
PROCESSOR EFFICIENCY

FOR PACKET-PROCESSING APPLICATIONS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Elizabeth Seamans

September 2005

c© Copyright by Elizabeth Seamans 2006

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Mendel Rosenblum
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Mark Horowitz

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Nick McKeown

Approved for the University Committee on Graduate

Studies.

iii

Preface

iv

Acknowledgments

v

Contents

Preface iv

Acknowledgments v

1 Introduction 1

1.1 Contributions . 2

1.2 Background . 3

1.2.1 Edge Router: High Performance with Flexibility 3

1.2.2 DiffServ: Our Edge Router Quality of Service Application . . 4

1.2.3 Flexibility Offered by Programmable Hardware 5

1.3 Methodology . 6

1.3.1 Measuring Application Performance 7

1.4 Experimental Results . 7

1.4.1 Assigning Work to Processor Cores 8

1.4.2 Reducing the Instruction Fetch Bandwidth Bottleneck 8

1.5 Conclusions . 9

1.6 Road map . 9

2 Related Work 10

2.1 Academic Research . 11

2.2 Commodity Programmable Hardware 17

2.3 Unexplored Territory . 20

vi

3 Methodology 23

3.1 Ingress Block Hardware . 24

3.2 Ingress Block Software . 25

3.3 Other System Characteristics . 28

3.4 Modeling Execution . 28

3.5 Performance Measurement . 30

4 Scheduling Multiple Processor Cores 32

4.1 Methodology . 36

4.2 Experimental Results . 39

4.3 Performance and Packet Independence 52

4.4 Conclusions . 53

5 Reducing the Instruction Fetch Bottleneck 57

5.1 Compressing the Executable . 57

5.2 Increasing Instruction Fetch Bandwidth 60

5.3 Methodology . 60

5.4 Experimental Results . 62

5.4.1 Maximum Throughput . 62

5.4.2 Virtual Context Performance Effects 63

5.4.3 Branches and Pipeline Stalls 69

5.5 Conclusions . 75

6 Conclusions 78

6.1 Exploiting Data Parallelism . 79

6.2 Future Work . 83

Bibliography 84

vii

List of Tables

5.1 Application Instruction Blocks Sizes 64

viii

List of Figures

4.1 Maximum Throughput . 39

4.2 Normalized Throughput . 39

4.3 Throughput with Four Hardware Contexts 40

4.4 Virtual Contexts for Maximum Throughput 40

4.5 Stall Percentages: Virtual Contexts . 47

4.6 Equal . 47

4.7 Unequal . 47

4.8 Stall: Virtual Contexts . 47

4.9 Modelled Dynamic Stall: Virtual Contexts 47

4.10 Stall: Hardware Contexts . 51

4.11 Packet Latency: Virtual Contexts . 51

4.12 Equal . 51

4.13 Unequal 2 . 51

4.14 Packet Latency: Virtual Contexts . 51

4.15 Packet Jitter: Virtual Contexts . 51

4.16 Read Port Accesses: Virtual Contexts . 55

4.17 Write Port Accesses: Virtual Contexts . 55

4.18 Throughput for Dependent Packets 56

5.1 Normalized Throughput . 63

5.2 Wide Issue Throughput . 64

5.3 Processor Stall: Virtual Contexts . 70

5.4 Processor Stall: Hardware Contexts . 70

5.5 Packet Latency . 70

ix

5.6 Packet Jitter . 70

5.7 Register Read and Write Operations . 70

5.8 Load/Store Access Frequency . 70

5.9 Copy Access Frequency . 70

5.10 Combined Access Frequency . 72

5.11 Processor Stall: Memory Ports . 72

5.12 Branch Frequency . 72

5.13 BranchStall Throughput . 72

5.14 Conditional Branches . 72

5.15 Conditional Branches Taken . 72

5.16 Conditional Branch Variability . 72

5.17 Processor Stall: Virtual Contexts . 77

5.18 Processor Stall: Hardware Contexts . 77

5.19 Packet Latency . 77

5.20 Packet Jitter . 77

x

Abstract

Incorporating programmable hardware in a wide variety of network routers is a

subject of current investigation in academia and industry. Small, all-software routers,

for example, employ programmable hardware to serve customers at network end-

points: commodity hardware such as desktop x86 platforms serve as an inexpensive

solution for these low-end routers. At the other end of the spectrum, large network

routers, which have historically used hardwired platforms for high performance and

given each packet the same “best effort” handling, are beginning to include some

customized programmable hardware to meet a growing need for specialized packet

handling. Programmable hardware provides greater flexibility than hardwired plat-

forms and allows large routers to offer packet processing with more runtime variability

as well as new or updated packet services.

Large routers can benefit from added flexibility, but they must continue to support

their high volume of traffic. Although a wide range of designs using programmable

hardware to supply the combination of performance and flexibility for packet pro-

cessing have been proposed and implemented, no dominant approach has emerged.

In this dissertation we have evaluated a comprehensive set of techniques for mapping

work to an array of processor cores, and several methods for managing the resources

of an individual processor. We present work to show that specific characteristics of

our application domain can be leveraged to increase the efficiency of programmable

hardware and manage the contention for hardware resources.

We employ a concrete model of a hardware platform and an application composed

of a chain of dependent tasks to demonstrate that packet-processing applications in

our domain can best use a processor array by exploiting the inherent data parallelism

available in the independent packets in the network traffic. We identify the four

potential benefits available to the less efficient task parallel implementations and

explore ways to provide three of those benefits for our data parallel implementation.

We present analytical models which predict performance based on key system and

2

application characteristics and evaluate performance sensitivity to available hardware

resources and virtualized hardware contexts.

Chapter 1

Introduction

Routers forward packets through a wide area network and frequently provide addi-

tional packet services for the packets they forward. Historically, routers which handle

large volumes of packet traffic have been implemented on mostly hard wired platforms

to provide homogeneous processing to high volumes of network traffic. Packets which

required additional or alternate processing were siphoned off from regular network

traffic and handled separately as exceptions. While this strategy was successful for

relatively homogeneous packets, changes in network traffic demand more services and

more heterogeneous packet handling in the routers. Customers have recently begun

to request processing adapted to finer traffic granularity: for example, they may want

individual packet streams to have guaranteed bandwidth or protocol-specific process-

ing. Traditional hardwired systolic pipeline models are inflexible and have difficulty

accommodating this kind of specialized handling requirements; implementing some

large router packet processing services on programmable hardware, which execute

software-based instructions, could provide the necessary flexibility.

Although large routers need more flexibility to apply heterogeneous processing to

packets in their network traffic, their performance remains critical: at the same time,

they are typically constrained by the power and area available to the chip set. Because

programmable hardware uses those resources less efficiently than hardwired designs,

it is likely to support slower computation than its hardwired counterpart. However,

1

CHAPTER 1. INTRODUCTION 2

packet processing performance in large routers is frequently memory bound: the off-

chip memory bandwidth, which must support frequent random accesses to off-chip

data structures, is usually the system bottleneck. As long as the compute hardware,

whether hardwired or programmable, can keep the memory bandwidth occupied the

system can support the required throughput. The resulting challenge is to determine

how to use a limited amount of programmable hardware efficiently, making the best

use of the available power, chip area, and off-chip memory bandwidth, to increase the

amount of flexible packet processing power available in the router.

1.1 Contributions

This dissertation makes the following contributions:

1. it presents a problem area which is outside the focus of current research, efficient

flexible packet processing in high performance edge routers, and uses a concrete

target platform and a widely-used packet-processing application as an example

packet-processing system incorporating programmable hardware,

2. it evaluates strategies for mapping work onto multiple processors and techniques

for loosening the instruction fetch bandwidth bottleneck,

3. it uses analytical models to demonstrate that although the total number of

instructions per packet determine the maximum potential throughput, specific

characteristics of our application domain can be exploited to increase resource

utilization and manage contention for resources, including

• the number of instructions executed between remote memory references,

• the compact layout of persistant data objects, and

• short, simple computation using the persistant data objects,

4. it demonstrates that exploiting the data parallelism available in independent

packets, supported by virtualized hardware contexts, results in simple and effi-

cient programmable hardware packet processing systems, and

CHAPTER 1. INTRODUCTION 3

5. it demonstrates that several benefits derived from the less efficient task parallel

implementations can be provided with a data parallel implementation, including

• scaling performance beyond the number of hardware contexts,

• improving throughput by loosening the instruction fetch bandwidth bot-

tleneck, and

• reducing packet latency.

1.2 Background

We have already discussed the motivation for using programmable hardware in large

network routers and the contributions of this dissertation to that end. In this section

we describe the large edge router which holds the programmable hardware, our exam-

ple packet-processing application we expect the programmable hardware to execute,

and the flexibility we would like the system to support. Together, they represent the

target system for the experiments we report in this dissertation.

1.2.1 Edge Router: High Performance with Flexibility

A large edge router which manages traffic at the edge of a network domain is a good

example of a router providing a variety of services to high volumes of heterogeneous

network traffic. Edge router architectures vary, but we define a typical edge router

architecture with the following characteristics:

1. The edge router receives and transmits packets on a set of ports which are

partitioned across multiple line cards.

2. A packet forwarded by the edge router belongs to a packet flow, where packet

flows are composed of related packets.

3. The edge router handles upwards of 100,000 independent packet flows concur-

rently, as of 2005.

CHAPTER 1. INTRODUCTION 4

4. A packet received from a port is transferred to a block called the ingress block

for processing, then moves off the line card through the switch fabric. The

switch fabric routes the packet to its outbound line card. On the outbound line

card, the packet is moved through the egress block for additional processing.

5. The supported line rate for an ingress block can be relatively high at 40Gb/s.

6. Packet order must be maintained within the router, or restored prior to schedul-

ing the outgoing transmission, as the in-bound packet order is used when de-

termining the out-bound packet order.

7. A core service provided by an edge router is the enforcement of service level

agreements, as in the Differentiated Services application. This application on

high-performance edge routers is typically composed of units of work or tasks

which use large, randomly-accessed data structures of 100,000 or more objects

stored in off-chip memory.

1.2.2 DiffServ: Our Edge Router Quality of Service Appli-

cation

A fundamental part of the work performed by edge routers is ensuring quality of ser-

vice. Differentiated Services, or DiffServ, is a widely-used application implementing

QoS for edge routers by allocating traffic bandwidth to packet streams and moni-

toring them for compliance. DiffServ is composed of a chain of packet processing

tasks executed for each packet, and includes some functions commonly used in many

other packet processing applications. We use this core packet-processing application

to serve as an important example of the execution performed on behalf of packets,

rather than a benchmark suite of individually-executed packet-processing functions,

for several reasons. Although several benchmark suites have been created, no dom-

inant suite has emerged to provide universal basis for comparisons. Existing bench-

marks are also frequently drawn from existing operating system code or designed

for all-software routers and include heavy-weight administrative tasks, making them

CHAPTER 1. INTRODUCTION 5

poorly designed for large router platforms. Lastly, a benchmark represents a sin-

gle task while a packet will have multiple tasks executed on its behalf: measuring

individual benchmarks overlooks the effects of communication, load balancing, and

heterogenous execution resulting from more complex applications. Using DiffServ as

our representative application sacrifices some breadth provided a benchmark suite,

but it compensates by offering depth and applicability to our problem domain. We

use multiple implementations in our experiments.

1.2.3 Flexibility Offered by Programmable Hardware

Processing packets on programmable hardware allows the system to be flexible. Pro-

grammable hardware has been suggested as a replacement for some hardwired packet-

processing platforms to offer more flexibility, albeit at the possible cost of diminished

processing speed. We can define two axes for measuring system flexibility. On one

axis we can measure the static flexibility ; the ability to change the implementa-

tion to adapt to new requirements. A completely hardwired system would be the

least flexible in this respect while a system implemented entirely in software on pro-

grammable cores would be the most flexible; in the middle lies the hybrid solutions

using programmable cores with hardware accelerators. Along the other axis is the

dynamic flexibility, the ability of the system to support runtime variations for indi-

vidual packets. The most flexible system would allow significant execution variations

at runtime to meet the needs of individual packets; it would support a variety of

functions or function ordering. A less flexible system would allow minor execution

variations within individual functions. Dynamic flexibility is an important asset for

programmable hardware, allowing it to manage a wide variety of packets without

removing them from the general processing platform. Our target platform, outlined

above, supports both static and dynamic flexibility.

CHAPTER 1. INTRODUCTION 6

1.3 Methodology

The studies we report in this dissertation use a model of the ingress block of the edge

router line card executing hand-coded implementations of a portion of the DiffServ

application, as described in the previous section. We analyze the performance of our

system using a simulation-based methodology as well as analytical models.

We simulate the execution of our application on the chip multiprocessor platform

using an instruction emulator written in-house to model our chip multiprocessor. We

provide infinite remote memory bandwidth, which acts as a simplified version of our

problem of using the compute hardware efficiently to consume the available memory

bandwidth. The remote memory latency is set as an experimental parameter.

The input to a network architecture system is the network traffic. The packets

can vary in their size and execution requirements as well as their relationships to

each other. Some systems employ a very simple network traffic model: all packets are

independent, they are all a fixed size, and each packet requires the same processing.

These systems are useful for isolating specific parameters and restricting the number

of variables. Other systems use traces of actual network traffic, or packets whose pa-

rameters may be statistically distributed over some range, to represent more realistic

traffic behavior. Network traffic may also be channelized or unchannelized, referring

to whether the total bandwidth of the network traffic is divided among several inde-

pendent connections or all part of single connection. For example, the edge router

line card we described in chapter 1 may get unchannelized traffic from a single port

or channelized traffic from several ports. The network traffic we use in our experi-

mental framework is composed of fixed-size packets requiring the same processing: all

packets processed concurrently are independent of each other. We use this simplified

problem to delineate the key application and system characteristics, and use those

results to extrapolate to more complex execution.

Another variable in the network traffic composition is the required size and access

patterns of the persistent data structures. The packets in our network traffic require a

persistent data structure that contains hundreds of thousands or millions of elements.

The data structure size forces the data to be stored off-chip, and the data is accessed

CHAPTER 1. INTRODUCTION 7

randomly with very little temporal or spatial locality.

1.3.1 Measuring Application Performance

We report the performance of our application using three metrics. We measure the

throughput reported as the line rate in bits per second. Two other performance

metrics are packet latency, which measures the time the packet is resident on the

router, and packet jitter, which is the variation in packet latency.

Packet latency is composed of active cycles, when a processor is executing in-

structions on behalf of the packet, and inactive cycles, when a processor waits for

a resource such as data. Techniques for increasing throughput may have positive or

negative second-order effects on the active and inactive cycle counts. Increasing a

packet’s inactive cycles may also degrade throughput as the packet store resource

limits are reached; once the maximum number of packets are stored, no more packets

may be accepted until a resident packet graduates. Finally, some network protocols

are sensitive to packet latency, requiring those packets which take too long to reach

their destination to be dropped.

Jitter can also be affected by optimizing throughput. Optimization can introduce

jitter, or it can magnify inherent jitter by intertwining the execution of independent

packets, as when multiple contexts are executed on a single processor. As with latency,

some protocols are very sensitive to packet jitter.

1.4 Experimental Results

We discuss the results of two studies which describe techniques and performance

implications of using processor resources efficiently. In the first study we evaluate

methods for allocating work across an array of simple processor cores. In the sec-

ond study we analyze several techniques for increasing throughput performance by

loosening the instruction fetch bandwidth bottleneck.

CHAPTER 1. INTRODUCTION 8

1.4.1 Assigning Work to Processor Cores

Several proposals have been made for assigning work to an array of processor cores,

but they have not focussed on our application domain or compared the costs and

benefits of each method. In this study we present a comprehensive list of methods for

using multiple processors to exploit task parallelism. We compare implementations

of our application using a subset of the task parallel methods to a pure data parallel

implementation, which relies solely on the parallelism of independent packets. We

show that although the hardware contexts assigned to each processor core can be a

performance bottleneck for our data parallel implementation, we can overcome the

bottleneck by using virtual contexts, which virtualize the hardware contexts to allow

each processor to support more independent threads than it has hardware contexts.

We evaluate the performance effects of using virtual contexts and describe analytical

models for the processor stall, packet latency, packet jitter and memory port traffic

based on key system and application parameters.

1.4.2 Reducing the Instruction Fetch Bandwidth Bottleneck

Once we have mapped the application work to the processor array to minimize the

total processor stall, the packet throughput is determined by the instruction fetch

bandwidth. We evaluate several techniques for increasing the packet throughput,

including compressing the executable into fewer instructions using extensions to the

instruction set architecture tailored to characteristics of our application domain and

using processor configurations which increase the instruction fetch bandwidth by of-

fering dual instruction issue. We analyze the effects of our optimizations on processor

resource utilization and contention and show that our optimized application executes

with higher throughput and less processor contention, but copying the virtual con-

texts makes significantly more demands on the local memory ports. We also show

that the dual issue configuration which issues two instructions in parallel from the

same context, reducing the cycles required to execute the instructions for a single

packet, increases bursty references to local memory while the configuration which

issues one instruction from each of two independent contexts in parallel smooths the

CHAPTER 1. INTRODUCTION 9

local memory reference frequency by staggering the context execution. Lastly, we

observe that the branch frequency for our application is increased by performance

optimizations which reduce the instructions executed per packet, providing more op-

portunity for pipeline stalls which could degrade the packet throughput. We evaluate

a fine-grained scheduling algorithm to keep our instruction pipeline full by switching

between executing contexts and analyze the resource utilization and contention using

revised analytical models.

