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Abstract

Decades of technology scaling have made available an unprecedented amount of compu-

tational power from today’s integrated circuits. However,continued process scaling has

come at the price of ever more exotic process technologies and complex designs. Due these

difficulties, the non-recurring engineering cost of customASIC development is growing,

making ASICs economically infeasible for all but the highest volume parts. However, fu-

ture applications will require more efficient, high-performance computation than general

purpose processors can provide. One promising approach to breaking this impasse is to use

reconfigurable architectures that keep the low non-recurring engineering costs of general

purpose silicon, yet still provide efficiency and performance near that of custom ASICs.

While there is a large body of work on designing reconfigurable computation, reconfig-

urable memory systems have been largely ignored. In this work, we examine how to add

reconfigurability to the memory system.

Looking closely at how memory is used in modern digital systems, we recognized that

the most common memory structures, such as caches, FIFOs, and scratchpads, use very

similar memory building blocks. By adding a few meta-data bits and a small amount of

peripheral logic to a basic SRAM array, we designed a reconfigurable memory mat that

could form the core of a many common memory structures. Adding a flexible interconnec-

tion network between the mats and the computation facilitates aggregation of the mats into

larger, more complex memory structures.

To evaluate our design, we implemented a prototype reconfigurable memory testchip

in a 0.18µm CMOS technology. The testchip operates at 1.1GHz at the nominal 1.8V

Vdd and room temperature. The prototype uses a 16kb SRAM mat and achieved area and

power overheads of 32% and 23% of the totals respectively. Our projections show that the
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reconfiguration overheads can be reduced to below 15% of the area and below 10% of the

power by using larger capacity SRAMs. The testchip shows that we can build a generic

reconfigurable memory block that can form the basis of many different memory structures,

while maintaining high-performance and low power.
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Chapter 1

Introduction

Decades of technology scaling have made available an unprecedented amount of compu-

tational power from today’s integrated circuits. This has opened up new application areas

such as computational biology and ubiquitous computing, where previously computation

was either not powerful enough or not efficient enough to attack the problem. These types

of new application areas will keep up the demand for ever moreefficient, high-performance

computation.

However, continued process scaling has come at the price of ever more exotic process

technologies and complex designs. Designers face increasing difficulties such as intercon-

nect delay, device mismatch, leakage, power density constraints, and complexity manage-

ment. Due these difficulties, the cost of custom ASIC development is increasing at an

alarming rate. Within the next few process generations, thecost of mask sets will exceed

$1 million [1], and the design costs will reach into the tens of millions of dollars [2].

For system designers, the increasingly high cost of custom ASIC development means

that the highest performance, highest efficiency solutionsfor their applications are becom-

ing economically infeasible. Broadly speaking, system designer can choose to use off-the-

shelf parts or custom design an ASIC for their application. The off-the-shelf parts have

low non-recurring-engineering costs, yet lag the custom ASICs in performance and effi-

ciency, sometimes by orders of magnitude [3]. Further, the off-the-shelf, general purpose

processor solutions are losing steam, running out of available parallelism and encountering

1



CHAPTER 1. INTRODUCTION 2

architectural scaling problems [4]. While some applications can still use off-the-self pro-

cessor and memory solutions, a growing number of applications need better performance

and efficiency than off-the-shelf components can provide, but cannot economically justify

custom ASIC development.

These applications have stimulated a growing interest in reconfigurable computing so-

lutions. Field programmable gate arrays (FPGAs) [5][6] have been commercially available

for quite some time and have been gaining in popularity as fast prototyping and emulation

platforms. Additionally, a number of academic and industryefforts have combined a gen-

eral purpose processor with an FPGA fabric [7][8][9] for both ease of programming and

reconfigurability. Further, some next-generation computing architecture projects have ex-

plored architectures that can exploit multiple types of application parallelism [10][11] and

even entirely polymorphic computing architectures [12][13][14].

These solutions bridge the gap between custom ASICs and general purpose solutions by

allowing the user to customize a pre-fabricated reconfigurable component. Thus the non-

recurring-engineering costs remain low, while the performance and efficiency are better

than those of off-the-shelf, general purpose solutions [4][15][16]. However, these solutions

still lag custom ASICs in performance and efficiency due to limitations in their reconfig-

urability and overheads associated with that reconfigurability [3][15]. This illustrates the

fundamental design trade-off between efficiency and flexibility: the more general-purpose

a system, the less efficient it is at a specified task; a highly directed design can be extremely

efficient at the target application, but is very inefficient at other tasks.

While there is a large body of work on how to design reconfigurable compute units, the

memory systems of such designs have been largely ignored. Many systems with reconfig-

urable computation, have entirely hardwired memory systems [12][14]. FPGAs have only

recently added small, somewhat reconfigurable memory blocks in the computing fabric.

However, the memory system plays a critical role in determining the performance, power,

and cost of modern machines [17][18]. Just as every application has unique compute re-

quirements, every application has unique memory access patterns which perform optimally

using different memory paradigms. A memory system that can be reconfigured to match

the application memory access pattern requirements can significantly boost both the per-

formance and efficiency of the system. Building such a memorysystem is the goal of this
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thesis.

1.1 Organization

To set the stage for our discussion of reconfigurable memory,we begin in Chapter 2 by

reviewing contemporary SRAM design techniques. These techniques include: array par-

titioning; post-charged decoder logic; datapath circuit design; control and clocking using

replica timing; and efficient data and address signaling anddistribution. We then examine

how these highly optimal SRAM blocks are used to form caches,FIFOs, and scratchpads

in modern memory systems.

Chapter 3 explores motivating factors for reconfigurable memory and the architecture

of our proposed memory system. The architecture is driven from below by memory circuit

design considerations and driven from above by the requiredarchitectural flexibility. We

also detail the design and implementation of the base reconfigurable memory block called

amemory mat.

We continue the description of the proposed memory system inChapter 4 by detailing

the interconnection networks between the memory mats and between the mats and the

computation. Each network has unique communication requirements and characteristics,

and we tailor the implementations to efficiently meet those needs.

To explore the feasibility and overheads of our architecture, we designed and imple-

mented a prototype reconfigurable memory testchip. Chapter5 describes the testchip im-

plementation and measured results. From these results, we extrapolate to larger, more

complex implementations of the proposed reconfigurable memory system.



Chapter 2

SRAM Design

In today’s processors and ASICs, one of the most voracious consumers of die area and

device count is the on-die memory. The predominant memory technology used on-die with

computation is 6T SRAM. While embedded DRAM has appeared in anumber of aca-

demic and commercial designs, such as the Berkeley IRAM project [19], gaming consoles

[20][21], and the Mosys 1-T “SRAM” memory block [22], it has not been widely used due

to the additional cost of a merged logic-DRAM process and higher design complexity. A

6T SRAM memory, however, can be manufactured in a standard logic process and contin-

ues to offer high-performance at a reasonable density and power dissipation. SRAMs will

likely remain the dominant on-die memory technology, as SRAM cells have already been

demonstrated down to the 32nm technology node [23].

A 6T SRAM cell uses a pair of cross-coupled inverters as its bi-stable storage element

with two additional NMOS devices for read and write access (Figure 2.1). The cells are

aggregated into cell arrays to share the decoding and I/O logic (Figure 2.2). On a read, the

decoder raises the wordline (WL) of the desired word. The bitlines (BL andBL b) have

been precharged to a reference voltage, and the cell drives adifferential current onto the

bitlines according to the stored value. The cell current is relatively weak for the bitline

capacitance, so to speed the read operation, a sense amplifier in the I/O logic amplifies the

bitline differential voltage to produce a full swing logic value. On a write, the write driver

in the I/O logic places the write data onto the bitlines as full-rail signals. The decoder again

raises the wordline of the accessed word, and the cells storethe new data values. A number

4
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WL

Vdd Vdd

a a_b

BL BL_b

Figure 2.1: 6-transistor SRAM cell

of cell columns can share I/O circuitry via the column multiplexor. There are a number of

ways in which designers have optimized the architecture andcircuit design of SRAMs to

improve the performance and energy efficiency. In this chapter, we will review a few of the

most prevalent and significant optimizations.

2.1 Array Partitioning

While the simple monolithic cell array architecture in Figure 2.2 is appropriate for small

memories on the order of a few Kbytes, for larger memories, designers partition the cell

array for better performance and energy efficiency [24][25][26]. For partitioned arrays, we

will use the same terminology as Amrutur [24] to describe thepartitioning. An SRAM is

divided intonmmacros, each of which is accessed simultaneously. Every macro operates

independently, with the exception of possibly sharing a portion of the decoder with the

other macros. Each macro contains a portion of the accessed word called the sub-word.

Each macro is again divided into a number of blocks. The requested sub-word is contained
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Figure 2.2: SRAM block diagram
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entirely in the block, which we define as an array of cells thatshares local wordline drivers

and bitline I/O circuits.1 Each block hasbw cells in a row, andbh cells in a column. The

bitlines run vertically, and the wordlines run horizontally.

Figure 2.3 shows an example partitioning of a 512Kb SRAM. TheSRAM has 4 macros,

each with 8 16Kb blocks. The blocks are 128 rows by 128 columns(i.e. bh= 128 andbw=

128) and have an access width of 16b. The 16b access width requires each block to perform

8:1 column multiplexing.

word

16 16 16 16

128

12
8

macro

16Kb
block

64

sub−word

Figure 2.3: Partitioned 512Kb SRAM array using 4 macros eachwith 8 16Kb blocks

In a partitioned SRAM only a portion of the array is activatedevery access. By us-

ing hierarchical wordline decoding [27][28] and hierarchical bitline architectures [29], de-

signers can keep the lines short and avoid significant wire RCdelays. The shorter, lower

capacitance lines and partial activation of the array serveto reduce the energy per access.

1A block can be though of as logically a monolithic cell array,but in practice it does not have to be. For
example, a block could place the decoder in the middle of the cell array to reduce the wordline RC delay, and
thus actually contain two monolithic cell arrays.
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Partitioning does, however, decrease the area efficiency ofthe SRAM, and designers must

trade that off against the improved energy and performance.Eventually this increase in the

area offsets the gains from a smaller block and is detrimental to the overall performance

and energy dissipation of the memory [24]. The optimal blocksize depends on the opti-

mization goal (e.g. delay, energy, area, energy-delay), SRAM architecture, circuit style,

and technology, but typically is in the 16KB to 128KB range and is not a strong function

of process technology [25][30][31][24].

Total Capacity

B
lo

ck
ca

p
ac

ity

16Kb 64Kb 256Kb 1Mb 4Mb 16Mb 64Mb

1Kb

4Kb

16Kb

64Kb

256Kb

1Mb

Figure 2.4: SRAM block size survey (see Appendix A)

Figure 2.4 shows a scatter plot of the block sizes for a numberof recent SRAM designs.

The detailed characteristics and full citations of the SRAMs can be found in Appendix A.

With the exception of a few outliers, most of the SRAMs have partition sizes that lie be-

tween 16Kb and 128Kb. This bears out the conclusions of both Amrutur [24] and Evans

[25] that the optimal energy-delay partition size falls within this range. The SRAMs plotted

were fabricated in processes that span the 90nm to 0.65µm technology generations. The

large block outliers are SRAMs that were optimized for area efficiency. The small parti-

tion outliers are SRAMs that were optimized for extreme low power or high performance

operation.
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For a partitioned SRAM, we can break the memory access down into four phases: re-

quest transport, block decode, block datapath, and reply transport. In therequest transport

phase, we send the the address and data from the global inputsto the requested block. A

portion of the decode may occur during this phase in the selection of which block to access

[27][28]. Theblock decodephase is the local decode from the block address input to the

local wordline assertion. Theblock datapathphase is from the wordline assertion through

the cell driving the bitlines to the output of the local senseamplifier or the cell writing in

the data on the bitlines. Thereply transportphase is from the output of the local sense

amplifier to the global data output. This phase is only necessary if the request returns data.

Other researchers have chosen to break a memory access into two parts, calling our first

two stagesdecodeand last twodatapath, but as we will see in Chapter 3, our four segment

division is logically cleaner for our reconfigurable memorydesign.

2.2 Decoder Design

The decoder logic can be thought of as a series of high-fanin AND gates with a very low

activity factor. For a memory with2n words, the decoder is logically 2n n-input AND

gates, designed such that only one AND-gate fires (i.e. raises its wordline) for a given n-bit

address input. The decoders are usually hierarchical [27][28] sharing pre-decoder gates for

common boolean terms. The address inputs are typically clustered into pre-decode groups

of three to four bits for pre-decoding. The pre-decoder outputs are then combined in the

global and local row decoder gates to generate the block wordline.

For a fast decoder, we would like to use a low logical effort [32] logic family like

precharged domino logic. However, while domino logic wouldprovide high performance,

the precharge phase is excessively wasteful in energy for decoders, because decoders have

an inherently low activity factor. On each access, only a small percentage of the gates in the

decoder fire. But in precharged logic, the precharge controlsignal goes to all gates in the

decoder and drives the gate capacitance of all the reset devices, regardless of whether they

have discharged or not. This is excessively wasteful in energy, because we only needed to

reset the gates that fired. Ideally, we would only reset thosegates, because all other gates

would not require resetting.
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To retain the high-performance of precharged logic, but achieve low-power, designers

instead use post-charged, self-resetting logic styles in the decoder [33][34]. As the name

implies, a short delay after a self-resetting gate asserts its output, it resets itself . The

output is a pulse whose pulsewidth is set by the self-reset delay. The pulse-mode nature of

these gates allows us to carefully control the pulsewidth ofthe wordline which is critical

for decreasing the read power [35]. For a read, the wordline pulsewidth determines how

long the accessed cells drive the bitlines and thus the read bitline swing and bitline energy

dissipation. Generally, the wordline pulsewidth is set to be just long enough to generate the

bitline differential voltage needed to overcome offsets inthe sense amplifiers. Section 2.3

discusses this further.

M1

Vdd Vdd VddVdd

in0

in1

r3

out

n0

M2

M3

M7

M6 M4

M5

M0

Figure 2.5: Self-resetting, 2-input, AND gate

Figure 2.5 shows the circuit schematic for a simple, self-resetting, 2-input, AND gate.

Figure 2.6 shows the timing diagram for the gate. When both inputsin0 andin1 pulse high,

M2 andM3 pull noden0 low. N0 going low pulls the outputout high through theM4/M5

inverter. After the three inverter delay,r3 goes low turning on the reset deviceM6. M6 pulls

n0 high, back to its quiescent state. We could wait for theM4/M5 inverter to pullout low
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out

r3

in0

in1

n0

Figure 2.6: Self-resetting, 2-input, AND gate timing diagram

again, but we can speed theout transition edge using an explicit reset deviceM7. Both in0

andin1 are assumed to be pulses and must be low by the timer3 goes low, turning onM6,

to avoid a drive fight betweenM2/M3 andM6. The gate that generatesin0 and in1 must

carefully control their pulsewidth to avoid this drive fight. Other designs for self-resetting

gates can operate correctly without this restriction on theinputs [31].

