DESIGN AND ANALYSIS OF RECONFIGURABLE
MEMORIES

A DISSERTATION
SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

Ken Mai
June 2005

© Copyright by Ken Mai 2005
All Rights Reserved

| certify that | have read this dissertation and that, in myep
ion, it is fully adequate in scope and quality as a dissentati
for the degree of Doctor of Philosophy.

Mark A. Horowitz
(Principal Adviser)

| certify that | have read this dissertation and that, in myep
ion, it is fully adequate in scope and quality as a dissemati
for the degree of Doctor of Philosophy.

Oyekunle Olukotun

| certify that | have read this dissertation and that, in myep
ion, it is fully adequate in scope and quality as a dissemati
for the degree of Doctor of Philosophy.

Bruce A. Wooley

Approved for the University Committee on Graduate Stud-
ies:

Abstract

Decades of technology scaling have made available an wegeated amount of compu-
tational power from today’s integrated circuits. Howewantinued process scaling has
come at the price of ever more exotic process technologgs@mplex designs. Due these
difficulties, the non-recurring engineering cost of custA®IC development is growing,
making ASICs economically infeasible for all but the higiheslume parts. However, fu-
ture applications will require more efficient, high-perfance computation than general
purpose processors can provide. One promising approachad&ihg this impasse is to use
reconfigurable architectures that keep the low non-reagirengineering costs of general
purpose silicon, yet still provide efficiency and perforrmamear that of custom ASICs.
While there is a large body of work on designing reconfigugatdmputation, reconfig-
urable memory systems have been largely ignored. In thi&,wee examine how to add
reconfigurability to the memory system.

Looking closely at how memory is used in modern digital systewe recognized that
the most common memory structures, such as caches, FIF@sceaaichpads, use very
similar memory building blocks. By adding a few meta-datis laind a small amount of
peripheral logic to a basic SRAM array, we designed a recordlje memory mat that
could form the core of a many common memory structures. Agldifiexible interconnec-
tion network between the mats and the computation fa@ktaggregation of the mats into
larger, more complex memory structures.

To evaluate our design, we implemented a prototype recaadigel memory testchip
in a 0.1&m CMOS technology. The testchip operates at 1.1GHz at thanabrh.8V
Vdd and room temperature. The prototype uses a 16kb SRAM mibaehieved area and
power overheads of 32% and 23% of the totals respectivelyp@jections show that the

reconfiguration overheads can be reduced to below 15% of#aeaamd below 10% of the
power by using larger capacity SRAMs. The testchip showswleacan build a generic
reconfigurable memory block that can form the basis of maffigrént memory structures,
while maintaining high-performance and low power.

Acknowledgements

One of the benefits of having an extremely long graduate studeeer is that | have had
the opportunity to interact with and learn from many wondgpkople. Their contributions
to this work have been invaluable.

| could not have asked for a better advisor than Mark Horawiiz technical depth and
breadth, ability to bore to the heart of a problem, stead&fssal to cut corners, scientific
integrity, dedication and accessibility to his studentsl patience made him a great advisor
and role-model. | would like to thank him for giving me the apiunity to work with him.

My reading committee members, Kunle Olukotun and Bruce \&chnd my orals
committee members, Christos Kozyrakis and Boris Murmamayiged insightful com-
ments on my research.

Charlie Orgish, Joe Little, and Jason Conroy kept the comgunbfrastructure run-
ning smoothly. The support staff, notably Darlene Haddiregry West, Deborah Harber,
Lindsay Brustin, Taru Fisher, Penny Chumley, Teresa Lymad, Ann Guerra, provided
administrative assistance.

Fujitsu Labs, Philips, and DARPA offered their financial pag.

The Horowitz research group has consistently been an emgaigiendly, and helpful
environment. Ron Ho has been my near-constant collaboaaira good friend. This
work has benefited greatly from his help and expertise. A&sedving of special note are
Guyeon Wei, Dan Weinlader, Birdy Amrutur, and Elad Alon wravé not only been good
colleagues, but also good friends. At times our forays imio-research related topics may
have lengthened our time in graduate school, but theirdsbip most certainly made the
time more enjoyable. My officemates, Toshi Mori, Junji Ogasrad Sam Palermo stoically
tolerated me and the mountains of papers.

Vi

My parents and brother Glenn offered their encouragemeahsapport.

My wife Kaarin's graduate student career overlapped withanbut despite her own
trials and travails, she has always been encouraging, @etpatand supportive.

Finally, 1 would like to thank our cats, Simon and Max, who sdraw always knew
when a good hairball was the proper stress reliever.

