VCs and the depth of each buffer is kept constant.

Topology Routing num
of
VCs

Flattened
Butterfly

CLOS AD 2

Conventional
Butterfly

destination-based 1

Folded Clos adaptive
sequential

1

Hypercube e-cube 1

Table 4.2: Topology and Routing used in performance comparison. The VCs are used
to break routing deadlocks.

On UR traffic (Figure 4.17(a)), all of the topologies provide 100% throughput ex-

cept for the folded-Clos. By holding bisection bandwidth constant across the topolo-

gies, the folded Clos uses 1/2 of the bandwidth for load-balancing to the middle

stages – thus, only achieves 50% throughput. In addition, the folded Clos has slightly

higher latency because of the extra middle stage and the hypercube also has much

higher latency because of its higher diameter. On WC traffic (Figure 4.17(b)), the

conventional butterfly throughput is severely limited and performs identically to a

flattened butterfly with minimal routing – leading to an order of magnitude differ-

ence in throughput. However, the other topologies perform similarly as they result

70 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

in a throughput of 50%. Thus, the flattened butterfly provides 2x increase in perfor-

mance over the folded-Clos on benign traffic while providing the same performance

on the worst-case traffic pattern when the cost (i.e. bisection bandwidth) is held

constant. In the next section, we provide a detailed cost model that includes the cost

of the channels in different packaging hierarchy as well as the router cost and show

how cost-efficient flattened butterfly is compared to the other topologies.

4.3 Related Work

The comparison of the flattened butterfly to the generalized hypercube was discussed

earlier in Section 3.6. Non-minimal routing on the generalized hypercube has been

proposed in circuit switched networks [83]. The adaptive routing proposed uses the

non-minimal paths to increase path diversity but does not describe how load-balancing

can be achieved with the non-minimal routes.

Our non-minimal routing algorithms for the flattened butterfly are motivated by

recent work on non-minimal and globally adaptive routing. Non-minimal routing was

first applied to torus networks and have been shown to be critical to properly load-

balancing tori [73, 74]. We show that these principles and algorithms can be applied

to the flattened butterfly as well. We also extend this previous work on load-balanced

routing by identifying the problem of transient load imbalance in high-radix adaptive

routers and show how this problem can be solved by using a sequential allocator in

place of a greedy allocator and the CLOS AD routing algorithm.

4.4 Summary

In this chapter, we evaluated benefits of adaptive routing on high-radix networks. We

first quantified the benefits of adaptive routing on a high-radix folded-Clos topology

where all paths are minimal paths. With adaptive routing, if done properly, lower

latency and less variance in the packet latency can be achieved compared to oblivious

routing. Adaptive routing also achieves better buffer utilization with limited buffering

and results in higher throughput. In the presence of nonuniformity in the traffic,

4.4. SUMMARY 71

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
Offered Load

La
te

nc
y

(c
yc

le
s)

conventional butterfly hypercube
flattened butterfly folded-Clos

(a)

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1
Offered Load

La
te

nc
y

(c
yc

le
s)

conventional butterfly hypercube
flattened butterfly folded-Clos

(b)

Figure 4.17: Topology comparisons of the flattened butterfly and the folded Clos with
(a) uniform random traffic and (b) worst case traffic pattern.

72 CHAPTER 4. ADAPTIVE ROUTING IN HIGH-RADIX NETWORKS

adaptive routing provides significant advantages as it will “smooth out” the traffic

and provide higher throughput.

Different allocation algorithms for adaptive routing in high-radix networks were

also presented in this chapter. The sequential algorithm provides the best perfor-

mance but is expensive to implement. By using randomization with the greedy r(2)

algorithm, the implementation can be simplified with minimal performance loss. The

implementation complexity can be further reduced by using imprecise queue informa-

tion and the latency of adaptive routing can be hidden by precomputing the adaptive

routing results in a previous cycle.

The use of adaptive routing is more critical for a topology such as the flattened

butterfly which includes non-minimal paths. We evaluated five routing algorithms for

the flattened butterfly including both minimal and non-minimal and both adaptive

and oblivious. We also compared routing algorithms using both greedy and sequential

allocators. The results show that non-minimal globally-adaptive routing is necessary

to load-balance the topology on both benign and adversarial traffic to provide high

performance. To overcome the transient load imbalance that can occur in high-

radix routers with greedy allocators, CLOS AD routing algorithm with a sequential

allocator is required.

So far, we have ignored the router complexity caused by increasing the radix of

the router. In the next chapter, we look at the router microarchitecture issues in

scaling to high radix and propose an hierarchical router organization that can scale

efficiently.

Chapter 5

Microarchitecture of a High-Radix

Router

High-radix router design is qualitatively different from the design of low-radix high

bandwidth routers. Increasing the radix of a router raises several challenges as internal

switches and allocators scale as the square of the radix. This chapter addresses these

challenges by proposing and evaluating alternative microarchitectures for high-radix

routers. We examine the most commonly used organization of a router, the input-

queued crossbar, and the different microarchitectural issues that arise when we try

to scale them to high-radix routers such as switch and virtual channel allocation.

The next four sections in this chapter incrementally explore the micro-architectural

space for a high-radix virtual-channel (VC) router. We start in Section 5.1 with a

baseline router design, similar to that used for a low-radix router [67, 56]. We see

that this design scales poorly to high radix due to the complexity of the allocators

and the wiring needed to connect them to the input and output ports. In Section 5.2,

we overcome these complexity issues by using distributed allocators and by simpli-

fying virtual channel allocation. This results in a feasible router architecture, but

poor performance due to head-of-line blocking. In Section 5.3, we show how to over-

come the performance issues with this architecture by adding buffering at the switch

crosspoints. This buffering eliminates head-of-line blocking by decoupling the input

and output allocation of the switch. However, with even a modest number of virtual

73

74 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

Switch
Allocator

VC
Allocator

Output k

Crossbar switch

RouterRouting
computation

Output 1

VC 1

VC 2

VC v

VC 1

VC 2

VC v

Input 1

Input k

Figure 5.1: Baseline virtual channel router.

channels, the chip area required by these buffers is prohibitive. We overcome this

area problem, while retaining good performance, by introducing a hierarchical switch

organization in Section 5.4. Additional simulation results are presented in Section 5.5

and we conclude this chapter with a case study of the Cray YARC router [68] – a

radix-64 router that implements the hierarchical switch organization.

5.1 Baseline Architecture

A block diagram of the baseline router architecture is shown in Figure 5.1. Arriving

data is stored in the input buffers. These input buffers are typically separated into

several parallel virtual channels that can be used to prevent deadlock, implement

priority classes, and increase throughput by allowing blocked packets to be passed.

The input buffers and other router resources are allocated in fixed-size units called

flits and each packet is broken into one or more flits as shown in Figure 5.2(a).

5.1. BASELINE ARCHITECTURE 75

RC VA SA STHead Flit

Body Flit SA ST

Tail Flit SA ST

1 2 3 4 5 6Cycle

(b)(a)

Head flit Body flit Tail flit

Packet

Figure 5.2: (a) Packets are broken into one or more flits (b) Example pipeline of flits
through the baseline router.

The progression of a packet through this router can be separated into per-packet

and per-flit steps. The per-packet actions (Steps 1 and 2) are initiated as soon as the

header flit, the first flit of a packet, arrives:

1. Route computation (RC) - based on information stored in the header, the output

port of the packet is selected.

2. Virtual-channel allocation (VA) - a packet must gain exclusive access to a down-

stream virtual channel associated with the output port from route computation.

Once these per-packet steps are completed, per-flit scheduling of the packet can

begin.

3. Switch allocation (SA) - if there is a free buffer in its output virtual channel, a

flit can vie for access to the crossbar.

4. Switch traversal (ST) - once a flit gains access to the crossbar, it can be trans-

ferred from its input buffers to its output and on to the downstream router.

These steps (Step 3 and 4) are repeated for each flit of the packet and upon the

transmission of the tail flit, the final flit of a packet, the virtual channel is freed and

is available for another packet. A simple pipeline diagram of this process is shown in

Figure 5.2(b) for a three-flit packet assuming each step takes a single cycle.

76 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

Final
grant

Input
requests

Output k

v : 1
arbiter

VC 1

VC 2

VC v

Input 1

Input k
v : 1

arbiter

k
:1

ar
bi

te
r

Output 1

Input requests
(log2 k bits)

k
:1

ar
bi

te
r

VC requests (1 bit)

=k

=k

8
:1

ar
bi

te
r

k
/8

:1
ar

bi
te

r

Intermediate
grant

Global Output Arbiter

Local Output
Arbiter

Figure 5.3: Scalable switch allocator architecture. The input arbiters are localized
but the output arbiters are distributed across the router to limit wiring complexity.
A detailed view of the output arbiter corresponding to output k is shown to the right.

5.2 Extending the baseline to high radix

As radix is increased, a centralized approach to allocation rapidly becomes infeasible

— the wiring required, the die area, and the latency all increase to prohibitive levels.

In this section, we introduce distributed structures for both switch and virtual channel

allocation that scale well to high radices. In achieving this scalability, these structures

compromise on performance.

5.2.1 Switch Allocation

We address the scalability of the switch allocator by using a distributed separable

allocator design as shown in Figure 5.3. The allocation takes place in three stages:

input arbitration, local output arbitration, and global output arbitration. During the

first stage all ready virtual channels in each input controller request access to the

crossbar switch. The winning virtual channel in each input controller then forwards

its request to the appropriate local output arbiter by driving the binary code for the

5.2. EXTENDING THE BASELINE TO HIGH RADIX 77

requested output onto a per-input set of horizontal request lines.

At each output arbiter, the input requests are decoded and, during stage two,

each local output arbiter selects a request (if any) for its switch output from among

a local group of m (in Figure 5.3, m = 8) input requests and forwards this request to

the global output arbiter. Finally, the global output arbiter selects a request (if any)

from among the k/m local output arbiters to be granted access to its switch output.

For very high-radix routers, the two-stage output arbiter can be extended to a larger

number of stages.

At each stage of the distributed arbiter, the arbitration decision is made over a

relatively small number of inputs (typically 16 or less) such that each stage can fit

in a clock cycle. For the first two stages, the arbitration is also local - selecting

among requests that are physically co-located. For the final stage, the distributed

request signals are collected via global wiring to allow the actual arbitration to be

performed locally. Once the winning requester for an output is known, a grant signal is

propagated back through to the requesting input virtual channel. To ensure fairness,

the arbiter at each stage maintains a priority pointer which rotates in a round-robin

manner based on the requests.

5.2.2 Virtual Channel Allocation

Virtual channel allocation (VA) poses an even more difficult problem than switch

allocation because the number of resources to be allocated is multiplied by the number

of virtual channels v. In contrast to switch allocation, where the availability of free

downstream buffers is tracked with a credit count, with virtual channel allocation,

the availability of downstream VCs is unknown. An ideal VC allocator would allow

all input VCs to monitor the status of all output VCs they are waiting on. Such an

allocator would be prohibitively expensive, with v2k2 wiring complexity.

Building off the ideas developed for switch allocation, we introduce two scalable

virtual channel allocator architectures. Crosspoint virtual channel allocation (CVA)

maintains the state of the output virtual channels at each crosspoint and performs

allocation at the crosspoints. In contrast, output virtual channel allocation (OVA)

78 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

(b) CVA scheme

(a) Conventional
Speculation

Pipeline

(c) OVA scheme

RC VA
SA

ST

1 2 3Cycle

SA ST

1 2 3Cycle 4 65

RC SA1 Wire
VA1
SA2

VA2
SA3 ST1 STn...

SA1 Wire SA2 SA3 ST1 STn...

... STnRC SA1 Wire

1 2 3Cycle

SA2 SA3 VA ST1

4 65 7

... STnSA1 Wire SA2 SA3 ST1

Figure 5.4: Speculative pipeline with each packet assumed to be 2 flits. (a) speculation
used on the pipeline shown in Figure 5.2(b) (b) high-radix routers with CVA (c)
high-radix routers with OVA. The pipeline stages underlined show the stages that
are speculative.

defers allocation to the output of the switch. Both CVA and OVA involve speculation

where switch allocation proceeds before virtual channel allocation is complete to

reduce latency. Simple virtual channel speculation was proposed in [63] where the

switch allocation and the VC allocation occurs in parallel to reduce the critical path

through the router (Figure 5.4(a)). With a deeper pipeline in a high-radix router, VC

allocation is resolved later in the pipeline. This leads to more aggressive speculation

(Figure 5.4(b-c)).1

With CVA, VC allocation is performed at the crosspoints where the status of

the output VCs is maintained. Input switch arbitration is done speculatively. Each

cycle, each input controller drives a single request over a per-input set of horizontal

virtual-channel-request lines to the local/global virtual output channel arbiter. Each

such request includes both the requested output port and output virtual channel

The virtual channel allocator at each crosspoint includes a separate arbiter for each

1Pipeline key: SAx: different stages of switch allocation, Wire: separate pipeline stage for the
request from the input arbiters to travel to the output arbiters, STx: switch traversal, multiple
cycles will be needed to traverse the switch

5.2. EXTENDING THE BASELINE TO HIGH RADIX 79

Output

. . .