We can skew the NAND gate formed byM0-M3 for a fast assert edge,n0pull-down, and

theM4/M5 inverter can be skewed for a fastoutpull-up. This speeds the assert transition of

the output, but slows the reset transition. By adding the explicit reset devicesM6 andM7

we can also have a sharp reset edge (i.e. outpull-down). Thus we can precisely control the

pulsewidth of the output, which is key for controlling the read bitline swing and minimizing

the read power [35].

Using self-resetting gates allows the decoder to achieve both high-performance and

low-power. In 2001, Amrutur and Horowitz explored the design space and found that the

optimal decoding structure consists of a mixture of different types of dynamic AND gates

[34]. Their optimal decoder uses an initial stage of clockedNambu OR-gates [36], followed

by self-resetting, source-driven NAND gates [37][38].

The Nambu OR-gate allows us to use a fast dynamic NOR gate topology, while keeping

the power dissipation low. If we used a traditional dynamic NOR gate in the predecoder,
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n0

Vdd Vdd

VddVdd

clk

clk

in0

out

in1

Figure 2.7: Nambu OR-gate

then for each predecoder, all but one of the outputs would transition. Only the gate that had

all its inputs low would not transition. While this would be afast circuit topology, it would

dissipate a lot of power. The Nambu OR-gate retains the fast dynamic NOR topology,

but avoids high power dissipation, by directly cascading two dynamic stages as shown in

Figure 2.7. Correct operation of the gate relies on the dynamic NOR evaluating faster than

the following dynamic inverter and requires careful sizingand simulation.

A source driven NAND gate (Figure 2.8) implements the NAND function using a circuit

topology that only has a single NMOS device in the pull-down stack. One of the inputsin n

drives the source of the NMOS device rather than a transistorgate.In n is asserted when it

is low, andin p is asserted when it is high. Thus, when both input are asserted the NMOS

device has a full Vdd across its Vgs and is fully on. This gate can achieve delay near that of

an inverter, while still performing the NAND function. Thistype of gate has also be used

with half-swing inputs to reduce power dissipation if low-Vt devices are available [39][40].



CHAPTER 2. SRAM DESIGN 13

WL

Vdd

in_p

in_n

out

Figure 2.8: 2-input source driven NAND gate

2.3 Datapath Design

The block datapath phase is from the assertion of the wordlines through to the cell I/O

circuits. The cell I/O consists of the read sense amplifiers,the write drivers, and the bitline

reset devices. Both the sense amplifiers and write drivers may have a column mux between

them and the bitlines if they are shared among multiple columns.

2.3.1 Sense Amplifier

On a read access, the cells in the selected row drive a differential current on to the bitlines

based on their stored values. The bitlines have been previously equalized and reset to a

reference voltage by the bitline reset devices. While we could simply wait until the bitlines

have slewed full-rail to a digital logic value, to save powerand reduce the read delay, most

design use sense amplifiers to sense the the bitlines as soon as their differential voltage

has reached approximately 100mV, enough to overcome the built-in sense amplifier offsets

[35]. When the sense amplifiers are enabled, the wordlines are also shut off to prevent

additional, unnecessary swing of the bitlines and wasted power.

To further reduce power dissipation, designers have eschewed static sense amplifiers,

in favor of clocked designs. Figure 2.9 shows a commonly usedlatch-type sense amplifier.

Clocked sense amplifiers have a sense enable signalsethat triggers the sensing. The figure

shows a 2:1 column multiplex using only PMOS devices. This assumes that the bitline

reference level is Vdd, so we only need PMOS devices for the passgate column mux. Some



CHAPTER 2. SRAM DESIGN 14

lower reference levels (e.g.Vdd/2) may require a full transmission gate for the column mux.

sel[1]

Vdd Vdd

se

bit[0] bit[1] bit_b[0] bit_b[1]

sel[0]

Figure 2.9: Latch-style sense amplifier

There are many different clocked sense amplifier circuits, including both voltage mode

and current mode designs. SRAMs that are willing to swing thebitlines full-rail on a read

can use skewed inverters for simple single-ended voltage mode sensing.

2.3.2 Write Driver

On a write access, the write driver sets the bitlines to the input data value. After the decoder

asserts the selected wordline, the cell stores the data value on the bitlines. For a success-

ful write, the bitlines must typically swing full-rail or nearly so. There has been some
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work on low-swing writes, but the proposed techniques have not been widely adopted

[41][42][39][40][31][43][44][45]. The write enable control signalwe controls when the

write driver asserts the input data value on the bitlines. Weuse an NMOS only passgate

mux for the 2:1 column multiplexor, because the write driverpulls the bitline to ground

but relies on the bitline reset to keep the bitline that remains high near Vdd. The write

drive as shown has three NMOS devices in a series stack. For a low effective resistance,

this would require the NMOS devices to be quite large. To reduce the stack height, we can

pre-compute the AND ofweanddataanddata b, and only have two devices in the stack

(Figure 2.11).

bit[1]

bit bit_b

data data_b

sel[0]

sel[1]

we

bit_b[1]bit_b[0]bit[0]

Figure 2.10: Write driver with 2:1 NMOS-only column mux
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data_b

bit_b

bit_b[1]bit_b[0]

bit

sel[0]

sel[1]

bit[0] bit[1]

we we

data

Figure 2.11: Write driver with reduced NMOS stack height

2.3.3 Bitline Reset

The bitlines sit at a pre-determined reference voltage level when the block is not active.

On a read or write the bitlines deviate from that reference voltage, and the bitline reset

circuits restore the bitlines to the reference voltage level after an operation. The bitline

loads can either be static or clocked. Static loads do not require any complex control or

clocking, but dissipate static power anytime the bitlines deviate from the reference voltage.

Most modern designs use clocked reset circuits like the onesshown in Figure 2.12. The

reset devices pull the bitlines to the reference voltage, typically Vdd, when the bitline reset

control signalbl rst b is asserted (low). The shorting device ensures thatbit andbit b reset

to the same voltage level which is especially important for reads.

There have been some designs that use a lower bitline reference voltage, usually Vdd-

Vt or Vdd/2, to reduce the bitline energy [39][40] and to reduce leakage onto the bitlines

from nominally unselected cells [46], but again, these techniques have not been widely

adopted.

The amount of bitline reset required is typically quite different for reads and writes. On

a read, the bitlines only dip about 100mV from the Vdd reference level, but on a write, one
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bit_b

Vdd Vdd

bl_rst_b

bit

Figure 2.12: Bitline reset circuit

of the bitlines is driven to Gnd. Given the very different swings that need to be corrected,

some designs have separate read and write bitline reset circuits. The write reset circuits

use larger devices, because one of the bitlines must be brought all the way from Gnd to

Vdd. Figure 2.13 shows a split reset circuit using larger recovery devices for the write reset

which are enabled bywr bl resetb.

small

Vdd Vdd

Vdd Vdd

bit bit_b

bl_rst_b

wr_bl_rst_b
largelarge

small

Figure 2.13: Bitline reset circuit with split read and writereset

Designers can also add static or pseudo-static keeper devices on the bitlines to mitigate
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the effects of leakage and crosstalk. A static load can be built using a grounded gate PMOS

device with the source connected to Vdd and the drain to the bitline. A pseudo-static load,

similar to those used in dynamic logic gates, consists of an inverter driving a PMOS device

as shown in Figure 2.14. The advantage of this technique is that the keeper PMOS device

shuts itself off during writes, thus avoiding excessive power dissipation. However, it may

be difficult to fit the extra devices needed for the pseudo-static load in the small horizontal

cell pitch.2 Some designs have used more complex techniques to actively compensate for

the leakage onto the bitline due to nominally off cells [48][49][50].

small

Vdd Vdd

Vdd Vdd

Vdd Vdd

bl_rst_b

wr_bl_rst_b
largelarge

small small

bit bit_b

small

Figure 2.14: Bitline reset circuit with pseudo-static keeper circuit

2This may become less of an issue as designers move to a short, wide cell layout for shorter bitlines and
better manufacturability [47].
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Table 2.1: SRAM control signals

signal name unit operation description
se sense enablesense amplifier read enables sense of bitlines
we write enable write driver write enables drive of write data onto bitlines

bl rst bitline reset bitline load both turns on bitline reset devices
wl wordline cells both turns on cell access devices

2.3.4 Clocking and Control

An SRAM has a number of key control signals whose timing relationships must be tightly

controlled to maintain correct operation. There are additional timing relationships that can

be maintained for high-performance, low-power operation.Table 2.1 lists some of the key

control signals.

We can generate the control signals either by delay matchingor clock selection. The

clock selection method requires that there be a number of finely spaced clock signals avail-

able. Either by simulation-based dead reckoning at design time or by a training sequence,

we generate the control signals from the clock edges that correspond most closely with the

ideal control signal edges [51].

The delay matching method generates the control signals based on replica timing paths

that match the delay of the SRAM access path [52][31]. Matching the delay of elements

in the decoder is relatively easy, because the decoder consists of logic gates and buffers.

By using delay elements that are made up of identical gates orusing logical effort and

simulation, a delay element can be made that matches the decoder delay reasonably well

across process, voltage, and temperature variations [31].

However, during a read, there is an element in the SRAM accesspath that is not a logic

gate, namely the cell driving the bitline. Matching the delay of the cell driving the bitline is

critical for accurately generating the sense enable signalthat activates the sense amplifiers.

If we assert the sense enable signal too early, there may not be a sufficient differential

voltage on the bitlines to overcome offsets in the sense amplifier, and the sense amplifier

may latch-in incorrect data. If we fire the sense enable too late, the SRAM will still operate
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correctly, but the performance will not be optimal. Amrutur[35] showed that a logic delay

chain does not track the read bitline delay very well over a range of process, voltage, and

temperature variations.

However, a replica bitline that mimics the delay of the actual bitline can track the actual

bitline delay well over process, voltage, and temperature variations. To mimic the actual

bitline as accurately as possible, we use a driver cell on thereplica bitline that is identical

to a real SRAM cell, except that it has a hardwired stored value. Unlike the actual bitline

that only swings approximately 100mV, the replica bitline must generate a full digital logic

level output level. We can accomplish this by either a capacitance ratioed or current ratioed

replica bitline [35]. A capacitance ratioed replica bitline uses a single driver cell and a

replica bitline that is a fraction of the length and capacitance of the real bitline. A current

ratioed replica bitline uses a full length and capacitance bitline, but use multiple driver cells.

The exact length of the replica bitline in the capacitance ratioed case or the exact number

of driver cells in the current ratioed case can be fine tuned insimulation to match the actual

bitline delay. Figure 2.15 illustrates the two types of replica bitlines. The capacitance

ratioed replica bitline uses a rblk times shorter than the real bitline, and the current ratioed

replica bitline usesj times the drive strength as a regular cell.

While a replica bitline does track the actual bitline much better than a chain of logic

gates, the tracking is not perfect. Additionally, despite careful simulation-based tuning, the

replica path and the actual path may differ due to random device mismatch, inexact mod-

eling, or local voltage and temperature variations. To ensure that the memory will operate

correctly under worst-case conditions, designers pad the the replica path by between 10%

and 30% extra delay. This extra time may end up being wasted time if the actual path is

faster than the replica path, but ensures correct operationunder worst-case conditions.

2.4 Transport Design

The request and reply transport phases transfer the addressand data to and from the memory

block. These phases of the memory access can account for the majority of the delay and

energy in large, partitioned memories [25][31]. Designersuse a number of techniques to

reduce the delay and power of the transport phases.
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Figure 2.15: Capacitance and current ratioed replica bitlines
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In his SRAM design space study, Evans concludes that “multiplexed address line” de-

signs that route address and data to the blocks are optimal for low energy and high per-

formance [25][53]. These designs perform a portion of the decode in the interconnect in

selecting which blocks should be accessed. Broadcasting the request and reply data and

address to all blocks is excessively wasteful of energy.

rcv
+

clk

data_out

data_b

data

wire

wire

drv

drv

Figure 2.16: Example differential low-swing interconnect
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Figure 2.17: Example low-swing driver, sized for a 0.18µm technology[54]

To reduce the energy of the transport further many memories use low-swing signaling

[31][39][40]. Low-swing schemes can also improve the performance of the interconnect

over full-swing methods [55][54]. There are a number of low-swing signaling techniques

that have been used in memories and other types of designs [55][56]. Figures 2.16-2.18
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Figure 2.18: Example low-swing interconnect receiver, sized for a 0.18µm technology[54]

show an example low-swing interconnect system. The wires are precharged to Vlow, a

voltage near ground. The drivers conditionally pull the wire to Gnd based on the data. The

modified StrongARM latch [57] at the far end amplifies the low-swing differential input

voltage to a full-swing signal.

Low-swing signaling can, however, require an extra supply and precise clocking of the

receiver sense amplifiers. Additionally, the small swings can be susceptible to noise, but

this can be mitigated by careful circuit design and layout [39][40][54]. The low-swing

drivers and receivers can be merged with the routing logic ina “multiplexed address line”

design.

Since a large portion of the access delay can be in the transport, we can increase the

cycle rate of the memory by pipelining in the transport. Manymicroprocessors already

allocate multiple cycles for a cache or even a register file access due to the interconnect de-

lay. By pipelining in the transport we minimize the necessary latching elements by placing

them before the block decoder.
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2.5 Memory Systems

In the previous sections, we have reviewed the basic architecture of a partitioned mem-

ory array and a number of contemporary SRAM circuit techniques for achieving high-

performance and low-power. These highly optimized SRAMs are rarely used by them-

selves, but rather aggregated together to form more complexmemory systems. On modern

processors and ASICs, the on-die memory system occupies a large percentage of the die

area and has a large impact on performance and power dissipation.3 For current system-on-

a-chip ASICs, the memory occupies on average over half of thedie area [58][59]. Similarly,

memory occupies a large portion of the die on modern general purpose CPUs. For exam-

ple, on a recently reported Intel Itanium 2 processor, the caches account for over 73% of

the total device count and occupy over 50% of the die area [60].

Digital systems use memories for a variety of functions, butthey typically fall into one

of three categories: scratchpads, caches, and FIFO buffers. Scratchpads are simple, fast,

software-managed, local memories mapped directly into theaddress space for storing fre-

quently used data and instructions [61]. For fast, deterministic access times, scratchpads

are typically small and located close to the computation. Onthe other hand, caches facili-

tate fast access to much larger memory spaces for access patterns that exhibit temporal or

spatial locality by remapping locations of a larger memory space into a smaller, faster cache

memory. Caches improve performance and efficiency of the memory system by hiding the

latency of large, slow storage or by filtering requests to bandwidth limited resources such as

off-chip DRAM. Some access pattern, however, do not exhibitlocality, but rather streaming

behavior [62][63][64]. Theses access patterns perform most efficiently with a FIFO stream

buffer memories [65][66][67][68]. FIFO structures can also be used to provide elasticity

between blocks with variable or bursty computation rates.