1.5 Conclusions

In this dissertation we report work using several implementations of a critical packet

processing application executed on a concrete model of a programmable hardware

platform. As a result of these studies we conclude we can leverage specific char-

acteristics of our application domain to improve processor utilization and manage

contention for resources. We evaluate methods for offering the benefits of exploiting

task parallelism within the context of a more efficient data parallel implementation.

We observe that processor hardware contexts are a critical resource to supporting

data parallel implementations and propose virtualizing them to remove a significant

performance bottleneck. By exploring the effects of this technique on resource uti-

lization and execution performance we develop analytical performance models based

on key system characteristics.

1.6 Road map

The rest of the dissertation is laid out as follows: we begin by discussing the related

work in chapter 2. Chapter 3 reviews the experimental apparatus used in our studies,

reported in chapters 4 and 5. We conclude and suggest future work in chapter 6.

Chapter 2

Related Work

As wide-area networking has burgeoned, both academia and industry have focused

on developing and using programmable hardware to support it. A wide range of

networking platforms exist, including

• a general-purpose x86 box which executes networking functions, along with a

variety of other applications, under a commodity operating system,

• a router implemented in software, under a commodity OS, on a dedicated x86

box,

• a router implemented in software on one or more commodity network processor

chips, or NPUs,

• a router implemented entirely in hardwired (non-programmable) hardware, and

• a router implemented using a mix of hardwired and programmable hardware.

Each platform may be suitable for several of the many available niches, which can

include an individual’s desktop machine, a small business gateway, or an Internet

backbone router.

In this chapter we discuss prior work related to this dissertation. We begin by

reviewing published academic research which relates to our work, including studies on

mapping packet processing applications to parallel processor cores and using the re-

sources of individual processors efficiently. Because of active concurrent development

10

CHAPTER 2. RELATED WORK 11

in industry, we also highlight some relevant commodity systems. We discuss some

opportunities for further research, and close with a description of the work presented

in this dissertation.

2.1 Academic Research

The computer architecture problems in networking have posed some infrastructure

challenges to the academic community, as the commonly used tools and paradigms

developed for the general-purpose or scientific computation research community may

not fit. Consequently, academic research efforts have been divided between investigat-

ing design problems and developing the infrastructure needed to enable evaluations.

Researchers have directly addressed a wide variety of design questions, including pro-

gramming models, compiler optimizations, memory system designs, power issues, ap-

plication algorithms, implementations and performance analysis, macro-architecture

comparisons, and novel chip designs. Research infrastructure development has itself

been divided between proposing methodologies and creating tools; these efforts have

embraced network application benchmarking as well as simulation and performance

modeling frameworks. Much of the academic research on the architecture of network

processors has been collected into volumes 1, 2 and 3 of Network Processor Design

Issues and Practices ([8], [9], [10]). These books contain the work drawn from this

area’s core forum, the Network Processor Workshop.

This dissertation is primarily concerned with using data parallelism to make the

most efficient use of programmable hardware on a chip for processing packets. In this

section we discuss work in the area of mapping network applications to parallel pro-

cessors. The systems in the studies we report vary in their goals, implementations,

and performance measurements. Some target applications included administrative

as well as packet-processing tasks: the administrative tasks are performed periodi-

cally and typically include much more computation than packet-processing tasks do.

Target packet-processing applications with multiple tasks may be structured as a

chain of dependent tasks or they may include several independent tasks which can

be executed in parallel. Although the prior work has a shared motivation of using

CHAPTER 2. RELATED WORK 12

programmable hardware to provide flexibility, the kind of flexibility which is sup-

ported varies: some proposed systems support only the ability to update or replace

the software while others support run-time variations in packet processing. Some

systems include data and/or instruction caches local to the processors; others do not

cache data and store the complete executable for each processor in its local instruc-

tion buffer. The persistent data structures may be stored on- or off-chip. Authors

may measure performance using individual task benchmarks or larger applications

which link tasks together: their performance metrics have included packet through-

put, packet latency, and processor utilization. They may compare the performance of

configurations using the same number of processor cores, or they may assign different

processor resources to specific configurations.

To use an array of processor cores we have to decompose the packet processing

work onto parallel processors. A sequence of two papers, [22] and [15], addresses the

problem of parallel decomposition using the same platform, albeit with two differ-

ent goals. Both papers model members of the Intel’s IXP family, the IXP1200 and

IXP2400, which are designed to support applications performing frequent non-local

memory references. Each processor maintains multiple hardware contexts, allowing it

to switch between contexts and continue doing useful work after a context has stalled

waiting for remote data.

The authors of [22] propose a methodology for mapping applications onto NPUs

similar to the IXP2400. They provide a case study by partitioning their application,

IPv4 forwarding plus DiffServ, to execute on the eight processors of an IXP2400.

Their methodology sets budgets for instructions and cycles of memory latency stall

per packet for individual processors, then partitions the application into blocks at

the task boundaries and assigns the blocks to pipeline stages. A single stage may

include one or more blocks: a stage which uses less than a processor’s budget is

assigned to a single processor, a stage which uses more than one processor’s budget is

divided up and assigned to multiple processors. The goal of the methodology is to use

the hardware resources efficiently to maximize throughput using minimal application

information, and it lays some groundwork for experimental analysis of this and other

techniques for employing a processor array for handling packets.

CHAPTER 2. RELATED WORK 13

In [15] the authors use a similar platform, the IXP1200, to address the question of

how many pipeline stages should be used to implement an application. They partition

the IPv4 application into one, two, four or eight load-balanced blocks and map each

block to its own processor. Every implementation uses the same number of processors;

the one-block version is copied onto eight processors, the two-block version is copied

onto four processor pairs, etc. The network traffic is composed of packets of equal

length; the packet size (and thus inter-arrival rate) is a configuration parameter. The

network traffic is divided among sixteen channels. The performance metrics are the

packet latency and processors utilization, the latter measuring the relative efficiency

of the different mappings. The experiments are largely performed using an analytic

performance model, whose demonstration is a main contribution of the paper. Based

on the results, the authors conclude that multi-stage pipelines are inferior to single-

stage implementations for two reasons: single-stage pipelines make better use of local

memory for channelized traffic, and they avoid the communication between pipeline

stages. The authors provide the experimental analysis measuring throughput for

the partitioning method which results in equal-sized blocks for balanced processor

loads, and identifies communication as a source of execution overhead. This work

contributes to the groundwork begun in [22], discussed above, evaluating strategies

for keeping a processor array executing a packet-processing application efficiently.

The authors of [6] present an optimizing compiler for Intel’s IXP2400, which

automatically assigns work to the parallel processor cores and the larger StrongARM

processor according to per-packet instruction and memory stall budgets. The parallel

processors could support up to 700 instructions and two off-chip DRAM references

per packet. They presented the results of compiling three network applications, L3-

Switch, MPLS, and Firewall. The authors report reduced throughput for multi-

stage packet pipelines due to communication overhead: the processors communicated

through off-chip DRAM, whose limited bandwidth acted as a performance bottleneck.

The authors build on previous work to automate the partitioning of an application to

a processor array: although they cite communication as the performance constraint

on multi-stage packet pipelines, their conclusion applies to systems with inter-process

communication through off-chip memory and restricted off-chip bandwidth.

CHAPTER 2. RELATED WORK 14

Other researchers have also explored the question of pipeline length. The authors

of each of two papers, [13] and the later paper [37], note the prevalence of processor

pipelines in NPUs and present comparisons between varying numbers of processors

using an abstract model. These papers each employ an abstract model of a chip

multiprocessor and measure packet throughput. Unlike [15], both of these papers

show that additional stages in a pipeline lead to increased performance. They base

these results on experiments which compare execution times using increasing numbers

of processors: a single stage pipeline is executed using one processor, a two-stage

pipeline is executed using two processors, etc. These papers are primarily concerned

with using a processor array to exploit intra-packet parallelism: their conclusions

would best apply to a system with little packet independence in the network traffic,

where the processing of dependent packets would be serialized and could starve some

processors of useful work.

In addition to the static mapping approaches discussed above, dynamic approaches

have also been explored: the authors of [30] present the programming environment

and dynamic runtime manager NEPAL. NEPAL is designed to help a network proces-

sor provide both high performance and flexibility by simplifying application program-

ming and extracting application-specific data to help dynamically schedule applica-

tion tasks on a processor array: the authors conclude that it also significantly improves

throughput compared to data parallel implementations. They present experimental

results from trace-driven executions of the authors’ benchmark suite NetBench, de-

signed to represent a variety of packet processing and administrative tasks, on two

modeled systems. The first is Intel’s IXP1200, which places its processor array on

a shared bus. The second system is the Cisco TOASTER, which uses neighbor-to-

neighbor communication between processors. NEPAL partitions the application into

modules to optimize for either a balanced processor load or minimized communication

overhead. The authors use packet throughput as their performance metric, normal-

ized to a data parallel implementation where each processor core executes a copy of

the entire benchmark. In addition to the results using NEPAL, the authors present

execution results using benchmark tasks which were statically scheduled by hand. The

static- and dynamically scheduled pipelines both showed significant improvement over

CHAPTER 2. RELATED WORK 15

the data parallel execution in most cases for implementations compared executing on

the same number of processors. As with the work in [6], the object is to automate the

partitioning of an application across a processor array, and as with the work reported

in [13] and [37] discussed above, the authors of this work exploit the thread-level

parallelism available in the processing of a single packet. Their conclusions, which

contradict those in [6] and [15], are based on the performance effects of the instruction

and data cache miss rates, which appear to overwhelm any communication overhead

incurred, while the intra-packet parallelism is exploited to reduce the packet latency

rather than increase packet throughput as in [13] and [37]. These results imply that

the conclusions presented here apply to systems with enough packet independence in

the network traffic to keep the processor array occupied, employ instruction or data

caches but execute with a high miss rate, and execute enough computation in each

partition to make the communication overhead negligible by comparison.

Researchers have gone beyond the question of how to map applications to par-

allel processors to ask whether a different type of parallel processing might be more

suitable for packet processing applications. The authors of [32] propose using a CMP

vector processor to perform Single Instruction, Multiple Data (SIMD) ([12]) execu-

tion of packet processing applications. They stress the static flexibility of evolving

applications as the primary motivation for using programmable hardware and propose

using a vector processor to gain both performance advantages over independently ex-

ecuting processor cores and flexibility advantages over hardware accelerators. The

study presents a vector processor design. The experiments are executed on a sim-

ulated model using three benchmarks, which allow some execution path variations

for individual packets. The authors collected packet traces on a router in their own

lab and interleaved them to create their experimental network traffic. They show the

feasibility of implementing their benchmarks for a vector processor and analyze the

data cache use, laying the groundwork for comparative analysis with the approaches

outlined in the studies discussed above. Their focus on data caches implies that their

conclusions are relevant for systems with network traffic which generate accesses ex-

hibiting locality.

In order to optimize application execution we need to understand how to employ

CHAPTER 2. RELATED WORK 16

the resources of an individual processor. Several papers address this question in

the context of network applications. The authors in [7] sought to determine how to

distribute and schedule a fixed number of processor functional units while the authors

of [31] propose using a streaming vector processor, which provides a programming

model that allows the individual functional units to be scheduled in parallel.

In [7], the authors attempt to determine the optimal way to distribute a fixed

number of hardware resources. They perform direct comparisons between four archi-

tectures: an aggressive super-scalar core (SS), a fine grained multi-threaded proces-

sor, which is SS plus multi-threading with zero switch penalty, a chip multiprocessor

with an array of single-issue processor cores, and a simultaneous multi-threading

(SMT) processor. Their experiments use three benchmarks, each executed in iso-

lation and in conjunction with an operating system, with no runtime variation in

packet processing execution specified. Each architecture was configured with compa-

rable issue widths, and the experimental results were reported in packets per second.

This work treats network processors as alternatives to all-software x86 platforms.

The authors found that the benchmark and operating system execution were both

processor-bound, which gave no advantage to the traditional multi-threaded proces-

sor. They further concluded that the SMT core was the only architecture to perform

well under both the single-threaded execution of the operating system and the highly

parallel execution of the packet processing benchmarks. Although this relatively early

work includes a CMP architecture, the focus is on aggressive super-scalar uniproces-

sors; the software, which is compute-bound and requires a single-threaded operating

system, is targeted to an all-software router. The authors of [31] build directly on [32]

and propose using an Imagine-like architecture ([11]), with multiple processor cores

composed of parallel functional units, to execute specific network processing func-

tions. The authors conclude stream-based architectures, which allow the processor

resources to be scheduled in parallel using microcoded instruction, could be useful

for network applications. Their experiments use two individual benchmarks executed

on a model of the Imagine stream processor with fixed size packets (the size set as

a parameter) and with network traffic from a collected trace. The reported perfor-

mance metrics are packet latency, functional unit occupancy, and the percent of total

CHAPTER 2. RELATED WORK 17

execution time spent in the kernel, as opposed to performing stream operations or

stalling.

Two papers discuss the instruction level parallelism available in network appli-

cations. In [25] the author reports on processor utilization executing an abstract

application using traces of actual network traffic collected on low-throughput links.

The author concluded that limited packet independence suggests systems should ex-

ploit intra-packet parallelism and instruction level parallelism to improve throughput.

The authors of [23] introduce a suite of network processor benchmarks and include

their analysis of the available ILP.

2.2 Commodity Programmable Hardware

Companies have been supplying commodity network processors to provide special-

ized programmable hardware platforms for routers for several years. Because this

area has been developing concurrently in industry and academia, looking at existing

commodity hardware shows what implementations have been available and successful

in the marketplace while the research has taken place. In this section, we will give

an idea of the options available and the shifting nature of the market. Previous work

has surveyed, classified, and discussed commodity network processors ([33], [8], [9]):

we will review a few examples of commodity NPUs from the two largest vendors and

one much smaller supplier.

Although NPUs were originally positioned to compete with the general-purpose

x86-based platforms, the x86 remains widely used and some NPU suppliers have been

changing their focus to re-target their products to support higher throughputs (10

Gb/s or more) and compete with hardwired solutions. Commodity NPUs have a

small but growing market ([1]), and, although the field of suppliers has started to

narrow, there are still many companies competing with a variety of chip designs. No

single supplier or design has grown dominant; an NPU may or may not have special

purpose hardware accelerators in addition to many simple parallel processor cores, a

few large, fast processor cores, or some combination of the two. The programmable

cores offer an additional dimension; they can support very general execution or be

CHAPTER 2. RELATED WORK 18

specialized for network applications, executing as independent cores or coordinate

for SIMD execution. The breadth of options and still-lively competition indicates

that there has been no consensus reached on the best way to employ programmable

hardware for network applications. We discuss three different platforms below.

Intel produces the IXP family of network processors @@@ cite, which are not only

widely used as research platforms but also had 21% of the market share in 2004 (up

from 15% in 2003) ([1]). The IXP2800, which is targeted to support 10 Gb/s half-

duplex throughput, has a single StrongARM processor as well as an array of sixteen

simpler parallel processors which share several hardware accelerators. Each processor

supports multiple hardware contexts to maintain independent instruction streams. A

processor can execute instructions from its local control store; any changes to the local

stored instructions require the simple processor to stop executing until the changes

are complete. Packet processing is meant to occur on the array of simple processors,

which have hardware support for register-to-register communication between fixed

pairs of processors in a line (processor A can exchange information with processor B,

which can also communicate with processor C, etc.). The packet processing functions

can be partitioned across the processor array, which then acts as a packet pipeline.

In theory, the IXP can also support a more data parallel implementation by assigning

each packet to a single processor; in practice studies (including those published by

Intel) based on an earlier version of the architecture, the IXP1200, almost never

employ this mode.

AMCC, which had 31% of the market share in 2004 (down from 37% in 2003)

([1]) produces the nP7510 network processor, a member of the nP family, targeted to

support 10 Gb/s half-duplex throughput. The nP7510 contains six processor cores

which support hardware multi-threading, aided by on-chip hardware accelerators.

Each nPCore is designed to process packets to completion, as we advocate in this

dissertation; unlike the Intel products, the nP family does not provide hardware

support for employing processors cores in a packet pipeline.

EZchip ([2]) had a small slice of the NPU market, around 5%, but its revenue

tripled between 2003 and 2004 ([1]). The EZchip NP-2 network processor, which is

intended to deliver 10 Gb/s full duplex throughput, uses Task Optimized Processing

CHAPTER 2. RELATED WORK 19

(TOP)cores. Each TOP is optimized for one of four packet processing tasks; different

kinds of TOPs are arranged into a packet pipeline. A TOP is not multi-threaded,

but multiple TOPs at the same pipeline stage can process multiple packets.

