EFFICIENTLY ACQUIRING REFLECTANCE FIELDS USING
PATTERNED ILLUMINATION

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF
ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES OF
STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Gaurav Garg
September 2006






(© Copyright by Gaurav Garg 2006
All Rights Reserved






| certify that | have read this dissertation and that, in myngm, it is fully
adequate in scope and quality as a dissertation for the eé@drieoctor of
Philosophy.

(Marc Levoy) Principal Adviser

| certify that | have read this dissertation and that, in mynggm, it is fully
adequate in scope and quality as a dissertation for the e@drieoctor of
Philosophy.

(Mark Horowitz)

| certify that | have read this dissertation and that, in mynggm, it is fully
adequate in scope and quality as a dissertation for the eéedrieoctor of
Philosophy.

(Hendrik P. A. Lensch)

Approved for the University Committee on Graduate Studies.



Vi



Abstract

The use of the reflectance fields of real world objects to rerefdistic looking images is
rapidly increasing. The reflectance field describes thesprart of light between the light
incident on an object and the light exitant from it. This hasnerous applications in areas
that include entertainment, cultural heritage, digithrdries and space exploration. The
central problem with this approach is the lack of fast methtwdacquire the reflectance
field data. This dissertation addresses this problem anctides a system for acquiring
the reflectance field of real world objects that performs mamers of magnitude faster
than the previous approaches.

The system models the 8D reflectance field as a transportnietiveen the 4D in-
cident light field and the 4D exitant light field. It is a chalfgng task to measure this
matrix because of its large size. However, in some cases dltv@xiis sparse, e.g. in scenes
with little or no inter-reflections. To measure such masjdéis thesis describes a hierar-
chical technique calledual photographyvhich exploits this sparseness to parallelize the
acquisition process. This technique, however, perfornmglpdor scenes with significant
diffuse inter-reflections because in such cases the matribense. Fortunately, in these
cases the matrix is often data-sparse. Data-sparseness tefthe fact that sub-blocks
of the matrix can be well approximated using low-rank repn¢ations. Additionally, the
transport matrix is symmetric. Symmetry enables simubbaseneasurements from both
sides, rows and columns, of the transport matrix. These uneamnts are used to develop
a hierarchical acquisition algorithm that can exploit tla¢adsparseness by a local rank-1
approximation. This technique, callsgmmetric photographyarallelizes the acquisition
for dense but data-sparse transport matrices.

In the process, this thesis introduces the use of hieraltteasors as the underlying
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data structure to represent data-sparse matrices, spgiticrough local rank-1 factor-

izations of the transport matrix. Besides providing an effit representation for storage,
it enables fast acquisition of the approximated transp@atrimand fast rendering of the
images from the captured matrix. The prototype acquisisiggstem consists of an array
of mirrors and a pair of coaxial projector and camera colgdoby a computer. The ef-

fectiveness of the system is demonstrated with scenesnmahttem reflectance fields that
were captured by this system. In these renderings one cagelthe viewpoint as well as
relight objects using arbitrary incident light fields.
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Chapter 1

Introduction: Reflectance Fields In
Computer Graphics

Synthesizing realistic looking images is one of the cergrablems in computer graphics.
In order to achieve photorealism, the traditional grappipgline works by trying to simu-
late real-world physics accurately. The typical input totsa pipeline is a scene consisting
of object shapes, material properties and a set of lighthhofigh it is possible to provide
fairly accurate descriptions of object shapes, materigb@rties are harder to model, as in
the case of translucent materials. This limitation affébts degree of realism in images
rendered from synthetic scenes. Moreover, there existsde-ff between the degree of
realism and the computational resources required for sitimgj physical effects such as
diffuse inter-reflections, shadows, caustics, sub-saréaattering etc.

An alternative to modeling the shape and the material ptigseof objects is capturing
the appearance of the objects/scene directly. The appmacha scene can be described by
an 8D function called the reflectance field which was intradlia the graphics community
by Debevec et al.JHT"00]. The reflectance field describes the transport of light betw
the light incident on an object and the light exitant fromOnce available, this representa-
tion can be used to render realistic images of the scene fryrmiawpoint under arbitrary
lighting. The resulting images capture all global illumioa effects such as diffuse inter-
reflections, shadows, caustics and sub-surface scattavitigput the need for an explicit
physical simulation. This dissertation focuses on teamesgor acquiring reflectance fields

1



2 CHAPTER 1. INTRODUCTION

of real-world objects.
In addition to being used as a primitive for computer graphieflectance fields have a
wide variety of applications:

e Entertainment: Convincingly inserting real actors inside a virtually geated set is
a major issue in current movie production. For this purpageflectance field is the
primary dataset required to render images of people untiéray changes in light-
ing and viewing direction. Techniques for capturing andde¥ing from reflectance
fields have already been used in motion pictures sucBpggerman 2King Kong
andSuperman Returns

e Cultural heritage: Digital documentation of cultural artifacts is very impamt. Be-
sides providing an online catalogue of the artifacts it pfeg an easy way to study
the working techniques and design choices of artists whatedethe artifacts. Re-
flectance fields provide a complete representation forallgistoring such artifacts
as compared to traditional approach of acquiring just a ggoomodel as has been
explored in HCDO1].

e Space exploration: Photographs of rocks found on other planets provide sei@nti
with a window through which they can explore the outer spaéaious missions
(e.g. Mars Rover Spirit) have been used for this purposereefbinstead of captur-
ing just a photograph, the whole reflectance field of the roekevacquired, then it
can be used to visualize the structure of the rock in far gredstail.

It is important to note that none of the applications desttibbove have used a com-
plete reflectance field. This is because with current harehaad algorithms it is not pos-
sible to measure a complete reflectance field in reasonalée ti

1.1 Problem Statement

The 8D reflectance field of a scene or object is defined as gowansatrix that describes
the transfer of energy between a light field96] of incoming rays (the illumination) and
a light field of outgoing rays (the view), each of which are 4e rows of this matrix
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correspond to the view rays and the columns correspond titiuhenation rays. Even for
small light field representations, say only3 angular and 108 100 spatial, the trans-
port matrix would contain about 1®entries. If constructed by measuring one entry per
video frame, it could take several days to capture even abvidte, making this approach
intractable.

Therefore, we must (1) devise algorithms that speed up theisition process; and
(2) devise infrastructure that can support the algorithinghis dissertation we describe
techniques which accomplishes the above mentioned goals.

1.2 Previous Work

The idea of capturing the reflectance field of a scene is rebebhtresearchers have been
trying to measure the reflectance properties of surfacedithrectional reflectance func-
tions, for much longer. Since measuring the bidirectioredlectance function requires
similar machinery as that required for measuring refleadietds, we will start by review-
ing bidirectional reflectance functions first. The surveggemted in Section.2.1and
1.2.2has been adapted frohHIG05].

1.2.1 Measurement of Bidirectional Reflectance Functions

The optical properties of an opaque homogeneous surfacéeamaracterized by re-
flectance as a function of incident light direction (two ag)land reflected light direction
(two angles). The resulting 4D function is called the bidii@nal reflectance distribution
function (BRDF) NRH"77]. If the surface is textured rather than homogeneous, tisen i
optical properties depend on position on the surface (tvatiapcoordinates) as well as
direction, leading to a 6D function called the spatiallyywag bidirectional reflectance
distribution function (SBRDF). Dana et alDNGK97] also call it the bidirectional tex-
ture function (BTF). Finally, if the object exhibits subfage scattering, as does marble
or human skin, then its reflectance properties depend onutg®img as well as incoming
position, adding two more spatial coordinates. The resgliinction is 8D, and is called
the bidirectional surface scattering distribution fuoot(BSSRDF).
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Characterizing the 4D, 6D, and 8D reflectance (or transna@afunctions of surfaces
is an active research area in applied physics and compuphigs. To realistically ren-
der some materials, such as plastics and metals, analgaiggons of these functions
are known and tractable to compute. In other cases, anatgtiels are known, but these
include free parameters than can be measured from the phgsicples of the material.
Recent examples of this are marbd®LHO1], human hair MJC" 03], wood [MWAMO5],
and smokeHEDO5H. However, some materials are hard to describe using acalyhod-
els, for example human skin. Others like woven cloth, arelioations of various sub-
species. In order to render such materials, the bulk oppicaderties of a physical sample
of the material can be measured under a sufficiently widegarfgiewing and illumina-
tion conditions to create a high-dimensional lookup tafleis table can then be indexed
to make a new rendering of the object from an arbitrary viampand under arbitrary il-
lumination, without the need for an analytical model. Thighe idea behind capturing
reflectance fields, which we explore in this dissertation.

Researchers have proposed numerous devices for perfothengeasurements out-
lined above. Devices for measuring 4D BRDF are called swatteters or gonioreflec-
tometers. In applied physics, the emphasis has been onaagcwand as a result most
of these devices employ lasers, cooled sensors, and precrechanical movements. In
computer graphics, the emphasis has been on speed rathexahwracy, spurring a trend
towards optoelectronic solutions (having fewer movinggaiFor example, Wardfar92
captures a BRDF using a movable light source, half-silvéedisphere, and wide-angle
camera. Marschner et aMWLTO0O] constructed another significant BRDF measurement
system. This system, although limited to only isotropic BRDeasurements, was both
faster and robust than Ward's. In particular, the systenk tauque advantage of reci-
procity, bilateral symmetry, and multiple simultaneousaswements to achieve unprece-
dented leverage from each reflection measurement. Thensysted two cameras and a
movable light source for this purpose. Dana et dafj0] measure SBRDF by using
curved mirrors which remove the need for hemisphericaltmoesng of the camera and
illumination source. Instead, simple planar translatiohsptical components are used to
vary the illumination direction and to scan the surface. éddlyg, Han and PerlinHP03
have captured SBRDF using a stationary camera, a videogboojend a kaleidoscope to
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redirect the incoming and outgoing light. This system hasnuowing parts, but it pro-
duces datasets of low directional resolution. Becausesadaunting size, few research
groups have undertaken to measure a BSSRDF. The Stanfoati&dlGantry has been
used to capture subsets of this functidMLHO01, MJC" 03], but measurement of an entire
BSSRDF has never been tried.

1.2.2 Measurement of Reflectance Fields

Bidirectional reflectance functions specify the opticalperties of a particular surface, but
if the scene is composed of many objects then the opticalptieg of the whole scene can
be specified using the 4D, 6D, or 8D reflectance field depenaimigow much variation
is permitted in the illumination and viewer position. The 8&lectance field can also be
described as a transport matrix describing the transfenefgy between the illumination
rays and the view rays. 4D and 6D reflectance fields are propect this matrix into lower
dimensions. For obvious reasons, the work on measuringtafliee fields has focused on
capturing various lower dimensional projections.

If the illumination is fixed and the viewer allowed to moveg lppearance of the scene
as a function of outgoing ray position and direction is a 4Besbf the reflectance field. The
light field [LH96] and the lumigraphGGSC96 effectively describe this exitant reflectance
field. By extracting appropriate 2D slices of the light fietshe can virtually fly around a
scene but the illumination cannot be changed. Light fields lma captured by a single
moving camerallH96] or an array of cameras\JJV'05]. If the viewpoint is fixed and the
illumination is provided by a set of point light sources, aieains another 4D slice of the
8D reflectance field. Various researche®®{CS99 CZH"00, DHT *00, MGWO01, SNB03
HEDO54 have acquired such data sets where a weighted sum of theredpimages can
be combined to obtain relit images from a fixed viewpoint orlgwever, since point light
sources radiate light in all directions, it is impossible#st sharp shadows onto the scene
with this technique.