Input 1 req

Input k req

grant 1 grant1_switch

grant_VC

VC0
VC1

VCv

sw
itc

h
ar

bi
te

r
(S

A
)

sw
it

ch
 a

rb
it

er

grant 1 grant1_switch

grant1_VC

grant k grantk_switch

grantk_VC

V
C

 0
 a

rb
it

er

V
C

 1
 a

rb
it

er

V
C

 v
 a

rb
it

er

...

VC arbiter

Input k req

Input 1 req

. . .

S
A

 w
in

ne
r

ou
tp

ut
 V

C
 r

eq
ue

st

grant k grantk_switch

grant_VC

(a) (b)

Figure 5.5: Block diagram of the different VC allocation schemes (a) CVA (b) OVA.
In each cycle, CVA can handle multiple VC requests for the same output where as
in OVA, only a single VC request for each output can be made. CVA parallelize the
switch and VC allocation while in OVA, the two allocation steps are serialized. For
simplicity, the logic is shown for only a single output.

output virtual channel. Instead of the k output arbiters used in the switch allocator

(Figure 5.3), CVA uses a total of kv output virtual channel arbiters. Requests (if any)

to each output virtual channel arbiter are decoded from the virtual channel request

lines and each arbiter proceeds in the same local-global arbitration used in switch

allocation.

Using OVA reduces arbiter area at some expense in performance. In this scheme,

the switch allocation proceeds through all three stages of arbitration and only when

complete is the status of the output virtual channel checked. If the output VC is

indeed free, it is allocated to the packet. As shown in Figure 5.4(c), OVA speculates

deeper in the pipeline than CVA and reduces complexity by eliminating the per-VC

arbiters at each crosspoint. However, OVA compromises performance by allowing

only one VC per output to be requested per allocation. A block diagram of the

different VA architectures is shown in Figure 5.5 and illustrates the control logic

needed for the two schemes. They are compared and evaluated in the next section.

80 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

OVA

CVA

low-radix

Figure 5.6: Latency vs. offered load for the baseline architecture

5.2.3 Performance

We use cycle accurate simulations to evaluate the performance of the scalable switch

and virtual channel allocators. We simulate a radix-64 router using virtual-channel

flow control with four virtual channels on uniform random traffic with each flit taking

4 cycles to traverse the switch. Other traffic patterns are discussed in Section 5.5.

Simulation setup described earlier in Section 4.1.1 is used to evaluate alternative

router microarchitectures. We begin the evaluation using single-flit packets; later, we

also consider longer packets (10 flits).

A plot of latency versus offered load (as a fraction of the capacity of the switch)

is shown in Figure 5.6. The performance of a low-radix router (radix 16), which

follows the pipeline shown in Figure 5.2(b), with a centralized switch and virtual

channel allocation is shown for comparison. Note that this represents an unrealistic

design point since the centralized single-cycle allocation does not scale. Even with

multiple virtual channels, head-of-line(HoL) blocking limits the low-radix router to

approximately 60% throughput [39].

Increased serialization latency gives the high-radix router a higher zero-load la-

tency than the low-radix router when considering only a single stage, as in this case.

The saturation throughput of the high-radix router is approximately 50% or 12%

lower than the low-radix router. The results reflect the performance of the router

5.2. EXTENDING THE BASELINE TO HIGH RADIX 81

with realistic pipeline delays, distributed switch allocation, and a speculative virtual

channel allocation. Most of this loss is attributed to the speculative VC allocation.

The effect is increased when OVA is used giving a saturation throughput of about

45%.

5.2.4 Prioritized Virtual Channel Allocation

With speculative VC allocation, if the initial VC allocation fails, bandwidth can be

unnecessarily wasted if the re-bidding is not done carefully. For example, consider an

input queue with 4 VCs and input arbitration performed in a round-robin fashion.

Assume that all of the VCs in the input queues are occupied and the flit at the head

of one of the VC queues has failed VC allocation. If all 4 VCs continuously bid

for the output one after the other, the speculative bids by the failed VC will waste

approximately 25% of the bandwidth until the output VC it is waiting on becomes

available.

Bandwidth loss due to speculative VC allocation can be reduced by giving priority

in switch allocation to nonspeculative requests [63, 22]. This can be accomplished, for

example by replacing the single switch allocator of Figure 5.7(a) with separate switch

allocators for speculative and nonspeculative requests as shown in Figure 5.7(b).

With this arrangement, a speculative request is granted bandwidth only if there

are no nonspeculative requests. Prioritizing nonspeculative requests in this manner

reduces bandwidth loss but at the expense of doubling switch allocation logic.

In this section we evaluate the performance gained by using two allocators to pri-

oritize nonspeculative requests. The switch simulated in Section 5.2.3 used only a

single switch allocator and did not prioritize nonspeculative requests. To ensure fair-

ness with two switch arbiters, the priority pointer in the speculative switch arbiter is

only updated after the speculative request is granted (i.e. when there are no nonspec-

ulative requests). Our evaluation uses only 10-flit packets — with single flit packets,

all flits are speculative, and hence there is no advantage to prioritizing nonspecula-

tive flits. We prioritize nonspeculative requests only at the output switch arbiter.

Prioritizing at the input arbiter reduces performance by preventing speculative flits

82 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

 s
w

itc
h

ar
bi

te
r

. . .

Input 1 request grant1

Input k request grant k

. . .

sp
ec

ul
at

iv
e

sw
itc

h
ar

bi
te

r

no
ns

pe
cu

la
tiv

e
sw

itc
h

ar
bi

te
r

. . .

grant1_spec

grant1_nonspec
Input 1 request grant1

grantk_spec

grantk_nonspec
Input k request grant k

.
.

(a) (b)

Figure 5.7: Block diagram of a switch arbiter using (a) one arbiter and (b) two
arbiters to prioritize the nonspeculative requests.

representing VC requests from reaching the output virtual channel allocators.

Figure 5.8 shows that prioritizing nonspeculative requests is advantageous when

there is only a single virtual channel, but has little return with four virtual channels.

These simulations use CVA for VC allocation. With only a single VC, prioritized

allocation increases saturation throughput by 10% and gives lower latency as shown

in Figure 5.8(a). With four VCs, however, the advantage of prioritized allocation

diminishes as shown in Figure 5.8(b). Here the multiple VCs are able to prevent the

loss of bandwidth since with multiple VCs, a speculative request will likely find an

available output VCs. Results for the OVA VC allocation follow the same trend but

are not shown for space constraints. Using multiple VCs gives adequate throughput

without the complexity of a prioritized switch allocator.

In the following two sections, which introduce two new architectures, we will

assume the CVA scheme for VC allocation using a switch allocator without prioriti-

zation.

5.3. FULLY BUFFERED CROSSBAR 83

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
cy

 (
cy

cl
e

s)

1VC - 1ARB 1VC - 2ARB

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1
offered load

la
te

n
cy

 (
cy

cl
e

s)

4VC - 1ARB 4VC - 2ARB

(a) (b)

Figure 5.8: Comparison of using one arbiter and two arbiters for (a) 1VC (b) 4VC

5.3 Fully Buffered Crossbar

Adding buffering at the crosspoints of the switch (Figure 5.9(b)) decouples input

and output virtual channel and switch allocation. This decoupling simplifies the

allocation, reduces the need for speculation, and overcomes the performance problems

of the baseline architecture with distributed, speculative allocators.

5.3.1 Switch and Virtual Channel Allocation

Input and output switch allocation are completely decoupled. A flit whose request

wins the input arbitration is immediately forwarded to the crosspoint buffer corre-

sponding to its output. At the crosspoint, local and global output arbitration are

performed as in the unbuffered switch. However, because the flit is buffered at the

crosspoint, it does not have to re-arbitrate at the input if it loses arbitration at the

output.

The intermediate buffers are associated with the input VCs. In effect, the cross-

point buffers are per-output extensions of the input buffers. Thus, no VC allocation

has to be performed to reach the crosspoint — the flit already holds the input VC.

84 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

 output 1

output 2

output k

 output 1

output 2

output k

input 1

input k

· · ·

input 2

· · ·

input 1

input k

· · ·

input 2

· · ·

(a) (b)

Figure 5.9: Block diagram of a (a) baseline crossbar switch and (b) fully buffered
crossbar switch.

Output VC allocation is performed in two stages: a v-to-1 arbiter that selects a VC at

each crosspoint followed by a k-to-1 arbiter that selects a crosspoint to communicate

with the output.

5.3.2 Crosspoint buffer credits

To ensure that the crosspoint buffers never overflow, credit-based flow control is used.

Each input keeps a separate free buffer counter for each of the kv crosspoint buffers

in its row. For each flit sent to one of these buffers, the corresponding free count is

decremented. When a count is zero, no flit can be sent to the corresponding buffer.

Likewise, when a flit departs a crosspoint buffer, a credit is returned to increment the

input’s free buffer count. The required size of the crosspoint buffers is determined by

the credit latency – the latency between when the buffer count is decremented at the

input and when the credit is returned in an unloaded switch.

It is possible for multiple crosspoints on the same input row to issue flits on the

same cycle (to different outputs) and thus produce multiple credits in a single cycle.

5.3. FULLY BUFFERED CROSSBAR 85

Communicating these credits back to the input efficiently presents a challenge. Dedi-

cated credit wires from each crosspoint to the input would be prohibitively expensive.

To avoid this cost, all crosspoints on a single input row share a single credit return

bus. To return a credit, a crosspoint must arbitrate for access to this bus. The credit

return bus arbiter is distributed, using the same local-global arbitration approach as

the output switch arbiter.

We have simulated the use of a shared credit return bus and compared it with an

ideal (but not realizable) switch in which credits are returned immediately. Simula-

tions show that there is minimal difference between the ideal scheme and the shared

bus. The impact of credit return delay is minimized since each flit takes four cycles

to traverse the input row. Thus even if a crosspoint loses the credit return bus ar-

bitration, it has 3 additional cycles to re-arbitrate for the bus without affecting the

throughput.

5.3.3 Performance and area

We simulated the buffered crossbar using the same simulation setup as described

in Section 5.2.3. In the switch evaluated, each crosspoint buffer contains four flit

entries per virtual channel. As shown in Figure 5.10, the addition of the crosspoint

buffers enables a much higher saturation throughput than the unbuffered crossbar

while maintaining low latency at low offered loads. This is due both to avoiding

head-of-line blocking and decoupling input and output arbitration.

With sufficient crosspoint buffers, this design achieves a saturation throughput

of 100% of capacity because the head-of-line blocking is completely removed. As we

increase the amount of buffering at the crosspoints, the fully buffered architecture

begins to resemble an virtual-output queued (VOQ) switch where each input main-

tains a separate buffer for each output. The advantage of the fully buffered crossbar

compared to a VOQ switch is that there is no need for a complex allocator - the

simple distributed allocation scheme discussed in Section 5.2 is able to achieve 100%

throughput.

To evaluate the impact of the crosspoint buffer size on performance, we vary

86 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

baseline

low-radix

fully-buffered

Figure 5.10: Latency vs. offered load for the fully buffered architecture. In both the
fully buffered crossbar and the baseline architecture, the CVA scheme is used.

the buffer size and evaluate the performance for short and long packets. As shown

in Figure 5.11(a), for short packets four-flit buffers are sufficient to achieve good

performance. With long packets, however, larger crosspoint buffers are required to

permit enough packets to be stored in the crosspoint to avoid head-of-line blocking

in the input buffers.

The performance benefits of a fully-buffered switch come at the cost of a much

larger router area. The crosspoint buffering is proportional to vk2 and dominates

chip area as the radix increases. Figure 5.12 shows how storage and wire area grow

with k in a 0.10µm technology for v=4. The storage area includes crosspoint and

input buffers. The wire area includes area for the crossbar itself as well as all control

signals for arbitration and credit return. As radix is increased, the bandwidth of the

crossbar (and hence its area) is held constant. The increase in wire area with radix is

due to increased control complexity. For a radix greater than 50, storage area exceeds

wire area.

