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Abstract

Power dissipation has become a critical design constnaiall digital systems. Designers
must focus on creating energy-efficient circuits to achteeehighest performance within a
specified energy budget or dissipate the lowest energy fiwea gerformance. In addition,
as technology scales, increasing process variations gaifisantly degrade circuit timing

and power. These variations must be accounted for duringr&sproduce robust circuits

that guarantee a desired performance after fabrication.

This thesis focuses on the automated design of robust ewdfigient digital circuits.
Using device sizes, and supply and threshold voltages &les, we formulate the energy-
efficient circuit design problem as a Geometric Program. &Bs special class of convex
optimization problems and can be solved efficiently. We tgvanalytical models of gate
delay and energy, and include different design scenarkesdhanging logic styles, dis-
crete threshold voltages, wire resistances and capaegasignal slope constraints and so
on in the optimization. To facilitate design entry and pogtinization analysis, we have
built the Stanford Circuit Optimization Tool (SCOT). As asilgn case study we explore
the energy-delay tradeoff of different 32bit adder topasgusing SCOT. These tradeoff
curves show that adders with an average fanin of two per stagmg the fewest logic

stages and smallest wire overhead are most energy-efficient

Gate delay uncertainties due to process variations cayseadsin the overall circuit

\



delay. We show how deterministic sizing, which optimizes ttominal delay ignoring
process variations, can make the overall delay much worderwariations because it
results into many critical paths that may contain small devi

To solve this problem, we propose two heuristics that gumdedptimizer to create a
solution that comes close to optimizing the performance glo@arantees a desired yield.
First, we augment the gate delay models with standard denidelay margins. Second,
we use a “soft max” function to combine path delays at conugrgodes. Using these
heuristics retains the original GP form of deterministiirsy and therefore incurs only a
modest computational overhead. The improvement in robgstaver deterministic sizing
depends on the circuit topology and the extent of variatgpecified by the technology.
For a 90nm technology, assuming a 15% standard deviatitreiddlay of a & wide drive
transistor, results show that using the proposed heutetimiques of statistical sizing with
the correct statistical estimate of overall energy impsavee energy-delay tradeoff curve

by 10% for 32-bit adders.

Vi
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Chapter 1

Introduction

For the past three decades, technology scaling has enablieddevelop faster, smaller,
cheaper logic gates [60], leading to their use in many systgomanning a wide range of
power and performance. Figure 1.1 shows a few example sgstarting from the very
low power battery operated devices like hearing aids andrpakers on the lower right
to high-power high-performance servers and mainframesherupper left. The power
consumption of a pacemaker is aroutg:W [97], while modern high end processors
dissipate around 100W [57, 50]. Even though the power copsiom of these systems
differ by over 6 orders of magnitude, energy-efficiency iswci@l factor in all of them. In
portable devices, power dissipation directly affects thedry life, therefore these systems
have to minimize their energy consumption while deliveting required performance. For
high performance devices, maximum energy dissipationfisttained by power delivery
and cooling system costs. Not only has it become increasttifjicult to supply the high
currents needed by high-end microprocessors, the costigéair cooling limit, which sits
ataround 100W, means that to increase the performance ,etidmeecrease the energy per

operation to keep the chip power dissipation within thigtinihe goal in these systems is

1



Energy per operation =

CHAPTER 1. INTRODUCTION

Air cooling
limited

"ifasengay

Battery life
limited

1/performance =

Figure 1.1: Growing number of digital systems across a walegr-performance range

to maximize the performance under the system energy camstr&Consequently, instead

of designing for highest performance or lowest power, desig need to make “energy-

efficient” systems which consume the least energy for ael@gierformance or deliver the

highest performance for a given energy budget.

What makes this problem even more challenging is that witinkimg feature size,

local random process variations have an increasing effeth® performance and energy

of digital circuits. The amount of guard banding needed tmatmodate variations tradi-

tionally has been decided by analyzing the circuit at thestvprocess corners. Increasing



local random variability means that our current method @frgubanding can give very pes-
simistic values for the guard band. Since it does not consideaveraging effect of these
variations, it causes the circuit to be over-designed, wiaidversely affects its energy-
efficiency. Process variations hurt in many other ways ak Whe exponential dependence
of leakage energy owi,;, causes the overall average leakage energy to increasécgtly
with V4, variation. Thus in designing for the highest performancatpeithout respecting
Vin Vvariability, the leakage for most fabricated chips will beaaceptable, wasting a lot of
energy. To minimize this loss of energy-efficiency duringrfeation, design optimization

must account for process variations.

Robust energy-efficient design can be done at many levelgstém design hierarchy
— problem formulation, architecture, circuits and devic@sis thesis focuses on robust
energy-efficient circuit design. The design variables &@uit topology, logic style, tran-
sistor sizes, and supply and threshold voltages. The deségrics are the specified perfor-
mance and energy, while the boundary constraints inclysg signal arrival times, output
loads and signal transition times. We formulate the digitaiuit design optimization prob-
lem as aGeometricProgram (Appendix A). A GP is a special type of convex optirtiaa
problem which can be efficiently solved using interior pomethods [10]. To facilitate de-
sign entry and analysis, we created SCOT - the Stanford IC®giimization Tool, which
was useful for creating optimized designs using Geometagfmming. We analytically
model the energy and delay of digital circuit blocks as GP gatible mathematical func-
tions of the design variables. Using this tool, we have iigased the energy-efficiency
of different adder topologies and extracted the overaltgyrdelay tradeoff curve of 32bit
adders. Such energy-delay tradeoff curves can be used at leppls in the design hierar-

chy to create energy-efficient architectures.

To make the design robust against random process variatioodels for saturation
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and leakage current variation are incorporated in the degigimizer itself. While doing
this exactly can be difficult, we have developed efficientristigs to guide the optimizer
in choosing appropriate values of the design variables) witmodest overhead in design
time. Depending on the topology, the resulting designs essignificantly more robust to
the process variations than the nominal designs.

Chapter 2 describes the aspects of CMOS technology scdlaigcause the two big
issues we face today — power dissipation and process Mésiabiext, Chapter 3 looks at
the power dissipation problem without considering vaoiasi. It describes our formulation
of the energy-efficient digital circuit design problem ugianalytical energy and delay
models and uses these models to do a case-study using a &&deit to show how the
optimization framework works. Although circuits desigrtbiés way are energy-efficient,
they are not optimal in the face of process variations. Ghapstarts by describing ways
of analyzing circuit timing with uncertain gate delays. Wow the negative effect of of
process variations on otherwise optimally designed digitauits. With this motivation
we discuss efficient techniques to include process vaityali the design optimizer to

generate statistically robust circuits.



Chapter 2

Energy, delay and scaling

Power is now a critical issue for integrated circuit designeBefore describing methods
of addressing this issue by creating energy efficient desitms chapter will look at the
basic mechanisms that cause energy dissipation and de@M®S circuits. We will then
create simple, but accurate models that will allow us toweste these quantities for arbi-
trary CMOS gates, and use these models to explain why poveeinbeeased during the
past 30 years of scaling, and why the power problem has goiteh worse recently. Next
we turn our attention to another factor that affects en@figiency — process variabil-
ity. Given that devices have manufacturing tolerances, gedrio add margins to ensure
that the manufactured designs meet spec. This has traalijidreen done using “corner
files” information about the worst-case points in the maatufiang flow. With technology
scaling, local fluctuations across a single die have becoore writical. This chapter ex-
plains why these on-die variations are critical, and howy tiféect the design optimization

problem.
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2.1 Modeling CMOS energy and delay

There are three main sources of energy dissipation in CM@gits as shown in Figure

2.1
vdd Vvdd Vvdd
E Isc [1eak
e o/ O\ of ! 1
load load g n d load
gnd gnd gnd
< 7 -
= =
Q = C'load‘/:id
time time time
(a) Charging current (b) Short circuit current (c) Leakage current

Figure 2.1: Forms of energy dissipation in CMOS circuitse Bnaphs shows the currents
associated with the corresponding energy dissipation.

1. Dynamic energyconsists of the energy dissipated in charging and disahguggate,

diffusion and wire capacitances while switching a signal.

2. Signal transitions are never instantaneous. Whenevateasyvitches, the pull up
and pull down devices may be simultaneously on for a briefopleuntil the input
transition is complete, causing short circuit crow-barrent to flow between the
power rails. The energy dissipated in this way during sigraatsition forms the

Crow-bar energy.
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3. A static source-drain leakage current flows through sstséor even when the tran-
sistor is off, i.e. when the gate source voltaggis well belowV;;,. Energy dissipated

statically due to this sub-threshold conduction constguhel eakage energy

The total energy dissipation is the sum of all these compisn@rer all gates and wires in
the netlist.

Modeling circuit delay is slightly more difficult as it is d@tnined by the slowest sig-
nal path during each clock cycle. As a digital signal propegé#rough the circuit, it turns
some transistors on and others off. These transistors tivmtteir output nodes, charg-
ing and discharging different capacitances and changmgttite of other transistors which
drive the next output nodes. The delay of a path of logic issilma of signal transition
delays through the transistor stages along the path. Ay @tlavery stage consists of
charging or discharging a load capacitaidi¢é or from voltagel” using the driving tran-
sistor’s drain current, the delay per stage can be writterk@$l’/ I, wherek is a constant.
The drive currenf and the gate capacitance of a transistor are both direatlygptional
to the its width. Consequently, if the load capacitantes a fixed multiple of the driving
transistor’s gate capacitance, theV'/I delay becomes independent of transistor sizing. It
depends only on the intrinsic driving properties of the desiin the technology. Therefore,

kCV /I delay measured in this way is a good metric for defining thedjpé a technology.

2.1.1 CMOS transistor characteristics

In order to correctly model the transistor currénit is important to understand the CMOS
transistor behavior and include in the device model all thpdrtant factors that affect
delay and energy of CMOS circuits. Figure 2.2 shows a 3D vieavtgpical NMOS device

structure that has been scaled over the years. For tramssigitth long channel length, the

lateral source-drain electric field is small and the charaglier velocityv is proportional
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source T

Ntact . onta/‘

body p type

NN NN

depletion region
channel

Figure 2.2: 3D view of the NMOS transistor

to the channel electric field.

v=puk,

wherey is the mobility, which is largely constant over the opergtiange. In this scenario,
the drain current in saturatiadis,; for a transistor of widti” and lengthl. can be modeled

quite accurately by the simple quadratic formula [72]

w
Tgsar = ENCOXV;?d? (2 . 1)
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whereV,q4 is the overdrive voltage given by,q = (Vagq — Vin)! . Becausely,; for a
transistor depends only on thE/ L ratio, the drive current for a cluster of transistors can
be found easily by modeling each one of them as resistors(j/@dére the resistance is
proportional to./1W) and finding the effective resistance of the cluster usimgstries-
parallel formula for resistors. For example, the currembtigh a stack of two devices can

be modeled as

1
Idsat X A_‘_ﬁ’
Wy Wo

while for parallel devices we can write
]dsat X Wl/Ll + WQ/LQ.

However, all modern transistors exhibit the so called “Highd effects” which make this
simple modeling very inaccurate. Asis reduced the lateral field increases and the rela-
tionship between the carrier velocity and electric fieldtstto saturate [88]. Carriers are
velocity saturated to a,,; of around10”cm/s in silicon. With short channels, the drain
depletion region forms a larger part of the channel lengthanitage on the drain also can
lead to changing the barrier to inversion, thus affectingith. This effect is known as
Drain Induced Barrier Lowering or DIBL [88, 65]. Finally,eHow-lateral-field mobility is
affected by the vertical gate field [82]. We use the Meyerrsditon current model [89] to
effectively capture all these important effects.

In this model,/4,; of a MOS transistor is given by

2
stat C’ox ‘/od

[sa: 5
T Y+ EoL

(2.2)

whereuv,,, is the saturation velocity an, is the critical lateral electric field that sets the

1As we are talking about digital circuits with rail to rail sigl transitions, we usg;q as OUIVgg.
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onset of velocity saturation.
2'Usat

B ,ueﬁ‘.

E.

Here, the effective mobility..s, is itself a function ofl;y and 1}, as it depends on the
vertical electric field [89]. The magnitude &f.L relative toV,, determines the extent of
velocity saturation and therefore the short channel belhawhenE. L >> V4, the lateral

field is small, so velocity saturation is small ahg.; obeys the square law relationship.
The influence of a strong horizontal field in short channeigistors keeps the device in
saturation well beyond thé/,; — V4,) level of the long channel device. With velocity

saturation, the drain saturation voltage is given by [89]

(Vgs — ‘/th)EcL
(Vgs — Vgh) + ECL.

vdsat =

For devices below 130nm, this is much lower thi&h, — Vi1, ) as devices remain in velocity

saturated mode for a substantial portion of their drainaggtswing.

2.1.2 Dynamic energy model

As inputs to a logic circuit change, signals at differensredtnsition to new values, charg-
ing and discharging the corresponding capacitances. (padt@ance”’ swings by a voltage
Viwing through a supply of/44, the total energy spent by the supply is the product of the
charge placed on the capacitor and the supply voltage, GS€H/in,Vaq. Usually, the
circuit swings are equal tb4, therefore average total dynamic energy per operation can

be calculated as a sum of the dynamic energy dissipatedlapé#tten nets in the circuit.

Eayn = Vi > aiC; (2.3)
=1
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Here, C; is the sum of the wire capacitance, gate capacitance of theuagates and
parasitic capacitance of the driving transistor stage dri.n€he switching activity factor
a; measures the average transition frequency of.nEbr a given transition frequency at

the inputsyy; is calculated by fast logical switch level simulation of thiecuit.

Crow-bar current also only occurs during transitions angeiserally lumped in with
the dynamic power. While it depends on rate of change of tpatjrt usually is a small
fraction of the dynamic energy and causes a small error ibriggh in energy estimation.
The accuracy of the energy model really lies in estimatirggdiiferent device and wire
capacitances accurately. The MOS gate and diffusion cpaes depend on the applied
voltage. However, for a rail to rail switching transitiomet average capacitance gives a

good estimate for power calculation.

2.1.3 Leakage energy model

The current model explained in Section 2.1.1 predicts thertet is no drain current when
Voa < 0. However, CMOS transistors do have leakage currents wrenate “switched

off”. CMOS gates leak all the time as this leakage currentglthvough the switched off
transistors. The leakage energy per cycle is the sum of thegygegnn all the gates in a

circuit.

Eheax = V:ichyclo Z Igato,i (24)

i=1
Here,m is the number of gateg,,,. ; is the weighted sum of the leakage currents of the

gate: over its various logic states afid,,. is the clock cycle time.

Igato,i = ijlj(v:ida‘/th,j); (2-5)
J
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wherep; is the probability of statg and; is the leakage current in that state, which de-
pends on the width antl;, of leaking transistors. Leakage current reduces significan
with stacking [39], so we consider only those logic stated trave a single leaking tran-
sistor between the power rails. The leakage in a gate isllistd between its pull-up
and pull-down stacks according to the proportion of timedtier stack is active. In other
words, it depends on the average time the output remainate@or 1 respectively. This is
calculated by measuring the duty factor simultaneousliz thie switching activity factors
to obtain a good first order estimategf For a single leaking transistor of widtf, /;

can be modeled as [63]:

—(Vth,j - VDVdd)
Nt V1

I; = IyW exp( ) (2.6)

where [ is a constant;p is the DIBL coefficient,Vr is the thermal voltage equal to
kgT/q, kg being the Boltzman constant ang; accounts for the body-factor describing
the efficiency of gate to channel coupling [88]. The magrethg whichl/;, must change to
cause an order of magnitude changé;irs called sub-threshold slope and can be calculated

asin(10)n,:Vr. For most CMOS devices, this value is around 80-100mV/decad

2.1.4 Modeling gate delay

We have extended the Meyer velocity saturated current ma8el89] for a transistor to

obtain the delay of CMOS gates. To calculate this delay ctyat is necessary to consider
the entire path from the power rails to the charging load.sTou modeling the delay of a
transistor stage we define a stage (gate) as a Channel Cedi@mnponent (CCC) [21, 12]

where inputs are only connected to gate terminals. A CCCfisettas the largest group
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of transistors having their source/drain terminals cotegthrough conducting channgls
Most common logic gates like inverter, NAND and NOR gatekifathis category. As we
shall see below, tearing circuits into CCCs makes it possibimodel the delay of CMOS
gates analytically.

For sake of explanation, we will consider the process of d apacitance being dis-
charged by an NMOS pull-down stack. The analysis for PMO$yquis similar. The fall
delay for discharging a load capacitarCg.q to Vaq/2 by applying a rising step input to

the driver NMOS transistor is given by

o C(load‘/dd
Tstep - 2 ] )
d

where the discharging curreif is given by Equation 2.2. However this model greatly
underestimates the delay in real circuits because of twsprea Firstly, the input is never
a step but has a finite rise and fall time. This turns on theedrikansistor slowly and
contributes to the stage delay. Usually the stage delayscangarable, so the output does
not crossVgying/2 until the input is well beyond th&j4/2 point. In such cases the input
slope just adds a simple delay term [35]. With this assumptice can estimate the fall

delayrq by
o Cload‘/:id
=T

+ f(7in), (2.7)

where, is the input transition time and(;,,) is the added delay. By approximating
the shape of input transition and the driver current builcagginear, an input with finite

transition time can be considered as a delayed step. Ttag,del,, ) is given as [35]

Vin
Tin) = 0.5—7’in.
() = 053"

2Some transistors are connected to power rails (supply anchg)
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To assess the accuracy of this model, consider a two invéetay path driven by a step
input and driving a fixed load. The size of the second stageesl fivhile the size of the
first is changed to present inputs with different transitiames to the second stage. Figure
2.3(a) shows the relative error in the estimating the exttaydadded to the second due to
its non-zero input transition time. The X axis represengsdélay of the first stage relative
to that of the second stage. If the input to the second stageitions relatively quickly
(i.e. the delay of the first stage is relatively small), theers less, while for very slowly
changing inputs, the error is large. However, if we meadwuealelay of the entire path, we
can see that the error in estimating the total delay due tezeom input transition time is

significantly reduced.

