

PARALLEL PROGRAMMING
USING THREAD-LEVEL SPECULATION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL

ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Manohar Karkal Prabhu

December 2005

 ii

© Copyright by Manohar K. Prabhu 2006

All Rights Reserved

 iii

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Oyekunle A. Olukotun

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christos Kozyrakis

I certify that I have read this dissertation and that, in my opinion, it is fully adequate in
scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mark Horowitz

Approved for the University Committee on Graduate Studies.

 iv

Abstract

As the performance increases of single-threaded processors diminish, consumer desktop

processors are moving toward multi-core designs. Thread-level speculation (TLS)

increases the space of applications that can benefit from these designs. With TLS, a

sequential application is divided into fairly independent tasks that are speculatively

executed in parallel, while the hardware dynamically enforces data dependencies to

provide the appearance of sequential execution. This thesis demonstrates that support for

TLS greatly eases the task of manual parallel programming. Because TLS provides a

sequential programming interface to parallel hardware, it enables the programmer to

focus only on issues of performance, rather than correctness.

The dissertation starts by demonstrating the parallelization of a microbenchmark to

introduce a number of techniques for manual TLS parallelization. Several of the

advanced techniques leverage programmer expertise to surpass the capabilities of current

advanced, automated parallelizers; the research presented here can provide guidance for

the future development of such tools. Following this, the use of these techniques to

parallelize seven of the SPEC CPU2000 applications is described. TLS parallelization

yielded an average 120% speedup on four floating point applications and 70% speedup

on three integer applications, while requiring only approximately 80 programmer hours

and 150 lines of non-template code per application. These strong parallel performance

results generated with relatively modest programmer effort support the inclusion of TLS

in future chip multiprocessor designs.

 v

For each application parallelized, a detailed description is provided of how and where

parallelism was located, the impediments to extracting it using TLS, and the code

transformations that were required to overcome these impediments. The results on these

applications demonstrate that using advanced manual techniques is essential to

effectively parallelize integer benchmarks. This leads to a discussion of common

hindrances to TLS parallelization, and a subsequent description of methods of

programming that help expose the parallelism in applications to TLS systems. These

programming guidelines can help uniprocessor programmers create applications that can

be easily ported to future TLS systems and yield good performance. In closing, the

dissertation reviews the many advantages of manual TLS parallel programming and

specifies potential future research areas.

 vi

Acknowledgments

I would like to thank the many people who have provided me the support and

encouragement to complete this dissertation and my Ph.D. There are so many family

members, friends and associates that it is hard to know where to stop, but I do know

where to start the list. I would like to thank my daughter Vaishali, first and foremost.

While many would argue that students with children take longer to complete, no

distraction could be quite so grand as dear little Vaishali. Whether she was a baby sitting

and cooing on my lap while I was debugging code, or was instead demanding I take time

off to pay her some attention as she grew older, she has always made working from home

the best way to get the job done. She is my other advisor, my live-in advisor (and is

much more demanding, I might add!).

I would like to thank so many of my family members, as well. My mom, my brother and

my two sisters have provided much of the inspiration that has led me down this path.

Since moving to sunny California, there have been a host of other relatives who have

provided fabulous fun and cheer, including Anita, Vivek, Farzaneh, Pandu, Mala and a

bunch more.

And many a friend has brightened my way through grad school, as have so many

workmates. I am always indebted to “Uncle Lance,” who has earned his title not by

being here at Stanford for more years than me, but from the non-stop fun and action he

provides Vaishali on her every visit to the lab. His presence in the great halls of Gates

will be sorely missed by many. And likewise, it has been fun hanging out with Murali

 vii

and Tara, the Hydra gang of old and new and the Future/Alumni Professors of

Manufacturing. I am indebted to the various people who have worked behind the scenes

to make my education possible, Darlene Hadding, Charlie Orgish and Marianne Marx, to

name just a few. And, out in the “real” world, I owe a heap of gratitude to my many

managers and work associates at HP, including most of all Ray, Bob, Emmanuelle and

Steve.

But of course, the list would be incomplete without expressing my profound appreciation

for the many advisors who have helped steer my path through to the light at the end of the

tunnel. I thank Christos Kozyrakis and Mark Horowitz for the interest they have taken in

my research and in providing me feedback on my conference presentations, my orals and

this dissertation. I wish to thank Rick Reis and a variety of other professors at Stanford

and beyond, who have motivated me to pursue a career in academia. But most of all, I

wish to thank Kunle Olukotun, my doctoral advisor, for being a continuing and

unwavering support through the many twists and turns of the Ph.D. Kunle has not only

been an advisor, but also a friend, and I feel fortunate to have done my doctorate under an

advisor whom I hold in such high regard.

 viii

Table of Contents

1 Introduction and Background ... 1

1.1 Evolution of Hardware.. 3

1.1.1. Increasing difficulties of hardware design .. 3

1.1.2. Methods for reducing hardware design complexity.. 5

1.2 Design of Parallel Software .. 6

1.2.1. Granularities of parallelism... 7

1.2.2. Ability to automate parallelization.. 8

1.2.3. Challenges to extracting parallelism... 10

1.2.4. Approaches to parallelization of applications... 11

1.3 Contributions of This Dissertation over Related Research................................... 14

1.4 Methodology... 18

1.4.1. Objectives and approach ... 18

1.4.2. Selection of applications ... 20

1.4.3. Measurement and sampling strategy... 21

1.5 Layout of dissertation ... 23

2 Thread-Level Speculation (TLS) .. 26

2.1 Ideal TLS systems... 26

2.2 Practical implementations of TLS systems... 30

2.3 Performance limiters of TLS systems... 33

2.3.1. Primary performance limiters ... 34

2.3.2. Secondary performance limiters ... 41

2.3.3. Measuring and understanding performance losses 45

 ix

2.4 TLS CMP hardware simulated.. 47

3 Manual Programming with TLS ... 52

3.1 Parallel programming process using TLS... 53

3.2 Microbenchmark example .. 57

3.2.1. Heap Sort Example ... 58

3.2.2. Parallelizing with TLS .. 62

3.2.3. Ease of TLS Parallelization .. 64

3.2.4. Performance of TLS Parallelization.. 66

3.2.5. Optimizing TLS Performance... 67

3.2.6. Automatic Optimization.. 69

3.2.7. Complex Value Prediction.. 72

3.2.8. Algorithm Adjustments... 73

3.2.9. Additional Automatic Optimizations.. 75

3.2.10. Speculative Pipelining .. 76

4 Manual TLS Parallelization of Whole Applications... 80

4.1 SPEC2000, benchmark selection and execution sampling 81

4.2 SPEC2000 parallelization ... 86

4.2.1. Parallelization of 183.equake.. 89

4.2.2. Parallelization of 179.art ... 89

4.2.3. Parallelization of 177.mesa... 90

4.2.4. Parallelization of 188.ammp ... 92

4.2.5. Parallelization of 175.vpr (place).. 94

4.2.6. Parallelization of 175.vpr (route) .. 95

 x

4.2.7. Parallelization of 300.twolf... 96

4.2.8. Parallelization of 181.mcf... 97

4.3 Performance-related observations... 100

4.4 Additional simulator results.. 103

4.5 Programmer effort required .. 106

5 Observations and Conclusions.. 110

5.1 Hindrances to TLS parallelization .. 110

5.2 TLS-friendly uniprocessor programming ... 112

5.3 Summary... 115

5.4 Future research.. 121

References………………………………………………………………………………123

 xi

List of Tables

Table 2-1: Memory system specifications ... 48

Table 2-2: Loop-only TLS overheads.. 49

Table 4-1: Benchmarks comprising SPEC CPU2000.. 83

Table 4-2: Source code lengths of the SPEC CPU2000 benchmarks selected 84

Table 4-3: Code transformations ... 86

Table 4-4: Speedup resulting from each additional transformation................................. 88

Table 4-5: Speculative thread lengths, regions and coverage.. 104

Table 4-6: Breakdown of parallelized execution times ... 105

Table 4-7: Lines of code added to parallelize applications.. 107

 xii

List of Figures

Figure 2-1: Thread-level speculation ... 28

Figure 2-2: Hydra chip multiprocessor .. 47

Figure 3-1: Organization of the heap array.. 58

Figure 3-2: Top node removal and update of the heap .. 60

Figure 3-3: Code for top node removal and heap update... 61

Figure 3-4: Performance of incremental optimizations ... 70

Figure 3-5: Original code with independent tasks ... 77

Figure 3-6: Speculatively pipelined code ready for loop-only TLS 77

Figure 4-1: Execution pattern and violations of 177.mesa .. 91

Figure 4-2: Thread formulation for 188.ammp.. 93

Figure 4-3: Whole application speedups under various memory and TLS models....... 103

Figure 5-1: Good and bad thread length sequences ... 112

Chapter 1: Introduction and Background 1

1 Introduction and Background

Workloads run on modern computer systems exhibit a large degree of inherent

parallelism, which means that significant portions of the workloads can be executed

concurrently. Computers can greatly improve their computational performance by

exploiting inherent parallelism, which often exists at many different levels. At one

extreme, instruction-level parallelism (ILP) occurs between the individual computer

instructions which were intended to be executed sequentially. At the other extreme,

process-level parallelism allows multi-tasking operating systems to execute separate,

possibly unrelated instruction streams on the same computer hardware at different times,

thereby tolerating latency and allowing more efficient use of a computer system's

resources. Between these extremes lie various forms of thread-level parallelism (TLP).

TLP allows a single program to be split into threads, which are sequential portions of the

program that would have executed at different times. These threads can then be executed

in parallel.

To extract parallelism, special-purpose hardware and software are generally used

together. Extracting ILP requires tracking fairly modest amounts of speculative state and

a limited number of interactions between instructions, and to be efficient this must be

done very quickly. Hence, extracting ILP is done via the extensive use of special-

purpose hardware, and the implementation details are purposely hidden from the

programmer. On the other hand, extracting high-level parallelism from applications

requires support from the operating system for thread creation and scheduling. If the

threads share data, generally the programmer must be highly involved in enabling and

Chapter 1: Introduction and Background 2

extracting this parallelism, because of the extensive communication and synchronization

that must be properly handled. This parallel programming places much of the burden of

extracting high-level parallelism on the programmer.

Meanwhile, extracting parallelism at the intermediate level of threads is even more

difficult. In fact, parallelism amongst fine-grained threads (on the order of 100 to 10,000

dynamic instructions in length) has rarely been exploited at all. Tracking the required

state has been too difficult for the available hardware, while software-based solutions

have required too much overhead, programmer effort or compiler intelligence. However,

due to steady increases in hardware complexity, it has now become possible to extract

fine-grain, thread-level parallelism with hardware in ways that are largely transparent to

the programmer. The research discussed here presents the performance gains that can be

expected by utilizing fine-grained thread-level speculation, a specific approach to

extracting this level of parallelism. This research also demonstrates the low programmer

effort required to conduct this form of parallelization for common applications and the

different approach to programming taken by a programmer using TLS.

To open the discussion of the current research, this chapter reviews the evolution of and

current issues surrounding both hardware and software for extracting parallelism. I

discuss how hardware and software issues have impacted the prevalence and ease of

parallel programming. First, I consider advances in hardware, and how challenges to

continuing along Moore's Law have made single-chip multiprocessors an attractive

design alternative to uniprocessors. Next, I shift the focus to software, and consider how

parallel programming is typically conducted and what are its limitations. Hardware

Chapter 1: Introduction and Background 3

support for parallel programming can be used to combat these limitations, and I describe

current and prior research that has been done in this area. This sets the stage for a

discussion of what important research issues remain unaddressed, and how this thesis

contributes knowledge in these areas. Following this, I describe the methodology utilized

to conduct this research. Finally, I close with an overview of the rest of the thesis by

providing a description of each of the remaining chapters.

1.1 Evolution of Hardware

It has been almost 40 years since Gordon Moore first described in 1965 what has become

known as Moore's Law, the observation of the exponential rate of increase in transistor

count on a single die. This exponential transistor count increase is expected to continue

throughout the next decade [13]. The largest computer processors already contain

approximately half a billion transistors on a single die and the next generation Itanium

processors are expected to incorporate 1.7 billion transistors [28]. This has led to a

situation in which transistors are almost free, designs are constrained less by transistor

count than by design complexity and power constraints, and computer architects are

under constant pressure to innovate new ways to utilize these transistors.

1.1.1. Increasing difficulties of hardware design

Until recently, the vast majority of this innovation had been directed toward single-

threaded computational performance. Processor designs have evolved from simple,

multiple-cycle-per-instruction, microcode-based cores to complex, pipelined, superscalar,

out-of-order, speculative cores with extensive on-board caches. While processor

Chapter 1: Introduction and Background 4

performance has dramatically improved, implementing these extra layers of complexity

has grown exponentially more difficult.

Not only are such complex designs difficult to design, but they are even more difficult to

verify and validate. Verification is the process of checking that the state machine design

actually implements the functionality desired. Validation checks that the implementation

in silicon is a correct realization of the state machine previously verified. Process

variations, manufacturing defects and unforeseen on-chip interactions can cause a test

chip to fail validation. Verification and validation of processor designs is greatly

confounded by the non-deterministic and irreproducible behavior of these complex

processors. A design flaw may only be observed under certain voltage and temperature

scenarios, or worse yet, only in a rare situation generated by a particular run state and a

particular timing of communications received from off-chip sources. Generating and

observing such flaws with real silicon are difficult due to the inability to easily control or

observe the state of internal logic nodes with no direct connection to off-chip test

equipment. For these reasons, validation and verification efforts grow at a faster rate than

the rest of the design efforts. In fact, the verification and validation efforts for complex

processors have become larger than the design efforts, making them primary concerns in

the design process.

Additional complexities have frustrated and slowed the increase in uniprocessor

computational performance. In recent years, power consumption has taken an especially

high priority, shifting design effort away from peak compute performance. At high clock

frequencies, signals can only propagate across a small portion of a processor’s core, and

Chapter 1: Introduction and Background 5

only limited amounts of logic can be performed within a pipeline stage. This results in

further complexity and an increased number of pipeline registers, which further

exacerbates the power consumption problem. These issues combined have effectively

limited the further scaling of clock frequencies. And, providing adequate off-chip

bandwidth poses an increasing challenge, because higher performance usually requires

either higher bandwidth off-chip or larger or more efficient caching on-chip. These

increasing obstacles to improving uniprocessor compute performance are compounded by

the fact that the improvements designed often provide disappointing performance on

several important workloads, especially commercial server workloads such as OLTP (on-

line transaction processing) and DSS (decision support systems) [2]. This is often due to

the poor memory locality of the workloads.

1.1.2. Methods for reducing hardware design complexity

Many of these problems can be addressed by intellectual property (IP) reuse, which is the

use multiple times of standard logic designs, from small cells of transistors to whole

processors and interfaces. By sacrificing peak efficiency, IP reuse allows the designer to

incorporate additional transistors into the design at the same rate that they become

available, thereby enabling the designer to take full advantage of the benefits of Moore's

Law. Standard cell design has been in use for a long time, but what is becoming more

common now is the use of IP blocks as large as processors and chip interfaces. This

reduces design time by providing another, higher level of abstraction to the design

process, and the clearly defined interactions between IP blocks can reduce verification

and validation efforts.

Chapter 1: Introduction and Background 6

Of special interest to the research described here is the integration of multiple processor

cores onto a single die. This can be seen as an extension of IP reuse to the chip level

from the board or system level, which has been the traditional level at which to create a

multiprocessor. Chip multiprocessors (CMPs) seem an inevitable consequence of

increased integration and miniaturization, as they address many of the design concerns

described above via IP reuse. CMPs provide excellent performance for multitasking

operating systems for consumers, due to the many concurrent processes these operating

systems typically support, such as virus checking, firewalls, data encryption and

multimedia. Furthermore, CMPs can provide good performance on some applications

that are difficult for uniprocessors [2]. The CMP design should also lower costs and

increase reliability over multiple-chip designs. As a result, every major microprocessor

manufacturer has announced plans to manufacture single chip multiprocessors in the near

future [8][16][17][19][23]. A critical element in each of these designs is determining

how the processors will work with each other, their coherence, consistency,

communication and synchronization mechanisms. As part of that decision, it is important

to understand the ways in which a programmer would parallelize programs for such

platforms. Therefore, in the next section, I discuss parallel programming in general, and

what makes it so challenging.

1.2 Design of Parallel Software

While increasingly sophisticated processor cores can provide improved performance,

multiple cores can work together to provide further parallel speedup. Typically this is

done by adapting the source code, in some situations automatically, to have multiple

Chapter 1: Introduction and Background 7

fairly independent components that execute in parallel and communicate with each other.

The necessity of rewriting the software and the types of hardware that can best support

this effort depend on the granularity of the parallelism present in the application, i.e. the

average number of sequential, dynamic instructions of each portion of execution that is to

be run in parallel with other portions of execution.

1.2.1. Granularities of parallelism

A survey of benchmark applications conducted by D. W. Wall [34] indicated that almost

all applications, including the integer benchmarks, have enormous amounts of inherent

parallelism, if problems arising over register reuse, control flow dependences and

memory aliasing can be overcome. By addressing these problems with even a modest

hardware-software approach (the “fair” model), factors of speedup in the range of 2 to 4

could commonly be achieved. A study by Lam and Wilson [18] also indicated the large

amount of parallelism that exists within applications. In this study, the importance of

mitigating control flow dependences was illustrated, and speculation was shown to be a

key enabler of this.

While these large amounts of parallelism do exist, they occur at many different levels of

granularity and are often impractical to extract. Instruction-level parallelism (ILP) can be

very effectively addressed with advanced compilers and special-purpose hardware for

superscalarity, instruction reordering, register renaming, branch prediction and predicated

instructions. But, extracting higher-level parallelism requires more involvement from the

programmer and the operating system. While ILP only requires tracking hazards within a

small window of instructions, higher-level parallelism necessitates tracking data

Chapter 1: Introduction and Background 8

dependences between much larger sequences of instructions. If these instruction streams

contain branches and pointer indirection, tracking dependences between them becomes

exponentially more complex with increasing instruction stream length. This complicates

the task of automating higher-level parallelization. Ideally, a sequential application could

be divided into multiple fairly independent instruction streams and dependences could be

resolved for each instruction in the stream prior to its execution. But, realistically, the

complexity of the dependences and the many ways in which the sequential instruction

stream could be divided into parallel streams makes this too difficult to automate for

many, if not most, common applications.

1.2.2. Ability to automate parallelization

Whether an application is amenable to automated higher-level parallelization depends on

a variety of characteristics. Applications with very regular accesses to data and few

unpredictable branches in the instruction stream can easily be parallelized. This is

especially true if the write accesses to the data progress in a pattern that either already is

or can easily be made to be distributed over several independent memory locations. This

is the case for many scientific and floating point applications, where a large, dense matrix

is fully populated with values in an orderly sweep through the matrix, and where each

value generated does not require input from any other value generated in the matrix in the

current sweep. Another characteristic that can ease parallelization is for an application to

have several fairly independent phases or tasks, such as in database applications, where

searching for data can often be conducted in parallel with processing data retrieved in the

Chapter 1: Introduction and Background 9

previous search. Historically, the high-level parallelism in these types of applications has

been heavily exploited, often automatically.

However, other applications are much more difficult to parallelize, even with

programmer assistance. These have irregular control flow and tend to conduct most of

their execution on individual variables, sparse matrices, heaps, stacks or other data

structures that are accessed in a complex or pseudo-random pattern. The heavy use of a

few key memory locations or unpredictable data access patterns make these applications

difficult to parallelize, due to either unpredictable dependences or due to frequent,

unavoidable dependences (even if predictable). Integer applications are a common

example of this, and are characterized by instruction streams with frequent branches that

are difficult to predict and by execution of relatively little computation in a regular way

on large, dense matrices. Some integer applications are for all practical purposes

unparallelizable, except for their initialization and completion routines and a few other

portions of the application.

Between these two extremes lie a variety of applications with moderate amounts of

higher-level parallelism that can be extracted. Interest in parallelizing them has steadily

been growing over time, as computer processors and operating systems for the home

consumer market have become capable of multitasking and multithreading, and as

memory and disk delays versus increasing processor speeds have made multithreading

for latency tolerance more attractive. Parallelizing these applications usually requires

extensive programmer involvement and efforts and cannot be automated. But, with this

Chapter 1: Introduction and Background 10

investment, some of these applications can exhibit good parallel speedups, as is the case

for multimedia applications.

1.2.3. Challenges to extracting parallelism

A common reason that applications have substantial inherent parallelism that cannot be

automatically extracted is that when the applications were written, they were designed in

a manner that obscured the inherent parallelism in the computation. This is typically

through a choice of data structures and algorithms that are not amenable to

parallelization. For example, the use of a stack can complicate parallelization, because

each portion of the application that could run separately will attempt to access the same

stack memory and stack pointer, even though the data each portion stores in the stack

memory is often private and entirely independent of the data stored by other portions of

the application. This is an example of an artificial dependence introduced by the

programmer that is not inherent in the computation required for the application. It is due

to the choice of a data structure with low TLP, the stack.