Even within each memory type there can be a multiplicity of different functionality.

For example, while a cache for a large microprocessor may store coherence protocol in-

formation, replacement policy information, speculative state, or dirty information for each

3While the on-die memory itself may not necessarily be the dominant source of power dissipation, it
can have a large impact on the number of off-chip memory requests issued. This off-chip I/O can be quite
expensive in both power and performance. Additionally, theleakage power from large memory structures
can be significant.
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line. These extra meta-data bits may require special handling such as read-modify-write

functionality. However, a cache for a small micro-controller may simply store a valid bit,

and not require any additional functionality. Further, thelarge microprocessor’s caches

are likely to be multi-way set associative and organized in ahierarchy, while the micro-

controller may only have a single level of relatively small caches. While these memory

structures can have widely varying functionality, on closer examination, all of them are

quite similar in implementation. Each of them can be decomposed into a number of RAM

blocks, interconnection between the blocks and the computation, and interface logic be-

tween the computation and the interconnect.

Processors and ASICs often include examples of all three types of memories in various

sizes and forms on the same die. On a processor, the are many caching structures (e.g.

main cache hierarchy, branch target buffer, TLB), FIFOs (e.g. instruction queue, reorder

buffer, reservation stations, DRAM write buffer), and scratchpad memories (e.g. register

file). Even on more application specific chips such as multimedia processors and ASICs,

there can be a mixture of these memory types [69][70][71][58]. The reason for this variety

of memory structures on-die is that different parts of the design have different memory

requirements, and each memory type is most efficient for a certain type of access patterns.

On a larger scope, the memory systems of ASICs targeted at different applications vary

widely, because they are optimized for different applications with different memory access

patterns.
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Reconfigurable Memory Architecture

A conventional hardwired memory system is typically implemented for best average-case

performance and efficiency, which is acceptable for an ASIC with a very narrow application

range, but for a general purpose design, a hardwired memory system that cannot adapt to the

varying memory access characteristics across a range of applications can be a substantial

hindrance. Because the memory system is often the bottleneck for applications [17], a

sub-optimal memory system can significantly degrade the performance and efficiency of

the design [18][72][73][74]. If we had a configurable memorysystem, each application or

application segment could have a memory system tailored to its specific needs and thus run

faster and more efficiently [75][76].

A number of researchers have sought to build memory systems that could adapt to the

application characteristics. The concept of caching is a way to dynamically reconfigure

the memory to suit the application based on its past memory access behavior. Researchers

have further enhanced cache performance and efficiency by altering the cache structure

itself to meet the application needs. These enhancements have included reconfiguring the

line size [72][77], the set associativity [78][18][72][79], and shutting off unneeded lines or

banks [80][81][82]. Some proposed caches have a direct access, scratchpad-like mode that

eschews the tag check to save power [83]. A few DSP chips can even redistribute memory

resources between instruction cache, data cache, and scratchpad memory, on a cache way

granularity [84][85]. Some researchers have gone further by adding the ability to alter the

balance between compute and memory by reconfiguring the caches to become computation

26
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[86].

Reconfigurable memory of a different sort can be found on commercial FPGAs and

coarse-grain reconfigurable computing fabrics. To providethe local memory that appli-

cations need for buffering and local data storage, designers have included block RAMs

distributed throughout the computing fabric which have lower overheads than using the

configurable logic blocks (CLBs) as memory [6][5][87][14][88]. These block RAMs can

reconfigure their access width, many can become FIFOs, and some can be configured as

CAMs or logic blocks [89][90]. These designs provide relatively bare memory modules

and use the surrounding configurable logic fabric to create any higher-level functionality

needed by the system. However, the high overhead associatedwith the configurable logic

degrades the performance of more complex memory functions.

The extant work on reconfigurable memory has focused on the architectural aspects of

reconfiguring the memory, but has largely ignored the circuit-level effects of adding re-

configuration to a cutting-edge memory design. As an example, the FPGA block RAMs

specifications are fairly inefficient and slow when comparedto current, cutting-edge, em-

bedded SRAM designs [5][91]. In this work, we take a different approach to the problem

by looking at reconfigurable memory design from a bottom-up,tabula rasaperspective,

starting with the circuit design of the memories themselves, and then examining where and

what architecturally useful configurability can be added for low overhead. To provide a re-

alistic evaluation, we apply modern, full-custom, circuittechniques to both the SRAM and

the peripheral logic, which allows us to achieve performance and power on par with con-

temporary embedded SRAMs. To guide our development of the additional logic, we target

three different memory configurations: caches, FIFOs, and scratchpads, but the resultant

reconfigurable memory design is not limited to these configurations.

3.1 Reconfigurable Memory Architecture

Our reconfigurable memory systems consists of three sections: the memory, the intercon-

nect, and the interface logic. Figure 3.1 shows the block diagram of the architecture. For

our design, we leverage the natural partitioning of large SRAMs into smaller blocks, by

adding reconfiguration on these partitioning boundaries. By choosing the reconfiguration
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grain size based on circuit- and VLSI-level concerns, we avoid over or under partitioning

the array and minimize the reconfigurability overhead costs.
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Figure 3.1: Basic reconfigurable memory system architecture

The memory section consists of a homogeneous array of memoryblocks calledmats.

Each mat can be configured to be a portion of a cache, a FIFO, or scratchpad memory. We

choose the mat size based on the optimal energy-delay SRAM block size and the necessary

architectural flexibility. A small network called the inter-mat control network runs between

the mats allowing them to pass a few bits of control information to each other. Mats can be

aggregated together to form larger complex memories such ascaches, FIFOs, or scratchpad

memories. Figure 3.2 shows the block diagram of an example reconfigurable memory

system with 16 mats arranged as an 8 x 2 array. Figures 3.3 and 3.4 show this memory

system configured for caching and for stream processing respectively.
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Because many memory structures are internally very similar, we can use this general-

ized memory mat to form the core of many types of memories. However, memory struc-

tures do differ significantly in the way that they connect to the computation engine. For

example, a cache requires requests to two (or more) memory blocks, the tag array and the

data array. A FIFO, however, only requires a single memory request per access. To allow

maximum reconfigurability, we use a dynamically routed crossbar between the memories

and the computation. Each mat has its own independent port into the interconnection net-

work. The interconnect is actually two uni-directional interconnection networks: one for

memory requests from the computation to the mats, and one forthe reply from the mats

to the computation engine. The computation engine launchesrequests into the intercon-

nect, which are then dynamically routed to the addressed mats. The interconnect allows

for multi-casting from a single request port to multiple mats. The mat replies are always

routed back to the computation engine port that issued the request.

Memory structures can be quite varied in the way that they exist in the address space.

A scratchpad is typically mapped directly into the address space. However, a cache has no

mapping into the address space, but rather is a surrogate forthe main memory, and must

maintain the illusion that accessing the cache location is logically the same as accessing

the main memory location. A FIFO may be addressed as a unit, rather than on a per word

basis, with simple push and pop commands. The interface logic between the processor and

interconnect translates the address from the processor to ahardware location. This logic is

similar to the address centrifuge of the Cray T3E [92]. Chapter 4 provides more details on

the interconnect and interface logic.

3.2 Memory mat

A memory mat is a flexible memory block which can emulate a widevariety of memory

structures. The mat has a fixed access width, corresponding to the data word width of the

computation engine. While having variable access width would facilitate applications that

operate on smaller data widths, it decreases the efficiency of the memory [30] and compli-

cates the design of the mat, interconnect, and interface logic. We can however aggregate

multiple mats for wider access widths.
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One of the key features that distinguishes many of the memorystructures we wish to

emulate from basic RAMs is that they store status bits for each word of data. For example,

a cache tag may store a valid bit, the LRU status, the coherence protocol state, or the

speculation state for each cache line. A FIFO may store a full/empty bit for each data

word to indicate if the word holds valid data. In our reconfigurable memory, we support

these status bits by adding a generalized status bits calledmeta-databits to each data word.

These bits hold data about the data, hence the name “meta-data.” The meta-data bits are

read and written along with the main data on all accesses. Additionally, there are special

operations that only operate on the meta-data.

3.3 Operations

A mat can perform three basic operations:read, write, and a special meta-data operation

called agangoperation. A read reads the requested word, data and meta-data, from the mat

memory array and sends it to the mat data output. A write writes the accessed word, data

and meta-data, with the word presented to the mat data input.A gang operation operates

on all of the meta-data bits in the mat on a per-column basis ina single cycle.

A gang operation can set, clear, or leave alone (NOP) any combinations of meta-data

columns. For example, if there were 4 meta-data bits,md[3:0], with a single gang op-

eration, we could setmd[3], clearmd[2:1], and NOPmd[0]. Figure 3.5 illustrates this

example gang operation.

There are two additional mat operations used for reading andwriting the configura-

tion state,configuration readandconfiguration write. The configuration state is memory

mapped into a special address space accessible only via the configuration read and write

operations. The ability to read the configuration state is primarily a testability feature and

not strictly needed.

3.4 Operation Modifiers

There are four operation modifiers than can be applied to the three basic operations per

Table 3.1. An “X” indicates that the modifier can be applied tothe operation. The modifiers
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Figure 3.5: Example gang operation - set md[3], clear md[2:1], NOP md[0]

Table 3.1: Mat operation modifier applicability

Instruction Cmp Ptr RMW Cond

Read X X X X
Write X X
Gang X

are compare (cmp), pointer (ptr), read-modify-write (RMW), and conditional (cond). All

modifiers are orthogonal.

3.4.1 Comparisons

One of the most common logic operations following a memory read is a compare. For

example, the vast majority of accesses to a cache tag memory are reads followed by a

compare to determine if there is a cache hit. Some configurations may only want to perform

a comparison on a portion of the stored word. For example, in acache tag that stores both

LRU and valid information in the meta-data, a tag check will want to compare the outgoing

address to the stored tag and ensure that the valid bit is set by checking that the valid bit
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is set. But the check will not care about the state of the LRU information. So we want

compare the main data and the valid bit, but wildcard the LRU bits.

The memory mat supports a maskable compare modifier, that follows up a read opera-

tion with a comparison. Unlike a normal read, a compare requires data input for the value

to compare the stored value against. Additionally, for the maskable comparison, we need

a short mask field to determine which fields are to be compared.The mask field is one

bit longer than the amount of meta-data to allow us to mask outany combination of the

meta-data bits and the main data as a chunk. Comparator hardware is relatively small, so

embedding a comparator in each mat only has a modest area overhead.

3.4.2 Pointer Operations

Many memory structures have a level of indirection in the address path. A simple example

of this is a FIFO, in which an access is either a pop of the head or a push to the tail. A request

does not name a specific memory address to access, but insteada pointer, the head or tail, to

access. Internally, the FIFO maps the head and tail pointer to an actual memory location. A

more complex example of address indirection occurs in a cache, where the accessed word

is selected based on matching the memory access tag field. Ourmemory system requires

use of two (or more) mats to support this type of complex address indirection, one to store

the tags and another for the data.

We support one level of simple address indirection via pointer operations. Any read or

write can be a pointer access that names a pointer number to access, rather than a memory

address. A special block in the address path called thepointer logictranslates this pointer

number into a memory address. Each pointer has an associatedstride value that the pointer

logic uses to update the pointer value after an access. The pointer value updates are optional

and can be increments or decrements. The pointer and stride values are read or written using

configuration reads and writes, described later.

3.4.3 Read Modify Writes

A read-modify-write (RMW) operation is an atomic operationthat reads out a word of data,

performs a logic function on the meta-data, then writes the modified meta-data back into
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the previous accessed word. The logic function may take other inputs besides just the read

out meta-data. A write-modify-write operation is also possible, but the usefulness of such

an instruction is somewhat suspect.

An example use of this operation would be in a cache tag that stores LRU information

for each line. In a mat configured as the tag, the LRU bit(s) would be stored in the meta-

data. When the tag is accessed, we calculate the new LRU valuebased on the previous

LRU value, the local hit/miss result, and the global hit/miss result. By using a RMW

operation, we can perform this very simple logic and write the meta-data back all within

the memory. While the operation implementation may be pipelined internally, we maintain

the appearance of atomicity to all requesters. So if a RMW is immediately followed by a

read of the same word, the second read returns the updated meta-data value generated in

the modify logic.

3.4.4 Conditional Operations

Many memory structures have operations whose execution is contingent on an internal or

external condition. An example of a conditional operation based on an external condition

would be the data write of a cache. In the data memory, the write should only occur if there

is a hit in the tag. The hit signal must be passed from the tag memory to the data memory

to tell it whether or not to execute the data write.

A conditional operation based on an internal condition is contingent on a pattern match

against the meta-data of the word. An example of this would bea FIFO push, a write

into tail pointer location. The write is conditional on the FIFO having an empty slot (i.e.

the FIFO is not full). The write is therefore contingent on the meta-data bit storing the

full/empty information being 0 indicating an empty location. An internal conditional oper-

ation specifies the condition similar to specifying the maskfor maskable compares.

Any operation can be a conditional operation. A normal memory read does not alter

the state of the data word, and thus a conditional read does not seem strictly necessary, but

when aggregating multiple mats to form larger memory structures, a conditional read can

be useful. For any operation than can change the state of the word (i.e. a write or a read-

modify-write), a conditional operation is needed. A conditional gang operation requires
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Table 3.2: Conditional gang clear truth table

md[1] md[0] md[0]’
0 0 0
0 1 1
1 0 0
1 1 0

additional support as described next.

3.4.5 Conditional Gang Operations

A conditional gang operation gang sets or clears a meta-databit based on the value of

another meta-data bit. Figure 3.6 shows a conditional gang clear ofmd[0] based onmd[1].

If md[1] is 1, we clearmd[0], otherwisemd[0] is left alone. Table 3.2 shows the truth table

for this operation.
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Figure 3.6: Example conditional gang clear operation - clear md[0] if md[1] == 1
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Table 3.3: Mat I/Os

Signal Bits Description

opcode o pre-decoded one-hot control signals
address a memory address or pointer number
mask m+1 bit mask for compares and gang ops

mdatain m meta-data input
datain d data input

mdataout m meta-data output
dataout d data output
ext in e external control input
ext out e external control output

matchout 1 compare result
valid out 1 valid status of output data
complete 1 general completion signal

Systems that allow speculative memory operations such as the Hydra multiprocessor

[93] can make extensive use of conditional gang operations.Each processor in Hydra runs

a different thread, all but one of which is speculative. Hydra caches have a number of

special status bits that they use to keep track of the speculative state of the cache lines.

The Modified bit keeps track of whether a line has been speculatively written by the local

processor, set to 1 if it has. This bit would be stored in the meta-data of a mat acting

as the cache tag in a Hydra implementation on our reconfigurable memory system. If a

processor speculates incorrectly (e.g. speculatively reads a word that is later written by a

less speculative thread), then it must perform a backup and invalidate all lines in the cache

that it has speculatively written. If the Modified bit is set,then the processor has incorrectly

speculatively written the line and must clear the Valid bit.This requires a conditional gang

clear of the Valid bits based on the Modified bits.