While this error may still be important in timing “analysjsite care about how it af-
fects optimal “design”. Usually, optimal sizing ensureatthtage delays and therefore the
input and output transition times, are comparable. A lightding condition can occur dur-
ing sizing if the transistors in a lightly loaded side paththeir minimum size constraint
while the critical path is heavily loaded. However, in suelse&s the delay of the entire side
path itself is already small compared to the critical patlagl@and so does not affect the
sizing. In addition, we constrain the delay of every stagavimd slowly changing signals
for signal integrity reasons. This reduces the error inyektimation. The second issue
in accurate delay modeling is that during switching, theegattd drain voltages of the tran-
sistor are changing simultaneously and because of DIBLis also changing. Therefore
the discharging current is actually changing throughoetahtput transition and; should
represents an average discharging current. Hence for wagraccuracy, we modified the
expression of 4, in Equation 2.2 by adding two additional fitting paramete@ndb to

give
statcox<b‘/:id — ‘/th>2
(bVag — Vin) + E.L

]d:a
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Figure 2.3: Effect of loading conditions on the accuracy wfadditive slope delay model

Parameter is the averaging coefficient artdaccounts for DIBE As we are optimizing
for V3q andVy,, we choose these parameters to best fit the entire rangeidiiled’;; and
Vin-

The above equations can easily model the delay of an inyé&aecomplex gates are
made of multiple series and parallel stacks of transistdcsmodel their delay we need
to model the current of a stack of transistors. As was alreadgtioned, modern devices
are velocity saturated and so cannot be combined as resisldre issue is clear from
Equation 2.2. Unlike the long channel transistor, incraegéi of a velocity saturated device
does not reduce the current proportionately. Thereforegck ©f two identical transistors
behaves like a transistor with the same width but twice thgtle, as opposed to a transistor
with same length with half the width as is true in quadratmsistors. This can be easily
accounted for if all devices in the stack are of equal widdtause then we can model that
as a long transistor with the same width. However, in custesigh, transistors in a stack

can have different sizes depending on the delay at theirigptgs. For such cases, the

3The values of: andb used for our 90nm technology are respectively 0.9 and 1.APN¥6OS and 0.7 and
1.1 for NMOS.
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current model needs to be generalized to estimate the drivert of a stack of transistors
with unequal widths. The velocity saturated flow of carriera stack of transistors can be
thought of as water flowing under pressure in connected @ipesferent diameters. Here
the flow of water is restricted mostly by the thinnest pipejlavkhe length of a thicker
pipe has a relatively small effect on the flow rate. Using itiesa, we model a stack of
transistors as an equivalent transistor with an effectidwil¢ and effective lengthl. ¢

given as

Weg = min(WWy,..., W,),

Leff - WeffZLi/VVia
=1

wherelV; andL; are the width and length of th€ series transistor. As devices in a digital

circuit are usually of minimum length,,;, , we can rewritel.¢ as

Legg = LninWen Z 1/W2

i=1

Thus the equivalent width is set by the most velocity saaatatevice and the length is set
by the averaged length of all transistors weighted by thaithg. This allows us to size
different transistors in the stack. If all widths are eqtia, equations result in an equivalent
transistor with the same width and length,,;, as expected.

The delay of a stack also consists of discharjihg intermediate capacitances. If the
switching input is at the bottom of the chain (closer to poveds), then it has to discharge
all the intermediate nodes. In this case we decompose thdefaly as a sum of fall delays

where each intermediate capacitor is discharged by the tietow it, similar to the ElImore

4charging for PMOS
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[23] delay calculation as shown in Figure 2.4. Note that @ggecitors that are in the same

j:{ i%lc;d 4:_{ \10;1
%d o\ %d

/. D_{ parl B e D_{ parl N [I{
ﬁ—_{ par2 j:{ ﬁ:{

gnd gnd gnd
Figure 2.4: Delay of a stack of NMOS transistors activatetti@tntermediate input

state before and after the transition are not included icutaling the delay. Therefore we
have no term for capacitar; in the figure.

Figure 2.5 shows the validation of our model against spitrikitions for step input to
a stack of two NMOS devices as in a NAND gate. Let the width eflMMOS closer to
the output bdl; and the width of NMOS closer to ground bE,. The models are more
accurate near the point whelig, = 1W,. The error in the estimate shown in Figure 2.5(a)
is due to our assumption that the intermediate node ¥§aprior to discharge. In Figure
2.5(b), the error in modeling the delay from top transisteitching comes mainly due to
ignoring charge build up in the capacitor at the intermediade during the transition.
If the intermediate capacitor is relatively large for thetbm transistor (widthi?;) and
comparable to the load capacitance, it can act as a virtoahgrcausing a smaller defay
and longer transition tail for the output [34].

An interesting effect of velocity saturation is thatldg is reduced, the relative reduc-
tion in the current of a stack of transistors is higher thaat tf a single transistor. This
is expected because with reducing;, the single transistor is less velocity saturated and

therefore has a larger current relative to the stack of istors, which suffered less velocity

Sas calculated as the delay between the input reaching Waifygo output reaching half-swing
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Figure 2.5: Step delay model validation for a stack of 2 NM@®@sistors

saturation to begin with. This is important for sizing, asians that for the same drive
capability, a stack of transistors (as in a NAND or NOR gate) to be sized bigger rela-
tive to the single transistor stage (as in an inverter)yads reduced. This effect is neatly
captured by théV,q + E.Les) term of the drive current model.

The accuracy of the delay model remains well within 10% faick of up to four tran-
sistors for reasonablg,,.q and intermediate parasitic capacitors and input signasitian
times (;,) are comparable to the output signal transition times. cBires with up to four
transistor stack include almost all the usual CMOS logiegaln larger gates where there
are many parallel stacks of transistors connected to theuguhe model may underesti-
mate the overall delay of a particular transistor stack dget not consider the intermediate

parasitic capacitance from other partially turned on gtack

2.2 Technology Scaling

Over the years, the IC industry has successfully implengeDennard scaling to improve
performance. In 1974 Dennard proposed constant field scfli®], where the electric

fields in a MOS device are kept constant by scaling voltag#s thographic dimensions.
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Scaling the feature size by the scaling factdry ~ 0.7) per generation improved the delay
per switching event by /«. The gate capacitance per micron remained constant as both
the device lengtll and the oxide thicknegs, scaled byn. The device current per micron
also remained constant because the scalirigaidt,, was offset by the scaling 6f;4 and

Vin. This follows from Equation 2.1. This trend continued everhe velocity saturated
device regime as can be observed by implementing scalinguation 2.2. Consequently,
the C'V/I figure improved byl /« in every generation. This improvement in switching
delay enabled &/« increase in the clock frequendyy.. Improved circuit techniques like
deeper pipelining allowed,;. to be increased further. With the gate capacitance per unit
areaC,,., increasing byl /« due to scaling of ., the dynamic energy per switching event
per unit area given a8,,.,V* decreased by/a. Combined with slightly greater than'«
increase inf.y, the dynamic power per unit ar€a,...V? f.i thus increased only slightly

in this period.

During this time the contribution of sub-threshold leakagehe overall power was
negligible asV;, values were large. Thus Dennard scaling kept the power tyamnsier
control while improving the processing speed. However, escdbed in Section 2.1.3
sub-threshold leakage current grows exponentially Wjthand non-scalability of thermal
voltagekgT'/q with device dimensions means that for a given operating &atpre, the
sub-threshold slope would remain constant at around 8@aWd@ecade [88]. This means
that asV;, reduces during scaling, the leakage current will increxpementially and at
some point cannot be ignored, because it would contribuistantially to the overall chip
power. This happened aroudd = 130nm and consequently;, scaling slowed down.
Because the delay is related inversely(19, — Vi), and increases significantly &,
approaches’,, Vyq scaling too slowed down to maintain adequate performanaguré

2.6 shows the deviation from ideal scaling for some desigarpaters from industrial data
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collected over the past two decades [66]. While the benefibn§tant power density from
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Figure 2.6: Scaling of,, V44, Vin, With gate length

Dennard scaling was no longer available, device dimengionsnued to scale, increasing
density and lowering cost, but also increasing power dgmst generation [88]. Power
delivery and heat removal costs constrain the overall cbipgp in air cooled systems to
around 100W. To be within this limit, frequency scaling hlasve&d down considerably this
decade. Systems are running slower than the fastest alloweéelchnology and perfor-
mance improvement is sought in other ways, like processiagynnstruction threads in
parallel [75, 47, 71] rather than processing each one quiéldundries have also stepped
up to provide technology that enables energy-aware degigfféring multipleV;,, devices
[85]. In addition, designers are also trying to use multgleply voltages [56, 77, 91, 14]
on a single chip to achieve the timing in critical areas whéging leakage energy at other

places.



2.3. PROCESS VARIABILITY 21

To effectively use all these device and design options, thg we approach design
needs to change. It is not enough to build the fastest cienudt then slow it down by
changing a single design variable like the supply voltageti@ization is required to cor-

rrectly choose among these different options. The nextten@gldresses this issue.

2.3 Process variability

The structures fabricated on silicon never exactly refi¢he intended layout due to in-
evitable mechanical and lithographic variations. Vaoias arise from stepper misalign-
ment, error in defining exact boundaries as the lithograplawelength is higher than the
etching dimensions, layout-pattern-dependent ion-impkion changes, fluctuations in the
countably finite number of active dopant atoms in the scatety lof the MOSFET and so
on. For a circuit to meet the specs amidst these variativis triaditionally designed to
work under differentorner conditions of the fabrication technology. These reprefent
best and worst case devices for varying parameterd/ikd/4q, temperature, mobility and
so on. The device model corner files are provided by the foufalrevery technology
node. If a design meets the specification in simulation invitbest process corner, then it

is guaranteed that almost all the fabricated designs widtrttee timing.

With scaling, the relative magnitude of variations is iragiag significantly [5]. If not
accounted properly, the chip may be extremely under-dedigmaking it hard to meet its
design specifications and in some cases, to fail functipresl well. It is important to
understand these variations to design robust circuits mFaodesign point of view, we
classify these variations into three categories as showigure 2.7, based on the amount

of correlation among the devices on a chip .
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Figure 2.7: Types of process variations

1. Global/Chip-to-chip: Variations caused by factors external to the chip, whepain
rameters for all the devices in the chip change in the samefaliaiy this category.
In other words the variations in all devices on the chip amagletely correlated.
It includes all the lot-to-lot, wafer-to-wafer and on-diki-to-chip variations. Be-
cause they affect all devices on the chip in the same way,¢arypbe compensated
by designing aggressively, leaving an appropriate guandl fiieam the design spec,
depending on the desired yield. If these are the only kindaoktions, the appropri-
ate value can be obtained by doing the traditional cornezdasnulations. Another
solution for small perturbations in one of the process patanrs is to compensate for
it by changing some other design variable post fabricatior.example)/y4 of the

chip can be set after fabrication to make the chip meet thieatdkespecs.

2. Correlated within chip: Variations in which the varying parameter for different de-
vices is correlated due to their proximity or similarity ewbut fall in this category.
The correlation distance can span from inter-device speatairthe chip dimensions.
These variations cause parts of the chip to run slower or d&gher power density.
One way to compensate for them is to assume they are part gfdbel variations.
Better solutions include making a uniform layout to minimiayout dependent vari-

ations or using adaptive post fabrication tuning mechasigmdifferent blocks on
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the chip to individually get them into spec.

3. Local independent: These variations have extremely short correlation diggnc
The parameter varies independently from device to deviespective of their dis-
tance or layout. The main causes for these variations af@utttaation in number of
dopant atoms and randomness in photo etching causing lgagé#tions due to line
edge roughness. As technology scales, the effect of theis¢ioas is growing signif-
icantly [64]. A small absolute change in the countably fimitenber of active dopant
atoms can cause a large relative variation/jp. As the feature size approaches
the resolution of the photo-chemical process in resist, édge roughness becomes
more important. Clearly it is not feasible to compensatestarh variations for every
transistor using any of the methods used for the other typear@tions. However,
due to their short correlation distances, these variatiend to average out as the
device area is increased. This is the key result used in miegigircuits tolerant to
these variations. A lot of research has been done to modeMsu@tions. Pelgrom’s
model [70], which says that the variance of a parameter isrgely proportional to
the device areal(IV) is a universally accepted model for these variations. &ditkt
order this can be extended to express the variation in dumet and consequently,

the transistor stage delay as function of the size of therdyitransistor.

o(14)* ﬁ (2.8)

More sophisticated models will be presented in Section 4.6.

Variations can also occur at run time due to changes in thesmaent, like fluctuations
in Vgq and temperature. However, from a design point of view, theylie correlated

within chip variations. So they can either be included inbglovariations, which means
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designing in their worst case corner, or circuit level adagtiechniques can also be used to
regulate them at run time [90, 16]. Variations can also odcugr to aging of a device, like
the Negative Bias Temperature Instability (NBTI) that ateePMOS devices. As before
these variations can either be assumed global or dealt witlywadaptive techniques. In
this thesis, we shall focus on design optimization for aicwith local random variations
using Pelgrom’s equations to model them.

Variations in physical parameters result in variationsrimedand leakage current, which
lead to variations in circuit delay and energy. It is extrgmenlikely that variations will
improve both delay and energy of the chip as that means adinpeters of all devices
improved. Instead, variations cause many fabricated doipst meet the energy-delay
specification of the original design. We want to create amapation method that opti-
mizes the efficiency of circuits that are actually producEae only way of doing this is to
include the information about process variations in thegiteiow and generate a “robust”
design, which would better tolerate the uncertainties inufecturing. Incorporating vari-
ations exactly is usually a very hard problem [8], so Chaptdescribes approximate but

effective solution for generating robust circuits.



Chapter 3

Optimization for energy-efficiency

In this chapter we describe the energy-efficient circuiigteproblem without considering

variations. After setting up the problem as a convex optatien problem we briefly talk

about the Stanford Circuit Optimization Tool (SCOT) andatdee experiments done with

it to explore the relation between energy-efficiency analogy of 32bit adders.

Consider the “energy-delay” space of a typical digital gitblock as shown in Figure

3.1(a). For a given application specification, the fastessyble circuit may already exceed

delay spec
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(a) Pareto-optimal energy-delay tradeoff curve (b) Trading marginal costs to improve design

Figure 3.1: Energy-efficiency tradeoff space of a digitedwit block

the maximum energy limit, while the design may just have tettige desired delay spec as
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shown by the vertical dotted line on the right. If we gathétla possible slower designs
built by tweaking the sizingV4q, Vin, topology and so on, we would see that there is a
curve that bounds these designs on the lower side. Eachgoihis curve represents an
energy-efficient design at that energy-delay specificaorce none of the other designs
are better in both. This curve is called the Pareto-optinaaldoff curve and designs on this
curve have a number of interesting properties. Most impdistaall their design variables
must be in balance, i.e the marginal cost in energy for chamgielay is same [10] for
all the variables that the designer can adjusthis must be true, else we can “sell” the
expensive variable, buy back on the cheaper one, and getigndsstter in energy with
the same delay or vice versa. Figure 3.1(b) shows this situ&br a hypothetical two
variable design. If design variable A has a higher margima&irgy cost than variable B,
we can make the design slower using A, reducing the energyremdspeed it back to the
original delay using B, increasing the energy by a lessensrdverall we would get a
design with the same delay but lower energy, which is notiptesg the original design
was energy-efficient.

This chapter creates a mathematical framework to obtamRhreto-optimal Energy-
Delay (E-D) curve for a given circuit topology. These E-De&s can then be used at the

higher level to choose the right design for the energy anaydebnstraints of the system.

3.1 Digital circuit sizing

To understand the energy-efficient circuit design probliets, look at how digital circuit
sizing is done today using circuit sizing tools. A typicadjidal circuit can be thought of

as pools of combinational logic sandwiched between flipsflophe clock edges driving

1This condition may not hold if the design variable has reddhe end of its allowable range.
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the flip-flops set the timing constraints on the combinatiti@cks. As every block has to
meet the cycle time, the clock period is set by the longegst pathe slowest block. The
goal of a circuit sizer is to set the sizes of devices in theselxnational blocks so that they
meet the cycle time, while obeying area and energy consstaimultaneously, they have
to meet other design constraints like maximum and minimuwicdesize, input and output
loading, signal rise/fall time constraints and so on. Mastuit sizers [17] model the gate
delay in a static or data independent fashion. In this, thpuidransition time of a gate is

set to be the worst case transition time for all input comtoams. For example, the delay
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Figure 3.2: Gate delay constraints for the circuit sizingipdem

of a typical three input gate shown in Figure 3.2 is given by
Tow = 21:1112}2)7(3(17’ + di—o)- (31)

whereT; is the signal arrival time of inputandd;_,, the typical gate delay from inputo

the outpub, is a function of the load capacitan€g,.q, transistor size$l’, channel length
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L, supply voltag€/yq, threshold voltagé’,,, oxide thickness,,, and mobility:

di—o - f(Cload7 I/I/? L7 ‘/::ldu ‘/:ch7 tOX? . ) (32)

Different circuit sizing programs use different methodestimated;_,, including cir-
cuit simulation, analytical formulations or table look upespective of how the gate delays
are estimated, the resulting sizing problems looks verylaimas they are primarily gov-
erned by Equation 3.1.

These gates are then connected in a Directed Acyclic Grap) Db form a combina-

tional logic netlist as shown in Figure 3.3. The Primary ltgo{lPls) are typically assumed

PO,

Figure 3.3: An example circuit netlist with boundary signal

to arrive at timel}, = 02, and the delay of the circuif; is given as the maximum of signal
arrive timesT,; at any of the Primary Outputs (POs) that go to the flip-flop tspd’he
static delay formulation is convenient because it allowsausbtain the circuit delay in
terms of simple sum anchax operations. The goal of the sizer is to set the widths of the
transistors in the gates (or sizes of the standard cellg)time the delay, power and area

of the circuit. In some cases one wants to minimize the delbie meeting the power and

2or some known time as specified by the previous block
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area constraints. At other times, one wants to meet the gigonstraint, while minimizing
the area. Without loss of generality, in this work, we chdse dptimization problem as
minimizing the delay under energy (or area) constraintehkd the gate delays depends
on the sizes of the driving gate itself, and the sizes of tlheggais driving. We can express
d;_,s as a function of the the widths of the transistors in theudior the sizes of standard

cells) and other factors like wire capacitances,, V;;, as explained in Section 2.1.4.
di—o = ,UJ(W ‘/dda ‘/th7 Cloada .. )

In the deterministic sizing problem, the expression forripalar d;_, is assumed to return
a number that represents the delay of that gate. We callefiitiation for thed;_,, (),
signifying the average delay, since if there was randonatian in the gate delay one would
use some form of average value for sizing. Using this gai@ydabdel, one possible circuit
sizing problem can easily be stated as - minimize the cyale T4, while keeping widths,
slew rates, area within their specified limits. In the follog/sections we shall describe the

mathematical framework for solving such optimization peobs.

3.2 Optimization framework

The canonical representation of an optimization probleasi®llows:

minimize fy(x)

subjectto fi(z) <1, i=1,...,m, (3.3)
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where, fo(z) is the objective andf;(xz) and g;(x) represent the inequality and equality
constraints. The problem is convex if the objective is caraed constraints represent a
convex set. For example, ff(x), fi(z) andg;(x) are linear inc, the resulting problem is
a linear program. Convex problems have the nice propertyatinalocal minimum is also
the global minimum. Besides, many specific forms of convebj@ms have an efficient

solution algorithm, thereby allowing one to solve largeljpems.

3.2.1 Digital circuit design problem as a Geometric Program

If the objective and constraint functions in Eq. 3.3 are pasyials, the resulting optimiza-
tion problem becomes a Geometric Program (GP). The detdésdription of a posyno-
mial and other aspects of a GP are explained in Appendix Antéac Programs are not
convex in their original form but can be converted into a @agptimization problem by

change of variables and constraints using logarithmicfamation.