We present these three vendors because they are each a note-worthy presence in

the NPU market: Intel and AMCC earned the two largest percentages of market

share, and EZchip, although a much smaller player, has grown very rapidly and is

focused on supporting high throughput. As a group, their products populate only a

portion of the design space: each design uses multiple processor cores on a chip for

packet processing, and the processor cores are executed in MIMD fashion. The designs

differ along several axes. Where Intel builds in support for considerable variability

managing the hardware resources, both AMCC and EZchip set more rigid constraints

but differ in how the processor cores are used. These design variations could imply

that the market has not settled on a solution for efficient packet processing. Of the

three, the AMCC products are the best example of the design principals we advocate

in this work.

Companies offering large routers are beginning to incorporate programmable hard-

ware into largely hardwired designs. The Cisco Carrier Routing System (CRS1) @@

cite, a large router with programmable hardware uses hardware and software archi-

tectures to provide speed and flexibility for millions of packet flows. It uses the Silicon

Packet Processor programmable ASIC and offers the choice between flexibility and

performance, giving the router access to more positions in the wide area network.

Juniper Networks, Cisco’s competition, offers the T640 with programmable ASICs.

Both companies chose to develop their programmable hardware in-house rather than

choose off-the-shelf parts. These large routers are examples of the target platform

used in this dissertation: high performance routers which include customized pro-

grammable hardware to perform work which requires flexibility. The purpose of this

dissertation is to identify efficient techniques for using programmable hardware to

allow these large routers to offer more services which require flexibility to higher

volumes of traffic.

CHAPTER 2. RELATED WORK 20

2.3 Unexplored Territory

Previous research in executing network applications on programmable hardware has

largely focused on lower-end systems. Some systems execute applications which in-

clude the longer-running administrative tasks as well as the tasks for processing in-

dividual packets. Persistent data structures are small enough to be stored on-chip

or exhibit enough data locality to benefit from caching, implying network traffic

with a relatively small number of independent packet streams. These studies have

focused primarily on measuring packet throughput performance without reporting

packet latency and jitter, which are affected by scheduling algorithms and contention

for resources. Commodity systems started as alternatives to the x86, acting as plat-

forms for small all-software routers. NPU’s have recently begun targeting higher

packet throughputs and a few large routers have recently included programmable

packet-processing hardware, but information about vendors and products does not

give much understanding of the reasons for any successes or failures: it does not tell

us what technical advantages the individual designs have, nor how they are being

used by customers. In particular, we don’t see how platforms are used in practice:

how they are positioned in the network, the functions they are executing, and what

throughput they are supporting. Many prior studies have not emphasized systems

which support dynamic flexibility, the ability to adapt packet processing to the needs

of individual packets. Overall, the work in this area does not give a coherent picture

of the characteristics and performance of large router packet processing, which re-

quires dynamic flexibility and high packet throughput with constrained latency and

jitter, large randomly-accessed data structures, and short tasks.

Studies which evaluate parallel decompositions onto multiple processor cores usu-

ally consider only one or two methods of partitioning applications, such as comparing

a data parallel implementation against a balanced packet pipeline: there has been

no comprehensive analysis of partitioning techniques to evaluate their benefits and

associated costs. While previous studies have reported the performance effects of

specific configurations, they usually do not isolate the effects of individual sources of

performance benefits and overheads resulting from the configuration executing on the

CHAPTER 2. RELATED WORK 21

particular system, such as the effects of instruction and data caches. Although the

results of each work are internally consistent, they do not support extrapolation to

systems with different parameters and sometimes appear to conflict with results from

other research. The studies which report the efficiency of data vs. task parallel im-

plementations stop short of comprehensive analysis of the advantages and limitations

of each technique. As a result, existing studies make or assume opposite conclusions

without clarifying the limitations on their scope.

Lastly, research on the performance of packet-processing applications has not

focused on the performance effects of instruction-level executable characteristics.

The instructions implementing applications and benchmarks are largely unexamined:

studies which budget the number of instructions executed per packet treat them as a

single undifferentiated block. Although packet-processing tasks are short sections of

code repeated for many or all packets, there has been little analysis of their charac-

teristics and how they may be used to optimize the executable instructions.

For this dissertation our target system is a large edge router executing a short

packet-processing application, composed a chain of dependent tasks, on programmable

hardware. Our application’s persistant data structures are large and randomly-

accessed, requiring us to store them in off-chip DRAM memory.

The first part of our work explores parallel decompositions for mapping our net-

work application onto parallel processor cores. Exploiting task parallelism has been

a widely-used technique in both industry and academia, and it deserves a rigorous

evaluation: we build on the previous analysis of mapping techniques and present an

experimental analysis of the costs and benefits associated with a comprehensive set of

methods for statically mapping our application to a MIMD processor array. We use

only inter-packet parallelism as our application has no task parallelism which can be

exploited for a single packet. We do not use data caches as our data objects exhibit

little locality, and we use a perfect instruction cache to allow us to de-couple the

mapping technique performance from the question of managing the local instruction

buffer. For our purposes we would like to determine how to use the available hardware

efficiently, so we compare executions which each use the same number of processors.

We identify the most promising technique, which exploits data parallelism rather than

CHAPTER 2. RELATED WORK 22

task parallelism, as well as a potential resource bottleneck at the number of hardware

contexts available to a processor. We propose virtualizing the hardware contexts to

improve multi-threading support and offer performance models to predict the effects

of virtual contexts on resource use and performance.

In the second part of this dissertation we evaluate several ways to loosen the

instruction fetch bandwidth bottleneck and improve packet throughput. We identify

some typical characteristics of packet processing tasks and leverage them by extending

our instruction set architecture to optimize the instructions executed per packet.

We also show the performance effects of exploiting instruction-level parallelism in a

single context, and issuing in-order instructions from multiple virtual contexts. We

analyze the effects of our optimizations executed using virtual contexts, measuring

throughput, contention and resource bottlenecks, and branch frequency.

Although our analysis is performed on a simplified system using very uniform

network traffic, where all packets require the same processing, our ultimate goal is

a system which supports runtime processing variations: we review our results with

that goal in mind and apply our findings to more complex execution.

Chapter 3

Methodology

The research we report in this dissertation is based on experimental results gathered

by modeling the execution of a packet processing application on a chip multiprocessor

or CMP. The CMP represents the ingress block on an edge router line card and the

application executes the ingress portion of the Differentiated Services quality of service

packet processing. In this chapter we discuss the experimental framework we use to

generate the results we report.

Our experiments are designed to analyze a well-defined packet-processing system

in our target domain to determine the parameters which are important to its perfor-

mance. By closely examining a single concrete system we can develop intuition about

the its behavior and provide a strong basis for comparison to predict the performance

of other systems not analyzed here. We have constructed our experimental apparatus

to isolate the performance effects of individual resources: to that end we largely fo-

cus on varying the availability of a single resource while allowing unrestricted access

to the rest. We have also kept the processor modelling simple to focus on macro-

architectural behavior.

We review our hardware platform in section 3.1, our software application in section

3.2, and the execution variation and network traffic in section 3.3. We discuss our

simulation infrastructure in section 3.4. We profile our performance metrics in section

3.5.

23

CHAPTER 3. METHODOLOGY 24

3.1 Ingress Block Hardware

We use a model of the Stanford Smart Memories chip multiprocessor [26], a modular,

reconfigurable architecture designed to serve several application domains, as a model

for our edge router ingress block. The Smart Memories CMP shares characteristics

with several network processor architectures, although it is not specifically designed

to execute network applications: it has many simple processor cores on a single chip

connected by a high-bandwidth network. The processors on the Smart Memories

chip support multiple configurations: this design allows us to construct implementa-

tions with differing processor requirements and compare them directly on the same

hardware platform.

The chip is composed of an array of processing tiles, each holding 128KB of local

memory, a local interconnect, and a reconfigurable processor core with eight hard-

ware contexts. Tiles are networked together by a local interconnection network, in

groups of four, into a quad and each quad is connected to a global interconnection

network. The processor core on a tile can be configured in several different ways. Our

default configuration is to partition the core into two smaller processors, each using

four hardware contexts and supporting single-issue 32-bit RISC-like instructions. The

Smart Memories design also supports a dual-issue mode for each of the two proces-

sors on a tile: in chapter 5 we use this configuration to support our Static ILP and

Static SMT executions. Lastly, the Smart Memories processor cores also support a

streaming mode with a 256 bit instruction format, which combines all the proces-

sor resources on a tile into one processor and allows operations to be issued to each

functional unit in parallel: we use this configuration to execute the CPU Config im-

plementation in chapter 4. The combined computation resources include two integer

clusters each consisting of an ALU, register file and load/store unit and one floating

point cluster with two floating point adders, a floating point multiplier, and a floating

point divide/square root unit. The floating point units can perform the correspond-

ing integer operations. Our experiments use between two and twelve processor cores,

resident on between one and six tiles.

CHAPTER 3. METHODOLOGY 25

3.2 Ingress Block Software

We have chosen to perform our experiments using implementations of a simple,

widely-used application made up of a chain of dependent packet processing func-

tions or tasks, where a task is a unit of work associated with a data structure. The

application represents the portion of Differentiated Services or DiffServ that would

execute on the ingress block of our target edge router. The tasks we include are

packet parsing, 5-dimension flow classification, and metering; the first two are fun-

damental to packet processing and shared by many applications. We chose these

tasks because in a more fully developed workload they would provide a high degree

of flexibility and are consequently more likely to require a programmable platform.

The implementations we use are restricted to basic forms of the tasks to allow us to

isolate performance effects. Our results will help us understand how to extend the

applications to provide the additional flexibility they require.

Each implementation of the workload is hand-coded in MIPS assembly, which uses

simple RISC-like instructions. The parser

1. verifies the IP version number,

2. compare the packet length to the minimum allowed length,

3. checks for options encoded in the header,

4. maps the protocol to the appropriate action through a jump table, and

5. extracts the relevant data from the packet header to prepare for the 5-dimension

classification (the action dictated by the protocols in our packet stream).

The classifier matches packets to policy objects using a simplified trie modeled

on a trie constructed by the Hi Cuts algorithm [18]. Each internal node has eight

children. Each leaf node represents eight policy objects. The copies of the root of the

trie are stored locally at each processor; all other trie nodes are stored off-chip. Every

packet follows a path through the trie composed of the root, a single internal node,

and a leaf node. The purpose of using this simple and predictable trie is to show the

CHAPTER 3. METHODOLOGY 26

processing and memory access requirements for each trie node while eliminating the

variability of a deeper, more complex trie. This regularity allows us to isolate the

performance effects of optimizations we employ. For each internal node in the path,

the classifier

1. extracts the dimension type used to match a packet to a child node,

2. compares the dimension values of the packet and node, and

3. fetches the next node (on a match) or moves to information for the next child

node.

For the leaf node, the classifier

1. extracts the dimension type used to match a packet to an offset in a jump table,

2. compares the dimension values of the packet and node,

3. uses the jump table offset to branch to the appropriate action code (on a match)

or moves to information for the next offset, and

4. increments the appropriate statistics counters and fetches the matching policy,

from a database of approximately 40,000 rules stored entirely in off-chip DRAM,

to prepare for metering the packet.

The metering function performs part of the Quality of Service packet management.

It implements the single-rate, three-color algorithm outlined in RFC3697 [19], reading

from and writing to the policy object fetched by the classifier. To keep packet handling

execution uniform, the system is constrained to prevent policy object access conflicts.

No two packets will match to the same object at the same time. For each packet, the

meter function

1. checks the flow rate logged in the policy object,

2. marks the packet,

3. updates the local copy of the policy object, and

CHAPTER 3. METHODOLOGY 27

4. writes the policy object copy back to off-chip storage.

The execution of the metering task changes slightly according to the state of the

policy object, which causes the dynamic instruction count per packet to vary by up

to five instructions.

Performance analysis of general-purpose computer architecture is traditionally

done using a suite of benchmarks which are executed independently. The suite

is designed to cover a range of representative application behaviors, but no single

benchmark is necessary for realistic general-purpose architecture workloads. Although

benchmarks are commonly used for network processor architecture studies, as of 2005

no single set has been standardized.

Benchmarks have some limitations in network architecture experiments. Unlike

general computer architecture benchmarks, which tend to represent stand-alone ap-

plications, network processor benchmarks represent individual functions. In a real

system a single packet will have several functions executed on its behalf and as a result

the processor array will be executing a heterogeneous set of packet processing tasks,

passing data between them. The performance effects of individual benchmarks will

also vary according to their relative weights: this kind of execution behavior creates

relationships between benchmarks which are not revealed when they are executed in-

dividually. Packet processing systems are also more specialized than general-purpose

systems and include tasks, such as classification which are fundamental to most pro-

cessing tasks in a way that individual general computer architecture benchmarks are

not.

Establishing a truly representative application or benchmark suite is beyond the

scope of this work. Rather, we give up the breadth offered by a set of individual

benchmarks and instead focus on detailed analysis of multiple implementations of

our single, widely-used application made up of several dependent tasks shared by

many packet-processing applications. This application forms a part of the concrete

system we use as the platform for our experiments.

We also model the extremely simple applications whose execution consists of a

fixed number of instructions and remote memory requests. These applications per-

form no computation and do not modify any persistent data: their sole purpose is to

CHAPTER 3. METHODOLOGY 28

clearly demonstrate a specific performance behavior based on the number of instruc-

tions and references.

3.3 Other System Characteristics

Our ingress block workload has static flexibility by virtue of being encoded in soft-

ware. Our target system has dynamic flexibility and therefore could support signifi-

cant variation in the number and ordering of tasks in the application. However, the

application we execute for our experiments includes only minor execution variations

within individual packet processing tasks; each packet in our network traffic is pro-

cessed with the same tasks in the same order. We make this simplification in order

to clearly isolate and understand the performance effects of specific system charac-

teristics, and we use our performance models to predict the behavior of systems with

more variability.

Our DiffServ application is executed on network traffic that is unchannelized,

meaning that individual packets are accepted into the ingress block chip in series

rather than transferring several packets in parallel on separate channels. The net-

work traffic is composed of equal-length packets of forty bytes each. This packet

size represents the minimum size packet for our target system; since our application

performs the same amount of work per packet regardless of the packet size, mak-

ing each packet small forces the system to perform at the highest required rate. All

packets processed concurrently are guaranteed to be independent unless specified oth-

erwise, modeling the common case for our edge router supporting a large number of

independent packet flows.

3.4 Modeling Execution

Our event-driven simulator models the Smart Memories CMP by emulating multiple

processors, each with multiple hardware contexts.

We use a simple model of the pipeline, executing each instruction in a single cycle.

The cycles of pipeline stall inserted after each branch is set as simulator parameter:

CHAPTER 3. METHODOLOGY 29

in most cases we do not introduce branch-related pipeline stalls. Branch execution

can be managed to prevent some or all pipeline stalls in a number of ways, and for

the purposes of many of our evaluations we would like to isolate the performance

differences between application implementations from the effects of branch behavior.

When we analyze branch behavior we introduce a two-cycle pipeline stall after each

conditional branch. A single register load takes two cycles, managed by exposing a

load delay slot in the executable.

The processors on our CMP include multiple hardware contexts which store the

state of independent threads. Switching between contexts takes zero cycles and incurs

no performance penalty. The processor also supports virtualized hardware contexts,

which allow the processor to support more threads than it has hardware contexts.

The state of idle contexts can be buffered in local memory: the number of registers

required to hold the context state is set as a simulator parameter. Copying a virtual

context between local memory and a hardware context can occur while the processor

is executing instructions from some other thread stored in another hardware context.

The virtual context copy occurs one register at a time, negotiating for access to

a local memory port each time. Contexts are automatically stored to memory on a

remote memory access if the processor is assigned more virtual contexts than hardware

contexts. They are loaded back into hardware in round-robin fashion.

We can model the local memory ports in two ways. First, our system can execute

with unlimited local memory bandwidth in order to isolate the performance effects

of other resources: we collect the frequency of local memory requests. Second, we

can simulate our system with a fixed number of read/write memory ports, set as

a simulator parameter, to report the performance effects of limited local memory

bandwidth and potentially bursty memory requests. When the simulator models a

fixed number of read and write ports they are scheduled as follows:

1. The executing context is given the opportunity to schedule a block of between

one and eight contiguous cycles required by the next instruction. If the memory

port is busy, the instruction is not executed and another attempt is made on

the next cycle the context is scheduled to execute.

CHAPTER 3. METHODOLOGY 30

2. If more than one context may issue instructions during a cycle, the contexts

attempt to schedule the ports in a fixed order.

3. After the executing contexts have had the opportunity to schedule a local mem-

ory port, a context being copied out to local memory may request a single write

on the write port and a context being copied in may request a single read on

the read port.

The memory port scheduling algorithm ensures that an executing context will conflict

only with another executing context, not with a virtual context copy.

The local memory is software managed. Data is located either in the local memory

or in off-chip DRAM; in the latter case, the remote data objects are copied into and

out of local memory. We do not model read and write conflicts in local memory.

The remote memory latency, the time to complete a read or write access to off-chip

memory, is set as a simulator parameter and does not change due to memory or

network contention. Our system does not support data caches because the persistant

data used by our application has little locality and the cache miss rate would be quite

high: the processor would still need to manage long latencies, and our round-robin

scheduling would keep contexts waiting for access to the processor even after a cache

hit made the data immediately available. An on-chip data cache could help free off-

chip memory bandwidth, but that is outside scope of this dissertation. Instructions

are always stored in local memory, allowing us to isolate the performance effects

of other parameters. Instruction buffer management is an important topic for this

application domain, but it lies outside the scope of this work.