Parallelism can also be obscured by the programmer's choice of an algorithm with low

TLP. A common example of this is the use of recursion, rather than iteration. Iterative

loops often exhibit control flow and data parallelism between each iteration. This means

that each iteration, except the last, will occur regardless of the computation in the

previous iteration, and that the data used for computation will be fairly independent

between iterations. But, recursion obscures parallelism, because the control flow to each

portion of the recursion and the data it uses depends on the results from computation in

the previous portion of the recursion, and even the latter portions of the recursion (except

Chapter 1: Introduction and Background 11

in the case of tail recursion, which is bad programming style). This renders the control

flow of recursion difficult to predict and the data between portions dependent, thereby

making recursion difficult to parallelize because of control flow and data dependences.

Applications with high inherent TLP that have had the parallelism obscured were often

written targeting a uniprocessor platform. Frequent reuse of variables and the use of

stack-based algorithms can yield good data locality and small working sets, thereby

improving uniprocessor performance. The use of recursion can simplify programming.

But pursuing the best strategy for uniprocessor programming can cause the programmer

to obscure the inherent TLP in a program. For these applications, if parallelization is

ever expected, a programmer may need to keep a multiprocessor target in mind while

designing the program, even if this results in slightly less efficient or more complex code.

1.2.4. Approaches to parallelization of applications

Given the complexity of extracting higher-level parallelism, it must often be done

manually. For applications with inherent TLP, there are two main models for parallel

programming, shared-memory parallel programming and programming with a message-

passing interface (MPI). In shared-memory programming, each process shares the same

address space and reads and writes the same variables. In the message-passing model,

processes each have a separate address space with private variables. Communication is

conducted via messages that are explicitly sent and received between the processes.

Shared-memory programming is generally agreed to be the more natural programming

model, because communication is done implicitly without much specification from the

Chapter 1: Introduction and Background 12

programmer, and all data is always available to all processes. On the other hand, MPI

requires the programmer to plan in advance what data must be communicated between

the processes, and generally the data structures must be split between the processes, so

that each process has just the data it requires to compute its portion of the algorithm.

This requirement of partitioning the data and explicitly sharing values makes MPI the

more difficult model for programming, although it can facilitate subsequent performance

optimization, since it renders the inter-process communication patterns more evident.

While shared-memory programming both allows and necessitates frequent

communication, often of small sets of data, MPI encourages the aggregation of reads and

writes into larger messages. This allows for lower communication overheads for MPI

implementations of applications with regular, large data accesses. However, the

overheads of copying data into and out of the send and receive buffers limits performance

on irregular or shorter-length messages, giving shared-memory programming an

advantage for these applications. Given the greater ease of shared-memory programming

and the substantially similar performance that can be achieved, the bulk of commercial

parallel programming is done for shared memory.

While parallel programming can be done manually, for applications with exposed

inherent parallelism, much of the work can be done automatically. This is achieved with

parallelizing compilers. SUIF [10] and Polaris [3] can automatically parallelize for

shared memory and are very well known. Automatic parallelizing compilers for MPI

also exist, such as the MPI backend for SUIF described by Kwon, Han and Kim [15] and

the commercial software development package PGI by Portland Group Compiler

Technology for OpenMP, an MPI application program interface. Parallelizing compilers

Chapter 1: Introduction and Background 13

extract parallelism well for very regular floating-point, scientific applications, especially

those written in Fortran. While some parallelism can be extracted by static analyses of

the application, a more powerful method involves using a profiler in combination with

the compiler. The profiler characterizes the dynamic behavior of the application under

typical workloads. This allows the compiler to make more optimal decisions about the

way in which to parallelize to achieve good parallel performance, taking account of

dynamic issues such as load balancing and the overheads from forking and joining

threads or processes.

While taking account of dynamic effects, parallelizing with profiling nevertheless relies

upon a compiler constructing a parallel formulation of the application prior to the

program executing on a possibly new dataset. This new dataset could cause different

execution characteristics than the dataset under which the application was parallelized.

Phrased differently, this is still a static approach to parallelization. While static

parallelization performs very well for simple applications and moderately well on some

less regular applications, the range of applications that can be addressed can be extended

by allowing the use of dynamic parallelization.

In dynamic parallelization, the assignment of instructions to processors is formulated at

the time of execution. This can be as simple as creating a queue of tasks. Alternatively,

it can be as complex as speculative execution. Speculation on the final results of

execution to be conducted by one processor can allow another processor to conduct

sequentially later execution out of sequential order. This can be done purely using

software support for dynamic parallelization without the addition of hardware. Some

Chapter 1: Introduction and Background 14

applications that are difficult to parallelize statically but are regular in their data access

patterns are amenable to this software-controlled dynamic parallelization at the thread

level [30]. But, for more complex applications, dynamically extracting TLP requires

hardware support to reduce the overheads associated with preventing or correcting

dependences. This method of extracting TLP is hardware-supported thread-level

speculation (TLS), which is the focus of the research presented in this dissertation. A

range of methods for implementing and using this approach to dynamic parallelization

have been developed. Research on these is described in the next section, in the context of

describing the contributions of my dissertation to related research. As this dissertation

centers on TLS, a detailed description of its theory, implementation, strengths and

limitations is provided in Chapter 2: Thread-Level Speculation (TLS).

1.3 Contributions of This Dissertation over Related Research

Having provided a background on the parallelism in applications and the conventional

hardware and software approaches to extracting it, in this section I discuss my

contributions to the field of the research described in this dissertation and place it into

context with related research conducted by others.

Research on application analysis, profiling and parallelization [1][3][14][21][24] and on

speculation [6][26][27][32][37] is underway at various universities. Several projects

share my focus on general purpose applications. However, those projects primarily focus

on developing methods to automatically parallelize applications. Instead, this dissertation

investigates two other areas. First, I use manual parallelization, so that design

Chapter 1: Introduction and Background 15

modifications and programmer expertise can be utilized to yield higher parallel

performance. In this manner, I approach the upper bounds of the parallelism that can be

extracted from these applications when using a loosely-coupled chip multiprocessor with

a fairly simple TLS mechanism. Second, I use my experience with manually

parallelizing these applications to explain precisely where in these important benchmarks

TLP exists, how to extract it and how to overcome the obstacles to parallelization of each

application.

For my research, I used a loosely coupled (L2-cache-connected) CMP that supports only

fairly simple TLS. Similar to my results, the Wisconsin Multiscalar team also achieves

excellent speedups on general purpose applications, including integer applications

[25][37]. However, Multiscalar allows register-to-register communication between the

processors at the cost of more complex and high-speed hardware. So, their research

explores a different hardware/software design space, generally utilizing finer-granularity

threads. Research by the CMU STAMPede team [32][33][35] and at the University of

Illinois at Urbana-Champaign [6][7][36] explores different design points with less closely

coupled processors, more similar to the TLS CMP used as the test platform in this

dissertation. This research supplements related research by providing a rough indication

of an upper bound on performance for similar TLS systems exploiting TLP of the same

granularity. My research into the capabilities of thread-level speculation is not

constrained by the ability to automate the techniques I have utilized. This allows better

performance on some applications that can be automatically parallelized, as well as

speedups on applications that are not amenable to automatic parallelization. Together

with an explanation of where and how I extracted this parallelism, this research can help

Chapter 1: Introduction and Background 16

direct future related research to see if some of these new parallelization techniques I have

developed can be automated and also if improvements can be made to automated thread

selection algorithms. It also helps define the performance limitations of TLS that are

inherent to the TLS system and to the applications, without confounding this with

limitations in the abilities of an automatic parallelizer.

Relevant research done by Rauchwerger, Padua and Amato considered software-based

schemes of speculation and parallelization [30], while later work in conjunction with

Zhang and Torrellas utilized hardware support, as well [36]. Other studies [6][33] have

focused on achieving highly scalable parallelization. These studies differ from the

current study in that they either focus on using software only, or on using hardware

support specific to the code transformation applied, e.g. hardware for conducting parallel

reductions or for achieving scalable speedups using non-blocking commits of speculative

state. Also, much of the previous research has centered on scientific, floating-point-

intensive Fortran applications [6][30][33][36], while the research described here

considers both floating point and integer programs that are all written in C.

Finally, substantial work on exploiting value prediction and dynamic synchronization has

been conducted in [5][7][9][20][25][32]. I incorporate the benefits of these studies where

possible and extend upon them. For example, the earlier value prediction studies explore

only predictions of values that do not change or are in a simple stride. In this study, I

explore predictions of values that evolve in a more complex manner.

Chapter 1: Introduction and Background 17

Following this different approach of utilizing manual parallelization without regard to the

ability to automate the techniques employed allows for several other unique

contributions. This dissertation provides insight into the effort required of a programmer

to port commercial applications manually to a TLS platform and optimize their parallel

performance. This research clearly demonstrates the simplicity of manual parallelization

with TLS versus without it, and provides evidence of the performance advantages of the

optimistic, dynamically determined synchronization of TLS versus the pessimistic,

statically-determined conventional synchronization, which uses locks or barriers, for

example. This information on programmer effort required and parallel performance

achieved enables a rough cost-benefit analysis to be done versus other methods of

parallelization, including conventional (non-TLS) manual parallelization and

conventional or TLS automatic parallelization.

This dissertation also provides an indication of what phases of the programming task

consume the most effort, i.e. analysis of the application, initial parallelization,

performance tuning or debugging. These data provide further indications of the ease of

TLS manual parallel programming compared to non-TLS manual parallelization.

Information on the performance achieved and the source code transformation techniques

utilized to expose more TLP to the TLS system provides an indication of the most useful

techniques for extracting TLP, which can help direct developers toward the best places to

invest future research efforts. The in-depth analysis of the parallelism in the SPEC2000

benchmarks and the limitations of a practical TLS system to extract the inherent TLP

provides useful information about where TLS exists in several of the applications in the

highly-utilized SPEC2000 suite, and what are the biggest barriers to extracting this

Chapter 1: Introduction and Background 18

parallelism, even with direct programmer involvement and expertise beyond the

capabilities of current automated parallelization tools. Understanding these limitations to

the extraction of TLP with a TLS system allows this dissertation to contribute knowledge

about ways in which uniprocessor programmers often obscure the inherent TLP that

exists within applications. This dissertation contributes a set of guidelines that

uniprocessor programmers could easily follow that would allow for more rapid and high

performance porting of uniprocessor applications to TLS platforms in the future.

1.4 Methodology

To conduct research on parallelizing applications with thread-level speculation (TLS), it

was necessary to choose a set of applications, a hardware platform and parameters to

vary. The rationale behind those selections will be explained in this section. I first

discuss the objectives and the approach taken to this selection of applications. This leads

next to a brief discussion of the applications selected and the reasons for their selection.

Finally, I discuss the strategy utilized for measuring the research results, as this required a

more sophisticated sampling strategy than has commonly been used in related research.

This was due to the size and nature of the applications and their data sets.

1.4.1. Objectives and approach

The methodology decisions represent a tradeoff between using realistic applications and

simulations on the one hand, and rendering the research tractable on the other. The

approach adopted was to first conduct research on very small applications with a

simplified hardware simulator, in order to get insight into the characteristics of the

Chapter 1: Introduction and Background 19

applications and the ability to extract thread-level parallelism from them using TLS.

Then, more complex analyses and applications were studied to understand how non-

idealities such as memory delay and speculation overheads impact the ability to extract

thread-level parallelism (TLP) from real-world applications.

The selection of applications was of primary importance. TLP can be extracted in a

variety of ways utilizing a number of different hardware platforms. I was interested to

show how TLS assists in extracting TLP, without having the conclusions be strongly

dependent upon the use of a particular hardware platform. As a result, the hardware

platform chosen was a fairly simple system with multiple cores loosely coupled through a

shared L2 cache. Specialized hardware was included in the caches and in the form of a

coprocessor for each processor core. But the cores themselves were left unmodified from

their uniprocessor versions, and much of the implementation, complexity and overhead of

speculation was delegated instead to software handlers. The specific system chosen was

the Hydra chip multiprocessor. This was selected as a matter of convenience, based upon

past work conducted within our research group and the availability of a well-supported

simulator infrastructure.

The applications, on the other hand, were not selected for convenience. They were

selected for one of two reasons. Either the selected application was very simple and

could be used to clearly illustrate an issue about TLS programming, or the application

was representative of a large class of applications and was chosen to provide insight into

the performance and parallelization issues that could be expected.

Chapter 1: Introduction and Background 20

The objectives of the research presented in this dissertation are to understand where TLP

exists in general purpose applications, and how this can be extracted using manual TLS

programming. I aim to show the parallel performance that can be expected from using

TLS, as well as to understand its limitations in extracting TLP. To gauge the difficulty of

parallelizing uniprocessor applications for a TLS system, I present information both on

the programmer effort required and on the difficulties that exist for this process to be

conducted automatically. Finally, from my experiences conducting parallelization with

TLS, I make suggestions for ways in which uniprocessor programs can be designed to

ease the process of parallelizing with TLS later and to enhance the performance that can

be easily obtained.

1.4.2. Selection of applications

To achieve these goals, I first designed and coded a very efficient uniprocessor

microbenchmark that could specifically demonstrate the capabilities of TLS

parallelization versus traditional, non-TLS parallelization. I then ported this program

from a uniprocessor to a TLS system. This microbenchmark uses a heap sort algorithm

to count the number of occurrences of each unique word in a passage of text.

Parallelizing heap sort is fairly challenging due to both frequent, predictable dependences

and also infrequent, unpredictable dependences. This microbenchmark is used to provide

insight into how TLS programming can provide both better performance and also require

less programmer effort. This insight provides the framework in which the larger, more

complex complete applications can be discussed.

Chapter 1: Introduction and Background 21

Following this, I sought applications that are widely considered representative of general-

purpose applications. I chose SPEC CPU2000 (also called SPEC2000), which is a well-

established, well-understood and generally accepted set of benchmarks for floating-point

and integer applications. The SPEC2000 suite comprises 14 floating point and 12 integer

applications. These applications are representative of a wide range of general-purpose

applications, and exemplify different types of computation ranging from bus depot

scheduling to molecular interaction modeling to compiling to file compressing.

Within SPEC2000, applications that are difficult to automatically parallelize but

amenable to manual parallelization with TLS were selected. In particular, the most

difficult floating point applications to parallelize and the most easily parallelizable

integer applications were selected for this research. More details on all the SPEC2000

benchmarks and the ones selected is provided in Section 4.1.

1.4.3. Measurement and sampling strategy

Each of the SPEC2000 benchmarks comes with two or three standard input data sets (and

execution parameters): a test data set, a training data set and a reference (full-size) data

set. While the test and training data sets can enable smaller execution times, the behavior

of the applications under these input sets is substantially different from the behavior on

the full-size reference data sets. Likewise, the dynamic behavior of the applications

changes substantially throughout the full execution with the reference data set. However,

a significant problem with measuring the performance of hypothetical processor

architectures using simulation is the length of execution that can be simulated practically.

While executing the full application against the reference data set takes too long, using

Chapter 1: Introduction and Background 22

the test or the training data sets can give misleading results. Likewise, measuring the

parallel performance of a system under test on just a small section of the application run

with the reference data set must be done carefully. Ideally, segments of execution should

be chosen at several spots throughout the full execution, and together, or better yet singly,

these segments should have a pattern of execution that closely approximates the behavior

of the entire execution. For example, the percentage of time spent in each subroutine

should be approximately the same for the sampled and the full execution, as well as the

ratio of nested iterations to their enclosing iterations being similar.

Initially, I parallelized the floating point applications. Because they are very parallel in

nature, they were an easy starting point to gain experience with effective ways to

manually parallelize using TLS and to understand the limitations of TLS that prevent

linear speedups. However, since Fortran applications tend to both be extremely

parallelizable and even automatically parallelizable, I decided not to study those. Many

publications already exist on parallelizing those automatically, including publications on

generating scalable speedups approaching linear speedups. These Fortran applications

tend to be well-suited to automated program analysis. Hence, from SPEC CFP2000, I

parallelized only the four applications written in C.

Following this, I focused on the integer applications. Here I selected applications on the

opposite criterion, ease of parallelization. This is because many of the applications in

SPEC CINT2000 are very difficult to parallelize, even manually. I specifically avoided

the most difficult integer applications, which have a large source code size, execution

time distributed between too many loops, loop dependences that are very difficult to

Chapter 1: Introduction and Background 23

understand or algorithms that appear to have a high probability of not conducting much

parallel work. These applications appeared likely to be too difficult to parallelize

effectively and could be truly sequential in character. However, other integer

applications in SPEC2000 can be fairly easily parallelized. I chose those applications to

understand how that could be done and to explore how the availability of a TLS system

facilitates that.

The SPEC2000 applications typically have few or no source code comments. While a

great effort could have been made to understand the algorithms within each application, I

specifically avoided doing this. I wanted to gain experience with TLS programming in

the way that many programmers must parallelize legacy applications. With limited

knowledge and insight into the data structures and algorithms selected by the original

designer of the application, I wanted to see if it was possible to achieve substantial

parallel speedups with little effort and little chance of introducing parallel programming

bugs like data races or deadlock. This would provide a better indication of the usefulness

of hardware support for TLS for parallelizing commercial legacy applications.

1.5 Layout of dissertation

This chapter has provided the motivation for studying manual programming with TLS. It

has covered the context from which hardware support for TLS arises and the current

research into its development and usage. I have framed the contributions of this

dissertation in that context and discussed the general methodology employed.

Chapter 1: Introduction and Background 24

The next chapter provides the necessary detailed information about TLS to understand

the research conducted with it. It discusses how TLS works from a theoretical

perspective, which leads to a description of practical TLS systems with limitations due to

difficulties of implementation. With this knowledge it is possible to understand the

common causes of performance losses that arise in TLS systems.

In Chapter 3, the process of conducting manual parallel programming with TLS is

described. This process is then applied to two, tiny example applications in order to

clearly show the way in which this process of manual parallelization is conducted and

also to explain the most common techniques utilized to transform programs to expose

more of their inherent TLP to the TLS system for extraction. These examples also help

demonstrate the relative ease of manual parallel programming with TLS versus

conventional manual parallelization without TLS.

Chapter 4 describes how this process and these transformation techniques were used to

parallelize whole applications within the SPEC2000 benchmarks suite. For each

benchmark parallelized, the locations at which substantial TLP was found are listed,

along with the techniques utilized to increase the amount of that parallelism that could be

extracted. Limitations in the ability to extract further parallelism are discussed and

performance data are provided indicating the relative usefulness of the each of the

additional transformations conducted upon the original source code.

Finally Chapter 5 discusses higher level observations made across all applications of the

usefulness of TLS for manual parallel programming. Specifically, the programming

Chapter 1: Introduction and Background 25

effort required and the distribution of that effort across the typical phases of

programming are discussed for the parallelization of the selected SPEC2000 benchmarks.

Statistics on the parallel performance across the different applications are analyzed to

explain patterns in the performance results. There is also a discussion of common

limitations to the extraction of TLP from applications, and guidelines for programming

the original uniprocessor applications that would help to diminish these limitations to

TLP extraction during subsequent parallelization. In closing, these findings are

summarized and indications are provided of future research in the area that would be

valuable to conduct.

Chapter 2: Thread-Level Speculation (TLS) 26

2 Thread-Level Speculation (TLS)

In the previous chapter, the reasons for conducting parallel programming with hardware

support for TLS were discussed. This chapter provides the necessary information on TLS

to understand the research conducted and the results generated. It begins with a

description of the theoretical basis of TLS, then progresses to describe how such a system

can be practically implemented and the details of the particular implementation that was

simulated for the current research. Finally, the performance limitations of TLS and its

practical implementations are described, to set the stage for the following chapters which

use this system to parallelize various benchmarks.

2.1 Ideal TLS systems

TLS facilitates the extraction of TLP by allowing multiple processors to work in parallel,

while preserving the appearance of single-processor, sequential execution. In TLS, a

sequential instruction stream is cut in multiple places, forming threads of contiguous

instructions. The first thread that would be executed if these were to be executed

sequentially is termed the head thread. In TLS, while the head thread is being executed,

the other threads are executed speculatively. When the head thread completes, the least

speculative thread is termed the new head thread, and typically execution of a new, more

speculative thread is started to replace execution of the head thread just completed.

The selection of places at which to divide the instruction stream into threads can be

conducted automatically or manually by the programmer. This selection is done in a way

Chapter 2: Thread-Level Speculation (TLS) 27

that produces threads that are likely to have few true (read-after-write) dependences

between each other. The most common way in which to form threads is to split a

sequential instruction stream at the beginning of each iteration of a loop, where the

iterations are each of an appropriate instruction length (hundreds to thousands of

instructions). The threads generated by doing this will often execute well in parallel, if

the interactions between each iteration of the loop are fairly limited. An example of this

is shown in Figure 2-1. To specify a selection of threads, the programmer or the

automatic thread generator will generally mark the beginning and end of a section of

sequential execution that can be parallelized on a TLS system. This is termed a

speculative region. Additionally, the programmer will mark each separation point

between the threads within this speculative region. For a loop parallelized with TLS, this

corresponds to marking the start and the end of the loop as places to begin and end

speculation (thereby defining a speculative region), and marking the beginning of each

iteration within the loop as the point of separation between each thread.

The expectation is that the threads generated for TLS can execute substantially in

parallel. When true dependences do occur between threads executing in parallel, the

hope is that the read will occur in the more speculative thread after the write has been

conducted by the less speculative thread upon which the read is dependent. This way, the

correct value will be available so the true dependence can be correctly processed. This

forwarding of data is shown in the data dependences labeled with the numeral 1 in Figure

2-1.