The models of performance metrics of digital and analogudiscare very amenable
to posynomial modeling [33, 1, 11]. Section 3.3 explains Wesvmodel gate delay and
energy as posynomials, creating a GP from the circuit ogation problem. In addition,
every gate in a digital circuit connects to a relatively dmamber of other gates. Hence,
barring global constraints like area and energy, most ofitHay constraints are local and
involve only a small number of design variables. Thereftie matrices involved in the
optimization are sparse. Exploitation of sparsity leadiitther improvement in solution
efficiency.

For circuit sizing purposesfy(z) in Eq. 3.3, becomes the overall circuit del&y
while the constraints describe the boundary conditionsdasign constraints [7, 6]. Some

examples are given below.
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. Area/Energy: While exact formulation of area is diffical$ it is dependent on place-

ment and wire count, it is usually formulated as the sum oftaltransistor widths
or standard cell footprint areas. In case of standard dbkésareas are curve fitted
as a posynomial function of their sizes. In any case, areanisighted sum of the
sizing variables, with positive weights. Energy is alsoghen of energies dissipated
in the different switching capacitors and leaking idle gatléis a function of device

widths, Vyq andVy,.

. Input capacitance and Output load constraints: Outpad Is the capacitance the

circuit has to drive, while input capacitance is the maximallowed capacitance on

any of the primary inputs as seen by the previous block in itheas path.

. Device width V4 andV;;, bounds: Fabrication limits place bounds on device width.

Vaq IS bounded by reliability on the upper end and subthresteritcon on the lower
end, whileV;, bounds are typically given by the device manufacturers tandat

between high leakage on the lower side to subthreshold tipe @ the upper end.

. Slope constraints: For signal integrity reasons theanggfall time of digital signals

are constrained on every net to be within a given limit thioug the netlist.

. Transistor ratios inside a gate: Pre-charge and keegpesistors in dynamic logic

are sized in ratio to the NMOS pull down stack, so that theytcark the pull down

strength.

To formulate this optimization problem and facilitate dgsentry and analysis, we built a

tool at Stanford, called the Stanford Circuit Optimizatimol. This tool has leveraged the

rich prior work in circuit sizing. Some of the key resultstige used are described next.
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3.2.2 Prior work in performance-energy optimization

Circuit sizing is an old problem and designers have developany simple rules to manu-

ally size custom circuits. If the circuit is symmetric fof edputs, like a memory decoder,

it can be reduced to a single critical path, and can be sizelighest speed using simple
equations [87]. However, for most real circuits with mamcosverging paths, these man-
ual techniques are only a rough guide, because with globalemergy constraints, optimal
sizing is difficult — it requires optimizing many variablesnsiltaneously. To solve these
complex circuits more effectively, many circuit sizing letvave been developed.

As early as 1985, Fishburn and Dunlop showed using simpkeydsiuations that the
path delay is a posynomial and the circuit sizing problemmiorimum delay is a GP, which
meant that the problem had a single global minimum. Theyldpeel a sizing tool called
TILOS (TImed LOgic Synthesizer) [24], which used path entatien in every iteration to
find the gate with the largest sensitivity to the overall gelad change its size to improve
timing. This took many iterations and the convergence tofitenal design was extremely
slow. At that time there were no good algorithms to solvedasgale GP.

More recently, in 1999, IBM developed a circuit sizing toalled Einstuner [17]. Ein-
stuner used static timing formulation to avoid path enutn@neand used fast simulation
to calculate the sensitivity of the overall delay to gateesizThis enabled more accurate
modeling of the sensitivities using Spice simulations hat ¢ost of losing the guaranteed
convexity of the problem and adding computation time. Einst used a generic non-linear
solver.

Since TILOS, many efficient interior point algorithms wervdloped to solve convex
problems like GPs [10]. These not only made sizing quicket,now energy constraints
could be included to do energy constrained sizing. Reseesdimve combined the static

timing formulation of the sizing problem and the simple gedguations [87] to solve the



3.2. OPTIMIZATION FRAMEWORK 33

energy-delay optimization problem and obtain the E-D todidaf circuits.

But in this era of velocity saturated transistors, the sengiélay equations are not
accurate enough, especially over a rangé/@f and V;, and in custom design scenario
where it may be desirable to size all devices in a gate indaligt for maximum energy-
efficiency. Some work has been done to address this issueding accurately modeling
the gate delay by fitting a posynomial of the design variabdesimulation results [42].
The choice of multiplé/,, devices and possibility of using multiple supply voltaged |
many researchers to explore energy reduction techniquasgh simultaneougy,, V;;, as-
signment [36, 2, 84, 44, 83]. One commonly followed idea isize lowV;;, gates to meet
the cycle time and then convert the non-critical ones to ligH2]. The Vyq assignment
algorithms allowed multiplé;4s on the chip and ensured that only the high gates can
drive the lowV,4 ones to avoid leakage in PMOS [99, 92]. Use of level converes also

explored [37, 48].

Researchers in our research group and at University ofdCaié at Berkeley had used
the above ideas in an ad hoc manner to explore the E-D tradéafspecific circuit, by
generating a GP and solving it in matlab [54]. This motivatedo build a generic tool
for getting E-D tradeoffs of other digital circuits. For $shive needed a clean and easy de-
sign entry to explore different topologies, automatic gaten of gate delay and energy
models, efficient automatic solution of the resulting GP pravision for back annotation
in spice or schematics for seeing the results. As presenttitiprevious chapter, we de-
cided to use analytical modeling based on physics for cafityg the gate delay$_,. An
analytical model provides better circuit intuition as keatly shows the sensitivity of vari-
ous parameters to the gate delay. This also helps in chatiggngodel as the technology
changes. Variation in delay due to variations in differestide parameters can also be ob-

tained easily by taking derivatives. To avoid the path ematien problem, we use block
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based static formulation for delay propagation. The tosb a@lllowed us to extend the cir-
cuit analysis by adding Monte Carlo simulations for statadttiming analysis in presence
of local variations as we will explain in the next chapter.r@lgorithms for robust design

were also implemented easily with our own tool.

3.3 GP compatible models

Except for dynamic energy, the analytical models preseintdte previous chapter are not
in posynomial form in general. Posynomials can be thougtasomodified polynomials
where exponents are allowed to be real but the coefficieateestricted to be positive real
numbers. Our modeling needs to be accurate in a certain &rgiging, Vaq, Vin, signal
rise and fall times etc. With some rearrangement and posiaidransformation in some

parts of the original equations, we can make them GP conlpatilthat range.

3.3.1 Modeling gate delay

If we expand the step delay equation for a stack of transistsing Eq. 2.2, we obtain

- _ C(load Vdd ( 1 E c L eff
step 2 Weﬂ" VUsat C(ox V:)d ‘/02(1

). (3.4)

While formulating the gate delay constraints, the addedyddue tor;, is absorbed in the
delay of the fan-in gate. The expressidn¥,, and1/V2 can be expanded to posynomials

with arbitrary accuracy using

1

1—=x

=1+ +2°+2*+ .. <],
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or by fitting a posynomial over the range @f; andV;;, used in design. To capture the
true nature of mobility change withi;, and Vg4, we expandu.g SO thatE. becomes a
function of the design variables. The empirically derive€iTFcarrier mobility equation

(for electrons) is [15]

540

Heff = VaatV, :
dd+Vth )1.85
L+ ()

Even with this transformation the analytical model remainsosynomial, although it be-
comes complex. If the range 0f, andV;, is small, this complexity can be removed by
assuming..g and thereford’, to be some fixed average value in the range of interest. Hav-
ing included the effect o4 andVy,, thed,_, can be obtained by considering all chains
activated by the input that can contribute to drive the outputand taking the maximum

of these delays, for static problem formulation. The defaysa CCC thus obtained are a

generalized posynomials [10] of its transistor widths atieodesign variables.

While the model allows each transistor to be sized indivigui standard cell based
designs, all the transistors in the cell are sized togetBerguone sizing variable. If the
width of each transistor in the cell can be obtained as a iomaif the cell size, then the
delay equations can be written for standard cells too. Hewaetwis far more convenient
to fit a posynomial [10] on the tables in the standard cellalifprto express cell delay,
area, input capacitances, etc., as a function of the call sthis simplifies the problem
of choosing the correct standard cell sizes after optinunadrom a few discrete values

available in the standard cell library.

3.3.2 Modeling leakage energy

In order to include the leakage energy in the energy comsfridishould be expressed as

a posynomial. A GP becomes convex by logarithmic transftionaof its variables and
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constraints [10]. Therefore, for any function to be comglativith GP, i.e. to be modeled
accurately as a posynomial, it has to be convex in the log domalso called log-log
convex [9]. While the functiorxp((—u(Vin)/nVT)) in the leakage energy equation (Eq.
4.17) is convex, it cannot be accurately modeled using pasyais over a large range of
Leax @slog(leax) is Not a convex function abg(14;,). However, note that leakage current
varies over three orders of magnitude for the desired rahdé,0 Once the leakage of a
gate falls below a certain value, its contribution to theralleenergy is very small and its
precise estimate is not crucial. Hence we only need to atlynaodel the leakage for the
low V4, range, where the leakage current can contribute significenthe overall energy.
Figure 3.4 shows how fitting a monomial to leakage currenseadarge relative errors
in the low leakage region while showing good accuracy in tigh keakage portion. The
log-log plot clearly shows that the best convex fit to a coedawction is to model it with

a straight line. A straight line in log-log domain is a monainn the normal co-ordinates.

We use this monomial to model the transistor leakage current

3.3.3 Stanford Circuit Optimization Tool (SCOT)

The circuit design problem is formulated using analyticallagl, area and energy models
and solved using a commercial solver called MOSEK [61], Whsca suite of routines for
solving convex optimization problems. Wrapper progranestesed around this package to
enable the design entry as a Spice netlist, assimilatioheoflevice model data into equa-
tions, conversion of netlist schematic into the canonigainsization problem format and
post analysis of the results, including back-annotatigrvédidation in Spice or visualiza-
tion in schematic editor. The models and equations are ifotine of generalized posyno-

mials (Appendix A). The details of the tool are presentedppé@ndix B. Many non-convex
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Figure 3.4: Modeling the negative exponentiallpf, with a monomial

and hard-to-model circuit scenarios that occur duringgtefior instance while using spe-
cial logic families or non-conventional circuit topologj)eare described in the appendix.

It also explains how they are handled in SCOT. The next sectescribes how we used
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SCOT on 32-bit adders to derive the overall E-D tradeoff of @8132-bit addition.

3.4 Circuit case study: 32-bit adder

Adder structures are ubiquitous in modern digital systentsare often present in criti-
cal timing blocks. Consequently, designers have studidératpologies extensively and
have developed many techniques to improve addition algost[96]. While initial papers

[62, 46, 55, 30] focused mainly on performance, recent rebed 00, 67, 54] has also
focused on energy, now a critical issue in digital designingg SCOT, we extended this
work by systematically exploring 32-bit custom designedeadopologies for their energy-
efficiency [68]. We developed a relation between topoldgibaices and energy-efficiency
by comparing the Pareto-optimal E-D tradeoff curves ofcteld adder topologies in dif-

ferent logic styles, based on sizing, supply voltage anesthold voltage optimization.

Many architectures in different logic styles have been psajl, so adders are arich area
to explore. In addition, their layout is well known, so we @atimate the wire capacitance
in different topologies and logic styles with good confiden@o run this experiment, we
made schematics of several 32-bit adders with proper wad &stimates, and generated
their E-D tradeoff curves. The lower bound of all curves gitiee overall E-D tradeoff
curve for 32-bit addition and indicates which topology andit style is most energy-

efficient for each region of the E-D space. These curves amigsed in Section 3.4.3.

In order to distinguish different adder topologies for gyeefficiency, before dis-
cussing these results, the next section describes theotgipal parameters that affect en-
ergy and delay. Next we describe the design constraintsvinatclude in the optimization.
The results and insights obtained using this tool are desdrin Section 3.4.3, where we

compare the Pareto-optimal E-D tradeoff curves of variaddess for a common set of
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design constraints.

3.4.1 Adder topologies

We focus on circuits that add twd bit numbers to produce aN + 1 bit result. This
operation basically consists of “propagating” the carrgrigrated” at any of the bit po-
sitions to all the higher positions. The final carry at eadhisothen XORed with the bit
sum to produce the sum at that bit position. Thus adder tgpedacan be separated into
their Sum Generation Logic (SGL) that produces the bit sumaisteir Carry Propagation
Logic (CPL) [94]. As CPL dominates the adder delay and enesgyuse the following
four parameters of the CPL (based on Harris’s work [28]) tectibe adder topologies.

1. Radix R): In tree adders, we defink as the average number of bits combined at
each logic stageof the CPL. In linear carry-skip or carry-select adders, fene
to the average number of bits combined per stage to genefaltecka Propagate-

Generate (PG) term.

2. Logic depth (): L indicates the total number of stages in the CPL, and is at leas
log, N for an N-bit adder. Note that the number of logic stages in the adaere

more thanl.

3. Fanout £): F represents the maximum logical branching seen by any statiei

CPL.

4. Wiring tracks '): T measures the maximum number of wires running across the bit

pitch between any successive levels of the CPL.

3To avoid confusion between a logic operation and the numbgansistor stages needed to implement
it, we consider every stage, including simple inversiorg &sgic stage
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Figure 3.5: CPL dot diagram of selected adders with thRirI(, L, F'). Solid lines and

circles are PG signals and PG combine cells, dashed linediammbnds are carry signals
and carry generate cells, and empty circles represent wiresffers.

For ease of visualization, CPL is usually represented udatgliagrams, where the dots
mean logical operations on PG signals. The inputs are bitftls and the outputs are the
final carries to the different bit locations. Figure 3.5 skdiae CPL dot diagrams of selected
16-bit radix 2 adder topologies with differet L and ' numbers. For carry generation,
R, L, F', andT are inter-dependent [28]. Brent-Kung, Sklansky [80] anddir ripple-carry
adders have the least number of wire tracks{ 1). Kogge-Stone and Sklansky adders are
examples of minimum logic depth adders [46]. Kogge-Stortkl@ear ripple-carry adders
have F' = 2, while a 32-bit Sklansky adder hds = 17. For a given radix, Kogge-Stone
(KS), Brent-Kung (BK) and Sklanskymaximize one of the three parametétsL, and

4The Sklansky CPL design belongs to the Ladner-Fischer [48jil§ of adders. However Sklanky’s
adder [80] predates Ladner-Fischer adders and can be esghilged to Ladner-Fischer design with removal
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F respectively while minimizing other two. The Knowles, Ladischer (LF) and Han-
Carlson (HC) topologies [46] tradeoff two of these threeapagters keeping the third fixed
[28]. Simple linear adders can also be described using, L and F. For example, the
32-stage ripple-carry adder can be said to h@verl', L, F') = (1,1,32,2). A carry skip
and/or sum-select scheme in linear adders can be similadgribed based on how they
modify the topology.

For complete analysis, we consider the following frequenticurring design scenarios.

1. External buffering: Inverters can be added at all the inputs or all the outputeof t
adder to best match the load it is driving, without changisgr, 7', and L num-
bers, though with a possible inversion of the resulting sHience for a given adder
topology and design constraints, we optimize with all polgsexternal buffering and
choose the best of the tradeoff curves. This allows for adamparison between

adders with different.

2. Internal buffering and restructuring: Logic functions can be evaluated using a sin-
gle complex high fanin (higher valency) gate or a series ddlimlow fanin (lower
valency) gates. The radi® is smaller in the latter caeln our definition, R depends
on the number of stages needed to do a particular logic aperan a given number
of input bits. Thus, inverters appended to a complex gateemtiddle of the crit-
ical path (as opposed to external buffering) reduces theatiradix. For example,

a domino gate that consumes four bits and generates a 4-hgrfCGhas a radix of

2, because the dynamic gate and the inverter are two setaiges of computation.

of conditional-sum logic. Hence in this paper, we will usterg¢he Ladner-Fischer adder with highest F as
Sklansky design.

5In adder literature, radix typically refers to the logic opigon and “valency” refers to its implementation.
However, from circuits point of view a higher radix CPL implented with lower valency gates behaves
similar in energy-delay to a lower radix CPL. Hence, for agting the E-D tradeoff, we consider valency
and radix as equivalent and use radix in this research.
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A radix 4 domino design would consist of alternating 4 inpubamic and 4 input
static stages. Even for the same radix, however, one cantiawdifferent designs.
For example, a 4 input gate followed by an inverter and a twellgee of 2 input
gates are both radix 2, but use different implementatianthése cases, we pick the

best of the two designs for comparison.

. Sum selection: The SGL usually consists simply of XOR logic. However, in sum

select adders, the SGL generates a pair of speculative $arns,correctly chosen
when the respective carry arrives. Sum selection is a vemynoon technique used
for high performance adders today [62, 100]. Because ordyy&k™ carry needs to
be generated and fanned outktomuxes, &-bit sum selection scheme re-distributes
the logical fanout of the CPL by increasing the fanout of thalfcarry tok. This can
potentially change thé' of the CPL, independent of it8,7" and L, creating multiple
adders with the samR,T" and L numbers. Because the CPL is a more critical part of
the adder, we first find the most energy-efficient CPL strectund then explore the
related sum selection techniques. The CPL and SGL, beingrallpl, are almost
independent for optimization purposes. This sequent@atgnture should therefore

give optimal results.

. Ling adders [51]: These use a reformulation of the Propagate-Generate (R@} eq

tions of tree adders. Because Ling’s equations are als@iasse and fall into a
tree structure, they can be described ugiyg’, L and F. In this work, we look at
the best PG adder structures and then compare them witladyribnstructed Ling

adders. Sum selection schemes are separately explorethindses.
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3.4.2 Design Constraints

In our analysis we focus on three principal design metriogrgy, delay, and output load
(Cout). We optimize adders for sizing, suppl{) and threshold voltage¥{,x andV;p).
For a given Cout, we generate E-D tradeoff by optimizing thiay at different total energy
constraints.

Most of the critical wires in an adder run across bits and thas lengths are set by the
bit pitch. Wires along the bit pitch generally have lengtbidsy the number of transistors in
that bit pitch, hence we capture these using fixed capa@saritis assumption is invalid in
cases of high energy, when gate sizes become very large.\dowethis region, transistor
capacitances dominate the wire capacitances anywaysg sedtiting sizing errors should
be small.

We constrained the input capacitance (Cin) at any input fessethan 25fF, or roughly
15um of transistor width. This is a reasonable load within theidg capability of library
flip-flops in a 90nm CMOS technology. Except at the high engrgints, this constraint
does not come into play.