3.5 Performance Measurement

We measure throughput, packet latency and jitter, and processor utilization for each

of our experiments. All measurements are based on processing 24,000 packets. Packet

latency and jitter numbers are collected after the first 4096 packets have been pro-

cessed. Throughput is calculated from the number of elapsed cycles and the number

CHAPTER 3. METHODOLOGY 31

of packets graduated, based on a 1 GHz processor frequency. Packet latency is calcu-

lated as the elapsed cycles between the packet’s entrance in the initial work queue and

packet graduation; the median packet latency is reported. Packet jitter is calculated

as the difference between the shortest and longest packet latency values.

Packet throughput is the prime performance metric for packet-processing systems:

if the system cannot process packets at the same rate it receives them, it will have

to drop packets from the network traffic. We track packet latency and jitter because

they are important system metrics which are affected by many of the same parame-

ters which determine throughput. Evaluating system configurations or optimizations

requires that we measure their effects on all three metrics.

Chapter 4

Scheduling Multiple Processor

Cores

Network traffic with independent packets offers parallelism which can be exploited by

executing work on multiple processors.

An application can be scheduled across multiple processor cores to exploit

1. data parallelism, by placing a copy of the entire application on each processor

and distributing packets across the processors,

2. task parallelism, by placing a portion of the application on each processor and

requiring packets to transfer between processors before they are graduated, or

3. a combination of data and task parallelism.

A data parallel implementation may distribute incoming packets to an array of

processors, but it processes a single packet entirely on one processor. A packet-

processing application in our domain generally requires a relatively small amount

of computation which uses multiple remote data objects. A processor handling one

packet at a time may spend most of its cycles idle while it waits for remote data

accesses to complete: the processor may be used more efficiently by processing mul-

tiple packets concurrently, which can provide the processor with additional work to

perform. Each packet is assigned to an independent context: the processor performs

32

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 33

a context switch after a remote memory access and continues executing from another

context. Although a data parallel implementation can process multiple packets in

parallel, the tasks for each packet are executed in series.

A task parallel implementation uses an array of processors as a packet pipeline.

The application is divided into stages and each stage is executed on a separate pro-

cessor. All packets travel down the pipeline, transferring between processors, until

the processing is complete. A processor in the packet pipeline may handle multiple

packets concurrently as described above if the stage it executes includes an embedded

remote memory reference. If there is no remote memory reference or it occurs at the

end of the stage, the processor can execute the stage completely for one packet before

beginning the next.

Partitioning an application to exploit task parallelism can offer one or more advan-

tages for processing packets, depending on how the application has been partitioned.

Those benefits may include:

• preventing contexts from becoming a performance bottleneck by executing from

a single context on each processor,

• speeding up execution of some pipeline stages,

• reducing packet latency, and

• reducing demand on local instruction buffers

The processor’s ability to switch between packets and prevent idle cycles will be

limited by the number of contexts it can support. A pipeline stage which has a remote

memory access only at the end of the stage allows the processor to handle each packet

without waiting for data. The packet is transferred to another processor immediately

after making the remote memory request, and the next processor does not begin

handling the packet until the memory access has completed. Since the pipeline stage

is not interrupted by long memory latencies, the processor can execute the stage

completely for each packet before starting the next packet, all from a single context.

It can continue executing as long as it has work, i.e. a packet with a local copy of

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 34

the data object(s) it needs for the stage. Every processor in the packet pipeline can

execute from a single context if every stage includes remote memory requests only at

the end: the application uses the remote memory accesses as the boundaries of the

partitions.

Partitioning the application across multiple processors also offers the ability to

use heterogeneous processor configurations. The configuration of each processor can

be optimized for characteristics of its stage and some stages can be executed faster

than with a default configuration. The partition boundaries must be set according to

the application characteristics.

If an application has independent tasks, those tasks can be assigned to separate

stages and executed in parallel for the same packet. Dependent tasks for the same

packet must be executed in series. Executing multiple stages in parallel for a single

packet will reduce the packet’s latency but it will not increase total packet throughput:

the total number of processor cycles required to handle the packet remains the same.

A data parallel implementation, which handles a packet entirely on a single pro-

cessor, requires that the entire application executable be stored or cached in every

processor’s local instruction buffer. Task parallel implementations assign separate

executables to each processor, implementing only a portion of the application. The

demand on the local instruction buffer is less than the full application: this may reduce

instruction fetch latencies and instruction transfers for processors using instruction

caches, or allow larger applications for processors not using instruction caches.

Partitioning an application across several processors introduces two sources of

overhead to packet handling. Transferring the packet and associated state between

processors adds communication overhead: when an application is partitioned, all the

live state must be transferred across the partition boundary between processors. A

packet processing task typically has three kinds of live data: the packet information,

one or more persistent meta-data objects, and any additional state, such as calculated

values, required to continue executing. An application can be partitioned to minimize

the additional communication overhead by dividing the application where the least

amount of state must be communicated. Generally, a partition boundary just after a

remote memory access reduces the live state to just the packet information, assuming

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 35

the remote data object can be requested by one processor on behalf of another. The

upper bound on context state includes the packet information, the meta-data, and

all the register state.

Partitioning an application can also create processor load imbalance. When parti-

tions are not equally weighted, the processors executing any but the largest partition

will stall, either because their input queue is empty or their output queue is full.

When individual processors stall the total throughput performance declines.

The amount of each kind of overhead added to the application is determined by the

position of the partition boundaries. They may be set at locations in the application

with little live data, to minimize the communication overhead, or to create partitions

of equal weight and eliminate load imbalance. In most cases the partition boundaries

cannot be set to minimize both sources of overhead simultaneously. If an application

is partitioned to achieve a benefit listed above, it may not minimize either source of

overhead.

In this chapter we will report the results of executing several implementations of

our application which represent the comprehensive set of options for mapping our

application onto an array of processors. We compare their throughput results and

show that the benefits offered by exploiting task parallelism are linked to overhead

which can significantly degrade packet throughput. Data parallel implementations

avoid the overhead and use processor resources very efficiently, maximizing the packet

throughput: however, they require multi-threaded execution to achieve their potential

throughput. We propose reducing the performance bottleneck for multi-threaded

execution by virtualizing the hardware contexts and model the processor utilization

and contention for a varying number of virtual contexts executing our data parallel

implementation. Lastly, we use our performance models to predict the performance of

a packet processing application with significant runtime variation between packets in

order to evaluate the performance for an application with greater dynamic flexibility.

In the next section we review the experimental apparatus we use for this study. We

report on the results of our experiments in Section 4.2 and discuss further conclusions

in Section 4.4.

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 36

4.1 Methodology

In our experiments we execute five implementations of our application:

• Data Parallel,

• MemRef,

• LoadBal Min,

• LoadBal Max, and

• CPU Config.

In the Data Parallel implementation a packet is handled by a single processor,

which executes the entire application on its behalf. Each processor maintains four

independent contexts which are stored in hardware. Instructions are executed from

one context until it incurs a remote memory access and waits for data. The executing

context is then suspended and another context resumes running. When all contexts

are waiting for data the processor stalls.

The remaining four implementations exploit task parallelism by partitioning the

application into stages, each mapped to a separate processor. The Smart Memories

model used for these experiments offers simple software-managed queues for commu-

nication between pipeline stages; the queues are configured to connect two individual

tiles and the queue elements are stored in the local memory of the receiving tile.

Queue operations are performed with a single instruction.

The MemRef implementation partitions the application at remote memory ac-

cesses. Each of four processors executes a portion of the application; on a remote

request a packet is transferred to the input queue of the next processor to await the

data. Each processor executes a from a single context. The first stage includes pars-

ing the packet and processing the root trie node using a permanent local copy. It

fetches the matching child node, located off-chip, on behalf of the processor executing

the second stage. Stage 2 processes the internal trie node and fetches the remote

leaf node for stage 3, which processes it and fetches the policy object for stage 4.

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 37

Stage 4 performs the metering function and graduates the packet. As packets are

transferred at the boundaries between processing tasks, no register state is live and

only the packet meta-data object is copied between processors while the remote data

object is fetched into the local memory of the target processor. Since the source and

latency of the packet meta-data and remote data object are not the same, the objects

are pushed onto two independent queues. This implementation avoids the hardware

context performance bottleneck, since each processor uses only one context.

LoadBal Min implements the application partitioned over four processors. This

implementation minimizes communication and processor imbalance simultaneously to

establish the lower bound on total overhead. Each partition executes the same number

of instructions to balance the application across the processors and eliminate load

imbalance overhead. LoadBal Min also includes only a minimum of communication

overhead; no register state is considered live, so only the packet meta-data and the

task’s current meta-data object (e.g. a trie node) are transferred to the next processor.

The two data structures are stored together in local memory, and when a packet is

transferred to another processor, they are treated as a single data object and pushed

together onto the same receiving queue; moving the two data objects together reduces

the communication overhead even below that of MemRef. Since some LoadBal Min

partitions continue to process a packet after it incurs a remote memory access, those

partitions are executed on processors which use four independent contexts to keep

the processor supplied with work.

LoadBal Min is constructed to represent the lower bound on both sources of over-

head: communication and processor load imbalance. This combination of lower

bounds is not possible for our application because it has live register state which

must be transferred between the balanced pipeline stages, which adds to the commu-

nication overhead. For this reason we have implemented LoadBal Min as an artificial

implementation, which mimics the execution of our application by fetching packets

and executing the correct number of instructions and remote memory references, but

does not perform calculations or change any permanent state. Executing this artifi-

cial implementation allows us to gather throughput performance results and compare

them directly against our other implementations.

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 38

The LoadBal Max implementation represent the upper bound on communication

overhead and the lower bound on processor load imbalance. As with LoadBal Min,

each of its four partitions executes the same number of instructions and transfers

the packet meta-data and task data object between partitions. Unlike LoadBal Min,

however, LoadBal Max also considers all registers as live and includes additional

instructions to copy the data between processors; this represents the upper bound on

communication overhead combined with the lower bound on load imbalance. Similar

to LoadBal Min, LoadBal Max is an artificial implementation designed to generate

throughput performance results: it fetches packets and executes the correct number

of instructions (including the register reads and writes to transfer “live” state) and

remote memory references.

The CPU Config implementation is an example of a task parallel implemen-

tation which partitions the application for execution on heterogeneous processors.

CPU Config uses two processor configurations. The default integer programming

configuration, used by our other implementations, executes one MIPS instruction per

cycle. It supports conditional branches and accesses to data stored remotely. The sec-

ond, the stream programming configuration, uses microcoded instructions to schedule

functional units in parallel but supports only loop-based conditional branches and ac-

cesses to local data. By microcoding a partition, the work encoded in several MIPS

instructions can be expressed in a single microcoded instruction: those partitions

executed using the stream programming model take fewer processor cycles to process

a packet. Configuring the processors heterogeneously allows some computation to be

compressed into fewer processor cycles using the stream programming model while

other parts of the application, which cannot be expressed in the stream programming

model, are executed using the integer programming model configuration. However,

any performance improvement must overcome the overhead incurred by partitioning

the application; individual partitions may execute much more efficiently, but the over-

all benefit can be limited by non-optimized partitions and can be easily overwhelmed

by communication and processor load imbalance. As with the technique used in Mem-

Ref, this technique is relatively inflexible; partition boundaries are set according to

the execution behavior of the code and the limitations of the stream programming

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 39

model, and the number of partitions (and therefore processors) is fixed. The first

stage, implemented using the integer programming model, parses the packet. The

second, third and fourth stages process the trie nodes using the streaming program-

ming model. Stage 5, the second integer partition, executes the classification action

and stage 6 performs the metering function. Each streaming partition executes on the

processing elements of an entire tile, or both processor cores combined, and processes

two packets together. Each integer partition executes on a single processor and pro-

cesses a single packet at a time. To supply the stream partitions with enough packets,

two copies of each integer partition execute in parallel. Since each remote data access

occurs at a partition boundary, the CPU Config implementation, like MemRef, uses

queues rather than multiple contexts to mask memory latency. Because our simula-

tor does not currently support microcoded instructions, CPU Config is an artificial

implementation like LoadBal Min and LoadBal Max. Each pipeline stage executes a

fixed number of instructions per packet: the number of instructions for the stream

partitions was calculated using the Imagine [11] auto-scheduler adapted for the Smart

Memories processor.

4.2 Experimental Results

Maximum Throughput When each of the implementations is executed at its

maximum throughput the Data Parallel performance exceeds that of all task-parallel

implementations. Figure 4.1 shows the maximum throughput of each implemen-

tation divided by the number of processors required to execute it. Data Parallel,

Figure 4.1: Maximum Throughput

0

2

4

6

G
ig

ab
its

 p
er

 se
co

nd

Data_Parallel
MemRef
LoadBal_Min
LoadBal_Max
CPU_Config

0

2

4

6

G
ig

ab
its

 p
er

 se
co

nd

Implementations

Figure 4.2: Normalized Throughput

0 100 200 300 400 500

Memory Latency Cycles

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Data_Parallel
MemRef
LoadBal_Min
LoadBal_Max
CPU_Config

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 40

LoadBal Min, and LoadBal Max execute four independent contexts, maintained in

hardware contexts, per processor while MemRef and CPU Config each execute a sin-

gle context per processor. Data Parallel executes with 5.0 Gb

s. LoadBal Min, with a balanced processor load and the communication lower bound,

supports 4.7 Gb

s while LoadBal Max, which represents the upper bound on communication, can sup-

port only 2.75 Gb

s. MemRef, which uses minimal communication, has significant throughput penalty

due to processor load imbalance and supports only 3.5 Gb

s. The CPU Config implementation, which speeds up some of its partitions using

the stream programming model, reduces the instructions per packet significantly but

cannot overcome the overheads imposed by partitioning the application among six

tiles: its maximum throughput is 4.85 Gb

s, more than LoadBal Min but still slightly less than Data Parallel.

Throughput Over Varying Memory Latency Values When each of our imple-

mentations is executed with varying remote memory latencies, however, throughput

drops off for all implementations using multiple contexts per processor. Figure 4.2

shows the throughput of all five implementations for varying remote memory laten-

cies. The x-axis shows memory latency values varying from 20 to 500 cycles, while

Figure 4.3: Throughput with Four Hard-
ware Contexts

0 100 200 300 400 500

Memory Latency Cycles

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Without Virtual Contexts
With Virtual Contexts

Figure 4.4: Virtual Contexts for Maxi-
mum Throughput

0 100 200 300 400 500

Memory Latency Cycles

0

5

10

15

Vi
rtu

al
Co

nt
ex

ts

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 41

the y-axis shows the throughput values normalized to the Data Parallel version ex-

ecuted at its maximum throughput. Each of the implementations using contexts

to mask memory latency, Data Parallel, LoadBal Min, and LoadBal Max, execute

four independent contexts, maintained in hardware contexts, per processor. The two

queue-based implementations, MemRef and CPU Config, maintain their throughput

across all memory latency values while the context-based implementations slow down

as the contexts cannot mask all the memory latency and the processor begins to

stall. The rate of change, however, varies among the context-based implementations.

Data Parallel throughput declines from 100% to 58% of the maximum and Load-

Bal Max slows from 55% to 23%. LoadBal Min throughput slows from 94% to 24%,

the steepest drop of the three. Each of these implementations each execute multiple

blocks of instructions which are terminated by a remote memory access that forces

the context to pause; LoadBal Min subdivides some of its blocks to balance the work

across processors. As a result, some processors execute shorter blocks than those ex-

ecuted for Data Parallel. Short blocks provide less work for the processor to perform

between remote memory accesses, and as memory latency increases, LoadBal Min

processors quickly begin to stall. Although LoadBal Max also subdivides its blocks,

the blocks include the extra communication instructions and so provide the processor

with more work.

Performance Effects of Virtual Contexts As Figure 4.2 showed, implementa-

tions which depend on multiple independent contexts to mask remote memory ac-

cesses can suffer slowdowns if there are not enough individual contexts to keep the

processor busy. In our configurations above each context was permanently stored

in a hardware context, making the hardware context a significant resource bottle-

neck. However, we can virtualize the hardware contexts by assigning more contexts

to the processor than hardware contexts and allowing context state to be stored to

and retrieved from local memory. Employing virtual contexts to support independent

contexts is very similar to the use of queues in the task-parallel MemRef implemen-

tation. In each case the packet meta-data and a minimal amount of state is stored

into a local memory buffer after executing a remote memory reference. When the

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 42

reference completes, the packet meta-data and the associated state is eligible to be

transferred back into a hardware context. There are two differences between the tech-

niques: first, in MemRef the packet and state are transferred from one processor to

the local memory buffer of another processor, where virtual contexts move between

the processor and its own local memory. Second, a processor in MemRef executes the

same code block for each packet it pops from its input queue. A processor executing

the Data Parallel application will include the address of the next instruction as part

of the context state and use it to begin executing when the packet is restored to a

context. Figure 4.4 shows the number of virtual contexts required to maintain max-

imum throughput for the Data Parallel implementation. Remote memory latency

values from 20 to 500 cycles are laid out on the x-axis and the total number of virtual

contexts are shown on the y-axis. The virtual contexts required by Data Parallel in-

creases in a linear, if step-wise fashion, from two to twelve as memory latency grows

to 500 cycles.