Chapter 2: Thread-Level Speculation (TLS) 28

Figure 2-1: Thread-level speculation

However, unlike conventional (non-TLS) parallel processing, the availability of the

correct value for the more speculative thread's read is not guaranteed. With conventional

parallel processing, synchronization and data or algorithm partitioning prevent correctly

parallelized (and debugged) programs from allowing reads to occur before the value has

been generated by the prior write. With TLS, when an incorrect value is read due to its

being processed before the write upon which it depends, a mechanism exists in the TLS

system to automatically detect and correct this problem. This detection and correction of

data is shown in the data dependence labeled with the numeral 2 in Figure 2-1.

Similarly, TLS systems must also detect and correct improperly processed anti-

dependences, i.e. write-after-read and write-after-write dependences. All threads must

ensure that the final values they write into every memory location are incorporated into

the execution of all threads more speculative than themselves, while no values that are

less speculative are incorporated. Correspondingly, speculative threads must make sure

that the first exposed read of each memory location includes the final results of threads

less speculative than themselves and none that are more speculative than themselves.

(Exposed reads are those that occur within a speculative thread before any write to the

same location within the same thread.)

Chapter 2: Thread-Level Speculation (TLS) 29

One way to implement these two goals is to buffer all writes from speculative threads in a

per-thread buffer. These writes are committed after each thread becomes the head thread,

i.e. all threads commit their writes in sequential order. Also, the writes from all threads,

including the head thread, are broadcast (even while speculative) to all threads that are

more speculative, in order to inform them of the updates. At the same time, speculative

threads note all exposed reads they have conducted while speculative and recompute all

results dependent on values read that were subsequently updated (and broadcast to them)

by less speculative threads. This update is termed a violation, which is the detection of a

new value of a previously read value (for an exposed read) and the recomputation of

results based upon that read. This is shown in the data dependence labeled with the

numeral 2 in Figure 2-1.

By tracking dependence violations, TLS can guarantee correct execution of programs

without requiring that the programmer understand all the data dependences in the

application. The programmer (or an automatic speculative thread generator) can make

assumptions about the best partitioning of the sequential execution into independent

threads. If the choice of threads is conducted well, there will be a significant parallel

speedup due to TLS. If the choice of threads is poor and there are frequent violations,

there will be little or no speedup, and with practical TLS systems, there can even be a

slowdown. But, these are purely performance issues. The application will never execute

incorrectly due to incorrect assumptions about dependences and data races, unlike the

situation with conventional parallel programming that renders it so difficult and error-

prone. The TLS system enforces the correct ordering of computation required by the data

dependences in the program under execution.

Chapter 2: Thread-Level Speculation (TLS) 30

2.2 Practical implementations of TLS systems

For ease of design, TLS implementations do not adhere to the most efficient specification

just described. For example, when a violation occurs, theoretically only results affected

by the previously-read-and-now-updated value require recomputation. However, this

minimum recomputation is difficult to implement, because it requires tracking which

results are affected by each read value. The simpler but less efficient approach is to

simply discard all results created by the violated thread (the speculative thread that

conducted the read) and to restart execution of the entire thread. This ensures that all

incorrect results based upon this read are discarded and all computation within the thread

utilizes the updated value, which is read again. While this is simpler, it implies that the

entire execution conducted by the speculative thread can be lost due to one violation

which only affects a single value at the end of the thread. Research has been conducted

into whether discarding all execution causes large performance losses and whether

checkpointing mid-thread state can be useful to allow the loss of only a portion of a

speculative thread's execution [26]. However, that research indicated that implementing

mid-thread checkpointing for the same TLS implementation used for the current research

introduced sizeable hardware overheads and little performance benefit for the

applications considered in that study.

Another way in which implementation of TLS is simplified at the cost of performance is

in the way updates are communicated between threads. For every exposed read by a

speculative thread, a violation can occur. However, only the final value update (in

sequential execution order) for each memory location out of all the value updates

Chapter 2: Thread-Level Speculation (TLS) 31

generated by all threads less speculative than this thread should be allowed to cause that

violation. And, only if this final updated value is different from the one speculatively

read by this thread should results be recomputed. If it has not, then no recomputation is

necessary.

However, in the absence of perfect knowledge of when the final result before each

exposed read has been generated, the much simpler strategy of broadcasting all writes by

less speculative threads is utilized in most TLS implementations. Also, TLS

implementations described in research publications generally assume that the updated

value has changed, but it is possible to optimize for the special case in which the updated

value is unchanged from its previous value [20]. Stores that do not change the value

overwritten are termed silent stores. For simplicity of implementation, in the TLS

implementation used for the current research no optimization is incorporated to take

advantage of silent stores.

As I discuss below, violating on all stores, even if they are final or silent, can cause

unnecessary violations. However, given the previous simplification of discarding all

execution for a violation, violating on non-final updates can actually provide performance

advantages. Since all execution prior to a violation must be completed again, assuming a

violation due to a non-final update can provide an early restart for a thread that is likely

to suffer a violation on the final update. Violating on a silent store, however, provides no

benefit except by coincidental interaction with other violations.

Chapter 2: Thread-Level Speculation (TLS) 32

An additional way in which TLS systems can be made simpler is by simplifying the way

in which threads can be generated. In a simple implementation, when execution is started

on a new speculative thread, it will always be the most speculative one being executed.

In more complex TLS implementations, execution can be started on new speculative

threads that are less speculative than some of the threads already under execution. The

former implementation simplifies thread ordering; once started, threads always complete

until speculation is completed; during the lifetime of each thread, the threads ordered

before and after it always remain the same. For the more complex form of speculation,

threads can be terminated before the end of speculation, and new speculative threads can

be inserted between two threads already under speculative execution.

The more complex form allows threads which are not the most speculative thread to also

fork off speculative threads. This can be useful when a thread executes a procedure call,

by allowing the thread to fork off the less speculative procedure call while continuing

execution on the more speculative instructions that should be executed after returning

from the procedure call. The complex form of speculation similarly allows a thread to

fork off multiple speculative threads when a loop is encountered within a single thread.

This allows for re-entrant or multi-level speculation. This situation occurs when

speculation is being conducted on an outer loop and each iteration forms a single thread.

Then, if a single iteration-thread encounters a very long loop within itself, it forms

speculative threads on this inner loop, i.e. to speculate at multiple loop levels. But, in

order to do this, the newly generated threads may need to be inserted (ordered) before the

other iteration-threads already in progress at the upper level. For our study, I chose non-

reentrant, loop-only speculation, one of the simplest and lowest-overhead

Chapter 2: Thread-Level Speculation (TLS) 33

implementations of TLS. It allows sequential iterations of a loop to proceed in parallel

and does not allow speculation on more than one loop simultaneously.

This is a brief overview of the relevant fundamentals of TLS and the implementation I

chose for my research. More details on this form of TLS can be found in [12].

2.3 Performance limiters of TLS systems

On many applications, TLS can be used very effectively to extract TLP. However, on all

but the simplest applications, some effort must be expended to eliminate or reduce a

number of common situations that generate performance losses. I have broadly

categorized these performance limiters as primary or secondary on the basis of their

significance, i.e. how likely they are to be present, and how much they typically affect

performance when present.

Most of these situations also severely limit performance for applications parallelized with

conventional (non-TLS) methods. Others even represent fundamental limits to the ability

to parallelize applications in any way. However, while they cause problems for almost

any approach to parallelization, I highlight these here because the impact of many of

them can be significantly alleviated in ways that are novel to the use of TLS. I will

discuss the problems here, but leave discussing methods to alleviate these problems to

future chapters. There, the solutions can be discussed along with representative

applications illustrative of the success that can be had in addressing these limitations.

Chapter 2: Thread-Level Speculation (TLS) 34

2.3.1. Primary performance limiters

(1) Relative positioning of stores and loads in successive iterations

The most important factor contributing to loss of parallel performance arises from the

minimum critical path of dependences through an application. The minimum execution

time required to compute a value in one thread that is read by a more speculative thread

determines a lower bound on the execution time to complete the two threads, unless value

prediction can be successfully employed. While this is usually complex to determine for

all computed values with dependences, many programs have a few obvious dependence

paths that are far longer than the minimum critical path length.

A simple example of this commonly arises with threads constructed from iterations of a

loop with a loop induction variable. The induction variable is often tested at the start of

the iteration to determine whether to execute the iteration. At the end of the iteration, this

induction variable is usually incremented or updated. Because the next iteration initially

tests this value, a true dependence is introduced between each iteration and its following

iteration. The path to compute the value read at the top of each iteration requires

completing the entire preceding iteration. If these iterations are made into separate

threads, this early read and late update of the loop induction variable leads to almost

certain dependence violations and virtually no parallel speedup. However, this is usually

a simple problem to fix, by simply updating the loop induction variable early, right after

it is first read. This reduces the critical path on that variable to its minimum and thereby

increases the parallelism available. While this is a simple example, more complex

examples will be discussed in future chapters. The common theme for all performance

Chapter 2: Thread-Level Speculation (TLS) 35

problems of this nature are that early reads of a value and late stores to the same memory

location within a thread produce a long computation path that limit parallelism and

exposes this thread and more speculative threads than it to a greater chance of

experiencing a dependence violation.

This path of computation from exposed read to final update of the same memory location

will hereafter be referred to as the violation window for this memory location within the

thread. This violation window has the following special properties. It is only during and

after this window that a violation can be suffered by this thread on this memory location

(due to the exposed read). And, it is only during this window that a violation can be

caused by this thread on this memory location (due to the writes). Each memory location

associated with a dependence will in general have a different violation window.

Violations can be guaranteed not to occur at all when, for every memory location with

inter-thread dependences, no threads have overlapping violation windows and all the

violation windows are ordered according to the speculative ordering of their threads. For

example, assume a memory location exhibits an inter-thread memory dependence that

could cause a violation. Then for every pair of threads for which there is a dependence

on this variable the following must be true. The violation window of the sequentially

first (less speculative) thread must complete execution before the violation window of the

sequentially second (more speculative) thread begins execution. Non-overlapping

sequentially-ordered violation windows for every variable with inter-thread dependences

guarantees no violations can occur. Because these violation windows have the properties

described above, minimizing their sizes and placing them at optimal locations within the

execution path of the thread can have profound effects upon the violation rate of the

Chapter 2: Thread-Level Speculation (TLS) 36

parallelized application and the parallel performance that can be achieved. This can be

done by delaying the first (exposed) read as long as possible and conducting the last write

as early as possible for every shared variable.

(2) Variability of load and store timing between iterations

While long violation windows can create problems, even short windows can cause

frequently violations if they occur with high inter-thread execution time variability. For

example, if in one thread a ten-cycle violation window occurs hundreds of cycles of

execution into the thread, while in the next thread the violation window for the same

location occurs right at the start of execution of this next thread, a violation will very

likely occur, because execution of the violation windows is unlikely to occur in

sequential program order. More precisely, if there is high variability in the point at which

the violation window occurs within each thread for a memory location with frequent

dependences, it will usually lead to frequent violations and will severely impact

performance.

Ideally, for each memory location with dependences, the following property for its

violation windows will hold. For any thread (which I will label the reference thread for

clarity), measure the number of cycles of execution from the start of execution to the end

of the reference thread's violation window. Then, for each more speculative thread

executing concurrently with the reference thread, measure the number of cycles of

execution from the more speculative thread's start of execution to the beginning of that

thread's violation window. Subtract each second measurement from the reference

thread's measurement, and these differences will ideally be as small as possible or even

Chapter 2: Thread-Level Speculation (TLS) 37

negative, especially for the threads more speculative than the reference thread but ordered

closest to the reference thread. The better this condition is met, the less the probability

that violations will occur due to the execution of overlapping or sequentially unordered

violation windows.

(3) Silent stores and temporally silent stores

A silent store occurs when an application writes a value into a memory location that is

exactly the same as what was already stored there. Because the value is unchanged after

the store, no recomputation need be done by more speculative threads that may have

already read this value. This is commonly seen in many applications [20]. It can occur

for boolean variables, for example, when a condition is tested that often yields the same

result, such as whether the number of items left in a buffer being processed is zero yet or

not. However, most TLS implementations do not detect whether a value being written is

a silent store, and hence these silent stores cause violations when they do not need to do

so.

While silent stores have been addressed in previous literature [20], I have seen no

publications that discuss what I term temporally silent stores, and correspondingly no

TLS architectures to handle this. Temporally silent stores occur when a value does

change during stores, but eventually returns to the same value it had at a previous time.

If a temporally silent store occurs within a single thread, none of the intervening writes

need have been broadcast. In fact, if the final update of a value by a thread is a

temporally silent store, then the first time that this value was written by the thread is the

last time that that value need be updated to the other threads.

Chapter 2: Thread-Level Speculation (TLS) 38

The performance problem caused by temporally silent stores is that the updates to the

memory location from immediately after the first time this value was written up to and

including the last update can cause violations in more speculative threads, even though

none of these writes are necessary as the final value has already been written into the

memory location. None of the writes following the first write that matches the final

update need have been broadcast. Furthermore, if this final update was the same as the

initial value read by the thread (the exposed read), then no writes to this memory location

need have been broadcast at all. In this case, the violation window of this thread on this

memory location is reduced down to only the exposed read by the thread. Hence, the

thread can be violated but cannot cause more speculative threads to violate on this

memory location, since it never updates the memory location in any meaningful way.

(4) Reduction of high-bandwidth dependences to low-bandwidth communication

Similar to the problem of temporally silent stores is the problem of the use of high-

activity variables to communicate low-activity information. An example of this is the use

of a queue length to check for the existence of an element remaining to be processed.

While the queue length itself is a high-activity variable that frequently changes as

elements are added and removed from the queue, the existence of at least one element

remaining to be processed is typically a much lower-activity variable that remains true

except in the rare case that the queue is empty, for queues that tend to have significantly

more than one member. The frequent updates to the high-activity variable cause frequent

violations for threads checking that variable, even though the low-activity information

they actually require frequently remains unchanged.

Chapter 2: Thread-Level Speculation (TLS) 39

(5) Stacks, queues, heaps, lists, linked lists and sequentiality

Access to data structures with data hot spots can result in high contention between

threads and a high violation rate. Common structures with hot spots include stacks,

queues, lists and linked lists (determining the number of elements and accessing the first

or last element, which can often change), tree-based heaps (determining the number of

elements and accessing the top nodes of the heap) and data structures where the elements

are sequentially linked in any fashion (such as ordered lists). Likewise, algorithms with

any of these characteristics yield high violation rates. Particularly difficult are recursive

algorithms. These implicitly include a stack, and the leaves of recursion are often

implicitly sequentially linked.

(6) Average and variance of the execution times of individual iterations

The remaining problems that commonly limit parallel performance for TLS pertain to the

sizes and execution times of the threads. These are problems for conventional parallel

programming, as well. The first is that typically it is optimal if the individual threads

require approximately equal time to execute. However, in some applications speculative

threads (that are ordered contiguously) require substantially different numbers of cycles

to complete. This leads to load imbalance and stall time for threads that complete early,

but must wait for less speculative threads to commit first, since threads must commit in

order with our implementation of TLS. Some TLS architectures can allow new, more

speculative threads to begin execution before old ones have committed, i.e. they allow a

temporary increase in the number of threads in progress, but this requires extra hardware

and complexity beyond basic TLS implementations [6]. Threads with high execution

Chapter 2: Thread-Level Speculation (TLS) 40

time variability typically occur when a loop's iterations are parallelized, and only some of

the iterations make a function call or conduct some other form of conditional execution.

The second problem pertains to the average size of each individual thread. Threads that

are too small fail to provide good parallel performance because practical TLS systems

incur some execution overhead per thread that is executed. The overheads for our TLS

implementation are discussed in the description of our simulated hardware below. On the

other hand threads that are too large fail to provide good parallel performance due to the

large exposure of each thread to suffering violations. As discussed previously, when a

violation occurs in most practical TLS systems, the entire execution of the violated thread

is discarded and execution is started again. The longer the thread, the more execution

time will be lost on average. Also, the longer the thread, the more chance that a violation

will occur for many applications. This is because most applications will have more

exposed reads during that time and longer violation windows, which cannot be

overlapped with more-speculative threads' violation windows, as discussed above.

While checkpointing could allow for longer thread lengths, it requires significant

hardware overhead, and the benefits it provides are typically small. It only limits the loss

of execution due to a violation and does not eliminate the occurrence of the violation.

Anyway, the problem of thread sizes generally manifests itself as having threads that are

too small, rather than threads that are too large and for which, furthermore, checkpointing

would be useful.

Chapter 2: Thread-Level Speculation (TLS) 41

Finally, a specific problem of uneven execution times and choosing an optimal thread

length arises with nested loops. As discussed above, our implementation of TLS does not

allow for multiple-level or re-entrant speculation. As a result, nested loops in which the

inner loop is conditionally executed can lead to load balancing problems. This problem

arises if the inner loop is infrequently executed per iteration of the outer loop, but

consumes so much execution time when it is called that it consumes approximately half

of the total execution time of the inner plus outer loops put together. Parallelizing just

the inner iterations can yield threads that are too small and for which the TLS execution

overheads are too high. Additionally, this leaves the outer loop body unparallelized.

Those iterations that do not call the conditional inner loop run entirely sequentially, as do

the rest of the loop bodies even for those iterations that do execute the inner loop.

However, parallelizing just the outer loop iterations yields short threads when the

conditional inner loop is not executed and much longer threads when the inner loop is

executed. This is a specific load balancing and thread length problem that arises fairly

often.

2.3.2. Secondary performance limiters

The performance limiters listed in this section have been termed secondary because they

do not occur often in applications, they do not severely impact performance or both. All

four limiters are directly related to implementation issues for practical TLS systems. As

such, they are not inherent to TLS itself, but rather arise from the simplifications that are

made to render the hardware less complex.

Chapter 2: Thread-Level Speculation (TLS) 42

(1) Execution stall due to speculative state buffer overflow

In order to prevent the writes from a speculative thread from being affecting the values

read by less speculative threads, these writes must be buffered until they can be

committed when the thread becomes the head (non-speculative) thread. This requirement

to buffer writes requires per-thread hardware that is limited in practical TLS

implementations. When the limitations of the hardware have been reached, the

speculative thread can no longer conduct any writes to new memory locations, and this

requires stalling the thread at the first write which overflows the speculation write

buffers.

Likewise, to track which memory locations have been read speculatively in order to know

when a write from a less speculative processor has violated this exposed read, a list of

memory locations that have been speculatively read by this thread must be maintained.

When the storage for this list has been exceeded, then this thread cannot make any

exposed reads to memory locations that are not already stored in this thread's list;

otherwise, the thread must stall until it becomes the head thread.

Applications that have been split into speculative threads that cause buffer overflow

suffer performance losses due to stalling. But this is rare because it usually only happens

for long threads, and at these lengths the high violation rates and large amounts of lost

execution time for long threads typically inhibit performance more than buffer overflow.

When it does occur for applications with low violation rates, these long threads can often

be split into smaller threads to prevent buffer overflow.

Chapter 2: Thread-Level Speculation (TLS) 43

(2) Speculative region overheads

Besides per-thread overheads, practical TLS implementations have speculative region

startup and shutdown overheads. These are incurred each time execution of the

application switches from sequential to TLS-parallel mode. If the amount of work to be

done within the speculative region is small, these overheads can reduce performance.

However, this is only the case when speculative regions occur frequently and very little

execution time is spent in each region. This is not typical for most applications

parallelized.

(3) Small number of loop iterations per speculative region

The speculative threads run on a TLS system will usually be assigned to multiple

processors. When the number of threads in a speculative region is less than three or four

times the number of processors implementing the TLS system and the number of threads

is just slightly more than a multiple of the number of processors in the system,

performance can be significantly reduced due to the discrete effects of assigning a limited

number of threads to processors. For example, if there are five similarly sized threads in

a speculative region executing on four processors, one processor will need to conduct

twice as much execution as the other three processors, yielding an optimal speedup of

only two-and-a-half, rather than four. This is not often a problem, except for loops with

long but few threads and with the advanced TLS technique of speculative threading

discussed in Section 3.2.10.

A similar problem arises even when the number of threads is one or two times the

number of processors in the TLS system. Here the problem is that upon beginning the

Chapter 2: Thread-Level Speculation (TLS) 44

first threads and upon ending the last threads, some of the processors will be idle. In the

former case, it is those processors that have yet to start, and in the latter case it is those

that have already finished. This leads to performance losses, but these are significant

only when the number of threads is small and there is significant transient violation

activity in the speculative region which would be better amortized if more threads were

executed. This is the case when the violation windows of the speculative threads force

them to begin execution offset at a spacing that is roughly the average thread length

divided by the number of processors in the system on average. This combination of the

number of threads and the specific violation behavior is not frequently encountered.

(4) False sharing and false violations

As is common for multiprocessor systems, performance on practical TLS

implementations can suffer from false sharing. An additional problem with practical TLS

implementations can occur due to the fact that violations on memory locations are not

detected on a byte basis, but rather on a word basis or larger. In a condition similar to

false sharing, false violations can occur because of exposed reads by one speculative

thread and writes to a different portion of the same word or line by another, less

speculative thread. In the TLS implementation I simulated, violation tracking is done on

a word basis, and false sharing at the byte level is atypical amongst common applications.

However, for TLS systems that track violations at a larger memory location granularity,

this can introduce some performance losses in a few applications.