For small loads, if the Cin constraint is active, the adderdleeady entered the region
of diminishing performance returns for added energy. Fgddoads, external buffering at
the output of the adder is always more efficient than increpsie sizes of the gates in the
adder. Adding inverters at the output generally reducesebaired input capacitance to
fall within the specified Cin constraint. To check the effeica Cin constraint we optimize a
few adders without the input constraint and show that it radikide difference. Reasonable
signal slopes are maintained at every net, by limiting tHaydef every logic stage. The
minimum transistor width is constrained @®25.:m. Vgq ranges from 0.5V to 1.3V, while
VinS range continuously from about 0.2V to 0.4V. Both are comrworall gates in the

netlist. All dynamic gates have footers, keepers and inéeliate precharge transistors,
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which are used for stacks of three or more transistors. Ties f all these peripheral
devices are ratioed to their respective NMOS pull-downdistors in order to track their
sizes under optimization. The final XOR gate for sum genamatdor sum select mux) is
static in all cases except for dual-rail domino circuits.

The activity factor of nets can differ by orders of magnitugipecially in domino
adders. This means the gates on low activity nets can paligrite sized larger and still
not dissipate too much dynamic energy. The sizes howevearptiblow up because they
are still constrained by the Cin.

Because different topologies have different logic dehotit, and internal loading and
hence can be optimal under different load conditions, wegsdsa the pareto-optimal E-D

tradeoff curves for different values of Cout.

3.4.3 Results and analysis

The delay of anV-bit adder primarily depends on how fast the carry reacheb &it
position. Parallel prefix logic networks [46], which usedrstructures to compute the
carry, are very efficient for larg&/ [87]. Hence, for a systematic traversal of adders, we
start with the three corner radix 2 parallel prefix adderetas/, 7" andF’ (Section 3.4.1)
built in static CMOS logic. We will show later in this sectitimat 2 is the optimal radix.

We first consider the corner adders — Kogge-Stone, Brengkamd Sklansky — de-
signed in 90nm static CMOS logic. We specify the delay in E@vhich is 31p$ for our
technology. Figure 3.6 shows the pareto-optimal E-D trédex these adders for Cout =
25fF and Cout = 100fF. The adder designs include extern& g if necessary. Figure

3.6(b) also shows the E-D curve for a Sklansky adder with paticapacitance constraint.

6An FO4 delay is the delay of single inverter driving 4 copiés#self from a step input. The FO4 delay
is typically used to characterize the technology speed.
"While the FO4 delay changes witfyq andV;y,, the unit used here is measured at nomialandV,,.
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We can see that this constraint is active only in high enezgjons.
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Figure 3.6: E-D curves for the three radix 2 corner adders.

Figure 3.7 shows how the supply and threshold voltages ehaogss the E-D curve
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for a Sklanksy adder. WheW,4 reaches its upper bound, the threshold voltages continue
to decrease. At the lower bound 4f;, the design becomes infeasible due to signal slope
constraints, even though,s have not hit their upper bounds. If the input activity facto
increased (decreased), the supply and threshold voltaglesibcrease (increase), increas-

ing (decreasing) the leakage power in relation to the irserddecrease) in active power.
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Figure 3.7: Change iy andV;;,s across the E-D space for a Sklansky adder.

The E-D curves show diminishing returns as we go towardeeligher performance
or lower energy. At higher energies, as device sizes coallinincrease, the effect of
wires and Cout decreases. After a certain point, the gateddwargely be driving their
own parasitic capacitance and further improvement in delayld not be possible. With
Cin constrained, after a certain energy, the design becdimeesical to one based solely
on logical effort [87], for which the marginal cost of enerfgy improvement in delay is
infinite. Similarly, as energy is lowered, the supply ancegiiold voltage both change
(see Figure 3.7) until the design enters a region wherepgogk to the minimum delay

solution, the marginal cost in delay for lowering the enesgyery high.
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The three radix 2 adders in Figure 3.6 each minimize two patars out of.., 7" and
F, at the cost of the third. Our experiments indicate that tklarisky adder, which has
the highestF’, but smallestL. and T, is the most energy efficient. Clearly, these three

parameters do not trade equally with each other.

A large logical fanout at a particular stage does not necégsaply that that stage
will be slow. What matters to the delay is tekectricalfanout (due to capacitive loading).
In a Sklansky adder, at every® stage of the CPL tree, the carry driv&¥s+ 1 gates. After
optimal sizing, we find that of thes¥ + 1 PG combine gates at tfie + 1)** stage, the one
gate that drive@"*! + 1 PG combine cells at the next stage (or the largest load inrgBne
is sized much larger than the others, resulting in an ovetatitrical fanout closer to 2.
This optimization of electrical-vs-logical fanout arisiige to the possibility of differential
sizing of the gates at the same stage. With its higlhieef 17, Sklansky adder can take

maximum advantage of differential sizing.

Unlike F', L has a real cost. A Brent-Kung adder has the s@imieut almost twice the
L as the Sklansky adder. This may seem useful for driving &l@ugut, but inverters are
far more efficient than P/G gates and can always be paddediees logic depth design

to make up for the required gain at lower energy cost.

Like L, T also has real costs. A largér means a higher portion of the total energy
consumed in wires. With its smallegt of 1, the Sklansky design spends most of the
energy budget in driving useful logic, with the least amowasted in wires. A Kogge-
Stone adder, having the largést suffers from high energy loss to result in poor energy
efficiency. Figure 3.8 shows the percentage of total adderggfhconsumed in wires for
the three adders. Note that wire energy changes Withwhich changes with the optimal

E-D point.

8This excludes the energy consumed in output loads (Cout).
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Figure 3.8: Energy consumed in wires.

At lower energies, resources are constrained and adddidewer gates have an ad-
vantage. The Brent Kung adder is most economical in gatetcél@amce it comes closer to
Sklansky at lower energies, unlike Kogge-Stone, which hamnaparable number of gates

to Sklansky, but more wires.

To confirm our inferences about the Sklansky design we opéhits two closest radix
2 adders — a LF adder with an extra logic leveR(T, L) = (2,1,6)) and a Knowles
adder with an extra wire trackR, 7', L) = (2,2,5)). We also optimized a 2-bit sum select
Sklansky adder to check if reduced fanaokit£ 8) in Sklansky CPL at the cost of increased
fanout for the final carry gives any benefit. We found that th&t of generating the condi-
tional sum in SGL was more than the advantage of having CPLS&Id in parallel. The
results shown in Figure 3.9 confirm that Sklansky was bdtian tts three closest relatives.
Due to lower gate count, the selected Ladner-Fischer adddstto compete with Sklansky

adder at lower energies.
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Figure 3.9: Comparison of Sklansky adder E-D curves to dsedt neighbors and to a
2-bit sum select scheme.

Other logic styles and topologies

Given that the effect of loading and parasitics is similaalidogic styles, the topology that
is the most energy-efficient in one, will be the most enerffigient in the other as well.
Following are the results of our experiments on other logites designed on the basis of

the results from static CMOS logic.

1. Domino and dual rail designs: We made Sklansky designs in radix 2 domino and
dual rail domino logi&. Similar to the static case, a fully dynamic 2-bit sum select
scheme does not give any benefit. However, a 2-bit sum sedaw static SGL im-
proves the energy-efficiency due to lower activity factothe SGL. On the other
hand, dual-rail designs consume almost twice the energyaced to domino de-

signs with the only benefit that the XORs in the SGL are fastence they are better

9Because the fanin of the domino gate (dynamic gate and &neést4, some researchers [100] call this
radix 4.
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than the domino designs only at high energy by a small amdtigtire 3.10 shows

the E-D curves of selected Sklansky domino/dual-rail togus.

{| i< - - domino Ling
|- mm - - - domino PG with max 5 transistor stack
5 10- domino PG 2b sum sel with |
@ Y static SGL & max 4 tran. stack
(@) ’ 1
o 4
f domino PG with max 4 tran. stack |
o
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> . .
Sy dual rail Ling
-
()]
1 domino Ling 2b sum 3 |
i sel. with static SGL
3 10 30

delay in FO4 (log scale)
Figure 3.10: Comparison of Sklansky domino and dual-raimhoho tree adders.

Ling adder performs about 5% better in delay than the PG atidaty 4 transistor
stacks are allowed, but it is worse than an equivalent PGrgudach will have a 5
transistor stack in the first dynamic gate). However, as roeeatl before in Section
2.1.4, our modeling of the parasitic delay is most optimigtithe 5 stack gate, so
we expect the two designs to be comparable in practice. Dlggdge fanin right at
the inputs, the Cin constraint becomes active in these agutetty early on, which

is why the 4 stack PG adder looks better at higher energy.
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Figure 3.11: Comparison of the linear adder to closest toeers. The Brent Kung adder
is also shown for reference.

2. Linear adders: While a linear ripple-carry adder is extremely inefficientedto
its large logic depth, a full 32-bit Manchester carry chailder [96] suffers from
excessive parasitic delay. Carry skip and sum selectidmtques exploit parallelism
by overlapping the PG generation of a block of bits with thmple carry inside the
block. If, using similar gates, linear adders can be desigaénave similar number
of stages and wire tracks as the best tree adders, they shewdually energy-
efficient. We designed such a linear carry-skip sum-sel@del with block sizes
of 1,1,2,4,6,6,6 and 6, resulting in 9 logic stages, simodcF1 adder. Figure 3.11
clearly shows that not surprisingly, with7aequal to that of a Knowles 84421 adder,

this linear adder compares well with the tree designs.
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While their L is comparable forNV = 32 bits, the logic depth of linear adders in-
creases faster than that of a tree structure, where it isitbgac with N. For exam-
ple, for N = 64, L for Sklansky adder increases by unity, whereas for the e

adder, it increases by 3. Hence linear adders are less effforchigher V.

Optimal radix

From our definition of the radix, a logical operation perfechonV inputs inp stages has

a radix oflog, N regardless of the kind of gates used. For debag, optimal () when
each stage has a delay of about a FO4 [87]. The valpg,pflepends on the load and the
kind of gates used in the design. A gate doing more logic tivapls inversion requires
more effort and hence is inherently slower. Thus gates indrigadix adders are inherently
slower. Accounting for this logical effort, calculationahs that for all reasonable adder
loads (where Cout is at least about Cin), the number of stagasninimum logic depth
radix 2 adder is about equal to or less than their respegtjye The logic depth of higher
radix adders may fall short @f,,; but that can be made up by external buffering. Even for
bigger adders (i.eN > 32), p.,:S for R > 2 are about the same [29] and big enough to
accommodate the logic depth of all adders with> 2.

Although for minimum delay, the delay per stage should bakdle inherent slowness
of the higher fanin gates (in higher radix adders) coupletth Wigher logical fanout per
stage restricts the delay per stage to be always higher themedn amounf. Also, because
parasitic delay grows at least as the square of the numbepofs [96], the parasitic delay
of higher fanin gates dominates any gain from the reducediven that inverters need
to be padded to reagh,,; stages. Complex high fanin gates like the ones that prodhece t

group generate signals grow in the number of parallel tsdoisstacks as well, significantly

Ofor reasonable output load (Cout) on the adder.



3.4. CIRCUIT CASE STUDY: 32-BIT ADDER 53

increasing their parasitic delay. Therefore a radix of 2p8roal for delay.

From the energy point of view, using higher fanin gates dasssave on switching
activity. Adders being multiple output structures, theemmtediate signals generated by
using trees of lower fanin gates are typically used for ottmnputation. Also, while
the propagate function benefits from having a large fanie,gag it is an AND function
and activity factor reduces with more inputs, switching@imions show that the generate
operation maintains the switching factor. Hence overadhér fanin PG cells have only a
marginal reduction of switching activity over trees of lovienin cells. For domino designs
however, because NMOS is faster than PMOS, it is better te baxies NMOS stacks in
the dynamic gate than having PMOS stacks in the followinticsstiage. Hence the gates
with four input dynamic gates followed by an inverter are eefficient than gates with
two input dynamic stage followed by a two input static stabyete that the radix is 2 in
both cases.

To validate our intuition, we designed static CMOS 32-bitaBkky adder, one with
radix 3 and another with radix/6 (using alternate 3 bit and 2 bit combine stages). To
avoid the irregularity of a 32-bit radix 3 adder, we also dasid 27-bit adders with radix 2
and 3. Figure 3.12 compares the E-D tradeoff and confirms mdenstanding. The results

remain unchanged for Cout = 25f.

Effect of buffers on energy-efficiency

External buffers increases the number of stages in the ati@eice one might expect that
while they are useful for adders with small logic depth drgviarge loads, they would be
inefficient for an adder witl. that is already at or bigger than the optinial However,

inverters are the most efficient drivers. Hence, in additmbuffering, padding inverters

at the output leads to a reduction in the size of the compléxsghat precede them, thus



54 CHAPTER 3. OPTIMIZATION FOR ENERGY-EFFICIENCY

| 1 i=32bit radixv/6
@ 10’ “ \ if‘ . . |
51 \\ . --32bit radix 3
[%2) v R
3 A\ 32bit radix 2
= PIRNGR
Lw) 1
Q :
£ !
>
= !
2 1 27bi f
radix 2 . ]
. L \~-K |
27bitradix3  TTTee-ll] |
4 Il Il Il 1\0 40

delay in FO4 (log scale)
Figure 3.12: E-D tradeoff curves of 32-bit and 27-bit Sklansdders of different radices.

saving energy. The reduction of gate sizes on the side paips o reduce the load on
the critical path and more than compensates for the inadedeslay due to the extra logic
stage. Figure 3.13 shows that while buffering is inefficienthe high energy region due
to the delay added by the extra inverter stage(s), as thgebadget is reduced, the same
design padded with a single inverter stage does much beteithe original. The potential
increase in delay by adding an extra logic stage is more tbenpensated by the energy
benefit from smaller SGL gates, even in the Brent Kung addeiciwalready has a large
L. Infact, all the E-D curves shown in this paper are with aleimgverter padding, except
for the dual rail ling adder design, which was more efficiefthaut external buffering.
This is expected, because there the outputs are alread3ndriy the inverter of the dual
rail domino gate. Selective padding of different paths cassfbly bring more gains, but

would affect the logical functionality of the design.
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Figure 3.13: Effect of external buffering on radix 2 Sklaygleft) and Brent Kung (right)
adders.

3.4.4 Adder design space

The E-D tradeoff curves of the different adders across miffelogic styles intersect at
points where one adder achieves better energy efficiencythi®aother. Static adders are
good at low performance regions because, with lower switgchctivity factor and no clock
load, they consume lower energy; but they saturate quicklgigher performance is de-
sired, due to inherently slower gates (large logical effoitith lower logical effort gates,
dynamic adders have potentially higher performance andgheh energy they perform
much better than their static counter parts. The overaktBasptimal curve is the lower
bounding curve of all these curves. It gives an indicatiomhef E-D space of optimally
designed adders. Figure 3.14 shows the complete 32-bit &dBespace. Incidently, at or
before the point where Cin constraint becomes active, tkelogic family takes over the
pareto-optimal curve. We can also observe that sensitwignergy-efficiency tar,7’, and

L depends on the location on E-D curve. At low energy side, waeksT have a large
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Figure 3.14: 32-bit adder E-D spacdé,.q = 100 F

weight because they consume a greater portion of the enedpeh At low delay points
logic depth L matters more because every added stage addsmraum delay, which causes

external buffering to be inefficient at high energies andéesathe Kogge-Stone E-D curve

to cross the Brent-Kung one.

3.5 Summary

The goal of a circuit sizer is to optimally allocate the giara/energy among the different
devices in the netlist for maximum possible performancee délay and energy of a gate
can be accurately modeled as posynomials. While the to&abgns just a sum of many
posynomial terms, the overall delay can be easily obtais@thuisum andnax operations

on gate delays, with static signal timing propagation in ¢ireuit netlist. Using these
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elements, the deterministic circuit optimization probleam be cast as a Geometric Pro-
gram, which can be solved efficiently. Although some impartarcuit issues like slope
constraints and transmission gate timing constraintsittreradifficult to model and/or in-
herently non-convex, suitable work-around can be obtamadonvex framework, to drive
the optimizer to do correct sizing.

We developed this optimization framework in a tool calledTCSCOT helped us to
efficiently obtain the tradeoff curves for different 32-adder topologies. This information
not only helped us to gain valuable insights regarding thfa that make circuits energy-
efficient, but also gave us an overall picture of the energgyddesign space of 32-bit
adders.

The optimization shown in this chapter did not include V#wias as one of the param-
eters. In the next chapter, we will show how variations cgmificantly reduce the yield
of optimized designs and then describe the solutions we bawes up with to tackle the

statistical design problem.
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Chapter 4

Optimization for robustness

In Chapter 2, we described the different process variatibascan occur during fabrica-
tion. Variations cause the delay and energy of the fabricdésigns to have a distribution
around the original specifications. Thus variations cabedabricated chips designed for
one design point to scatter over a region in the energy-dgbage as shown in Figure
4.1(a). Some of these designs still lie on the Pareto-optoae and are therefore energy-
efficient. These can be binned for selling them with difféemergy-delay specs. It is very
unlikely that variations may result in a design that beatsRhreto-optimal curve, as it is
extremely unlikely that all the parameters in the chip arprioned in the right direction.
Most of the scattered designs are on the upper-right of thet&2aptimal curve, and there-
fore not energy-efficient. The parametric yielf a design is defined as the percentage of
functional fabricated designs that meet or exceed the spieee desire a certain yield in
the scenario in Figure 4.1(a), the specification of the pcodill have to be relaxed. This
gives us a new energy-delay tradeoff curve for the fabritalkesigns that meet the new

specs. This curve can be greatly inferior to the curve wegtesi for. We really want to

'as opposed to functional yield which is the percentage dfideshat have no functional defects. Unless
there is ambiguity, henceforth in this thesis, we will refeparametric yield simply as yield

59
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optimize the efficiency of the circuits that are actuallyguoed (i.e the yield curve). In-
cluding the process variation information in the circuisigg process can lead to design of
robust circuits that would tolerate variations better. [Sacdesign methodology where vari-
ation information is incorporated in the design phasefiisaialled “statistical design”, as
opposed to the traditional “deterministic design” whetalalice parameters are assumed
to be fixed to some average value or are assumed to be compietetlated with each
other. The design resulting from the use of only the nominaverage parameter values is
referred to as “nominal design”, while the design resulfnogn statistical design method-
ology will be termed as “robust design”. As shown in Figurg(8), a robust design has a
tighter distribution and hence suffers a smaller degradaif the original Pareto-optimal

curve.

Ou_ﬁ; E-D curve - robust design

energy
energy

delay delay

(a) Qg5 E-D curve of nominal design (b) Improved E-D curve for robust design

Figure 4.1: Possible improvementdh; E-D curve with design for robustness

Under variations, the delay and energy of a circuit becomeam variables with a
Probability Density Function (PDF) which depends on the RDthe individual gate de-
lays and energies. The robust Pareto-optimal tradeoffectowa particular yield, sayy
can be obtained by optimizing such thatpercentile of the implementations have specs

that are better than the one we designed for. In this chapteril attempt to solve this
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statistical design problem.