5.3.4 Fully Buffered Crossbar without per-VC buffering

One approach to reducing the area of the fully buffered crossbar is to eliminate per-

VC buffering at the crosspoints. With a single shared buffer among the VCs per

5.3. FULLY BUFFERED CROSSBAR 87

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

4 flits

8 flits

64 flits

1024 flits

0

200

400

600

800

1000

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

4 flits

8 flits

64 flits

1024 flits

(a) (b)

Figure 5.11: Latency vs. offered load for the fully buffered architecture for (a) short
packet (1 flit) and (b) long packet (10 flit) as the crosspoint buffer size is varied

crosspoint, the total amount of storage area can be reduced by a factor of v. This

approach would still decouple the input and the output switch arbitration, thus pro-

viding good performance over a non-buffered crossbar. However, VC allocation is

complicated by the shared buffers and it presents new problems.

As discussed in Section 5.2.2, VC allocation is performed speculatively in order

to reduce latency — the flit is sent to the crosspoint without knowing if the output

VC can be allocated. With per input VC crosspoint buffers, this was not an issue.

However, with a crosspoint buffer shared between input VCs, a flit cannot be allowed

to stay in the crosspoint buffer while awaiting output VC allocation. If the speculative

flit is allowed to wait in the crosspoint buffer following an unsuccessful attempt at

VC allocation, this flit can block all input VCs. This not only degrades performance

but also creates dependencies between VCs that may lead to deadlock. Because flits

cannot wait for VC allocation in the crosspoint buffers, speculative flits that have

been sent to the crosspoint switch must be kept in the input buffer until an ACK is

received from output VC allocation. If the flit fails VC allocation or if there are no

downstream buffers, the flit is removed from the buffer at the crosspoint and a NACK

is sent back to the input, and the input has to resend this flit at a later time. Note

that with per-VC buffers, this blocking does not occur and no ACKs are necessary.

88 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

0

50

100

150

200

0 50 100 150 200 250
radix

ar
ea

 (
m

m
2)

buffer area wire areastorage area

Figure 5.12: Area comparison between storage area and wire area in the fully buffered
architecture.

5.3.5 Other Issues

The fully-buffered crossbar presents additional issues beyond the quadratic growth in

storage area. This design requires k2 arbiters, one at each crosspoint, with v inputs

each to arbitrate between the VCs at each crosspoint. In addition, each input needs

a kv entry register file to maintain the credit information for the crosspoint buffers

and logic to increment/decrement the credit information appropriately.

Besides the microarchitectural issues, the fully buffered crossbar restricts the rout-

ing algorithm that can be implemented. A routing relation may return multiple out-

puts as a possible next hop. With a fully buffered architecture and the distributed

allocators, multiple outputs can not be requested simultaneously and only one output

port can be selected. The hierarchical approach that we present in the next section

provides a solution that is a compromise between a centralized router and the fully

buffered crossbar.

5.4 Hierarchical Crossbar Architecture

A block diagram of the hierarchical crossbar is shown in Figure 5.13. The hierarchical

crossbar is built by dividing the crossbar switch into subswitches where only the inputs

and outputs of the subswitch are buffered. A crossbar switch with k ports that has a

5.4. HIERARCHICAL CROSSBAR ARCHITECTURE 89

 subswitch

Figure 5.13: Hierarchical Crossbar (k=4) built from smaller subswitches (p=2).

subswitch of size p is made up of (k/p)2 p× p crossbars, each with its own input and

output buffers.

By implementing a subswitch design the total amount of buffer area grows as

O(vk2/p), so by adjusting p the buffer area can be significantly reduced from the

fully-buffered design. This architecture also provides a natural hierarchy in the control

logic — local control logic only needs to consider information within a subswitch and

global control logic coordinates the subswitches.

Similar to the fully-buffered architecture, the intermediate buffers on the sub-

switch boundaries are allocated on a per-VC basis. The subswitch input buffers are

allocated according to a packet’s input VC while the subswitch output buffers are

allocated according to a packet’s output VC. This decoupled allocation reduces HoL

blocking when VC allocation fails and also eliminates the need to NACK flits in the

intermediate buffers. By having this separation at the subswitches with buffers, it

divides the VC allocation into a local VC allocation within the subswitch and a global

VC allocation among the subswitches.

With the hierarchical design, an important design parameter is the size of the

90 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1

offered load

la
te

nc
y

(c
yc

le
s)

baseline

subswitch 32

subswitch 16

subswitch 8

subswitch 4

fully-buffered

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

baseline

subswitch 32

subswitch 16

subswitch 8

subswitch 4

fully-buffered

(a) (b)

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

fully buffered crossbar

hierarchical crossbar -
subswitch 8

0E+0

1E+7

2E+7

3E+7

4E+7

5E+7

0 50 100 150 200 250

radix

ar
ea

 (
st

or
ag

e
bi

ts
)

fully buffered xbar

subswitch 4

subswitch 8

subswitch 16

subswitch 32

(c) (d)

Figure 5.14: Comparison of the hierarchical crossbar as the subswitch size is varied
(a) uniform random traffic (b) worst-case traffic (c) long packets and (d) area. k=64
and v=4 is used for the comparison.

subswitch, p which can range from 1 to k. With small p, the switch resembles a fully-

buffered crossbar resulting in high performance but also high cost. As p approaches

the radix k, the switch resembles the baseline crossbar architecture giving low cost

but also lower performance.

The throughput and area of hierarchical crossbars with various subswitch sizes are

compared to the fully buffered crossbar and the baseline architecture in Figure 5.14.

On uniform random traffic(Figure 5.14(a)), the hierarchical crossbar performs as well

as the fully buffered crossbar, even with a large subswitch size. With uniform random

5.4. HIERARCHICAL CROSSBAR ARCHITECTURE 91

traffic, each subswitch sees only a fraction of the load — λ
k/p

where λ is the total offered

load. Even with just two subswitches, the maximum load seen by any subswitch for

uniform random traffic pattern will always be less than 50% and the subswitches will

not be saturated.

A worst-case traffic pattern for the hierarchical crossbar concentrates traffic on a

small number of subswitches. For this traffic pattern, each group of (k/p) inputs that

are connected to the same row of subswitches send packets to a randomly selected

output within a group of (k/p) outputs that are connected to the same column of

subswitches. This concentrates all traffic into only (k/p) of the (k/p)2 subswitches.

Figure 5.14(b) shows performance on this traffic pattern. The benefit of having

smaller subswitch size is apparent. On this worst-case pattern, the hierarchical cross-

bar does not achieve the throughput of the fully-buffered crossbar (about 30% less

throughput for p = 8). However hierarchical crossbars outperforms the baseline ar-

chitecture by 20% (for p = 8). Fortunately, this worst-case traffic pattern is very

unlikely in practice.

Like the fully-buffered crossbar, the throughput of the hierarchical crossbar on long

packets depends on the amount of intermediate buffering available. The evaluation

so far assumed that each buffer in the hierarchical crossbar holds four flits. In order

to provide a fair comparison, we keep the total buffer size constant and compare

the performance of the hierarchical crossbar with the fully buffered crossbar on long

packets. The fully buffered crossbar has 4 entries per crosspoint buffer while the

hierarchical crossbar(p = 8) has 16 entries per buffer.2 Figure 5.14(c) compares the

performance of a fully-buffered crossbar with a hierarchical crossbar (p = 8) with

equal total buffer space. Under this constraint, the hierarchical crossbar provides

better throughput on uniform random traffic than the fully-buffered crossbar.

The cost of the two architectures, in terms of area, is compared in Figure 5.14(d).

The area is measured in terms of the storage bits required in the architecture. As

radix increases, there is quadratic growth in the area consumed by the fully buffered

crossbar. For k = 64 and p = 8, a hierarchical crossbar takes 40% less area than a

2To make the total buffer storage equal, each input and output buffer in the hierarchical crossbar
has p/2 times the storage of a crosspoint buffer in the fully-buffered crossbar.

92 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

Name Description

diagonal traffic traffic pattern where input i send packets only to output i
and (i + 1) mod k

hotspot uniform traffic pattern with h = 8 outputs being oversub-
scribed. For each input, 50% of the traffic is sent to the h
outputs and the other 50% is randomly distributed.

bursty uniform traffic pattern is simulated with a bursty injection
based on a Markov ON/OFF process and average burst
length of 8 packets is used.

Table 5.1: Nonuniform traffic pattern evaluated.

fully-buffered crossbar.

5.5 Simulation Results

In addition to uniform random traffic, we present additional simulations to compare

the architectures presented using traffic patterns summarized in Table 5.1. The re-

sults of the simulations are shown in Figure 5.15. On diagonal traffic, the hierarchical

crossbar exceeds the throughput of the baseline by 10%. Hotspot traffic limits the

throughput to under 40% capacity for all three architectures. At this point the over-

subscribed outputs are saturated. The hierarchical crossbar and the fully-buffered

crossbar achieve nearly 100% throughput on bursty traffic while the baseline archi-

tecture saturates at 50%. The hierarchical crossbar outperforms the full-buffered

crossbar on this pattern. It is better able to handle bursts of traffic because it has

two stages of buffering, at both the inputs and the outputs of each subswitch, even

though it has less total buffering than the fully-buffered crossbar.

While a single high-radix router has higher zero-load latency than a low-radix

router (Figure 5.6), this factor is more than offset by the reduced hop-count of a high-

radix network giving lower zero-load latency for the network as a whole. Latency as a

function of the offered load for a network of 4096 nodes with both radix-64 and radix-

16 routers is shown in Figure 5.16. Both routers use the hierarchical architecture

proposed in Section 5.4. The routers are configured as a Clos[17] network with three

5.5. SIMULATION RESULTS 93

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

baseline hierarchical crossbar (p=8) fully buffered crossbar

(a)

0

10

20

30

40

50

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

baseline fully buffered crossbar hierarchical crossbar (p=8)

(b)

0

50

100

150

200

250

300

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

baseline fully buffered crossbar hierarchical crossbar (p=8)

(c)

Figure 5.15: Performance comparison on non-uniform traffic patterns (a) diagonal
traffic (b) hotspot traffic (c) bursty traffic. Parameters used are k=64, v=4, and p=8
with 1 flit packets

94 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

0

20

40

60

80

100

0 0.2 0.4 0.6 0.8 1
offered load

la
te

nc
y

(c
yc

le
s)

low-radix router high-radix router

Figure 5.16: Network simulation comparison

stages for the radix-64 routers and five stages for the radix-16 routers. The simulation

was run using an oblivious routing algorithm (middle stages are selected randomly)

and uniform random traffic.

5.6 Case Study: Cray BlackWidow YARC router

The Cray BlackWidow vector multiprocessor system [2] is one of the first systems

to implement a high-radix network. The topology in the BlackWidow network is a

variant of a high-radix folded-Clos topology, and the high-radix router microarchitec-

ture is based on the hierarchical organization described earlier in this chapter. The

details of the BlackWidow network and the YARC router used in the network can be

found in [68]. In this section, we highlight some of the key differences between the

YARC implementation and the hierarchical crossbar organization described earlier in

Section 5.4.

A block diagram of the YARC router is shown in Figure 5.17 and a die photo

of YARC is shown in Figure 5.18. The YARC router is a radix-64 router and the

implementation is partitioned into 64 tiles with each tile containing an 8×8 subswitch,

an input and an output port, and associated buffers which consist of input buffers,

5.6. CASE STUDY: CRAY BLACKWIDOW YARC ROUTER 95

...

...

...

OUT0

IN0

...

...

...

...

OUT8

IN8

...

...

...

...

OUT56

IN56
k

k

k

Tile(0,0)

Tile(1,0)

Tile(7,0)

...

...

...

...

OUT1

IN1

...

...

...

...

OUT9

IN9

...

...

...

...

OUT57

IN57

k

Tile(0,1)

Tile(1,1)

Tile(7,1)

...

...

...

...

OUT7

IN7

...

...

...

...

OUT15

IN15

...

...

...

...

OUT63

IN63

k

Tile(0,7)

Tile(1,7)

Tile(7,7)

{row
bus

input
buffers

row
buffers

...

column buffers

{

column
channel

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

N x N
switch
N x N
switch
8 x 8

switch

Route

Route

Route

Route

Route

Route

Route

Route

Route

Figure 5.17: Block diagram of the Cray YARC router.

Figure 5.18: Die photo of the Cray YARC router (Courtesy Dennis Abts of Cray).

96 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

row buffers, and column buffers. The tiles communicate with other tiles through the

row bus and the column channels. The tiled organization of the high-radix router

led to a complexity-effective design as only a single design of a tile is required and is

duplicated across the router.

Both the hierarchical organization (Section 5.4) and the YARC router provide

an input speedup since each input port is connected to all subswitches in its row.