While virtual contexts can improve packet throughput, they also have secondary

effects. Specifically, the additional concurrent contexts can conflict for processor

resources and increase packet latency and jitter, while copying contexts into and

out of local memory increases the local memory port accesses. We will report on

performance metrics for the Data Parallel implementations using a varying number

of virtual contexts with 160-cycle remote memory latency: the remote latency value

is a reasonable value for our system at this time, but it is not intended to be entirely

representational: rather, we hold the parameter fixed to explore the effects of varying

the number of virtual contexts.

We can model several performance metrics using characteristics of the executable.

The work performed by a processor to handle a single packet can be viewed as a series

of instruction blocks, each terminated by a remote memory reference. When a context

stalls after making a remote memory reference the processor will execute instructions

from the instruction block of another context, or stall if no other contexts are ready

to execute. Taking the execution of a single packet as a frame of reference, we can

predict the number of processor stall cycles as well as packet latency, packet jitter,

and the local memory access frequency based on the number of virtual contexts. We

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 43

can also predict the number of processor stall cycles introduced using a fixed number

of hardware contexts. We observe that in our system each packet will be processed

using the same instruction blocks performed in the same order, each block has very

little execution variation, and the virtual contexts are scheduled in strict round-robin

fashion. As a result the individual instruction blocks are executed in order; first each

context executes block 0, then each context executes block 1, etc. Our models predict

the simulated performance of our system to within 5%.

S =
n

∑

i=0

M − (bi ∗ (V − 1)) : M > ((bi ∗ (V − 1))

0 : M <= ((bi ∗ (V − 1))
(4.1)

The amount of processor stall is governed by three factors: the total number

of virtual contexts and the size of the individual instruction blocks, which together

represent the work available to the processor, and the remote memory latency: the

model given in equation 4.1 articulates the relationship between the parameters. S

represents the number of cycles the processor stalls during the processing of a single

packet, M is the remote memory latency, V is the number of virtual contexts on the

processor and bi is the number of instructions in the ith instruction block. When

a virtual context incurs a remote memory access after executing instruction block

i the processor will stall when the remote memory latency M is longer than the

work available to the processor, that is the execution of instruction block i by all

the remaining virtual contexts. The number of virtual contexts required to eliminate

processor stall is determined by the shortest instruction block.

Two applications with the same number of total instructions and remote memory

references executed on the same number of virtual contexts can have very different

performance. Table 4.2 gives an example of two such applications: we have modelled

the execution of each application on a single processor with remote memory latency

set to 160 cycles, using a varying number virtual contexts. The processor stall model

results are compared against simulated execution in Figure 4.6 and Figure 4.7. Equal

requires only four virtual contexts to execute with less than 5% processor stall where

Unequal, whose shortest instruction blocks are much smaller than the Equal block

sizes, requires nine for the same performance. Although the smallest block determines

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 44

the maximum virtual contexts required, all the blocks contribute to the shape of the

performance curve.

Our DiffServ application is profiled in Table 4.2. DiffServ has three instruction

blocks of varying sizes, executing a total of 240 instructions. Figure 4.8 shows the

processor stall for DiffServ executed with the remote memory latency set at 160

cycles, using a varying number of virtual contexts. Although DiffServ will require five

virtual contexts to eliminate processor stall, fewer virtual contexts may not increase

the processor stall significantly. At four virtual contexts the processor stall is 2.1%

and at three virtual contexts it is 8.1%. With only two virtual contexts there is a

sharper stall increase to 30.5%.

We have performed the analysis for this study using a system with very little

variation, which allows us to clearly identify the performance factors and express

them as equations. We further isolated the effects of instruction block size using

abstract applications and demonstrated that while short instruction blocks require

more concurrent virtual contexts, large size differences between instruction blocks

increase resource conflicts and packet latency.

Although lack of execution variation helps us to identify and understand the per-

formance of our system characteristics, we need to look ahead to see how our conclu-

sions here will apply to a more dynamically variable system. Using data parallel ap-

plication implementations simplifies the support for execution variation by leveraging

the strength of programmable hardware. Multiple execution paths can be provided

to packets just by using branches in the code, and each processor can continue to

perform useful work on independent packets and maintain its efficiency. Applications

which exhibit runtime variations could vary the number of instructions executed be-

tween remote memory references, or execute a varying number of instruction blocks

per packet. For the purposes of performance modeling we can define the application

Application Block 0 Block 1 Block 2 Block 3 Total Instructions Variation

Equal 50 50 50 50 200 0
Unequal 10 10 50 130 200 0

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 45

as a series of block slots, each slot acting as a placeholder for the range of instruc-

tion block sizes which can execute in that position. An application will have n slots

where n is the maximum number of blocks which can be executed for any packet, and

each slot has a frequency associated with it denoting what percentage of packets use

it. The blocks associated with a block slot may represent different execution paths

through the same task code, or distinct tasks. Table 4.2 profiles three applications.

The first, Static, is a completely static application with four block slots, each with a

single possible instruction block size. Every packet uses all four slots, which means

that every packet will have the the blocks A, B, C and D executed. The VariableBlock

application has the same number of block slost for every packet but the instruction

block size in each slot can vary: a packet can have blocks A, D, G, and J executed,

or one of 63 other block combinations. The third application VariableSlot has four

block slots which are executed for every packet, one slot which is executed for 15%

of the packets, and one slot which is executed for 5% of all packets. A packet may

have instruction blocks A,B,C, and D executed, or A,B,C,D, and E, A,B,C,D, and F,

or A,B,C,D,E, and F.

We can model the execution of the variable applications by changing the term

representing the work available to the processor. In the case of VariableBlock the bi

term will represent the average of the possible block sizes assigned to slot i, weighted

by their execution frequency. The average block size for each slot in VariableBlock is

the same as the block size for the same slot in the Static application, allowing us to

directly compare their performance. For VariableSlot the packets will have a varying

number of instruction block slots executed, which introduced two changes to our

model. First, the concurrent packets may not be executing the same instruction slot:

the instruction block sizes will reflect the average of all possible instruction blocks,

weighted by the execution frequency of the block within the slot and the execution

frequency of the slot itself. Second, as the processor stall calculation is based on the

processing of a single reference packet, the stall contributions from each of the slots

executed for the reference packet are weighted by the slot execution frequency. Our

revised equation 4.2 introduces Fi, the execution frequently of slot i, and it uses the

value ba, the weighted average block size, in place of the size of a specific block.

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 46

S =
n

∑

i=0

(M − (ba ∗ (V − 1))) ∗ Fi : M > ((ba ∗ (V − 1))

0 : M <= ((ba ∗ (V − 1))
(4.2)

The Static and VariableBlock applications will have very similar processor stall

using a fixed number of virtual contexts, while VariableSlot will have much less stall.

Figure 4.9 shows the modelled processor stall for each of the three applications, ex-

ecuted with remote memory latency set to 160 cycles, across a varying number of

virtual contexts. The VariableBlock application has exactly the same stall as Static:

in both cases the processor will have, on average, the same amount of work available

to it. The VariableSlot has much less processor stall for a fixed number of virtual

contexts and requires only six contexts to eliminate stall compared to seventeen re-

quired by Static and VariableBlock. In VariableSlot long instruction blocks can be

scheduled concurrently with short ones, smoothing out the variations in the available

work.

The accuracy of modelling processor stall using weighted average block sizes will

be limited by asymetric nature of the performance metric. The VariableBlock ap-

plication whose four concurrent contexts are each executing a block from slot 0 will

execute an average of ten instructions each: for example, two contexts may execute

ten instructions, one may execute five instructions and the last may execute fifteen

instructions. There will be some instances where all four contexts execute only five

instructions each, and statistically those instances will be offset by cases where each

context will execute fifteen instructions each, so that the average block size remains

ten instructions. However, the processor will accrue stall cycles in the first case which

are not offset by the second case, a variation which our model will not account for. As

a result, the maximum number of virtual contexts required, as reported by the model,

are not guaranteed completely eliminate processor stall. To make that guarantee the

variable implementation must be modelled with the assumption that the contexts will

execute the shortest block sizes concurrently, as in the static model.

Using virtual contexts decouples the number of concurrent contexts from the num-

ber of hardware contexts required to support the maximum packet throughput. We

can create a formula to predict the stall based on the number of hardware contexts

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 47

Figure 4.5: Stall Percentages: Virtual Contexts

Figure 4.6: Equal

0 2 4 6

Virtual Contexts

0
20
40
60
80

100

Pe
rc

en
t

Figure 4.7: Unequal

0 5 10 15

Virtual Contexts

0
20
40
60
80

100

Pe
rc

en
t

Application Block 0 Block 1 Block 2 Total Instructions Variation

DiffServ 46 82 132 240 6

Figure 4.8: Stall: Virtual Contexts

0 2 4 6

Virtual Contexts

0

20

40

60

80

100

Pr
oc

es
so

r
St

al
l

Model
Simulation

Figure 4.9: Modelled Dynamic Stall: Virtual
Contexts

0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Static
VariableBlock
VariableSlot

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 48

used, assuming the execution is performed with enough virtual contexts to support

zero stall cycles. Each hardware context will cycle between two states:

1. live: holding a virtual context which is ready to execute an instruction, and

2. copying: holding a virtual context which is being copied into or out of local

memory.

With one hardware context, the processor will stall whenever the hardware context

begins copying because there is no other hardware context to execute instructions. If

the processor uses i hardware contexts, it can begin executing from HC1 as soon as

HC0 begins copying, etc. until HCi − 1 begins copying. If at that point HC0 is not

done copying, the processor stalls.

S =
n

∑

i=0

T − (bi ∗ (H − 1)) : T > ((bi ∗ (H − 1))

0 : T <= ((bi ∗ (H − 1))
(4.3)

In equation 4.3 S is the number of cycles the processor stalls, T is the time spent

copying a virtual context to and from local memory, H is the number of hardware

contexts used and bi is the number of instructions in the ith instruction block. A

system with more dynamic variation would require changes similar to those discussed

for equation 4.1.

Figure 4.10 shows the processor stall for a varying number of hardware contexts;

DiffServ needs only two hardware contexts to keep the processor from stalling.

The packet latency will include the cycles required to execute each of the instruc-

tions blocks, the memory latency cycles, and the cycles spent waiting for access to

the processor. Packet latency is therefore also a function of the number of virtual

contexts executing on the processor, which can conflict with each other for processor

access.

L =
n

∑

i=0

bi + n ∗ M +
n

∑

i=0

(bi ∗ (V − 1) − M) : M < (bi ∗ (V − 1))

0 : M >= (bi ∗ (V − 1))
(4.4)

In equation 4.4 L is the number of cycles of packet latency, M is the remote

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 49

memory latency, V is the number of virtual contexts on the processor and bi is the

number of instructions in the ith instruction block. The packet latency is divided

into two parts; the first part includes the instructions executed and memory latency

cycles incurred on behalf of the packet, and the second part calculates the number of

cycles the packet is blocked by other packets. A packet will be blocked if the remote

memory latency is less than the other work available to the processor, which is the

execution of instruction block i by all the remaining virtual contexts.

The percentage of processor stall cycles is calculated as S / L.

Large block size deltas will generate contention as the small block sizes increase

the number of virtual contexts required and the large block sizes add to contention.

Figures 4.12 and 4.13 compare the model predictions and simulation results for the

packet latency when executing our Equal and Unequal applications with varying the

number of virtual contexts. Unequal extends the packet latency by more than a factor

of four before the processor stall is eliminated because the virtual contexts must wait

for the executions of the longer instruction blocks to complete. As virtual contexts

are added, packet latency will not begin to grow until at some point the processor has

more work to do than it can finish within the remote memory latency: this will occur

for the largest instruction block first. For Equal that point does not occur until it is

executing five virtual contexts; Unequal begins to lengthen packet latency beginning

with three virtual contexts. Additional contexts will generate contention from smaller

and smaller blocks until only the smallest block is not generating contention. At that

point packet latency grows linearly with additional context due to the round-robin

context scheduling.

A system with more dynamic variation would require changes similar to those

discussed for equation 4.1. For applications with a varying number of block slots the

packet latency using a fixed number of virtual contexts should be diminished by the

mix of small and large concurrent execution blocks: the smaller number of virtual

contexts required to keep the processor busy should result in lower packet latency for

corresponding processor stall.

Based on the results for Unequal above, we can predict that the long instruction

block in DiffServ will cause the virtual contexts to conflict and extend the packet

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 50

latency. Figure 4.14 shows that the packet latency is almost doubled when the appli-

cation is executed on six virtual contexts.

Packet jitter, the variations in packet latency, is not related to the instruction

block sizes, merely the sum of their variations. Jitter increases linearly with the

number of virtual contexts. In the equation 4.5 JT is the number of cycles of packet

jitter, JE is the variation in the number of instructions executed for each packet, and

V is the number of virtual contexts on the processor. A system with more dynamic

execution variation would have that variation represented in the JE term; other terms

could be added for other system variables such as the remote memory latency.

JT = JE ∗ V (4.5)

Figure 4.15 compares the model and simulation packet jitter measurements for our

DiffServ application. When application instruction blocks have a variable number of

executed instructions packets will have jitter even when only one virtual context is

executing. Additional virtual contexts amplify packet jitter by adding the execution

jitter from other packets to the time a packet spends ready to run.

Using virtual contexts increases the memory port traffic in two ways; first, it raises

the frequency of read and write instructions executed, and second, virtual contexts

are copied into and out of local memory. Equations 4.6 and 4.7 give formulas for

calculating read and write memory port access frequencies. R and W are the number

of register read and write instructions executed per packet, C is the number of context

copies performed per packet, MR is the number of reads performed to copy a context

from local memory, MW is the number of writes performed to copy a context to local

memory, V is the number of virtual contexts and L is the total packet latency.

PR = ((R + (C ∗ MR)) ∗ V)/L (4.6)

PW = ((W + (C ∗ MW)) ∗ V)/L (4.7)

The number of memory port accesses increase with the additional virtual contexts

until there are more virtual contexts than hardware contexts assigned to the processor:

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 51

Figure 4.10: Stall: Hardware Contexts

0 1 2 3

Hardware Contexts

0

10

20

30

40

50

Pr
oc

es
so

r
St

al
l

Model
Simulation

Figure 4.11: Packet Latency: Virtual Contexts

Figure 4.12: Equal

0 2 4 6

Virtual Contexts

0

500

1000

1500

P
ro

ce
ss

or
 S

ta
ll

Model
Simulation

Figure 4.13: Unequal 2

0 5 10 15

Virtual Contexts

0

1000

2000

3000

4000

5000

P
ro

ce
ss

or
 S

ta
ll

Model
Simulation

Figure 4.14: Packet Latency: Virtual Contexts

0 2 4 6

Virtual Contexts

0

500

1000

1500

Pr
oc

es
so

r
St

al
l

Model
Simulation

Figure 4.15: Packet Jitter: Virtual Contexts

0 2 4 6

Virtual Contexts

0

20

40

60

80

100

Ji
tt

er
 C

yc
le

s

Model
Simulation

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 52

then the access frequencies jump as the context copies add to the memory port traffic

and continue to increase until the maximum throughput is reached. Figures 4.16 and

4.17 compare the model and simulation results for DiffServ execution, reporting the

local read and write port access frequencies for varying numbers of virtual contexts.

These results were generated using two hardware contexts, the number needed to

prevent processor stall for this application. A more dynamic system could be modeled

by adjusting R, W and C to reflect median values.

4.3 Performance and Packet Independence

In this work we assume packet independence for our system based on the common

case high-bandwidth network traffic for a edge large router. Since task parallel im-

plementations have occasionally been assumed to have better performance when pro-

cessing dependent packets it is worth comparing the performance of data vs. task

parallel implementations when packets are not independent. Because task parallel

implementations naturally serialize the packet processing for each stage of the packet

pipeline, it can continue to process dependent packets in parallel. The data parallel

implementation could try to execute all n concurrent packets in the same stage on n

processors; if the packets are related, it will be able to execute only one packet at a

time. However, data parallel implementations do not have to have each processor core

execute in lock step. The synchronization mechanism of the shared data structure

will naturally stagger the packet processing across the processors: where the task par-

allel version would serialize the execution of the dependent stage on single processor,

the data parallel version would serialize the execution of the dependent stage across

all processors. The data parallel version and the task parallel version may both get

the same performance in the face of dependent packet traffic. Figure 4.18 shows the

throughput for our Data Parallel and MemRef implementations processing network

traffic composed of related packets: each packet requires read/write access to the

same data object. The throughput for the two implementations is almost exactly the

same. The advantage the task parallel version may have, which our results do not

reflect, is data locality. Given data caching, executing a stage on a single processor

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 53

would avoid copying the data structure between processors. Our implementations do

not use data caching.