The techniques to statistically handle delay and energyddierent due to the way
delay and energy relate to the design variables. We shallfdicsis on delay variations
and then focus on energy. In order to understand how indiigate delay variations
contribute to the overall delay distribution, we descriféedent methods of estimating the
circuit timing under gate delay uncertainty [45]. Theselgsia techniques will be useful
as a guide to statistical design. Using statistical ans)yse show how local independent
process variations adversely affect the delay of detestaailly optimized designs from
the previous chapter. It is feasible to solve the statisteaign problem exactly in some
special simple circuits. We discuss the formulation of tkeeoe solution of statistical design
problem. The exact solution is extremely tedious to applypacal circuits. To overcome
this problem we have derived some effective heuristics daseinsights from the exact

solution and statistical analysis, which we shall descnie.

4.1 Estimating performance bounds

Consider the overall circuit deldlly, given by
Tq = max{d(p) | p € P},

whereP denotes the set of all paths ar(b) represents the delay of path We will
consider energy estimates in Section 4.6. The PDF oflepends on the extent and nature
of process variations. Several scalar performance measarebe used to characterize the

delay metric of the circuit. Examples include:

e Expected valueu(Ty).
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e Probability of missing a targéf,: prob(Ty > Tp).
e Expected tardinesgi(max{Tq — Ty, 0}).
e a-percentile ofTy: Q,(T4) = inf{t : prob(Ty <t) > o},

whereinf{} is the infimunt of a set of numbers.

Exact Statistical Static Timing Analysis (SSTA) which exts the traditional Static
Timing Analysis (STA) by propagating PDFs instead of nurshewnery difficult, except in
a few special cases. The problem is that the evaluation efdglay as given in Equation
3.1 involves both, addition and maximum of random variabl&ile there are common
families of distributions that are closed under additiomg @thers that are closed under
maximum (or minimum), no practical family of distributiofee gate delay is closed under
both.

We can, however, say many things about the distributio® of For example, if gate
delay D is Gaussian, then delay of each path through the netlist isus$§an andl'y
is the maximum of a number of correlated Gaussian randonabi@s. There are many
bounds and asymptotics known for such distributions [78]gekeral and common ap-
proach is based on approximating or bounding the distobgtof the gate output timings,
by recursively bounding (or approximating) the delay disttion of gatei in combination
with bounds (or approximations) of the distributions of Hignal arrival times at its input
[20, 22, 26, 52, 58, 74, 79, 95]. L&t represent the delay of the nominal design where
the gate delays are assumed to be fixed to their mean valuesn iMa distribution oD is
very tight,i.e., D is very close to its mean(D) with high probability, we expect;,, to

give a good approximation af,.

2The infimum of a subset of some set is the greatest elementeressarily in the subset, that is less than
or equal to all other elements of the subset.
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In fact, T, is always an underestimator @f;, in the following sense.

Thom = T(u(D)) < p(Ta) = p(T(D)), (4.1)

whereT'() represents the overall circuit delay as a function of gatayde This holds
for any distribution onD. One interpretation of this inequality is that by addingaeer
mean statistical variation to any gate delay, we can onlgegme the expected value of the
overall delay. This inequality is a direct application ohden’s inequality [10], along with
the observation thaf'() is a convex function of the gate delays. Convexity followzsi
T() is the maximum of a set of sums — a linear function — of gateyddIt0].

Equality holds in (4.1) if and only if there is a unique pathttis always critical [32].
The criticality of a path is defined as the fraction of mantifaed instances it has the high-
est delay. Similarly the criticality of a gate can be definedre fraction of manufactured
circuits in which it appears on a critical path. If there agtatively few paths with high
criticality, the difference between the left and righthasides of (4.1) can be relatively
small. In other case®.gwhen all gates uniformly have low criticality, the diffei@ncan

be relatively large as we shall see in Section 4.2.

4.1.1 Performance bounds via stochastic dominance

Let Fy(t) = prob(U < t) denote the Cumulative Distribution Function (CDF) of the
scalar random variabl. A scalar random variablX is said to bestochastically less than
or equal toanother scalar random variab¥e (denoted byX <y Y) if Fx(t) > Fy(?)
holds for allt. Stochastic inequality can also be expressed in terms akepgles. Let
Q.(U) = inf{t : prob(U < t) > a} denote thev-percentile ofU. Then,X < Y if and

only if Q,(X) < Q.(Y), foralla € (0,1). All of the performance measures described



64 CHAPTER 4. OPTIMIZATION FOR ROBUSTNESS

in the beginning of Section 4.1 are monotone with respectdohsistic dominance. For
example, ifX <y Y, the expected tardiness &f is no more than the expected tardiness

of Y.

A basic result is that for any random variabl¥s, . . ., X,,, no matter what their joint
distribution is, their maximum is always stochasticalleaper than or equal to each of
them:

X; <g¢t max{Xy,....X,}, i=1...,p

SinceT, is the maximum of all path delays, it is always stochastyogikater than or
equal to the delay of any path, no matter what the duratidniligions are, and whether or
not they are independent. We conclude that for each of tHernpesance measures described
in Section 4.1, the maximum of the performance measure dvpaths is a lower bound

on the performance measure’Bf. For example, the--percentile ofT' satisfies

max Qu(D,) < Qu(Ty), (4.2)

peEP

whereP is the set of all paths, anD, is the delay of patlp. This gives us a method
for obtaining a lower bound on a performance measure whedutetions are Gaussian.
In this case, each path delay is Gaussian, and its perfoemaeasure can be calculated
exactly as a function of its mean and variance. By taking tagimum of these measures
over all of the paths (or a subset) we obtain a lower bound ep#énformance measure for
T,. (Unfortunately, there is no simple recursion, like in stéiming analysis to calculate

Trom, for calculating the maximum of the-percentile over all paths.)

For future use, we give a very simple lower bound on perantlf Ty. By Jensen’s
inequality, 7,,., is @ lower bound om(Ty). Since gate delays are non-negative and have

close to Gaussian or otherwise well behaved distributes;an argue that for every path,
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its expected delay is less than or equal tavitpercentile for values of of interest, such

asa = 0.95.
With this assumption],,, is a lower bound on the-percentile ofTy:

T(pD) = _ max {u(Di)+- -+ u(Di)} < Qa(Ta). (4.4)

4.1.2 Performance bounds via surrogate netlists

A hypothetical netlist where the delay of every gaté is fixed and given by, = 1.(D;) +
rio(D;), whereg(U) denotes the standard deviation of a scalar random varldblis
called a surrogate netlist of the original netlist. We e¢all> 0 the margin coefficients
Note that the original netlist is the surrogate netlist véithmargin coefficients zero. We
can derive some bounds on the percentiles (or other measiirgg from the STA of its

surrogate netlist for proper choice of margin coefficients.

We consider the case in which the gate delay distributioesratependent and Gaus-
sian. The delay of path = (i1,...,i) is also Gaussian, and its-percentile can be

expressed as

where

d(a /2 g (4.5)

-

is the CDF of a unit Gaussian variable.
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We will now relate@,(D,) to the delay of a path in a surrogate netlist, using the

Cauchy-Schwartz inequality
(uf + -+ ui)"® > ayuy + - - + apug, (4.6)
provideda? + - - - 4+ af < 1. This gives
Qa(Dp) > (D)) + - -+ u(Dy) + @7 (a)(a10(Dy,) + - - + ao(Dy,),

provideda?+- - -+a; < 1. Note that the righthand side here is the delay of the paththe
surrogate netlist with:; = ®~!(«)a;. This operation essentially allows us to break open
the root mean square (RMS) calculation of the standard tiemiaf a path and convert it

into additive terms.

We can make several simple choices ofdheo that the requirement + - - - +a; < 1

holds for every path. One simple choice is

-1/2

max

a; = {
wherel,,.., is the maximum length of any path in the netlist. Another cbas
a; = li_1/27

where

l; = max{l(p) | pathp contains gate}

is the length of the longest path that contains gate

The quantityl,,.. is readily computed using recursion as used in STA wiigre =
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Tom With all gate delays equal unity. A variation on this recarstan be used to efficiently
calculate the quantitigs We use a STA recursion to compute the length of the longéist pa
from inputs to gateé, and another recursion, starting at the outputs and wotkaogward,

to find the length of the longest path from each gate any output. We add these two

guantities at each node to obtdjn

The bounds above, along with (4.2), imply that the delay efgtirrogate netlist, o,

with the choice of margin coefficients
ki = O7HA) lnax 2, (4.7)
or the more sophisticated choice
ki = )l V2, (4.8)

is a lower bound omv-percentile ofT'y. Note that the timing of a surrogate netlist can be

computed efficiently using STA.

The same lower bound on tlig,(T4) holds with correlated Gaussian duration distri-
butions, provided that the covariance of any two gate dakpsnnegative. When this is
the case, the standard deviation of the delay of any patssshean or equal to the standard

deviation when the gate delays have the same standardidasidtut are uncorrelated.

It is also possible to obtainpper bound®n a performance measure, such asdhe
percentile ofT'4, that have a similar form. As an example, we consider the wasee the
gate delays are Gaussian and can be correlatedPlL&te the total number of paths from

sources to sinks an¥ly, . . ., Y|p| denote the delays of all such paths,,

Td = maX{Yl, cee ,Y|p|}
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LetZ,,...,Zp denoteindependentandom variables whose distributions are identical to

those ofY, ..., Y|p|, respectively, that is,
T, = max{Z, ..., Zip}.
A basic result on stochastic comparison between randoralMas shows that
Tq <y Ta.
It follows that thea-percentile ofTy4 is less than or equal to that af,
Qa(Ta) < Qa(Ta).

Now the ideais to compul@a(’i‘d), which is relatively easy. Sincg; are independent of

each other, the righthand side can be expressed as

|P|

Qu(Ty) = inf {t I Falt) > a}. (4.9)

i=1

We do not know whainf{t} is, but we are looking for an upper bound. So let us chaose

that is high enough to satisfy Eq. 4.9 as
t= max_ (u(Z;)+ o'V (Z;)).

SinceZ; are Gaussian, we havg, (t) > o*//?l, and hencd]”| Fy(t) > «. This along

with (4.9) leads to the inequality

Qu(Tq) < max_ (u(Z;) + 2~ (a'P)0,(Z;)).
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We now show how to relate the righthand side of the inequalityve to the delay of a

path in a surrogate netlist. LE; be the delay of a path consisting of gates . . , ix:

Since(z? + -+ 23)% <y + -+ - + x4, for z; > 0, we have

D —|—(I> 1/|P\ <ZO’Z . )0.5

< (al/PI)%(DZ_j))

W(Z) + @ (Poi(Z;) =

IN

k
2
k
2\
The righthand side is the delay of the path- (i1, ..., i) in the netlist with gate delays

w(Dy) + @ (a/Pho;(D;). Now, we have the bound

Qa(Td) S /77
wherey is the delay of the surrogate netlist with gate delay®,) + «o;(D;), where
k= d HaIPh.

The values ofx required to obtain the upper bound taper off roughly as tlgedbthe
number of paths as shown in Figure 4.2. For example, for ashethere the number of
all paths is3000, the choice of = 4.14 gives an upper bound for its95-percentile. Of
course, the upper bound thus obtained ondhmercentile is tighter if paths in a netlist are

mostly independent.

To summarize, we have described some computationallyesifi@ind relatively simple

performance bounds. These bounds require only the meanvadadces of the gate delay,
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Figure 4.2:x required for estimating the upper bound@f(T,)

and may not be as accurate as others that have been propagethe one given in [4],
which rely on the same information. But the main purpose efidbunds given in this sec-
tion is not statisticahnalysiswhich can be done efficiently and accurately by Monte Carlo
analysis. The bounds given in this section can be used todadounds on suboptimality
of a statisticaldesignand develop heuristics for robust sizing. We describe thiSec-
tion 4.4. In Section 4.1.4, we shall see how these boundsiperdn some representative

circuits.

4.1.3 Monte Carlo analysis

While exact analysis of the distribution @f, is very difficult, Monte Carlo methods can
be used to approximately compute the distribution, alornf wie performance measures
or other quantities of interest. In this section we descbasic Monte Carlo analysis of a

netlist; more sophisticated methods can be used to getihagicaracy with fewer samples,
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or combine Monte Carlo simulation with bounding methods BB 86].

In basic Monte Carlo analysis, we draw independent sample§”, . .., d™) from the
distribution of the random duration vectl, and createl/ distinct netlist instantiations.
For each instance, we can efficiently evaluate its delaygu8iA\, to obtairil’(!) TM)

nom? " * >’ -nom"*

The sampled delays}) ... T gre, of course, independent samples from the distri-

nom?’ » - nom !

bution of T;.

Percentile estimation

To estimate),, (T4) from the sampleg(l) ... T we first re-order them so that

? - nom !

TW < ... <M

nom — nom *

Once re-ordered]*) is called thekt" order statisticof T4. A simple estimat@a(Td) of

nom

the percentile is given by

N

Qa(Tq) = T([Ma+1])

nom

where[x] denotes the integral part af € R. This estimate is asymptotically consistent
and its variance is inversely proportionalt6 under the mild assumption that the PDF of

Tq, fr,(Qa(Ta)), is always positive [93].

Criticality index estimation

Under mild assumptions, any instance of the circuit has guencritical path, with prob-
ability on€’. The criticality index of a gate or a path from an input to arpot can be

estimated by counting the fraction of the realizations imohtit is critical. These estimates

3For instance, if the distribution d is continuous, then the joint distribution of path delaysdstinuous,
and so the probability that the delays of any two paths aredhee is zero [93].
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are consistent, and the variance of the estimation erroves$ely proportional td/ [25].

Criticality indexes are computed during the Monte Carlowdations.

4.1.4 Bound estimates for representative circuits

Table 4.1 shows the results of the our statistical analygemments on different circuits.
Figure 4.3 shows the same information in a bar graph. Theitérstarting with “c” are 1S-
CAS’85 benchmark circuits [27]. The delays are in EOBhese circuits represent different
building blocks of a digital system and have different tagital characteristics that will
affect the tightness of the bounds we obtain. For exampts8-@86 has all its paths almost
identical while add32BK has a unique path with highest nunolbgate stages. We assume
independent gate delay variations and use Pelgrom’s medelithed in Section 2.3 with
parameters such that the standard deviation of the drivertu¢ (74)) for 1, minimum
length device width is 15%. For calculating/,) for a stack of transistord,. andW.g as
modeled in Equation 2.8 are used. As our focus is first on tabmimg for these analyses,
we use a simplified version of our delay model by fixivigg andV;;, to nominal values.
The circuits used here are sized to be roughly in the middidn&if area-delay tradeoff
curves for reasonable loads. We use area constraint (thetemergy) as we are focusing
only on delay variations and area given as the sum of the widttelatively invariant with
process variations.

The results show that accuracy of the bounds is highest forgdesinverter chain and
reduces as the circuits become more complex. The grossuirsaycof the upper bounds
primarily results from two reasons. First, contrary to oasumption for evaluating the
upper bound, paths in a typical circuit share many commoasgatd therefore are highly

correlated. Second, as the paths get longer, the error eetta&ing the sum of the gate

41FO4 = 31ps in our technology.
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delay standard deviations vs. taking their root means squadue increases. The latter ex-
plains why the upper bound is inferior even in the inv5 benatkywhich is a single chain
of inverters. The lower bound estimate is worse when onlywadate stages dominate
the delay variation of the dominating paths, because therddeund underestimates their
effect by dividing their sum by the square root of the patlgteh(Eg. 4.8). Observing the
sizing in inv5 reveals that the relatively smaller fanouamnghe input of the chain compen-
sates for the higher(14) due to relatively smaller devices there, resulting in corapke

variances for all gate stages. This explains the accurattyedbwer bound estimate.

Table 4.1: Estimates @ o5(T4) on different combinational digital circuits. Delay values
are in FO4.

Name detail #oates| #paths | Qo.95(Tq) | Thom | lOwer | upper
Monte Carlo bound| bound
inv5 5inv. chain 5 1 7.5 7.4 7.5 7.8
inv52 2 chains of 5,2 inv. 7 2 4.6 4.3 4.5 4.9
dec8-256 8b decoder 680 2560 17.3 15.4 16 20.5
sh32 32b 5 stage shift 206 3008 18.5 16 17 23.4
add32KS| Kogge Stone adder | 709 7260 15.5 142 | 143 | 23.7
add32BK Brenk Kung adder 431 6216 15.1 13.1| 134 | 224
add32S| Sklansky adder 475 6428 15.8 136 | 138 | 221
c1355 32b SEC 558 | 303000 22.8 20.2 | 20.8 | 37.3
¢1908 16b SEC/DED 430 | 839000 30.6 26.1 | 26.8 55
c2670 12b ALU/control 963 17500 21.7 175 | 17.8 | 32.3
c3540 | 8b ALU w/ bed & shift | 961 | 3655000 33.3 278 | 28.3 | 58.1
c432 27channel interrupt ctr] 165 25000 21.5 18.4 | 18.7 | 33.8
c499 32b SEC 518 12300 18 159 | 16.5 28
c5315 9b ALU 1626 | 291000 31.1 268 | 27.2 | 51.3
c7552 32b add/cmp 1993 | 239000 32.3 30.6 31 61.6
c880 8b ALU 389 9000 21.3 18.1 | 185 | 344

Equipped with tools for analyzing the statistical behawaba netlist, in the next section

5The worst case occurs when one gate stage significantly @oesithe delay variation of a statistically
critical path with many stages.
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Figure 4.3: Accu?acy of timing bounds to actdgj ¢5(T4), normalized to unity

we will see how optimization ignoring uncertainty is inadatg in producing good designs

after fabrication.

4.2 Effect of ignoring process variations

The optimization in previous chapter assumed that thereanecal process variations.
Figure 4.4 shows the result of doing Monte Carlo simulatifmnsdelay of a 32-bit static
Sklansky adder assuming the same variation model as in ¢h@pss section. If all the gate
delay variations were fully correlated, all devices wouftcuege in the same way, causing

the PDF to be symmetrical around the nominal défgqy,,. However, with independent
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Figure 4.4: Monte Carlo analysis on a deterministicalledi32-bit adder

gate delays, the figure shows that interestingly, no patt@fielay PDF even touches the
nominal value. If we want 95% percent of the chips to meet ffodectime, then the cycle
time specification has to be pushed out by almost 30%. Thikipgout of delay PDF
with variations can be explained by observing the meandstahdeviation 4 — o) scatter
plot of the adder as shown in Figure 4.5. In this plot, the Xsarpresents the mean and
the Y axis represents the standard deviationdf the path delays. Each dot in the graph
represents one path. Since the optimizer is unaware abpatigas, it has no information
aboutthe Y axis. From its point of view, as long as the deldgss than or equal to the max
delay, the overall cycle time will not get worse. This asstions leads to two problems.
The first is that there is a wall of equally critical paths oe tlght edge of the graph. Since
the cycle time is the max of these path delays, with variatiemery additional critical path

does hurt, since it means that it is more likely that one oséhpaths will be slower than
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Figure 4.5: — o scatter plot for deterministic sizing

nominal.

The second problem is that the sizer may downsize gatesticatipaths, unaware of
the fact that smaller gates have larger delay variationslodis not take steps to reduce
the uncertainty of the path delay even in cases where it maji& only a slight sizing
perturbation to reduce the variation of a path.