Vil

Contents

Abstract \Y
Acknowledgements Vi
1 Introduction 1
1.1 Organization. e 3
2 SRAM Design 4
2.1 ArrayPartitioning 5
2.2 DecoderDesign e 9
2.3 DatapathDesign. e 13
2.3.1 SenseAmplifier. 13
2.3.2 WriteDriver 14
2.3.3 BitineReset 16
2.3.4 ClockingandControl 19
2.4 TransportDesign 20
25 Memory Systems e e e 24
3 Reconfigurable Memory Architecture 26
3.1 Reconfigurable Memory Architecture 27
3.2 Memorymat. e e 30
3.3 Operations e 31
3.4 Operation Modifiers. 13
3.4.1 CompariSONS i e e e 32

3.4.2 PointerOperations 33

3.4.3 ReadModifyWrites 33
3.4.4 ConditionalOperations 4 3
3.4.5 Conditional Gang Operations 5 3
3.5 Matlinterface 36
3.6 Micro-architecture and Implementation 37
36.1 Meta-data 42
3.6.2 PeripheralLogic 61
3.7 SUMMAry . . . e e e 65
4 Interconnect Networks 67
4.1 Interconnection Network Design 69
4.2 Inter-mat Control Network, 71
4.3 Processor InterconnectNetwork 75
4.3.1 RequestCrossbar, 75
432 ReplyCrossbar 79
4.3.3 Implementation 82
4.3.4 Processorinterface o o 83
4.4 SUMMANY . . . o e e e e e e e 93
5 Experimental Results 94
5.1 TestchipOverview it 94
5.1.1 SRAMcCOre 96
5.1.2 PeripheralLogic 102
5.1.3 Interconnect and Test Infrastructure104
52 MeasuredResults 6 10
5.3 Summary e e 110
6 Conclusions 114
A SRAM Survey 117
Bibliography 119

List of Tables

2.1

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2

5.1
5.2
5.3
5.4
5.5

Al

SRAMcontrolsignals. 91
Mat operation modifier applicability 32
Conditional gang clear truthtable 35
Matl/Os 36
Clock cycle comparison for virtual multi-porting 41
Modified conditional gang clear truthtable 48
Ternary CAM stored valuemeaning 56
Requestcrossbharl/Osignals 77
Reply crossbarl/Osignals 80
Process and testchipfeatures 96
SRAM areabreakdown 107
Mat area breakdown L 710
Testchip area breakdown 108
Mat power breakdown 108
SRAMsurveydata e 118

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18

3.1
3.2
3.3
3.4
3.5

6-transistor SRAMcell 5
SRAM blockdiagram 6
Partitioned 512Kb SRAM array using 4 macros each withigalitlocks

SRAM block size survey (see AppendixA) 8
Self-resetting, 2-input, ANDgate 10
Self-resetting, 2-input, AND gate timingdiagram 11
NambuOR-gate e 12
2-input source driven NANDgate 13
Latch-style sense amplifier 14
Write driver with 2:1 NMOS-only columnmux 15
Write driver with reduced NMOS stack height 16
Bitlineresetcircuit e 17
Bitline reset circuit with splitread and writereset 17
Bitline reset circuit with pseudo-static keeperdtrcu 18
Capacitance and current ratioed replica bitines 21
Example differential low-swing interconnect 22
Example low-swing driver, sized for a Opi8 technology[54] 22
Example low-swing interconnect receiver, sized forl&@m technology[54] 23
Basic reconfigurable memory system architecture 28
Memory system block diagram - 16 matsinan8x2array 29
Caching configuration with 2-way data and instructioches 29
Streaming configuration with data FIFOs, instructiommegy, and scratchpad 29
Example gang operation - set md[3], clear md[2:1], NOROind. 32

Xi

3.6 Example conditional gang clear operation - cledfO] if md[1]==1 ... 35
3.7 Genericmemory structure 39
3.8 Mat block diagram showing meta-data with support lo§M{V decoder

and PLA) and peripheral logic blocks (pointer logic, writgfier, and com-

parator) e 40
3.9 Meta-databitcell 2 4
3.10 Onematcellrow 43
3.11 Gang operation I/O logicforonecolumn. 44
3.12 Two cell rows using interleaved meta-data bitcells 44
3.13 Meta-data bit cell with embedded match circuit 46
3.14 Conditional gang clear implementation using two tigtnss 47
3.15 Modified conditional gang clear implementation using transistor 47
3.16 RMWdecoder. 49
3.17 RMW decoder timingdiagram 50
3.18 Pipelined RMW decoder 25
3.19 PLADblockdiagram 53
3.20 Example 3-input, 3-output NOR NOR PLA structure 54
3.21 Ternary CAMtritcell 55
3.22 PLAternary CAMtimingdiagram 57
3.23 Normal self-resetcircuit 58
3.24 Normal self-reset circuittimingdiagram 58
3.25 Fastreset off self-resetcircuit. 59
3.26 Fast reset off self-reset circuit timing diagram 59
3.27 PLASRAMcell e 60
3.28 Pointer logic block diagram 62
3.29 Storingtwo FIFOsinonemat 63
3.30 AFIFO spanningfourmats 63
3.31 Maskable comparator gate-leveldiagram 64
4.1 InterconnNectoverview i vt e e e 68
4.2 4x6crosshar 70