3.5 Mat Interface

In order to support the variety of operations beyond simple reads and writes, the mat inter-

face is more complex than a basic memory. Table 3.3 lists the interface signals. Theopcode
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signal iso bits wide and indicates what operation the mat should perform. This takes the

place of the usual read and write enable signals. The mat address isa bits wide, meaning

the mat stores 2a words. In pointer and gang operations that do not need to provide an

address, we embed other necessary operation specifiers in the address. Pointer operations

embed the pointer number, update enable, and update add/subtract specifier. Gang oper-

ations embed thegangdata field, which is used in conjunction withmaskto determine

which columns to set, clear, or NOP. Compares also use themaskfield to determine which

bits to use in the compare. Themaskfield is one bit wider than the meta-data, because

compares can mask out the main data word as a chunk.

Each word hasd bits of main data andm bits of meta-data. The interface to the IMCN

used for communicating control information to/from other mats is via theebits wideext in

andext out signals. The mat exports control data onext out and receives it onext in. The

matchoutsignal is the result of the comparison. If the operation is not a compare, the signal

remains low. Thevalid signal indicates to the interconnect that the mat has valid data to

output. Thecompletesignal is a general purpose completion signal to tell the computation

that the memory request has executed successfully.

There are many ways to implement this reconfigurable memory mat architecture. The

next section presents a full-custom implementation that was used in the prototype testchip

discussed in Chapter 5.

3.6 Micro-architecture and Implementation

This section examines a full custom circuit design implementation of the reconfigurable

memory mat architecture that emphasizes tight integrationwith the SRAM core, low la-

tency, fast cycle time, and low overhead. Chapter 5 discusses additional details and exper-

imental results from the prototype testchip using this design. The SRAM design uses the

techniques discussed in Chapter 2 for high performance and efficiency.

To a basic SRAM array, we add meta-data and peripheral logic blocks to create a flex-

ible memory mat. The overarching goal for these additional logic blocks is to have small

performance, power, and area overheads, and yet be general and flexible enough to meet

the needs of many memory configurations. We generalize the logic blocks and functions
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as much as is feasible to increase hardware sharing across different configurations and to

increase flexibility.

For this peripheral logic, we primarily used hardwired logic, rather than reconfigurable

logic such as the look-up tables (LUTs) used in FPGAs, because we only need a few,

relatively simple peripheral logic blocks. By using hardwired logic, we ensure that the

logic will be small, fast, and efficient, at the cost of havingsome unused peripheral logic

blocks in some configurations. This also reduces the amount of configuration state and

reconfiguration time, because we don’t have large LUT arraysto program.

The peripheral logic can be broken down into two basic blocks: address logic and

datapath logic. The address logic sits between the address input and the memory array

decoder and operates on the address bits. The datapath logicsits between the data I/O and

the SRAM core and performs logic on the data read from or written to the memory array.

Figure 3.7 shows a block diagram of a generic memory buildingblock. Our design adds

the necessary peripheral logic blocks for the target configurations, as shown in Figure 3.8.

Despite adding this peripheral logic for additional functionality, we wish to maintain

high performance. Thus, we chose an aggressive cycle time goal of 10 fan-out-of-four

inverter delays (FO4) based on the achievable access times for SRAM arrays in the optimal

energy-delay size range. This short clock tick stresses thecircuit design of the memory

cores as well as the peripheral circuits. Due to this aggressive cycle time, the mat access is

pipelined, and the total delay through the mat is 2 cycles or 20 FO4. The first half-cycle is

spent in the pre-access logic: pointer logic or write buffer. The next full cycle is spent in

the SRAM access. The last half-cycle is spent in the post-access logic: control logic and

the comparator. The mat is fully pipelined, accepting a new request every 10 FO4 cycle.

In comparison to our memory system’s 10 FO4 clock cycle, state-of-the-art micropro-

cessors generally run at 15-20 FO4 [94], a typical synthesized custom ASIC at 40 FO4,

and FPGAs at around 100 FO4.1 While a few compute blocks [95] and caches [96][97] op-

erating at approximately 10 FO4 have been demonstrated in commercial microprocessors,

these units were usually internally “double pumped,” operating at twice the main clock

rate. One notable exception is the IBM/Toshiba/Sony Cell processor which does clock at

1While the theoretical maximum clock frequency of FPGAs is usually around 50 FO4, configured FPGAs
typically run at around 100 FO4.
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Table 3.4: Clock cycle comparison for virtual multi-porting

Clock cycle (FO4) Frequency in 0.18µm (MHz) Accesses per cycle

Memory 10 1000 1
CPU 20 500 2
ASIC 40 250 4
FPGA 100 100 10

11 FO4 [98]. The local memory of the Cell processor is pipelined [99] to meet the fast

clock cycle.

Running the memory system at a faster clock rate than the processor allows us to vir-

tually multi-port the memory. During a single processor cycle time, we could access the

memory multiple times, thus emulating the functionality ofa memory that has multiple

read/write ports. Even for a state-of-the-art microprocessor running at 20 FO4, we could

make two memory accesses per cycle with our 10 FO4 memory system. For an ASIC or

FPGA, we could make many more accesses per cycle, as detailedin Table 3.4.

By using a fast single-ported memory, rather than a true multi-ported memory, we can

achieve significant savings in both area and power, especially in systems that demand a

large number of ports [100]. In a virtual multi-ported memory, the accesses are staggered,

because the accesses are not truly simultaneous. This is less of a factor in systems where

the memory runs much faster than the processing units, sincethe memory accesses are only

staggered by a small amount of time (i.e. one memory clock cycle) from the processing

unit’s perspective.

To meet our aggressive access and cycle time goals, we employthe highly optimized

circuit techniques used in modern SRAMs for high performance and low power through-

out the design. In this way, the peripheral logic can match the performance and power

characteristics of the memory core. The next section focuses on the implementation of the

meta-data bits, because they are the key feature that enables the configurable memory and

required the most circuit innovation.
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3.6.1 Meta-data

We tightly integrate the meta-data with the main data SRAM array to share as many re-

sources (e.g., decoder, replica control path) as possible for low overhead and high-performance.

Thus, we implement the meta-data using additional storage cells in the main SRAM array

(Figure 3.8). The meta-data bit cell, shown in Figure 3.9, isan explicitly two-ported cell to

efficiently support RMW operations.

M0

Vdd Vdd

a a_b

b0 b1 b0_bb1_b

WL0

gset gclr

WL1

M1

Figure 3.9: Meta-data bitcell

All normal accesses use port 0 (WL0, b0, b0b). The main decoder drivesWL0which

goes to all meta-data cells and all single-ported normal data cells in a row. Port 1 is a

special port used by read-modify-write operations. Note that the special wordlineWL1

goes only to the meta-data cells as shown in Figure 3.10. In our prototype implementation,

the single-ported data cell has a free horizontal metal track, which allows the meta-data cell
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Figure 3.10: One mat cell row

to be laid out in the same cell pitch as the single-ported datacell, using the free metal track

for WL1 in the meta-data cells.

As was discussed earlier, we support a number of special operations on the meta-data.

Gang operations allow us to operate on all bits of the meta-data on a per-column basis in

a single cycle. Any meta-data column can be gang set, gang cleared, or left alone (NOP).

To implement gang operations, we add two additional devicesin the meta-data bitcellM0

andM1. All cells in a column share thegsetandgclr lines. Assertinggsetsets all cells in

a column to 1. Assertinggclr clears all cells in a column to 0. Figure 3.11 shows the gang

I/O logic which generates thegsetandgclr signals.Gangen is simply the gang operation

enable signal.2

The additional wordline and gang control lines can increasethe size of the meta-data

bitcell. In some cell designs there is a free horizontal metal track, in which case, the cell

height can remain the same as the normal single-ported data cells. The cell may then

become wider due to the addition of the gang control lines, but will not adversely affect

the vertical cell pitch. If there is no free metal track the meta-data cell will be taller than

the normal data cells, and so if we wish to have the meta-data and data cells in the same

row, the row vertical pitch will have to increase. This decreases the area efficiency of the

memory, because the normal data cells are now no longer theirminimum size. To avoid

2The same functionality could also be achieved by grounding the Vdd of one side of the cell. This may
be more efficient, because it does not require additional devices or control lines in the cell. However, it does
require that the cell Vdd’s and Gnd’s run vertically. The cell used in the testchip used horizontal Vdd’s and
Gnd’s, so this technique was not adopted. Some modern cell designs do run Vdd and Gnd horizontally, and
thus could use this technique to implement gang operations.
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Figure 3.11: Gang operation I/O logic for one column

this problem, we can interleave the meta-data cells (see Figure 3.12) to keep the normal

data cell pitch at a minimum.

1 = word 1
0 = word 0

0 0

0 0 0 0

1 1

1 1 1 1

Data cellsMeta−data cells

Figure 3.12: Two cell rows using interleaved meta-data bitcells

Conditional Operations

Conditional operations require additional logic in the meta-data cell. A conditional opera-

tion based on an internal condition is contingent on a match of themdatain with the stored

value’s meta-data. This could be performed as a pipelined 3-cycle operation, similar to a

read-modify-write. However, because a conditional operation’s final access may read or
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write the main data, we would either have to stall the mat or add a second port to the main

data word.

As an alternate implementation, we could add CAM-like compare logic to the meta-

data bit cells and gate the main wordline based on the match result. Figure 3.13 shows the

modified meta-data bit cell. The I/O logic would drive themdatain value to be matched

against on theK andK b lines masked by themaskinput field. All meta-data bits masked

out would drive a 0 on bothK andK b preventing a mismatch on that bit position. This

implementation takes the match out of the critical path, because the match occurs in parallel

with the main decode.

The wordline driver will be slightly slower due to the additional input of the match

result. The additional match circuitry and signal lines increase the size of the meta-data

bitcell. It is unlikely that the cell can be layed out in a normal single-ported cell pitch, and

we would have to use an interleaved meta-data cell arrangement as shown in Figure 3.12.

We would need to detect whether the operation successfully completed and return this result

to the processor via the general purpose completion signal.This could be implemented

using a wide OR of the wordlines. While this enables conditional reads and writes based

on internal conditions, conditional gang operation are a special case discussed in the next

section.

Conditional Gang Operations

Conditional gang operations also require special support circuits in the meta-data. Since

most configurations that use conditional gang operations only need one bit conditionally

cleared, we limit our conditional gang implementation to that function. We link two meta-

data columns, with one column (e.g. md[1]) as the control column and another column (e.g.

md[0]) as the target column. On a conditional gang clear, the target column is cleared if the

meta-data bit in the condition column is 1. This is the same function previously described

in Table 3.2.

A conditional gang clear can be implemented by linking two columns with a two NMOS

pulldown stack (Figure 3.14). Whencgangis asserted, if the cell inmd[1] is 1, then the

pulldown stack connects the a storage node ofmd[0] to Gnd, writing a 0 into the cell.

An alternate method of implementing conditional gang clearonly uses a single NMOS
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Figure 3.13: Meta-data bit cell with embedded match circuit
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md[0]
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md[1]

Figure 3.14: Conditional gang clear implementation using two transistors

cgang

md[0]md[1]

Figure 3.15: Modified conditional gang clear implementation using one transistor
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Table 3.5: Modified conditional gang clear truth table

md[1] md[0] md[1]’ md[0]’
0 0 1 0
0 1 0 1
1 0 1 0
1 1 1 0

device to connectmd[1] b to md[0] with the device gate controlled bycgang(Figure 3.15).

This performs the desired logic function onmd[0], but in the case wheremd[0] is 0, and

md[1] is 0, a 1 will be written intomd[1]. If md[1] will be gang cleared before further use

(e.g.the Modified bit in Hydra is cleared on a speculative thread backup after the conditional

gang clear of the Valid bits [93]) then this push-back frommd[0] is a benign side-effect.

Table 3.5 shows the truth table for the modified gang clear operation.

Because all other operations on the meta-data bits support either true or complement

operations, having a uni-directional conditional gang operation still makes the meta-data

bits logically complete. The sense of any of the bits could always be inverted without the

loss of any functionality.

Read-Modify-Write Decoder

To support read-modify-write operations, we need an additional special decoder, called the

RMW decoder, and a reconfigurable logic block to modify the meta-data bits. The latency

of a read-modify-write operation is much longer than a single memory access, because it

requires two memory accesses, a read and a write, plus the time for the modify logic. We

pipeline read-modify-write operations to avoid adverselyaffecting the memory mat cycle

time. Additionally, since a new operation can arrive each cycle, we use the second port

of the meta-data bits for the RMW write so that it does not conflict with the incoming

operation.

Thus, a read-modify-write operation is a pipelined, 3-cycle latency operation. In the

first cycle, a standard read operation reads a word out of the array. In the next cycle, a

reconfigurable logic block operates on the read-out meta-data bits. In the final cycle, the
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output of the reconfigurable logic block is written back intothe meta-data of the word

accessed two cycles ago. From the requester’s standpoint, this operation is atomic: any

subsequent read of the word will retrieve the updated meta-data and no subsequent write

will be over-written by the RMW writeback (i.e. no WAW hazard). The first cycle operation

could also be a compare or even a write.

The RMW decoder remembers which word was accessed during theinitial cycle of a

RMW operation and drives the meta-data second port wordlineduring the write cycle. To

minimize the number of forwarding paths, we want a simultaneous main read and RMW

write to return the newest meta-data value. Thus the RMW decoder must fire the second

port wordline before the main wordline activates. This needfor fast RMW decoder oper-

ation eliminated the possibility of latching the read address and re-doing a full decode for

the RMW write. Instead we chose to conditionally latch the wordlines using a crosscoupled

inverter storage cell sized as an SRAM cell (Figure 3.16) on the RMW read. Figure 3.17

shows the timing diagram for the RMW decoder operation.

rst

Vdd

WL0

n0

store

store_b

r2

WL1

M1

M2

M3 M4

rmw_b

Figure 3.16: RMW decoder

During the RMW read cycle, the RMW I/O logic assertsrmw b low. In the accessed
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Figure 3.17: RMW decoder timing diagram
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row, the main decoder pulsesWL0which writes a 1 into the storage cell viaM1. The rst

signal stays low in this cycle. During the modify cycle,rmw b is held high, andrst stays

low. In the write cycle,rst rises which bringsn0 low throughM2 in the row that was

accessed in the read cycle.N0 going low assertsWL1 and activates the self-reset delay

chain. The delay chain drivesr2 low, turning onM4. M4 then resetsn0 andWL1. As r2

goes lowM3 clears the storage cell. The decoder can now accept another RMW operation.

In rows accessed in the read cycle, the storage cell undergoes a “read” whenrst asserts.M3

must be carefully sized to avoid excessive power dissipation.