If the illumination is provided by an array of video projexdpand the scene is captured
as illuminated by each pixel of each projector, but still@srsfrom a single viewpoint, then
one obtains a 6D slice of an 8D reflectance field. By extracpropriate slices from this
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function, one can render views under lighting that includeal light source and shadows.
Masselus et al. IPDWO03 capture such data sets using a single moving projectoraét e
position of the projector, the scene is captured under afsitimination basis functions
rather than one pixel at a time, to increase speed. Nevesghdhe necessity to move the
projector limits the resolution of data that can be captwsidg such a system. Goesele et
al. [GLL™04] use a scanning laser, a turntable and a moving camera tareapteflectance
field for the case of translucent objects under a diffusessuface scattering assumption.
Although one can view the object from any position and religwith arbitrary light fields,
the captured data set is still essentially 4D because af élssumption.

In this dissertation, we extend this previous work by ddsog a system that requires
at least one projector/camera pair, an array of mirrors dvehan-splitter for measuring 8D
reflectance fields. Our system has no moving parts. Havindusex such a system, we
next look at prior attempts to efficiently storing this data.

1.2.3 Use of Hierarchical Data Structures for Reflectance leid

Hierarchical data structures have been previously userefoesenting reflectance fields.
These representations provide greater efficiency bothringef storage and capture time.
A typical setup for capturing reflectance fields consists etane under controlled illu-
mination, as imaged by one or more cameras. Peers and RE][illuminate a scene
with wavelet patterns in order to capture environment nsgf@other 4D slice of the re-
flectance field). A feedback loop determines the next patteuse based on knowledge
of previously recorded photographs. The stopping critiertzased on the error of the cur-
rent approximation. Although their scheme adapts to thaescentent, it does not try to
parallelize the capture process. Matusik et aMlLPO4] use a kd-tree based subdivision
structure to represent environment mattes. They expresorment matte extraction as
an optimization problem. Their algorithm progressivelfirres the approximation of the
environment matte with an increasing number of traininggesataken under various il-
lumination conditions. However, the choice of their patteis independent of the scene
content.

In this dissertation, we also use a hierarchical data stratb represent the reflectance
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field. It is a subdivision structure with a low-rank reprets¢ion for nodes. Also, our
subdivision is adaptive and is based on the scene content.

1.2.4 Helmholtz Reciprocity

Helmholtz reciprocity is the idea that the flow of light candféectively reversed without
altering its transport properties. There has been someéquework in the computer vision
community that takes advantage of Helmholtz reciprocitigklér et al. used reciprocity
to reconstruct the geometry of surfaces with arbitrary BRDFwhat they call Helmholtz
stereopsis4BK02]. The authors observed that by interchanging light source Gam-
era during acquisition, they can use Helmholtz recipromtguarantee that points on the
surface would have exactly the same transfer charactemsthoth configurations. This
simplifies stereo matching, even for surfaces with complBDBs. A similar approach
was taken by Tu et al. TMRMO3], who utilized reciprocity for the task of 3D to 2D reg-
istration. Finally, reciprocity has been used in a mannafagous to the duality explained
in this dissertation by Zotkin et al.ZDGGO04 in order to model sound transfer through
the human head. In this work, the authors noted that an afnayjooophones and a single
speaker can be used to replace the more common setup of a silggbphone and multi-
ple speakers because of the duality of the sound transpwrebe the microphone and the
speaker. In this dissertation, we take advantage of helmhetiprocity to speed-up our
acquisition algorithm.

1.3 Contributions

This dissertation makes two contributions to the area ofisiipn of reflectance fields:

e On thetheoretical side, it characterizes the reflectance field as a matrix. Adlzs
in modeling the process of image generation as a linearftans It turns out that
this matrix has various interesting properties, based efetlvs of physics as well as
empirical observations, which can be leveraged for efficGequisition.

e On thesystemside, we present a prototype system for acquiring refleetéietds.
Our system uses the properties of reflectance field matristi@ae faster acquisition
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using a hierarchical adaptive scheme. The heart of thiesys a novel representa-
tion of the matrix using local low rank approximation.

Part of the work presented in this dissertation has beerridedgdn previous publica-
tions. The dual photography work was presented at SIGGRABIS ISCG'05] and the
symmetric photography work was presented at the Eurogra@yimposium on Rendering
(EGSR) 2006 GTLLOS].

1.4 Outline of the Dissertation

This dissertation is organized as follows. Chagietefines the reflectance field and de-
scribes how to abstract it as a matrix, called the light fpansmatrix, for the purpose of
this thesis. Three important properties of the transpottimadata-sparseness, symmetry
and duality are also explained. Chap8etlescribes dual photography, our first technique
to measure the transport matrix. This method exploits gp@&ss in the matrix. Chap-
ter4introduces a hierarchical tensor structure for represgmata-sparse matrices/tensors.
Chapters describes a second technique to measure the transpork msymnmetric pho-
tography - which exploits data-sparseness in the matrixally, Chapter6 presents the
conclusions about our acquisition system, and suggeduoifisture work.



Chapter 2

Reflectance Field as the Light Transport
Matrix: Theory and Properties

In this chapter, we formally define the reflectance field amdligiht transport matrix. We
also describe three important properties of the transpattix) data-sparseness, symmetry
and duality. These properties will be used to develop ouuiagdgpn algorithm in subse-
guent chapters.

2.1 Definitions: Reflectance Field and
Light Transport Matrix

The light field [LH96], plenoptic function AB91], and lumigraph GGSC96 all describe
the flow of light within space. These ideas were first intraatla the classic work of
Gershun on the vector irradiance fielddgr3q and Moon'’s paper on the scalar irradiance
field, which he called the photic fieldlfS81]. Light fields are used to describe the radiance
at each poink and in each directiow in a scene. Ignoring wavelength and fixing time,
this is a 5D function which we denote tyx, w). Thus,L(x,w) represents the radiance
leaving a poink in directionw. (A complete table of the mathematical terms used in this
chapter is provided in Tabf2.1)

Levoy and HanraharlH96], and Gortler et al. EGSC96 observed that if the viewer

9



10 CHAPTER 2. REFLECTANCE FIELD AS THE LIGHT TRANSPORT MATRIX

Vv 3D space of all points in a volume, domain of functions

Q 2D space of all directions at a point, domain of functions

X, X/ two points in domaity, e.g.,(x,y,2), (X,y,Z)

w, W two points in domairQ, e.g.,(0, @), (6',¢)

dx’ a differential volume at/, i.e.,dXdydZ

do/ a differential direction atv/, i.e.,d6’d¢’

L(x, ) 5D light field function on domaing andsS, radiance atx, w)

Li(x, w) 5D incoming light field

Lo(X, w) 5D outgoing light field

K(x,w;x',«') the direct light transport fronx’, &) to (x, w)

Li 5D discrete incoming light field

Lo 5D discrete outgoing light field

K matrix of the direct light transport coefficients

T matrix of the light transport coefficients for 5D represéiota

Y 4D space of all incoming directions on all points of a sphere,
domain of functions

1] a point in domairt¥, e.g.,(u,v, 6, @)

Wi, Wo two points in domai¥, e.g.,(u;, Vi, 6, @), (Uo, Vo, 6o, @)

L(y) 4D light field function on domai¥, radiance at a poirny

Li(¢r) 4D incoming light field

Lo(Wo) 4D outgoing light field

R(Wi, Yo) 8D reflectance field mapping () to Lo(o)

L; 4D discrete incoming light field

Lo 4D discrete outgoing light field

ti impulse response to unit illumination along a ray

T matrix of the light transport coefficients for 4D represdiota,
symmetric

T a sub-block ofT, not necessarily symmetric

Table 2.1 Table of terms and variables
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is moving within the unoccluded space, then the 5D reprasentof the light field can be
reduced to 4D. We can characterize this functior.@g) wherey specifies a point and
an incoming direction on a sphe®HT"00]. A 4D light field can be used to generate an
image from any viewing position and direction, but it willnxalys show the scene under
the same lighting. In general, each field of incident illuation on a scene will induce a
different field of exitant illumination from the scene. Debe et al. PHT00] showed
that the exitant light field from the scene under every pdssitzident field of illumination
can be represented as an 8D function called¢fiectance field

R(Li(¢i);Lo(o)) = R(¢i; Yo) (2.1)

Here, Li(¢%) represents the incident light field on the scene, bgd),) represents the
exitant light field reflected off the scene.

We have so far described the light field concepts using coatis functions, but for
actual measurements, we work with discrete forms of thesetifuns. In order to do so,
let us parameterize the domathof all incoming directions by an array indexed bylhe
outgoing direction corresponding to an incoming directipralso parameterized by the
same indexj. Now, consider emitting unit radiance along ratowards the scene (e.g.,
using a laser beam or a projector). The resulting light fieddich we denote by vectdr,
captures the full transport of light in response to this iflspullumination. This is called the
impulse responseégLL"04] or the impulse scatter functioSMKO05]. We can concatenate
all the impulse responses into a maffixvhich we call thdight transport matrix

T = [tats.. .ty (2.2)

Since light transport is linear, any outgoing light field regented by a vectdr, can be
described as linear combination of the impulse respomséjus, for an incoming illumi-
nation described by vectdys;, the outgoing light field can be expressed as:

Lo=TL; (2.3)

The light transport matriX, is thus the discrete analog of the reflectance filg; o).
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Seitz et al. $MKO05], in work contemporaneous to our own, also use transporticest
to model the light transport. Their work provides a theonydecomposing the transport
matrix into individual bounce light transport matrices,il@lour work describes efficient
techniques to measure it.

2.2 Data-Sparseness

2.2.1 Sparseness, Smoothness and Data-sparseness

To efficiently store large matrices, sparseness and smesghare two ideas that are typ-
ically exploited. A sparse matrix has only a small number afzero elements in it and
hence can be represented compactly. A data-sparse mattheasther hand may have
many non-zero elements, but the actual information contetiite matrix is small enough
that it can still be expressed compactly. A simple examplehelp convey this concept.
Consider taking the cross product of two vectors, each ajtlem Although the resulting
matrix (which is rank-1 by construction) could be non-spamse only need two vectors
(O(n)) to represent the contents of the enti@(n?)) matrix. Such matrices are data-
sparse. More generally, any matrix in which a significant banof sub-blocks can have
a low-rank representation is data-sparse. Note that admk-sub-block of a matrix need
not be smooth and may contain high frequencies. A frequenayavelet-based technique
would be ineffective in compressing this block. Therefdhe, concept of data-sparseness
is more general and powerful than sparseness or smoothness.

Ramamoorthi and HanrahaRIH0]] analyze the smoothness in BRDFs and use it for
efficient rendering and compression. A complete frequepages analysis of light transport
has been presented by Durand et BIHE"05]. The idea of exploiting data-sparseness for
factorizing high dimensional datasets into global lowkrapproximations has also been
investigated, in the context of BRDRSI}199, MAAO1, LK02] and also for light fields and
reflectance fields\[T04, WWS"05]. In contrast to these global approaches, we have de-
veloped a technique called symmetric photography that lesas low-rank factorizations
to exploit the data-sparseness of the transport matricestid\in the factorization with
a hierarchical subdivision scheme (see ChapjerThis hierarchical subdivision allows
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us to exploit the data-sparseness locally. We also presether method for acquiring
reflectance fields called dual photography. This method erploits the sparseness in
transport matrices (see Chap8r The exposition of the techniques should make it clear
that symmetric photography, which exploits data-sparsgrie more powerful and general
than dual photography, which exploits only sparseness.