However, the YARC router exploits the abundant wire resources available on-chip as

output speedup is provided from the subswitches – i.e., the outputs of the subswitch

are connected to all the outputs in each column. With the large number ports in

a high-radix router, the output arbitration needs to be broken into multiple stages

and the YARC router also performs output arbitration in two stages. The first stage

arbitrates for the outputs of the subswitches and the second stage arbitrates for the

output ports among the subswitches’ outputs in each column. However, by providing

output speedup, the output arbitration is simplified because the arbiter is local to

the output port rather than being a central, shared resource. The YARC implemen-

tation can be viewed as a two-stage network as shown in Figure 5.19 – the first stage

consisting of the input speedup to the subswitches and the second stage consisting

of output speedup to the output ports. Similar to a crossbar, there is only a single

path between an input and an output port but an 8× speedup is provided at both

the input and the output ports.

Although there are abundant amount of wire resources available on-chip, the

buffering available on-chip to implement the YARC router microarchitecture is lim-

ited. Thus, the intermediate buffers (row buffers and the column buffers) are area-

constrained and the number of entries in these buffers are limited. As a result,

although virtual cut-through flow control is implemented across chips in the Black-

Widow network, wormhole flow control is implemented within the YARC router –

across row buffers and column buffers.

5.6. CASE STUDY: CRAY BLACKWIDOW YARC ROUTER 97

IN0

IN7

Tile(0,0)

Tile(0,1)

Tile(0,2)

Tile(0,3)

Tile(0,4)

Tile(0,5)

Tile(0,6)

Tile(0,7)

IN1

IN2

IN3

IN4

IN5

IN6

IN8

IN15
IN16

IN23
IN24

IN31
IN32

IN39
IN40

IN47

IN48

IN55
IN56

IN63

OUT08-to-1
Arbiter

OUT8

OUT63

OUT78-to-1
Arbiter

Figure 5.19: Block diagram of the Cray YARC router illustrating the internal speedup.

98 CHAPTER 5. MICROARCHITECTURE OF A HIGH-RADIX ROUTER

5.7 Related Work

Most existing single chip router architectures are designed for small radix imple-

mentations [67, 56]. Commodity routers such as Quadrics [9] implement a radix-8

router and the highest radix available from Myrinet is radix-32 [58]. The IBM SP2

switch [75] is a radix-8.

The scaling issue of switches have been addressed in IP routers in order to support

the increasing line rate. The IBM Prizma architecture third generation switch [28]

has increased the number of ports from 32 to 64. To overcome the limitation of the

scheduling or the allocation in these IP routers, buffered crossbars [66] have been

studied which decouple the input and the output allocation and has been shown to

achieve high performance. However, the routers for these switch fabrics are funda-

mentally different. IP routers have packets that are significant longer (usually at least

40B to 100B) compared to the packet size of a shared memory multiprocessors (8B to

16B). Thus, IP routers are less sensitive to latency in the design than the high-radix

routers used in a multi-computer system. In addition, these IP routers are often built

using multiple chips and thus, do not have the area constraint that is present in our

design.

High-radix crossbars have been previously designed using multiple lower-radix

crossbars. A design implemented with multiple chips and each chip acting as a sub-

crossbar is outlined in [22]. Other work has attempted to exploit traffic characteristics

to partition the crossbar into smaller, faster subcrossbars [16] but does not scale to

high radix. A two-dimensional crossbar with VOQs has been decomposed to a switch

organization similar to our hierarchical router [38]. However, these references neither

discuss how to scale the allocation schemes to high-radix nor do they provide the

per-VC intermediate buffering at the subswitches.

5.8 Summary

Existing microarchitectures for building routers do not scale to high radix and in

this chapter, we presented alternative router microarchitecture that scale to high

5.8. SUMMARY 99

radix. Naive scaling of a baseline architecture provides a simple design but results

in less than 50% throughput. A fully-buffered crossbar with per-VC buffering at the

crosspoints achieves nearly 100% throughput but at a prohibitive cost. Thus, we

proposed an alternative architecture, the hierarchical crossbar, that maintains high

performance but at a lower cost. The hierarchical crossbar provides a 20-60% increase

in the throughput over the baseline architecture and results in a 40% area savings

compared to the fully buffered crossbar. The hierarchical nature of the architecture

provides the benefit of logically separating the control logic in a hierarchical manner

as well. As a case study, we also presented the microarchitecture of the radix-64

Cray YARC router that implements a variation of the proposed hierarchical router

microarchitecture.

In the next chapter, we present how we can extend the benefits of high-radix

routers to on-chip networks. By using high-radix routers and the flattened butterfly

topology, we describe an on-chip network that is more efficient than conventional

on-chip networks such as a 2-D mesh network.

Chapter 6

High-Radix Routers in On-Chip

Networks

Up to this point, we have extensively studied the design of high-radix networks in

off -chip networks. In this chapter, we examine how high-radix routers can be used in

on-chip networks. Although on-chip networks exhibit very different constraints from

off-chip networks, they share similar design goals, which include high performance

(low latency) and low cost. Leveraging the flattened butterfly topology proposed

earlier in Chapter 3, we describe how the topology can be mapped to on-chip networks

to provide a more efficient network compared to a conventional 2-D mesh network.

In addition, we describe how the flattened butterfly topology for on-chip networks

can exploit the planar VLSI layout and be augmented to allow non-minimal routing

without traversing non-minimal physical distances – further reducing latency as well

as energy consumption. This can be achieved by adding bypass muxes to the network

to improve the efficiency of using bypass channels.

6.1 Background

Chip multiprocessors are becoming more widely used to efficiently use the increasing

number of transistors available in a modern VLSI technology. As the number of cores

increases in such architectures, an on-chip network is used to connect the cores to

100

6.1. BACKGROUND 101

provide a communication substrate. These on-chip networks should provide both low

latency and high bandwidth communication fabrics that efficiently support a diverse

variety of workloads.

Most on-chip networks that have been proposed are low-radix, mostly using a 2-D

mesh such as the networks found in the RAW processor [76], the TRIPS processor [31],

the 80-node Intel’s Teraflops research chip [78], and the 64-node chip multiprocessor

from Tilera [5]. Although such low-radix networks provide a very simple network and

lead to very short wires in the architecture, these networks have several disadvantages

which include long network diameter as well as energy inefficiency because of the extra

hops. By reducing the diameter of the network, high-radix networks are advantageous

both for latency and power since delay due to intermediate routers is greatly reduced

as well as the power consumed by intermediate routers.

In this section, we describe how the cost structures of on-chip networks differ from

system interconnection networks and presents an argument for high-radix networks

on chip.

6.1.1 Cost of On-Chip Networks

The cost of an off-chip interconnection network typically increases with the channel

count. As the channel count increases with the hop count, reducing the diameter of

the network reduces the cost of the network [45]. On-chip networks differ because

bandwidth is plentiful because of inexpensive wires, while buffers are comparatively

expensive. However, reducing the diameter of on-chip networks remains beneficial for

several reasons. The power consumed by the channels is a significant part of aggregate

on-chip network power consumption [8]; thus, reducing the number of channels can

reduce the overall power consumption. Furthermore, since buffered flow control is

often used in on-chip networks, the aggregate area allocated to the input buffers in

the routers decreases as the number of channels is reduced. In this work, we show

how the use of high-radix routers and the flattened butterfly topology leads to lower

diameter and as a result, leads to lower cost by reducing the number of channels and

the amount of buffers required in the network.

102 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

R1 R2 R3

N0 N1 N2 N3

R0 R1 R2 R3

(a)

(b)

R4 R5 R6 R7

N4 N5 N6 N7

R0

N0 N1 N2 N3 N4 N5 N6 N7

Conc Conc Conc Conc
R0 R1 R2 R3

(c)

N0 N1 N2 N3 N4 N5 N6 N7

Figure 6.1: The use of concentration in interconnection networks – (a) 8 node (N0 -
N7) ring with 8 routers (R0 - R7) without concentration, (b) 4 node ring with 2-way
concentrator and (c) the same topology as (b) with the 2-way concentrator integrated
into the router.

In addition to reducing the diameter, the use of concentration, where network

resources are shared among different processor nodes, can improve the efficiency of

the network [22]. An example of concentration is shown in Figure 6.1. Using a ring

topology, 8 nodes can be connected with 8 routers as shown in Figure 6.1(a). By using

a concentration factor of two, the 8 nodes can be connected in a 4 node ring where each

node consists of two terminal nodes and a router, as shown in Figure 6.1(b). The use of

concentration aggregates traffic from different nodes into a single network interface.

This reduces both the number of resources allocated to the network routers and

the average hop count, which can improve latency. Thus, while providing the same

bisection bandwidth, concentration can reduce the cost of the network by reducing

the network size. The concentrator can be integrated into the router by increasing

the radix of the router, as shown in Figure 6.1(c), to allow all of the terminal nodes to

access the network concurrently, instead of allowing only one terminal node associated

with a router to access the network during any one cycle. The use of concentration

in on-chip networks also reduces the wiring complexity as shown in Section 6.7.1.

Concentration is practical for on-chip networks because the probability that more

than one of the processors attached to a single router will attempt to access the

6.1. BACKGROUND 103

0

5

10

15

20

25

30

mesh flattened
butterfly

mesh flattened
butterfly

average worst-case

La
te

nc
y

(n
se

c)

Ts
Th
Tw

Figure 6.2: Latency of a packet in on-chip networks.

network on a given cycle is relatively low. For example, in a chip multiprocessor

(CMP) architecture with a shared L2 cache distributed across the chip, the L1 miss

rate is often under 10% [15], which results in relatively low traffic injection rates

at the processors. Consequently, using concentration to share the network resources

is an effective technique for CMP traffic. The advantages of using concentration

in on-chip network were previously described for 2-D mesh networks [8]. In this

paper, we describe how the flattened butterfly topology [43] for on-chip networks use

concentration as well as high-radix routers to reduce the diameter of the network to

improve cost-efficiency.

6.1.2 Latency in On-Chip Networks

Latency is a critical performance metric for on-chip networks. As described earlier

in Section 2.2, the latency of a packet through an interconnection network can be

expressed as the sum of the header latency (Th), the serialization latency (Ts), and

the time of flight on the wires (Tw),

T = Th + Ts + Tw

= Htr + L/b + Tw

104 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

where tr is the router delay, H is the hop count, L is the packet size, and b is the

channel bandwidth.

Minimizing latency requires establishing a careful balance between Th and Ts. For

on-chip networks, wires are abundant, on-chip bandwidth plentiful, and consequently

Ts can be reduced significantly by providing very wide channels. However, traditional

2-D mesh networks tend to establish Ts and Th values that are unbalanced, with wide

channels providing a low Ts while Th remains high due to the high hop-count. Con-

sequently, these networks fail to minimize latency. For example, in the 2-D mesh

network used in the Intel TeraFlop [78], with uniform random traffic, Th is approxi-

mately 3 times Ts and for worst case traffic, there is approximately 10× difference. 1

However, by using high-radix routers and the flattened butterfly topology, the hop

count can be reduced at the expense of increasing the serialization latency, assuming

the bisection bandwidth is held constant, as is shown in Figure 6.2. As a result, the

flattened butterfly achieves a lower overall latency. Note that the wire delay (Tw) as-

sociated with the Manhattan distance between the source and the destination nodes

generally corresponds to the minimum packet latency in an on-chip network [48]. This

paper describes how high-radix routers and the flattened butterfly topology can be

used the build on-chip networks that try to approach this ideal latency by significantly

reducing the number of intermediate routers.

6.2 Topology Description

As described earlier in Chapter 3, the flattened butterfly topology is a cost-efficient

topology that exploits high-radix routers. To map a 64-node on-chip network onto the

flattened butterfly topology, we collapse a 3-stage radix-4 butterfly network (4-ary 3-

fly) to produce the flattened butterfly shown in Figure 6.3(a). The resulting network

has 2 dimensions and uses radix-10 routers. With four processor nodes attached to a

router, the routers have a concentration factor of 4. The remaining 6 router ports are

used for inter-router connections: 3 ports are used for the dimension 1 connections,

1The latency calculations were based on Intel TeraFlop [78] parameters (tr = 1.25ns, b = 16GB/s,
L = 320bits) and estimated value of wire delay for 65nm (tw = 250ps per mm).

6.3. ROUTING AND DEADLOCK 105

and 3 ports are used for the dimension 2 connections. Routers are placed as shown

in Figure 6.3(b) to embed the topology in a planar VLSI layout. Routers connected

in dimension 1 are aligned horizontally, while routers connected in dimension 2 are

aligned vertically; thus, the routers within a row are fully connected, as are the routers

within a column.