The rst signal is not just a delayed version of thermw b signal, because a write to

the same word during the modify cycle aborts the writeback ofthe modified data. This

condition must be checked in therst drive logic. Because the writeback occurs early in

the cycle, a write to the same word during the writeback cyclewill overwrite the modified

data. Because the mats are fully pipelined, we can have threeRMW operations in-flight at

any given time. Thus, we need three storage cells per row (Figure 3.18), and there are three

sets ofrmw b andrst signals,rmw b[2:0] andrst[2:0] . Which cell and signal pair is used

rotates on a per cycle basis. On system reset, all RMW decoderstorage cells are reset to 0

via a reset NMOS device (not shown).

Reconfigurable PLA

The other support block for RMW operations besides the RMW decoder is the reconfig-

urable logic block that performs the modify logic. There aremany ways to design a re-

configurable logic block, but we chose to implement this block using a reconfigurable PLA

(Figure 3.19), because PLAs are dense array structures suitable for small logic functions.

The reconfigurable PLA is a NOR-NOR PLA (Figure 3.20), with the first NOR plane im-

plemented as a ternary CAM, and the second NOR plane implemented as an SRAM with

a special logic line. Because the PLA is basically a CAM and anSRAM, we can apply the

fast, low-power SRAM circuit techniques seen in Chapter 2 tothe PLA implementation.

The PLA can perform three operations: configuration read, configuration write, and

logic. Configuration reads and writes allow requests to readand write the CAM and SRAM

storage locations to change the programmed logic function.The logic operation performs

the programmed logic function on the incoming meta-data bits. During a logic operation,
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Figure 3.18: Pipelined RMW decoder
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Figure 3.19: PLA block diagram
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Figure 3.20: Example 3-input, 3-output NOR NOR PLA structure
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the CAM performs a match operation and the SRAM uses its special logical wordline for a

wired-NOR read.

b0_bb0k

ML

b1_b

o o_bz_bz

WL

k_b b1

Figure 3.21: Ternary CAM trit cell

The NOR-style ternary CAM uses self-resetting matchlines,and the activation of the

second NOR plane is timed using a replica matchline. Each CAMtrit cell consists of two

6T storage cells and two NMOS pull-down stacks (Figure 3.21). The CAM’s relatively

small size allows for full-swing matchlines. Each row of trit cells forms a NOR gate with

the matchline as the output. The ternary CAM cells pull down the matchline on a mis-

match, and after a delay, self-reset circuits restore any mismatched matchlines to Vdd. The

self-resetting matchline scheme will save power over a global matchline precharge scheme

provided the configurations have relatively low matchline activity factors. Table 3.6 shows

the correspondence between the stored values and logical meaning.

The activation of the second NOR plane is based on a replica matchline. One of the

challenges in a NOR-style CAM design is to know when the matchlines have settled. In the

rows that match, the matchlines remain high, but in the rows that mismatch, the matchlines
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Table 3.6: Ternary CAM stored value meaning

z o Value Action

0 0 * Match on all
0 1 1 Match on 1
1 0 0 Match on 0
1 1 Null Mismatch on all

are pulled low by some number of CAM cells. The falling delay of the matchline varies

depending on the number of cells in the row that mismatch. By using a replica matchline

that only mismatches on one cell, we replicate the worst-case matchline pull-down delay.

Because both the actual matchlines and replica matchlines are full-swing signals, there

is no signal amplification needed between the actual and replica matchlines as in SRAM

replica bitlines [35].

The replica matchline generates a positive pulse on therml b line that mimics the delay

of the worst-case matchline going low on a mismatch. The interface gate, a static CMOS

NAND followed by an inverter, ANDs together the matchlines and rml b to generate the

logical word line signalsLWLswhich go to the SRAM array. Figure 3.22 shows a timing

diagram of the ternary CAM and interface gate operation.

To ensure that theLWLsof all mismatched words do not erroneously glitch high, the

matchline low time must be long enough to fully encompass therml b positive pulse. We

designed the replica matchline to be 1 FO4 delay slower than the worst-case real matchline

delay to ensure that rising edge of therml b positive pulse occurs after the falling edge of

even the slowest falling matchline. We also must ensure thatthe matchlines do not reset

too early, thus causing a glitch on the back-edge ofrml b. In the worst-case, a row could

mismatch on all cells and thus the matchline would be pulled low as quickly as possible

starting the matchline self-reset chain as early as possible. The matchline self-reset delay

must be long enough to ensure that the matchline low time willstill fully encompass the

rml b pulse under these conditions.

On the matchlines, we want both a long pulsewidth (i.e. long low time) and fast cycle

time. If we used a standard self-reset circuit (Figures 3.23and 3.24), in order to get a long
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Figure 3.22: PLA ternary CAM timing diagram

pulsewidth, we must unnecessarily extend the cycle time to avoid a drive fight. After the

matchline has been reset, we must traverse the delay chain a second time beforeM1 is

turned off and we can pull-down the matchline again. If we do not wait, then there will

be a drive fight betweenM1 and the CAM cell(s) pulling the matchline low. The second

traversal of the delay chain uses the opposite transition from the first traversal. For a long

pulsewidth and short cycle time, we need to skew the delay chain for a slow assert edge, to

get a long pulsewidth, and a fast de-assert edge, to get a fastcycle time. One way to do this

is to skew the P/N ratios of the inverter in the delay chain. However, this causes extremely

slow slew rates on the slow transition which burn short-circuit current and are susceptible

to noise.

Instead, we replace the second-to-last inverter with a NOR gate (Figures 3.25 and 3.26).

The delay chain behaves as normal during the assert transition. However, on the second

traversal, once the matchline reaches the logic threshold of the NOR gate, the NOR gate

fires, skipping over the first two inverters. This shortens the delay chain de-assert time

to two gate delays: one NOR gate and one inverter. We leave in the NOR gate and final
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Figure 3.23: Normal self-reset circuit
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Figure 3.24: Normal self-reset circuit timing diagram
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Figure 3.25: Fast reset off self-reset circuit
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Figure 3.26: Fast reset off self-reset circuit timing diagram
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inverter to allow the matchline time to reset all the way to Vdd from the NOR gate logic

threshold. There is an additional keeper device (M0) on each matchline to ensure that the

matchline reaches Vdd. By using this technique we can have a long pulsewidth, fast cycling

matchline, while maintaining fast edges on all transitionsof the delay chain.

bit_b

WL

LWL

bitlogic

a a_b

Figure 3.27: PLA SRAM cell

The LWLs generated from the matchlines andrml b activate the second NOR plane

implemented as an SRAM with a special logic output line. Eachbitcell of the SRAM

array (Figure 3.27) has a special logic line (logic) that is shared among all cells in a col-

umn. Within a column, all cells that store a one form a wired-NOR of the logical word

lines (LWLs), with the logic node as the output.Logic is a full swing signal which is

precharged early in the cycle, during the CAM evaluation. The small number oflogic

lines and their light loading made the precharge overhead relatively small and a reasonable

trade-off against the increased area of self-reset delay chains.
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3.6.2 Peripheral Logic

In addition to the meta-data and associated support logic, we add three peripheral logic

blocks to a basic SRAM array: the pointer logic in the addresspath for pointer operations,

the comparator in the datapath for comparisons, and a write buffer in both the address and

data paths for conditional writes on external conditions. With the aggressive cycle and

access time targets for the mat, the implementation of even very logically simple structures

such as these require advanced circuit techniques.

Pointer Logic

The pointer logic consists of two small SRAMs and an adder/subtracter (Figure 3.28). A

dual-ported SRAM stores the pointer address values, and a single-ported SRAM stores the

strides, one stride per pointer. The “address” input to these memories is the pointer number

specified by the operation.

On a pointer operation, the pointer SRAM reads out the address corresponding to the

named pointer and sends it to the main decoder. The stride SRAM simultaneously reads

out of the associated stride. The adder/subtracter calculates updated pointer address value

from the pointer address and stride. We then optionally write the updated pointer address

back into accessed pointer stored in the pointer address SRAM.

We dual-port the pointer address SRAM to allow simultaneouspointer address read and

write-back of an updated pointer value. The SRAM properly handles the write-through case

when the same pointer is simultaneously updated and read by outputting the updated pointer

address value to the read. This allows us to do back-to-back pointer operations using the

same pointer number. Because the strides do not need to be updated, the stride SRAM is

only single-ported. The pointer address values and stridesare read- and write-able via the

configuration read and write instructions.

For a simple FIFO, we only need to store two pointers, the headand the tail, with each

of their strides set to 1. However, by storing more than two pointers per mat, we can enable

using a single mat as multiple FIFOs. For example, the testchip implementation stores four

pointers per mat, which allows us to hold two FIFOs in a singlemat. We could use pointers

P0 andP1 for FIFO 0 andP2 andP3 for FIFO 1. By using a stride of 2 and offsetting the
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Figure 3.28: Pointer logic block diagram

starting head/tail values by one, we can interleave FIFO 0 and FIFO 1 in a single mat, with

FIFO 0 occupying all even addresses, and FIFO 1 occupying allodd addresses. Figure 3.29

illustrates this configuration.

We can also enable FIFOs larger than one mat by storing a pointer address value that

is longer than necessary to address the words of one mat. All requests to the FIFO are

multicast to all mats in the FIFO, and the mats range check theupper bits of the pointer to

determine which mat the request should access. All mats keeptheir pointer logic in lock-

step, so even if the mat is not accessed, the pointer logic is updated. The number of extra

bits in the pointer addresses determines the maximum FIFO size. For example, a pointer

that has two extra bits allows for a maximum FIFO size of four mats. Chapter 4 discusses

how the interconnect structure can multicast to all the matsin the FIFO. Figure 3.30 shows

a single FIFO that spans four mats.

Maskable Comparator

The maskable comparator implementation is relatively simple, differing only slightly from

regular comparators, on which there is a large body of work [101][102][103][104]. Our

comparator differs in that it can mask out select fields of thedata, treating them as don’t
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cares. We can mask out any combination of the meta-data bits and the main data as a chunk.

The comparator (Figure 3.31) uses a single mask bitmask[0] for all of the main data, but

individually masks each bit of meta-data . We implement the final wide fan-in AND gate

as a tree of smaller fan-in gates using the principles of logical effort [32].

data1[d−1]
data0[d−1]

mask[1]
mdata1[0]

mask[k]

mdata0[0]

mask[0]

data0[0]
data1[0]
mask[0]

match_out

mdata1[m−1]
mdata0[m−1]

tree

Figure 3.31: Maskable comparator gate-level diagram

The comparator is implemented as a tree of dynamic gates. We could embedded the ini-

tial comparison XOR gate in the bitline column muxes, but this introduces more complexity

in the column mux circuits. Depending on the implementation, this could also introduce

another series device in the bitline path.

Write Buffer

To enable writes contingent on an external condition, we adda write buffer in both the

address and data paths. On a conditional write, the write buffer stores the incoming write
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address, data, and opcode. When the external condition evaluates, the write buffer invali-

dates the entry if the condition fails, or allows the entry towrite into the main data array in

a pipelined fashion if the condition is met. This occurs in the same way that some cache

designs pipeline writes to allow single cycle cache write hits [105] as described below.

In a traditional cache implementation, a cache write operation must serialize the tag

check and the write into the data array. Because the write into the data array is an unre-

coverable change of state, we cannot execute it until we knowthat the access is a cache

hit. The serialization of the tag check and data write increases the latency of a cache write

significantly.3

A well-known technique to hide the data write dependence on the tag check is to

pipeline the cache write into two logical stages: tag check,data write. Because not ev-

ery access is a write, the operations are not pipelined on a per cycle basis, but rather on a

per write basis. This technique requires a small write buffer in the data array to store the

incoming write data until its tag check has completed. The number of storage locations in

the write buffer depends on the mat implementation, specifically on the latency of the tag

check. The write buffer must be searchable to ensure that anyreads or compares to the

stored write address that occur before the data can be written into the main array behave

properly.

3.7 Summary

In this chapter, we explored the motivation for a reconfigurable memory system and our

proposed memory architecture. This chapter also examined the design of the reconfigurable

memory mat that forms the core of the memory system. By addingthe meta-data bits and a

few peripheral logic blocks to a simple RAM array, we can create a flexible memory block

that can emulate a portion of a cache, a FIFO, or scratchpad memory. We have proposed

an implementation of that architecture using full-custom circuit design techniques for high

performance and efficiency. The next chapter will detail theremaining portions of the

3For highly set-associative caches, designers take advantage of this dependence to save power. They
intentionally serialized the tag check with the data access(even for reads) to reduce the number of data arrays
that are activated fromn (number of ways) to just 1 (hit) or 0 (miss in all ways).
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reconfigurable memory system: the inter-mat control network, the memory to processor

interconnect, and the processor interface logic.



Chapter 4

Interconnect Networks

As seen in the previous chapter, because memory structures use similar building blocks, we

can use a generalized memory mat to form the core of our reconfigurable memory system.

However, memory systems do differ significantly in the way that they connect the memory

blocks to the computation and to each other. For example, in acache, each memory request

goes to both the tag and data array, and the tag array communicates hit/miss information

to the data array. However, in a simple scratchpad memory, each memory request only

goes to one memory block, and the memory blocks that make up the scratchpad never

communicate with each other. So, for our configurable memorysystem that can emulate

multiple types of memories, we need a configurable interconnect network between the mats

and the processor and between the mats themselves.

The interconnect network must handle two types of communication, mat-to-mat and

mat-to-processor, that have quite different requirementsand characteristics. Mat-to-mat

communication is primarily one-to-many (e.g.a tag mat sending its hit/miss information to

multiple mats in the cache data array), and the width of this data is typically very narrow,

consisting of only one or two bits. Additionally, the mat-to-mat communication is unidi-

rectional, requiring only outgoing data pushes without anyreplies from the recipients. The

latency, however, must be extremely low, because the communication can be in the critical

path of the memory structure.

67
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On the other hand, mat-to-processor communication is bi-directional and many-to-

many. There can be multiple concurrent outgoing requests from the processor, all to dif-

ferent mats, as well as multiple returning replies from the mats. The requests and replies

are wide, composed of data, meta-data, and possibly opcode and address fields. While the

latency of the mat-to-processor communication must be low,because it can be in a critical

loop that determines the minimum processor cycle time, it still can be on the order of a

cycle.

Opcode

Data in/out
Address
Opcode

Request
port

mat

Control bits

IMCN

Processor Interconnect Network

Processor Interface Logic

Data in/out
Address

Figure 4.1: Interconnect overview

Because the mat-to-mat communication and mat-to-processor communication differ

significantly in their characteristics and requirements, we separate the interconnect into

two networks: the mat-to-matinter-mat control networkand the mat-to-processorproces-

sor interconnect network. Figure 4.1 shows an overview of the interconnection networks.

We implement the inter-mat control network as multiple segmented buses and the processor

interconnect network as a pair of crossbars. However, before delving into the specific archi-

tecture and implementation of the networks, we first review some relevant issues regarding
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interconnection network design.