2.2.2 Data-Sparseness of the Transport Matrix

In order to understand the data-sparseness of transpartcesatwe will work with the
5D representation of the light fields. Under the light fielpggadigm, the appearance of a
scene can be completely described by an outgoing radiastréodiion function[o(x, ).
Similarly, the illumination incident on the scene can beadiégd by an incoming radiance
distribution functionL; (x, w).

The relationship betweeln (x, w) andL,(x, w) can be expressed by an integral equa-
tion, the well known rendering equatiok;j86]:

[o(x,w)zfi(x,w)+// K(x, w;x', 0 )Lo(X, w')dx'de’ (2.4)
vJ/a

The functiorK (x, w; X', w') defines the proportion of flux frorx’, &) that gets transported
as radiance t0x, w). It is a function of the BSSRDF, the relative visibility ¢f', «/) and
(X, w) and foreshortening and light attenuation effects. Whenx’, K(x, w;x’, ') = 0.

If we assume that the scene is composed of a collection ofl gaalar facets, and if
we discretize the space of rays, eB.4 can be expressed in discrete form as:

Coli) = Lifi] + 3 K i, JJColj] (2.5)
J

whereL, andL; are discrete representations of outgoing and incoming fighls respec-
tively, andK[i,i] = 0. We can rewrite eq2(5) as a matrix equation:
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Figure 2.1 Understanding the transport matrix. To explain the intrinsic structure of
reflectance fields, we capture the transport matrix for 4 geahes shown in row (a) with
a coaxial projector/camera pair. The scenes in differeltnons are: (I) a diffuse textured
plane, (1) two diffuse white planes facing each other atrgie, (1) a diffuse white plane
facing a diffuse textured plane at an angle, and (IV) twaudiéf textured planes facing each
other at an angle. Row (b) shows the images rendered fronagitared transport matrices
under floodlit illumination. A 2D slice of the transport miatfor each configuration is
shown in row (c). This slice describes the light transpotivMeen every pair of rays that
hits the brightened line in row (b). Note that the transpoatn® is symmetric in all 4
cases. Since (l) is a flat diffuse plane, there are no secgrmamces and the matrix is
diagonal. In (1), (IIl) and (IV) the diagonal correspondsthe first bounce light and is
therefore much brighter than the rest of the matrix. Thertght and bottom-left sub-
blocks describe the diffuse-diffuse light transport fromets on one plane to the other.
Note that this is smoothly varying for (). In case of (lllha (IV), the textured surface
introduces high frequencies but these sub-blocks arelatdl-sparse and can be represented
using rank-1 factors. The top-left and bottom-right subekbk correspond to the energy
from 3rd-order bounces in our scenes. Because this eneaggusd the noise threshold in
our measurements we get noisy readings for these sub-blRoks(d) is a visualization of
the level in the hierarchy when a block is classified as ranW/dite blocks are leaf nodes,
while darker shades of gray progressively represent logwel$ in the hierarchy. Finally,
row (e) shows the result of relighting the transport matrihva vertical bar. Note the
result of indirect illumination on the right plane in (1lJI) and (IV). Since the left plane
is textured in (IV) the indirect illumination is dimmer tham(lIl). Note that the matrix for
a line crossing diagonally through the scene would lookIgimi
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Eq. (2.6) can be directly solvedqaj86€] to yield:

Lo= (I —K)™L; (2.7)

The matrixT = (I —K )~ describes the complete light transport between the 5D incom
ing and outgoing light fields as a linear operatddeckbert Hec97] uses a similar matrix
in the context of radiosity problems and shows that such ioestrare not sparse. This
is also observed by Borm et alBGHOJ in the context of linear operators arising from
an integral equation such as e®.4). They show that even though the kerikelmight
be sparse, the resulting matiik— K)~1 is not. However, it is typically data-sparse. In
particular, the kernel is sparse because of occlusiongjumito multiple scattering events
one typically observes light transport between any pairadifs in the scene, resulting in
a denseT. On the other hand, we observe that a diffuse bounce off & paithe scene
contributes the same energy to large regions of the scensimikar fashion. Therefore,
large portions of the transport matrix, e.g. those resgitiom inter-reflections of diffuse
and glossy surfaces, adata-sparse One can exploit this data-sparseness by using local
low-rank approximations for sub-blocks ®f We choose a rank-1 approximation.

Figure2.lillustrates this data-sparseness for a few examples apahmatrices that
we have measured, and also demonstrates the local rankrdxapption. To gain some
intuition, let us look at the light transport between two loganeous untextured planar
patches. The light transport between the two is smooth andeaeasily factorized. It
can be seen in the top-right and bottom-left sub-blocks efttansport matrix for scene
(IN. Even if the surfaces are textured, it only results irprgpriate scaling of either the
columns or rows of the transport matrix as shown in (I11) aiw.(This will not change the
factorization. If a blocker is present between the two padclit will introduce additional
diagonal elements in the matrix sub-blocks. This can onlpdredled by subdividing the
blocks and factorizing at a finer level, as explained in Céet

INote that our derivation is similar to that of Seitz et aBMKO05]. They derive the formula for light
transport between the first bounce 4D light field and outgdindight field, whereas our derivation is for
complete 5D radiance transfer.
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2.3 Symmetry of the Transport Matrix

Helmholtz reciprocity, the idea that the flow of light can be&eetively reversed without
altering its transport properties, was proposed by von Heltm in his original treatise in
1856 vH56]. He proposed the following reciprocity principle for besutnaveling through
an optical system (i.e., collections of mirrors, lensesms, etc.):

Suppose that a beam of light undergoes any number of reflections or refractions,
eventually giving rise (among others) to a beBnwhose power is a fractiohof beamA.
Then on reversing the path of the light, an incident Bawvill give rise to a bear®\’ whose
power is the same fractidnof beamB’.2

In other words, the path of a light beam is always reversdue, furthermore the rela-
tive power loss is the same for the propagation in both doast Although Helmholtz
only made this claim for specular interactions, Rayleigieraxtended the reciprocity
to include non-specular interactionRdy0(. Helmholtz reciprocity has been exploited
in many graphics applications to reduce computational dexity, for example, in ray-
tracing systemsWhi80]. For a more complete discussion on reciprocity, intecestaders
are referred to Veach/ga97.

For the purpose of this work, this reciprocity can be usecetive an equation describ-
ing the symmetry of the radiance transfer between incomimjautgoing directiong);
andp:

R(Wi; Yo) = R(Yo; Yr) (2.8)

whereRis the reflectance field (see AppendiXor a detailed proof). For the light transport
matrix defined in Sectiof.1, this implies that the transport of light between airapd and
arayj is equal in both directions, i.e.

T, j] = T[j,i] (2.9)
=T =TT (2.10)

Therefore,T is a symmetric matrix. This is also clear from Fig@&d row (c). Also, note
that since we are looking at a subset of rays (4D from 5Djs just a sub-block off .

2Paraphrased from Chandrasheki@in46Q
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Figure 2.2 Duality of the transport matrix. The left diagram shows the primal config-
uration, with light being emitted by a real projector andteagd by a real camera. Matrix
T describes the light transport between the projector andaheera (elemeri|[i, j] is the
transport coefficient from projector pixgko camera pixel). The right diagram shows the
dual configuration, with the positions of the projector aadhera reversed. Suppofé

is the transport matrix in this dual configuration, so tidij,i] is the transport between
pixel i of the virtual projector and pixgl of the virtual camera. As shown in Appendh
Helmholtz reciprocity specifies that the pixel-to-pixensport is equal in both directions,
i. e. T"[j,i] = T[i, ], which meang” = TT. As explained in the text, giveh, we can use
T to synthesize the images that would be acquired in the dudilgzoation.

Therefore,T is also data-sparse.

2.4 Duality of the Transport Matrix

The symmetry property of the transport matrix holds whenamgpuisition system can mea-
sure the outgoing ray corresponding to each incoming rafelfacquisition setup is such
that the source of radiation (e.g. a projector) and the seg@sg. a camera) sample dif-
ferent subsets of incoming and outgoing rays respectittedy) the transport matrix which
describes this light transport is not symmetric. It turnstbat the transport matrix exhibits
an interesting duality property in this case.

We explain this with reference to Figue2 We have a projector of resolutignx q
shining light onto a scene and a camera of resolutionn capturing the reflected light.
Since the light transport is linear, we can express the liggrisport from the projector
through the scene and into the camera with the following Ereguation:

d=Tp (2.11)
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T

Figure 2.3 Duality as a corollary of symmetry. The duality of the light transport can be
seen as a corollary of the symmetry of the transport matrecaBsel = TT, therefore, if
T describes the light transport fropi to ¢/, thenT" describes the light transport froc
top”.

The column vectop' is the projected pattern (size x 1), andc’ (sizemnx 1) repre-
sents the image captured by the camera. Mir(size mnx pq) is the transport matrix
that describes how light from each pixel@farrives at each pixel af .

We use the prime subscrig) to indicate that we are working in the primal space to
distinguish it from its dual counterpart, which we will iotfuce in a moment. Then, by
using the principle of Helmholtz reciprocity as describedhe previous section, we can
represent the dual of eg.11as follows:

p'=TT¢ (2.12)

In this equation, the transport matiixof the scene is the same as before except that
we have now transposed it to represent the light going froencdimera to the projector.
We shall refer to eg2.11as the “primal” equation and e@.12as the “dual” equation. In
the dual spacey” represents the virtual image that would be visible at théegtor if the
camera were “projecting” pattef. We can also derive this duality as a corollary to the
symmetry of full transport matriX of which Tis just a sub-block. This is described in
Figure2.3

Thus, because of the duality, tHematrix can be acquired in either space and then
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transposed to represent the light transport in the othexespiis important to note that the
two equations are not mathematical inverses of each otlee(T T + I). This is because
energy is lost in any real system through absorption orescatf. Therefore, if we measure
¢ after applyingp’, we cannot put this back icf’ and expect the resulting’ to equal the
original p’.



Chapter 3

Dual Photography: Exploiting
Sparseness

The full transport matrix between a single camera and ptojguir is extremely large (on
the order of 18 x 10° for conventional projector/camera resolutions). Thusjescribed
in the introduction (Chaptet), a brute-force scan, in which each projector pixel is illum
nated individually, would take days to acquire it. In thisapter, we develop a technique
calleddual photographyvhich exploits the sparseness in the transport matrix tedog
the acquisition process. The basic idea of this scheme tisrisiad of sequentially illu-
minating the projector pixels, we would multiplex the illurated pixels spatially over the
projector pattern, i.e. illuminate multiple pixels at treenge time. In order to understand
when we can do this multiplexing, let us analyze the follayvinstance of the transport

~ uir o
o[ o] o

matrix:

whereU1l andU2 are unknown. As per our abstraction of the transport matnyow in-
dices correspond to the camera pixels while the column @sdtorrespond to the projector
pixels. For the above matrix, we observe that the blddksandU2 are radiometrically
isolated, i.e. the projector pixels corresponding/fiodo not affect the camera pixels corre-
sponding tdJ2; and vice versa. Thus, we can illuminate the projector gigetresponding
toUlin parallel with projector pixels correspondingi@ without mixing the contributions

21



22 CHAPTER 3. DUAL PHOTOGRAPHY

due to both in the camera image. The demultiplexing woulgsimequire identifying the
pixels corresponding to1 andU2 in the camera image. The dual photography technique
is based on this idea and it tries to identify such radioroaliy isolated regions in the
matrix. A sparse transport matrix will have many such regiand hence can be acquired
efficiently by this technique. We describe the techniquauttsgquent sections.