Chapter 2: Thread-Level Speculation (TLS) 45

2.3.3. Measuring and understanding performance losses

When parallelizing applications with TLS, in order to understand the performance losses

and diminish them, it is very helpful to be able to measure a number of key

characteristics of the application as it executes with TLS. The first is the number of

violations. Another is the lost execution time per violation. With the number of

violations and the average lost execution time per violation, the total lost execution time

due to all violations can be computed. While the ultimate measure of the parallel

performance rendered with TLS is the total execution time of the application, the total

lost execution time due to violations can help understand how much of the difference

from perfect parallel speedup is due to violations and how much is due to overheads,

either in the TLS implementation or in the redesign of the code to make it more amenable

to parallelization.

Average lost execution time per violation for the entire application is useful, but much

more useful is this same measure individually measured for each speculative region.

Violation activity can vary widely across different speculative regions, and understanding

where parallel performance is lost is simplified greatly with this level of detail. Likewise,

the number of violations for each speculative region is helpful.

Another measure that is useful is the number of cycles or the percentage of execution lost

to the overhead of the TLS system. Again, this is most useful when provided separately

for each speculative region.

Chapter 2: Thread-Level Speculation (TLS) 46

As just mentioned, the total execution time of the parallelized application is the correct

measure to optimize for a parallel application. While this is similar to decreasing the

total lost execution cycles due to violations, it is not the same. For example, applications

with more TLS overhead or applications which have been redesigned may lose fewer

cycles to violations, but nevertheless take more cycles to complete. Likewise, intuitively

one might believe that reducing the number of violations is the best way to improve the

performance of a TLS application, but that is not always the case. Redesigning an

application to have many short violations early in its speculative threads can sometimes

enable better performance than allowing it to execute a few long violations much later in

its threads, instead.

In the same way that statistics for each speculative region are much more useful than

statistics for the whole application aggregated together, likewise information for each

violation are far more useful than information aggregated across an entire speculative

region. For this, the simulated TLS implementation used for our research produces a

violation trace, which includes the following information. For each violation between

threads, the TLS system adds one record to the violation trace. The record includes

information on the instruction address of the exposed load that was violated, the

processor or thread that conducted that load and the cycle at which the load was initiated.

The same information is recorded about the store that violated the exposed load. The

information about the processors or threads involved also includes information about the

speculative ordering of the threads. Additionally, the execution time that has passed

since the violated thread began is recorded, so that the lost execution time due to the

violation can be computed for each violation that occurs.

Chapter 2: Thread-Level Speculation (TLS) 47

2.4 TLS CMP hardware simulated

Having described the applications that were selected, I will now describe the simulated

TLS multiprocessor system that was used as the platform to execute the parallelized code.

The system chosen for this study, the Stanford Hydra [11], comprises four pipelined

MIPS-based R3000 processor cores, each with private L1 instruction and data caches, as

shown in Figure 2-2.

Figure 2-2: Hydra chip multiprocessor

The four processors share an on-chip, unified L2 write-back cache, and each processor

executes a single thread. Each processor’s L1 data cache is write-through, and the other

processors snoop the bus connecting the processors and the L2 cache to permit data

dependence violation detection. Dependences are tracked on a per-word basis, thereby

eliminating almost all violations due to false sharing. Speculative result buffering is

achieved by buffering speculative writes to the L2 cache in a group of 32-cache-line

Write-through Bus (32b)

Read/Replace Bus (128b)

On-chip L2 Cache

Main Memory

SDRAM Memory Interface

CPU 0

L1 I$

Speculation Write Buffers

CPU 1

L1 I$

CPU 2

L1 I$

CPU 3

L1 I$

I/O Devices

I/O Bus Interface

CPU 0 Mem Control CPU 1 Mem Control CPU 2 Mem Control CPU 3 Mem Control

Centralized Bus Arbitration Mechanisms

CP2 CP2 CP2 CP2

#0 #1 #2 #3 retire

L1 D$ + SpecL1 D$ + SpecL1 D$ + SpecL1 D$ + Spec

DMA

Chapter 2: Thread-Level Speculation (TLS) 48

buffers, one for each processor. These buffers also monitor read requests made to the L2

cache. This allows them to forward data created by writes from less speculative

processors to satisfy the requests of more speculative processors. Other hardware in the

L1 data caches enforces the TLS protocols, such as the detection and processing of

dependence violations.

Table 2-1: Memory system specifications

While the CMP hardware follows a partial store ordering memory consistency model, the

TLS system causes the CMP to appear to the programmer like a single out-of-order

processor, so the programmer need not consider memory consistency issues. Further

details of this design can be found in Table 2-1 and [12]. While Hydra’s MIPS R3000

cores do not aggressively extract ILP, the TLP extracted for the speedups in this thesis

are effectively independent of ILP due to the larger thread lengths involved, as validated

by the thread lengths provided in our discussion of results in Section 4.4 and Table 4-5.

Memory system
Characteristic

L1 cache L2 cache Main memory

Configuration

Separate
I & D SRAM
cache pairs for

each CPU

Shared,
on-chip

SRAM cache
Off-chip DRAM

Capacity 16 KB each 2 MB 256 MB

Bus width 32-bit connection
to CPU

256-bit read bus and
32-bit write bus

64-bit SDRAM
at half of

CPU speed

Access time 1 CPU cycle 5 CPU cycles At least
50 cycles

Associativity 4-way 4-way N/A
Line size 32 bytes 64 bytes 4 KB pages

Write policy Writethrough,
no write allocate

Writeback,
allocate on writes

“Writeback”
(virtual memory)

Inclusion N/A Inclusion enforced by
L2 on L1 caches

Includes all
cached data

Chapter 2: Thread-Level Speculation (TLS) 49

As a result, an implementation with high-ILP cores should still be able to find ILP, for an

even greater speedup.

Table 2-2: Loop-only TLS overheads

The support for TLS is implemented in a combination of hardware and software for ease

of implementation and adaptability of the protocols, although this does increase the

thread control overheads. Software handlers are executed for regular events such as

starting a speculative loop, ending a speculative loop and for completing each iteration

within the loop. Other software overheads are incurred for irregular events such as

processing violations committed within this processor or within another processor,

preventing speculative buffer overflow and handling exceptions for SYSCALL

instructions. These software overheads are provided in Table 2-2 and further information

is available in [12] and [26]. The overhead due to the software handlers for regular

events can be statically analyzed, while the software handlers for irregular events arise

from dynamic situations.

The TLS system allows speculation only on loops and at a single level, i.e. not

speculation on a loop nested within another speculative loop. The system could have

Overheads for
loop-only TLS Software handler Instruction

count
Start loop ~30

End of each
loop iteration 12 Regular events

Finish loop ~22
Violation: local 7

Violation: receive from another CPU 7
Hold: buffer full 12

Irregular events

Hold: exception 17 + OS

Chapter 2: Thread-Level Speculation (TLS) 50

conducted procedural speculation via the use of different software handlers [26], but

loop-only speculation was chosen for its lower overheads. As a result, the performance

losses resulting from the speculation software handler overheads are typically quite small.

A cycle-accurate, execution-driven simulator was used to simulate all application

instructions, including the software handlers that support speculation. Only system calls

were executed outside the simulation environment on the underlying native hardware, but

these account for a very small percentage of the benchmarks’ execution times on real

hardware. The simulator has the capability to switch between two modes. In simulation

mode, execution on a TLS CMP is realistically modeled and simulation measurements

can be made. Contrastingly, in native mode the sequential version of an application is

executed directly on the native machine to rapidly advance the simulation without

statistics. Performance was measured under two scenarios, a CMP with a realistic

memory system for which all memory delays were accurately simulated, and a CMP with

a perfect memory system. The realistic memory model includes the effects of bus

contention and memory access queuing. The prefect memory model was used to gauge

the performance losses due to not scaling the memory system with the number of

processors running in parallel. Performance was also estimated for a scenario in which

the overhead from the software handlers was entirely eliminated by the use of dedicated

hardware to replace the software handlers. Applications were compiled for the target

architecture using GCC 2.7.2 with optimization level -O2 on SGI workstations running

IRIX 5.3 or IRIX 6.4.

Chapter 2: Thread-Level Speculation (TLS) 51

This chapter has provided an understanding of the tools that were used to conduct the

research in this dissertation. The next chapter shows how these tools are used to

parallelize programs and how using TLS simplifies the process of manual parallelization.

Chapter 3: Manual Programming with TLS 52

3 Manual Programming with TLS

I have described the mechanisms by which TLS allows multiple threads to execute in

parallel, while providing the programmer with the appearance of sequential execution.

The programmer or automatic parallelizer suggests portions of the application that are

likely to exhibit TLP. The TLS system then dynamically verifies that this TLP actually

exists. If data contention prevents parallel execution, the TLS system forces properly

ordered execution.

The use of dynamic dependence checking to validate TLP and enforce correctly ordered

execution might appear to be a fairly modest capability. However, it is actually a very

powerful tool for parallelization. In this chapter, I investigate the substantial impact of

this single capability on the entire process of parallel programming. Parallelization using

TLS fundamentally changes the conventional approach to parallel programming. It

simplifies parallelization, especially of legacy code, because it does not require the

programmer or the automatic parallelizer to understand the data dependences that can

occur within the application.

I start by describing the general process of manually parallelizing using TLS. I then use a

microbenchmark to illustrate this process. I use this as a platform to branch into a

description of various programming techniques that allow TLS to extract more TLP out

of legacy applications. Finally, I conclude the chapter with a comparison of manual TLS

parallelization with conventional parallelization, focusing on how much effort

parallelizing this microbenchmark would have required either with or without TLS.

Chapter 3: Manual Programming with TLS 53

3.1 Parallel programming process using TLS

By providing the programmer with a sequential programming interface, manual

parallelization with TLS is conducted very differently from conventional, non-TLS

manual parallelization. Conventional parallelization typically requires extensive

planning to avoid data races between different threads accessing shared memory. TLS

does not, because data races cannot occur. All dependences are automatically resolved

correctly. Because TLS systems appear to execute all instructions in order, data races are

simply not possible.

This difference profoundly affects the way in which parallel applications are developed.

With conventional parallelization, often a sequential application is written first or already

exists. Then this application must be transformed into a parallel version by redesigning

the algorithms and the data structures to reduce contention. For each possibility of data

contention, a determination must be made whether these contending accesses must be

ordered or not. Typically, they must be, and then access ordering must be enforced via

synchronization methods such as locks, barriers and flags. If any possible instance of

data contention is overlooked or incorrectly synchronized, data races may occur and

generate incorrect execution. Detecting data races can be complicated, as they may occur

infrequently and may only arise under very specific circumstances that are difficult to

repeat.

In contrast, TLS can be applied to parallelize a sequential application without making any

significant changes to the source code. Because TLS applications appear to run

Chapter 3: Manual Programming with TLS 54

sequentially, manual TLS programming is roughly equivalent to single-threaded

(sequential, uniprocessor) programming. The programmer simply indicates to the TLS

system which sections of the application may contain TLP and which variables are

shared. The application is then executed by the TLS system while the performance is

measured. Then, the TLS system returns statistics about the performance of the

execution of the parallelized application. This performance data is used by the

programmer to modify the application to expose more of the inherent TLP to the TLS

system and to reassess which portions of the application actually do possess TLP.

Initially, the programmer begins with a sequential application. If a sequential application

does not yet exist, then the programmer develops it. The programmer should develop this

application in a manner that makes it more amenable to TLS parallelization, as discussed

in Section 5.2. However, this need not be done to the same extent as with conventional

parallel programming. Only contentious accesses to shared memory locations that cause

large performance losses need be specially addressed. Other shared memory accesses

can be synchronized automatically by the TLS system with little loss in performance.

Once a sequential application is available, the programmer profiles this application on

typical workloads to determine the execution time spent within each basic block of the

application. The profile information ideally also includes information about the control

flow interrelationships between the basic blocks. In other words, for any basic block

under consideration, it is useful to know which basic blocks are usually executed

immediately prior to it and immediately after it, and the percentage of times the control

flow of the program proceeds through any of these leading or following blocks. If this is

Chapter 3: Manual Programming with TLS 55

not available at the basic block level, the same information on a procedure/function call

level can provide much of the necessary information.

The programmer uses the basic block execution times and the control flow

interrelationships between them to predict spots where TLP may be effectively extracted.

In the initial basic parallelization, the programmer will focus upon parallelism at the loop

level. In the subsequent performance-tuning stages of parallelization, the programmer

will examine the execution profile at the basic block level to conduct load balancing and

the advanced methods described in Section 3.2 below, such as complex value prediction

and speculative pipelining. When conducting basic parallelization, the programmer

should focus on the loops where most of the execution time is spent. In applications that

are amenable to TLP, the loops that dominate the execution time are almost always

repeated a large number of times. The programmer must decide at which level to

parallelize these loops using TLS. If a loop has many iterations per entry into the loop,

then parallelizing each iteration of the loop as a single thread may be the best decision.

However, if the size of a loop is large or dependences exist within or between iterations,

it can be desirable to split an iteration into multiple threads to prevent violations from

occurring. Likewise, if an iteration is too small, it may make sense to execute several

iterations of the loop as a single thread. The programmer must make these decisions

using the profile data, and then insert directives to the TLS system to denote how the

system should attempt to extract TLP from the application. As discussed in Section 2.4,

the TLS system utilized for our study provides only non-reentrant speculation. Hence,

the programmer may need to decide the best level at which to parallelize an application

when nested loops and other nested forms of iteration are encountered.

Chapter 3: Manual Programming with TLS 56

Having demarcated points in the application at which to begin a speculative region and

end a speculative region and the points within each region at which to begin each new

thread, the programmer executes the program on a TLS system, while allowing the TLS

system to measure the execution performance data discussed in Section 2.3.3. The

programmer can then inspect the number of violations, the lost execution time due to

violations and the overhead of the speculative system beyond lost time due to violations.

Most importantly, the programmer can inspect which pairs of lines in the source code

cause the greatest losses in parallel performance due to violations. This can be done by

inspecting the instruction addresses of the loads and the stores that interact most severely

with each other by causing violations that limit performance. This allows the

programmer to focus the optimization effort on only those violations that most critically

reduce performance. This is in contrast to the necessity for conventional parallel

programmers to synchronize every single data dependence that could even potentially be

executed with incorrect ordering. The methods of analyzing the data gathered while

monitoring TLS execution and the type of optimizations that can be implemented to

prevent performance losses will be described later in this chapter using a

microbenchmark as an example application.

The programmer iterates through this process of executing the parallelized program on a

TLS system with performance monitoring capabilities, and then adjusting the program to

reduce performance losses due to data dependence violations. The programmer does not

need to be certain that TLP can be extracted from any section of the application. Because

it is fairly simple to notate the program for sections that should be executed using TLS

and to demark the start of each speculative thread and because correctness is guaranteed,

Chapter 3: Manual Programming with TLS 57

the programmer is free to fairly quickly experiment with different thread sizes and

locations to find the particular set of threads that yields the best performance. The only

part that can be difficult is for the programmer to specify to the TLS system the memory

locations (variables) that are shared. In the worst case, the programmer just declares all

variables (that are likely to be shared) as shared variables to ensure that the TLS system

monitors all these variables for violations that require correction. However, this can

introduce a large amount of overhead into some programs, since in many TLS systems,

including ours, shared variables must have all exposed reads and all writes directed to the

shared cache, which prevents these variables from being register-allocated. Hence, the

programmer will generally take some care to only specify as shared variables those that

have some reasonable chance of being shared. If the programmer does fail to specify a

shared variable, the application can execute incorrectly, as in this case data dependences

will not be dynamically detected nor corrected on these memory locations. It is worth

mentioning that this is the only place in which the original parallelization effort can

require debugging. Debugging can also occur afterward, when the programmer attempts

to improve performance by redesigning the application in a way that does not adhere to

the original algorithms. Other than these two instances, debugging is never necessary

with manual TLS parallelization. Instead, all efforts expended by the programmer are

toward performance improvement, rather than correctness.

3.2 Microbenchmark example

To make the approach to manual TLS programming more concrete, in this section I will

use two simple examples to illustrate many important points about how a programmer

Chapter 3: Manual Programming with TLS 58

can use TLS to parallelize applications. First, I will show the ease of using TLS versus

conventional (non-TLS) manual parallelization. Second, I will discuss the performance

advantages of using even simple TLS parallelization versus a thorough redesign of

applications using conventional parallelization. I will also show the performance

advantages of manual over purely automatic TLS parallelization. Third, I will explain

several types of source code transformations that can expose more of the TLP inherent in

applications. Fourth, I will illustrate the very different code development cycle

experienced by a manual TLS programmer.

Figure 3-1: Organization of the heap array

3.2.1. Heap Sort Example

The first example is C code that implements the main algorithm for a heap sort. In this

algorithm, an array of pointers to data elements is used to sort the elements. Encoded in

null null null null null null

A1 A3 A0

A2 A6

A4

A4 A2 A6 A1 A3 A0 null null null null null null

Node

Address stored

0 1 2 3 4 5 6 7 8 9 10 11 12

Node 1
(“has”)

Node 0
(“form”)

Node 2
(“here”)

Node 3
(“tree”)

Node 4
(“the”)

Node 5
(“the”)

Node 6
(“shown”)

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

A0

A1

A2

A3

A4

“the”

“tree”

“has”

“the”

“form”

A5 “shown”

null null

Node 13 Node 14

A5

A6 “here”

A5 null null

13 14

A) Tree structure in memory

B) Implicit structure C) Data elements in memory

Chapter 3: Manual Programming with TLS 59

memory as a simple linear array (Figure 3-1A), the node array is actually interpreted as a

balanced binary tree by the algorithm (Figure 3-1B). Tree sibling nodes are recorded

consecutively in the array, while child nodes are stored at indices approximately twice

that of their parents.

For example, Node 2 is located directly after its sibling (Node 1) in the array, while Node

2’s children (Nodes 5 and 6) are located adjacent to each other with indices

approximately twice that of Node 2. This structure allows a complete binary tree to be

recorded without requiring explicit pointers to connect parent and child nodes together,

because the tree structure can always be determined arithmetically. In this example, each

node of the tree consists of a single pointer to a variable-length data element located

elsewhere in memory (Figure 3-1C).

The heap is partially sorted. The element pointed to by any parent is always less than the

element pointed to by each of the children, so the first pointer always points to the

smallest element. Nodes are added to the bottom of the tree (highest indices) and bubble

upwards, switching places with parents that point to greater valued elements. Final

sorting is conducted by removing the top node (first pointer) and iteratively filling the

vacancy by selecting and moving up the child pointer that points to the lesser element

(Figure 3-2). I will focus only on this final sorting, which typically dominates the

execution time of heap sort.

Chapter 3: Manual Programming with TLS 60

Figure 3-2: Top node removal and update of the heap

The code is provided in Figure 3-3. It can be used to count the number of appearances of

each (linguistic) word in a passage of text. It has been optimized for uniprocessor

performance, so that parallelization with TLS can only derive speedups due to true

parallelism and not due to more efficient code design. The code processes the pre-

constructed heap node[], where each node (e.g. node[3]) is a pointer to a string (line

2). As each top node is removed and replaced from the remaining heap, a count is kept of

the number of instances of each string dereferenced by the nodes (line 17). Each string

and its count are written into a (previously allocated) result string (line 2) at the position

pointed to by inRes (lines 9-16). To do this, the top node of the heap (node[0],

which points to the alphabetically first string) is removed and compared to the string

null null null null null null

A1 A0

A3 A6

A2

A2 A3 A6 A1 A0 null null null null null null

Node

Final address stored

0 1 2 3 4 5 6 7 8 9 10 11 12

Node 1
(“the”)

Node 0
(“has”)

Node 2
(“here”)

Node 3
(“tree”) Node 4 Node 5

(“the”)
Node 6

(“shown”)

Node 7 Node 8 Node 9 Node 10 Node 11 Node 12

A0

A1

A2

A3

A4

“the”

“tree”

“has”

“the”

“form”

A5 “shown”

A6 “here”

null null

13 14

A4
Step 1 Step 2 Step 3 Step 4

null null

Node 13 Node 14

A4 A2 A6 A1 A3 A0 null null null null null nullPrevious address stored null nullA5

A5null

A5null

A) Tree structure in memory

B) Implicit structure C) Data elements in memory

Chapter 3: Manual Programming with TLS 61

Figure 3-3: Code for top node removal and heap update

1: #define COLWID (30)
2: char *result, *node[];

3: void compileResults() {
4: char *last, *inRes;
5: long cmpPt, oldCmpPt, cnt;
6: int sLen;

 // INITIALIZATION
7: inRes = result; last = node[0]; cnt = 0;

 // OUTER LOOP - REMOVES ONE NODE EACH ITERATION
8: while (node[0]) {
 // IF NEW STRING, WRITE LAST STRING AND COUNT
 // TO RESULT STRING AND RESET COUNT
9: if (strcmp(node[cmpPt=0], last)) {
10: strcpy(inRes, last);
11: sLen = strlen(last);
12: memset(inRes+sLen, ' ', COLWID-sLen);
13: inRes += sprintf(inRes+=COLWID,"%5ld\n",cnt);
14: cnt = 0;
15: last = node[0];
16: }

17: cnt++;

 //INNER LOOP - UPDATE THE HEAP, REPLACE TOP NODE
18: while (node[oldCmpPt=cmpPt] != NULL) {
19: cmpPt = cmpPt*2 + 2;
20: if (node[cmpPt-1] && !(node[cmpPt] &&
 strcmp(node[cmpPt-1], node[cmpPt]) >= 0))
21: --cmpPt;
22: node[oldCmpPt] = node[cmpPt];
23: }
24: }

 // WRITE FINAL STRING AND COUNT TO RESULT STRING
25: strcpy(inRes, last);
26: sLen = strlen(last);
27: memset(inRes+sLen, ' ', COLWID-sLen);
28: sprintf(inRes+=COLWID, "%5ld\n", cnt);
29: }

Chapter 3: Manual Programming with TLS 62

pointed to by the previous top node removed (lines 8 and 9). If they point to dissimilar

strings, then all nodes pointing to the previous string have been removed and counted, so

the string and its count are written to the result string and the count is reset (lines 9-16).