4.1 Interconnection Network Design

For many years, interconnection networks have been used to connect computers and dis-

crete processors [106][107]. Today’s die capacities, however, allow multiple processor

cores and large module blocks such as memories to fit on a single die. Thus, researchers

have proposed on-die interconnection networks to connect processors and large modules

together rather than hardwired global routing [108][109][110][111]. These networks offer

a more structured communication environment than custom global routing, which allows

for more design re-use and easier application of custom circuit techniques for lower power

and higher performance.

While the concept of a “network on a chip” to connect large modules together has

gained popularity, the use of interconnection networks between processor functional blocks

has been quite limited [112]. Most functional blocks are still connected together with fixed

routing or buses. While buses do offer a some communication flexibility, they do not

perform well under communication patterns with multiple concurrent requests [113]. For

increased request concurrency, some designs use split transaction buses where the requester

releases the bus while waiting for the reply [105][85], and other transactions can use the

bus for requests or replies in the mean time.

Another technique to improve bus bandwidth is to physicallysegment the bus and allow

concurrent transactions on different segments [114][115][116]. This technique can achieve

high concurrency for communication patterns where units communicate locally. Bus seg-

mentation can also reduce the power dissipation of the bus bylimiting the portion of the

bus that is activated.

Buses are very area efficient, but as the number of concurrenttransactions increases,

they are no longer the optimal interconnection topology. A crossbar interconnect topology

handles multiple concurrent transactions better than a bus-based system [113][117] because

it is a fully non-blocking network. Any of the inputs can be connected to any of the outputs

as long as both the input and output are free. A crossbar is a one-hop network (i.e. has no

intermediate stages between the input and output) and thus can have low latency. As per
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convention, we will denote a crossbar withN inputs andM outputs as anN x M crossbar,

with each possible connection point known as a crosspoint. An N x M crossbar would have

N*M crosspoints. Figure 4.2 shows an example 4 x 6 crossbar.

out[5]

in[0]

in[1]

in[2]

in[3]

crosspoint

out[0] out[1] out[2] out[3] out[4]

Figure 4.2: 4 x 6 crossbar

Crossbars topologies have been used in many networking switching architectures [107][106],

and most previous crossbar implementations have either been stand-alone designs for net-

working switches [118][119][120] or on-chip interconnection networks connecting proces-

sors to main memory [121][122][123][124]. Crossbars that interconnect individual func-

tional blocks are much rarer [112][125][126], although, one very common crossbar-like

interconnection structure between functional units is a pipelined processor’s functional unit

bypass network [105][127][128].

While a crossbar does support multiple concurrent requests, conflicts can occur if more

than one input requests the same output. Telecom crossbars avoid conflicts using complex

input queues, arbiters, and scheduling logic [129][130][131][132]. The arbitration and

scheduling add to the latency, area, power, and complexity of the design. The delay from

input to output is now dependent on the request pattern and isnon-deterministic. This is

tolerable in networking switching applications, but for fixed pipeline, inter-functional unit
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networks a deterministic latency that is as low as possible is desirable. An alternative to

dynamic scheduling is to statically schedule the crossbar.This avoids the added latency

and complexity of arbitration, while still allowing multiple concurrent requests [122].

Despite its larger area, a crossbar can be more energy efficient per transaction than a

segmented bus architecture, due to the large amount of concurrency available [137]. One

way to significantly decrease the energy consumption of a crossbar is to use low-swing in-

terconnect techniques [56][55][133][134], because a crossbar has a large number of long,

high-capacitance wires. To further reduce the energy dissipation, we can segment a cross-

bar to decrease the wire capacitance driven [135][124].

Besides crossbars, there are many other non-blocking network topologies and hybrid

topologies that offer a different trade-offs between area efficiency, energy consumption, and

performance [106][107]. For the inter-mat control networkand the processor interconnect

network, we chose topologies that seemed most suitable to the communication patterns

on those networks. Next, we will examine an implementation for the inter-mat control

network.

4.2 Inter-mat Control Network

The inter-mat control network allows the mats to pass a few bits of control information to

each other. For example, in a cache configuration, the tag matmust pass the hit/miss infor-

mation to the data mat, so that the data mat knows whether or not to abort its operation. On

a hit, the data mat proceeds with its operation, but on a miss,it aborts. We implement the

IMCN as multiple, 1-bit, segmented buses. Figure 4.3 shows an example implementation

with four buses with four mats per segment. The IMCN is well suited to this implemen-

tation, because it is a network with uni-directional, one-to-many communication. The bus

segments are set at configuration time via configuration registers.

We use full-swing wires in the IMCN, for a number of reasons, First, it is a relatively

short-haul network, and the overhead latency of the low-swing driver and receiver are not

tolerable. Second, because the latency is a fraction of a cycle, there is no convenient clock

edge off of which to trigger the sense amplifiers. Finally, the IMCN does not contribute

significantly to the overall power dissipation of the reconfigurable memory system, so the
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Figure 4.3: Inter-mat control network

overall savings from reducing the IMCN power would not be significant.

Each mat has a two-bit output to the IMCN,ext out, and a two-bit input from the IMCN,

ext in. A number of signals are multiplexed to generate the two bitsof ext out as seen in

Figure 4.4. Similarlyext in is demultiplexed to a number of locations as shown in Figure

4.5 The inputs and outputs are statically configured via configuration registers.

The IMCN bus drivers can implement a wired-OR function on thebus. The driver is

a pull-down only driver and thus can form a wide OR gate with any other active drivers

on the bus segment. Figure 4.6 show the bus driver and pull-upcircuit. The wired-OR

functionality is useful for aggregating control information. For example in a multi-way

cache configuration, by OR-ing the hit/miss signal from every way, we can generate the

global hit/miss for the cache.

The pre-charged IMCN bus line is vulnerable to signal coupling, but the weak keeper

helps mitigate coupling problems. If the IMCN lines are still deemed too vulnerable, shield

wires could be routed next to each IMCN line to reduce coupling effects. Given the small

number of IMCN lines, the additional area penalty of the shield lines is not too great.
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4.3 Processor Interconnect Network

In our reconfigurable memory system, the processor interconnect network takes the place of

the fixed interconnection between the computation and the memory in hardwired systems.

The processor issues memory requests from request ports in the interface logic. Any port

can send a request to any memory mat. The mat always returns the reply to the port that

issued the request. Section 4.3.4 describes the interface logic request ports more fully.

We implement the processor interconnect as a pair of uni-directional crossbars as shown

in Figure 4.7. For the sake of clarity in the figure, the crossbars are shown as distinct, but

in the implementation, they are interleaved into one block.Therequest crossbarroutes the

requests from the processor ports to the memory mats, and thereply crossbarroutes the

replies from the mats back to the requesting processor port.

We chose to use crossbars for the processor interconnect, because they support mul-

tiple concurrent transactions, have low, one-hop latency,and offer high flexibility in the

interconnections. We made the design decision to use two uni-directional crossbars rather

than a single bi-directional crossbar to simplify both the circuit design and system archi-

tecture at the cost of some area. The circuit design for a uni-directional crossbar is simpler,

and we avoid the additional delay and energy from driving theparasitic capacitance of the

drivers and receiver of the unused signaling direction. At the system level, a bi-directional

crossbar would require more careful memory access scheduling, especially for requests

that both push and pull data, such as a compare. This could require arbitration for cross-

bar and cause the memory access latency to be non-deterministic, further complicating the

processor interaction with the memory system.

4.3.1 Request Crossbar

The request crossbar is a dynamically-routed, multicast-capable crossbar responsible for

routing requests from the processor ports to the memory mats. Each request port can send

a request to any mat or group of mats. Every request has amat ID field that determines the

destination of the request. This routing based on themat ID can be used as the high-level

decode for multi-mat memory structures, similar to the block selection mechanism of large

SRAMs [53][25][31]. Figure 4.8 shows a block diagram of the request crossbar with each
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Figure 4.7: Processor interconnect overview

crosspoint detailed in Figure 4.9. Table 4.1 lists the request crossbar I/O signals.

Themat ID andmat ID maskdetermine the request destination mat(s). Thepayloadis

the request itself that goes to the mat. It contains all the mat input fields from the processor:

opcode, address, mask, mdatain, anddata in. Thevalid bit indicates whether or not the

outgoing request is valid. Thereply bit alerts the reply crossbar scheduler that the request

has reply data. The crosspoint will then schedule a reply data packet transfer on the reply

crossbar.

To avoid request conflicts, we statically schedule which ports have access to which mats

in the processor interface logic. The request crossbar still dynamically routes the requests

based on themat IDfield, so the ports have some freedom in which mats to send request to

and can use the crossbar for high-level decoding in multi-mat memory structures. However,

there is no need for queuing, arbitration, or scheduling logic, and the delays through the

crossbar are fixed and deterministic.

An example of static mat scheduling would be splitting the access to a multi-processor
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Table 4.1: Request crossbar I/O signals

Name Width Description

mat ID i Which mat to send the request to?
mat ID mask i Allows for wildcarding in the mat ID
payload p Request to the memory mat
valid 1 Is this a valid request
reply 1 Does this request have return data?
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cache tag between the normal access and the snoop access. Every even cycle would be

dedicated to the local processor cache access and every odd cycle to the snoop access. If

we ran the memory and crossbar at twice the rate of the processor core, the processor would

still get one cache access per processor cycle. This is an application of virtual multi-porting

described in Chapter 3.

The downside is that static mat scheduling potentially wastes bandwidth on low us-

age requesters, and we need to ensure that there is enough bandwidth to the memories

to satisfy all requesters under the static allocation policy. If the memory mats and cross-

bar have more bandwidth available than most applications need, statically allocating the

bandwidth, although wasteful in some cases, may not adversely affect the application per-

formance. Also, because the processor interconnection network emulates the static inter-

connect found in hardwired memory systems, we do not expect configurations to require

dynamic scheduling. However, using static mat allocation is not fundamental to the design,

and the reconfigurable memory system could be implemented using dynamic scheduling at

the cost of increased design complexity.

4.3.2 Reply Crossbar

The reply crossbar routes memory replies from the mats back to the processor ports. The

crossbar always routes the reply back to the requesting port. Thus, we can schedule the

reply crossbar based on the request routing and which requests will have replies as indicated

by thereplybit in the request. Because the mat latency is fixed, the scheduling of the reply

crossbar is simply a time delayed version of the request schedule. Figure 4.10 shows an

overview of the reply crossbar, and Figure 4.11 details a reply crossbar crosspoint. Table

4.2 lists the I/O signals for the reply crossbar.

The contents of the reply packet depend on the request operation. If the request is any

form of a read (e.g. read, compare, read-modify-write), then the reply contains data and

meta-data. Writes and gang operations do not return data or meta-data. Every request

operation returns three control bits,valid, match, andcomplete, in the reply packet.

The request crossbar can multicast requests to multiple mats, but there can be only one

valid reply to a multicast request. The reply crossbar multiplexes the outputs of the accessed
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Table 4.2: Reply crossbar I/O signals

Name Width Description

data d Main data
mdata m Meta data
valid 1 Is this data valid?
match 1 Match output result
complete 1 General completion bit

Memory Mats

Port[0] Port[1] Port[2] Port[3]

Processor Interface Logic

Figure 4.10: Reply crossbar
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mats and only send a single reply back to the processor port. Thevalid bit from the mats

indicates which mat has the valid reply packet. By design there can only be one valid

reply to a multicast request, and this must be guaranteed by the configuration of the mats.

This type of multicast-request/multiplexed-reply combination is useful for configurations

such as multi-way set associative caches. In such configurations, we multicast the memory

request to all ways of the cache, but only want the reply for way that hits. If no way hits,

no reply is received.

4.3.3 Implementation

For both the request and reply crossbar, we employ low-swing, differential signaling using

NMOS only drivers and clocked sense amplifiers [54]. The NMOSdriver circuit, shown

in Figure 4.12, pulls one of the differential output lines toVdd low and the other line to

Gnd based on the data input.Vdd low is a special, low-voltage supply that can either be

generated locally via DC-DC conversion [136] or taken in from the outside world. By

using a lowered supply, rather than just limiting the swing,we can achieve a quadratic

energy savings in swinging the wire [56]. We do then, however, need to route, decouple,

and potentially generate the lowered supply voltage. The receiver sense amplifier is a

modified StrongARM latch (Figure 4.13) [57]. Because we use alow-swing, differential

signaling scheme, we require two wires to transmit each bit.We twist the differential

lines and interleave them with power supply lines to reduce the differential crosstalk noise

[56][39][40]

There are additional techniques for reducing the power of the crossbar such as segmen-

tation [135], but we chose not to employ them in our design to keep the design as simple as

possible and avoid any excess increase in the latency. Therehave been a number of works

that explore the energy consumption of crossbars in much more detail [137][135][138].

Conceptually a crossbar has all inputs arriving from the sides and all outputs exiting on

the top and/or bottom as in Figure 4.2. For our design, both the memory mats are above

the crossbar and the processor ports are below the crossbar to achieve a rectangular shape

for the entire reconfigurable memory. Figures 4.8 and 4.10 show the wiring arrangement

needed to support this configuration.



CHAPTER 4. INTERCONNECT NETWORKS 83

Vdd_low

data

data_b

Vdd_low

out_b

data_b

out

data

Figure 4.12: Low swing driver

We allocate an entire clock cycle for signals to traverse thecrossbar. The drivers trans-

mit the signals on the rising edge of the clock. The receiversflop them on the next rising

edge. From circuit-level models of the crossbar, 10 FO4, 1nsin our target 0.18µm technol-

ogy, is enough time to traverse the crossbar in either direction. A study of inter-functional

unit crossbars shows that a similar 16-port, 32-bit crossbar design can maintain sub-1ns

latency in a 0.25µm technology [112]. Chapter 5 provides more details on the testchip

implementation of the crossbars.

4.3.4 Processor Interface

While the memory mats connect directly to the processor interconnect network, the proces-

sor launches requests into the processor interconnect network via theprocessor interface

logic. The main function of the interface logic is to translate thememory address issued by

the processor to the address space used by the interconnect network.

Hardware Address Space

In modern computing systems, there are often two sets of address spaces, virtual and phys-

ical [105]. The applications operate in individual virtualaddress spaces. Virtualizing the

memory removes the burden of memory management from the application programmer,

and allows multiple applications to more easily share the limited physical memory. The

physical address is used to address the physical main memory.
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When the processor issues a memory request, the request names the desired virtual

address location. This virtual address undergoes address translation to a physical address

via a translation table which maps the virtual address spaceto physical address space.

Because the translation table itself can be quite large, often used translations are cached

near the processor in a look-up structure called thetranslation look-aside buffer(TLB). In

a hierarchical memory system, the virtual to physical translation can take place anywhere

in the hierarchy before the main memory.