4.4 Conclusions

The results we report in this chapter demonstrate that a single decision, setting

partitions to map an application to an array of processor cores, determines three

outcomes: what advantages can be gained by the specific mapping, the processor

load balance, and the communication overhead. Because the three rest on the same

decision it is not possible to optimize for them all. The net result is that partitioning

an application to gain significant benefit will probably incur significant overhead:

conversely, attempting to manage overhead is likely to eliminate potential advantages.

We conclude from this that in most cases applications should not be partitioned: each

packet should be handled entirely on a single processor, using the processor array to

exploit the data parallelism available in independent packets.

Using a data parallel implementation simplifies the packet handling execution but

complicates the management of any resources external to the tiles. For example, pro-

cessors executing a data parallel implementation can make simultaneous requests to

an external memory port where a task parallel implementation could serialize all re-

quests to that port, assuming data were partitioned among off-chip memory systems.

Data parallel implementations will also require incoming packets to be distributed

to all processors where the task parallel version may transfer them all to a single

processor. If any temporal data locality is available, data parallel implementations

cannot take full advantage of it where task parallel implementations may reduce some

data copies and memory latencies. Similarly, a limited instruction buffer could in-

troduce more instruction fetch latencies to a data parallel implementation than to a

task parallel implementation.

Because our system offers software managed communication between processors,

the communication required by our task parallel implementations placed additional

pressure on the instruction fetch bandwidth. Although we could provide hardware

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 54

support for inter-processor communication similar to the support we provide for mov-

ing data between the processor and local memory for context copies, the data transfer

would be more complicated than the context switch, which is predicated on saving a

small, fixed amount of state. Unless the inter-processor communication was similarly

fixed, the hardware support must either manage a variable number of live registers

or consistently transfer the data from all potentially live registers. In both cases the

on-chip network traffic could increase significantly.

Although our experiments used statically generated task parallel implementations,

we can apply our findings to dynamically partitioned and mapped applications. Dy-

namic partitioning can be used for applications without runtime variations, in which

case the partitioning would be determined at runtime but remain stable. Apart from

the initial partitioning overhead, the performance would be the same as a static parti-

tioning of the same application: the dynamic partioning support merely serves as an

automation tool. Dynamic partitioning can also be used to adapt the partition bound-

aries to variable execution: in this case the cumulative performance is the weighted

sum of the performance of each individual implementation: the relationship between

the setting the partitions and the associated benefits and costs remains the same.

One difference between the static and dynamic mapping is in achieving a balanced

processor load: while the statically mapped application must be dividing into equal

partitions to achieve a balanced load, the dynamically mapped application can be

partitioned at will and the partitions for each packet assigned to idle processors. If

the partitions are restricted to certain processors (to manage the instruction buffers,

for example) the performance will be similar to a statically partitioned application.

If the partitions can be executed on any processor, most benefits of partitioning dis-

appear and the execution begins to resemble a data parallel implementation with the

additional runtime mapping overhead. The benefit which does not disappear with

unrestricted partition mapping is reduced packet latency from exploiting intra-packet

parallelism.

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 55

Application Block Slot Block Size Execution Frequency

0 A 10 1.0
1 B 10 1.0

Static
2 C 50 1.0
3 D 130 1.0

A 5 0.25
0 B 10 0.50

C 15 0.25
D 5 0.25

1 E 10 0.50
F 15 0.25

VariableBlock
G 40 0.25

2 H 50 0.50
I 60 0.25
J 100 0.25

3 K 130 0.50
L 160 0.25

0 A 10 1.0
1 B 10 1.0
2 C 50 1.0

VariableSlot
3 D 130 1.0
4 E 90 0.15
5 F 150 0.05

Figure 4.16: Read Port Accesses: Virtual Con-
texts

0 2 4 6

Virtual Contexts

0

20

40

60

R
ea

d
A

cc
es

s F
re

qu
en

cy

Model
Simulation

Figure 4.17: Write Port Accesses: Virtual Con-
texts

0 2 4 6

Virtual Contexts

0

20

40

60

W
ri

te
 A

cc
es

s F
re

qu
en

cy

Model
Simulation

CHAPTER 4. SCHEDULING MULTIPLE PROCESSOR CORES 56

Figure 4.18: Throughput for Dependent Packets

0

2

4

6

8

G
ig

ab
its

 p
er

 se
co

nd

Data_Parallel
Task_Parallel

0

2

4

6

8

G
ig

ab
its

 p
er

 se
co

nd

Chapter 5

Reducing the Instruction Fetch

Bottleneck

In the previous chapter we showed some performance advantages and limitations of

mapping all of the packet processing work for a single packet onto the same processor

to exploit data parallelism. When the processor stall has been minimized, the instruc-

tion fetch bandwidth is being used efficiently: further throughput improvements will

require either using more efficient instructions or increasing the available instruction

fetch bandwidth. In this chapter we explore creating some simple extensions to the

MIPS instruction set architecture which can compress tasks into fewer instructions.

We then compare two techniques for doubling the instruction fetch bandwidth using

alternate configurations for our Smart Memories processor cores and examine how all

these optimizations change the resource requirements and performance effects in the

context of a data parallel implementation using virtual contexts. Lastly, we report on

the branch behavior of our optimized executable and review a fine-grained scheduling

algorithm for keeping the pipeline full.

5.1 Compressing the Executable

Our packet-processing application is composed of several short tasks which share the

same basic structure:

57

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 58

1. Read in a data object.

2. Perform computation using most or all fields of the data object.

3. Update the packet meta-data and/or data object.

Our target edge router manages very large data structures stored in off-chip mem-

ory and the data object layouts are compressed to minimize object size in order to

reduce the demands on the memory bandwidth and the data footprint. This basic

packet processing execution profile gives us the opportunity to improve throughput

by making the data struction handling more efficient: we do this by extending the

instruction set architecture.

To read a data field using a conventional load/store interface, a task copies the field

from the data object into a register using a load instruction. The MIPS IV instruction

set architecture used to implement our workload allows a single load instruction to

copy one, two, four or eight bytes of data into a register. If fewer than eight bytes

are requested, the full eight bytes are read from local memory and the data masked

and aligned correctly in the register. If the field is not aligned on byte boundaries

it may take several instructions to move the data field into the register and align it

properly. In addition to the instruction overhead of managing individual data fields,

the demand on the bandwidth between the registers and local memory may be inflated

since each load or store instruction will consume a fixed amount of bandwidth (e.g.

64 bits) regardless of the size of the data field (e.g. 5 bits). Optimizing this data

handling can potentially improve the throughput and reduce the demand on local

memory bandwidth for the entire application.

To streamline the execution of our application we extend the instruction set archi-

tecture to support moving contiguous data into multiple registers: an entire 64-byte

data structure can be read in using a single instruction, and its data fields will be

stored in the registers in their original layout. As a result, a single register may

hold multiple unaligned data fields. To manage the compressed data efficiently we

add instructions to perform simple computation on individual data fields contained

within registers; we support logical operations and simple ALU operations. We do

not support data fields which span registers. Each of the new instructions can read

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 59

from or write to a restricted range of contiguous bits within one of its operand or

result registers: the remaining registers are handled normally.

The new load instruction is encoded to specify the source address (which must be

local to the processor), a single destination register, and the total number of target

registers. The data will be loaded into a group of contiguous registers beginning with

the specified target. Store instructions are encoded similarly. A memory operation

using multiple registers is executed on one register at a time during multiple cycles,

exactly as if multiple processor instructions had been issued.

A computation instruction using a bit range from an operand register is encoded

to include a shift bit field and a field indicating the number of bits in the target range,

each six bits long. The register value is shifted, a mask is constructed to extract the

bit range from the register, and the operation is performed on the isolated bit range.

If the instruction stored a value to a bit range in a register the computation would

occur first, then the shift and mask. @@@ diagram A similar approach was used

in extending the instruction set for the FLASH Multiprocessor, which supported bit

field insertion and extraction instructions. ref ISA spec

Using the new instructions can introduce several sources of complexity to the

architecture. First, adding fields to instructions can make the decoding process less

regular. For this work we have verified that a 32-bit instruction can be encoded

to specify our additional fields, but we do not specify the decode logic. Second, by

using a single instruction to perform memory operations on multiple registers we may

increase contention for the memory and register ports. In this work we schedule the

memory ports of the processor, but we assume there are no restrictions on the register

port use. Lastly, by offering instructions to extract and operate on bit ranges in a

register we require the architecture to support a short chain of dependent operations.

We accomplish this by adding an additional execute stage which is used to complete

the ALU operation (when an operand uses a bit range) or the shift and mask (when

the result uses a bit range).

The extensions proposed here are a combination of two existing techniques. The

Intel IXP family of network processors ref support group register loads and stores:

however, an individual data field must be extracted from one register into another in

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 60

order to operate on it. Malik et al [27] proposed an enhanced ALU for general-purpose

computing to streamline the execution of dependent instructions by collapsing them

into single-cycle equivelants. In our work we focus on a restricted set of operations,

targeted to our particular domain, which require only simple architectural support.

@@@Include pipeline figure, logic diagrams

5.2 Increasing Instruction Fetch Bandwidth

We can continue to improve packet processing throughput by increasing the instruc-

tion fetch bandwidth, an option supported by our reconfigurable Smart Memories

processor cores. In chapter 4 one of our application implementations, CPU Config,

used microcoded instructions for portions of the application to schedule functional

units in parallel. In this chapter we examine two methods for allowing a pair of MIPS

instructions to be scheduled in parallel: in this way we can increase the instruction

fetch bandwidth for the entire application using a single processor configuration and

avoid the need to partition the executable. Our first dual-issue configuration supports

VLIW instructions to exploit the instruction-level parallelism statically available in

the executable. Each VLIW instruction is made up of two independent MIPS instruc-

tions: if no second independent instruction can be scheduled during a cycle the second

half of the VLIW instruction is a ’nop’. Our configuration can issue a single in-order

instruction from each of two contexts per cycle, a static variation on simultaneous

multi-threading which originated in 1995 at the University of Washington [36]. Any

conflicts for the memory ports and multiply or divide functional units are resolved at

run time.

5.3 Methodology

The base implementation is modeled after the simple Data Parallel implementation

from Chapter 4. The classification algorithm has been changed slightly to accommo-

date the new memory interface; the iterative matching loop processing the element

array within a node has been completely unrolled to manage the array stored in a

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 61

group of registers. Each additional implementation uses an increasingly aggressive

set of new instructions. The new instructions are hand encoded and written into the

binary after it is generated, replacing a placeholder system call instruction.

1. The Base workload implementation uses MIPS ISA load/store instructions op-

erating on single registers.

2. The Reg workload implementation uses load/store instructions operating on

groups of up to eight contiguous registers.

3. The Min workload uses group register operations with instructions which extract

bit fields and perform simple logical operations.

4. The Med workload uses group register operations with instructions which ex-

tract bit fields and perform simple logical and arithmetic operations.

5. The Max workload shows the performance improvement upper bound by using

group register operations with instructions which extract bit fields and perform

any operations.

6. The Med Data Stall workload uses the same instructions as Med, but the exe-

cution includes pipeline stalls caused by the additional execute stage.

Application implementations which use the extended instruction set increase the

size of their context state which must be copied between the register file and local

memory, since the registers hold complete data objects instead of their pointers.

The context state written into local memory increases from seven registers for each

copy to eleven registers which includes the packet meta-data object constructed and

maintained by the application. When the context is copied back from local memory

using a total of nineteen registers: the extra registers receive a copy of the remote

data object requested before the context yielded the processor. If the memory request

has not been completed when the context is copied back to the processor, only the

original state is read in and the data object is copied in later.

Our experiments compare two dual-issue configurations against a single-issue con-

figuration: all three execute our Med implementation using the extended ISA.

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 62

• Base: One instruction issued per cycle.

• Static ILP: Two instructions issued per cycle from a single context.

• Static SMT: Two instructions issued per cycle, one from each of two contexts.

Static ILP instructions are statically scheduled and conflicts for resources are re-

solved at compile time. Conflicts between Static SMT instructions are resolved at

runtime. The primary executing Static SMT context has first option on the shared

resources; however, because the workload uses the extended instruction set outlined

in chapter 5, the memory ports are reserved for several contiguous cycles to support

group register moves and either the primary or secondary context, or both, may stall

waiting for memory port access. Neither context will be stalled by virtual context

loads and stores (see Chapter 3).

5.4 Experimental Results

5.4.1 Maximum Throughput

All but one optimized implementation improves the maximum potential throughput

of our application, executed using unrestricted local memory bandwidth. Figure 5.1

shows the maximum throughput of the five workload implementations using exten-

sions to the instruction set; the y-axis measures the throughput normalized to the

Base performance. The Reg implementation, which performs group register loads

and stores but includes no new instructions to manipulate data fields, requires extra

instructions to shift and mask the data fields before operating on them; this over-

head slows the execution by 23% compared to the Base implementation. Although

Reg uses more registers than the other versions, it does not need to spill register

values to local memory; all of the performance slowdown is caused by the extra data

manipulation instructions. The Max version, representing the performance improve-

ment upper bound, has a speedup of 34%. Med, which combines data field extraction

from a single register with simple logical and ALU operations, improves throughput

by 28% while the Med Data Stall variation, which inserts a one-cycle pipeline stall

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 63

Figure 5.1: Normalized Throughput

0.0

0.5

1.0

1.5

G
ig

ab
its

 p
er

 se
co

nd
Reg
Max
Med
Med_Data_Hazard
Min

0.0

0.5

1.0

1.5

G
ig

ab
its

 p
er

 se
co

nd

Implementations

reflecting data hazards caused by the extra execution stage, has equivelant speedup,

indicated an insignificant number of pipeline stalls. Min, which does not require the

extra execute stage, delivers a 14% speedup using logical operations combined with

data field extraction.

Our packet-processing application is characterized by simple integer-based com-

putation with frequent branches. Extending the ISA to provide more efficient instruc-

tions has reduced the total number of instructions but not the number of branches: as

a result, there is limited statically-available ILP. Despite that limitation the Static ILP

implementation achieves a significant speedup. Although some processor resources

are shared, Static SMT leverages the simple computation to execute with near perfect

speedup using the parallel ALUs. Figure 5.2 shows the maximum throughput of our

Static ILP and Static SMT executions normalized to the maximum Single through-

put. The Static ILP speedup is 52% over Single while the Static SMT speedup is

99%.

5.4.2 Virtual Context Performance Effects

All three strategies for reducing the instruction fetch bottleneck affect resource re-

quirements and contention. In this section we analyze the performance implications

of changing the number and size of executable’s instruction block sizes.

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 64

Figure 5.2: Wide Issue Throughput

0.0

0.5

1.0

1.5

2.0

Base
ILP
SMT

0.0

0.5

1.0

1.5

2.0

Table 5.1: Application Instruction Blocks Sizes

Application Block 0 Block 1 Block 2 Block 3 Total

Base 31 59 103 193
Med (Single Issue) 27 24 46 53 150
Static ILP 16 14 30 38 98
Static SMT 27 24 46 53 150

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 65

Resource Requirements We can apply the same analytical models we used in

chapter 4, expressed in the equations 4.1, 4.3, and 4.4, to understand how the ex-

tended ISA and VLIW instruction scheduling have changed the resource requirements.

We can see from the instruction count breakdown in table 5.1 that the optimized Med

implementation has several differences compared to the Base implementation. The

Med implementation is optimized to execute in fewer instructions than Base, and each

instruction block has been streamlined. Static ILP further reduces the size of each

instruction block. As our performance models indicate, when the total number of in-

struction cycles per packet is reduced it is the changes to individual instruction blocks

which determine many performance effects. In addition to fewer instructions, Med

also has one more instruction block than Base: because Med has a multi-word local

memory reference which takes 8 cycles to complete, the context yields the processor.

This yield breaks up a single long instruction block into two shorter ones. However,

most models do not use the number of individual instruction blocks as a parameter.

The increased number of instruction blocks will only change the memory port utiliza-

tion by increasing the number of context copies per packet. All of the graphs in this

section show results generated with memory latency fixed at 160 cycles, which gives

an example of the relationship between available resources and performance for a

reasonable latency value for our system. The results reflect execution with unlimited

local memory bandwidth unless noted otherwise. Our models predict the simulated

results with less than 5% error, with the exception of the hardware context model

which has high prediction error for processor stall values below 5%.

Virtual and Hardware Contexts The Med and Static ILP implementations have

each reduced the number of cycles required to execute every individual instruction

block. Because they optimize the smaller instruction blocks, we can predict they

will increase the number of virtual contexts required to supply the processor with

work. Since the difference is not large for Med (7 instructions, or less than 25% of

the original size) the number of additional virtual contexts required for is likely to

be relatively small: Static ILP has a larger reduction (10 more instruction cycles, or

42% of Med) and its virtual context increase is likely to be correspondingly greater.