The wire delay associated with the Manhattan distance between a packet’s source

and its destination provides a lower bound on latency required to traverse an on-chip

network. When minimal routing is used, processors in this flattened butterfly network

are separated by only 2 hops, which is a significant improvement over the hop count

of a 2D mesh. The flattened butterfly attempts to approach the wire delay bound by

reducing the number of intermediate routers – resulting in not only lower latency but

also lower energy consumption. However, the wires connecting distant routers in the

flattened butterfly network are necessarily longer than those found in the mesh. The

adverse impact of long wires on performance is readily reduced by optimally inserting

repeaters and pipeline register to preserve the channel bandwidth while tolerating

channel traversal times that may be several cycles.

6.3 Routing and Deadlock

Both minimal and non-minimal routing algorithms can be implemented on the flat-

tened butterfly topology. A limited number of virtual channels (VCs) [23] may be

needed to prevent deadlock within the network when certain routing algorithms are

used. Additional VCs may be required for purposes such as separating traffic into dif-

ferent classes or avoiding deadlock in the client protocols. Dimension-ordered routing

(DOR) can be used as a minimal routing algorithm for the flattened butterfly (e.g.

route in dimension1, then route in dimension 2); in this case, the routing algorithm

itself is restrictive enough to prevent deadlock. Non-minimal routing allows the path

diversity available in the flattened butterfly network to be used to improve load bal-

ance and performance. For these reasons, we use the non-minimal global adaptive

routing (UGAL) [73] algorithm when evaluating the flattened butterfly topology in

this work. UGAL routing balances load when needed by routing minimally to an

106 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

R0 R1 R2 R3 R4 R6 R7R5 R8 R10 R11R9 R12 R14 R15R13

dimension 1
dimension 2

(a)

R4 R7R6R5

R8 R11R10R9

R12 R15R14R13

R0 R3R2R1

(b)

Figure 6.3: (a) Block diagram of a 2-dimension flattened butterfly consisting of 64
nodes. and (b) the corresponding layout of the flattened butterfly where dimension1
routers are horizontally placed and dimension2 router are vertically placed.

intermediate node in the first phase, and then routing minimally to the destination

in the second phase. For such non-minimal routing algorithms, the number of VCs

needed is 2d, where d is the number of dimensions in the flattened butterfly. To

reduce the number of VCs that are needed, we use DOR within each phase of UGAL

routing – thus, only 2 VCs are needed.

6.4 Bypass Channels and Microarchitecture

As shown in Figure 6.3, the routers are fully connected in each dimension. Channels

that pass over other routers in the same row or column function as bypass channels.

6.4. BYPASS CHANNELS AND MICROARCHITECTURE 107

R1 R2 R3R0

R2R1 R3R0

R1 R2 R3R0

R1 R2 R3R0

(a)

(b)

(c)

(d)

Figure 6.4: Routing paths in the 2D on-chip flattened butterfly. (a) All of the traffic
from nodes attached to R1 is sent to nodes attached to R2. The minimal path
routing is shown in (b) and the two non-minimal paths are shown in (c) and (d). For
simplicity, the processing nodes attached to these routers are not shown.

Using non-minimal routing in the flattened butterfly topology increases both packet

latency and energy consumption because packets are routed to intermediate routers

for load-balancing purposes before being delivered to their destinations. The layout

of an on-chip network can result in the non-minimal routes overshooting the desti-

nation on the way to the intermediate node selected for load-balancing, as shown in

Figure 6.4(c). A non-minimal route may also route a packet away from its destination

before it is routed back to its destination on a bypass channel that passes over the

source (Figure 6.4(d)). To avoid the inefficiencies of routing packets on paths of non-

minimal physical lengths, the bypass channels can be connected to those routers they

pass over. These additional connections allow packets to enter or leave the bypass

channels early when doing so is beneficial. In this section, we explain how the router

microarchitecture and the flow control mechanisms can be modified to connect the

bypass channels directly to the router switch in order to reduce latency and improve

energy efficiency.

108 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

to/from R2

to/from R3
to/from R0

to/from R0 to/from R2

to/from R3
Router

R1

Bypass
Channels

(a)

Router

R1

output muxes

input muxes

to/from R2

to/from R3

to/from R2

to/from R3

to/from R0

to/from R0

(b)

Figure 6.5: Flattened butterfly router diagram with bypass channels in a (a) conven-
tional flattened butterfly router diagram and (b) flattened butterfly with muxes to
efficiently use the bypass channels. The router diagram is illustrated for router R1
in Figure 6.4 with the connections shown for only single dimension of the flattened
butterfly.

6.5. ROUTER BYPASS ARCHITECTURE 109

6.5 Router Bypass Architecture

A high-level diagram of a router in an on-chip flattened butterfly is shown in Fig-

ure 6.5(a). It consists of the switch and bypass channels that connect the neighbouring

routers. One method to connect the bypass channels to the router is to add additional

inputs to the switch. However, doing so would significantly increase the complexity

of the switch. For example, in the flattened butterfly shown in Figure 6.3, the switch

would increase from 10×10 to 18×18 in the worst case, nearly quadrupling the area

consumed by the switch. In addition, the use of bypass channels is not intended to

increase the bandwidth of the topology, but rather to reduce latency and energy –

thus, the larger switch, which would provide additional bandwidth, is not needed.

Instead, we break the bypass channels as they pass over the router and insert muxes

as shown in Figure 6.5(b).

As illustrated in Figure 6.5(b), two types of muxes are added to connect the

bypass channels to the local router: input muxes, and output muxes2. The inputs

to the muxes can be classified as either bypass inputs (e.g. inputs from the bypass

channels) or direct ports (e.g. inputs/outputs to/from the local router). The input

muxes receive packets destined for the local router that would otherwise bypass the

local router enroute to the intermediate node selected by the routing algorithm, as

illustrated in Figure 6.4(c). Thus, each input mux receives both the direct inputs

that the packet would have used if the non-minimal path was taken and the inputs

from the bypass channels. The output muxes are used by packets that would have

initially been routed away from their destinations before being routed back over the

local router, as illustrated in Figure 6.4(d). The inputs to the output muxes are the

direct outputs from the local router and the bypass channel inputs – the path the

packet would have taken if non-minimal routing path was taken. The addition of

these muxes does not eliminate the need for non-minimal routing for load-balancing

purpose. Instead, the muxes reduce the distance traveled by packets to improve

energy efficiency and reduce latency.

2Using the analogy of cars and highways, the long wires introduced correspond to adding high-
ways. The input muxes correspond to adding additional exit ramps to the highways while the
outputs muxes correspond to adding entrance ramps to get on the highway.

110 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

6.5.1 Mux Arbiter

The arbiters that control the bypass muxes are critical to the proper use of the bypass

channels. A simple round-robin arbiter could be implemented at the muxes. While

this type of arbiter leads to a locally fair arbitration at the mux, the arbiter does not

guarantee global fairness. To provide global fairness, we implement a yield arbiter

that yields to the primary input – i.e. the input that would have used the channel

bandwidth at the output of the mux if the bypass channels were not connected to the

local router. Accordingly, the direct input is given priority at an input mux, while

the bypass channel is given priority at an output mux. Thus, if the primary input is

idle, the arbiter opportunistically grants access to the non-primary input.

To prevent starvation of the non-primary inputs, a control packet is sent along the

non-minimal path originally selected by the routing algorithm. This control packet

contains only routing information and a marker bit to identify the packet as a control

packet. The control packet is routed at the intermediate node as though it were a

regular packet, which results in it eventually arriving at the primary input of the

muxes at the destination router. When the control packet arrives, the non-primary

input is granted access to the mux output bandwidth. This policy guarantees that a

packet waiting at the non-primary input of a bypass mux will eventually be granted

access to the bypass mux. In the worst-case (i.e. highly congested) environment, the

latency of the non-minimal routed packets will be identical to the flattened butterfly

that does not directly use the bypass channels. However, there will still be an energy

savings because the flit does not traverse the non-minimal physical distance; instead,

only the control flit, which is much smaller than a data packet, travels full physical

distance of the non-minimal route.

6.5.2 Switch Architecture

With minimal routing, the crossbar switch can be simplified because it need not be

fully connected. Non-minimal routing increases the complexity of the switch because

some packets might need to be routed twice within a dimension, which requires more

connections within the crossbar. However, by using the bypass channels efficiently,

6.5. ROUTER BYPASS ARCHITECTURE 111

R1 R2 R3R0

control packet route

data packet route

primary buffer

bypass buffer

Data V DESTCNT

Figure 6.6: Modification to the buffers introduced into the flow control with the use
of bypass channels. The additional bits of the buffers correspond to V : valid bit,
CNT : count of control packet, and CTL corresponds to control packet content which
contains a destination.

non-minimal routing can be implemented using a switch of lesser complexity – one

that approaches the complexity of a flattened butterfly that only supports minimal

routing. If the bypass channels are used, non-minimal routing does not require sending

full packets through intermediate routers, and as a result, the connections within the

switch themselves approaches that of the switch that only supports minimal routing.

6.5.3 Flow Control

Buffers are required at the non-primary inputs of the bypass muxes for flow control.

This is illustrated in Figure 6.6. Thus with non-minimal routing, credits for the by-

pass buffers are needed before packet can depart a router. In addition, the minor

modifications are required to the existing input buffers within the routers to correctly

handle the control packets. These modification should introduce little overhead be-

cause the datapaths of on-chip networks are typically much wider than required for

the control packet.

112 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

Topology Routing

FBLY-MIN randomized-dimension
FBLY-NONMIN UGAL [73]
FBLY-BYPASS UGAL [73]
CMESH O1Turn with express chan-

nels [8]
MESH O1Turn [70]

Table 6.1: Routing algorithms used in simulation comparison.

6.6 Evaluation

We compare the performance of the following topologies in this section:

1. conventional 2-D mesh (MESH)

2. concentrated mesh with express channels [8] (CMESH)

3. flattened butterfly (FBFLY)

(a) flattened butterfly with minimal routing only (FBFLY-MIN)

(b) flattened butterfly with non-minimal routing (FBFLY-NONMIN)

(c) flattened butterfly with non-minimal routing and use of bypass channels

(FBFLY-BYP)

The topologies were evaluated using a cycle accurate network simulator. We compare

the networks’ performance and power consumption. The power consumption is based

on the model described in [8] for a 65nm technology. We accurately model the

additional pipeline delay required for the high-radix routers as well as the additional

serialization latency through the narrower channels. The bisection bandwidth is held

constant across all topologies for the purpose of comparing the performance of the

different networks.

6.6.1 Performance

We compare the performance of the different topologies for a 64-node on-chip network

by evaluating their throughput using open-loop simulation and also compare them

6.6. EVALUATION 113

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4

Offered load (fraction of capacity)

L
at

en
cy

 (c
yc

le
s)

CMESH FBFLY-MIN
FBFLY-NONMIN FBFLY-BYP

(a)

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5
Offered load (fraction of capacity)

La
te

nc
y

(c
yc

le
s)

CMESH FBFLY-MIN
FBFLY-NONMIN FBFLY-BYP

(b)

Figure 6.7: Throughput comparison of CMESH and FBFLY for (a) tornado and (b)
bit complement traffic pattern.

114 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

0

0.2

0.4

0.6

0.8

1

MESH CMESH FBFLY-
MIN

FBFLY-
NONMIN

FBFLY-
BYP

La
te

nc
y

(n
or

m
al

iz
ed

 to
 m

es
h

ne
tw

or
k) bitrev transpose

tornado randperm
UR bitcomp

Figure 6.8: Latency comparison of alternative topologies across different synthetic
traffic pattern.

using closed-loop simulation, using both synthetic traffic pattern and traces from

simulations. The routing algorithms used for the different topologies are described

in Table 6.1. For flow control, virtual channel flow control is used with 2 VCs to

break routing deadlock and another 2 VCs needed to break protocol deadlock for the

closed-loop simulations.

Throughput Comparison

To evaluate the throughput, the simulator is warmed up under load without taking

measurements until steady-state is reached. Then a sample of injected packets is

labeled during a measurement interval. The simulation is run until all labeled packets

exit the system. For the throughput analysis, packets are assume to be single-flit

packets.

In Figure 6.7, we compare the latency vs. offered load on two adversarial traffic

patterns for CMESH and FBFLY – two topologies that use concentration to reduce

the cost of the network. By effectively exploiting non-minimal routing and smaller

diameter of the topology, FBFLY can provide up to 50% increase in throughput

6.6. EVALUATION 115

0

4

8

12

16

20

8000
9000

10000
11000

12000
1300

0
1400

0
15000

1600
0

Completion Time (cycles)

Nu
m

be
r o

f N
od

es

(a)

0

4

8

12

16

20

8000
9000

10000
11000

12000
1300

0
1400

0
15000

1600
0

Completion Time (cycles)

Nu
m

be
r o

f N
od

es

(b)

0

4

8

12

16

20

8000
9000

10000
11000

12000
1300

0
1400

0
15000

1600
0

Completion Time (cycles)

Nu
m

be
r o

f N
od

es

(c)

Figure 6.9: Node completion time variance for the different topologies (a) mesh (b)
CMESH and (c) flattened butterfly.