Memory is broken up into fixed size chunks calledpagesor variable sized chunks called

segments. Because the total amount virtual memory is larger than the physical memory,

data in the virtual address space is stored on disk and paged into main memory by the OS

when needed. The main memory can be thought of as a cache for the disk system, similar

to how the on-die processor cache is a cache for main memory. While virtual memory is

a useful for systems that run multiple concurrent applications, some simpler systems, such

as some DSPs and embedded systems, only use a single address space. Their applications

are responsible for memory management, but the overall system is less complex.

For our reconfigurable memory system, we introduce a third address space, thehard-

ware address space, which is conceptually below the physical address space. Just as the

physical address designates locations in the main memory, the hardware address names

memory locations in the on-die reconfigurable memory system. The hardware address

consists of two fields, themat ID andmat address.1 The processor interconnect network

uses the mat ID to route requests to the proper mat. The mat decoder uses the mat address

to select the desired word in the mat. In a hardwired memory system, the hardware ad-

dress space is not necessary, because the local memory on theprocessor die is “addressed”

implicitly via the hardwired interconnections between theprocessor and memory.

The basic issue is that the processor generates virtual addresses, but in order to access

the correct local memory, the virtual address must be translated into a hardware address.

Usually since the hardware is fixed, the mapping between the virtual address and the hard-

ware address is hardwired into the hardware structures. However, for a reconfigurable sys-

tem, the memory configuration is not fixed, and as a consequence the translation between

1In a tiled system with multiple mat arrays, there can also be atile ID field that denotes which tile the
memory location resides in.
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the virtual and hardware address spaces is not fixed. Thus, weneed a block that performs

the virtual to hardware address translation. This address translation is fairly simple when

compared to the virtual to physical address translation.

Address Splitter

From the virtual address issued by the processor, we need to generate two fields to properly

access the reconfigurable memory, the mat ID and the mat address. The mat ID can either be

represented as a bit vector or a mat ID number and mat ID mask. This latter representation

restricts multicasting to groups of powers-of-two mats along powers-of-two boundaries.

The mat address is simply the internal mat address of the requested word.

Because the reconfigurable memory system takes the place of the hardwired first-level

memory system of the processor, we need low latency access toavoid increasing the delay

of critical pipeline loops. Thus, we choose to employ a hardware translation method similar

to the address centrifuge used in the Cray T3E [92] to performthe virtual-to-hardware

address translation. For each of the fields we must generate,we extract a portion of the

virtual address and use it as an offset from a base value. The base value is either statically

assigned to the issuing port or determined from the high-order bits of the virtual address.

While this type of hardware address translator reduces the addressing flexibility, it is fast,

avoiding large table look-ups.

Theaddress splitterunit performs the virtual-to-hardware address translation. The mat

ID base, mat ID mask, and mat address base are determined froma lookup table index

by the high-order bits of the virtual address. We call these high-order bits thelogical

memory ID. They identify which logical memory structure to access. A logical memory is

a collection of mats that make up a logical memory unit, such as a cache tag array, cache

data array, scratchpad memory, or FIFO. The logical memory ID also determines the fields

of the virtual address that are extracted to form the mat ID offset and mat address offset.

The logical memory ID can have different interpretations depending on the processor port.

So the same virtual address sent to processor ports handlinga cache’s tag and data, will

route the requests to different mats, the tag mats and data mats respectively.

The extractor unit extracts the mat ID offset and mat addressoffset from the virtual

address. Each extraction is a mask and shift operation. These offset fields are added to
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previously determined base fields to generate the final mat IDand mat address. Having a

mat address base field allows a single mat to be shared among multiple logical memories.

In accesses to cache tag arrays, the unused remaining portion of the virtual address is used

as input data to the mat for the compare.

We can avoid added delay of the logical memory ID lookup tables if each processor

port only ever accesses one logical memory. For example, if aprocessor port is dedicated

to be the instruction cache tag port, then the mat ID base, matID mask, mat address base,

and offset field split can be held constant, and no table lookup is necessary.

Scratch

Mat 0 Mat 1 Mat 2 Mat 3

2048 x 32b

8192 word scratchpad

Scratch Scratch Scratch

Figure 4.15: Scratchpad mat configuration for address splitter example

Figures 4.16 and 4.17 show example address splitter configurations for a scratchpad

memory detailed in Figure 4.15. The example memory system has 16 mats each holding

2048 32b word, and the scratchpad memory spans four mats, mats 0 to 3. The address split

in Figure 4.16 is for a configuration with the scratchpad words packed contiguously into

four mats. The address split in Figure 4.17 is for a configuration with the scratchpad words

interleaved among the four mats. So word 0 is in mat 0, word 1 inmat 1, word 2 in mat 2,

and so on. This banking arrangement would be desirable to avoid request conflicts if there

were multiple requesters for the scratchpad. In a statically schedule crossbar, this would

allow multiple requesters to simultaneously access the scratchpad as long as their requests

were guaranteed to access different banks.

The address split for a cache is more complex. Figure 4.18 shows an example 2-way

set associative cache. Each way’s tag is held in one mat, and four mats make up each data

array. Each way holds 2048 4 word lines. Mats 0 and 1 are the twotag mats, and mats

8-15 make up the two data arrays. This mat numbering allows for easy multicasting of the

tag and data accesses, since the tag and data arrays are power-of-2 in number and along
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Figure 4.18: Cache mat configuration for address splitter example

power-of-2 boundaries.

Figures 4.19 and 4.20 show the address splits of the tag and data requests respectively.

The data split assumes that the lines are packed contiguously into the data mats. Note that

in the tag array, the remainder portion of the virtual address is used as compare data in the

tag access. Figures 4.21 and 4.22 show the address split again for the tag and data, but for

a cache with the line interleaved among the four data array mats.

The address splitter logic could be combined with the regular address generation logic

typically done in the EX processor pipeline stage. Additionally, the mat decoder could be

implemented a sum-addressed-decoder [139] to remove some of the logic from the address

splitter. This would however increase the width of the address field sent to the mat. We

assume that the traditional virtual-to-physical address translation occurs at higher levels of

the memory hierarchy. The local caches built from mats are virtually-indexed, virtually-

tagged.

To make up a traditional memory request (i.e. full data-width address and data) to a

cache would require two ports, one for the address and one forthe data. The ”address” of

the request packet is just the hardware address that the payload is sent to. For example, in a

system with a cache, the physical address is really just the data portion of one of the ports

which is sent to the mat(s) acting as the cache tag.
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If a system had 8 ports, the ports could be configured as 4 traditional memory ports.

However, if the processor was only going to address local memory, then all 8 ports could

be used to push/pull a data word every cycle. Any mix of the above is also possible. A

single address port could be associated with multiple data ports to pull down a wide data

word. Or some ports could use a traditional address space scheme, while others directly

accessed the hardware addresses.

4.4 Summary

This chapter described the two interconnection networks inour reconfigurable memory sys-

tem: the inter-mat control network and the processor interconnect network. The inter-mat

control network allows the mats to pass a few bits of control information to each other. It

uses narrow, one-to-many communication, and we implement it as a number of segmented

buses. The processor communicates to the mats via the processor interconnect network.

It must support wide, many-to-many communication with manyconcurrent requests. We

implement this network as two uni-directional crossbars, one for the requests from the pro-

cessor ports to the mats and one for the replies from the mats back to the processor ports.

There are many ways to implement these networks, and we choseinterconnect topologies

that were suited to their respective communication patterns and emphasized flexibility over

area or energy efficiency. But the optimal topology depends heavily on the specific memory

architecture and optimization goals.



Chapter 5

Experimental Results

In the previous chapters, we have detailed a reconfigurable memory design based on a re-

configurable SRAM mat and a flexible interconnection network. Our design goal was to

make the memory flexible, yet maintain high performance and efficiency. As a proof-of-

concept for our design, we implemented a prototype reconfigurable memory testchip. The

testchip demonstrates that we can build a fast, flexible, efficient reconfigurable memory,

sanity checks our design decisions, and quantifies the reconfigurability overheads. From

the prototype results, we can also extrapolate the overheads for larger, more complex re-

configurable memory designs.

5.1 Testchip Overview

We designed and fabricated a reconfigurable memory testchipin a 0.18µm CMOS 6-metal

Al TSMC process (Figure 5.1) [140][141]. The die measures 3mm by 3.3mm and has 68

pads along the periphery. It was packaged in a 84-pin ceramicleadless chip carrier. Table

5.1 summarizes the testchip and process technology features.

Figure 5.2 shows the testchip block diagram. The testchip contains four reconfigurable

memory blocks (Mem0-3), a dynamically routed, low-swing crossbar interconnect, test

vector storage, and a process monitor block. Mem0 contains an SRAM core that uses

a self-timed, pulsed-mode circuit style for fast access andshort cycle time. Mem1 and

Mem2 contain complete memory mats using the SRAM core from Mem0. Mem3 contains

94
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Figure 5.1: Testchip die photo
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Table 5.1: Process and testchip features

Mat area 0.6 mm2

SRAM area 0.4 mm2

Cell area 9 µm2

Meta-data cell area 18 µm2

Supply voltage 1.8V
Frequency 1.1GHz
Mat power dissipation 125 mW (50% reads, 50% writes)
Technology 0.18µm CMOS, 6-metal Al
Transistors NMOS Vt = 0.5V, PMOS Vt = -0.5V

the pointer logic and PLA used in the mats. We separated out the Mem0 SRAM and the

Mem3 peripheral blocks for increased observability and to isolate their power measure-

ments. Mem0 and Mem3 use isolated power supplies so that we can measure the power

dissipation of each block.

We chose an aggressive cycle time goal of 10 fan-out-of-fourinverter delays (FO4) for

the testchip. This short clock tick stresses the circuit design of the memory cores as well as

the peripheral circuits and interconnect. Also, this cycletime would allow us to virtually

multi-port the memory system for a slower cycling processor, as described in Chapter 3.

Due to this aggressive cycle time, the mat access is pipelined, and the total delay through

the mat is 2 cycles or 20 FO4. The first half-cycle is spent in the pre-access logic: pointer

logic or write buffer. The next full cycle is spent in the SRAMaccess. The last half-cycle is

spent in the post-access logic: control logic and the comparator. The mat is fully pipelined,

accepting a new request every 10 FO4 cycle. For each crossbartraversal, we allocate a full

10 FO4 cycle. An entire memory access requires 4 cycles, or 40FO4.

5.1.1 SRAM core

The SRAM core used in Mem0, Mem1, and Mem2 has a capacity of 18Kb. This is on

the small end of the 16Kb to 128Kb optimum energy-delay rangediscussed in Chapter 2.

We chose this capacity to keep the area of the testchip reasonable, while still being able to

include a number of SRAM cores on the die. The SRAM holds 16Kb of data, arranged as
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Figure 5.2: Testchip block diagram
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512 32b words. Along with each data word, we store an additional 4 bits of meta-data, so

the SRAM is logically 512 x 36 bits. To balance the wordline and bitline lengths, we use

4:1 column multiplexing to achieve a nearly square cell array of 128 x 144 cells. The row

address is then 7 bits and the column address is 2 bits.

Our decoder structure closely follows the optimal topologypresented by Amrutur and

Horowitz in 2001[34]. The pre-decoder divides the 7 bit row address into two groups and

decodes them using a 3:8 decoder and a 4:16 decoder. Each of the 24 pre-decode gates uses

a modified Nambu OR-gate (Figure 5.3) [36][142]. We insert analways-on full CMOS

transmission gate in the clock path to the dynamic inverter to slightly delay its clock. This

reduces the output glitch on the gates that do not fire.

n0

Vdd Vdd

Vdd

Vdd

Vdd

clk

clk

in0

out

in1

Figure 5.3: SRAM predecoder gate

The wordline driver gates are self-resetting, two-input, source-driven AND gates (Fig-

ure 5.4) [37][38][33][40]. There is an explicit pull-down cut-off device to avoid drive

fights during reset. The 3:8 pre-decoder generates the negative pulsesin n[7:0] that drive

the source inputs of the wordline driver gates. The 4:16 pre-decoder generates the positive

pulsesin p[15:0] that drive the gate inputs of the wordline driver gates. The buffer delays
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for the 3:8 pre-decoder and 4:16 pre-decoder are designed tobe matched so that the positive

and negative pulses arrive at the wordline driver gates at the same time.

in_n

Vdd

Vdd

WLin_p
n0

r0

Figure 5.4: SRAM wordline driver gate

The decoder also contains the read-modify-write decoder asdescribed in Chapter 3.

The decoder drives the wordlines into the cell array. The cell array contains both the two-

ported meta-data cells and the single ported data cells. Themeta-data cells fit in the cell

pitch of the regular single-ported data cells, but they are wider to accommodate the two

pairs of bitlines. The prototype meta-data cells support read-modify-writes and gang oper-

ations, but not conditional or conditional gang operations.

The cell bitlines feed into the cell I/O block that contains the read and write support

circuits. The read cell I/O consists of a 4:1 PMOS passgate column mux and a StrongARM

amplifier followed by a skewed SR latch (Figure 5.5) [57]. We chose this design over the

more common latch-based sense amplifier to remove a series device from the bitline data

path. To further reduce the bitline loading, the write driver is pull-down only which allows

the write column mux to be a simple 4:1 NMOS passgate mux.

After an access, the bitlines must be reset to Vdd before the next operation. The bitline

reset circuits (Figure 5.6) consist of a keeper (M0 andM1), read reset (M2, M3, andM4),

and write reset (M5 andM6). During writes the bitlines swing full-rail, and we need large
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devices to fully reset the bitlines before the next access. However, only 1 out of 8 bitlines

needs to be reset from Gnd to Vdd, because we use 4:1 column multiplexing and only one

bitline per activated pair is discharged in a write. We use self-resetting bitlines to avoid the

excess power dissipation of activating unnecessary write reset devices. A self-reset delay

chain activates the write reset devices,M5 andM6. The self-reset activation is predicated

on write enable being de-asserted (wr en b being high) to prevent a drive fight between the

reset device and the write driver.

bl_reset_b

VddVdd

Vdd Vdd

Vdd Vdd

bit_bbit

M2
M3

M4

M0 M1

M5 M6

wr_en_b

Figure 5.6: SRAM bitline reset circuits

We use a current ratioed replica bitline [35] to time the activation of the clocked sense

amplifiers, for good tracking of the replica path with the actual data path across process,

voltage, and temperature variations. The full replica timing path consists of a mimic

pre-decoder gate, mimic wordline driver gate, replica wordline, scan tunable replica cell,

replica bitline, and sense enable buffer. The delay of the sense enable buffer is matched to

the delay of the pre-decoder output driver using logical effort [32]. Figure 5.7 shows both

timing paths and the matching of each of the delays such that the sense enable signal is
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aligned in time with the desired bitline split of 100mV.

wl drv

mimic mimic
wl drv se buf

pdec cell

replica
cell

pdec buf

pdec 

Figure 5.7: SRAM replica timing path

Proper replica wordline loading requires an extra row of dummy cells, and proper

replica bitline loading requires an extra column of dummy cells. Despite the careful match-

ing, the replica path delay can be slightly different from the data path due to the slow edge

rate of the replica bitline, device mismatch, or inexact delay tracking across PVT varia-

tions. To combat the possible problems with replica path matching, we implemented a

tunable replica bitline pull-down. Ten replica bitline drivers, two per driver cell, are laid

out in the replica row as shown in Figure 5.8. A scan-set-ableregister determines the num-

ber of drivers enabled via thedrive[n] signals. In simulation, the replica path matched the

data path at the middle setting with 5 drivers enabled. This allows for 5 steps in either di-

rection, faster or slower, if the replica path does not match. The prototype implementation

performed at its maximum 1.1GHz clock frequency with the replica bitline driver at the

nominal setting.