3.1 Adaptive Multiplexed Illumination

Our algorithm tries to acquire the transport matrix with e patterns as possible while
ensuring that projector pixels affecting the same cames pre never illuminated simul-
taneously. We avoid such conflicts by subdividing the prtojespace adaptively; starting
with the floodlit projector image, we subdivide it into fouobks, which are refined recur-
sively until we reach the pixel level. Whenever we subdivédelock, we illuminate the

four children in sequence. A walk-through example of th@gatgm is given in Figures.1

Two blocks can be investigated/subdivided in parallel ifaamera pixel received a
contribution from both blocks. At each level of the subdimrs we determine for each
camera pixek the blocksBy = {By,...,Bn} which illuminate pixelk either indirectly or
directly. For all possible pairs of blocks contributing keetsame camera pixel, we generate
a conflict seCy = {(B;, Bj) : Bi,Bj € Bx}. In the next iteration, the only blocks that need
to be subdivided are iB = [J, Bk, i.e. only the blocks that contributed to any camera pixel.
In this manner, blocks that do not contribute to the final imegany way are immediately
culled away.

Given the set of all generated conflicts across all camemgx= | J, Ck, we define
a graph(B,C). A graph coloring scheme is used to determine conflict-fréessts ofB
which can be investigated in parallel. While there might leeuaflict for two blocks in one
iteration, further subdivision might allow sub-blocks @ jparallelized.

At the final subdivision level, each block is the size of a pixéowever, we can guar-
antee that no two projector pixels have a conflict in the canmaage because these pixels
would not have been scheduled in the same pattern otheBeésause we know the history
of the subdivisions for that pixel, we can determine the egarespondence between pro-
jector and camera pixels. Using this fact, we can fill in thiies of theT matrix with the
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Figure 3.1 Example of adaptive algorithm. This example shows patterns that would
be displayed on an 8 8 pixel projector for each level of subdivision. The numbiers
each block indicate the frame when it is lit. In the first fraftevel 1), all pixels are on.
We subdivide it in level 2 into four children, which are aaga sequentially in clockwise
order (frames 2-5). In this example, we assume some camezis pespond to both blocks
2 and 4, e.g. due to inter-reflection within the scene. We tietih@ conflict between these
blocks with red X’s. In level 3 (frames 6-13), we ensure the thildren of these two
blocks are not scheduled for acquisition during the sanmadraWhile acquiring level 3,
we discover two additional conflicts: (6 and 12) and (8 and Bl)ppose also that block
9 in the lower left measured nothing, so it is culled. We noweslule level 4, avoiding
scheduling the children of conflicting blocks together, ethbrings us to frame 21. Thus,
we can acquire the transport matrix in this example with @ilyframes when 64 would
be required with the brute-force scan. Had there been noicnfihe number of frames
would be the number of subdivision levels times four (4 at@ifdat each level) plus one for
the floodlit image. This gives usxlog,(pq) + 1 = 13 for this example.
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Figure 3.2 Adaptively parallelized patterns. This figure demonstrates that how our
algorithm adapts to the scene content. Because of the crriigie transport within the
bottle visible in the left image, only a few pixels can be isttgated in parallel in this
region. Thus, the bottle remains relatively dark when wgqmtoan adaptive pattern as
shown on the right.

values measured at the camera. Fighigsshows the projection of one of the patterns onto
the scene. The large number of white projector pixels higittéi the efficient parallelization
of the acquisition.

Although the adaptive parallelization algorithm just désed works on most scenes,
it may perform poorly in scenes where diffuse inter-refl@asi or subsurface scattering
dominates the appearance. These scenes are particulalignging because the energy
emitted by a single projector pixel might be spread overdagas in the scene. In an
extreme case, this overlap might cause the algorithm tadst@every pixel of the projector
in a separate frame, thereby degenerating into the brute-g&can algorithm.

The adaptive scheme just presented can also fail to captwkthe energy measured
by the projector. In certain cases, a point in the scene ngjlect only a small fraction
of its energy towards the camera. If this contribution isolethe noise threshold of the
camera, some blocks may be erroneously culled and theigehest. This causes the
technique to fail to capture diffuse-diffuse inter-reflens, as shown in Figurd.3. We
show in the next section that by modifying the adaptive atgor to store the energy in a
hierarchical fashion, we can avoid this problem.
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Figure 3.3 The problem of capturing diffuse inter-reflections. Applying the adaptive
parallelization algorithm described in Secti8ri and subdividing down to the pixel level,
we produce the dual image on the left. The contribution ofdiffese inflections between
the box and the red wall are nearly lost in the camera noiseguise hierarchical assembly
of the transport matrix described in Secti®s2, we preserve the energy from higher levels
in the subdivision, leading to the improved dual image orritjet.

3.2 Hierarchical Assembly of the Transport Matrix

To address the problem of signal loss for scenes with sigmfinon-localized light trans-
port, we employ a hierarchical representation of the trartspatrix. This method is related
to the wavelet environment matting technique by Peers aneRDO0J. It is also similar
to the hierarchical technique of Matusik et aML[P04], with adaptation added. Specifi-
cally, we follow the subdivision scheme of the previous seGtbut build a finer and finer
representation of at every subdivision level. At level 1, our approximationTofs sim-
ply a column vector of lengtimnrepresenting the image captured while illuminating a
floodlit imagep’. We call this approximatiof?l. Intuitively, T1 represents the light trans-
port between the camera and a one-pixel projector. At théleegl, our approximation
T, contains four columns, one for each of the four subdividegores. This continues
down to the pixel level where the matrix with 4<1 columns matches the resolution of
the original?. The energy for each element of the matrix is stored at oné/lewel (at
the highest possible resolution that still returns a mesbualue) since we do not want to
double-count the energy. For a complete overview of therdlgua, readers are referred to
the pseudocode in Appendx L

The benefit of this hierarchical representation is that thergy is stored at the last
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dual level 6 level 7 level 8 level 9 level 10

Figure 3.4 Construction of the dual image with a hierarchical represenation. The
primal and dual image show diffuse to diffuse inter-refl@es which could only be cap-
tured by use of the hierarchical acquisition. Energy thahthave been lost when further
subdividing a block is deposited at a coarse level ofthmatrix. To synthesize the dual
image, the levels are individually reconstructed by apyg\ythe appropriate basis functions,
then added together to obtain the image on the left. In thisdithe intensity of the images
for level 1 to 9 has been increased to visualize their coutiob.

level where it can still be accurately measured. A thresi®lased to decide whether to
subdivide a specific block or to store its contribution at ¢hierent level of the hierarchi-
cal structure. If the contribution is stored, we terminatedivision of that block. The
threshold is set empirically and depends on the charattsrisf the measurement system.

In order to synthesize an image from the acquired transpdat the contribution of the
different levels of the hierarchy need to be added togetirezdich pixel in the final image.
This reconstruction can be expressed in the following nma#ieal form:

¢ = ;f(fkp@ (3.2)

p’ = Z f(Tpc") (3.3)

where eq. 3.2) is the rendering equation for primal configuration and 8P)(is the ren-
dering equation for the dual configuration.

We will explain the elements of these equations as we desoribrendering algorithm
for the dual case, eq3(3 (note that the primal case is analogous). First, the disire
light patternc” is applied to theT approximation at each level to illuminate the scene
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Figure 3.5 Setup for dual photography. A pattern loaded into projector on the right
illuminates the scene and the camera on the left recordautigeing radiance. The camera
used is a Basler A504kc (12801024 pixels) and the projector is a Mitsubishi X480U
(1024 768 pixels). The setup is computer controlled, and we caegiiDR images every
2.5 seconds.

for that level of the hierarchy. This is expressed by the dotjpct'flc” which results

in a 4-1 x 1 column vector. Referring to eq2.(L2), we see that this vector represents
the 4-1—pixel image that would be viewed at the projector under lint”. Figure3.4
shows a visualization of (T ' ¢”) of levels 1 through 10 for one of our scenes.

We must now add up the energy at each level to generate thénfiage. Because each
of these vectors is of different dimensions, they must bzedsto the final resolution of
the image in order to be added up. We represent this resizpagaton by the function
f. The functionf is needed to generate a continuous waveform from the dessaghples.

In our present implementation, we use bi-cubic interpofafor f. Once the vectors have
been resized, we simply add them to get the final image.

3.3 Acquisition Setup

The capture setup for the dual photography algorithm reguar projector and a camera.
There is no restriction on the location of the camera and thgegtor. Also there is no
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geometric calibration required. Our particular captureises shown in Figur&.5. The
capture system is controlled by a computer. For a detailsdrgigion of the capture system
architecture and the pre-processing steps involved bgfiteng the image data, the reader
is referred to AppendiB.

3.4 Results

The technique presented allows us to efficiently capturertmesport matrixT of a scene
and measure many global illumination effects using only alenate number of patterns
and images. FigurB.6is an example of an image acquired with this technique. Nude t
capability of the algorithm to capture the complex refractinrough the bottle. This image
is 578x 680 pixels and was acquired in a little over 2 hours. In catti@abrute-force pixel
scan would take almost 11 days at the same resolution (asguzbiHDR images/min).
Figure 3.7 shows two more scenes that were acquired using the hiecatdiechnique.
To show that the algorithm accelerates our acquisition asdlts in a manageable size of
the T matrix, we list relevant data for various scenes in Table We compare it against
calculated values for a brute-force pixel scan acquisitassuming a capture rate of ap-
proximately 25 patterns/minute. The data is stored as tBPeleit floats for each matrix
element. We can see that our technique is several orders grfiitnde more efficient in
both time and storage space, although further compressstiilipossible.

To characterize the effect of projector resolution on oardnichical adaptive algorithm,
we plot the number of acquired frames against projectotuésa in Figure3.8for the box
scene (Figur&.4) and the bottle scene (FiguBe6). As we increase the resolution expo-
nentially, the curves approximate a straight line. Thissghthat the adaptive multiplexed
illumination approach operates @(log pg) time wherepqis the projector resolution.

3.4.1 Scene Relighting

Once the transport matrix between the projector and the r@ahees been acquired, it can
be used to relight the primal and dual images by multiply?ngnd TT by the desired
illumination vectorg’ andc” respectively.
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Figure 3.6 Complex light transport example. (a) Conventional photograph of a scene,
illuminated by a projector with all its pixels turned on. @iter measuring the light trans-
port between the projector and the camera using structlizadimation, our technique is
able to synthesize a photorealistic image from the poini@fnof the projector. This im-
age has the resolution of the projector and is illuminatea kight source at the position
of the camera. The technique can capture subtle illuminagftects such as caustics and
self-shadowing. Note, for example, how the glass bottl@édrimal image (a) appears as
the caustic in the dual image (b) and vice versa. Because veedaiermined the complete
light transport between the projector and camera, it is éasglight the dual image using
a synthetic light source (c) or a light modified matte capluater by the same camera (d).
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Figure 3.7. Sample scenesThe acquired primal image is on the left, the synthesizedl dua
image on the right. Note for example the detail on the piliethie dual image of the bottom
row which is barely visible in the primal due to foreshortemi
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Brute-force scan Dual photography

SCENE Size TIME Size  TIME PATTERNS
(TB) (days) (MB) (min) (#)

Fig. 3.4 3.7 7.3 179 14 352

Fig. 3.7 (top) 16 83 56 19 501

Fig. 3.7 (bottom) 14 83 139 15 369

Fig. 3.6 5.4 10.9 272 136 3397

Fig. 3.9(80 positions)| 114 362 6,675 1,761 19,140

Table 3.1 Table of relevant data (size, time and number of patteorsjifferent example
scenes captured using the dual photography technique.
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Figure 3.8 Logarithmic behavior of adaptive algorithm. Plot of the number of required
patterns for the scenes in Figu8é and Figure3.4 against the projector resolution reveals
that the algorithm operates @(log pqg) time.
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In Figure 3.6, we demonstrate this by relighting the dual image of the sagith a
high frequency light pattern and can see that the caustiwsrgeed by the glass bottle vary
spatially with illumination.