116 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

compared to CMESH while provide lower zero-load latency. Although the MESH

can provide higher throughput for some traffic pattern, it has been previously shown

that CMESH results in a more cost- and energy-efficient topology compared to the

MESH [8].

Synthetic Batch Traffic

In addition to the throughput measurement, we use a batch experiment to model the

memory coherence traffic of a shared memory multiprocessor. Each processor executes

a fixed number of remote memory operations (e.g. remote cache line read/write

requests) during the simulation and we record the time required for all operations

to complete. Read requests and write acknowledgements are mapped into 64-bit

messages, while read replies and write requests are mapped into 576-bit messages.

Each processor may have up to four outstanding memory operations. The synthetic

traffic pattern used are uniform random (UR), bit complement, transpose, tornado,

a random permutation, and bit reverse [22].

Figure 6.8 shows the performance comparison for the batch experiment and we

normalize the latency to the mesh network. CMESH reduces latency, compared to

the MESH, by 10% but the flattened butterfly reduces the latency further. By using

FBFLY-NONMIN, the latency can actually increase because of the extra latency

incurred with the non-minimal routing. However, the FBFLY-BYP provides the

benefit of non-minimal routing but reducing the latency as all packets take minimal

physical path and results in approximately 28% latency reduction, compared to the

MESH network.

In addition to the latency required to complete the batch job, we also plot the

variance of the completion time of the 64 nodes. A histogram is shown in Figure 6.9

that collects the completion time for each processing node. With the flattened but-

terfly, because of the lower diameter, the completion time has much more tighter

distribution and smaller variance in the completion time across all of the nodes. Less

variance can reduce the global synchronization time in chip multiprocessor systems.

The CMESH, because it is not a symmetric topology, leads to an unbalanced distri-

bution of completion time.

6.6. EVALUATION 117

0.5

0.6

0.7

0.8

0.9

1

m
es

h

C
M

E
S

H

F
B

F
LY

-M
IN

F
B

F
LY

-N
O

N
M

IN

F
B

F
LY

-B
Y

P

m
es

h

C
M

E
S

H

F
B

F
LY

-M
IN

F
B

F
LY

-N
O

N
M

IN

F
B

F
LY

-B
Y

P

m
es

h

C
M

E
S

H

F
B

F
LY

-M
IN

F
B

F
LY

-N
O

N
M

IN

F
B

F
LY

-B
Y

P

m
es

h

C
M

E
S

H

F
B

F
LY

-M
IN

F
B

F
LY

-N
O

N
M

IN

F
B

F
LY

-B
Y

P

barnes ocean equake tomcatv

La
te

nc
y

(N
or

m
al

iz
ed

 to
 M

es
h

N
et

w
or

k)

Figure 6.10: Performance comparison from SPLASH benchmark traces generated
from a distributed TCC simulator.

Multiprocessor Traces

Network traces were collected from an instrumented version of a 64-processor di-

rectory based Transactional Coherence and Consistency (TCC) multiprocessor sim-

ulator [12]. In addition to capturing the traffic patterns and message distributions,

we record detailed protocol information so that we can infer dependencies between

messages and identify sequences of interdependent communication and computation

phases at each processor node. This improves the accuracy of the performance mea-

sured when the traces are replayed through a cycle-accurate network simulator. When

capturing the traces, we use an idealized interconnection network model which pro-

vides instantaneous message delivery to avoid adversely biasing the traces. The traffic

injection process uses the recorded protocol information to reconstruct the state of

each processor node. Essentially, each processor is modelled as being in one of two

states: an active computing state, during which it progresses towards its next com-

munication event; or, an idle communicating state, in which it is stalled waiting for

an outstanding communication request to complete. Incoming communication events

118 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

which do not require processor intervention, such as a remote read request, are as-

sumed to be handled by the memory controller and therefore do not interrupt the

receiving processor.

Four benchmarks (barnes, ocean, equake, and tomcatv) from the SPLASH bench-

marks [81] were used to evaluate the alternative topologies and the results are shown

in Figure 6.10. For two of the benchmarks (equake, tomcatv), the flattened but-

terfly on-chip network provides less than 5% reduction in latency. However, for the

other two benchmarks (barnes, ocean), the flattened butterfly can provide up to 20%

reduction in latency.

6.6.2 Power Comparison

The power consumption comparison is shown in Figure 6.11. The flattened butterfly

provides additional power saving, compared to the CMESH. With the reduction in

the width of the datapath, the power consumption of the crossbar is also reduced –

thus, achieving approximately 38% power reduction compared to the mesh network.

The area of a router tends to increase with its radix. Control logic, such as

the switch allocator, consumes area proportional to the square of the router radix;

however, it represents a small fraction of the aggregate area. Consequently, the

buffers and switch dominate the router area. The buffer area can be kept constant

as the radix increases by reducing the buffer space allocated per input port. The

total switch area can be approximated as n(bk)2 where n is the number of routers,

b is the bandwidth per port, and k is the router radix. As k increases, b decreases

because the bisection bandwidth is held constant, and n also decreases, because each

router services more processors. Consequently, we expect high-radix on-chip network

will consume less area. We estimate that the flattened butterfly provides an area

reduction of approximately 4x compared to the conventional mesh network and a

reduction of 2.5x compared to the concentrated mesh. 3 Although the introduction of

the bypass muxes can increase the area as well as the power, the impact is negligible

compare to the area and power consumption of the buffers and the channels.

3Although there is a radix increase from radix-8 to radix-10 comparing CMESH to the flattened
butterfly, since b is reduced in half, there is an overall decrease in total area.

6.7. DISCUSSION 119

0

2

4

6

8

10

12

MESH CMESH FBFLY-
MIN

FBFLY-
NONMIN

FBFLY-
BYP

P
ow

er
 (

W
)

Memory

Crossbar

Channel

Figure 6.11: Power consumption comparison of alternative topologies on UR traffic.

6.7 Discussion

In this section we describe how the flattened butterfly topology can be scaled as

more processors are integrated on chip. We also describe how the long direct links

used in the flattened butterfly topology are likely to benefit from advances in on-chip

signalling techniques, and how these direct links provide some of the performance

benefits traditionally provided by virtual channels.

6.7.1 Comparison to Generalized Hypercube

As described earlier in Section 3.6, the flattened butterfly topology is similar to the

generalized hypercube [10] but the main difference is the use of concentration of in

the flattened butterfly. The use of concentration in on-chip networks significantly

reduces the wiring complexity because the resulting network requires fewer channels

to connect the routers. Furthermore, it is often possible to provide wider channels

when concentration is used, because there are fewer channels competing for limited

wire resources, which improves the typical serialization latency. With the embedding

of the topology into a planar VLSI layout constraint for on-chip networks, as the

number of channels crossing a particular bisection increases, the total amount of

120 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

P2

R2

P10

R10

P0

R0

P1

R1

P3

R3

P4

R4

P5

R5

P6

R6

P7

R7

P8

R8

P9

R9

P11

R11

P12

R12

P13

R13

P14

R14

P15

R15

(a)

P0

P8

P1

P9

R0

P2

P10

P3

P11

R1

P4

P12

P5

P13

R2

P6

P14

P7

P15

R3

(b)

P2

R2

P10

R10

P0

R0

P1

R1

P3

R3

P4

R4

P5

R5

P6

R6

P7

R7

P8

R8

P9

R9

P11

R11

P12

R12

P13

R13

P14

R14

P15

R15

(c)

Figure 6.12: Layout of 64-node on-chip networks, illustrating the connections for the
top two rows of nodes and routers for (a) a conventional 2-D mesh network, (b) 2-D
flattened butterfly, and (c) a generalized hypercube. Because of the complexity, the
channels connected to only R0 are shown for the generalized hypercube.

bandwidth needs to be divided among a larger number of channels – thus, decreasing

the amount of bandwidth per channel.

A layout of a conventional mesh network and the 2-D flattened butterfly is shown

in Figure 6.12(a,b). Although the flattened butterfly increases the number of channels

crossing neighboring routers in the middle by a factor of 4, the use of concentration

allows the two rows of wire bandwidth to be combined – thus, resulting in a reduction

of bandwidth per channel by only a factor of 2. However, the generalized hypercube

(Figure 6.12(c)) topology would increase the number of channels in the bisection of

the network by a factor of 16, which would adversely impact the serialization latency

and the overall latency of the network.

6.7. DISCUSSION 121

(a)

2-D Flattened
Butterfly

2-D Flattened
Butterfly

2-D Flattened
Butterfly

(b)

2-D Flattened
Butterfly

2-D Flattened
Butterfly

2-D Flattened
Butterfly

(c)

Figure 6.13: Different methods to scale the on-chip flattened butterfly by (a) increas-
ing the concentration factor, (b) increasing the dimension of the flattened butterfly,
and (c) using a hybrid approach to scaling.

122 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

6.7.2 Scaling On-Chip Flattened Butterfly

The flattened butterfly in on-chip networks can be scaled to accommodate more nodes

in different ways. One method of scaling the topology is to increase the concentration

factor. For example, the concentration factor can be increased from 4 to 8 to increase

the number of nodes in the network from 64 to 128 as shown in Figure 6.13(a).

This further increases the radix of the router to radix-14. With this approach, the

bandwidth of the inter-router channels must to be properly adjusted such that there

is sufficient bandwidth to support the terminal bandwidth.

Another scaling methodology is to increase the dimension of the flattened butter-

fly. For example, the dimension can be increased from a 2-D flattened butterfly to

a 3-D flattened butterfly and provide an on-chip network with up to 256 nodes as

shown in Figure 6.13(b). To scale a larger number of nodes, both the concentration

factor as well as the number of dimensions can be increased as well.

However, as mentioned in Section 6.7.1, as the number of channels crossing the

bisection increase, reduction in bandwidth per channel and increased serialization

latency become problematic. To overcome this, hybrid approach can be used to scale

the on-chip flattened butterfly. One such possibility is shown in Figure 6.13(c) where

the 2-D flattened butterfly is used locally and the cluster of 2-D flattened butterfly

is connected with a mesh network. This reduces the number channels crossing the

bisection and minimizes the impact of narrower channels at the expense of slightly

increase in the average hop count (compared to a pure flattened butterfly).

6.7.3 Future Technologies

The use of high-radix routers in on-chip networks introduces long wires. The analysis

in this work assumed optimally repeated wires to mitigate the impact of long wires

and used pipelined buffers for multicycle wire delays. However, many evolving tech-

nology will impact communication in future on-chip networks and the longer wires in

the on-chip flattened butterfly topology are suitable to exploit these technologies. For

example, on-chip optical signalling [46] and on-chip high-speed signalling [37] attempt

6.7. DISCUSSION 123

Packet A

Packet B

Blocked

P0 P1 P2 P3

Destination
of Packet B

Blocked

P0 P1 P2 P3

(a)

(b)

Blocked

P0 P1 P2 P3
(c)

Figure 6.14: Block diagram of packet blocking in (a) wormhole flow control (b) virtual
channel flow control and (c) flattened butterfly.

to provide signal propagation velocities that are close to the speed of light while pro-

viding higher bandwidth for on-chip communications. With a conventional 2D mesh

topology, all of the wires are relatively short and because of the overhead involved in

these technologies, low-radix topologies can not exploit their benefits. However, for

the on-chip flattened butterfly topology which contains both short wires as well as

long wires, the topology can take advantage of the cheap electrical wires for the short

channels while exploiting these new technologies for the long channels.

6.7.4 Use of Virtual Channels

Virtual channels (VCs) were originally used to break deadlocks [21] and were also

proposed to increase network performance by provide multiple virtual lanes for a

single physical channel [23]. When multiple output VCs can be assigned to an input

VC, a VC allocation is required which can significantly impact the latency and the

area of a router. For example, in the TRIPS on-chip network, the VC allocation

consumes 27% of the cycle time [31] and an area analysis show that VC allocation

124 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4

Offered Load (fraction of capacity)

La
te

nc
y

(c
yc

le
s)

1VC

2 VC

4 VC

8 VC

Figure 6.15: Performance comparison as the number of virtual channels is increased
in the flattened butterfly.

can occupy up to 35% of the total area for an on-chip network router [59].