5.1.2 Peripheral Logic

Mem1 and 2 are complete memory mats containing the SRAM core,reconfigurable PLA,

pointer logic, maskable comparator, write buffer, and control logic. The reconfigurable

PLA has 16 logic terms (i.e. rows) with 6 input and 4 outputs. The 6 inputs are 4 bits

of meta-data, the 1 bit match result from the mat comparator,and one external bit. The 4

outputs correspond to the 4 meta-data bits.

The pointer logic stores pointers that are 11 bits long, which is 2 bits longer than neces-

sary to address all 512 words in the main SRAM array. The 2 extra bits allow a maximum
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FIFO size of 4 mats. The pointer storage array holds 4 pointers allowing for a maximum

of two FIFOs per mat. The strides were chosen to be 4 bits long.The pointer storage array

decoder gate is a self-resetting, pulse-latch with embedded logic (Figure 5.9). We imple-

ment the adder/subtracter using complex dual-rail domino gates and uses a mixed carry-

tree/carry-select topology. We previously detailed the pointer logic micro-architecture in

Section 3.6.2.

WL

Vdd

Vdd

CLK

addr[0]

addr[1]

n0

M1

M2

Figure 5.9: Pointer logic decoder gate

5.1.3 Interconnect and Test Infrastructure

The memory blocks connect to the two test vector memories viatwo dynamically routed,

uni-directional, low-swing crossbars. The request crossbar routes 60b request packets from
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the two test vector memories to the four memory blocks. It supports multicasting to any

combination of the memory blocks. The reply crossbar routes40b reply packets from the

memories back to the test vector memories. It supports muxing of the return data as detailed

in Chapter 4. We used low-swing wires in the crossbars in order to reduced their power

dissipation. If we had used full-swing wires, the crossbarswould have burned as much

power as the rest of the testchip. We implemented low-swing differential signaling using

NMOS-only drivers and clocked sense amplifiers as describedin Chapter 4.

The two test vector memories (TVMs) emulate processor portssending requests into

the reconfigurable memory system and receiving the replies.Each TVM stores 16 64b

requests and can launch a request every cycle. The TVMs also capture the replies coming

back from the memory system. Each TVM can store 16 40b replies, accepting one per

cycle. Putting the TVMs on die allows us to test the memory mats at speed without using

high-speed I/O pins or a high-speed tester.

We implement the TVMs as wide looping shift registers that output a memory request

and record a response every cycle. All of the test vector memory storage cells are connected

in a serpentine scan chain which allows us to read and write the input and output vectors

via a simple, low-speed, scan interface. The TVMs can be run in a looping mode where

the 16 requests are repeated over and over again. This mode isuseful for taking power

measurements and for probing internal nodes with the on-dievoltage samplers.

The testchip has 43 voltage samplers on key internal nodes and the clock. These voltage

samplers were described by Ho in 1998 [143], and our sampler design is identical to that

used on an earlier testchip in the same technology [56]. The sampler uses a boosted supply

voltage to allow the NMOS sample-and-hold passgates to sample voltages up to the normal

core Vdd. By running the sampler clock at a slightly different frequency as the core clock,

we sub-sample the signal and can generate a time dilated version of the signal. This time

dilated signal is a much lower frequency than the actual signal and is easily driven off chip.

By using the clock sampler output as a reference, we can relate the sampler time-dilated

output to actual time. In the next section, we show a waveformcapture of a number of key

nodes in the SRAM core using the samplers.

The testchip contained a process monitor block (Figure 5.11) which allows us to mea-

sure the delay of various logic gates including the fanout-of-four inverter delay of each die
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Figure 5.10: On-die voltage sampler with device widths inµms for a 0.18µm
technology[56]

[144]. The block contains four ring oscillators, each usinga different type of gate for the

delay element. A mux selects which of the ring oscillator outputs goes to a by-32 toggle

flop frequency divider. Its output is buffered then sent to anoutput pad. The block has 10

dedicated power and signal I/O pads. The pads are not along the periphery of the die and

require special bonding.

5.2 Measured Results

The testchip operated at 1.1GHz at the nominal 1.8V supply and room temperature. The

process monitor block measured the fanout-of-four inverter delay to be an average of 89ps

across 5 die. The 1.1GHz operating frequency corresponds toa target cycle time of 10

FO4. The area breakdown for the SRAM core, memory mat, and testchip are shown in

Tables 5.2, 5.3, 5.4 respectively. The meta-data, meta-data cell I/O, and the RMW decoder

occupy 24% of the total SRAM area.

Figure 5.12 shows the percentage area breakdown of the mat. The peripheral logic

occupied 32% of the mat area, but over half of the 32% was routing area. With better

optimized layout, we could have reduced the routing area significantly. Figure 5.13 shows
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Figure 5.11: Process monitor block

Table 5.2: SRAM area breakdown

Unit Area mm2

Decoder 0.029
RMW decoder 0.029
Mdata array 0.052
Data array 0.186

Data cell I/O 0.036
Mdata cell I/O 0.012

Table 5.3: Mat area breakdown

Unit Area mm2

SRAM 0.376
PLA 0.021

Pointer 0.017
WB/Cmp 0.05
Routing 0.097
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Table 5.4: Testchip area breakdown

Unit Area mm2

SRAM 0.376
Mat 0.637

PLA/Ptr 0.047
Crossbars 1.62

TVM 0.241
Process Monitor 0.388

Table 5.5: Mat power breakdown

Unit Power mW

SRAM 104.4
PLA 9.9

Pointer 6.3
WB/Cmp 4.4

the area overhead as a function of the mat capacity, keeping the data and meta-data widths

constant. The projected area overheads are generated usingan SRAM area estimator [24]

and and the testchip area results. With a 64Kb mat, the peripheral logic occupies less than

15% of the total area, still using the non-optimal peripheral logic layout.

The power breakdown for a memory mat is shown in Figure 5.14 and Table 5.5. The

peripheral logic accounted for 23% of the power. The test vector was an even mix of

compare-modify-writes and pointer writes. The PLA function was a 4-bit counter. Figure

5.15 shows the power overhead as a function of the mat capacity. As with the area projec-

tions, the data and meta-data widths are kept constant. The projected power overheads are

generated using an SRAM power estimator [24] and and the testchip power results. With a

64Kb mat, the peripheral logic accounts for less than 10% of the power.

Figure 5.16 shows a waveform capture from the SRAM using the on-die voltage sam-

plers for a worst-case read after write at 1.0GHz and 1.8V. The write occurs from time -1ns

to 0ns, and the read occurs from time 0ns to 1ns. The bitlines have approximately 90mV
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of split when the sense enable signal fires. Due to insufficient decoupling capacitance on

the sampler supply, the bitline samples are DC shifted up by about 200mV. The jaggedness

of the bitlines near Gnd is due to noise and increased sensitivity of the sampler calibration

near ground.

5.3 Summary

This chapter described the implementation of a prototype reconfigurable memory testchip

and the measured results. The testchip contained four memory test structures, including

two complete 16Kb memory mats, a low-swing crossbar interconnect network, test vector

storage, and a process monitor block. The testchip operatedat the target 10 FO4 clock cycle

under nominal conditions. The fast cycle time of both the memory mats and interconnect

opens the possibility of virtual multi-porting the memory system. The reconfigurable logic

occupied 32% of the mat area and accounted for 23% of the mat power. The mat memory

capacity is on the small end of the optimal range, and we project that for larger memory
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capacity mats, the overheads for area and power would fall below 15% and 10% respec-

tively. These results show that we can implement the proposed reconfigurable memory

design with reasonable overheads while maintaining high-performance operation.
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Conclusions

In this work, we have examined a reconfigurable memory architecture and evaluated its

feasibility via a prototype testchip. The motivation for such an architecture stems from

current process technology and design trends that indicatethat custom ASICs will become

increasingly difficult and costly to design. However, future applications will require more

efficient, high-performance computation than current general purpose processors can pro-

vide. One promising approach to breaking this impasse is to use reconfigurable architec-

tures that keep the low non-recurring engineering costs of general purpose silicon, yet still

provide the efficiency and high-performance near that of custom ASICs. For such recon-

figurable architectures, we propose adding reconfigurability to the memory system as well

as the computation. While reconfigurable logic has been studied extensively, the design

space for reconfigurable memory is relatively uncharted. However, in modern designs, the

memory system plays an increasingly important role in the overall performance, area, and

power of the design.

Unlike previous attempts at reconfigurable memory design, we took a bottom-up, circuit-

level approach, starting with an efficient SRAM design and adding configurability where

and when it could be done for low overhead. In Chapter 2, we explored modern SRAM

design to understand the base design substrate. Modern SRAMs are highly partitioned de-

signs that use specialized circuits in the decoder, datapath, and request/reply transport for

high-performance and low-power. For the low-activity factor decoders, designers use self-

resetting logic to achieve the speed of a dynamic logic family without the excessive power

114
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dissipation of a global precharge signal. To save power in the bitlines, the read bitlines only

swing a fraction of Vdd, but this requires a sense amplifier torestore the read out data to

full logic levels. Clocked sense amplifiers are used for low power, but they require precise

and robust triggering. Using replica bitlines allows us to accurately time the sense amplifier

activation across process, voltage, and temperature variations. To reduce the power in the

transport phases, we use low-swing signaling techniques onthe wires. These highly opti-

mized SRAMs are used to build common memory structures such as scratchpads, caches,

and FIFOs.

Looking closely at these memory structures, we recognized that they use very similar

memory building blocks. We designed a single reconfigurablememory mat that could form

the core of a many common memory structures. To the memory array, we add a few extra

bits of meta-data and logic to support read-modify-writes and gang operations. Pointer

logic in the address path enables a level of address indirection for FIFO configurations. A

comparator and write buffer in the mat datapath enable compares and conditional writes.

For a realistic design evaluation, we use modern SRAM circuit design practices described

in Chapter 2 in the mat design and tightly couple the meta-data and peripheral logic with

the memory core.

Despite having very similar memory building blocks, the target memory structures vary

widely in how they connect their memory blocks to each other and to the computation. To

support this diversity, we use two flexible interconnectionnetworks, the inter-mat control

network (IMCN) for mat-to-mat communication and the processor interconnect network

for mat-to-compute communication. These two networks havedifferent communication

needs and we tailor our implementations accordingly: the narrow one-to-many IMCN im-

plemented as a segmented bus, and the wide many-to-many processor interconnect im-

plemented as a pair of multicasting/muxing crossbars. To properly interface between the

crossbar and the computation, the address splitter performs address translation from the

address space used by the computation to the memory system hardware address space.

To evaluate our design, we implemented a prototype reconfigurable memory testchip

based on our architecture in a 0.18µm CMOS technology. The testchip demonstrates that

we can build such a reconfigurable memory with low overhead, while still maintaining

a fast 10 FO4 cycle time. While this cycle time did require us to pipeline the memory
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access, it opens the possibility using such a fast memory in avirtual multi-ported fashion,

especially if the computation is a relatively slow running ASIC or FPGA. The prototype

uses a 16Kb SRAM mat, a capacity on the low end of the optimal energy-delay range,

but still achieved area and power overheads of 32% and 23% of the totals respectively.

Our projections based on the experimental results show thatthe reconfiguration overheads

can be reduced to below 15% of the area and below 10% of the power by using SRAMs

larger than in our prototype design, but still in the near optimum energy-delay block size

range. These overheads may reduce even further if we merge the peripheral logic with

other necessary logic already present in the SRAM, such as a BIST controller.

Thus, we can build a fast, efficient, reconfigurable memory block by adding only a small

amount meta-data and peripheral logic to a basic memory array. The meta-data was a com-

mon memory paradigm used across many memory structures. While the peripheral logic

blocks were more tailored to individual memory structures,the necessary logic was limited

and thus the overhead for hardwired peripheral logic units was small. Where the memory

structures did vary significantly is in the way that the mats were connected to each other

and to the computation. This led us to use very rich interconnect structures for the inter-

mat control and the processor interconnect networks. Similar to conventional memories,

the performance and power of reconfigurable memory designs may begin to be dominated

not by the memory cores themselves, but rather by the interconnection networks. To that

end, we believe that the design of interconnection networksfor reconfigurable memories

warrants additional scrutiny. Under further study, a simple, low-overhead interconnection

topology may emerge that can emulate the necessary interconnect for many memory struc-

tures, just as our memory mat does for the memory cores.
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SRAM Survey

In Figure 2.4, we plotted the block sizes of a number of contemporary SRAM against the

total SRAM capacity. These SRAMs ranged in total capacity from 72Mb to 15Kb, in

technologies from 0.65µm to 90nm. However, the majority of the designs used block sizes

that only ranged from 16Kb to 128Kb. This supports the conclusions of both Amrutur [24]

and Evans [25] that the optimal energy-delay partition sizefalls within this range. For our

reconfigurable memory, we set the mat memory capacity based on the optimal energy-delay

block range. Table A.1 below shows the raw data used to generate Figure 2.4. The SRAMs

are sorted by total capacity, in descending order.
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Table A.1: SRAM survey data

Citation Capacity (kb) Block size (kb) Technology (µm) Process type

Cho[145] 73728 16 0.10 CMOS
Weiss[146] 24576 24 0.18 CMOS
Zhao[147] 18432 64 0.18 CMOS
Pilo[148] 18432 72 0.18 CMOS
Osada[149] 16384 512 0.13 CMOS
Ishibashi[150] 4096 64 0.25 CMOS
Braceras[151] 4096 36 0.30 CMOS
Ishibashi[152] 4096 64 0.25 CMOS,4T
Bateman[153] 4096 9 0.35 CMOS
Kimura[154] 2048 64 0.65 BiCMOS
Kushiyama[155] 1024 4 0.35 CMOS
Shibata[156] 1024 128 0.30 CMOS/SOI
Shibata[157] 1024 32 0.50 CMOS
Shimizu[158] 288 288 0.18 CMOS
Pelella[159] 288 36 0.50 CMOS
Sato[160] 256 32 0.40 BiCMOS
Akiyoshi[161] 144 36 0.09 CMOS
Mori[39] 32 1 0.25 CMOS
Lu[162] 15 4 0.50 CMOS
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