Since our adaptive algorithm is fast, we can also use a sgagteera to acquire the 6D
reflectance field of a scene by moving it in a manner analogotisat of Masselus et al.
[MPDWO03 where they moved the projector. Figused shows the relighting of a scene
which was acquired in this manner by mounting the camera @mgoaterized gantry.

3.5 Discussion and Conclusions

In this chapter, we have developed an adaptive algorithiridbks for regions of the scene
whose transport paths do not interact. This permits us tegrmany beams into the scene
at once, letting us measure multiple entries of the trarigpatrix in parallel. Once we
acquire the transport matrix, we have shown that the scemeeaelit by multiplying the
transport matrix by the appropriate vector. This allowsaufiiminate a scene with a point
light with directional control or an arbitrary light field.

There are some limitations of our technique, however. Scenth significant global
illumination would reduce the parallelism that the adaptlgorithm exploits. Since mul-
tiple projector pixels can affect overlapping regions ie tamera after several bounces,
they would be scheduled in separate passes. In the limitettisique degenerates to a
brute force scan.

Measuring inter-reflected transport paths accuratelysis alproblem, especially when
the angle of view of the projector and the camera is large véfipect to the scene. Fig-
ure 3.10shows an example of a difficult scene to relight because the@and the pro-
jector were at right angles to one another. In the next chepte will use a data-sparse
assumption on the matrix instead of sparseness assumpinohpresent the acquisition
algorithm called symmetric photography based on this aptomin Chapteb. This will
alleviate the above mentioned problems.
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Figure 3.9 Scene relit from multiple directions. Using a camera mounted on a com-
puterized gantry, we acquired the transport matrix for #tsne at 80 different camera
positions. We can then relight the dual image with a lightrsedocated at these positions,
e.g. (a) one on the left or (b) on the right. By combining thatabutions of these lights,
we can illuminate the scene with an area light source (c)dasts soft shadows. Finally,
because each transport is captured at high resolution, mveetight the scene using a high
resolution matte as shown in (d).
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(@) (b)

Figure 3.1Q Limits of the hierarchical assembly of the T matrix. In this example, the
camera is above the box looking down while the projector itherright illuminating from
the front, as can be seen in the primal image (a). Because tHripe difference in the angle
between the camera and projector viewpoints, there are megigns in the scene where
there is no direct light transport. In these regions we a@leto resolve the transport
matrix to the full resolution, and thus have to fall back tgher levels of the hierarchical
tree. This results in a blurred dual image (b). Neverthelessremarkable that the mirror
reflection is captured, even though the mirror is barelyblesin the primal image.



Chapter 4

Hierarchical Tensors: A Data Structure
for Data-sparse Tensors

The dual photography technique described in Chepéxploits the sparseness in the trans-
port matrix (the fact that there are a lot of zeros) to spgetha acquisition process. How-
ever, it has its limitations as the transport matrix is natessarily sparse in many cases.
But it turns out that the matrix is data-sparse, as explain&ection2.2 We exploit this
data-sparseness in the acquisition algorithm present@tapters. In this chapter, we will
describe the data-structure that we will use to represdatsfzarse matrices/tensors.

We introduce a new data structure call@drarchical tensorgo represent data-sparse
tensors. Hierarchical tensors are a generalization ohtghrcal matrices (ap7’-matrices)
which we will explain first.

4.1 Hierarchical Matrices

Hierarchical matrices (op7’-matrices) were introduced by Hackbudtalc99 in the ap-

plied mathematics community to represent arbitrary dptase matrices. The basic idea
is to split a given matrix into a hierarchy of rectangulardis and approximate each of the
blocks by a low-rank matrix (see Figudel). Specifically, at each level of the hierarchy,
sub-blocks in the matrix are subdivided into 4 children (aa guadtree). If a sub-block at
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CHAPTER 4. HIERARCHICAL TENSORS

®

Level 2

I

Level 4

Low-rank approximation

Figure 4.1 Example of a hierarchical matrix. This example shows 4 levels of a hierar-
chical matrix. The matrix is sub-divided like in a quadtrBerple blocks are the sub-blocks
for which a low-rank approximation is possible. They areswdidivided any further in the
hierarchy. On the other hand, for green blocks a low-rank@pmation is not possible.
They are subdivided and investigated further. At level % finl matrix is investigated
and it does not have a low-rank representation. Therefoiesubdivided into 4 children
which are investigated in level 2. At level 2, the top-rightidbottom-left blocks are clas-
sified as low-rank and not subdivided any further whereadetimnd bottom-right blocks

are scheduled for further investigation.
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any level in the tree can be represented by a low-rank apption, then it is not subdi-
vided any further. Thus, a leaf node in the tree contains arbovik approximation for the
corresponding sub-block, which reduces to just a scalaleval the finest level in the hier-
archy. Based on this structure, approximative algorithongrfatrix arithmetic, inversion,
preconditioning and even matrix equations can be introdidicat work in almost optimal
complexity. For a more complete discussion#gfrmatrices, interested readers are referred
to [BGHO03.

4.2 Hierarchical Tensors

Consider the 4D reflectance field that describes the ligmspart for a single projec-
tor/camera pair. We have a 2D image representing the illatian pattern and a resulting
2D image captured by the camera. The connecting light tabhspan therefore be repre-
sented by a 4th-order tensor. One can alternatively flatt¢the 2D image into a vector
and represent the reflectance field with a matrix (a 2nd-destesor), but that would destroy
the spatial coherency present in a 2D ima@&§S*05]. To preserve coherency we rep-
resent the light transport by a 4th-order hierarchicalaen&nalogous to the hierarchical
matrix representation, a node in the 4th-order hierartheceor is divided into 16 children
at each level of the hierarchy. Thus, we call the hierardisigldivision for a 4th-order ten-
sor, asedectrek This is in continuation of the tradition of deriving the éreames from
their Latin counterparts. e.guadtreefrom 4 nodes in a 2nd-order tensor subdivision and
octreefrom 8 nodes in a 3rd-order tensor subdivision. Quadtreeatrde were first intro-
duced in the graphics community by Warnoddr69g; and Hunter and SteiglitA-Hun79
respectively and have been comprehensively surveyesiams.

Unlike in the case of a matrix where a unique low-rank appr@tion can always
be obtained using SVD (Singular Value Decomposition),aherno analogous SVD for
higher order tensors. Thus, there is no unique way to defiegahk of a higher or-
der tensor. There are two tensor decompositions that arenoniy used. One is called
the CANDECOMP-PARAFAC decomposition (CANonical DECOMRms or PARAI-
lel FACtors model) which was independently proposed by @eand ChangCC7Q and

lderived fromsedecimLatin equivalent of 16
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j ! — 4th-order tensor
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Image 2
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Figure 4.2 Rank-1 approximation of a 4th-order tensor. The figure illustrates how
to represent a sub-block of a 4th-order tensor by a rank-toappation. The tensor is
described by the tensor product of two 2D images. It is a rhalpproximation because
only one pair of images is needed.

HarshmanHar7(Q. This decomposition does not impose any orthogonalityst@amt on
the vectors resulting from the decomposition but provides doncept of the rank of a
tensor. The other commonly used tensor decompositionlesdcede HOSVD (Higher Or-
der Singular Value Decomposition) which was proposedlV00]. It is based on the
Tucker decomposition form of a tensor proposed bycbq. Although this decomposi-
tion imposes orthogonality constraint on the vectors,ghiemo concept of tensor rank.
HOSVD has been used in graphics community for efficient rendgVvT04] and com-
pression WWS05] from high dimensional data.

Under the general hierarchical tensor framework proposeé, lany appropriate tensor
decomposition can be used depending upon the demands opplieagion. In order to
capture the data-sparseness in a tensor, for the purpolsis @fdrk, we represent the 4th-
order tensor as a tensor product of two 2D images, one frorodimera side and the other
from the projector side, see Figu4e2 We call it a rank-1 approximation, where the rank
is defined by the number of 2D image pairs used for represgtiimtensor.

A hierarchical tensor offers many benefits for our purposecddise of our rank-1
approximation, a sub-block of the 4th-order tensor can tsedtcompactly using just two
2D images. By using a clever hierarchical structure, thetwmed of using a hierarchy can
also be minimized. The worst case storage complexity of régsesentation i$O(n*))
while the best case {©(n?)), wherenxn is the image resolution. In practice, we will get
something in between depending on the data-sparseness t&ntor. The data structure
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also provides constant time data-access during rendeongthe data. This is because the
depth of the tree in our hierarchical representation is tzons

4.3 Discussion and Conclusions

In this chapter we have introduced a new data structureddaiégarchical tensorshat can
be used to efficiently represent data-sparse tensors.relecal tensors are a generalization
of hierarchical matrices. Besides providing an efficieptesentation for storage, it enables
fast acquisition of the approximated transport matrix aasd fendering of the images from
the captured matrix. Thus, the hierarchical tensor turndmbe a natural data-structure
for our acquisition algorithm that we will explain in Chapte
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Chapter 5

Symmetric Photography: Exploiting
Data-sparseness

In this chapter we will explain our symmetric photographghi@ique for acquiring re-
flectance fields. Symmetric photography generalizes duatiginaphy by exploiting data-
sparseness rather than just sparseness. Here again, ths gmée able to illuminate
multiple projector pixels at the same time rather than ilhating them sequentially.

In order to understand how we can illuminate multiple prtgepixels at the same time,
let us assume that the transport matrix is:

ui 0
= +
0 U2
whereU1 andU2 have not been measured yet. Note that here we are dealingyvith
metric transport matrix. In Chapt8rwe utilized the fact that iM = O, then the unknown

0 M
MT 0

uir ™M

5.1
MT U2 ®-1)

blocksU1 andU2 are radiometrically isolated, i.e. the projector pixelsresponding to
U1 do not affect the camera pixels correspondingy®and vice versa. Thus, we can illu-
minate the projector pixels correspondind.tt andU2 in parallel in such cases. Here, we
observe that if the contents & are known but not necessarily we can still radiomet-
rically isolateU1l andU2 by subtracting the contribution of knowyl from the captured
images. The RHS of eq.5(1) should make this clear. We use this fact to illuminate the
projector pixels corresponding tél andU2 in parallel wherM is known.