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 66

Because Static SMT does not change the instructions cycles required per packet, the

individual context behavior should not change. Static SMT behavior should be sim-

ilar to that of two single-issue processor cores combined: the total number of virtual

contexts should double that of Med. Figure 5.3 shows the processor stall for the

Base, Med, Static ILP and Static SMT implementations varying the virtual contexts

per processor. All results were collected with the remote memory latency set at 160

cycles. Static SMT processor stall is collected individually for the two issue slots: we

report the average value. The curves generated by the analytical models are over-

laid with the results generated by our simulator. Med requires eight virtual contexts

to eliminate processor stall, Static ILP needs thirteen and Static SMT needs sixteen

compared to seven virtual contexts for Base, consistent with our expectations. Med

and Static ILP increase the context copy frequency for their contexts by reducing the

instruction block sizes: they also increase the context copy cycles because the context

state has grown. They may require more hardware contexts than Base to pipeline

context copies. Static SMT should require the same number as two single-issue pro-

cessors executing Med. Figure 5.4 shows the processor stall resulting from varying

the number of hardware contexts with the simulation results for each implementation

overlaid on the curves generated by the model. The Med and Static ILP versions

each require three hardware contrexts to eliminate processor stall, one more than the

Base version, but with two hardware contexts Static ILP has more processor stall

(11.5%) than Med (1.6%). Static SMT requires six hardware contexts, twice that of

Med. However, all three optimized versions can execute with less than 5% processor

stall using three hardware contexts.

Packet Latency and Packet Jitter Based on our models, the larger the difference

between instruction block sizes the more contention between contexts is generated for

a fixed number of virtual contexts. We can expect that Med and Static ILP, which

each use fewer cycles per instruction block than Base, will result in lower packet

latency for a fixed number of virtual contexts due to fewer total instruction cycles per

packet: they will also generate less contention between contexts since the difference

between the instruction block sizes is less than for Base. It is not clear, however,

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 67

whether they will have lower packet latency for a fixed processor stall value: Med

and Static ILP both need additional virtual contexts to achieve the same processor

stall as Base, and the extra contexts could introduce enough contention to increase

the packet latency. Static SMT should execute with the same packet latency as a

single-issue processor executing Med using half the virtual contexts. Figure 5.5 shows

the packet latency using varying numbers of virtual contexts for each implementation.

Each packet latency value for both implementations, generated using our simulator,

is compared to the curves generated by our latency model. The results are consistent

with our observations: at six virtual contexts, Base executes with 1163 cycles of

packet latency while Med executes with only 965, Static ILP with 768. Static SMT

executes with 736 packet latency cycles, equal to Med using three virtual contexts.

When each is executed with zero processor stall, Base has 1351 packet latency cycles

and Med has 1200 and Static ILP has 1274: the additional virtual contexts do not

contribute enough contention to overcome the shorter processing time compared to

Base. Static ILP does generate enough contention to increase its packet latency

compared to Med despite its shorter instruction blocks. Static SMT executes with

1200 packet latency cycles, equal to Med.

Packet jitter, which we model using the formula in 4.5, does not depend on the

instruction block size. However, the optimizations have dropped the execution varia-

tion for Med and Static ILP by half, and this reduces the effect of concurrent virtual

contexts on total packet jitter. We can expect that Med and Static ILP jitter will

be half that of Base for any fixed number of virtual contexts. Static SMT jitter will

be slightly elevated compared to Med executed on a single-issue processor due to the

runtime resource conflict resolution. Figure 5.6 compares the packet jitter results for

the our four implementations generated by the model and simulator and confirms our

estimates.

Local Memory Traffic The changes we have made to reduce the instruction fetch

bandwidth performance bottleneck also make multiple changes to the local memory

bandwidth demands. Our ISA extensions allow us to copy compressed data objects

into and out of an array of registers, reducing not just the number of load and store

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 68

instructions executed per packet, but also the data transferred by the instructions

across the local memory ports. Figure 5.7 shows the read and write accesses executed

by Med, normalized to the total read and write accesses executed by the Base im-

plementation. Med executes 28% of the register reads by load instructions, and 75%

of the register writes by store instructions. This reduction in memory port traffic is

offset by two more differences. First, more context state is now copied between the

processor and local memory and second, the number of context copies per packet has

increased from three to four. Although eight of the additional context state registers

are assigned to hold a copy of a remote data objects, each data object is copied into

and out of the context registers only once: those data transfers replace the loads and

stores executed in the Base implementation. The object is transferred into the regis-

ters as part of the context copy into a hardware context, and if it has been modified it

must be explicitly written out to memory: the persistent data object is not included

in the context state when a context is copied from the processor to local memory.

The packet meta-data object is included in the context state in every context copy:

its data is moved in and out of registers multiple times and increases the total number

of memory accesses per packet. Due to the two changes to the context copy register

operations per packet, the Med implementation executes 520% the number of con-

text copy register reads from local memory and 214% the number of register writes

compared to Base.

In addition to the increased number of register operations per packet, the ISA

extensions reduce the total number of instructions executed per packet and further

increases the frequency of memory instructions and context copies. Figure 5.8 shows

the frequency of memory instruction register operations as the number of virtual

contexts increases: at 34%, the total Base frequency exceeds that of every other im-

plementation. The context copy register operations for Base remain low at less than

20% while the optimized implementations range from 80% for Med to almost 160%

for Static SMT. Figure 5.10 shows the frequency of all read and write accesses: at

95%, the Med frequency at maximum throughput is almost double that of Base at

53%. Static ILP and Static SMT have 145% and 191% access frequencies, respec-

tively: Static ILP increases the frequency of accesses per packet by further reducing

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 69

the number of instruction cycles per packet while Static SMT increases the total

frequency of accesses without changing the frequency per packet.

The access frequencies reported above do not reflect any bursty behavior which

might cause contention and increase the number of memory ports required to prevent

processor stall. In Figure 5.11 we report the processor stall for each implementation

varying the number of read/write memory ports. Each implementation is executing

with the maximum number of virtual and hardware contexts required to support

its maximum throughput. The Base implementation needs only one memory port

to prevent any processor stall while the Med implementation suffers 4% stall using

one memory port. Static ILP and Static SMT both execute with approximately 30%

processor stall using one memory port and zero stall with four memory ports. In

both cases a second memory port drops the processor stall to below 5%. Since the

throughput for Static SMT is significantly higher than that of Static ILP and their

memory port use is quite similar, Static SMT uses its memory ports much more

efficiently than Static ILP.

[MARK: what units? percentages?] [MARK: do reads and writes add up to 100

percent port utilization (60 + 40)?] [MARK: reads conflict with writes right?]

5.4.3 Branches and Pipeline Stalls

The results reported so far are based on execution with no pipeline stalls caused

by branches. Our application domain is characterized by frequent branches and our

optimized application implementation Med reduces the total number of instructions

executed per packet while keeping the number of branches the same as Base. Fig-

ure 5.12 measures the frequency of branch instructions during the execution of the

workload on a single packet: Med executes with 27% branch frequency, where Base

branch frequency is 21%. Because Med branch frequency is higher, it has more po-

tential branch-related pipeline stalls to penalize the performance for the optimized

implementations. Figure 5.13 shows the throughput of the Base and Med implemen-

tations executed with two-cycle stalls inserted after each conditional branch. Each

implementation is normalized to the execution of the same implementation executed

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 70

Figure 5.3: Processor Stall: Virtual Contexts

0 5 10 15

Virtual Contexts

0
20
40
60
80

100

P
e
r
c
e
n

t

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

Figure 5.4: Processor Stall: Hardware Contexts

0 2 4 6

Hardware Contexts

0
20
40
60
80

100

P
e
r
c
e
n

t

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

Figure 5.5: Packet Latency

0 5 10 15

Virtual Contexts

0

500

1000

1500

L
a

te
n

c
y

 C
y

c
le

s

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

Figure 5.6: Packet Jitter

0 5 10 15

Virtual Contexts

0
10
20
30
40
50

J
it

te
r
 C

y
c
le

s

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

Figure 5.7: Register Read and Write Opera-
tions

0

1

2

3

4

5

A
cc

es
se

s P
er

 P
ac

ke
t

Instructions
Context Copies
Total

0

1

2

3

4

5

A
cc

es
se

s P
er

 P
ac

ke
t

Reads Writes

Figure 5.8: Load/Store Access Frequency

0 5 10 15

Virtual Contexts

0

50

100

150

200

L
oa

d/
St

or
e

A
cc

es
s

F
re

qu
en

cy

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

Figure 5.9: Copy Access Frequency

0 5 10 15

Virtual Contexts

0

50

100

150

200

C
on

te
xt

 C
op

y
A

cc
es

s
F

re
qu

en
cy

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 71

with no branch-related stalls (e.g. Base With Stalls is normalized to Base). The slow-

down of Med is approximately 30%, compared with the 10% slowdown for the Base

implementation: managing pipeline stalls can be a significant factor in maintaining

the potential throughput for our optimized application.

V = |1.0 − |0.5 − t| ∗ 2| (5.1)

The branch behavior for our application is relatively unpredictable, as we show in

figures 5.14, 5.15, and 5.16. Figure 5.14 reports the number of conditional branches

executed per packet as a percentage of the total number of branches executed per

packet; it shows that almost all branches in our workload are conditional. Figure

5.15 measures the number of conditional branches taken per packet as a percentage

of the total number of conditional branches per packet; it shows that the conditional

branches are taken about half the time. Figure 5.16 shows the variability of each

individual branch in the executable, computed using equation 5.1: t is the frequency

the branch is taken and V is the variability of the branch. The individual branches

are laid out on the x-axis and the variability is measured on the y-axis. A branch

which is taken half the time will have a variability of 1.0: a branch which is always

taken will have a variability of 0.0, as will a branch which is never taken. Variability

of 0.5 denotes a branch which is taken 25% and not taken 75% of the time, or vice

versa. While many branches are very stable, approximately 25% of conditional branch

results vary at least 25% of the time. Taken together, these results show that the

branch behavior of our workload is significantly variable.

We can keep the instruction pipeline full by scheduling a context switch every

cycle, already implemented in the Honeywell 800 (1958), the CDC 6600 PPU (1964),

the Denelcor HEP (1978) and in the Tera MTA (1990), among others. We will

compare execution of our optimized application implementation Med using this fine-

grained scheduling algorithm against the same application executed using our original

coarse-grained algorithm with no pipeline stalls inserted: this case represents the

perfect behavior of other branch management techniques, and allows us to directly

compare the requirements and performance effects of virtual and hardware contexts.

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 72

Figure 5.10: Combined Access Frequency

0 5 10 15

Virtual Contexts

0

50

100

150

200

T
o
ta

l
A

c
c
e
s
s
 F

r
e
q

u
e
n

c
y

Base Model
Base Simulation
Med Model
Med Simulation
Static_ILP Model
Static_ILP Simulation
Static_SMT Model
Static_SMT Simulation

Figure 5.11: Processor Stall: Memory Ports

0 1 2 3 4

Memory Ports

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rc

en
t P

ro
ce

sso
r S

ta
ll

Base
Med
Static_ILP
Static_SMT

Figure 5.12: Branch Frequency

0.0

0.1

0.2

0.3

0.4

Br
an

ch
 F

re
qu

en
cy

Base
Med

0.0

0.1

0.2

0.3

0.4

Br
an

ch
 F

re
qu

en
cy

Figure 5.13: BranchStall Throughput

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Base
Med

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Th

ro
ug

hp
ut

Figure 5.14: Conditional
Branches

0.0

0.2

0.4

0.6

0.8

1.0

C
on

di
ti

on
al

 B
ra

nc
h

F
re

qu
en

cy

Base
Med

0.0

0.2

0.4

0.6

0.8

1.0

C
on

di
ti

on
al

 B
ra

nc
h

F
re

qu
en

cy

Figure 5.15: Conditional
Branches Taken

0.0

0.2

0.4

0.6

0.8

1.0

C
on

di
tio

na
l B

ra
nc

h
T

ak
en

 F
re

qu
en

cy

Base
Med

0.0

0.2

0.4

0.6

0.8

1.0

C
on

di
tio

na
l B

ra
nc

h
T

ak
en

 F
re

qu
en

cy

Figure 5.16: Conditional
Branch Variability

Branch

0.0

0.2

0.4

0.6

0.8

1.0

V
ar

ia
bi

lit
y

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 73

1. Coarse, which performs a context switch after the executing context makes a

remote memory reference or yields the processor, selecting contexts in strict

round-robin order, and

2. Barrel, which performs a context switch after a single instruction, selecting

contexts in strict round-robin order from the execute pool, a set of the contexts

stored in hardware. If a context is not ready to execute it is removed from the

execute pool and replaced by another context. If no other context is ready, the

processor is idle during its execution slot in the rotation. The size of the pool is

dictated by the length of the longest possible pipeline stall: we execute Barrel

with a pool size of three to hide the two-cycle branch delay.

The intuition behind the formulas we have used based on our original scheduling

algorithm holds for execution using the Barrel algorithm, but existing models do not

reflect the performance effects of fine-grained switches among a pool of executing

contexts. In this chapter we use augmented formulas which model the the regular

scheduling we use in Barrel. The new variable P represents the size of the context

pool used for fine-grained scheduling:

S =
n

∑

i=0

bi ∗ P − V : P > V

0 : P <= V
+

n
∑

i=0

M − (bi ∗ (V − P)) : M > ((bi ∗ (V − P))

0 : M <= ((bi ∗ (V − P))

(5.2)

S =
P

∑

g=0

n
∑

i=0

(T − (bi ∗ P ∗ Bg))/P : T > ((bi ∗ P ∗ Bg)

0 : T <= ((bi ∗ P ∗ Bg)
(5.3)

L =
n

∑

i=0

bi ∗ P + n ∗M +
n

∑

i=0

(bi ∗ (V − P) − M) : M < (bi ∗ (V − P))

0 : M >= (bi ∗ (V − P))
(5.4)

JT = (JE ∗ P) + (JE ∗ (V − P)) (5.5)

Each of these formulas can replace their earlier counterparts from chapter 4 in our

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 74

previous experiments without introducing additional error by setting P to 1.

Fine-grained scheduling increases the number of hardware and virtual contexts

required to prevent processor stall because the execute pool allows contexts to make

progress concurrently and cluster their remote memory references. Figure 5.17 shows

the processor stall for Coarse and Barrel varying the number of virtual contexts sup-

ported by the processor. The Coarse version requires only eight contexts to completely

eliminate processor stall while Barrel needs twelve.

Our fine-grained scheduling algorithm also increases the number of hardware con-

texts required to prevent processor stall. It must execute with a minimum of three

hardware contexts to store the contexts in the execute pool: additional hardware con-

texts buffer the contexts being copied between the processor and local memory. Figure

5.18 shows the processor idle for our two scheduling algorithms varying the number of

hardware contexts: although our model remains consistent with the simulation results

at the end points, the middle values do not reflect the simulated results. The model

is calculating the performance based on the worst case, when the largest number of

contexts cluster their copies. In practice context copies can become staggered over

time: our simulation results show the processor stall approaches zero starting with

one additional hardware context for each algorithm.

Packet latency is increased by the rotation among the contexts in the execute pool,

introducing stall cycles for an individual context during its execution of an instruction

block. However, the execute pool leaves fewer contexts to conflict for access to the

processor. Figure 5.19 shows the packet latency for varying numbers of virtual con-

texts executing our two algorithms. Although Barrel starts with significantly higher

packet latency than Coarse, the results draw closer as the context count approaches

eight (the maximum required by Coarse to eliminate processor stall): the Coarse

version is adding packet latency faster than the fine-grained versions. However, as

processor stall is eliminated Barrel finishes with 1825 packet latency cycles, 153%

longer than Coarse.

Packet jitter is amplified by fine-grained scheduling, since a context spends P − 1

cycles idle for every instruction it executes, as well as increased by variations in

scheduling. Figure 5.20 shows the packet jitter for the three scheduling algorithms

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 75

executed with varying virtual contexts. Barrel, which performs a context switch on

every cycle, introduces the most jitter when the number of contexts is not evenly

divisible by the scheduling pool size. When Barrel is executed with three, six, nine

or twelve contexts for an execute pool of three, the jitter remains low and our model

predicts it with up to 16.7% error. For other values the error rises to over 300%.

Barrel does not change the throughput or the total number of context copies exe-

cuted per packet: as a result, the read and write access frequencies remain unchanged

from the Coarse scheduling algorithm.

5.5 Conclusions

We showed in chapter 4 that a data parallel implementation supported by virtual

contexts can use the processor instruction fetch bandwidth efficiently. A natural av-

enue for additional performance improvement is to optimize the instructions executed

to process packets. In this chapter we identified characteristics of packet-processing

tasks which could be leveraged to compress the application executable into fewer in-

structions: short application tasks executing integer-based computation using data

fields packed into a small footprint can take advantage of our extended instruction

set architecture to manage the data objects using fewer instructions. We also em-

ployed a processor configuration supporting VLIW instructions and further reduced

the number of cycles required to execute the instructions for each packet.

Reducing the instruction cycles per packet increases the demands on local mem-

ory bandwidth: copying the context state between the processor and local memory

represents a significant part of the increased demand. The context state footprint,

and in particular the packet meta-data object created and used by the application for

the life of the packet, should be carefully optimized. Extra processor yields, if they

have been inserted to manage packet latency, should be balanced against the memory

port utilization.