These effects combine to make the design sensitive to Margtwhich is exactly what
we are trying to avoid. This problem with conventional sggprograms is the one that we

will address in the rest of the chapter.

4.3 Exact statistical sizing

In order to get a yield ofv at our specified design point, the correct objective for glela

of the design would bé&),(T,). It is possible to express it analytically and hence solve
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the statistical sizing problem exactly for some simplewis Figure 4.6 shows the inv52
circuit with two inverters chains C1 and C2, connected tostéw@e input and having two

outputs with timingsl'; andT; respectively. Assuming that the input arrives at time 0,

T¢
i

| >0 >0 =
load1 t= Td
d

—D
in D=—n gn
t= t= T2
[ [ {>Q [ [ —I—CloadQ
gnd

Figure 4.6: Example circuit for exact solution of the stided design problem

the overall timing is given by'y. With deterministic sizing, we would have;, = T, =
Thom @and C1 having fewer stages will be sized smaller with moraydper stage. Now
assuming Gaussian delays with Pelgrom’s model for vanati€1 has a larger variance
due to smaller devices and less averaging. This will reaudt iong tail in the delay PDF

of the fabricated inv52 designs, which is what we want totegh

With Gaussian gate delays, the path delays are also Gaus&gsuming thafl'; ~
N(p1,01) andTy ~ N(uz,09), Tq will have a distribution given by thenax() of two
Gaussian random variables. Suppose that our goal is tolsezeiricuit to minimize the
95t percentile delay),.5(Tq4). This will ensure that 95% of the fabricated designs will
make the delay we specify. We know tha{Tq < Qo95(T4)) = 0.95. Let P(T; <

Qo.95(Tq)) = p1 and P(Ty < Qo.05(T4q)) = p2, Wherep; andp, represent the percentiles
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for individual paths. As the two paths are structurally ipeledent,

P(T4q < Qoo5(Tq)) = P(T1 < Qo95(Ta) NTe < Qos(Ty))
= P(T1 < Qoo5(Ta)) - P(T2 < Qog5(Ta)) (4.10)

=P1- P2 = 0.95.

This forms our first constraint. To meet thg o5(T4) Spec, the distributions dF; andT,

have to be tighter thail'y so that we have the following constraints

Qp, (T1) < Qo.o5(Ta),
Qp,(T2) < Qo.o5(Ty).

(4.11)

As T, andT, are Gaussiany,;(T;) and@,»(T>) can be obtained by adding a suitable
number ofoq, o9 t0 1, o respectively. This suitable number @fdeviations can be ob-
tained in terms ofp; and p, using the inverse CDF function (Eq. 4.5). For Gaussian
distribution,o is a log-log convex function gb for p > 0.71. Figure 4.7 shows modeling
of inverse CDF with max of monomial&(p), around our desired point of 0.95. Thfi&)
represents the number efdeviations for a particular probability. Now we can writeth

percentile delay as

Qp, (Ti) = pi + f(ps)os.

Assuming thatu,,0q,u2 ando, are posynomial function of the device sizes, the GP can
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Figure 4.7: Modeling inverse CDF with max of 4 monomial terms

now be written as
minimize Qg.o5(Tq)

subject to p; - p; = 0.95,
w1+ f(p1)or < Qoos(Ta),
po + f(p2)oa < Qoos(Ta),

Area/Energy constraints,

(4.12)

Other constraints.

Solving this sizing problem results in tightening of thednalities in Equation 4.12. The
two paths C1 and C2 get optimized to include their vulnerighib variations. Including
the standard deviation as in the Pelgrom’s model makes ttimiapr size C1 bigger than

it would have been in deterministic sizing as shown in FiguB{b). Some area from the
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bigger chain C2 is given to the smaller chain. The push bagk@i) ands(T;) more than

compensates for the slight increaseg:iiT;) ando(T,) to give a better) o5(Tq). Figure

3.5
50r - /E\ al
, i% —deterministic S .
< ® P Yobust @ 25
O ' ) N L . /' \D
= % 2 stat. sizes .- _
2 = 15 . .
= o0 T & .+ same size line
R : n i , ]
S Qo.95(Tq) 1 Lo
10/ ost .*
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delay in ps ~ det. sizesygm) _
(a) Improveémentin PDF (b) Size adjustment for robust design

Figure 4.8: Comparison of robust design to nominal design

4.8(a) shows the improvement in the PDFIgf after statistical design. While the circuit is
now sized sub-optimally from a deterministic point of viemwpresence of variations, the
statistics of the overall delay are dominated only by ond&efdaths. In circuits with many

outputs, more paths would be pushed back from being critical

4.3.1 Balance of sensitivities

In the previous section, improvementin the mean delay ofthaller chain makes up for its
relatively worse standard deviation to result in ovegalbs (T4) improvement. While there
are many combinations of means and standard deviationsahaive the sam@ o5(Tq),

under area constraints, the optimal choice is the one whereatio of area sensitivity to

sensitivity of the delay metric (in this cas@y.o5(Tq)), is the same for all the variables. We
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can re-arrange the condition of optimality as

9Qo.95(Tq) 0Q0.95(T4q) 9Qo.95(Tq) 0A
A1 _ Op2 o1 _ Om
DA T T 0A 7 9Qous(Ta) | DA (4.13)
dp Ou2 A2 Opz

whereA is the total area of the circuit. We cannot write this comuditfor 7},.,,, in nomi-
nal design, ag,,.. is not differentiable inu,; »°. Now, for Qy¢5(T4), the sensitivity ratio
changes with different combinations of means and standevdtions, but the equality
always remains To show this, let us consider a simpler version of the abangaiit in

Figure 4.9. Assume that the loads on the two chains are uhedgfhiasome ratior, r > 1

—] ot

gnd
gnd

Figure 4.9: A simple circuit with symmetric structure buffelient loads

and for the gate delays « 8. We will changer to see how the optimal area-delay point
moves with changing area distribution. Starting with noahotesign we have; = u; and
so it follows thato; = 0,. The load on path 1 is the larger of the two. Therefore, we can

redistribute the sizing between the two inverters suchhatcreases while,, decreases

5This ratio is unity for increasing; », because if any path becomes slower, the delay is given hy tha
path. The ratio is undetermined for decreasing because if any path becomes faster, then it no longer
determines the circuit delay and its sensitivity becomes.ze

“assuming none of the variables hit their range limits

8This is done to make the problem simpler by eliminating twoalzdes
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keeping theRy o5(Tq) constant. Figure 4.10 shows the curve of constyy; (T4) with
changing means obtained by taking many Monte-Carlo samplIATLAB. Clearly, in-
crease inu; causes greater and greater decreage imtil the () o5 Of the first path delay

itself equalgl)y.o5(Tq) at which point the curve becomes vertical.

0.9r
0.8f

£0.7-

0 005 01 015 02 025 03 035
Increase inu; In #o

Figure 4.10: Tradeoff between mean delays for the s@mg(Tq)

While delay is inversely related to the size of the gatesa &@lirectly proportional to

it. So with only sizing as our variable, we can write the taiatuit area as

A=K(r/m+1/p),

whereK is some constant. Let us evaluate the area at every poinearotistant)gs (Tq)
curve and take the minimum, for different values of loadaati Figure 4.11 shows how

ther is same as the slope of the curve in Figure 4.10 at differeintgolf there are more
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Figure 4.11: Change in the optimal mean with the ratio of gneetween the two chains

such parallel paths, the ratio of the sensitivities to areh@, (T,) for all of them would
be equal. As a result some paths would be pushed back frorg beiital.

From this principle, we can infer that if all paths in a circare structurally identical
and drive the same load, then the optimal robust sizing wilhb different from the deter-
ministic one, because given a fixed overall area every pdthaie the same sensitivity
to the overallQ), 05(Tq4), the same area cost, and therefore an equal share of thesarea a
any other path. Therefore one path cannot be pushed backtieother critical one. As-
suming that variations are size dependent, the only impneve can come from re-sizing

devices within a path to make the path delay distributiohtég

4.3.2 Non-scalability of the exact solution

While the exact solution easily solves the robust desigblpro for inv52, it is not suitable

for typical circuits. For instance, for the circuit shownhkigure 4.12, which is a minor
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modification on inv52 circuit in Figure 4.6;; andT, are not independent and so "

percentile boundary of their joint distribution cannot beeg by the simple product of

D
: : :.l—cloadl
in D——{>Q—- gnd

: : : : : E10ad2

gnd

Figure 4.12: A simple circuit with two dependent paths

probabilitiesp; andp,. A more complicated constraint describing an ellipsoi@glion is
needed. The situation gets even more complicated as theeruwrhipaths and the inter-
connections between them increase. We can see from Taltlead the number of paths in
circuit netlists grows exponentially with the size, makihgomputationally impractical to
enumerate all the paths for robust sizing.

Another method to avoid enumerating all paths is to progadatay PDFs throughout
the netlist in the same fashion as the static timing fornntatn deterministic design.
However, as mentioned before, no practical family of dittions are closed under sum
and max operations. Figure 4.13 shows an example of a nand gate mptits having
gaussian distributions with comparable means but verewifft variance. The PDF of
the output timing shows a long tail which is hard to define vetket of few parameters,
especially as we care about ", a point that lies on this tail.

A simpler solution is therefore needed to capture variagtiduring optimization. In the

following sections we describe our heuristics that get ustrabthe benefit of robust sizing
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Figure 4.13: Delay PDFs with comparable means but differanances produce long tails
at converging nodes

with only modest computational cost over deterministiongjz

4.3.3 Previous work in robust sizing

The non-practicality of the exact solution for typical ciits led to a lot of research in the
area of sizing for robustness under variations [38, 73, 98, ®ne idea involved aug-
menting the objective function in the deterministic sizprgblem to include a penalty for
outputs coming closer to the critical output [98], therebgucing the number of critical
paths. The penalty coefficient had to be carefully choserregemt the optimizer from
choosing incorrect sizing to reduce the objective functigrfocusing on the penalty in-
stead of the overall delay. Another path based approachifiéBitifies the non-critical
paths responsible for the delay spread by definimtisatility function for gate and path
delays that includes both means and variances of the detalpma variables. Sizing is
done to minimize thelisutility of non-critical paths responsible for timing yield loss. As

the algorithm has to enumerate paths, its complexity, amdédn¢he solution time grows
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quickly with the circuit size. A simulation based approasing static delay formulation is
presented in [38] where approximate formulae are used twledé the mean and variance
of the max of Gaussian distributions at every iteration. Sehtormulae are complex to
solve and not amenable to analytical expressions. Bediéasy non-convex, the conver-
gence is slow and approximating a distribution with a lorigaa Gaussian is error-prone
as shown in Figure 4.13. Other algorithms [31] improve thaylstatistics by adding area
to selectively upsize smaller devices. While this improtresdelay statistics, increasing
area (energy) usually improves performance. The key is ppore performance with the

same area or energy constraint as that for the determidissign.

4.3.4 Basic idea for robust sizing

Sizing problems generally have a broad “flat” region arotmediming minima. This means
that in most cases small perturbations have small effectt@nominal circuit delay. In
the deterministic method, the sizer puts most of the effogatting to that lowest pointin a
relatively flat region. But this design point might be verysigive to variations because at
this point many paths are critical. In addition, many of thpaths may be critical because
they contain small devices, which can increase the delagrtaioty. The idea is to get
robustness using these small sizing perturbations.

We can use two main insights from the exact statistical swiub formulate efficient
heuristics. Given a deterministically sized inv52 circwie saw in Section 4.3 how robust
sizing pushes back on one of the paths. This is the first thengrauld like to achieve [98].
Secondly, if the uncertainty depends on the device sizey imeddition to the pushing
back on paths, we need to adjust the device sizes within adtecesthe uncertainty. By
having a penalty for uncertainty that prevents the sizenfnoaking bad choices about path

delays and device sizes, we might be able to achieve mucle tfhefit of considering the
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complete distribution of the exact solution [69].

4.4 Heuristic techniques for robust sizing

Given that propagating accurate PDFs is impractical andetimggithem as Gaussian causes
loss of information in the PDF tail, the key question is howptopagate) o5 of net tim-
ings. In addition, as many efficient means of solving the meitgstic sizing problem have
been developed, is there a way to make the robust sizing ikekHe deterministic sizing
so that we can leverage the already existing solutions? wenthese questions, we seek
to modify the deterministic optimization problem to makeniore variation aware, while
maintaining the GP framework that allows efficient soluioriWe propose the follow-
ing two techniques based on the performance bounds estimatthods using surrogate

netlists and the sensitivity analysis described in Sesthf.2 and 4.3.1 respectively.

4.4.1 Adding delay margins (ADM)

We propose to augment the gate deldys in (3.1) to obtaini;_, defined as
di—p = M(di—o) + Hjo-<di—0)- (414)

The margin coefficients; introduced in Section 4.1.2 help to account for processitians
by adding to every gatg a delay penalty term that is proportional to its delay utzsety.
Margin coefficients provide the tradeoff between the meash \@ariance at the gate
level. The choice of depends on what percentile of the distribution one is ogiimgi
for, but only weakly. This added margin is just a hint to theimjzer to try to minimize

uncertainty along critical paths. Itis not a precise mett®ettion 4.1.2 described different
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choices ofk; that can be used for margining. Even if tgo;(T4) estimate at some given
k iS not good, a scaled value might help. In general it is hardréalict what value will
produce a result that is closest to the nominal delay (andéhémthe optimal result as
nominal delay is a lower bound on tli& o5(Ty)). In fact, in our solution we try different
values ofx; and choose the value that yields the best result from SSTAgudonte Carlo
simulations. Useful values of range from 1 to about 4. The region around minimum
Qo.05(Tq) is flat so that with a granularity of 0.5, we can easily coverehtire range with
7 optimizations and SSTAs. The results of using this tealmigre presented in Section

4.5.

4.4.2 Using soft-max (USM) for merging path delays

SinceT,,; in Equation 3.1 is a maximum of a set of input delays that aneloen, the
distribution of T,,,; is shifted to the right of all the input delay distribution$his shift
is more pronounced when several of the input arrival timéribistions are close to the
dominant one, and negligible when, say, only one of the mpominate the distribution.
To take into account the right shift caused by taking the maxn of a set of random

variables, we propose to useaft maximunfunctionsmax, defined as

smax,(x) = (Z |xi\p)1/p,

wherep is the exponent that represents the penalty for closeneagyafments and the
sum accounts for increase in uncertainty with every exgpatinUSM steers the optimizer
away from sizing many paths to be critical, a bad situatiandielay statistics. While it
approaches thenax function asymptotically, the soft max retains in spirit thaet that

under variations even a path with smaller nominal delay cantribute to the delay spread
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at the converging node. To simulate the propagatiof of; of signal arrival times in the

netlist, USM is applied in conjunction with ADM.

USM is not only an enhancement to ADM, in some cases where APiNeffective, it
is necessary for robust sizing. For example, in the ciragsented in Section 4.3.1, with
(D) « u(D), ADM by itself just results in delay scaling without any sigiimprovement
over the deterministic case. USM forces the paths to be wdgunodeling their pushing
effect on the overall delay PDF and leads to a better (notssacg optimal) distribution of

area between the two inverters.

Combining ADM and USM, we can write the equation &y, for the gate in Figure

3.2 by modifying Equation 3.1 as

1/p
Tout = ( Z ‘ﬂ + Di_o‘p) .

i=1,2,3

Using this relation as the delay propagation equationnmsttiie computational merits of
the deterministic sizing problem (like sparsity), makimg talgorithm scalable to larger
circuits. Moreover, if theu(d;_,) ando(d;_,) of gate delays are generalized posynomials
then the problem can still be cast as a Generalized Geonretrgram (GGP) [10], leading
to efficient solutions. A crude search loop in thex) space around the basic optimiza-
tion routine can easily be implemented to obtain the befisstal sizing (as validated by
SSTA). In our experience the besvaries over a range of 30 for different circuits depend-
ing on their topology. Within this range, the sensitivity @f ¢5(Tq) is small so that a

granularity of 10 suffices.
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4.4.3 Validating USM and ADM with two Gaussian delay variabes

To show how ADM and USM together simulate the statisticahyglropagation, let us
perform a simple MATLAB experiment. Consider two Gaussiandom delay variables
R; andR,. To keep the probability of negative samples negligiblegddR;) = 20 and
o(R;) = 1 while we sweepu(R;) from 15 to 25 andr(R,) from 0.2 to 3. LetY =
max (R4, Ry). We seek to modeD, s4(Y) (i.ethe percentile corresponding te increase
over the mean) an@5(Y) of the random variabl&. We first find these values using
Monte Carlo simulation. These are plotted as solid curvesofing 1.(R.) for changing

values ofs(Ry) in Figures 4.14(a) and 4.15(a). We then defihg,(Y) andQo.o;(Y) as:

Qosa(Y) = smax,; (W(Ry) + 10(Ry)), i=1,2

N (4.15)
Qo.05(Y) = smaxye(1u(R;) + 1.650(R;)), i =1,2

and attempt to fit)s4(Y) and@y.05(Y) by choosing the right. The model fit is shown
in dashed curves. The values ofmust be equal t@~1(0.84) = 1 and®~1(0.95) =
1.65 in order to fit the asymptotic regions where one distributompletely dominates the
other. The values op (p1 andp2 in Equation 4.15) change to represent how smoothly
the percentile lines curve, as shown in Figures 4.14(b) ab8i(d). The plots in Figures
4.14 and 4.15 show that osmax, andxc margins give close estimates of thg s,(Y)
andQo.05(Y) for specific values op andx. HereR; andR; represent the delay of two
converging paths which can vary over a significant range ®awgh other in their mean and
standard deviation. The valueptlecreases as the extent of variations increases, reflecting
a higher penalty for paths with high variance coming closer.

For simplicity, we use uniformp andx for all gates in the circuit. As mentioned before,
in practice, a range of 30 suffices farValues ofp exceeding the range are associated with

relatively small variations that do not dominate the ovetalay. This range is chosen from
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Figure 4.14: Validating USM and ADM for th&i'" percentile point

Figures 4.14(b) and 4.15(b) based on the extent of varimtpecified for the technology.
For the extent of variations we choges [20, 50] andx € [1, 4] give good statistical sizing

for Qo.05(T4) in the representative circuits.

4.5 Applying robust sizing heuristics

The robust design algorithm simply consists of using the U&t ADM for different
values ofx andp, and choosing the best design. The number obtained forghalsarrival
time 7" at any net using the heuristics is certainly not the exaatl’) (for the specifiedy)
of its timing distribution. It just represents a rough measof the criticality of the arrival
time to the overall delay. The timing results we present aways from SSTA done after
the robust optimization. SSTA is the only trustworthy methior comparing results. The
soft max function, and the simple augmented delay express®used only tdesignthe

circuit, and not tanalyzeit.

9This consists of performing STA on 10000 Monte Carlo nesisinples, leaving a residual error of
1/+/(10000) = 1% in ourQg.5(Tq) estimation.
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Figure 4.15: Validating USM and ADM for the>'" percentile point

For testing the efficacy of our heuristics, we assume a gedemendence of delay

variation on transistor size given as

(D) 1
D) T 20 (4.16)

where« is the degree of dependence on size. For Pelgrom’s madel,0.5. Here we
show the results forx = 0.5 anda = 0. The variation in both cases is normalized to have
15% of relative standard deviation in the drive currentl{)/4) for 1 minimum length

device.