In Figure 6.14(a), an example of how blocking can occur in conventional network

with wormhole flow control is shown. By using virtual channel flow control (Fig-

ure 6.14(b)), buffers are partitioned into multiple VCs, which allow packets to pass

blocked packets. However, with the use of high-radix routers and the flattened but-

terfly topology, the additional wire resources available can be used to overcome the

blocking that can occur as shown in Figure 6.14(c). As a result, blocking is reduced

to only packets originating from the same source router and destined to the routers in

the same column of the network. Thus, the topology reduces the need for the buffers

to be partitioned into multiple VCs and takes advantage of the abundant wiring

available in an on-chip network. VCs for other usage such as separating traffic into

different classes might still be needed but such usage does not require VC allocation.

Figure 6.15 shows how the performance of the flattened butterfly is changed by

increasing the number of VCs. In the simulation comparison, the total amount of

storage per physical channel is held constant – thus, as the number of VCs is increased,

the amount of buffering per VC is decreased. As a result, increasing the number of

VCs for an on-chip flattened butterfly can slightly degrade the performance of the

network since the amount of buffering per VC is reduced.

6.8. RELATED WORK 125

6.8 Related Work

On-chip interconnection networks have recently attracted considerable research at-

tention [11], much of which has focused on microarchitecture improvements [57, 1]

and routing algorithms [70]. Most on-chip networks that have been proposed are low-

radix, mostly using a 2D mesh or a torus network [25]. Balfour and Dally proposed

using concentrated mesh and express channels in on-chip networks to reduce the di-

ameter and energy of the network [8]. This work expands on their idea and provides a

symmetric topology that further reduces latency and energy. In addition, the benefits

of creating parallel subnetworks [8] can also be applied to flattened butterfly topology

in on-chip networks. Kumar et al. [48] proposed the use of express virtual channels

(EVC) to reduce the latency of 2-D mesh on-chip network by bypassing intermediate

routers. However, EVC is built on top of a 2-D mesh network and requires sharing

the bandwidth between EVC and non-EVC packets and thus, does not completely

eliminate intermediate routers.

The yield arbiter described in Section 6.5.1 is similar in concept to the flit-

reservation flow control (FRFC) [62]. In FRFC, a control flit is sent ahead of the

data flit and reserves the buffers and channels for the ensuing data flits. However,

the scheme described in this paper uses the control flit to ensure bandwidth in the

worst-case scenario – otherwise, the bypass channel is used regardless of the control

flit.

The scaling of the topology with an hybrid (mesh) approach at the top level has

been proposed for off-chip interconnection networks to reduce the length of the global

cables [82]. Similar scaling can also be applied for on-chip networks with the benefits

being not just shorter wires but also reduced on-chip wiring complexity.

6.9 Summary

In this chapter, we described how high-radix routers and the flattened butterfly topol-

ogy can be mapped to on-chip networks to realize a more efficient on-chip network.

126 CHAPTER 6. HIGH-RADIX ROUTERS IN ON-CHIP NETWORKS

By reducing the number of routers and channels in the network, the flattened but-

terfly topology results in lower latency and lower power consumption compared to

previously proposed on-chip network topologies. The 2-D flattened butterfly for a

64-node on-chip network achieves these benefits by reducing the number of interme-

diate routers such that with minimal routing, a packet traverses only 1 intermediate

router from any source to any destination. In addition, we describe bypass chan-

nels in the topology that allows the use of non-minimal routing without traversing

non-minimal physical distance – resulting in minimal increase in power while further

reducing latency in the on-chip network. We show that the flattened butterfly can

increase throughput by up to 50% compared to the concentrated mesh and reduce

latency by 28% while reducing the power consumption by 38% compared to a mesh

network.

Chapter 7

Conclusion and Future Work

The design of an interconnection network is significantly impacted by technology.

As technology evolves, its impact on interconnection networks needs to re-evaluated.

This thesis has shown that with the significant increase in pin-bandwidth, the addi-

tional bandwidth is best exploited by creating high-radix routers where the bandwidth

is divided among a large number of ports instead of maintaining the number of ports

small and increasing the bandwidth per port. By using high-radix routers to reduce

the network diameter, both the latency and the cost of the network are reduced. The

migration to high-radix networks impacts every aspect of an interconnection network.

This thesis explores the topology, routing, and the microarchitecture aspect of high-

radix interconnection networks as well as expanding the use of high-radix routers in

on-chip networks.

Chapter 1 and Chapter 2 showed that with the exponential increase in pin-

bandwidth over the past twenty years, the additional pin-bandwidth is more effec-

tively utilized by increasing the radix or the degree of the routers to create high-radix

networks. Chapter 3 proposed the flattened butterfly topology – a cost-efficient topol-

ogy that can exploit high-radix routers. The flattened butterfly approaches the cost of

a conventional butterfly network while providing the performance per cost of a folded-

Clos network. Chapter 4 discusses routing on high-radix topologies and shows how

transient load-imbalance can occur if adaptive routing is not properly implemented.

127

128 CHAPTER 7. CONCLUSION AND FUTURE WORK

In addition, the use of global adaptive routing [73] is needed to fully exploit the ben-

efits of the flattened butterfly topology. Conventional router microarchitecture does

not scale to high radix, and Chapter 5 introduces a hierarchical crossbar organization

that scales efficiently as the radix increases, and describes how it is implemented in

the Cray YARC router. Finally, Chapter 6 examines how high-radix routers and the

flattened butterfly topology can be extended to on-chip networks to realize similar

benefits which include lower latency and lower cost.

7.1 Future Directions

The migration to high-radix interconnection networks has opened many opportunities

for future research. This thesis has addressed the topology and the routing in high-

radix networks but assumed the conventional virtual channel flow control [23] in

simulations. With the network diameter significantly reduced with the use of high-

radix routers, the appropriate flow control for high-radix networks is an interesting

topic for future study.

In Chapter 3, the flattened butterfly topology was proposed as a cost-efficient

topology for high-radix networks. However, it remains to be seen if there are more

cost-efficient topologies or an optimal topology that exploits high-radix routers. One

disadvantage of high-radix networks is the longer cables that are required compared

to low-radix networks such as a 2-D or a 3-D torus. However, with the advent

of economical optical signalling [36, 54], they enable topologies with long channels

and mitigates the impact of channel length in the topology. The recently proposed

dragonfly topology [44] is an example of a topology that exploits high-radix routers

by creating virtual high-radix routers 1 and exploits the availability of optical active

cables to minimize the number of long channels in the topology.

The hierarchical organization was proposed in Chapter 5 to provide a scalable

router microarchitecture. However, as radix continues to increase, the hierarchical

organization requires long wires to connect the subswitches in each row and each

1A virtual high-radix router is created by combining multiple high-radix router to further increase
the effective radix of the network.

7.1. FUTURE DIRECTIONS 129

column. It remains to be seen if alternative switch microarchitectures, such as using

a multistage network instead of a crossbar, can be used to provide a more scalable

router microarchitecture.

Finally, the use of high-radix routers in on-chip networks leads to many interesting

research directions. On-chip networks require low latency and low power. Thus,

the design of on-chip high-radix routers needs to be carefully evaluated such that

increasing the radix does not adversely impact the router clock cycle or the area.

Compared to the conventional 2-D mesh network, the flattened butterfly was proposed

as an efficient topology for on-chip networks in Chapter 6. However, as the number

of on-chip terminals increase, it remains to be seen if the flattened butterfly topology

can scale efficiently. Alternative topologies are worth exploring for future on-chip

networks.

On-chip networks present different “packaging” constraints because the network

needs to be embedded into a 2-D VLSI planar layout. 2 To exploit the 2-D VLSI

planar layout, the concept of bypass channels was introduced in Chapter 6. The use

of bypass channels further complicates the router design in two ways – the addition

of bypass mux and additional flow control and non-uniform distribution of the bypass

channels (i.e., the routers will have different number bypass channels). As a future

work, it is interesting to explore generalizing the use of bypass channels to other

topologies such that long channels can be exploited to achieve ideal latency in on-

chip networks while minimizing physical distance traversed for packets that do not

need to traverse the entire long channel.

2The use of 3-D integration changes this constraint but the on-chip network within each layer
still needs to be packaged in a 2-D VLSI planar layout.

Bibliography

[1] Pablo Abad, Valentin Puente, Jose Angel Gregorio, and Pablo Prieto. Rotary

router: An efficient architecture for cmp interconnection networks. In Proc. of

the International Symposium on Computer Architecture (ISCA), pages 116–125,

San Diego, CA, June 2007.

[2] Dennis Abts, Abdulla Bataineh, Steve Scott, Greg Faanes, James Schwarzmeier,

Eric Lundberg, Tim Johnson, Mike Bye, and Gerald Schwoerer. The Cray Black-

Widow: A Highly Scalable Vector Multiprocessor. In Proceedings of the Inter-

national Conference for High-Performance Computing, Network, Storage, and

Analysis (SC’07), Reno, NV, November 2007.

[3] A. Agarwal. Limits on Interconnection Network Performance. IEEE Trans.

Parallel Distrib. Syst., 2(4):398–412, 1991.

[4] A. Agarwal, R. Bianchini, D. Chaiken, K. Johnson, D. Kranz, J. Kubiatowicz,

B-H. Lim, K. Mackenzie, and D. Yeung. The MIT Alewife Machine: Architec-

ture and Performance. In Proc. of the 22nd Annual Int’l Symp. on Computer

Architecture, pages 2–13, 1995.

[5] Anant Agarwal, Liewei Bao, John Brown, Bruce Edwards, Matt Mattina, Chyi-

Chang Miao, Carl Ramey, and David Wentzlaff. Tile Processor: Embedded

Multicore for Networking and Multimedia. In Hot Chips 19, Stanford, CA, Aug.

2007.

[6] Amphenol. http://www.amphenol.com/.

130

BIBLIOGRAPHY 131

[7] Yucel Aydogan, Craig B. Stunkel, Cevdet Aykanat, and Bülent Abali. Adaptive

source routing in multistage interconnection networks. In IPPS ’96: Proceed-

ings of the 10th International Parallel Processing Symposium, pages 258–267,

Honolulu, HW, 1996. IEEE Computer Society.

[8] James Balfour and William J. Dally. Design tradeoffs for tiled cmp on-chip

networks. In ICS ’06: Proceedings of the 20th annual international conference

on Supercomputing, pages 187–198, 2006.

[9] Jon Beecroft, David Addison, Fabrizio Petrini, and Moray McLaren. Quadrics

QsNet II: A Network for Supercomputing Applications. In Hot Chips 15, Stan-

ford, CA, August 2003.

[10] Laxmi N. Bhuyan and Dharma P. Agrawal. Generalized hypercube and hyperbus

structures for a computer network. IEEE Trans. Computers, 33(4):323–333,

1984.

[11] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices

of network-on-chip. ACM Comput. Surv., 38(1):1, 2006.

[12] Hassan Chafi, Jared Casper, Brian D. Carlstrom, Austen McDonald, Chi

Cao Minh, Woongki Baek, Christos Kozyrakis, and Kunle Olukotun. A scal-

able, non-blocking approach to transactional memory. In 13th International

Symposium on High Performance Computer Architecture (HPCA). Feb 2007.

[13] Kun-Yung Ken Chang, Jason Wei, Charlie Huang, Simon Li, Kevin Donnelly,

Mark Horowitz, Yingxuan Li, and Stefanos Sidiropoulos. A 0.4–4-Gb/s CMOS

Quad Transceiver Cell Using On-Chip Regulated Dual-Loop PLLs. IEEE Journal

of Solid-State Circuits, 38(5):747–754, 2003.

[14] Andrew A. Chien. A cost and speed model for k-ary n-cube wormhole routers.

IEEE Transactions on Parallel and Distributed Systems, 9(2):150–162, 1998.

[15] Sangyeun Cho and Lei Jin. Managing distributed, shared l2 caches through

os-level page allocation. In Annual IEEE/ACM International Symposium on

Microarchitecture, pages 455–468, Orlando, FL, 2006.

132 BIBLIOGRAPHY

[16] Yungho Choi and Timothy Mark Pinkston. Evaluation of Crossbar Architectures

for Deadlock Recovery Routers. J. Parallel Distrib. Comput., 61(1):49–78, 2001.

[17] C Clos. A Study of Non-Blocking Switching Networks. The Bell System technical

Journal, 32(2):406–424, March 1953.

[18] Cray X1. http://www.cray.com/products/systems/x1/.

[19] W. J. Dally. Performance Analysis of k-ary n-cube Interconnection Networks.

IEEE Transactions on Computers, 39(6):775–785, 1990.

[20] W. J. Dally, P. P. Carvey, and L. R. Dennison. The Avici Terabit Switch/Router.

In Proc. of Hot Interconnects, pages 41–50, August 1998.

[21] W. J. Dally and C. L. Seitz. Deadlock-free message routing in multiprocessor in-

terconnection networks. IEEE Transactions on Computers, 36(5):547–553, 1987.