Using dual issue to exploit ILP increased our application’s packet throughput by

changes the instruction blocks for individual packets. The result was decreased con-

tention between contexts for the processor and increased contention for the hardware

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 76

contexts and memory ports. Using dual issue to execute instructions from inde-

pendent contexts does not change the instruction block sizes: since the throughput

improvement comes from executing independent contexts in parallel, demands on

shared resources will become staggered, smoothing out bursty accesses and requiring

fewer resources to maintain processor stall below a small percentage.

We do not model register ports but we can make some inferences based on our

experiments. Register port conflicts could arise from either the context copies or

the multi-register data structure operations. Given a set of read and write register

ports, context and data structure operations could easily conflict with the register

operations of the executing context. Those operations could yield to the executing

context: starvation would not occur since eventually the processor would not have any

contexts to execute, but it could introduce processor stall by not allowing processor

stall could result. The register file architecture can also be designed to support both

pipeline and background port accesses by adding register ports. Because the multi-

register memory operations use registers which are part of the context state, the

complexity introduced by multi-ported register files could be reduced by partitioning

the registers into two files. The registers used for context state could be allocated to

a file with one or more additional register ports while the remaining registers would

belong to a register file with enough ports to support the pipeline accesses.

CHAPTER 5. REDUCING THE INSTRUCTION FETCH BOTTLENECK 77

Figure 5.17: Processor Stall: Virtual Contexts

0 5 10

Virtual Contexts

0

20

40

60

80

100

P
ro

ce
ss

or
 S

ta
ll

Coarse Model
Coarse Simulation
Barrel Model
Barrel Simulation

Figure 5.18: Processor Stall: Hardware Con-
texts

0 2 4 6

Hardware Contexts

0

10

20

30

40

50

P
ro

ce
ss

or
 S

ta
ll

Coarse Model
Coarse Simulation
Barrel Model
Barrel Simulation

Figure 5.19: Packet Latency

0 5 10

Virtual Contexts

0

500

1000

1500

2000

L
at

en
cy

 C
yc

le
s

Coarse Model
Coarse Simulation
Barrel Model
Barrel Simulation

Figure 5.20: Packet Jitter

0 5 10

Virtual Contexts

0

50

100

150

200

250

Ji
tt

er
 C

yc
le

s

Coarse Model
Coarse Simulation
Barrel Model
Barrel Simulation

Chapter 6

Conclusions

Our motivation for the work we present in this dissertation is the growing need for

heterogeneous packet processing services performed for high volume network traffic:

filling this need requires implementations which are both fast and flexible. Designing

packet processing systems to exploit parallelism is a natural avenue for this application

domain. Packet-processing for large edge routers requires simple integer-based com-

putation which is frequently memory-bound, and packets handled concurrently are

predominantly independent of each other. We have performed a series of experiments

executing multiple implementations of a widely-used packet processing application

on a reconfigurable chip multiprocessor using network traffic made up of indepen-

dent packets: using this system we have explored techniques for mapping work to

an array of processor cores and for managing the resources of an individual proces-

sor. We have shown that characteristics of our application domain can be leveraged

to increase the efficiency of programmable hardware and manage the contention for

hardware resources.

We have identified key application and system characteristics which act as per-

formance parameters and used them to evaluate the techniques we explored in this

dissertation and extrapolate beyond our experimental analysis. Although the max-

imum packet throughput available to a particular application is determined by the

total number of instructions executed per packet, packet-processing applications in

our domain are typically characterized by a small amount of computation punctuated

78

CHAPTER 6. CONCLUSIONS 79

by long memory latencies. As a result, the number of instructions between remote

memory references becomes an important performance parameter determining re-

source efficiency and contention for each of the techniques we have explored.

6.1 Exploiting Data Parallelism

Given an array of processor cores executing an application, the instruction fetch

bandwidth determines the upper bound for packet throughput. Each processor should

be kept supplied with work to keep the bandwidth utilized; at the same time, the

application should be designed to avoid instruction overhead to make the best possible

use of the available bandwidth. Exploiting task parallelism by dividing an application

across multiple processors can convey significant benefits, but those advantages are

generally tied to diminished instruction fetch efficiency. We conclude from this that in

most cases applications should not be partitioned: each packet should be handled on a

single processor to exploit the data parallelism of independent packets. This approach

allows a simple mechanism for keeping the processor load balanced and for managing

variable packet handling while making the best use of the available instruction fetch

bandwidth. We can then seek other avenues for providing the potential advantages

of partitioning the application to the data parallel implementation without incurring

performance penalties.

Hardware Context Bottleneck A processor’s hardware contexts can become a

performance bottleneck if they cannot support enough concurrent contexts to keep

the processor supplied with work. One of our task parallel implementations, MemRef,

avoided the hardware context bottleneck by transferring packets off the processor after

a remote memory reference: the receiving processor queues the packet in its local

memory until the remote data had been copied in. To loosen the hardware context

bottleneck within a data parallel implementation we adapted the same approach:

instead of transferring the packet to another processor’s local memory, we kept the

packet local to the same processor by copying the context’s live state to its own

local memory. The data transferred to and from processors is approximately the

CHAPTER 6. CONCLUSIONS 80

same in both cases. In the data parallel implementation, virtual contexts decouple

the number of hardware contexts from the multi-threading requirements: hardware

contexts act as caches for the context state and allow multi-threading to scale beyond

the available hardware contexts. The instruction block sizes and the remote memory

latency determine how many virtual and hardare contexts are required to keep the

processor occupied.

Instruction Fetch Bandwidth In order to increase the packet handling through-

put using a fixed number of processor cycles, we must reduce the number of cycles

required to execute the packet handling instructions. We can accomplish that ei-

ther by expressing the packet handling work in fewer instructions or by raising the

instruction fetch bandwidth. Our task parallel CPU Config used heterogenous pro-

cessor configurations to increase the bandwidth for some application paritiotns: we

explored three techniques for loosening the instruction fetch bottleneck in our Dat-

aParallel implementation. The first technique, using ISA extensions to implement

the packet processing work, reduced the total demand on the processor pipeline by

executing fewer pipeline operations. The optimized application uses the available in-

struction fetch bandwidth more efficiently. The other two techniques, using dual-issue

configurations to exploit ILP or issue instructions from two independent contexts, take

advantage of existing processor resources to execute the same number of operations

in fewer cycles, just as the streaming programming model did for the CPU Config

implementation. These techniques increase the efficiency of the hardware if parallel

resources have been unused, as with our single-issue configuration on our processor

cores. However, we can make a valid comparison between the execution using a dual-

issue configuration on one of our processor core to the same application executing on a

pair of single-issue processor cores who divide most of the processor hardware between

them: each has a single instruction issue and decode path, a single ALU and four

hardware contexts. The dual-issue configurations make better use of a few rarely-used

shared resources such as the divide unit, but otherwise the processor efficiency does

not go up. Static ILP reduces the efficiency of the instruction fetch bandwidth by

not issuing two useful instruction on every cycle: it also increases the processor and

CHAPTER 6. CONCLUSIONS 81

memory port contention between contexts by shrinking the instruction block sizes.

Static SMT execution is almost the same as our two single-issue processors: since it

does not change the instruction blocks, the performance remains unchanged as well.

The choice between Static SMT and the simpler processors may lie in how they use

external resources, such as the network and local memory.

Managing Packet Latency Packet latency is the sum of the live cycles spent

executing instructions, the idle cycles spent waiting for data, and the contention cycles

spent waiting for access to processor resources. Task parallelism offers a technique

for reducing packet latency by executing tasks for a single packet in parallel. The

latency of a packet in our application domain typically has a large fraction of its

cycles waiting for data. Our experiments show that for such an application, keeping

the processor occupied using multiple contexts can add a large number of contention

cycles: the cumulative result is that the live cycles may be a small component of a

packet’s total latency.

Once the number of virtual contexts has been determined, the instruction block

sizes also play a key part in determining how much contention is generated between

concurrently executing contexts. The greater the delta between the smallest and

largest instruction block sizes, the more contention occurs between virtual contexts.

As the processor stall asymtotically approaches zero the contention, expressed as

packet latency and packet jitter, grows linearly using our round-robin scheduling.

We have several options for managing packet latency for data parallel implemen-

tations. First, we could optimize the live cycles as discussed above. Reducing the live

cycles targets a probably small component of the packet latency and may or may not

be successful in diminishing it: depending on how the individual instruction blocks

change, live cycles may be replace by contention cycles. Second, the number of virtual

contexts assigned to the processor may be reduced in return for a significant drop in

contention and a small increase in processor stall. Third, we can divide a large block

into two smaller ones. Reducing short blocks can introduce more processor stall for a

given number of virtual contexts while reducing long blocks can eliminate conflict for

CHAPTER 6. CONCLUSIONS 82

resources among contexts, allowing additional virtual contexts to add less packet la-

tency. Changing the number of instruction blocks, irrespective of the related changes

(either more instructions per packet or smaller instruction blocks) does not explicitly

change the application performance. The benefit of dividing one large block into two

is less conflict between contexts with no loss of throughput. The potential downside is

higher context copy frequencies, putting more pressure on the hardware contexts and

the local memory ports. Lastly, our analysis of dynamic execution showed us that

executing the same instruction block for each concurrent packet sequentially grouped

all the small blocks together (increasing the number of virtual contexts required) and

all the large blocks together (increasing the contention contributed by each virtual

context). We can greatly reduce both the virtual contexts required and the contention

contributed if the packet execution is staggered.

Instruction Buffer Management The flexible packet-processing application we

are targeting may tax an individual processor’s instruction storage capacity and dis-

courage executing the full application on a single processor. One benefit conveyed by

any task-parallel application implementation is to reduce the number of executable

footprint required by an individual processor: however, partitioning the application

does not guarantee that capacity problem will be eliminated. Another option would

be to change how the local memory system is used. Our Static SMT processor config-

uration makes more effictive use of the local instruction store by supporting twice the

bandwidth using the same instruction buffer footprint. The Static ILP configuration

does not have this advantage since it inflates the executable with ’nop’ instructions

where it lacks instruction level parallelism. Our two simple single-issue processors,

discussed above, could conceivable share a single instruction buffer. Since instructions

in packet-processing applications should exhibit predictable spatial and temporal lo-

cality, particularly at the instruction block granularity, managing instruction caches

for this application domain could be a productive avenue.

CHAPTER 6. CONCLUSIONS 83

6.2 Future Work

The work reported in this dissertation is based on a simplified packet processing

system in order to clearly delineate the performance effects of specific system char-

acteristics. This work can be extended by incorporating the dynamic flexibility that

is our goal for our target system. Doing so would allow us not just to evaluate our

conclusions in a more realistic context but also support exploration in two areas im-

portant to packet processing. First, we can address instruction cache management

to prevent it from starving the processors of work. Second, we can implement packet

management to keep the processor supplied with data.

Bibliography

[1]

[2]

[3] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan

Porterfield, and Burton Smith. The Tera computer system. In Proceedings of

the 1990 International Conference on Supercomputing, pages 1–6, ”1990”.

[4] Sumeet Singh Baboescu and George Varghese. Packet classification for core

routers: Is there an alternative to cams? In IEEE INFOCOM, 2003.

[5] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An archi-

tecture for differentiated services. In RFC 2475, December 1998.

[6] Michael K. Chen, Xiao Feng Li, Ruigi Lian, Jason H. Lin, Lixia Liu, Tao Liu,

and Roy Ju. Shangri-la: achieving high performance from compiled network

applications while enabling ease of programming. In PLDI ’05: Proceedings

of the 2005 ACM SIGPLAN conference on Programming language design and

implementation, pages 224–236, 2005.

[7] Patrick Crowley, Marc E. Fiuczynski, Jean-Loup Baer, and Brian N. Bershad.

Characterizing processor architectures for programmable network interfaces. In

Proceedings of the 2000 International Conference on Supercomputing, 2000.

[8] Patrick Crowley, Mark A. Franklin, Haldun Hamidioglu, and Peter Z. Onufryk

(ed.). Network Processor Design, Issues and Practices Vol. 1. Morgan Kaufman,

2003.

84

BIBLIOGRAPHY 85

[9] Patrick Crowley, Mark A. Franklin, Haldun Hamidioglu, and Peter Z. Onufryk

(ed.). Network Processor Design, Issues and Practices Vol. 2. Morgan Kaufman,

2004.

[10] Patrick Crowley, Mark A. Franklin, Haldun Hamidioglu, and Peter Z. Onufryk

(ed.). Network Processor Design, Issues and Practices Vol. 3. Morgan Kaufman,

2005.

[11] Scott Rixner et al. A bandwidth-efficient architecture for media processing. In

Proceedings of the 31st Annual International Symposium on Microarchitecture,

1998.

[12] M. Flynn. Some computer organizations and their effectiveness. In IEEE Trans-

actions on Computers, volume C-91, pages 948–960, 1972.

[13] Mark A. Franklin and Seema Datar. Pipeline task scheduling on network pro-

cessors. In Workshop on Network Processors and Applications - NP3, 2004.

[14] Christos J. Georgiou, Valentina Salapura, and Monty Dennaeu. A programmable

scalable platform for next generation networking. In 2nd Workshop on Net-

work Processors (NP2) at the 9th International Symposium on High Performance

Computer Architecture (HPCA9), 2003.

[15] Matthias Gries, Chidamber Kulkarni, Christian Sauer, and Kurt Keutzer. Ex-

ploring trade-offs in performance and programmability of processing element

topologies for network processors. In 2nd Workshop on Network Processors

(NP2) at the 9th International Symposium on High Performance Computer Ar-

chitecture (HPCA9), 2003.

[16] Pankaj Gupta and Nick McKeown. Packet classification on multiple fields. In

SIGCOMM, pages 147–160, 1999.

[17] Pankaj Gupta and Nick McKeown. Algorithms for packet classification. In IEEE

Network Special Issue, volume 15, 2001.

BIBLIOGRAPHY 86

[18] Pankaj Gupta and Nick McKeown. Packet classification using hierarchical cut-

tings. In Proc of Hot Interconnects VII, August 1999.

[19] J. Heinanen and Telia Finland. A single rate three-color marker. In RFC 2697,

September 1999.

[20] John L. Hennessy and David A. Patterson. Computer Architecture: A Quanti-

tative Approach 2nd Ed. 1996.

[21] P. Kalapathy. Hardware-software interactions on mpact. In IEEE Micro, March

1997.

[22] Sridhar Lakshmanamurthy, Kin-Yip Liu, Yim Pun, Larry Huston, and Udai

Naik. Network processor performance analysis methodology. In Intel Technology

Journal, volume 6, August 15, 2002.

[23] Byeong Kil Lee and Lizy Kurian John. Npbench: A benchmark suite for control

plane and data plane applications for network processors. In IEEE International

Conference on Computer Design (ICCD ’03), 2003.

[24] Ying-Dar Lin and Yi-Neng Lin. Diffserv over network processors: Implementa-

tion and evaluation. In Proceedings of the 10th Symposium on High Performance

Interconnects (HOTI’02), 2002.

[25] Huan Liu. A trace driven study of packet level parallelism. In Proc. International

Conference on Communications (ICC), 2002.

[26] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark

Horowitz. Smart memories: A modular reconfigurable architecture. In Proceed-

ings for ISCA 2000, June 2000.

[27] Nadeem Malik, Richard Eickmeyer, and Stamatis Vasiliadis. Interlock collapsing

alu for increased instruction-level parallelism. In Micro, 1992.

[28] B.A. (ed.) Maynard. Honeywell 800 System. 1964.

BIBLIOGRAPHY 87

[29] G. Memik, W. H. Mangione-Smith, and W. Hu. Netbench: A benchmarking

suite for network processors. In Proceedings of International COnference on

Computer-Aided Design (ICCAD), pages 39–42, November 2001.

[30] Gokhan Memik and William H. Mangione-Smith. Nepal: A framework for effi-

ciently structuring applications for network processors. In Second Workshop on

Network Processors (NP2), 2002.

[31] Jathin S. Rai, Yu-Kuen Lai, and Gregory T. Byrd. Packet processing on a simd

stream processor. In Workshop on Network Processors and Applications - NP3,

February 2004.

[32] Madhusudana Seshadri and Mikko Lipasti. A case for vector network processors.

In Proceedings of the Network Processors Conference West, pages 387–405, 2002.

[33] Niraj Shah. Understanding network processors. Master’s thesis, University of

California, Berkeley, September 2001.

[34] Burton Smith. The architecture of hep. In Parallel MIMD Computation: HEP

Supercomputer and its Applications, Scientific Computation Series, pages 41–55,

1985.

[35] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a robust software-

based router using network processors. In Proceedings of the 18th ACM Sympo-

sium on Operating Systems Principals (SOSP), October 2001.

[36] Dean Tullsen, Susan Eggers, and Hank Levy. Simultaneous multithreading: Max-

imizing on-chip parallelism. In Proceedings of the 22nd Annual International

Symposium on Computer Architecture, pages 392–403, 1995.

[37] Ning Weng and Tilman Wolf. Pipelining vs. multiprocessors. In Proceedings

of Advanced Networking and Communications Hardware Workshop (ANCHOR

2004), 2004.

BIBLIOGRAPHY 88

[38] Tilman Wolf and Mark A. Franklin. Design tradeoffs for embedded network

processors. In International Conference on Architecture of Computing Systems,

2002.