In all cases, the count for the current string is incremented (line 17) and the heap is

updated/sorted in the manner described above (lines 18-23). The heap is structured so

that below the last valid child on any tree descent, the left and right child are always two

NULL pointer nodes (line 18). This whole counting and sorting process is conducted

until the heap is empty (line 8). Then the results for the last string are written to the result

string (lines 25-28).

3.2.2. Parallelizing with TLS

When parallelizing with TLS, the programmer first looks for parts of the application with

some or all of the following qualities. These parts should dominate the execution time of

the application with that time concentrated in one or more loops, preferably with a

number of iterations equal to or greater than the number of processors in the TLS CMP.

These loops should contain fairly independent tasks (few inter-task data dependences),

with each task requiring from 200 to 10,000 cycles to complete, and all tasks being

approximately equal in length for good load balancing. For the example program, the

two loop levels where this code can be parallelized are either the inner loop or the outer

loop, i.e. within a single event of removing node[0] and updating the heap (lines 8-24),

or across multiple such events. The first is not good due to the small parallel task sizes

involved, which are better targeted with techniques that exploit ILP. The second level is

much better suited to the per-iteration overheads of the TLS system. But, parallelizing

Chapter 3: Manual Programming with TLS 63

across multiple node removals and heap updates requires each thread to synchronize the

reading of any node (lines 8, 9, 15, 18, 20, 22) with the possible updates of that node by

the previous threads (line 22). The top node will always require synchronization, while

nodes at lower levels will conflict across threads with a decreasing likelihood at each

level.

This example can be parallelized using TLS simply by choosing and specifying the

correct loop to parallelize. In this example, changing line 8 to use the special keyword

pwhile rather than while can be used with a fairly simple source-to-source translator to

trigger the automatic generation of TLS parallel code [26]. The translator performs

several operations. First, it analyses the loop to determine loop-carried dependences, i.e.

dependences that span iteration boundaries. In this example, these can occur for the

variables node, last, inRes, and cnt, and also for any access to data dereferenced

from a pointer. All variables and accesses that can have loop-carried dependences appear

in boldface type in Figure 3-3. Then, it transforms the code so that during every iteration

the initial load from and the final store to these variables or to dereferenced pointers

occur from or to memory, preventing the data from being register-allocated across

iteration boundaries. By forcing data to memory, the transformed source code ensures

that the TLS system can detect inter-thread data dependence violations. Meanwhile, all

variables without loop-carried dependences are made private to each thread to prevent

false sharing and violations. Additionally, for peak performance, the source code is

transformed to register-allocate variables having loop-carried dependences in all places

other than the first load and the final store in each iteration.

Chapter 3: Manual Programming with TLS 64

This parallelized TLS code was executed upon a heap comprising the approximately

7800 words in the U.S. Constitution and its amendments. The TLS CMP provides a

speedup of 2.6 over a single-processor system with the same, unscaled, realistic memory

system. Very little of the difference between the achieved speedup and a “perfect”

speedup of 4 is due to not scaling the memory system, as the speedup when both have a

perfect memory system is only 2.7. Likewise, the requirement that shared variables not

be register-allocated causes only a 2% slowdown, if the code is executed sequentially.

This is termed the base TLS parallelization.

3.2.3. Ease of TLS Parallelization

The base case illustrates the simplicity of TLS programming and the efficiency of its

resultant programs, in contrast to the complexity and overheads of conventional

parallelization. Like TLS, conventional parallelization requires that loop-carried

dependences be identified. However, once this has been done, the difficult part of

conventional parallelization begins.

Accesses to any dereferenced pointer or variable with loop-carried dependences could

cause data races between processors executing different iterations in parallel. While

synchronization must be considered for each access, to avoid poor performance only

accesses that could actually cause data races should be synchronized with each other.

However, determining which accesses conflict requires either a good understanding of

the algorithm and its use of pointers or a detailed understanding of the memory behavior

of the algorithm. Pointer aliasing and control flow dependences can make these difficult.

Finally, a method for synchronizing the accesses must be devised and implemented. This

Chapter 3: Manual Programming with TLS 65

typically requires changes in the data structures or algorithms and must be carefully

considered to provide good performance. None of this is necessary when parallelizing

with TLS.

In this example, one set of accesses that must be explicitly synchronized when using

conventional parallelization are the read accesses of the nodes (lines 8, 9, 15, 18, 20, 22)

with the possible updates of those nodes by earlier iterations (line 22). To do this a new

array of locks could be added, one for each node in the heap. However, this would

introduce large overheads. Extra storage would be required to store the locks. Each time

a comparison of child nodes and an update of the parent node were to occur, an additional

locking and unlocking of the parent and testing of locks for each of the child nodes would

need to be done. Furthermore, doing this correctly would require careful analysis. The

ordering of these operations would be critical. For example, unlocking the parent before

locking the child to be transferred to the parent node would allow for race conditions

between processors. Worse yet, these races would be challenging to correct because they

would be difficult to detect, to repeat and to understand.

One could attempt a different synchronization scheme to lower the overheads. For

example, each processor could specify the level of the heap that it is currently modifying,

and processors executing later iterations could be prevented from accessing nodes at or

below this level of the heap. While this would reduce the storage requirements for the

locks to just one per processor, it would introduce unnecessary serialization between

accesses to nodes in different branches of the heap. Another alternative would be to have

each processor specify only the node which is being updated, so processors executing

Chapter 3: Manual Programming with TLS 66

later iterations would stall only on accesses to this node. But, locking overheads would

still exist in either case, and care would still need to be taken to prevent data races.

Alternatively, the choice could be made to completely replace the uniprocessor heap sort

with a new algorithm designed for parallelism from the start. But, this would likely be

more complex than any solution discussed so far, and the support for parallelism will still

introduce overheads into any algorithm that has inter-thread dependences. As this

example shows, parallelization without TLS can be much more complex and error-prone

than parallelization with TLS. Because the complexity of redesign versus incremental

modification becomes greater for larger, more complex programs, its simplicity is even

more of a benefit for real-world applications.

3.2.4. Performance of TLS Parallelization

The base case also illustrates the second point of this section, that parallelization with

TLS can often yield better performance than parallelization without TLS [27]. This

occurs for two reasons. First, the hardware-assisted automatic detection and correction of

dynamic dependence violations reduces communication overheads. Furthermore, it is

often possible to speculate beyond potential dependences, eliminating all synchronization

stall time when the potential violations do not actually occur. This is termed optimistic

parallelization. It can be much more efficient than the pessimistic static synchronization

used in conventional parallelization, which synchronizes on all possible dependences, no

matter how unlikely.

It is worth considering this point further. Very often, TLS can improve the performance

of an application that has already been manually parallelized by allowing some optimistic

Chapter 3: Manual Programming with TLS 67

parallelization [22]. Less apparent is that a single-threaded application only

incrementally modified using manual TLS parallelization can sometimes provide better

performance than an application that has been completely redesigned for optimal parallel

performance using only conventional manual parallelization. This is because code

optimized for non-TLS parallel performance introduces overhead over uniprocessor code

to support low-contention parallel structures, algorithms and synchronization. The

advantage that results from this redesign for conventional parallelism can be less than the

combined advantages of using TLS and starting with more efficient, optimal uniprocessor

code. Given the difficulty of redesigning legacy code and of parallel programming, this

can make manual parallelization with TLS a better alternative than application redesign

using conventional manual parallelization.

3.2.5. Optimizing TLS Performance

I will now cover a variety of methods for achieving better TLS parallel performance.

This will allow us to focus on three main points: 1) introducing the reader to the process

of parallel programming using TLS, which is substantially different from conventional

parallel programming; 2) demonstrating several categories of source code

transformations that allow extraction of more of the inherent TLP from applications; and

3) indicating situations in which a minor manual adjustment can substantially outperform

the automatic base parallelization. I will show how the programmer can detect and

understand sources of performance loss and use this to conduct incremental changes to

the original source code to improve performance. This process is repeated until no

further TLP can be exposed to the TLS hardware.

Chapter 3: Manual Programming with TLS 68

First, a programmer conducts the base TLS parallelization, as described above, and then

executes the resultant code against a representative data set. The TLS hardware is

capable of reporting instances of dependence violations, including data on which

processors were involved, the address of the violating data element, which load and store

pairs triggered the violation, and how much speculative work was discarded. This data is

then sorted by each load-store violation pair. By totaling the cycles discarded for each

pair and sorting the pairs by these totals, the causes of the largest losses can be known.

Using this ranking, a programmer can better understand the dynamic behavior of the

parallel program and more easily reduce violation losses.

Compared to non-TLS parallel programming, parallelization with TLS allows the

programmer to more quickly transform a portion of code. The key to this is that TLS

provides the ability to easily test the dynamic behavior of speculatively parallel code

(while it correctly executes in spite of dependence violations) and get specific

information about the violations most affecting performance. The programmer can then

focus only on those violations that most hamper performance, rather than being required

to synchronize each potentially violating dependence to avoid introducing data races into

the program.

Before discussing specific code transformations for performance enhancement, I will

summarize the general approach to reducing performance-limiting violations. Typically

parallel performance is most severely impacted by a small number of inter-thread data

dependences. Moving the writes as early as possible within the less speculative thread

and the reads as late as possible within the more speculative thread usually reduces the

Chapter 3: Manual Programming with TLS 69

chance of experiencing a data dependence violation. For loop-based TLS, this

corresponds to moving performance-limiting writes toward the top of the loop and

delaying performance-limiting reads toward the end of the loop; in the limit, the first load

of a dependent variable occurs just prior to the last store, forming a tiny critical region.

Furthermore, moving this critical region as close as possible to the top of the loop

minimizes the execution discarded when violations do occur. Finally, constructing the

loop body to ensure that the critical region always occurs approximately the same number

of cycles into the execution of the loop and requires a fairly constant time to complete

allows the speculative threads to follow each other with a fixed inter-thread delay without

experiencing violations. In contrast, critical sections that occur sometimes early and

sometimes late increase violations due to late stores in less speculative threads violating

early reads in more speculative ones.

3.2.6. Automatic Optimization

I will now consider optimizations that can be done automatically. More than three

violations per committed thread occur while executing the base parallelization. The store

of last in line 15 often violates the speculative read of last in line 9. The same occurs

with cnt (the store in line 17 violates the load in line 13), inRes, and several other

variables. To reduce these violations, the length of the critical regions from first load to

last store can be minimized. For example, the store of last in line 15 can be moved

right after the load in line 9. Because each thread optimally executes with a lag of one-

quarter iteration from the previous thread on a four-processor CMP, this makes it unlikely

that any other thread will be concurrently executing the same critical region. To hoist the

Chapter 3: Manual Programming with TLS 70

store of last, the previous value must first be saved in a temporary variable for lines 10

and 11. Research shows that this transformation can be automated [35]. We can also

move these critical regions as early in each thread as possible For example, line 17 (the

increment of cnt) can be moved above the conditional block (lines 9-16). Automatically

determining and conducting this is complex [35]. However, we will assume that

automated parallelization can conduct all these transformations optimally to strengthen

the argument that manual TLS programming can still further improve performance.

Figure 3-4: Performance of incremental optimizations

When these transformations have been completed for all variables that can benefit,

surprisingly the performance remains virtually unchanged. Upon inspecting the violation

report, we see that most of the lines which were causing violations before are no longer

significant sources of losses, but now previously unimportant load-store violation pairs

0%

50%

100%

150%

200%

250%

300%

350%

400%

Base Load-store
movement

Complex value
prediction

Delayed non-
violating execution

Alternating branch
descent

S
p

ee
d

u
p

 .

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

V
io

la
ti

o
n

s
p

er
 t

h
re

ad

 .

Perfect memory system speedup Real memory system speedup

Violations per thread (real memory)

Chapter 3: Manual Programming with TLS 71

dominate performance by causing much larger losses than before. Threads now progress

farther per violation, but nonetheless violate anyway before they can successfully

commit. This results in a lower violation count, but more discarded execution time per

violation. This is shown in Figure 3-4, which shows speedup results with real and perfect

memory systems and the number of violations per committed thread, for each version of

the example application.

Unfortunately, the performance at this point (a speedup of 2.6) represents an optimistic

upper bound on the current capability of automated TLS parallelization. We have

optimally used all the automated methods of which we are aware that can benefit this

example. However, manual TLS parallelization can provide still more speedup (a final

speedup of 3.4) with a minimum of code transformation. This is because a programmer

can do more complex value prediction than an automated parallelizer. Also, automated

parallelization is constrained to allow only transformations that appear to preserve the

original execution ordering and data structures, even if a minor, obvious change in them

could enhance performance. This arises because the original program was targeted to a

uniprocessor, where data contention or value prediction was never an issue, so often a

small and obvious change can lessen contention or reduce dependences.

The techniques to be discussed below require an increasingly detailed understanding of

the application. However, it should be noted again that these performance optimizations

are optional and for improved performance only.

Chapter 3: Manual Programming with TLS 72

3.2.7. Complex Value Prediction

In the current example, one of the main variables suffering violations is inRes.

Complex value prediction can reduce these violations. Note that the result string is

constructed out of fixed width columns. The first column is COLWID characters wide

and contains the word (lines 10-12). The next column is five characters wide and

contains the final count of the number of instances of the string, followed by a carriage

return (line 13). From the code a programmer can determine that the final value of

inRes will always be COLWID+5+1 characters greater after line 13 than it was in line

10, but an automated parallelizer would have difficulty deciphering this. Using this

prediction of the final value of inRes, the programmer is able to hoist the final update of

inRes above the many function calls in lines 10-13, once again reducing both the

chance of a violation occurring and the execution time discarded if a violation does

occur.

This violation could perhaps be alleviated automatically using a combination of profiling,

violation tracking and a stride predictor. A more challenging example would be if the

count of instances were printed to a variable, rather than fixed, length field. Complex

value prediction could quickly determine the final value of inRes based upon the

number of digits used to print cnt, but this would be difficult to do automatically using a

stride predictor.

Likewise, if the count had been printed to a variable-length field, the programmer could

have chosen to change the format to a fixed length to allow for complex value prediction.

Chapter 3: Manual Programming with TLS 73

This could occur if the output format was not critical and could tolerate a change. If so,

this would also show how a small change in the algorithm and data structures can allow

further optimization on a program exhibiting contention due to its having been designed

without parallel execution in mind. This change would not generally be allowed for an

automatic parallelizer.

3.2.8. Algorithm Adjustments

By this point almost all loads and stores to the same variable are placed close to each

other and close to the top of each iteration, and yet the performance has not improved

significantly. Upon closer examination, we see that many of the violations would never

occur if each thread did not execute lines 9-16 and if it maintained a spacing of one

quarter iteration from the threads immediately previous to and following it. The problem

is that when lines 9-16 are executed, a large number of cycles are consumed to store a

word and its count to the result string. Only after completing this, the thread updates the

top of the heap (line 22). This violates all more speculative processors, due to the load in

line 8, and causes them to discard all their execution during the time the result string was

being updated. While conducting an early update on the top node of the heap could yield

some benefit, nodes further down would still likely cause violations.

The optimization to alleviate this problem is to move as much of the execution in lines 9-

16 to the position following line 23. By minimizing the work conducted before lines 17-

23, we can reduce or eliminate many of the violations. In particular, only the updates of

data locations with loop-carried dependences should occur before line 17, i.e. updates to

inRes, last and cnt. The strcpy, strlen, memset and sprintf functions can

Chapter 3: Manual Programming with TLS 74

be conducted later, after lines 17-23, without causing violations. This is similar to

moving load-store pairs closer to the start of each iteration, but instead we are making

algorithm changes to move non-violating work closer to the end of each iteration.

Specifically, we are moving these four functions from before to after the heap update,

which repeatedly dereferences dynamically determined pointers. It may be obvious to

the programmer that resultString and the heap are never intended to have

intersecting addresses; hence no violations should occur. However, it appears the

compiler would need to conduct either an advanced general analysis or an analysis quite

specific to this situation to assert this non-intersection in all cases. Therefore, this is a

change in algorithms that may not be possible for an automated compiler to conduct. As

Figure 3-4 shows, this optimization greatly improves performance, raising the speedup

from 2.6 to 3.2 and also halving the number of violations.

After this optimization, we observe that the dominant remaining violations are the loads

in line 20 with the store in line 22. We observe that this is in part due to the fact that

when the two child nodes point to equal strings (a common occurrence at the top of the

heap), the second (right, higher-index) node is always selected. This leads to frequent

contention for all nodes near the top of the heap and resultant violations, as each thread

descends down the same path through the heap.

We can easily change the algorithm so that each speculative thread chooses the opposite

direction from the thread immediately before it. Consecutive threads will alternate

between always selecting the left or always selecting the right node in cases of equality,

thereby descending down the opposite path from the immediately previous thread.

Chapter 3: Manual Programming with TLS 75

Again, a parallelizing compiler could not make this change, because it alters the behavior

of the program, even though in this case the program will still produce exactly the same

final result string. This final optimization results in slightly improved performance and

less frequent violations. Note that including all the transformations so far would yield a

4% slowdown if the code were executed on a uniprocessor. Hence, a perfect, linear

speedup on this code would correspond to a speedup of only 3.85 versus the original

sequential program.

Further attempts at optimization were unsuccessful. Yet, violations do remain, because

they occur infrequently enough that their losses are less than the overheads of reducing

them. For example, attempts at synchronizing on the most frequent violations, using

locks similar to those used in conventional parallelization, generated excessive waiting

times. This supports the assertion that TLS parallelization often performs better than

manual parallelization without TLS due to its optimistic execution of code that only

occasionally causes violations.

3.2.9. Additional Automatic Optimizations

Several additional automatic techniques exist for improving TLS parallel performance.

These were not used in the heap sort example, but will be discussed briefly here for

completeness; more details can be found in [5][7][9][20][25][27][30][32]. The

techniques comprise loop chunking, loop slicing, parallel reductions and explicit

synchronization. Loop chunking refers to unrolling multiple small loop iterations to form

each TLS iteration, usually to amortize per-iteration overheads. Loop slicing is the

opposite, i.e. splitting each large iteration into multiple, more manageable ones, a

Chapter 3: Manual Programming with TLS 76

technique that represents a simple and automatically transformable case of speculative

pipelining described below. Parallel reduction transformations allow certain iterative

functions to be parallelized. For example, iterative accumulations into a single

summation variable could be instead transformed into four parallel summations that are

combined at the end of the loop. Explicit synchronization works much like locks in

conventional parallelization to protect a variable and can be used on a frequently violated

variable to reduce the violation frequency and the associated discarding of execution

[5][7][25]. Unlike its use in conventional parallelization, it is used for performance and

not correctness. If the violation data for a TLS parallel application indicates that a read is

frequently violated by a write from a less speculative thread, then these two instructions

can be explicitly synchronized. By eliminating frequent violations, it trades a large

quantity of discarded execution time for a smaller quantity of waiting time.

3.2.10. Speculative Pipelining

Finally we will describe one other very important code transformation, speculative

pipelining. Until now, we have focused on single-level, loop-based speculation, because

loops are an obvious and easy form of parallelism to extract and because the TLS

software speculation overheads for single-level loop-only speculation are low. However,

TLS can also extract parallelism from tasks that are not associated with a single loop.

For example, Figure 3-5 shows how parallelism can exist at multiple levels within a set of

nested loops, making single-level parallelization suboptimal. Here we assume that each

of the thousand-cycle routines is a fairly independent task. If only either the outer loop or

Chapter 3: Manual Programming with TLS 77

Figure 3-5: Original code with independent tasks

Figure 3-6: Speculatively pipelined code ready for loop-only TLS

for (x=0; x<1000; x++) {
if ((x%10) == 0)
for (y=0; y<10; y++)
InnerLoopOneThousandCyclesOfWork();

OuterLoopOneThousandCyclesOfWork();
}

shared_threadChoice = shared_y = 0;
for (shared_x=0; shared_x<1000;) {
 threadChoice = shared_threadChoice;
 x = shared_x;
 if ((x%10) == 0) {
 y = shared_y++;
 if (y == 0) {
 threadChoice=shared_threadChoice=1;
 } else if (y >= 10) {
 threadChoice=shared_threadChoice=0;
 shared_x++;
 shared_y = 0;
 }
 } else
 shared_x++;

 switch (threadChoice) {
 case 0:
 OuterLoopOneThousandCyclesOfWork();
 break;
 case 1:
 InnerLoopOneThousandCyclesOfWork();
 break;
 }
}

for (x=0; x<1000; x++) {
if ((x%10) == 0)
for (y=0; y<10; y++)
InnerLoopOneThousandCyclesOfWork();

OuterLoopOneThousandCyclesOfWork();
}

Chapter 3: Manual Programming with TLS 78

the inner loop is parallelized using single-level parallelization, half the TLP that exists

will not be extracted.