Figure 4.16 shows the delay distribution improvement foib82adder after using the
ADM and USM techniques assuming Pelgrom’s variation motkeé @y o5 (T4) improves
by more than 20% over the deterministic design. The reasahiimprovement becomes
clear by observing the-o scatter plot for this design shown in Figure 4.17. The high
variance critical paths resulting from deterministic sggare pushed back from dominating
the overall delay, at the cost of modest increase in the dgag variance) of the low

variance paths, resulting in overall reduction(@f,s(T4). The total area is redistributed
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to upsize the high variance paths. The heuristics seek iesthe optimality condition
described in Section 4.3.1 by balancing the sensitivity©f; (T4) to different path delays
with their marginal cost of area. The delay of the circuit @ndominated by a fewer

critical paths.

Table 4.2 shows the results of using our heuristics on thetbeark circuits introduced
in Section 4.1.2. To get an upper bound on the sub-optimafityur solution, we use
Thom @s our lower bound estimate @py o5(Tq). This upper bound is shown in the last
column. Note that we cannot use the tighter lower bound de=tin Section 4.1.2 for sub-
optimality calculation as we do not have the optimal siziodpégin with. Results shows
that using ADM and USM heuristics combined give an improvetwd anywhere from O
to 24% ofT,,,, depending on the netlist topology. Due to inherent strasymmetry, the

decoder dec8-256, 32 bit logarithmic shifter/rotator shBa single error correction (SEC)
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Figure 4.17:u—o scatter plot for all paths of 32bit LF addéef,(., = path delay)

circuits ¢1355 and c499 have many of thélos(T,) equally sensitive to many of their
paths and consequently show very small statistical impn@re over deterministic sizing.
In particular, the improvement in decoders is strictly duesdistribution of width within a
single path (like the inv5 circuit). Naturally, lesser imgement over deterministic sizing
means higher sub-optimal bound. Even circuits with idetiegical function (add32KS,
add32BK and add32Sk) can have different improvements baséukeir topologies. While
add32KS has many paths of similar length, add32BK has aesiogly path with many
small side paths. In deterministic sizing, the optimizewvdsizes many of these side paths
making them critical. These small paths suffer from largealality. Consequently, under

identical design constraint§)y ¢5(T4) degrades the most for add32BK under variations.
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Table 4.2: SSTA of robust sizing using Pelgrom’s model. Pelare in FO4. The original
Qo.05(Tq) is for deterministic sizing.

circuits orig. Thom | UNif. | UK+ | kox | KSq+ imprvmnt max
Qo.95(Tq) Kk | smax() \/IE smax() | in Qo.o5(Tq) subopt
UK KSq in % Thom in % Thom

inv5 8.3 74 | 75 7.5 7.5 7.5 10 3
inv52 5 43 | 4.6 4.6 4.7 4.6 9 8
dec8-256 17.3 153 | 17.3| 173 | 17.3| 173 0 13
sh32 19 16 | 184 | 18.3 | 18.4| 183 4 14
add32KS 17.7 13.3 | 16.1| 154 | 157| 154 18 15
add32BK 17.2 129 | 145| 142 | 142| 14.2 24 10
add32Sl 16.7 131|151 | 149 |151| 149 14 14
c1355 22.9 20 | 224 221 |222| 221 4 10
c1908 30.7 25.8 | 30 28.3 | 28.9| 283 9 9
c2670 22.8 176 | 20.3| 18.6 19 18.6 24 6
c3540 34.1 27.7 | 32.2| 30.1 | 30.3| 30.1 15 9
c432 22.6 17.8 | 20.2 19 19 19 20 7
c499 18.1 158 | 17.9| 176 | 17.8| 17.6 3 11
c5315 32.9 26.7 | 29.3| 28.4 | 28.4| 283 17 6
c7552 35.8 30.5| 33 322 | 324 322 12 5
€880 23.2 18.3 | 19.8| 19.3 | 195| 193 21 5

However, this also means that add32BK stands to gain the froat statistical sizing.
The heuristics prevent the side paths from being downszedticality while maintaining
a reasonable overall delay. As expected, add32KS gainse#st because of having a
more uniform topology. The topology of add32Sk falls in thieldhe of the two extremes.
However, under identical design constraints, Sklanskgltagy still wins as it achieves the

smallestr,,,,, that makes up for its poorer gains from statistical designtduts topology

Table 4.3 show similar results for the case whefé;) « 1(I4). In this case, because
the variations for two stages with equal relative loadintpessame regardless of the driver
size, having small devices is not bad. The improvemen{g; thus comes only from

sizing the paths relative to one another, which is clear fgatting no improvement in the
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inv5 benchmark. Exact statistical sizing on inv5 and inviE® @hows negligible improve-
ment in robustness. In fact, using uniform margin coeffiseior ADM without USM
is ineffective as it just scales the delay model and henagtsein deterministic sizin.

Here we rely largely on USM to get us the robust design. Thiesstal behavior of ALU

Table 4.3: Results of robust sizing techniques in case whete.. Delays are in FOA4.

circuits det. Thom | Unif. | UK+ K X KSq + imprvmnt subopt

Q0.95(Ta) k| smax() | 1/v/1; | smax() | in Qo.95(Tq) | u. bound

UK KSq in % Thom in % Thom
inv5 8.3 7.4 | 83 8.3 8.3 8.3 0 12
inv52 5 4.3 5 4.8 5 4.8 3 14
dec8-256 18.8 153 | 18.8| 18.38 18.8 18.8 0 23
sh32 19.6 16 | 19.6| 194 19.6 194 1 21
add32KS 16 13.3| 16 15.5 16 15.5 4 16
add32BK 15.3 129 | 153| 145 15.3 14.5 6 13
add32sSl 16 131 | 16 15.3 16 15.3 5 17
c1355 22.3 20 | 223 22 22.3 22 1 10
€1908 29 25.8 | 29 28.1 29 28.1 3 9
c2670 21 176 | 21 18.9 20.9 18.9 12 7
c3540 31.9 27.7 | 31.9| 303 31.9 30.3 6 9
c432 20.8 17.8 | 20.8| 195 20.8 19.5 7 10
c499 17.8 158 | 17.8| 17.6 17.8 17.6 1 11
c5315 314 26.7 | 31.4| 28.9 314 28.9 9 8
c7552 34.8 30.5|34.8| 327 34.8 32.7 7 7
c880 20.7 18.3 | 20.7| 19.8 20.6 19.8 5 8

and control logic benchmark c2670 is governed mainly bydgwmany really short paths
along with really long oné$. Therefore it shows marked improvements over determaisti
design in both variation cases .

We can see from Eqg. 4.16 that the absolute variation in dedgyesented by (D),

increases with lowering the size of the effective drivensiator or increasing the delay of

101n fact, this is nothing but using some worst case cornergfiaed by thes value, which naturally does
no change the sizing.
Here short and long is based on the number of stages
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that stage. Therefore a simple method to curb variations it the minimum device
size in deterministic sizing so that all devices are sizedyathe portion wheré /+/size

is high. The disadvantage of this simple method is that itaunily constraints all devices
without considering the sensitivity of the overall delaytheir delay variation. An alterna-
tive simple method is to constraint the delay per stage iard@histic sizing. This would
keep the non-critical but otherwise highly variation-peguaths well sized. Again, this
method has the disadvantage of constraining all stagesramiif to over size even statisti-
cally non-dominant stages. The ADM and USM techniques g¥ely include both these
techniques by upsizing and improving the delay only thastteally dominant stages as

indicated by the sensitivity @ o5(T4) to the delay variation of different stages.

4.6 Including variations in energy

While accounting for delay variations is made complicatgthe sum and max operations,
the total energy is simply the sum of energy dissipated imyegate and interconnect. As
the number of these elements is usually quite large, the REfedotal energy dissipation
is quite narrow for local independent variations and its msaa good estimate for the
energy of the circuit. Dynamic energy is the sum of energgidaged in all the switching

capacitors (Equation 2.3). Assuming 10% local tempordhtians inV 4, we useu (V)

in our expressions. Note that this value is bigger th&iV,, ).
#(Via) = 1*(Vaa) + 0*(Vaa)

for Gaussian distribution dfy. The local variations in individual’;s are averaged out by
summing over a large number of gates.

Just like calculating the corregi(VZ) for dynamic energy, care should be taken to
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calculate the correct average leakage energy. Assuminid/than Equation 2.6 has a
Gaussian distributior?; has a log-normal distribution and its average value is greaan

that obtained by using(V4,) in (2.6) as shown below [43].

1(Veny) = Vaa . 0*(Vin)
nVT Q(HVT)2

(1) = Io exp(— ) (4.17)

In other words, the mean of leakage current is increased agtarff .., given as

Ecak = eXp(

Clearly, Fi.. increases exponentially with the variationli,. The effect ofl};, variation

on the transistor leakage current is shown in Figure 4.1& ddpendence ef?*(V;;,) on
sizing through Pelgrom’s model causEs., to shoot up as the devices get smaller. The
same plot also compares the average leakage current ingbenme of variations (4.17)
to the nominal value using;, fixed to its mean, as a function of transistor width. The
currents are normalized to the nominal leakage current pfiaide transistor. Interestingly,
due to variations, as the width reduces, the average leal@g®not get smaller, in fact,
it can actually increase! At larger widths.,, approaches unity and hence the average
leakage asymptotically reaches the nominal value. Thiseaviewed as lowering of the
effective threshold voltage for leakage in presence ofatimms. The DIBL factor term
can be adjusted similarly for local variations W)y. Fi..c can be as high as 6 or 7 for
smaller devices. In a deterministic approach, the optimizeaware of this factor, sets
many devices to have small sizes and |b to obtain a good drive with lower input
capacitance. This is bad as the higtl;) for small devices exponentially increases the

leakage current, contrary to the assumptions made by tleendigistic optimizer.

With the inclusion ofi;;, andVy4 as design variables, we can expresk;) as a function
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Figure 4.18:F}..; and normalized:(I;) (4.17) as a function of transistor width

of variations inV;;, and the current factg# [70]. For simplicity we modeb (1,) based on

the alpha power law current model [76] as

o*(1q)  *(Vin) = o*(B)
I Va 32

wherec?(/3) accounts for variation i¥ due to variations in channel length, mobility etc..
We assume that these these two sources of variations angeindent. Using Pelgrom’s

model we can express the local variatiorljp for a stack of transistors as

1

2
Vi )
? ( th) > LCHWOH

The relative variation ing also has the same dependence. The quadratic model is made

only to formulates (1) and produces a small error in calculating delay variatiofctvis
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calculated from Equation 2.7 as

o(1y) = d—]da(fd).

Using the above equations amg,, V34 and sizing as design variables, we can obtain the

4.5
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Figure 4.19: Improvement in the energy-delay tradeoff edfor the95"" percentile delay
due to statistical design

Qo.95 energy-delay tradeoff curves for different circuits. Figd.19 shows a minimum of
8% improvement in the energy-delay tradeoff curve @rs(T,) of a 32bit adder. The
improvement at the higher delay side is mainly due to curdelgy variations from device
sizing, while the gain at the higher energies is mainly froraluding V4, variations in

estimating leakage energy.
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4.7 Summary

Process variations cause uncertainties in gate delay$wdad to uncertainty in the overall
delay of the circuit. Calculating the complete PDF or a petitepoint of the overall delay
precisely is difficult, but upper and and lower bounds of dipalar percentile point can
be efficiently calculated by performing STA on surrogatdisistusing additional margins
on individual gate delays. Monte Carlo methods can also bd tsestimate the PDF and
percentile points.

Deterministic sizing results into many equally criticatip@which is statistically worse
for delay. The optimizer downsizes many of these paths téatorsmaller gates which,
according to Pelgrom’s model, exhibit larger delay undetyaand significantly increase
the delay variance of that path and thus the overall delay.rétmstness against process
variations, the correct problem to solve is to minimize sampercentile of the overall
delay (2.(Tq)) rather than minimizing the nominal delay. In this case thgnoizer will
distribute the resources (area or energy) between ditfpahs, and different gates within
a path, such that the ratio of sensitivity @f,(T,) to sensitivity of area or energy is the
same for all gate delays.

While the exact formulation of this statistical design gevb is possible for a few
simple circuits, it is extremely tedious for most circuitdowever, the optimizer just needs
to be prevented from making bad choices of making many pattisat and downsizing
gates in the process. The two heuristic techniques deskcinbthis chapter — of adding
delay margins to gate delay expressions and using soft nmaxiéun to combine path delays
at converging nodes — are effective in designing robustitsdy steering the optimizer
to push back on non-critical paths and avoid small devicgmths dominating the overall
delay. Thus, no propagation of delay PDFs is required andasito the deterministic

sizing, the statistical sizing problem can be cast as a GR,modest overhead.
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Results of applying these heuristics show that the impr@reérm robustness depends
strongly on the topology. Circuits with many structuralfientical paths benefit less from
statistical design as no path delay can be traded with an&dhaizing. The bigger the
asymmetry among the logical paths in the netlist, the largehe benefit of statistical
design over deterministic one.

As energy is the sum of many terms, sum of the average endagial gates and nets
is a good estimate for the overall energy. However, leakageyy increases exponentially
with decreasing’;;, and hence is statistically dominated by the gy devices. Therefore,
the average leakage is not the leakage of an average ddwceatiance o, — which
depends inversely on device size —also affects the valuethi&svariation depends on
sizing, we can steer the optimizer away from using highlkyedevices that will degrade
the energy of the circuit. Using the proposed heuristicregplres of statistical sizing with
the correct estimate of energy give a robust design havingiehrbetter energy-delay

tradeoff curve under process variations.



Chapter 5

Conclusions

With high end microprocessors facing steep cooling costisresmg demands for longer
battery life in portable devices, energy-efficiency is @l digital systems today. For
energy-efficiency, the ratios of marginal cost (or sengy)of delay and energy to all the
user tunable design variables — sizifgy, Viy, logic style and topology should be equal,
so that no variable can be traded off with another for a beltergn. For continuous vari-
ables, like sizing}Vyq andVy,, the circuit design problem can be formulated as a Geometric
Program, which can be solved very efficiently. The Stanfondu@ Optimization Tool
facilitates schematic design entry, automatic problermfdation and post-optimization
timing analysis. We used this tool to generate optimal desigr different topologies and
logic styles of a 32-bit adder, which served as our case sylpverlapping the different
tradeoff curves we generated the overall energy-delayetfdurve for 32-bit addition
spanning a range of 60x in energy and 10x in delay. This cuot®nly allows designers
to find the best design for given specifications, but also ides/the information about the

energy and delay costs (or gains) involved in changing tdfardnt specification.

With shrinking feature size, local random process vamatiare becoming increasingly

103



104 CHAPTER 5. CONCLUSIONS

detrimental to circuit performance. While the goal showdd optimize for the efficiency

of circuits that are actually produced, in fact, ignoringgess variations by using fixed
parameters during optimization can actually make the desigre vulnerable to process
variations. Making all paths critical, which is the optincahdition for deterministic sizing,
pushes out the overall delay under variations. At the same,tignoring the exponential
dependence of leakage energy \dp results into designs that consume excessive static

power after fabrication.

For an optimal statistical solution that results in a rololestign, the ratio of sensitivities
of a specified percentile delay point (as opposed to nomiglalyyl and energy should be
made equal for all the design variables. We show that thiblpno can be solved exactly
for certain circuit topologies for some distributions. Hawer, it is impractical to solve for
most typical circuits. Instead, simple heuristics can bedus get most of the benefit of
statistical sizing. We have developed two heuristics tlffacgvely include process vari-
ations during optimization and approximately solve theistiaal design problem for all
topologies. We add standard deviation margins to the melay deodel used in determin-
istic sizing and use “softmax”, instead ofax() to combine delays at converging nodes.
Unlike deterministic sizing, these heuristics effectyarget two aspects of a robust design
— resizing stages with high delay uncertainty within théicai paths, and pushing back on

paths that need not be critical and/or have a high delayvegia

Because the total energy is a sum of many varying terms, theage total energy is
a relatively good estimate of the overall energy. However thunonlinear dependence of
dynamic energy ofvyy and leakage energy dn,,, the average energy is not the same as
the energy calculated with average valued/gf andV;,. It depends on the variations in
these parameters. These variations add a factor that mustnisedered to determine the

correct estimate of energy in statistical optimization.
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The proposed heuristic method for designing robust eneffigient circuits largely
retains the original GP formulation for deterministic dgsproblem so we can still leverage
the benefit of efficient GP solutions. The extent to which &gigircuit can be made robust
is highly dependent on its topology. For structurally synmecircuits like the decoder,
the robust design is same as the nominal design, while fogesvhere there is a large
disparity in sensitivities, either due to different numladrstages in different paths, or
different loads at different outputs, the improvement camp to 30% assuming Pelgrom’s

model for variations.

5.1 Future work

The idea of balancing the ratio of marginal energy-delay aososs all design variables can
be used at other levels of design hierarchy to create eredfigyent systems. In particular,
at the micro-architecture level, it can be used to allochgedptimal amount of energy
to different functional units, cache, load-store units andn depending on their marginal
costs to the overall performance and energy of the systef®@T(Dables us to generate the
Pareto-optimal E-D tradeoff curves of different circuibbks. These curves can be used in
another tool that takes in the architecture and optimizesliféerent performance-energy
points. Work is ongoing in our group to develop architectienesl energy-performance
models that enable design of energy-efficient systems ubmg@nergy-delay models for
different circuit blocks [3]. A similar approach can be ugediesign devices aimed for a
particular circuit requirement. An example for BJTs is gr@ed in Ref. [41].

Ensuring a particular overall parametric yield involvestatistical design methodol-
ogy that deals with all the three different kinds of variaspnamely, global chip-to-chip,

correlated within-chip and local random variations. Ascdssed in Section 2.3, design
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techniques exist for dealing with the first two. This thesisuised on designing robust cir-
cuits for local random variations. The next step is to geteemaomplete statistical solution

by integrating the proposed algorithms in the existing giefiow.



Appendix A

Geometric programming basics

The following material is taken from Ref. [9].

A.1 Monomial and posynomial functions

Letxy,...,x, denoten real positive variables, and= (x4, ..., x,) a vector with compo-
nentsz;. A real valued functiory of z, with the form

f(z) = capag?---apr, (A.1)

n

wherec > 0 anda; € R, is called anonomial functionor more informally, anonomial
(of the variablesy, . . ., z,,). We refer to the constantas thecoefficientof the monomial,
and we refer to the constants, . . . , a,, as theexponent®f the monomial. As an example,
2.3z225 %" is a monomial of the variables andx,, with coefficient2.3 andz,-exponent
—0.15.