[22] W. J. Dally and B. Towles. Principles and Practices of Interconnection Networks.

Morgan Kaufmann, San Francisco, CA, 2004.

[23] William J. Dally. Virtual-channel Flow Control. IEEE Transactions on Parallel

and Distributed Systems, 3(2):194–205, 1992.

[24] William J. Dally and Charles L. Seitz. The Torus Routing Chip. Distributed

Computing, 1(4):187–196, 1986.

[25] William J. Dally and Brian Towles. Route packets, not wires: on-chip intecon-

nection networks. In Proc. of the 38th conference on Design Automation (DAC),

pages 684–689, 2001.

[26] H. G. Dietz and T.I.Mattox. Compiler techniques for flat neighborhood net-

works. In 13th International Workshop on Languages and Compilers for Parallel

Computing, pages 420–431, Yorktown Heights, New York, 2000.

[27] T. Dunigan. Early Experiences and Performance of the Intel Paragon. Technical

report, Oak Ridge National Laboratory, ORNL/TM-12194., 1993.

BIBLIOGRAPHY 133

[28] A. P. J. Engbersen. Prizma Switch Technology. IBM J. Res. Dev., 47(2-3):195–

209, 2003.

[29] Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Van Doren.

Architecture and Design of AlphaServer GS320. In Proc. of the 9th Int’l conf. on

Architectural support for programming languages and operating systems, pages

13–24, 2000.

[30] Gore. http://www.gore.com/electronics.

[31] P. Gratz, C. Kim, R. McDonald, S.W. Keckler, and D.C. Burger. Implementation

and Evaluation of On-Chip Network Architectures. In International Conference

on Computer Design (ICCD), San Jose, CA, 2006.

[32] Fred Heaton, Bill Dally, Wayne Dettloff, John Eyles, Trey Greer, John Poulton,

Teva Stone, and Steve Tell. A Single-Chip Terabit Switch. In Hot Chips 13,

Stanford, CA, 2001.

[33] Steven Heller. Congestion-Free Routing on the CM-5 Data Router. In Parallel

Computer Routing and Communication Workshop, pages 176–184, Seattle, WA,

1994.

[34] Mark Horowitz, Chih-Kong Ken Yang, and Stefanos Sidiropoulos. High-Speed

Electrical Signaling: Overview and Limitations. IEEE Micro, 18(1):12–24, 1998.

[35] IBM Redbooks. An Introduction to the New IBM eServer pSeries High Perfor-

mance Switch.

[36] Intel Connects Cables. http://www.intel.com/design/network/products/optical/cables/index.h

[37] A.P. Jose, G. Patounakis, and K.L. Shepard. Near speed-of-light on-chip inter-

connects using pulsed current-mode signalling. In Digest of Technical Papers.

2005 Symposium on VLSI Circuits, pages 108–111, 2005.

[38] J. Jun, S. Byun, B. Ahn, Seung Y. Nam, , and D. Sung. Two-Dimensional

Crossbar Matrix Switch Architecture. In Asia Pacific Conf. on Communications,

pages 411–415, September 2002.

134 BIBLIOGRAPHY

[39] M. J. Karol, M. G. Hluchyj, and S. P. Morgan. Input versus Output Queueing

on a Space-division Packet Switch. IEEE Transactions on Communications,

COM-35(12):1347–1356, 1987.

[40] John Kim, James Balfour, and William J. Dally. Flattened butterfly topology

for on-chip networks. IEEE Computer Architecture Letters, 6(1), 2007.

[41] John Kim, James Balfour, and William J. Dally. Flattened butterfly topology

for on-chip networks. In Annual IEEE/ACM International Symposium on Mi-

croarchitecture, pages 172–182, Chicago, IL, December 2007.

[42] John Kim, William J. Dally, and Dennis Abts. Adaptive Routing in High-radix

Clos Network. In International Conference for High Performance Computing,

Networking, Storage, and Analysis (SC’06), Tampa, FL, 2006.

[43] John Kim, William J. Dally, and Dennis Abts. Flattened Butterfly : A Cost-

Efficient Topology for High-Radix Networks. In Proc. of the International Sym-

posium on Computer Architecture (ISCA), pages 126–137, San Diego, CA, June

2007.

[44] John Kim, William J. Dally, Steve Scott, and Dennis Abts. Technology-Driven

Highly-Scalable Dragonfly Topology. In Proc. of the International Symposium

on Computer Architecture (ISCA), Beijing, China, June 2008.

[45] John Kim, William J. Dally, Brian Towles, and Amit K. Gupta. Microarchitec-

ture of a high-radix router. In Proc. of the International Symposium on Computer

Architecture (ISCA), pages 420–431, Madison, WI, 2005.

[46] Nevin Kirman, Meyrem Kirman, Rajeev K. Dokania, Jose F. Martinez, Alyssa B.

Apsel, Matthew A. Watkins, and David H. Albonesi. Leveraging optical tech-

nology in future bus-based chip multiprocessors. In Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, pages 492–503, Orlando, FL, 2006.

[47] Clyde P. Kruskal and Marc Snir. The performance of multistage interconnection

networks for multiprocessors. IEEE Trans. Computers, 32(12):1091–1098, 1983.

BIBLIOGRAPHY 135

[48] Amit Kumar, Li-Shiuan Peh, Partha Kundu, and Niraj K. Jhay. Express virtual

channels: Towards the ideal interconnection fabric. In Proc. of the International

Symposium on Computer Architecture (ISCA), pages 150–161, San Diego, CA,

June 2007.

[49] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM,

27(4):831–838, 1980.

[50] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable

Server. In Proc. of the 24th Annual Int’l Symp. on Computer Architecture, pages

241–251, 1997.

[51] M J Edward Lee, William J. Dally, Ramin Farjad-Rad, Hiok-Tiaq Ng, Ramesh

Senthinathan, John H. Edmondson, and John Poulton. CMOS High-Speed I/Os -

Present and Future. In International Conf. on Computer Design, pages 454–461,

San Jose, CA, 2003.

[52] C. Leiserson. Fat-trees: Universal networks for hardware efficient supercomput-

ing. IEEE Transactions on Computer, C-34(10):892–901, October 1985.

[53] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman,

Mahesh N. Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul,

Margaret A. St Pierre, David S. Wells, Monica C. Wong-Chan, Shaw-Wen Yang,

and Robert Zak. The Network Architecture of the Connection Machine CM-5.

J. Parallel Distrib. Comput., 33(2):145–158, 1996.

[54] Luxtera Blazar LUX5010. http://www.luxtera.com/products blazar.htm.

[55] Microprocessor Report. http://www.mdronline.com/.

[56] S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The Alpha 21364

network architecture. In Hot Chips 9, pages 113–117, Stanford, CA, August

2001.

136 BIBLIOGRAPHY

[57] Robert D. Mullins, Andrew West, and Simon W. Moore. Low-latency virtual-

channel routers for on-chip networks. In Proc. of the International Symposium

on Computer Architecture (ISCA), pages 188–197, Munich, Germany, 2004.

[58] Myrinet. http://www.myricom.com/myrinet/overview/.

[59] Chrysostomos A. Nicopoulos, Dongkook Park, Jongman Kim, N. Vijaykrishnan,

Mazin S. Yousif, and Chita R. Das. Vichar: A dynamic virtual channel regulator

for network-on-chip routers. In Annual IEEE/ACM International Symposium on

Microarchitecture, Orlando, FL, 2006.

[60] Michael D. Noakes, Deborah A. Wallach, and William J. Dally. The J-Machine

Multicomputer: An Architectural Evaluation. In Proc. of the 20th Annual Int’l

Symp. on Computer Architecture, pages 224–235, 1993.

[61] Greg Pautsch. Thermal Challenges in the Next Generation of Supercomputers.

CoolCon, 2005.

[62] Li-Shiuan Peh and William J. Dally. Flit-reservation flow control. In Interna-

tional Symposium on High-Performance Computer Architecture (HPCA), pages

73–84, 2000.

[63] Li Shiuan Peh and William J. Dally. A Delay Model for Router Micro-

architectures. IEEE Micro, 21(1):26–34, 2001.

[64] Fabrizio Petrini, Wuchun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Fracht-

enberg. The Quadrics Network: High-Performance Clustering Technology. IEEE

Micro, 22(1):46–57, 2002.

[65] G. Pfister. An Introduction to the InfiniBand Architecture

(http://www.infinibandta.org). IEEE Press, 2001.

[66] R. Rojas-Cessa, E. Oki, and H. Chao. CIXOB-k: Combined Input-Crosspoint-

Output Buffered Packet Switch. In Proc. of IEEE Global Telecommunications

Conf., pages 2654–2660, San Antonio, TX, 2001.

BIBLIOGRAPHY 137

[67] S. Scott and G. Thorson. The Cray T3E Network: Adaptive Routing in a High

Performance 3D Torus. In Hot Chips 4, Stanford, CA, Aug. 1996.

[68] Steve Scott, Dennis Abts, John Kim, and William J. Dally. The BlackWidow

High-radix Clos Network. In Proc. of the International Symposium on Computer

Architecture (ISCA), pages 16–28, Boston, MA, June 2006.

[69] Steven L. Scott and James R. Goodman. The impact of pipelined channels on

k-ary n-cube networks. 5(1):2–16, 1994.

[70] Daeho Seo, Akif Ali, Won-Taek Lim, Nauman Rafique, and Mithuna Thot-

tethodi. Near-optimal worst-case throughput routing for two-dimensional mesh

networks. In Proc. of the International Symposium on Computer Architecture

(ISCA), pages 432–443, Madison, WI, 2005.

[71] SGI Altix 3000. http://www.sgi.com/products/servers/altix/.

[72] Howard Jay Siegel. A model of simd machines and a comparison of various

interconnection networks. IEEE Trans. Computers, 28(12):907–917, 1979.

[73] Arjun Singh. Load-Balanced Routing in Interconnection Networks. PhD thesis,

Stanford University, 2005.

[74] Arjun Singh, William J. Dally, Amit K. Gupta, and Brian Towles. GOAL:

A load-balanced adaptive routing algorithm for torus networks. In Proc. of the

International Symposium on Computer Architecture (ISCA), pages 194–205, San

Diego, CA, June 2003.

[75] C. B. Stunkel, D. G. Shea, B. Aball, M. G. Atkins, C. A. Bender, D. G. Grice,

P. Hochschild, D. J. Joseph, B. J. Nathanson, R. A. Swetz, R. F. Stucke, M. Tsao,

and P. R. Varker. The SP2 High-performance Switch. IBM Syst. J., 34(2):185–

204, 1995.

138 BIBLIOGRAPHY

[76] Michael Bedford Taylor, Walter Lee, Saman Amarasinghe, and Anant Agarwal.

Scalar Operand Networks: On-Chip Interconnect for ILP in Partitioned Architec-

tures. In International Symposium on High-Performance Computer Architecture

(HPCA), pages 341–353, Anaheim, California, 2003.

[77] L. G. Valiant. A scheme for fast parallel communication. SIAM Journal on

Computing, 11(2):350–361, 1982.

[78] Sriram Vangal, Jason Howard, Gregory Ruhl, Saurabh Dighe, Howard Wilson,

James Tschanz, David Finan, Priya Iyer, Arvind Singh, Tiju Jacob, Shailendra

Jain, Sriram Venkataraman, Yatin Hoskote, and Nitin Borkar1. An 80-Tile 1.28

TFLOPS Network-on-Chip in 65nm CMOS. In 2007 IEEE Int’l Solid-State

Circuits Conf., Digest of Tech. Papers (ISSCC 07), 2007.

[79] Hangsheng Wang, Li Shiuan Peh, and Sharad Malik. Power-driven Design of

Router Microarchitectures in On-chip Networks. In Proc. of the 36th Annual

IEEE/ACM Int’l Symposium on Microarchitecture, pages 105–116, 2003.

[80] Koon-Lun Jackie Wong, Hamid Hatamkhani, Mozhgan Mansuri, and Chih-

Kong Ken Yang. A 27-mW 3.6-Gb/s I/O Transceiver. IEEE Journal of Solid-

State Circuits, 39(4):602–612, 2004.

[81] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and

Anoop Gupta. The SPLASH-2 programs: Characterization and methodological

considerations. In Proc. of the International Symposium on Computer Architec-

ture (ISCA), pages 24–36, Santa Margherita Ligure, Italy, 1995.

[82] Michale Woodacre. Towards multi-paradigm computing at sgi. Talk at Stanford

University EE380 seminar, January 2006.

[83] S.D. Young and S Yalamanchili. Adaptive routing in generalized hypercube

architectures. In Proceedings of the Third IEEE Symposium on Parallel and

Distributed Processing, pages 564–571, Dallas, TX, December 1991.