41
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Figure 5.1 Obtaining a rank-1 approximation. An image captured by the camera is
the sum of the columns in the transport matrix correspontbirtge pixels illuminated by
the projector. Therefore, on illuminating the camera image would be the sum of the
columns of the matriM; and on illuminatingp, the camera image would be the sum
of the columns of the matrik1 T or the sum of the rows of the matrM as shown in the
capture part. The tensor productoéndr after normalization withm provides a rank-1
approximation oM.
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Now, consider a sub-blockl of the transport matrix that is data-sparse and can be
approximated by a rank-1 factorization. We can obtain taigkl factorization by just
capturing two images. An image captured by the camera isuimecd the columns in the
transport matrix corresponding to the pixels illuminatectibe projector. Because of the
symmetry of the transport matrix, this image is also the s@isbaesponding rows in the
matrix. Therefore, by shining just two projector patteqmsandp,, we can capture images
such that one provides the sum of the colunmand the other provides the sum of the
rows,r of M (c = Mpc andr = MTp,). A tensor product ot andr after appropriate
normalization directly provides a rank-1 factorizatiom fd (see Figures.1). Thus, the
whole sub-block can be constructed using just two illumorapatterns. This is the key
idea behind our algorithm. The algorithm tries to find such-BlocksM in T that can
be represented as a rank-1 approximation by a hierarchidaligsion strategy. Once
measured, these sub-blocks can be used to parallelizedhes#ion as described above.

5.1 Hierarchical Acquisition Scheme

Our acquisition algorithm follows the structure of the hiehical tensor described in Chap-
ter4. At each level of the hierarchy we illuminate the scene witbva projector patterns.
We use the captured images to decide which nodes of the ten#oe previous level of
hierarchy are rank-1. Once a node has been determined tolkd rave do not subdivide
it any further as its entries are known. The nodes which lfelrank-1 test are subdivided
and scheduled for investigation during the next iteratidhe whole process is repeated
until we reach the pixel level. We initiate the acquisitionibuminating with a floodlit
projector pattern. The captured floodlit image provides ssjiide rank-1 factorization of
the root node of the hierarchical tensor. The root node isdaled for investigation in the
first iteration.

For each level, the first step is to decide what illuminatiattgrns to use. In order to
speed-up our acquisition, we need to minimize the numbehnexdd patterns. To achieve
this, our algorithm must determine the set of projector kdowhich can be illuminated in
the same pattern. To determine this, we divide each sche:dwalée into 16 children and
the 4 blocks in the projector corresponding to this subdivisire accumulated in a list
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Bj and B can be scheduled together iff
VByeB : (Tikis known v Tyis known)

B; and B; cannot be scheduled together iff
dBxeB : (Tikis unknown ATy is unknown)

Figure 5.2 Determining block scheduling. Two blocksB; andB; can be scheduled in the
same frame if and only ifyBy € B, the light transporTi, or Ty is known. Therefore, two
blocksB; andBj cannot be scheduled in the same frame if and onlyBf, < B, such that
the light transport3j, andTjk are both unknown. This is because upon illumina@ngnd

Bj simultaneously, the blocBy in the camera will measure the combined contribution of
both T, andTj. If both of these are unknown at this point there is no way pasgte them
out.

B = {B1,By,...,Bn}. Figure5.2describes the condition when two blodksandB; can be
scheduled in parallel. It can be written as the following thean

Lemma 1 (Block Scheduling Lemma) Two blocks Band Bj can be scheduled together
if and only if,VBy € B, at least one of jf or Tjx are known.

We can use this lemma to derive a corollary for when two bldgkandB; cannot be
illuminated in parallel. We will use this corollary for outdzk scheduling algorithm.

Lemma 2 (Block Scheduling Lemma Corollary) Two blocks Band B; can not be sched-
uled together if and only ifJBy € B, such that bothf and Tk are not known.

Since the direct light transpofj; is not known until the bottom level in the hierarchy,
any two blocksB; andB; for which Tjj is not known cannot be scheduled in parallel. For
all such possible block pairs for which the light transpas Imot been measured yet, let us
construct a se€ = {(B;,B;) : Bj,Bj € B}. Given these two sets, we define an undirected
graphG = (B,C), whereB is the set of vertices in the graph a@dis the set of edges.
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Thus, the vertices in the graph have an edge between therm ligtht transport between
the corresponding blocks is not known. In this graph, anyvericesB; andB;j which do
not have an edge between them, but have a direct edge withrma@otlockBy (as shown
in Figure5.2), also satisfy the lemma. Therefore, we cannot schedula theparallel.
Such blocks correspond to vertices at a distance two frorh etier in our grapl@. In
order to capture these blocks as direct edges in a graph, metraot another grapt?2
which is the square of graph [Har0J. The square of a graph contains an edge between
any two vertices which are at most distance two away from e#tor in the original graph.
Thus, in the grapi&2, any two vertices which are not connected can be schedujedter.
We use a graph coloring algorithm @7 to obtain subsets d& which can be illuminated
in parallel. Once the images have been acquired, the knatnarlhock light transport is
subtracted out for the blocks that were scheduled in the $ame.

In the next step, we use these measurements to test if thar temdes in the previous
level of the hierarchy can be factorized using rank-1 apipmakon. We have a current
rank-1 approximation for each node from the previous lewehe hierarchy. The 8 mea-
sured images, corresponding to 4 blocks from the projecti and 4 blocks from the
camera side of a node, are used as test cases to validatertbiet @pproximation (note
that there are only 4 measured images if the tensor nodedsagional and hence symmet-
ric). This is done by rendering estimate images for thesekislaising the current rank-1
approximation. The 8 estimated images are compared aghesbrresponding measured
images and an RMS (root mean square) error is calculatetiéardade. A low RMS error
indicates our estimates are as good as our measurementeatetiare the node as rank-1
and stop any further subdivision on this node. If on the otfzgrd the RMS error is high,
the 16 children we have measured become the new nodes. Tragésrirom the projector
side and the 4 images from the camera side are used to cdrisieut6 (4x 4) rank-1
estimates for them. These nodes are scheduled for investiga the next iteration.

A tensor node containing just a scalar value is triviallyk-dn Therefore, the whole
process terminates when the size of the projector blockcesito a single pixel. Upon
finishing, the scheme directly returns the hierarchicasderfior the reflectance field of the
scene. For a complete overview of the algorithm, readerscéeered to the pseudocode in
AppendixC.2
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beamsplitter
camera
projector

Figure 5.3 Schematic of symmetric photography setup.A coaxial array of projectors
and cameras provides an ideal setup for symmetric photbgraphe projector array illu-
minates the scene with an incoming light field. Since thepsistgoaxial, the camera array
measures the corresponding outgoing light field.

Once the tensor has been created, the rendering from ittis stwaightforward. Any
incoming light pattern is partitioned according to the hrehy and multiplied by the ap-
propriate sub-block in the tensor. Since the size of theahiiy is constant the worst case
access time for any entry of the tensor is constant.

5.2 Acquisition Setup

In order to experimentally validate our ideas we need aniaitogun system that is capable
of simultaneously emitting and capturing along each raynanlight field. This suggests
having a coaxial array of cameras and projectors. Fi§u8shows the schematic of such a
setup. Our actual physical implementation is built usingngls projector, a single camera,
a beam-splitter and an array of planar mirrors. The projemal the camera are mounted
coaxially using the beam splitter on an optical bench as showigure5.4, and the mirror
array divides the projector/camera pixels into 9 coaxialgpdnce the optical system has
been mounted it needs to be calibrated. First, the centerogégiion of the camera and
projector is aligned. The next task is to find the per pixel piag between the projector
and camera pixels. We use a calibration scheme similar touged by Han and Perlin
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Figure 5.4 Coaxial setup for capturing 8D reflectance fields. A pattern loaded into
projector atA illuminates a 3x 3 array of planar mirrors @. This provides us with 9
virtual projectors which illuminate our scene@t The light that returns from the scene
is diverted by a beam-splitter & towards a camera &. Any stray light reflected from
the beam-splitter lands in a light trap lat The camera used is an Imperx IPX-1M48-L
(984 x 1000 pixels) and the projector is a Mitsubishi XD60U (102468 pixels). The
setup is computer controlled, and we capture HDR imagey @/seconds.

lllumination Viewing

Figure 5.5 Region of the sphere sampled by our setupOur setup spans an angular
resolution of 37 x 29° on the sphere both for the illumination and view directiofitie
spatial resolution in each view is 1300 pixels. This accounts for about 2% of the total
rays in the light field at the current sampling rate of the aepsystem.
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Symmetric photography | Brute-force

SCENE SIZE TIME PATTERNS | PATTERNS
(MB) (min) (#) (#)
Fig.2.1() | 255 44 809 108,500

Fig.2.11) | 371 70 1,085 108,500
Fig.2.1(l) | 334 65 1,081 108,500
Fig. 2.1(1V) | 274 46 841 108,500
Fig. 5.6 337 151 2,417 91,176

Fig. 5.8 1,470 484 3,368 233,657

Table 5.1 Table of relevant data (size, time and number of patteorsjifferent example
scenes captured using our technique. Note that the algorglquires about 2 orders of
magnitude fewer patterns than the brute-force scan.

[HPO3 and Levoy et al. [[CV'04] in their setup to find this mapping. Figue5illus-
trates the angular and spatial resolution of reflectancesfieghptured using out setup. The
capture system is controlled by a computer. For a detailsdrgeion of the capture system
architecture and the pre-processing steps involved bgfiteng the image data, the reader
is referred to AppendiB.

5.3 Results

We capture reflectance fields of several scenes using thisitpee. For reference, Talbel
provides statistics (size, time and number of patternsireddor acquisition) for each of
these datasets.

In Figure2.1, we present the results of our measurement for four simpleescconsist-
ing of planes. This experiment has been designed to elgcidatstructure of th& matrix.
A coaxial projector/camera pair is directly aimed at thengci this case. The image res-
olution is 310x 350 pixels. Note the storage, time and number of patternsgnextfor the
four scenes (listed in Tabk1). A brute-force scan, in which each projector pixel is iliam
nated individually, to acquire theFematrices would take at least 100 times more images.
Also, since the energy in the light after an indirect boursdew, the camera would have to
be exposed for a longer time interval to achieve good SNRhdwtute-force scanning. On
the other hand, in our scheme, the indirect bounce lighspart is resolved earlier in the
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hierarchy (see rows (c) and (d) in Figwdl). At higher levels of the hierarchy, we are illu-
minating with bigger projector blocks (and hence throwingrenlight into the scene than
just from a single pixel), therefore we are able to get goo®R®Men with small exposure
times. Also, note that the high frequency of the texturesdame affect the data-sparseness
of reflectance fields. The hierarchical subdivision follaiiost the same strategy in all
four cases as visualized in row (d). In row (e), we show thalte®f relighting the scene
with a vertical bar. The smooth glow from one plane to the othe&olumn (II), (lll) and
(IV) shows that we have measured the indirect bounce cdyrect

Figure 5.6 demonstrates that our technique works well for acquirirey résflectance
fields of highly sub-surface scattering objects. The im24@ & 340 pixels) reconstructed
from relighting with a spatially varying illumination pattn (see Figur&.6(b)) is validated
against the ground-truth image (see Figbu&c)). We also demonstrate the result of recon-
structing at different levels of the hierarchical tensartfas scene in FigurB.7. This figure
also explains the difference between our hierarchicalaterepresentation and a wavelet
based representation.