With speculative pipelining we break the dynamic execution path of a uniprocessor

program between fairly independent tasks and make each task an iteration of a newly

constructed loop. To do this, we create a loop shell that chooses between the tasks each

iteration by using a switch-case statement directed by a dynamically updated thread-

choice variable. Figure 3-6 demonstrates how multi-level speculation can be

implemented. The outer loop body is represented by case 0 and the inner loop body by

case 1.

The selection between them is made by the threadChoice variable, which is updated

each time program flow switches between executing iterations of the outer loop and the

inner loop. New shared variables allow each thread to update early the next thread's

value of x, y and threadChoice while maintaining a private copy of the variables to

be used for conducting the thread's remaining execution.

The overhead of speculative pipelining is very small; this example has less than 12 extra

dynamic instructions per thread, or roughly 1% overhead. But, speculative pipelining

allows great flexibility in constructing threads. Unlike regular loop-based speculation, it

can create threads that start and end in different functions or that are from portions of the

program that do not iterate at all. As a result, speculative pipelining is one of the most

powerful and complex techniques for enhancing TLS performance.

Chapter 3: Manual Programming with TLS 79

As another example, TLP can exist between a procedure and the code following the

procedure call. In the past this has been exploited with procedural speculation [26], but

speculative pipelining can extract this parallelism with lower overhead. Finally, fairly

independent, sequential tasks that are not part of a loop can be parallelized. This is

similar to the TLS conducted by Multiscalar [25][37], but because the programmer

explicitly selects the parallel tasks and the TLS hardware support is less closely coupled

to the processor cores, speculative pipelining focuses on longer threads. In some cases,

speculative pipelining can be automatically applied (loop slicing, procedural speculation),

but in other cases the technique must be conducted manually.

This chapter has demonstrated the process of manual parallelization using TLS using a

couple of simple example applications. In the next chapter, this same process is applied

to applications within the SPEC2000 suite of benchmark applications to show the

capability of TLS to enable good parallel performance with fairly little programmer effort

on a variety of larger applications that are difficult to parallelize automatically, even with

TLS.

Chapter 4: Manual TLS Parallelization of Whole Applications 80

4 Manual TLS Parallelization of Whole Applications

In Chapter 3 the TLS programming process was discussed, along with useful

transformations, focusing on small sequences of code as examples. This chapter

discusses how these same techniques can be applied to larger, more realistic applications.

The applications selected are from SPEC CPU2000, commonly referred to as SPEC2000.

I start by explaining the reasons why SPEC2000 was selected for this research, and the

applications that were parallelized from this suite of benchmarks. Also discussed is the

methodology used for sampling the execution of the benchmarks, as the selected inputs to

the applications (the reference data sets) result in prohibitively long execution paths for

our simulation environment.

Following this, for each application parallelized, I provide a detailed explanation of its

parallelization. I tell where thread-level parallelism was found in the application, how it

was extracted, which transformations were utilized and what performance was achieved

using TLS. While describing the transformations required to parallelize each application,

an indication is given for each transformation as to whether it could have been conducted

automatically, and if not, why not. Also provided are performance results for the

intermediate stages of parallelization leading to the final parallel form of the application.

As with the previous microbenchmark example, this provides insight into the

parallelization process and the necessity and the usefulness of each of the

transformations. Also discussed are some factors that limit the parallel performance that

can be achieved.

Chapter 4: Manual TLS Parallelization of Whole Applications 81

Having described the parallelism in each application, I present further results and

observations derived from simulations of the benchmarks once the transformations

discussed above were performed. Patterns in the performance data across benchmarks

and memory models is considered first. This is followed by a discussion of the thread

sizes utilized and a breakdown of the time spent in different activities during speculative

execution. Finally, the focus turns to ease-of-programming issues, looking at the

breakdown of time spent parallelizing each SPEC2000 benchmark and the number of

regions and lines of unique code that needed to be written for each application by the

TLS parallel programmer.

4.1 SPEC2000, benchmark selection and execution sampling

The SPEC2000 benchmark suite was chosen for this study, as it contains a selection of

applications with standard input datasets that are widely understood and accepted to be

representative of CPU-intensive workloads executed on high-performance processors and

memory systems. The SPEC2000 suite contains 14 floating point and 12 integer

benchmarks representative of compute-intensive applications. SPEC2000 is specifically

designed to test the performance of the processor, the memory architecture and the

compiler. For this study of TLP, this is the correct benchmark suite to use. For a study

of TLP, the threads under consideration should last for hundreds to a few thousands of

instructions. This is too short of an interval to include interactions with more peripheral

systems such as input/output devices.

Chapter 4: Manual TLS Parallelization of Whole Applications 82

An important reason to use SPEC2000 is that each benchmark is a whole application,

except for the exclusion of input and output routines. These are applications in actual use

in various locations. They are not optimized or contrived microbenchmarks. They

contain some inefficient code and unusual or complex data structures. Therefore,

parallelizing these benchmarks gives a good indication of the performance and difficulty

of parallelizing all general-purpose, legacy applications of this size, as they were not

specifically created for this research or by me. Another reason for using SPEC2000 is

that a large number of research publications use SPEC2000 when studying the

performance advantages of proposed new approaches to computation. While results are

not completely comparable between studies, the use of common benchmarks does allow a

high-level assessment of the performance of manual TLS parallelization relative to other

methods of enhancing uniprocessor or parallel performance. Furthermore, the analysis

conducted in this research of the parallelism within the SPEC2000 applications

parallelized can be used by other researchers to improve their techniques of automatically

parallelizing these well-known and often utilized applications.

A brief description of each of the benchmarks is provided in Table 4-1, with the

applications we selected for parallelization in bold font. It is important to understand the

scope of the applications selected as this defines the applicability and the limitations of

the research experience gained with using manual TLS parallelization on general-purpose

applications. For TLS parallelization, we selected the four floating point applications that

are coded in C, art, equake, mesa and ammp, since they are more difficult to

parallelize than the Fortran benchmarks. We then selected three of the integer

benchmarks, mcf, twolf and vpr, based upon their smaller source code size and

Chapter 4: Manual TLS Parallelization of Whole Applications 83

indications from profiling that they would be amenable to manual parallelization with

TLS. Each of these applications spends much of its execution time in a few easily

understood routines, or at least the application is fairly short in source code length, which

allowed us to easily understand the behavior of the program in order to effectively

Table 4-1: Benchmarks comprising SPEC CPU2000
Benchmark Source code

language
Application description

168.wupwise Fortran 77 Physics: quantum chromodynamics
171.swim Fortran 77 Shallow water modeling
172.mgrid Fortran 77 Multi-grid solver: 3D potential field
173.applu Fortran 77 Parabolic/elliptic partial differential equations
177.mesa C 3D graphics library
178.galgel Fortran 90 Computational fluid dynamics: analysis of

oscillatory instability
179.art C Image recognition; neural network

simulation; adaptive resonance theory
183.equake C Seismic wave propagation simulation
187.facerec Fortran 90 Image processing: face recognition
188.ammp C Computational chemistry
189.lucas Fortran 90 Number theory: primality testing
191.fma3d Fortran 90 Finite element crash simulation
200.sixtrack Fortran 77 Particle accelerator model; high energy nuclear

physics accelerator design

CFP

 2000

301.apsi Fortran 77 Meteorology: pollutant distribution
164.gzip C Data compression utility
175.vpr C FPGA circuit placement and routing
176.gcc C C programming language compiler
181.mcf C Minimum cost network flow solver;

combinatorial optimization
186.crafty C Game playing: chess program
197.parser C Natural language processing
252.eon C++ Ray tracing; computer visualization
253.perlbmk C PERL programming language
254.gap C Computational group theory; interpreter
255.vortex C Object-oriented database
256.bzip2 C Data compression utility

CINT

2000

300.twolf C Place and route simulator

Chapter 4: Manual TLS Parallelization of Whole Applications 84

Table 4-2: Source code lengths of the SPEC CPU2000 benchmarks selected

parallelize it. Details of the source code lengths of the applications we parallelized are

provided in Table 4-2. While a few of the other integer benchmarks look amenable to

manual parallelization, it is clear that several would be very difficult or impossible to

manually parallelize without an extensive understanding of the algorithms and data

structures in use.

Each of the SPEC2000 benchmarks comes with two or three standard input data sets (and

execution parameters): a test data set, a training data set and a reference (full-size) data

set. While the test and training data sets can enable smaller execution times, the behavior

of the applications under these input sets is substantially different from the behavior on

the full-size reference data sets. Therefore, the reference input data sets were used for

this research. Due to the long execution times of these data sets, complete execution was

not possible for any of the benchmarks. Concurrent research on SPEC benchmarks [31]

has demonstrated both the difficulty and the importance of choosing carefully the portion

of execution to simulate for applications that exhibit large-time-scale cyclic behavior.

The sampling strategy utilized in the research for this dissertation is supported by their

recommendation to simulate one or more whole application cycles. The total of all

Benchmark Application category Lines of
code

177.mesa 3-D graphics library 61,343
179.art Image recognition/neural networks 1,270

183.equake Seismic wave
propagation simulation 1,513

CFP

2000
188.ammp Computational chemistry 14,657

175.vpr FPGA circuit
placement and routing 17,729

181.mcf Combinatorial optimization 2,412

CINT

2000
300.twolf Place and route simulator 20,459

Chapter 4: Manual TLS Parallelization of Whole Applications 85

simulation samples was at least 100 million instructions from each original (non-

parallelized) application. One should note that all speedup and coverage results

presented below are based upon an extrapolation of these samples of whole application

cycles back to the entire application. The extrapolation was conducted by first profiling

the full application using similar real hardware and the same compiler as the Hydra CMP.

Full application speedup was then calculated assuming the simulated speedup on the

portion of execution time corresponding to the application cycles, and assuming no

speedup on the portion of the original execution time that was not a part of the

application cycles we sampled.

The benchmarks were profiled on real hardware to determine the percentage of time

spent in each basic block and function. Simulations were then executed on evenly

distributed samples of execution from throughout the entire reference runs. These

samples were generated by first selecting a set of functions that do not overlap in

execution, but that span almost the complete execution time. In other words, effectively

the entire execution time of the program can be attributed to these functions and the

functions they call. Also, these non-overlapping functions were chosen so that they are

either called many times themselves or they contain loops that occur frequently and

dominate the execution time of the functions. That way, a fixed portion of these calls,

say one out of four thousand, could be executed in simulation mode, and the rest could be

executed in native mode.

The length of each simulated sample necessarily depends upon the structure of the

application, but the total of all samples run in simulation mode was at least 100 million

Chapter 4: Manual TLS Parallelization of Whole Applications 86

instructions from each original (non-parallelized) application. This sampling approach

was validated by comparing the execution cycle breakdown by function of the simulated

sections with the native execution profile of the entire application. All results presented

below are based upon an extrapolation of these samples back to the entire application, i.e.

speedups, coverages, etc. are for the full application, not just the samples.

4.2 SPEC2000 parallelization

In the remainder of this chapter, I describe the ways in which each application was

parallelized and the characteristics that limited speedup. Useful parallelism was located

within many applications. Because many researchers are very familiar with the

applications in SPEC2000, it is useful to be specific here, even listing the names of

subroutines and variables within each application.

Table 4-3: Code transformations

Each application was initially parallelized using base parallelization of loops and

automatic load-store placement. Table 4-3 lists the additional transformations that were

then used. The first three are simple and can be automated; the second three are complex,

requiring manual programming.

SPEC CFP2000 SPEC CINT2000
Transformation 177

mesa
179
art

183
equake

188
ammp

175
vpr

181
mcf

300
twolf

Loop chunking/slicing X X X X
Parallel reductions X X X X
Explicit synchronization X X
Speculative pipelining X X X X
Adapt algorithms or
data structures X X X

Complex value prediction X X X

Chapter 4: Manual TLS Parallelization of Whole Applications 87

The transformations were not applied in the order shown in Table 4-3. The actual order

in which the transformations were applied is shown in Table 4-4, which details the

speedups achieved for each speculative region in each application as the transformations

were sequentially added. Ideally, the incremental speedup due to each transformation

could be listed. However, the transformations interact with each other. For example, on

vpr (place) explicit synchronization yielded no speedup after base parallelization

with additional value prediction. However, applying it together with the parallel

reduction transformation provided a sizeable advantage. Due to the interactions and the

many permutations of transformations, we have instead listed the speedups along the

single path of transformations we actually followed. Note that because vpr is a place

and route application and the two portions of the application are very different, we have

listed results for them separately.

At each stage, the total speedup and the incremental speedup are provided for a realistic

memory model and also a perfect one with and without TLS software handler overheads.

All results utilized the reference input data sets. As discussed in Section 1.4.3, because

of long simulation times and the large-time-scale cyclic behavior of the reference runs,

representative samples encompassing whole application cycles were selected for

simulation, similar to the strategy suggested by [31]. It should be noted that in the

following discussions, whenever we discuss the execution time, violation frequency or

some other statistic for a subroutine, we are including the contributions not only of that

subroutine, but of all other subroutines that it calls, as well.

Chapter 4: Manual TLS Parallelization of Whole Applications 88

Table 4-4: Speedup resulting from each additional transformation

Application
Specu-
lative

regions

Location of
top level of
speculative
region(s).

Line
numbers are

for SPEC
CPU2000,

version 1.00.

Percent
execution

time
coverage

Last
transformation

applied

Cumul.
speedup,

real

Increm.
speedup,

real

Cumul.
speedup,
perfect

Increm.
speedup,
perfect

Cumul.
speedup,
perfect,

no
overhead

Increm.
speedup,
perfect,

no
overhead

177.
mesa 1

vbrender.c,
lines 897-
901

84% Basic 175% 175% 179% 179% 179% 179%

Basic 60% 60% 0% 0% 0% 0%
Parallel reductions 122% 39% 43% 43% 112% 112% 179.

art 7

scanner.c,
lines 405-
477 (7
loops) and
545-617 (7
loops)

95%
Loop chunking/slicing 154% 14% 282% 167% 294% 86%

Basic 135% 135% 185% 185% 195% 195%
183.
equake 6

quake.c,
lines 449-
478 (5
loops) and
1195-1220

100%
Loop chunking/slicing 145% 4% 196% 4% 200% 2%

Basic 61% 61% 59% 59% 62% 62%

C
F
P

2
0
0
0

188.
ammp 1

rectmm.c,
lines 562-
1123

86% Speculative pipelining,
loop chunking/slicing 99% 24% 69% 6% 76% 9%

Basic 7% 7% 16% 16% 17% 17%
Complex value
prediction 55% 45% 67% 44% 68% 44%

175.
vpr
(place)

1
place.c,
lines 506-
513

100%
Parallel reductions,
explicit synchronization 111% 36% 128% 37% 129% 36%

Speculative pipelining 17% 17% 16% 16% 27% 27%

Algorithm/data
structure changes 67% 43% 60% 38% 72% 35%

175.
vpr
(route)

1
route.c,
lines 518-
541

97%

Complex value
prediction 88% 13% 113% 33% 128% 33%

implicit.c,
lines 246-
272

44%
Loop chunking/slicing,
algorithm/data structure
changes

70% 70% 126% 126% 151% 151%

mcfutil.c,
lines 75-76 5%

Loop chunking/slicing,
complex value
prediction

24% 24% >300% >300% >300% >300%

mcfutil.c,
lines 80-
109

19%

Parallel reductions,
speculative slices,
speculative pipelining,
complex value
prediction

55% 55% 10% 10% 16% 16%

pbeampp.c,
lines 96-
121

7%
Speculative pipelining,
algorithm/data structure
changes

84% 84% 95% 95% 119% 119%

pbeampp.c,
lines 161-
174

4% Basic 64% 64% 146% 146% 197% 197%

181.
mcf 6

pbeampp.c,
lines 181-
195

20% Loop chunking/slicing 89% 89% 150% 150% 211% 211%

Speculative pipelining 18% 18% 21% 21% 23% 23%

Parallel reductions,
explicit
synchronization,
algorithm/data structure
changes

43% 21% 53% 26% 59% 29%

C
I
N
T

2
0
0
0

300.
twolf 1

uloop.c,
lines 154-
361

100%

Complex value
prediction 60% 12% 67% 9% 72% 8%

Chapter 4: Manual TLS Parallelization of Whole Applications 89

4.2.1. Parallelization of 183.equake

Equake is a seismic wave propagation simulation. It is extremely simple to parallelize.

The five main calculation loops in the time integration loop were parallelized, along with

the loop in the smvp subroutine. For the five loops nested in the time integration loop,

each loop was individually parallelized, and ten iterations of each loop were chunked

together to form each thread, providing a slight additional increase in performance. The

parallelization of smvp used one iteration per thread.

4.2.2. Parallelization of 179.art

Art is an image recognition application that uses neural networks. Once again, it is

extremely simple to parallelize, with 95% of the execution time split between two

subroutines, match and train_match. In these, each loop to update a member of the

f1_layer (P, Q, U, V, W, X, Y) was treated as a speculative region, with ten iterations of

each loop chunked together as a single thread. Additionally, the P, V, W and Y loops used

parallel reductions for summations, and the Y loop also utilized a parallel reduction for a

logical AND. Each of the techniques provided a substantial gain in performance. The

poor performance of the basic parallel version under the perfect memory model results

from instruction count increases due to both the TLS software handler overheads and the

need to force register allocated variables into the caches to allow the detection of

violations. These instruction count increases affect the real memory speedups less than

the perfect memory speedups, since their effects are masked by the memory delays in the

real memory model.

Chapter 4: Manual TLS Parallelization of Whole Applications 90

4.2.3. Parallelization of 177.mesa

Mesa is a 3-D graphics library. The bulk of execution (84%) occurs within

general_textured_triangle, which is called many times per execution of

gl_render_vb in vbrender.c. By simply making each call to

general_textured_triangle a speculative thread, a 175% speedup is gained on

this code. However, there is a problem with this approach. The problem arises from the

fact that each call to general_textured_triangle calls

gl_write_texture_span several times (an average of 3.5), where most of the

execution time actually occurs. This subroutine invokes

gl_depth_test_span_less in depth.c once each time, where reads and writes

to an array zptr[] occur, causing occasional violations. These violations are especially

expensive because each one can force the discarding of all more speculative threads,

each thread containing multiple calls to gl_write_texture_span, as shown in

Figure 4-1A.

One might theorize that less execution time would be discarded if threads were formed at

a finer granularity. For example, using speculative pipelining, we could break the

original threads into new, smaller threads along the dotted lines in each thread shown in

Figure 4-1A. This results in the threads shown in Figure 4-1B, where some may even

span multiple calls to general_textured_triangle. This could potentially

eliminate the dominant violation due to updates to the zptr array. However, the

recoding necessary to do this is much more complex. Also, it may not provide better

Chapter 4: Manual TLS Parallelization of Whole Applications 91

Figure 4-1: Execution pattern and violations of 177.mesa

performance, if violations increase in frequency due to the sharing of the numerous

variables local to gl_write_texture_span. Even if violations are not a problem,

this still introduces more overhead because of the need to force shared variables out of

the registers and into the caches to allow for dependence tracking. This is an example of

Chapter 4: Manual TLS Parallelization of Whole Applications 92

where a programmer may decide between potentially better performance with a large

programming effort, or an adequate speedup with far less effort, depending on the

requirements for the performance and the cost of redesign for the final parallel program.

4.2.4. Parallelization of 188.ammp

Ammp is a computational chemistry application. 87% of the execution time is devoted to

the subroutine mm_fv_update_nonbon in rectmm.c, which conducts an update of

the nonbonded potentials of the atoms. While this subroutine possesses considerable

thread-level parallelism (TLP), it is spread between two levels of nested loops, with

program execution frequently switching between the two levels, as shown in Figure 4-2.

About one-third of the execution time of this subroutine is spent at the outer level, while

the remaining two-thirds are spent on the inner loops, which are invoked by 8% of the

outer loop iterations. Parallelizing just the inner loops misses the parallelism in the outer

loop. On the other hand, using only the outer loop iterations to construct threads results

in 8% of the threads being enormous, leading to thread stalls caused by load imbalance.

While it is optimal to parallelize both levels together, our TLS system is not capable of

speculating on multiple concurrent regions. However, simple modifications to the source

code using a switch-case statement allow nested loops to be rewritten as a single-

level loop using speculative pipelining [29]. With this transformation, threads can be

constructed from different segments of the code, as shown in Figure 4-2. These four

different types of threads can be executed in parallel, and this provides a significant

performance boost, as shown in Table 4-4. Loop chunking was required to provide good

Chapter 4: Manual TLS Parallelization of Whole Applications 93

Figure 4-2: Thread formulation for 188.ammp

load balancing by making most instances of the four types of threads similar in size.

With this formulation of threads, the remaining limitations to speedup are due to

violations caused by late updates of the variable i_max.

Chapter 4: Manual TLS Parallelization of Whole Applications 94

4.2.5. Parallelization of 175.vpr (place)

Vpr is a FPGA circuit place and route application. Because the place and route portions

of the program are so different, we will discuss them here as two separate applications.

Execution of vpr (place) almost entirely comprises repeated calls within

try_place to the subroutine try_swap. Parallelizing this loop yields only a tiny

speedup, because of frequent violations due to the serial nature of the pseudorandom

number generator used by the routine. Each pseudorandom number is used to generate

the next one, and this occurs throughout each loop iteration.