Any positive constant is a monomial, as is any variable. Moiads are closed under

multiplication and division: iff andg are both monomials then so afe and f/g. (This
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includes scaling by any positive constant.) A monomialediso any power is also a
monomial:

Fla)! = (eafrage - atn) = al™af o a),

The term ‘monomial’, as used here (in the context of geompnagramming) is similar
to, but differs from the standard definition of ‘monomial’agsin algebra. In algebra,
a monomial has the form (A.1), but the exponemtsnust be nonnegative integers, and
the coefficientc is one. Throughout this thesis, ‘monomial’ refers to therd@éin given
above, in which the coefficient can be any positive numbet,the exponents can be any

real numbers, including negative and fractional.

A sum of one or more monomialsse., a function of the form

K
F@) = 3 cuattiag - at, (A2)
k=1

wherec;, > 0, is called gposynomial functioor, more simply, gosynomia{with K terms,
in the variablesy, ..., x,). The term ‘posynomial’ is meant to suggest a combination of

‘positive’ and ‘polynomial’.

Any monomial is also a posynomial. Posynomials are closeluaddition, multipli-
cation, and positive scaling. Posynomials can be dividedhbypomials (with the result
also a posynomial): If is a posynomial ang is a monomial, therf /g is a posynomial.

If v is a nonnegative integer arfdis a posynomial, therf” always makes sense and is a

posynomial (since it is the product 9fposynomials).

Let us give a few examples. Suppase;, and: are (positive) variables. The functions

(or expressions)

2z, 0.23, 2z\/z/y, 3x*y 'z
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are monomials (hence, also posynomials). The functions
023+ z/y, 2(1+azy)®, 22+43y+2z
are posynomials butot monomials. The functions
—1.1, 2(1+azy)*', 22 +3y—2z, 2°+tanw

are not posynomials (and therefore, not monomials).

A.2 Standard form Geometric Program

A geometric prograntGP) is an optimization problem of the form

minimize fy(x)

subjectto fi(z) <1, i=1,...,m, (A.3)

2
—~
8
~—
I
\‘}—‘
~
I
\‘}—‘
=

wheref; are posynomial functiong; are monomials, and; are the optimization variables.
(There is an implicit constraint that the variables are fpasii.e., x; > 0.) We refer to the
problem (A.3) as a geometric programstandard formto distinguish it from extensions
we will describe later. In a standard form GP, the objectivestibe posynomial (and it
must be minimized); the equality constraints can only haesform of a monomial equal
to one, and the inequality constraints can only have the fifrenposynomial less than or

equal to one.
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As an example, consider the problem

minimize o 'y~227! +2.3x2 + 4ayz
subjectto (1/3)z72y~2 + (4/3)y"/2271 <1,
r+2y+32 <1,

(1/2)zy =1,

with variablesz, y andz. This is a GP in standard form, with = 3 variables,n = 2

inequality constraints, and= 1 equality constraints.

We can switch the sign of any of the exponents in any monoraiat in the objective
or constraint functions, and still have a GP. For examplecare change the objective in
the example above to~'y'/22~! + 2.32271 + 4xyz, and the resulting problem is still a
GP (since the objective is still a posynomial). But if we charthe sign of any of the
coefficients, or change any of the additions to subtractithesresulting problem is not a
GP. For example, if we replace the second inequality constrath = 4+ 2y — 3z < 1, the

resulting problem isota GP (since the lefthand side is no longer a posynomial).

A.2.1 Simple extensions of GP

Several extensions are readily handledf I a posynomial and is a monomial, then the
constraintf(z) < g(x) can be handled by expressing it Ase)/g(z) < 1 (sincef/g is
posynomial). This includes as a special case a constrathiediorm f(x) < a, wheref
is posynomial and > 0. In a similar way ifg; andg, are both monomial functions, then
we can handle the equality constraintz) = g»(z) by expressing it ag;(z)/g.(z) = 1
(sinceg; /g> is monomial). We can maximize a honzero monomial objectivefion, by

minimizing its inverse (which is also a monomial).
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As an example, consider the problem

maximize x/y
subjectto 2 < x < 3,
a? +3y/z < /Y,

x/y = 2%

(A.4)

with variablesz, y, z € R (and the implicit constraint, y, z > 0). Using the simple

transformations described above, we obtain the equivatantlard form GP

minimize z~ 'y
subjectto 271 <1, (1/3)z <1,
22y~ V2 4 3y /271 <

ry a2 =1.

It's common to refer to a problem like (A.4), that is easilgrisformed to an equivalent GP

in the standard form (A.3), also as a GP.

A.3 Generalization

In this section we describe extensions of GP that are les®wdthan the simple ones
described in Section A.2.1. This leads to the ideayeferalized posynomialend an

extension of Geometric Programming call@dneralized Geometric Programming

We say that a functiof of positive variables, .. ., =, is ageneralized posynomil
it can be formed from posynomials using the operations oitiad multiplication, positive

(including fractional) power, and maximum.
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Let us give a few examples. Suppasex,, x3 are positive variables. The function
max {1 + x1, 221 + x2 x3 39}
is a generalized posynomial, since it is the maximum of tweypomials. The function
(O lzy23%° + 2y g7) ?

is a generalized posynomial, since it is the positive powest posynomial. All of the
functions appearing in the examples of the two previous@esitas the objective or on the
lefthand side of the inequality constraints, are genezdlizosynomials.

As a more complex example, the function
1.7
h(z) = (14+max{xy, x2}) (max {1 + 21,271 + 23 x339} + (0.1x1x3 + 227 xd 7) )

is a generalized posynomial. This can be seen as follows:

e 1, andz, are variables, and therefore posynomialsisar) = max{z,,z,} is a

generalized posynomial.

o 1+z; and2z, 4292239 are posynomials, $,(z) = max {1 + 21,27, + x3-2xg3'9}

is a generalized posynomial.

. H 5 i
e 0.1z125%° + 217297 is a posynomial, séiz(r) = (0.1x1x3 + x5l 7) IS a

generalized posynomial.

e hcan be expressed &) = (1 + hi(x)) (he(x) + hs(z))"” (i.e., by addition, mul-
tiplication, and positive power, frorh;, hy, andh3) and therefore is a generalized

posynomial.
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Generalized posynomials are by definition, closed undeitiaddmultiplication, posi-
tive powers, and maximum, as well as other operations tmelbealerived from these, such
as division by monomials. They are also closed under cortiposh the following sense.

If fyis a generalized posynomial bfvariables, for which no variable occurs with a nega-

tive exponent, and, . . ., f, are generalized posynomials, then the composition functio

fo(fi(x), ..., fu(x))

is a generalized posynomial.

A very important property of generalized posynomials i thay satisfy the log con-

vexity property that posynomials satisfy. fifis a generalized posynomial, the function

F(y) = log f(e)

is a convex function: for any, 7, and any) with 0 < 6 < 1, we have

F(Oy+ (1 —-0)y) <0F(y) + (1 - 0)F ().

In terms of the original generalized posynomjaknd variables: and z, we have the

inequality

foranyd with0 < 0 < 1.
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A.3.1 Generalized geometric program
A generalized geometric progra@®GP) is an optimization problem of the form

minimize fy(x)

subjectto fi(z) <1, i=1,...,m, (A.5)
gl(x)::l? 7':17 7p7
whereg,, ..., g, are monomials andh, .. ., f,,, are generalized posynomials. Since any

posynomial is also a generalized posynomial, any GP is aGGR.

While GGPs are much more general than GRey can be mechanically converted to
equivalent GP$10] As a result, GGPs can be solved very reliably and effibrejust like
GPs. The conversion from GGP to GP can be done automaticallydarser as it parses
the expressions describing the problem. The GP modelerrmadys to know the rules for
forming a valid GGP, which are very simple to state. Thereoiz@ed for the user to ever
see, or even know about, the extra variables introduceceitréimsformation from GGP to

GP.

Unfortunately, the name ‘generalized geometric prograas been used to refer to
several different types of problems, in addition to the dnava. For example, some authors
have used the term to refer to what is usually callsigaomial progranh, a very different
generalization of a GP, which in particular cannot be reduoean equivalent GP, or easily

solved.

Once we have the basic idea of a parser that scans a problenipties, verifies that

itis a valid GGP and transforms it to GP form (for numericdusion), we can add several

A signomial is a function with the same form as a posynomial ({(A.2), where the coefficients are
allowed to be negative. A signomial program (SGP) is a gdization of a geometric program, which has
the form of a GP, but the objective and constraint functicarsioe signomials
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useful extensions. The parser can also handle inequahtiel/ing negative terms in ex-
pressions, negative powers, minima, or terms on the riglatsale of inequalities, in cases

when they can be transformed to valid GGP inequalities. kample, the inequality

T+ 1y + 2z —min{/zy, (1 +2y)"**} <0 (A.6)

(which is certainly not a valid generalized posynomial mg&dy) could be handled by a

parser by first replacing the minimum with a variablend twoupper boundsto obtain

r+y+z—1t <0, t1 < /2y, t < (14 ay)™ "3

Moving terms around (by adding or multiplying) we obtain

r+y+z <t t < Ty, tity® <1, 1+ay <t

which is a set of posynomial inequalities. (Of course we Hauvee sure that the transfor-
mations are valid, which is the case in this example.)

The fact that a parser can recognize an inequality like (Ar@) transform it to a set
of valid posynomial constraints is a double-edged sworde ahility to handle a wider
variety of constraints makes the modeling job less constrhiand therefore easier. On
the other hand, few people would immediately recognize th@inequality (A.6) can be
transformed, or understanehy it is a valid inequality. A user who does not understand
why it is valid will have no idea how to modify the constraig.d, add terms, change

coefficients or exponents) so as to maintain a valid inetyuali
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Appendix B

Stanford Circuit Optimization Tool

The tool consists of five major components made up of penps;iC++ code and interface
to other stand-alone tools like schematic editors (SUEBINR MOSEK, SPICE and so

on. A brief description of the sections in the order of theie is as follows.

1. Schematic Entry: The netlist is entered in a schematic editor like SUE [59fhwhe
design constraints specified as annotated comments. Td@cautomatic model-
ing, the user is restricted to using Channel Connected Caemis (CCCs) (defined
in Section 3.3.1) as the basic logic gates while making @scu he spice file gen-
erated from SUE is then modified with perl scripts to extréidh@& commands from
the SUE comments and flatten the design hierarchy to the O@&C BCOT uses the

modified spice file as its main input.

2. Generating Models and Switching Statistics Analytic delay and leakage models
are generated for each CCC type in the modified netlist ugjogteons for transistor
current models for a chain of transistors as explained ini@e2.1.4. The activity
and duty factors necessary for dynamic and leakage powee&ipns are generated

by performing switch level simulations using IRSIM.

117
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. Problem formulation: Using the delay-energy models, the activity and duty fes;to

and netlist connectivity, this part of the software geresdhe sizing,4-V4,, alloca-
tion problem as a Geometric Program with the constraintsadojelctives specified

by the user.

GP solver. The formulated Geometric program (GP) is solved using MR $H .
The solution file contains the optimal values of the objexfinction and design

variables.

. Post Analysis The user can also specify post analysis operations likAS&BRw-

ing PDFs, obtaining path delays and variances and so on. s€kiton consists of
various scripts to back annotate the MOSEK results in Spleefischematics, for

verification and/or visualization.

More elaborate description of each section is providedearuger manual for the tool [18].

B.1 Modeling issues in important circuit scenarios

The gate delay and energy can be accurately modeled as pogsoThe calculation of

overall circuit delay also leads to convex timing consti®ifT his facilitates the formulation

of the sizing problem as a GP. However, there are importargtcaints of a real design that

are either not convex or are hard to model. Following are sointiee important scenarios

covered in the optimizer. The aim is to use a work-around irag tat leads to the correct

sizing for the real design constraint.



B.1. MODELING ISSUES IN IMPORTANT CIRCUIT SCENARIOS 119

Schematic Netlist and ccc .| Listof cCC
entry & constraint net list & types ]
Constraints Parser *| Constraints
specification Simple spice Modified
file spice file
Optimized
spice/_SUE AF and DF
HELIEE » Post-processing utils
Solve Geometric Delay model
program
Ba%:k in Problem
* std. Form [ - Energy
annotate Can be used for formuktien
iterative Other specs
optimization

Figure B.1: Block diagram of Stanford Circuit Optimizatidaol (SCOT)

B.1.1 Signal rise/fall time constraints

To avoid signal integrity issues like excess short circuitrent and meta-stability it is
important to keep the signal rise and fall times within aaartimit. The accuracy of the
delay model also degrades with slower rise/fall signalditeans. The non-linear nature
of device currents, Miller capacitance kick back and othaces like cross talk make it
hard to model the 10-90% rise/fall time of any signal. Howedte 10-90% rise/fall time
is directly related to the step delay of the driving gate. Stue simulate the rise/fall time

constraint by constraining the delay per stage to be witlspegified limit.

B.1.2 Transmission gate circuits

A transmission gate consists of an NMOS and PMOS transistonected in parallel and
turned on and off by a pair of complimentary signals. Thengjahould be such that the

arrival times of complimentary signals are sufficientlysgdor simultaneous switching of
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both devices. The improvement in the drive strength due ¥inlgawo parallel transistors
of opposite kinds has to be modeled accurately for propéngsiaf CCCs that contain a
transmission gate. While constraining the complimentaggals to arrive within a certain
time window is a non-convex constraint, what we care for isexi sizing that will enable
it. We model the arrival time of both the inputs of the transsion gate as the maximum
of their actual individual arrival times. This way the ciicgenerating the complimentary
signal is forced to speed paths leading to both the input&jngahem as close to each
other as possible. Examination of optimized circuits shtves indeed this technique is
successful. With the assurance of almost simultaneoustswg, we model the delay of
the transmission gate by using the same drive current esipreas that of a CMOS gate,
with a higher effective width of the switching transistar.dur work, the width NMOS and

PMOS devices in a transmission gate is kept the same.

B.1.3 Local feedback - keepers

Figure B.2 shows two examples where local feedback is uséldeifiorm of keepers in

dynamic logic and feedback inverters in latches. It is ne@gsto recognize the transistors
in the local feedback paths while sizing. First, their effec forward signal propagation
due to parasitic capacitive loading and current fightingiy) should be considered. The
feedback devices have to be large enough to maintain the Yadunode against leakage,
and small enough to not prevent the node transition due tewufighting. SCOT allows

these two sided constraints to be included easily withinGRC itself. Having ensured

the transition, the increase in delay due to current fightiaig be taken into account by
assuming a higher effective load capacitance at that noolesiEing purposes, this works
well and enables the sizing of keepers and feedback ingei$&rcondly, the delay through

the feedback path is not a part of the signal propagationydéliugh the circuit. In
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Vdd Vdd

WPK
clk =~ O-<inK  clk.b clk
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"ocalcnst: WN /6 < WPK; data Q
in2 D—{ ~localcnst: WPK < 0.3 WN; }7
clk o clk clk_b
nd .
(@) dyr%ﬂﬁlc 2 input nand gate 9 (b) simple hold latch

Figure B.2: Local feedback in logic circuits: keepers aretifeack inverters

SCOT, users can specify the inputs to feedback devices byngairem in a special way.
The optimizer then ignores the timing arcs that go througimthThis also means ignoring
the timing arcs of any logic that feeds the keeper deviceaaldhese circuits are then sized
based on other constraints like the signal rise/fall camsts and so on. To size self-reset
logic gates, additional pulse width constraints have téuished for every gate to ensure a

good timing margin for reset.

B.1.4 Pulse width constraints

Certain circuits like pulse-mode flip-flops are designedaweda fixed pulse width between
two particular nets. This is usually done with an inverteaioh Figure B.3 shows a cartoon
where the problem is to optimize the entire combinationaiuit CL for energy-efficiency
while designing sub-circuit S to have a fixed timing pul$g.. between two nets n1 and n2.
The delay of sub-circuit S, assuming nl as the input would be a posynomial. Ideally
we would like to have a constraint suchBs; = T,us.. However, equality involving a
posynomial is not allowed in GP. We can try to implement tloisstraint by specifying the

inequalitiesTty, < Thuse andTyy > Touse. While the former is acceptable, the latter is
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inputs OUtpUtS
>

Figure B.3: Combinational logic block CL with pulse widthretraints on a sub-block S

still not a valid GP constraiht A possible work around is to add the following constraints
instead.

Tckt S Tpulsea Tnl + maX(Tpu1567 Tckt) S Tn2-

Here,T,,; andT,, are the signal arrival times at nets n1 and n2. The first caimstiorces

the pulse to be no wider thah}, ..., While the second provides room for slowing S to the
point whereTy, = T,us. Unless the minimum size or slope constraint becomes active
this is usually achieved in practice because downsizingsStievel .. Saves energy that

can be distributed to other parts of the circuit.

B.1.5 Modeling dual-rail gate delay

Dual rail domino gates like the one shown in Figure B.4 havamonentary input-pairs
that the gate delay modeling algorithm may mistake for imtelent inputs. This will result
in modeling the delay for the path that contains both the tigma its complement. This
is clearly incorrect as such a path can never be sensitizedvdid this in SCOT, the user

can specify a pair of inputs as complimentary inputs in tHeestatics so that the delay

las it does not represent a convex space in the log-log domain.
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O
ina0 D—[I inab0 —< inbb0

clk *AntiCorr inaQ inab0;
1_{ *AntiCorr inb0 inbb0
*AntiICorr Inal inabl
*AntiCorr inbl inbb1

gnd

Figure B.4: Schematic of the CCC that generates the bit sumday=0 in a 2bit sum
select ling adder. Special commands shown on the bottonh aighnecessary to avoid
choosing false transistor paths for delay

modeling routine avoids such erroneous paths.

B.1.6 Handling discrete variables

While the GP algorithm admits only continuous variablesgial designs we have discrete
VinS to choose from. Cell libraries also have discrete cellssiB¥ealing with the discrete

variables exactly leads to a combinatorial problem whidreisl to solve. Instead, we relax
the discrete requirements by solving with continuous \@eiand then progressively snap
the variables to their discrete values starting with snagphe ones closest to the grid

values first and iterating. In most circuits of any reasoeate (gate count 20) the
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sensitivity of delay to individual device sizes G,s is very small. We observed less than

4.5 x x w

fixed Via,Vin 1

w
w ()]

energy in pJ
N
(&)

2 \ |
\
1.5 .. |
variableVyq, Vin™ ~ _
1 Vin snapped to grid ™~ - |
056 8 10 iz 1z 16 18 20
delay in FO4

Figure B.5: Snapping of discrete variables causes sulprajity

1% degradation in 32-bit adder designs from using disdrgt® However, snapping does
lead to visible sub-optimality under some conditions. FegB.5 shows the energy-delay
tradeoff curves for two optimizations on a 32bit adder, one/hich V4 andV;,;, are fixed
to nominal values and the other in which they are variablé witee discreté’,s. Each
device has its owr/},. Naturally the latter results in a better tradeoff, as it hazre
variables to design with. However, near the energy-delaytpavhere the nominal values
of Vyq andV;, are already very close to the optimal, designing with vdeidl, andV;,

and then snapping can lead to a worse design. However the ifigegligible.
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