Figure 5.8 shows the result of an 8D reflectance field acquired using etups The
captured reflectance field can be used to view the scene frdtiplayositions (see Fig-
ure5.8(b)) and also to relight the scene from multiple directiosse( Figures.8a)). The
resolution of the reflectance field for this example is abort3x 130x 200x 3 x 3 x
130x 200. The total size of this dataset would be 610 GB if thredi8Boats were used
for each entry in the transport matrix. Our hierarchicakterrepresentation compresses
it to 1.47 GB. A brute force approach would require 233,65@dges to capture it. Our
algorithm only needs 3,368 HDR images and takes around &toaomplete. In our cur-
rent implementation, the processing time is comparablaeattual image capture time.
We believe that the acquisition times can be reduced evémeiuby implementing a paral-
lelized version of our algorithm. Rendering a relit imagenfrour datasets is efficient and
takes less than a second on a typical workstation.
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(b) (d)

Figure 5.6. Subsurface scattering sceneThe reflectance field of a glass full of gummy
bears is captured using two coaxial projector/camera pérsed 120 apart. (a) is the
result of relighting the scene from the front projector, @rhis coaxial with the presented
view, where the (synthetic) illumination consists of thédes “EGSR”. Note that due to
their sub-surface scattering property, even a single bédight that falls on a gummy bear
illuminates it completely, although unevenly. In (b) we silate homogeneous backlighting
from the second projector combined with the illuminatioredisn (a). For validation, a
ground-truth image (c) was captured by loading the samesgi@j patterns into the real
projectors. Our approach is able to faithfully capture amcbnstruct the complex light
transport in this scene. (d) shows a typical frame captutgshd the acquisition process
with the corresponding projector pattern in the inset.
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Level 1 Level 2 Level 3 Level 4 Level 5

Level 6 Level 7 Level 8 Level 9 Level 10

Figure 5.7 Reconstruction results for different levels of hierarchy. This example il-
lustrates the relighting of the reflectance field of the gunfregrs scene (Figuf6) with
the illumination pattern used in Figuge6(a), if the acquisition was stopped at different
levels of the hierarchy. Note that at every level, we stili géull resolution image. This
is because we are approximating a node in the hierarchy assartproduct of two 2-D
images. Therefore, we sill have a measurement for each ipixeé image, though scaled
incorrectly. This is different from wavelet based appraivhere a single scalar value is
assigned for a node in the hierarchy implying lower resolutn the image at lower levels.
Note that at any level, the energy of the projected pattedisisibuted over the whole block
that it is illuminating. This is clear from the intensity vation among blocks, especially in
the images at levels 3, 4, and 5.
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(a) Fixed view point (b) Fixed light source position
Different light source positions Different view points

Figure 5.8 8D reflectance field of an example scendhis reflectance field was captured
using the setup described in Figsel A 3 x 3 grid of mirrors was used. In (a) we see
images rendered from the viewpoint at the center of the gitid Mumination coming from

9 different locations on the grid. Note that the shadows napgopriately depending upon
the direction of incident light. (b) shows the images reeddrom 9 different viewpoints on
the grid with the illumination coming from the center. Inglzase one can notice the change
in parallax with the viewpoint. Note that none of these inmgere directly captured
during our acquisition. The center image in each set loakhty brighter because the
viewpoint and lighting are coincident in this case.
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5.3.1 Comparison with Dual Photography

It is instructive to compare the symmetric photography méghe against the dual pho-
tography technique presented earlier. Dual photograptiyces the acquisition time by
exploiting only sparseness (the fact that there are regmoascene that are radiometrically
independent of each other). These regions are detected easluned in parallel in dual
photography. However, for a scene with many inter-reflectior sub-surface scattering,
such regions are few and the technique performs poorly.dardo resolve the transport at
full resolution, the technique would reduce to brute-fagcanning for such scenes. lllumi-
nating with single pixel for observing multiple scatteriexents has inherent SNR problems
because the energy of indirect bounce light transport @iefiis could be extremely low.
The measurement system, which is limited by the black let¢h® projector and dark
noise of the camera cannot pick up such low values. The schignefore stops refining
at a higher level in the hierarchy and measures only a cogp®ximation of the indirect
bounce light transport. This essentially results in a loegéiency approximation for in-
direct bounce light transport. Thus, the fidelity of the ireagenerated using symmetric
photography is better than those generated using dual gtaqtby. The comparison of the
two techniques in Figurg.9 confirms this behavior. Since symmetric photography is prob
ing the matrix from both sides, the high frequencies in ieditbounce light transport are
still resolved whereas, dual photography can only proddogvdrequency approximation
of the same. Furthermore, while symmetric photography jost841 HDR images for this
scene, dual photography required 7382 HDR images. Notelguat comparing Tablex 1
and>5.1, one might think that we are getting better speedups in cadaad photography,
but the example scenes used in dual photography are eaaethibse used in symmetric
photography. Symmetric photography will perform atleastvall on such scenes.

Finally, Figure5.10illustrates the relative percentage of rank-1 vs empty tesfes
at various levels of the hierarchy for the transport magritteat we have captured. The
empty leaf nodes correspond to sparse regions of the malvibe Whe rank-1 leaf nodes
correspond to data-sparse regions of the matrix. While gbatography only exploits
sparseness and hence culls away only empty leaf nodes atieulzarlevel, symmetric
photography exploits both data-sparseness and sparsaresslls away both rank-1 and
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(a) Symmetric (b) Dual

Figure 5.9 Symmetric vs. Dual Photography. The figure illustrates the strength of
the symmetric photography technique (a) when comparechsigthie dual photography
technique (b) of Chapte3. The setup is similar to the book example of Fig@ré (1V).

In both cases, the right half of the book is syntheticallyt ne$ing the transport matrices
captured by the respective techniques. Note that in the @sgmmetric photography
(a), the high frequencies in the left half of the book arehfailly resolved while in dual
photography (b), the frequencies cannot be resolved andjysear as a blur. The light
transport for (a) was acquired using 841 images, while trad) was acquired using 7382
images. The slight difference in overall color of the two gea is due to the fact that the
two images store the energies slightly differently.
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Figure 5.10 Comparison of rank-1 vs empty leaf nodes.The figure empirically com-
pares the percentage of rank-1 vs. empty leaf nodes in tinartiecal tensor at different
levels of the hierarchy for various scenes captured usingogquisition scheme. The blue
area in each bar represents the percentage of rank-1 nodeghehgray area corresponds
to the percentage of empty nodes. The white area representsotles which are subdi-
vided at next level. Note that at levels 4, 5, 6, 7, 8 and 9 aifsogmt fraction of leaf nodes
are rank-1. Also note that for Figur@sl(l) and 2.1(ll), at levels 6, 7, and 8, there are
far more empty nodes ir2.1(1) than in 2.1(1l). This is what we expected as the transport
matrix for 2.1(1) is sparser than that fo2.1(1l).

empty leaf nodes. Note that between levels 4 and 9, theragm#disant fraction of rank-1
nodes which are culled away by symmetric photography intemtdio empty leaf nodes.
This results in large reduction of nodes that still have tanvestigated and results in a
significantly faster acquisition as compared to dual phatplyy.

5.4 Discussion and Conclusions

In this chapter we have presented a framework for acquirbgedlectance fields. The
method is based on the observation that reflectance fieldsat@esparse. We exploit the
data-sparseness to represent the transport matrix byrlodall approximations. The sym-
metry of the light transport allows us to measure these laci- 1 factorizations efficiently,

as we can obtain measurements corresponding to both rowsoéundns of the transport
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matrix simultaneously. We have also introduced a new datetstre called a hierarchi-
cal tensor (in Chapted) that can represent these local low-rank approximatioigesitly.
Based on these observations, we have developed a hiearabauiisition algorithm, which
looks for regions of data-sparseness in the matrix. Oncésaggarse region has been mea-
sured, we can use it to parallelize our acquisition resglitintremendous speedup.

There are limitations in our current acquisition setup (fFgp.4) that can corrupt our
measurements. To get a coaxial setup we use a beam-s@littesugh we use a 1mm thin
plate beam-splitter, it produces the slight double imagéestient to plate beam-splitters.
This, along with the light reflected back off the light trapduces the SNR in our measure-
ments. The symmetry of our approach requires projector antera to be pixel aligned.
Any slight misalignment adds to the measurement noise. Gesvand projectors can also
have different optical properties. This can introduce sgmmetries such as lens flare,
resulting in artifacts in our reconstructed images (seerei§.11).

By way of improvements, in order to keep our implementationpde, we use a 4th
order hierarchical tensor. This means that we are flattemim@ of the 4 dimensions of the
light field, thereby not exploiting the full coherency in ttiata. An implementation based
on 8th order tensor should be able to exploit it and make thaisition more efficient.

We introduce the hierarchical tensor as a data structurstéwing reflectance fields.
The concept may have implications for other high dimendidata-sparse datasets as well.
The hierarchical representation also has some other beni¢fitrovides constant time ac-
cess to the data during evaluation or rendering because &ifite depth of the hierarchical
structure. At the same time, it maintains the spatial calrén the data, making it attrac-
tive for parallel computation.
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(b)

Figure 5.11 Artifacts due to non-symmetry in measurement.The lens flare around the
highlights in (b) is caused by the aperture in the cameraceSinis effect does not occur
in the incident illumination from the projector, the measuents are non-symmetric. Ap-
plying a strong threshold for the rank-1 test subdivideg#ggon very finely and produces
a corrupted result in the area of the highlights in (a). Ifittnsistencies in measurement
are stored at a higher subdivision level by choosing a lotteeshold for the rank-1 test,
these artifacts are less noticeable as in (b).
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Chapter 6
Conclusions and Future Work

This dissertation describes a system for efficient acdoisif reflectance fields. To our

knowledge this is the first system that acquires an 8D refieetéield, and has therefore
advanced research in the area of reflectance field acquisifiee key challenge in acquir-
ing reflectance fields efficiently is that a reflectance fielekisemely large. Even if state of
the art techniques are used for acquisition, the time reduw acquire a reflectance field
is still intractable. Our system reduces the storage and tequirements by at least two
orders of magnitude. This reduction is enabled by levegio important properties of

the transport matrix: symmetry and data-sparseness. Ras#tese properties, we have
developed algorithms for acquiring the transport matrisadahich allow us to represent
the transport matrix using a low rank approximation. Thigrapch results in a hierarchical
adaptive acquisition algorithm.

In this work, we have demonstrated techniques for acquirfigctance fields. How-
ever, the reflectance fields captured are sparse and incemipi®rder to smoothly change
both the lighting and the view point the acquired reflectafielel needs to be dense.
Regarding sparseness, techniques have been proposedeigolating slices of the re-
flectance fields, both from the view directioB\\V93 and from the illumination direction
[CLO5], but the problem of interpolating reflectance fields id sfilen. By applying similar
flow based techniques to the transport matrix, one shoulthleg@create densely sampled
reflectance fields. One can also sample incoming and outdigimigfields more densely
by replacing the small number of planar mirrors with an aroéyenslets or mirrorlets
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[UWH™03]. This will increase the number of view points in the lightdicbut at the cost
of image resolution.

Regarding completeness, if the mirror array setup is raf@it to cover the whole
sphere, then extrapolating from the numbers in Téble we would expect the transport
matrix to be around 75GB in size and acquisition would takeyhdy two weeks. It should
be noted that faster processing and use of an HDR video camoel@significantly reduce
this time significantly in the future.

We have built a prototype system for acquiring reflectandddieThe acquisition sys-
tems could be developed further with improvements in thel\lware technology. Depend-
ing on the demands of the application, designs can also hgextiae.g., a possible design
could be based on Han and Perlint$H03 kaleidoscope.

The compression achieved by the hierarchical tensor reptason depends on the co-
herency in the incoming and outgoing light fields. This cenely depends on the underly-
ing parameterization used for representing the light fi€lte parameterization used in our
work does not guarantee the best coherence. Instead, agiaraation based on surface
light fields [WAA *00] would provide the best compression of the reflectance fiata.d
However, this would require range scanning the object pooeflectance field acquisition.