This problem was overcome by determining that the generator is typically called four

times by each thread. To improve performance, the rewritten application performs value

prediction by assuming the generator function will be called four times. At the start of

each thread, the thread computes a predicted seed value for the next thread and writes this

prediction to a separate shared variable. This prediction is used by the next thread to set

the seed for its random number generator, after which it likewise makes a prediction for

the next thread after it. At the end of all possible calls to the generator within a thread,

this prediction is checked against the true final value of the seed. If a misprediction has

occurred, the prediction is updated to the correct value, resulting in a violation in the next

thread and re-exeution with the correctly predicted seed. However, because the

prediction is usually correct, violations are unlikely.

This example illustrates the standard way in which complex value prediction can be done

in a TLS system. This TLS performance technique may be possible to automate using an

Chapter 4: Manual TLS Parallelization of Whole Applications 95

advanced compiler in conjunction with application profiling. An alternative solution for

this application would have been to remove the artificial dependency by just redesigning

the random number generator to avoid this obvious serialization. While this may be

apparent to a programmer, unfortunately compilers cannot generally redesign programs.

In addition to using complex value prediction, performance for vpr (place) was

augmented via parallel reductions for the summation of success_sum, av_cost and

sum_of_squares.

4.2.6. Parallelization of 175.vpr (route)

Vpr (route) executes almost entirely within the subroutine route_net in the

nested loop that routes each individual pin. This loop considers the cost of each new path

and expands the search around any that are lower cost. Basic parallelization using each

iteration of this nested loop to form a single thread is not useful for a number of reasons.

Load imbalances occur because approximately half the iterations call

expand_neighbours, and these iterations are approximately twice as long as

iterations in which this does not occur. Speculative pipelining can be used to split

iterations that call expand_neighbours into multiple threads of a similar length.

Once this is done, late updates to shared variables, especially those related to the heap

structures, such as heap_free_head and heap_tail, become a problem. Because

the late updates occur within subroutines called from within route_net, the best

solution was to inline the functions and then promote late updates to the earliest possible

point in each iteration.

Chapter 4: Manual TLS Parallelization of Whole Applications 96

With these modifications, many of the remaining violations are due to stores that do

change the value of a variable, but in a way that only infrequently affects the control flow

of concurrently executing threads. For example, when there are no more free elements to

add to the heap (heap_free_head == NULL) or the heap is empty (heap_tail

== 1), special actions must be taken. However, most updates to the head or tail of these

structures, such as adding or removing a member, do not create these special situations.

However, every time the tail or head are updated, a violation will occur on all

conditionals predicated on these variables in more speculative threads, anyway.

The solution is to recognize that there are two uses for each of these variables. For

example, heap_tail is used both to point to the next element to be processed and to

indicate when the heap is empty. The next element to be processed changes with a high

frequency and is difficult to predict in advance. In contrast to this, whether the heap is

empty changes with a low frequency and is easy to predict. By creating an additional

Boolean variable to store the value of this low frequency information and then using it to

control conditional execution in more speculative threads, we achieve a reduction in

violations and therefore better performance.

4.2.7. Parallelization of 300.twolf

Twolf is a place and route simulator. Almost all execution is contained within the main

loop in uloop.c, where the algorithm attempts to place moveable cells in different

blocks and measure the cost function. While each of these iterations could form a thread

of appropriate length, these threads suffer too many violations.

Chapter 4: Manual TLS Parallelization of Whole Applications 97

Approximately three quarters of the execution is spent in calls to the subroutine ucxx2

in ucxx2.c. We inlined this code and separated each iteration of the loop in uloop

into eight fairly independent portions, some of which are only conditionally executed.

Speculative pipelining was then used to dynamically assign one of these eight different

portions to each thread. The first portion is all of the code from the main loop in

uloop.c leading up to the call to ucxx2. The last two portions are the code in

uloop.c following the call to ucxx2. The middle five portions are formed from the

inlined code from ucxx2. This speculative pipelining provided some speedup.

However, violations due to shared variables are severely limiting.

After threads have been created with speculative pipelining, the most significant

violations between them occur on summation variables such as cost and

delta_vert_cost and on accesses to netarray in various subroutines in

dimbox.c called from ucxx2. By using parallel reductions for the summation

variables and synchronizing threads that are accessing netarray, performance was

significantly enhanced. Finally, as in vpr (place), the pseudorandom number

generator introduces an unnecessary serialization into the application. Advanced value

prediction and communication of the expected final seed value is conducted early in each

thread to mitigate this serialization.

4.2.8. Parallelization of 181.mcf

Mcf is a combinatorial optimization application. Essentially the entire application can be

parallelized by parallelizing four subroutines, price_out_impl in implicit.c,

Chapter 4: Manual TLS Parallelization of Whole Applications 98

refresh_potential in mcfutil.c and primal_bea_mpp and sort_basket

in pbeampp.c.

Parallelizing price_out_impl requires parallelizing a short inner loop. We chunked

four iterations together to reduce the speculation overheads for these short loops. Pointer

chasing on the arcin variable causes violations due to late updates, but by using simple

code motion, these updates can be hoisted to the top of each thread. Prior to executing

each of the four iterations within each thread, a check is done of whether the arcin

pointer is NULL. If so, the thread terminates before completing any further iterations, and

this condition causes completion of the speculative region.

Refresh_potential comprises two loops. The first loop, resetting the nodes, was

parallelized using chunks of 100 iterations to form each thread. In the original

application, once each iteration the node induction variable must be tested. In the

speculative version, advanced value prediction is used to reduce this to just one

conditional test per chunk of 100 iterations in most cases. This explains the superlinear

speedups under the perfect memory model in Table 4-4. Under the real memory model,

memory stall time limits the achievable speedup.

The second loop processes a tree in a depth-first manner. The critical path is the tree

traversal code, especially due to memory delays under the real memory model. Hence, to

parallelize it we made every alternate thread a speculative slice, which is a thread

containing only instructions from the critical path [37]. The intervening threads conduct

the actual computation at each node. Unlike the parallelization of price_out_impl,

Chapter 4: Manual TLS Parallelization of Whole Applications 99

the pointer chasing in refresh_potential consumes a large percentage of the total

execution time. For this reason, it was assigned to its own separate speculative-slice

threads, rather than simply moved to the beginning of each thread. Advanced value

prediction is used in the speculative slices to predict the final value of the sibling search

early, and this prediction is checked and updated, if necessary, when the thread completes

its search. We also used parallel reductions for the checksum in the computation threads.

The short lengths of both the computation and the node traversal threads, in conjunction

with the prefetching effectively conducted by the traversal threads, explain the larger

speedups obtained under the real memory model than the perfect memory models.

The two loops in the non-initialization section of primal_bea_mpp were trivial to

parallelize, with three iterations per thread used for the second loop. Parallelizing

sort_basket was not easy, due to the recursive nature of the algorithm. However,

because the recursion is not deep, typically recursing less than ten times, and because the

number of instructions executed at each level of the recursion is very small, it can be

parallelized well. This recursive sorting can be modeled as a binary tree, where each

node of the tree represents a sorting operation. This tree has the special property that the

sorting operation represented by a node does not affect the sorting operation of any node

of the tree that is not a descendent of that node. Speculative pipelining was used to create

eleven iterations. The first seven iterations conduct the sorting operations in the top

seven nodes of this tree that represents the recursive algorithm. This yields eight nodes

of sorting operations at the third/fourth level of the tree of sorting operations. These eight

sort baskets are assigned to the four processors in the remaining four threads. The first

and last baskets of the array to be sorted are assigned to the first processor, the second

Chapter 4: Manual TLS Parallelization of Whole Applications 100

and the next-to-last baskets to the second processor, etc., in order to provide better load

balancing, as the number of elements to be sorted and the degree of sortedness of the

baskets varies across the array. The approach could obviously be extended to allow for

scalability to more processors.

4.3 Performance-related observations

As expected, the floating point applications were very simple to parallelize compared to

the integer ones. Few complex techniques were used on them, and they were very

uniform in the nature of their threads. This is in contrast to the many, varying speculative

regions in the integer applications, each of which was substantially different from the

speculative regions in the rest of the application. While high parallel coverage was

managed for all the applications, the integer applications required more effort and more

complex parallelization techniques, and each region parallelized required a different

approach to parallelization. The complexity of the parallelization of the integer

applications made speculative pipelining an essential technique, as threads often had to

be constructed from execution segments that did not belong to simple loops, the form of

parallelism required by a simple TLS system. In spite of these challenges, very good

speedup was managed even on these integer applications.

The data in Table 4-3 demonstrate that the simple transformations are beneficial for both

floating point and integer applications. However, the complex ones are beneficial mainly

for the integer applications. This was because the execution times of the floating point

applications were all dominated by easily parallelizable loops, except for ammp.

Chapter 4: Manual TLS Parallelization of Whole Applications 101

Therefore, the complex transformations added little or no benefit. In contrast, all the

integer applications benefited from the code transformations, and two of the three

benefited from complex ones. Notably, explicit synchronization was not very valuable,

enhancing performance for just two applications and both times only when used in

combination with some other technique. This is for two reasons. First, it does not work

well for infrequent violations, as in this case it is better to allow the TLS system to

optimistically execute speculative work rather than to force data accesses to be

synchronized. Second, many of the violations typically prevented by explicit

synchronization are instead better eliminated through the use of complex methods that do

not cause serialization.

Likewise, a close look at the incremental performance numbers in Table 4-4 clearly

demonstrates that simple transformations parallelize floating point applications well, but

that integer applications require complex transformations. In fact, most if not all of the

speedup for each floating point application is already realized using only basic

parallelization, while the opposite holds true for the integer applications, which often

require complex transformations to get any significant speedup at all.

Table 4-4 shows the full-application speedups that were achieved using the three

TLS/memory systems. The first is a realistic system, the second assumes a perfect

memory system and the third assumes a perfect memory system with a zero-overhead

TLS implementation. The average (arithmetic mean) floating point speedup with the real

memory system is 2.2, and the average integer speedup is 1.7. Comparison of these

speedups with those generated by previous studies on automatic parallelization with TLS

Chapter 4: Manual TLS Parallelization of Whole Applications 102

is difficult, due to the different architectures, compilers and execution segments utilized.

Since TLP is mostly orthogonal to ILP, a rough comparison of speedups can be done

using systems with different processor cores and compilers, but different memory

systems will still affect the results. With these caveats, a comparison with results from

[32][33][37] indicates that the manual parallelization has provided very good parallel

performance, well in excess of automatic extraction of TLP at similar thread

granularities.

The whole-application speedups for the realistic and perfect memory systems in Figure

4-3 indicate a sensitivity to memory system delay that varies, with some application

speedups fairly insensitive to the characteristics of the memory system and others more

strongly affected. The perfect memory system results usually provide an upper bound on

the performance that can be achieved by scaling the memory system with the number of

processors. An unusual exception occurs for ammp, because the faster memory system

causes a large number of violations on a load-store pair that would otherwise have

experienced far fewer violations. Likewise, the results for the perfect memory systems

with and without speculation overheads indicate the performance losses caused by the use

of a TLS system with speculation software handlers. These results indicate that fully

hardware-based speculation would improve performance fairly little for these

applications.

Chapter 4: Manual TLS Parallelization of Whole Applications 103

Figure 4-3: Whole application speedups under various memory and TLS models

4.4 Additional simulator results

Table 4-5 characterizes the speculative threads created within each application. These

thread lengths represent just the number of instructions in the original, unmodified

applications. Specifically, they do not include any of the overheads of executing the TLS

software handlers, adapting the applications to expose parallelism or forcing register-

allocated variables into the caches to allow the detection of violations. The thread sizes

vary considerably, but all are in the range of hundreds to thousands of instructions long.

As a result, the parallelism extracted from these applications is thread-level parallelism

0
0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

2.75
3

3.25
3.5

3.75
4

17
7.

m
es

a

17
9.

ar
t

18
3.

eq
ua

ke

18
8.

am
m

p

17
5.

vp
r (

pl
ac

e)

17
5.

vp
r (

ro
ut

e)

18
1.

m
cf

30
0.

tw
ol

f

Sp
ee

du
p

 .

Real Memory Perfect Memory Perfect Memory, No TLS Overhead

Chapter 4: Manual TLS Parallelization of Whole Applications 104

Table 4-5: Speculative thread lengths, regions and coverage

and is orthogonal to the instruction-level parallelism (ILP) that could also be extracted

from these same applications. Because of the lengths of the threads chosen to parallelize

these applications, the extraction of ILP within each thread, for example by an aggressive

out-of-order processor, would be expected to have little effect upon the speedups

generated by TLS parallelization.

The number of distinct speculative regions is small, demonstrating that for many

representative applications a large portion of the total execution time can be parallelized

by selecting only a few locations in the code. The parallel coverage of the original

sequential execution time is uniformly high, even for the integer applications. Parallel

coverage typically increases as more sophisticated transformations are applied to the

applications. Similarly, thread lengths can also increase safely as violations are reduced.

Because longer threads expose more work to losses from violations, as violations become

less frequent, thread lengths can be safely increased, for example, by loop chunking.

Application
Dynamic thread

length
(instructions)

Number of
speculative

regions

Percent
execution

time
coverage

177.mesa 7,800 1 84%
179.art 450 7 95%
183.equake 1,300 6 100%

CFP
2000

188.ammp 450 1 86%
175.vpr (place) 5,100 1 100%
175.vpr (route) 200 1 97%
181.mcf 250 6 91%

CINT
2000

300.twolf 700 1 100%
Column mean 2,030 3 94%

Chapter 4: Manual TLS Parallelization of Whole Applications 105

Table 4-6: Breakdown of parallelized execution times

This reduces speculation overheads and the serialization enforced by the in-order commit

at the end of each thread. Correspondingly, applications for which the TLS thread

lengths are large and the parallel coverage high tend to have good speedups. But, if

either quality is absent, then the performance will usually be substantially diminished.

Amdahl’s Law explains why coverage must be high, while the poorer performance for

small thread lengths can be explained by their correlation with high violation rates and

greater speculation overheads and commit serialization.

Table 4-6 provides the breakdown of execution times spent in the parallelized sections of

code. The useful work done is generally quite high, the TLS system overhead is

negligible, and violations (discarded time) waste over four times as many cycles as load

imbalances (waiting time). The remaining violations tended to be due to variables that

had frequent accesses distributed amongst the threads, where each access unpredictably

caused a violation a small percentage of the times it dynamically occurred. This

prevented any benefits from explicit synchronization, because it causes too much

execution serialization. Likewise, these qualities would prevent the dynamic dependence

Application Useful Discarded Waiting Overhead
177.mesa 70% 28% 2% 0%
179.art 98% 0% 1% 1%
183.equake 78% 16% 5% 1%

CFP
2000

188.ammp 50% 40% 6% 4%
175.vpr (place) 63% 36% 0% 1%
175.vpr (route) 47% 35% 10% 8%
181.mcf 65% 24% 6% 5%

CINT
2000

300.twolf 55% 23% 20% 2%
Column mean 66% 25% 6% 3%

Chapter 4: Manual TLS Parallelization of Whole Applications 106

detector described in [5] from providing any benefit, although the one proposed in [25]

could work, but only if the dependence distances defined in their paper could be used to

develop a reliable dependence predictor for these specific dependences. Dynamic load

imbalance, due to size-mismatched threads that must wait to be committed in order, is the

source of the waiting losses. Both vpr (route) and twolf show large losses due to

load imbalances. This is especially a problem for applications that have been parallelized

with small thread sizes.

Part of the useful work done includes the execution of the additional instructions required

for the parallel transformations and to support the interprocessor communication and

control. In general, the programmer must make a choice between the cost of supporting

each additional transformation and the cost of the violations that occur from not using it,

instead. These extra instructions limit the maximum speedup, even though for these

benchmarks the losses due to the extra work were fairly small.

4.5 Programmer effort required

Table 4-7 provides an indication of the programmer effort required for the parallelization

of these benchmarks. It lists the number of lines of code added and the total number of

hours spent analyzing, parallelizing and debugging each application. While the hours

required are highly dependent on the capabilities of the programmer, these data provide at

least an order-of-magnitude gauge of programmer effort involved, and no better metric is

apparent. We only counted lines of code that were new and unique, or at least

Chapter 4: Manual TLS Parallelization of Whole Applications 107

Table 4-7: Lines of code added to parallelize applications

substantially changed. We did not count lines of code that were changed or added to

implement the automatic base parallelization, i.e. we did not count lines of code that were

effectively replicated from the original application or lines of template code that were

inserted purely to support the simulator.

The number of lines of code added remains fairly small and constant across applications,

almost always less than two hundred. For these applications, the number of lines

required has little correlation with the size of the application. However, this may not

hold true for larger, more complex applications, which may require the parallelization of

more speculative regions, i.e. loops. The number of hours required to parallelize each

application was also quite small, in comparison to the number of hours that were

originally required to develop them. This strongly supports our claim that manual

parallelization with TLS allows programmers to code for a uniprocessor target in a

straightforward way, and then with minimal effort port the entire optimized application to

a TLS CMP platform to realize good parallel performance.

Application Original
lines

Lines
added

Percent
added

Prog. hours
required

177.mesa 61,343 20 0% 33
179.art 1,270 140 11% 24
183.equake 1,513 130 9% 18

CFP
2000

188.ammp 14,657 130 1% 107
175.vpr 17,729 160 1% 102
181.mcf 2,412 120 5% 165

CINT
2000

300.twolf 20,459 320 2% 112
Column mean 146 4% 80

Chapter 4: Manual TLS Parallelization of Whole Applications 108

TLS parallelization depends primarily on an application's algorithms and source code and

the TLS and memory systems, rather than the processor architecture. Therefore, the final

parallelized application should port easily to other CMP systems that support loop-based

TLS and explicit synchronization. For equivalent speedups, they should have low

interprocessor communication delays, low speculation overheads and similarly sized

caches and write buffers.

Instead, if a TLS CMP system has very different delays, overheads or cache or write

buffer sizes, this could necessitate a modification to the way in which applications should

be parallelized for it. A TLS with smaller delays and overheads and larger caches and

write buffers would be expected to be able to utilize the same speculatively parallelized

code (i.e., the same thread formulation) for each application and gain a roughly

equivalent or better speedup. The applications, however, could be parallelized anew

using different thread lengths in order to take advantage of the more powerful capabilities

of this TLS CMP.

However, if a TLS CMP system with larger delays or overheads were to be utilized, the

applications with shorter TLS thread lengths would be expected to be most negatively

affected. Use of such a CMP system could necessitate a different parallelization of these

applications to use longer thread lengths to reduce the effects of the larger delays and

overheads. In contrast, a TLS CMP with smaller caches or write buffers could require

the use of smaller thread sizes. This could be the case for applications with large thread

lengths, in order to prevent the stalling which could occur due to the TLS system’s being

unable to buffer the speculative state for each thread that cannot yet be committed.

Chapter 4: Manual TLS Parallelization of Whole Applications 109

However, these are only general expectations. Whether a specific application would need

to be parallelized differently for a different TLS CMP is highly dependent on the specific

data access patterns of the application, and cannot in general be determined purely from

the length of the threads that were used to speculatively parallelize it.

Concerning the effect on TLS parallelization of the number of processors in the CMP, a

CMP with fewer processors will generally not require significant code changes in order

to run efficiently. But a CMP with more processors may necessitate modifications to the

parallelization employed so that the application takes advantage of the larger number of

processors available. This would be useful to examine in future research.

This chapter has provided a guide to the thread-level parallelism that exists within a

variety of the SPEC2000 benchmarks and the methods by which it can be extracted. It

has also discussed the data on parallel performance and on the programmer effort

required for parallelization that was generated as a result of conducting this research.

This leads to a discussion in the next chapter of obstacles to using TLS to extract TLP,

which in turn leads to listing simple programming guidelines for uniprocessor

programmers that allow uniprocessor code to be more easily ported at a later date to a

chip multiprocessor with hardware support for thread-level speculation.

Chapter 5: Observations and Conclusions 110

5 Observations and Conclusions

This chapter opens with a discussion of what hinders and what helps the porting of

uniprocessor applications to a TLS platform. Based upon this, guidelines are provided

for uniprocessor programmers to follow to enable their applications to be more easily

ported to a TLS CMP in the future. Finally, a summary is provided of the research

presented in this dissertation and some promising opportunities to conduct further

research on this subject are listed.

5.1 Hindrances to TLS parallelization

From our experience parallelizing SPEC2000 applications, we observed a number of

common hindrances. We will briefly summarize them here, starting with those that are

inherent to the application and working down to those that pertain to our specific TLS

system.

Many parts of integer applications are inherently difficult to statically parallelize into

threads. While speculative pipelining allows for some dynamic adaptation of the way in

which code is divided into threads, parallelizing this kind of code may benefit from

hardware that provides more support for dynamic thread creation, similar to [4].

Some algorithms within applications interact badly with TLS in general, for example,

deeply recursive algorithms with extensive execution at each level of the recursion. This

is especially true if the recursion depth is very different at different parts of a tree

structure and the tree changes often, as there is no indication of proper places to cut the

Chapter 5: Observations and Conclusions 111

algorithm into load-balanced speculative threads. Even worse, reuse of global variables

during recursion generally obscures all parallelism and completely serializes the

subroutine.

Some applications interact badly with our TLS implementation. For example, our choice

to use less complex TLS hardware results in longer communication delays between

processors than in more tightly coupled TLS architectures. This makes some thread

formulations infeasible, because the thread lengths are too short to amortize the TLS

overheads. Another problem is applications with iterations that vary greatly in length.

They overflow speculative buffers, causing stalls, for long threads and suffer from load

imbalance on short threads. While the former problem can be avoided with most

applications, the latter is an issue that frequently arises. Methods have been proposed to

address this problem [6]. However, speculative pipelining can be used to dynamically

redistribute work between threads to conduct adequate load balancing, as shown for

ammp.

Load imbalance stalls are caused by sudden decreases in thread length, but not sudden

increases in thread length. This is because speculative state must be committed in order,

so short threads may need to wait for longer, prior threads to complete. Figure 5-1 shows

various thread length sequences. Figure 5-1A shows an ideal thread length sequence

resulting in no stall time. Figure 5-1B shows that gradual decreases and even sudden

increases in thread length also cause no stalls. However, as Figure 5-1C shows, sudden,

large decreases in length do cause stall time. Figure 5-1D shows likewise that large

variances in thread length can cause stalls.

Chapter 5: Observations and Conclusions 112

Figure 5-1: Good and bad thread length sequences

5.2 TLS-friendly uniprocessor programming

The manner in which a uniprocessor program is written can profoundly affect the ease

with which it can be parallelized. We have identified several simple rules that are easy

for a uniprocessor programmer to follow that allow for rapid porting of the final program

to a TLS platform. Correspondingly, applications that do not follow one or more of these

rules tend to be substantially more difficult to parallelize.

(1) Avoid recursion that returns or modifies values needed by parent calls

Because TLS systems need to commit threads in order, one can only place each call into

Chapter 5: Observations and Conclusions 113

its own thread if each level of recursion is not dependent upon its children, which must

go into “later” threads. This is trivially the case if a recursive subroutine call is the last

statement in the parent subroutine, and it does not return a value that is used (tail

recursion), but this is rare. The problem is that TLS utilizes a FIFO of threads, while

recursion uses a stack of calls. Likewise, some recursive subroutine calls that do not

affect their parent or sibling recursive subroutine calls can be parallelized fairly easily.

However, the need for good load balancing and the requirement to store speculative state

require that the depth of recursion be both limited and similar for all children of a parent

subroutine. This is the case for sort_basket in mcf, which allowed it to be

parallelized.

(2) Avoid the use of tailored algorithms for standard purposes

For example, certain applications benefit marginally from complex sorting algorithms

tailored to the characteristics of the data being sorted. Replacing these with calls to

standard library sorting algorithms can facilitate their replacement with standard

parallelized library calls.

(3) Avoid data structures and algorithms with undesirable communication

patterns

Algorithms utilizing binary trees generate data “hot spots” that cause contention and

frequent violations. Also, the use of complex sorting algorithms that swap distant array

members rather than adjacent neighbors can be much more difficult than simpler

algorithms to parallelize or synchronize. Often these complex data structures or

algorithms are used to provide optimal uniprocessor performance. Because TLS systems

Chapter 5: Observations and Conclusions 114

can provide a good parallel speedup on many applications, programmers may wish to

avoid the best uniprocessor data structure or algorithm, if it is only a little more efficient

than a more easily parallelizable one. This is reinforced by the fact that essentially all

future desktop and server microprocessors will be chip multiprocessors.

(4) Avoid unnecessary reuse of variables

Using a single variable for multiple purposes, especially a global variable, can often

cause unnecessary violations. For example, the use of queues, stacks or heaps accessed

in multiple spots during the same subroutine, but for different purposes, will cause

violations when the head and tail pointers or the queue length are updated. Using

separate data structures for independent portions of execution eliminates this problem.

Likewise, using the queue length to check for an empty queue can cause unnecessary

violations every time an element is added or removed. Creating a new Boolean variable

for the condition of an empty queue, rather than reusing the integer queue length variable,

can prevent this, as we demonstrated with vpr (route).

(5) Encapsulate functionality and avoid global variables

Large, monolithic subroutines and applications that extensively use global variables make

the task of identifying the communication patterns in a program very difficult, thereby

complicating efforts to determine good separation points for threads.

(6) Avoid unnecessarily serializing algorithms

Algorithms such as random number generators that must pass a seed to the next generator

call serialize the algorithm unnecessarily if the number of times the generator will be

Chapter 5: Observations and Conclusions 115

called within a thread cannot be accurately predicted. These algorithms should be

replaced with more distributed versions, instead.

5.3 Summary

Hardware support for thread-level speculation provides the programmer with a powerful

tool for the parallelization of applications. Because the hardware conducts dynamic

dependence synchronization, the programmer is freed from the task of ensuring the

appearance of sequential execution. Instead, the TLS hardware presents the appearance

of sequential execution to the programmer, automatically ordering memory accesses.

This is much simpler for the programmer, because the programmer is essentially

following a uniprocessor programming model. The programmer merely has to specify

the memory accesses (variables) that are accessed by multiple processors and for which

at least one processor is conducting writes.

Due to the simplicity of letting the hardware enforce the sequential execution model, TLS

systems enable a much different approach to parallel programming. While traditional

non-TLS parallel programming requires planning for parallelism from the start, TLS

parallel programming can realize much of the same parallel speedup without the same

degree of advance planning and design. Traditional parallelization requires that all

algorithms and data structures be designed for parallelism from the start of writing the

program, so that parallel speedups can be generated without unnecessary serialization due

to synchronization of shared memory locations that may only occasionally suffer

dynamic dependences. Instead, TLS allows optimistic dependence synchronization,

Chapter 5: Observations and Conclusions 116

enabling execution to occur in parallel even when dependences may occur. Only in the

event that they do occur does the TLS system dynamically synchronize and order the

memory accesses. This provides speedup in the common case executing threads that do

not often contend for memory, a speedup that cannot easily be generated when using the

pessimistic static synchronization employed by non-TLS systems, that requires stalling at

synchronization points every time a memory dependence could occur between ordered

threads.

Non-TLS programmers must invest much greater effort in designing applications from

the start to have algorithms and data structures that have few, if any, memory

dependences, even if they only infrequently occur. TLS programmers are instead freed to

concentrate their efforts on only the memory dependences that occur frequently. Less

frequent dependences can be relegated to the TLS system for only a small cost in

performance. In fact, for some applications, rather than this relegation to the TLS system

resulting in a small cost in performance, it can result in a performance gain, as explained

above. This is because most applications, once parallelized, will optimally not statically

synchronize all dependences, but will instead leave the less frequent dependence

violations to be detected and corrected by the TLS system. This allows TLS systems to

realize performance benefits from the ability to speculate past potential dependences that

do not in fact often occur, which is not the case for conventional, pessimistic, statically-

determined synchronization.

This key difference between TLS and non-TLS programming enables a completely

different approach to parallel programming. Instead of designing applications for

Chapter 5: Observations and Conclusions 117

parallelism from the start, applications can be written for a uniprocessor target first, and

then ported with fairly little effort to a TLS multiprocessor platform to realize a

substantial parallel speedup. As traditional parallel programming often requires

significant modification of uniprocessor code, relatively few uniprocessor applications

are worth parallelizing. With TLS, the hurdle for parallelization is reduced greatly, vastly

increasing the number of applications that are amenable to parallelization and worth the

effort to be parallelized.

The ease of parallelization is increased not only by requiring less redesign of

applications. It is also greatly increased because of the elimination of data races in

parallel programming. Having the TLS hardware ensure the ordering of accesses

precludes data races from occurring, provided the programmer specifies which memory

locations are shared. As debugging data races is arguably the most challenging task in

parallel programming, while identifying shared memory locations is not, this also

dramatically simplifies parallel programming. Not only is debugging simplified, but the

programmer also does not need to have a good understanding of the memory access

patterns and the algorithms in the application. When parallelizing with TLS, the

programmer is freed from the initial major hurdles of redesigning data structures and

algorithms, followed by extensive multiprocessor debugging. Instead, for the base

parallelization, correctness is guaranteed if the programmer can simply specify which

data is shared. The programmer is free to immediately begin optimizing parallel

performance, and this only optionally need be done. On the other hand, the non-TLS

programmer is instead required to possibly do an initial redesign and in all practical cases

will need to do extensive debugging, before getting to even a base parallelization. Only

Chapter 5: Observations and Conclusions 118

then can a non-TLS programmer start to do the optional optimization of performance.

For parallelizing legacy code written by other programmers, the ability to move almost

immediately into a debugged parallel version with little understanding of the code being

parallelized is an enormous benefit.

Because of the ease of TLS parallel programming for these reasons, the programmer can

utilize a substantially new approach to parallel programming. Instead of designing

programs for parallelism from the start or substantially redesigning a uniprocessor

algorithm, applications can be written much more simply for a uniprocessor target and

then rapidly and fairly easily ported to the TLS multiprocessor with no advance planning

or design. This is simply not possible to do for most applications using the current

methods of parallelization, i.e. without hardware support for TLS programming.

While rapid parallelization is possible for far more applications using a TLS system, even

more applications can be parallelized and even better speedups generated if programmers

follow a few simple guidelines for exposing parallelism when writing the original

applications for a uniprocessor system. These guidelines are not very restrictive, and do

not require nearly the effort of designing parallel data structures and algorithms for

traditional parallelization. However, they do allow parallelism to be more easily detected

and extracted by a TLS system, either manually or even automatically. Rather than

requiring a programmer to design for parallelism, these guidelines simply attempt to

prevent a programmer from obscuring parallelism that is already present in the

applications they are writing. In a way, these guidelines are concerned more with

preventing a programmer from doing harm than requiring a programmer to do good.

Chapter 5: Observations and Conclusions 119

Previous studies have shown that conventional parallelization is improved [22][27] and

manual parallelization vastly simplified [29] by the availability of TLS support. To

illustrate all the points above, I have first presented two simple examples of application

code, and the way in which they can be parallelized with TLS. I provided a short

description of the process by which a TLS programmer profiles, analyzes and parallelizes

an unfamiliar legacy application. By using basic-block-level, butterfly profiles and run-

time violation performance monitoring, the programmer can rapidly locate parallelism

and identify variables that limit parallel performance. I then described the way in which

the TLS manual programming is done and three of the most useful manual TLS code

transformations: complex value prediction, data structure /algorithm changes and

speculative pipelining.

These techniques were then applied to several applications in SPEC CPU2000 to assess

the performance and difficulty of using TLS on well-known processor benchmarks. I

provided a detailed look at the parallelism in a number of SPEC2000 applications. For

each application, I described the specific location of this parallelism as a roadmap to

other researchers who may wish to utilize this information for their own purposes. I also

told what are the key impediments in each application that block extraction of the

parallelism. Finally, I discussed the methods we used to overcome these impediments,

and I provided performance results for each of these parallelized applications.

While equake, art and mesa are relatively simple to parallelize and can be done via

automatic parallelization, the rest of the applications benefit from the expertise of a

programmer. In ammp this is due to having the parallelism evenly divided between two

Chapter 5: Observations and Conclusions 120

levels of a nested loop, and having complex load imbalances based upon the outcome of a

conditional statement. Vpr (route) also exhibits complex load balance issues based

upon a conditional branch. In addition, it contains frequently updated variables that are

utilized as both integer and Boolean variables. Splitting these uses into two separate

variables enhances the parallelism. Redesigning the recursion and shortening the critical

paths in parts of vpr (route) also enable its parallelization. Vpr (place) suffers

from artificial serialization due to a random number generator, as does twolf. Finally,

several of the parallelized applications benefit from synchronization to eliminate a

number of preventable violations.

While simple (automatic) transformations were useful for many applications, complex

transformations were able to provide further large performance benefits. This was

especially true for integer applications, some of which would have experienced no

significant speedup with only automatic parallelization. This research provides evidence

that real-world applications can be parallelized with very little effort with manual TLS

programming.

My experience shows that TLS can dramatically reduce the programmer effort required

for application parallelization, while yielding performance gains similar to, if not

exceeding, those obtainable using conventional manual parallelization. This supports the

assertion that the use of TLS enables a new approach to parallel programming. In this

paradigm, the majority of the programming effort can focus on conventional single-

threaded application design, with a relatively small effort at the end to port the

application to a multiprocessor platform using manual parallelization with TLS.

Chapter 5: Observations and Conclusions 121

With the strong movement of mainstream computing toward single-chip multiprocessors,

the potential exists for TLS support to be added to future CMPs. This would simplify the

process of parallel programming and enable higher performance on applications with

parallelism that is difficult to extract using static methods. With this in mind, I have

provided broad guidelines to uniprocessor programmers on how to design programs that

will port easily to TLS CMP platforms. While this was done specifically with TLS

platforms in mind, all of these guidelines also facilitate porting applications to non-TLS

parallel platforms.

In conclusion, by providing this detailed explanation of the parallelism in several

SPEC2000 applications, I have shown that significant parallelism can be extracted using

TLS, even from several integer applications. Furthermore, I have shown the way in

which this can be done manually, with the hope that these examples will help inform

future efforts on automated TLS parallelization.

5.4 Future research

The use of TLS for aiding manual parallelization holds great potential for allowing

significantly more applications to be parallelized than can be done either without TLS or

with only automated TLS parallelization. To further this opportunity, the following

research would be valuable. More difficult integer applications within SPEC2000 should

be parallelized, to learn more about code transformation techniques that can be utilized

and to gain more insight into the limitations to the extraction of TLP. For this purpose, it

would also be valuable to provide better tools than simple basic-block application profiles

Chapter 5: Observations and Conclusions 122

to assist the programmer in finding promising regions of TLP. Some research on this has

already been done, but much more remains to be completed to provide the TLS parallel

programmer with a simple way of finding the best spots at which to parallelize. In

particular it would be helpful to be able to see visually the dependences in the code, both

prior to and following various code transformations to expose the TLP. Research should

be done to determine how to automate the manual code transformations that I have

utilized. While it is not currently possible to automate many of them, at least some of

them would be amenable to automation, at least in certain constrained situations. Finally,

as more research is conducted into what limits the extraction of TLP from applications,

more precise guidelines could be provided to uniprocessor programmers to enable them

to create applications that would port to TLS platforms and exhibit much better speedups

with even less effort.

References 123

References

[1] V.S. Adve, et al., “An integrated compilation and performance analysis

environment for data parallel programs,” Supercomputing 1995, San Diego,

California, pp. 1370-1404, Nov. 1995.

[2] L. Barroso, et al., “Piranha: a scalable architecture based on single-chip

multiprocessing,” Proc. 27th Annual Intl. Sym. on Computer Architecture

(ISCA), Vancouver, Canada, June 2000.

[3] B. Blume, et. al, “Restructuring programs for high-speed computers with Polaris,”

Proc. 1996 ICPP Workshop on. Challenges for Parallel Processing, pp. 149-161,

Aug. 1996.

[4] M. Chen and K. Olukotun, “The JRPM system for dynamically parallelizing Java

programs,” Proc. 30th Annual Intl. Sym. on Computer Architecture (ISCA), San

Diego, CA, pp. 434-445, June 2003.

[5] G.Z. Chrysos and J.S. Emer, “Memory dependence prediction using store sets,”

Proc. 25th Annual Intl. Sym. on Computer Architecture (ISCA), Barcelona,

Spain, pp. 142-153, June 1998.

[6] M. Cintra, J. Martínez and J. Torrellas, “Architectural support for scalable

speculative parallelization in shared-memory multiprocessors,” ISCA-27,

Vancouver, Canada, pp. 13-24, June 2000.

[7] M. Cintra and J. Torrellas, “Eliminating squashes through learning cross-thread

violations in speculative parallelization for Multiprocessors,” Proc. 8th Intl. Sym.

on High-Performance Computer Architecture (HPCA), Cambridge,

Massachusetts, Feb. 2002.

References 124

[8] J. Clabes, et al., “Design and implementation of the POWER5 microprocessor,”

IEEE Intl. Solid-State Circuits Conference (ISSCC), San Francisco, CA, Feb. 15-

19, 2004.

[9] F. Gabbay and A. Mendelson, “Using value prediction to increase the power of

speculative execution hardware,” ACM Transactions on Computer Systems, vol.

16, pp. 234-270, Aug. 1998.

[10] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao, E.

Bugnion and M. S. Lam, “Maximizing Multiprocessor Performance with the

SUIF Compiler,” IEEE Computer, December 1996.

[11] L. Hammond, et al., “The Stanford Hydra CMP,” IEEE Micro, pp. 71-84, Mar.-

Apr. 2000.

[12] L. Hammond, M. Willey and K. Olukotun, “Data Speculation Support for a Chip

Multiprocessor,” Proc. 8th Intl. Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), San Jose, California, Oct. 1998.

[13] “International technology roadmap for semiconductors,” hyperlinked to

http://public.itrs.net.

[14] S.W. Keckler et al., “Exploiting fine-grain thread level parallelism on the MIT

multi-ALU processor,” ISCA-25, Barcelona, Spain, pp. 306-317, June 1998.

[15] D. Kwon, S. Han and H. Kim. "MPI Backend for an Automatic Parallelizing

Compiler," 1999 International Symposium on Parallel Architectures, Algorithms

and Networks (ISPAN '99), p. 152, 1999.

[16] P. Kongetira, “A 32-way multithreaded SPARC® processor,” Hot Chips 16,

Stanford, California, Aug. 22-24, 2004.

[17] K. Krewell, “AMD vs. Intel in dual-core duel,” Microprocessor Report,

Scottsdale, AZ, July 6, 2004.

References 125

[18] M. S. Lam and R. P. Wilson, “Limits of Control Flow on Parallelism,”

Proceedings of the 19th Annual International Symposium on Computer

Architecture, May 1992.

[19] D. Lammers, “Intel cancels Tejas, moves to dual-core designs,” EETimes,

Manhasset, New York, May 7, 2004.

[20] K.M. Lepak, G.B. Bell, and M.H. Lipasti, “Silent stores and store value locality,”

IEEE Transactions on Computers, vol. 50, pp. 1174-1190, Nov. 2001.

[21] S.W. Liao, et al., “SUIF Explorer: An Interactive and Interprocedural

Parallelizer,” Proc. Sym. PPOPP 1999, pp. 37-48, Atlanta, Georgia, Aug. 1999.

[22] J.F. Martinez and J. Torrellas, “Speculative synchronization: applying thread-

level speculation to explicitly parallel applications,” Proc. 10th Intl. Conf. on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), San Jose, California, Oct. 2002.

[23] C. McNairy and R. Bhatia, “Montecito - The next product in the Itanium®

Processor Family,” Hot Chips 16, Stanford, California, Aug. 22-24, 2004.

[24] B.P. Miller, et al., “The Paradyn Parallel Performance Measurement Tools,” IEEE

Computer, 28(11):37-46, Nov. 1995.

[25] A. Moshovos, S.E. Breach, T.N. Vijaykumar, G.S. Sohi, “Dynamic speculation

and synchronization of data dependences,” ISCA-24, Denver, Colorado, pp. 181-

193, June 1997.

[26] K. Olukotun, L. Hammond, and M. Willey, “Improving the performance of

speculatively parallel applications on the Hydra CMP,” Proc. 13th ACM

International Conference on Supercomputing (ICS), Rhodes, Greece, pp. 21-30,

June 1999.

[27] C.-L. Ooi, et al., “Multiplex: unifying conventional and speculative thread-level

parallelism on a chip multiprocessor,” ICS-15, June 2001.

References 126

[28] S. Naffziger, T. Grutkowski and B. Stackhouse, “The implementation of a 2-core

Multi-Threaded Itanium® Family Processor,” IEEE Intl. Solid-State Circuits

Conference (ISSCC), San Francisco, CA, Feb. 6-10, 2005.

[29] M. Prabhu and K. Olukotun, “Using thread-level speculation to simplify manual

parallelization,” Proc. Sym. PPOPP’03, San Diego, CA, pp. 1-12, June 11-13,

2003.

[30] L. Rauchwerger, N. Amato, and D. Padua, “Run–time methods for parallelizing

partially parallel loops,” ICS-9, Barcelona, Spain, pp. 137-146, July 1995.

[31] T. Sherwood and B. Calder, “Time varying behavior of programs,” Tech. Rep.

No. CS99-630, Dept. of Computer Science and Eng., UCSD, Aug. 1999.

[32] J.G. Steffan, C.B. Colohan, A. Zhai, and T.C. Mowry, “Improving value

communication for thread-level speculation,” HPCA-8, Cambridge,

Massachusetts, Feb. 2002.

[33] J. Steffan, C. Colohan, A. Zhai, and T. Mowry, “A scalable approach to thread-

level speculation,” ISCA-27, Vancouver, Canada, pp. 1-12, June 2000.

[34] D. W. Wall, “Limits of Instructional-Level Parallelism,” WRL Technical Note

TN-15, December 1990.

[35] A. Zhai, C.B. Colohan, J.G. Steffan, and T.C. Mowry, “Compiler optimization of

scalar value communication between speculative threads,” ASPLOS-10, San Jose,

California, Oct. 2002.

[36] Y. Zhang, L. Rauchwerger, and J. Torrellas, “Hardware for speculative

parallelization of partially-parallel loops in DSM multiprocessors,” HPCA-5.,

Orlando, Florida, pp. 135-141, Jan. 1999.

[37] C. Zilles and G. Sohi, “Execution-based prediction using speculative slices,”

ISCA-28, Goteborg, Sweden, pp. 2-13, July 2001.