Finally, once a reflectance field has been acquired, we mustledo edit both the spa-
tial and directional behavior of the reflectance data to geaappearance. Recent research
[LBAD *06] in this direction already looks promising and will furthiaike off with easier
systems for acquisition.



Appendix A

Proof of Symmetry of Light Transport

Here we prove that the pixel-to-pixel transport from therseyprojector) to the destination
(camera) is the same in both directions. Assume we have affate patctswith arbitrary
BRDF f, viewed/illuminated by a camera/projector pair, as showRigureA.1. Let us
assume that the projector is at point 1 with distagigdar enough from the surface so that
the rays within a patch can be assumed to be parallel at @xg&milarly, the camera is at
point 2 with distancel, and anglef,. We call the area illuminated by the single projector
pixel S, and the region viewed by the camera piggl

If the projector produces radiant intensitythe reflected radiance in directiéh from
a point inS; due to the projector pixel is:

fr (6, — 62) coso;

Ls=1 A.l

The irradiance received by the camera pixel at position Bdsritegral of this radiance
over the solid angle subtended by the intersectio® @&ndS,:

_ L|SiNSfcosh, 1 (6, — 62)cosh|S N S| cosb;
N d3 N dfd3

E12 (A.2)

We specify the area of the intersection®fandS, (denoted byS; N S;|) because the
transfer of energy between the projector and camera pixglhappens in the region of in-
tersection. This defines the transfer of energy between iaeéqgs the projector in position

61



62

APPENDIX A. PROOF OF SYMMETRY OF LIGHT TRANSPORT

S, S

-
=
- - o
-
-

Figure A.1: Proof of symmetry of light transport. The transport of light from point 1 to
point 2 via surfaces.

1 and one pixel of the camera in position 2. Note that thergte=rirelationship between the
surface area covered by a pixel and its solid anQlg &s given by the following equations

for the projector and camera respectively:

_ |Si|costy
df

B |S| cosbr

Q d Q.= A.3
p an c d% (A.3)

Note thatQ, andQ. are constant for our given projector and camera — they reptes

the solid angle for the pixel of each device. We now define geptmn operatofl:

S =NiQ, and S=N%Q. (A.4)

so thatS, is the projection ont& from position 1 of the solid angl@p, for example. We

can now rewrites; and$S, as:

Qpd? Qcd3
_nlo | Y _n20 | >4cY2
S = INdp| = (o and [Sl = N = 2 (A5)
Thus EquatiorA.2 can be rewritten as:
1 f, (61 — 65)cosb|MEQ,NM2Q.| cosd
Eip— (61— 62) 1| S*4p S ¢l 2 (A.6)

did3

We can now see that this equation will be the same if the camertapoint 1 and the
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projector is at point 2. The key is to remember that the vigwajector will take on the the
camera parameters (in this case &g and vice-versa. Thus the transfer of energy in the
dual space is given by:

| (62 — 61) cos2|M2Q: NMLQ,| cosH,

A7
22 (A7)

Eo1=

Becausef, (6; — 6,) = (6, — 61) by Helmholtz reciprocity, we havB;, = Ep1. This
means that the pixel-to-pixel transport is equal in botkctions.
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Appendix B

System Overview

B.1 System Architecture

The algorithms presented in this dissertation requirewsapg thousands of images under
patterned illumination from a projector. Therefore, we dée build a capture system

which can handle the image capture process in a robust atel &lole way. There are

various requirements from the system.

The dynamic range of the scenes that we wish to acquire cauektvemely high. In
order to capture this entire range, we need to take multipteqgraphs of the scene under
different exposure settings. Therefore, we would want #nge the exposure time of the
camera for every illumination pattern. This governed theiod of the camera we used.
We use a camera which is computer controlled and the exptiswecan be programmed
for each acquired frame using the computer.

Second, we want high signal to noise ratio (SNR) from our wapsystem. For this
purpose we use a high contrast projector. This ensures dicag difference between the
lit and dark pixels of the projector resulting in high SNR.rfhermore, we subtract the
image due to projector’s black level to reduce the noisea@c#pture process.

Finally, we want the system to run completely automaticadlya dark room without
any interference. This is to allow for acquisitions whicmd¢ake several hours to finish.
Therefore, we have built a capture system in which the adguisserver (which controls
the projector and the camera) can be controlled remotelyaérbn runs on the server

65



66 APPENDIX B. SYSTEM OVERVIEW

machine which accepts requests from any client machineiefdtanachine can send any
pattern that it wants the scene to be illuminated with. Thenaan projects the pattern
and captures images for various exposure settings. Thesggesrare then sent back to the
requesting client machine which assembles them in to aesiH§IR image. The HDR
combination process and other pre-processing steps alareeghin the next section.

B.2 Pre-processing

The dynamic range of the scenes that we capture can be véryThgs is because the light
transport contains not only the high energy direct bounfeeesf but also very low energy
secondary bounce effects. In order to capture this rangelebety, we take multiple
images of the scene and combine them into a single high dyneange imageM97,
RBS99. Additionally, before combining the images for HDR, we salot the projector’s
black level from our captured images, which was acquired hgtggraphing the scene
while projecting a black image. Subtracting this blackelemage from every input image
reduces the contribution by stray projector light to our nagntries, as well as partially
compensates for fixed-pattern noise in the camera. Uporriexgetation, we found the
black level to vary slightly with the number of pixels illunated at a time, but this was not
a problem for our acquisitions.

Another aspect of the measurement procedure that requareda@s the impact of the
Bayer color mosaic in both cameras. These depend on havingyarsamples at the CCD
to be able to properly interpolate the color components fthenpixel values. We found
that this introduced artifacts when illuminating the sceiih individual projector pixels.
A focused projector beam can illuminate very few pixels oa tamera CCD, yielding
errors when the samples are interpolated during demogaitifhen this happened, color
contrast was significantly reduced and the images appear&drdhan they should.

To remove these darkening and desaturation artifacts, wealized the final images
by forcing the individual images to add up to the floodlit irragFirst, all color values
of the individual images were summed up so that we could segipel how much of
the total energy each image contained. Then the color erdrthe floodlit image was
distributed to the individual images in proportion to theantribution to the total energy.
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Figure B.1: The effect of color normalization. The sum of all images where individual

pixels are illuminated (left) is dimmer and exhibits a regldicolor contrast compared to the
floodlitimage (right). By normalization the color valuegbé floodlitimage are distributed

proportional to the observed pixel values.

This normalization improved the colors of the image, as destrated in Figuré.1.
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Appendix C

Pseudocode

C.1 Pseudocode of Dual Photography Algorithm

Initialization() ;

repeaf
Il construct a conflict-free lists of blocks that can be psseel in parallel
ConstructConflictFreelLists() ;
/ illuminate scene with patterns constructed from eadtalisl acquire with camera
Acquirelmages();
/I process images, store results, generate new lists didfoc next iteration
ProcessResults()

} until lowest level in hierarchy is reached

Initialization() {
for each camera pixdd {
/[ initially assume every camera pixel is affected by blockh@ floodlit image
By = {0};
¥

C = empty; // initialize set of conflicts to empty
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ConstructConflictFreeLists() {
[/l form graph structure
B = Union(By); /I nodesB, edge<C
(L[O],...,L[N —1]) = GraphColor(grapt, C)); // N lists of nodes returned

Acquirelmages(){
/I we now haveN conflict-free listsL[]’s
fori=0toN—1{
generate patterR[i] from L[i]; /1'light pixels for all blocks inL[i]
illuminate patterrP|i];
capture HDR imagé|i];

ProcessResults(]
C = empty;
for each camera pixéd {
new By = empty;
fori=0toN—1{
/I find block (if any) that affects current pixel
currentblock = intersec®y, L[i]); /I because L][i] was conflict-free,
/ this can be at most one block
if (currentblock = empty){

continue; Il pixek not affected by [i]
¥
else{
if (pixel kin 1[i] = 0) {
continue; /I no value measured, do nothing
}

else if (pixelk in 1[i] < threshold) or last iteratiof
// below the threshold so store the energy here.
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/I T() is the hierarchical representation of the matrix
I/l indexed by block in the subdivision tree and camera pixel
T (currentblock, k) = pixel k in Ii];

continue; // no further subdivision
}
else{

Il request subdivision for this block

insert 4 children of currenblock intonew By;
¥

}

1l setBy for the next iteration
Bk = new By;
/I collect conflicts and add G for next iteration
for each pair(s,t) wheresandt are inB ands#t {
insert(s,t) into C; /l'sandt conflict and can’t
// be measured in parallel

C.2 Pseudocode of Symmetric Photography Algorithm

Initialization() ;

repeaf
Il construct a conflict-free lists of blocks that can be psseel in parallel
ConstructConflictFreelLists() ;
/ illuminate scene with patterns constructed from eactalisl acquire with camera
Acquirelmages();
/I process images, store results, generate new lists didfoc next iteration
ProcessResults()

} until lowest level in hierarchy is reached
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Initialization() {
/I capture image from floodlit illumination
illuminate floodlit patterrP[O];
capture HDR imagé[0];
Il initialize the tensor root node as tensor produch|0f
Too = 1{0] x 1[0];
/I schedule the root node, i.e. block 0 for investigation
old_B ={0};

ConstructConflictFreeLists() {

// form graph structure

B = empty;

for each blockb in old_B {
I/l request uniform subdivision for this block
insert 4 children ob into B;

¥

// determine conflicts and add @

C = empty;

for each pair(i, j) wherei andj are inB andi # j {
/l'i andj conflict and can’t be measured in parallel
if Tij is unknown{

insert(i, j) into C;

}
}
graphG = (B, C); // nodesB, edge<C
graphG? = squareG; Il construct the square graph @f
(L[], ...,L|N — 1]) = GraphColorG?); /I'N lists of blocks returned
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Acquirelmages() {

/I we now haveN conflict-free listsL[]’s

fori=0toN—1{
generate patterR[i] from L[i]; /1 light pixels for all blocks inL[i]
illuminate patterrP|i];
capture HDR imagé|i];
/l compensate for known intra-block light transport T froneypous level
multiply knownT with P[i] and subtract fronh[i];

ProcessResults(]
new B = empty;
for each estimated tensor node T {
I/l check whether rank-1 approximation is valid
for each sub block; oft, j=1...8 {
fori=0toN—1{
I/ find block (if any) that affects current tensor node
currentblock = intersectg;, L[i]); // because L[i] was conflict-free,
I this can be at most one block

}

old_B = newB;
C = empty;
for each camera pixéd {
new By = empty;
fori=0toN—1{
/I find block (if any) that affects current pixel
currentblock = intersec®y, L[i]); I/l because L[i] was conflict-free,
// this can be at most one block
if (currentblock = empty){
continue; Il pixek not affected by [i]
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}
else{
if (pixel kin 1[i] = 0) {
continue; /[ no value measured, do nothing
}
else if (pixelk in | [i] < threshold) or last iteratiofi
I/l below the threshold so store the energy here.
/I T() is the hierarchical representation of the matrix
/l indexed by block in the subdivision tree and camera gixel
T(currentblock, k) = pixel kin I [i];
continue; /I no further subdivision
}
else{
Il request subdivision for this block
insert 4 children of curreablock intonewBy;
}
¥

}

/I setB for the next iteration
Bk = new By;
/I collect conflicts and add G for next iteration
for each pair(s,t) wheresandt are inBy ands#t {
insert(s,t) into C; /I sandt conflict and can’t
// be measured in parallel
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