Xil

4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10

Inter-mat control network 72

Extoutlogic 73
Extinlogic e 73
IMCN wired-OR driver and pull-up circuit 74
Processor interconnectoverview 76
Requestcrossbar 77
Request crossbarcrosspoint. 78
Replycrossbar 80
Reply crossbar crosspoint 81
Lowswingdriver 83
Low swing receiver - modified StrongARM latch 84
Address splitter block diagram L L. 87
Scratchpad mat configuration for address splittere}d@m. 88
Address split for contiguous word scratchpad 89
Address split for interleaved word scratchpad 89
Cache mat configuration for address splitter example. 90
Cache tag address split for contiguous word data array. 91
Cache data address split for contiguous word data array 91
Cache tag address split for interleaved word data array. 92
Cache data address split for interleaved word datg arra. 92
Testchipdiephoto. 59
Testchip block diagram 97
SRAM predecodergate 98
SRAM wordlinedrivergate Q9
SRAMread l/Ocircuits oaL
SRAM bitlineresetcircuits L0 e 101
SRAM replicatimingpath 0yl
SRAM replica bitineand wordline 103
Pointer logicdecodergate 104

On-die voltage sampler with device widthgins for a 0.18m technology[56]106

Xiii

5.11 Process monitorblock 107

5.12 Areaoverhead and breakdown 109
5.13 Areaoverheadvs. SRAMcapacity 110
5.14 Power overhead and breakdown 111
5.15 Power overheadvs. SRAMcapacity 112
5.16 Worst-case read at 1GHz, 1.8V, room temperature112

Xiv

Chapter 1
Introduction

Decades of technology scaling have made available an wegeated amount of compu-
tational power from today’s integrated circuits. This hagmed up new application areas
such as computational biology and ubiquitous computingeretpreviously computation
was either not powerful enough or not efficient enough tccktthe problem. These types
of new application areas will keep up the demand for ever raffi@ent, high-performance
computation.

However, continued process scaling has come at the pricecofngore exotic process
technologies and complex designs. Designers face inagdsficulties such as intercon-
nect delay, device mismatch, leakage, power density angty and complexity manage-
ment. Due these difficulties, the cost of custom ASIC devalept is increasing at an
alarming rate. Within the next few process generationsctst of mask sets will exceed
$1 million [1], and the design costs will reach into the tefsdlions of dollars [2].

For system designers, the increasingly high cost of cust@CAlevelopment means
that the highest performance, highest efficiency solutiontheir applications are becom-
ing economically infeasible. Broadly speaking, systemgtes can choose to use off-the-
shelf parts or custom design an ASIC for their applicatiome Dff-the-shelf parts have
low non-recurring-engineering costs, yet lag the custoniC&3Sn performance and effi-
ciency, sometimes by orders of magnitude [3]. Further, fh¢he-shelf, general purpose
processor solutions are losing steam, running out of aMailgarallelism and encountering

CHAPTER 1. INTRODUCTION 2

architectural scaling problems [4]. While some applicasican still use off-the-self pro-

cessor and memory solutions, a growing number of applicatieeed better performance
and efficiency than off-the-shelf components can providéchnnot economically justify

custom ASIC development.

These applications have stimulated a growing interestdarrggurable computing so-
lutions. Field programmable gate arrays (FPGAS) [5][6]enbegen commercially available
for quite some time and have been gaining in popularity aspiagotyping and emulation
platforms. Additionally, a number of academic and industifprts have combined a gen-
eral purpose processor with an FPGA fabric [7][8][9] for bb@ase of programming and
reconfigurability. Further, some next-generation comqutrchitecture projects have ex-
plored architectures that can exploit multiple types oflimagion parallelism [10][11] and
even entirely polymorphic computing architectures [13][14].

These solutions bridge the gap between custom ASICs andal@uepose solutions by
allowing the user to customize a pre-fabricated reconfieraomponent. Thus the non-
recurring-engineering costs remain low, while the perfanoe and efficiency are better
than those of off-the-shelf, general purpose solutiond $]|16]. However, these solutions
still lag custom ASICs in performance and efficiency due maitiitions in their reconfig-
urability and overheads associated with that reconfigliralp][15]. This illustrates the
fundamental design trade-off between efficiency and flé®gbithe more general-purpose
a system, the less efficient it is at a specified task; a highéeted design can be extremely
efficient at the target application, but is very inefficienbther tasks.

While there is a large body of work on how to design reconfigler@ompute units, the
memory systems of such designs have been largely ignoredy Mastems with reconfig-
urable computation, have entirely hardwired memory systgi][14]. FPGAs have only
recently added small, somewhat reconfigurable memory blotkhe computing fabric.
However, the memory system plays a critical role in detemmgithe performance, power,
and cost of modern machines [17][18]. Just as every apitdias unique compute re-
quirements, every application has unique memory accetpsivhich perform optimally
using different memory paradigms. A memory system that @arebonfigured to match
the application memory access pattern requirements caifisantly boost both the per-
formance and efficiency of the system. Building such a memsgsyem is the goal of this

CHAPTER 1. INTRODUCTION 3

thesis.

1.1 Organization

To set the stage for our discussion of reconfigurable menvegybegin in Chapter 2 by
reviewing contemporary SRAM design techniques. Theseniqals include: array par-
titioning; post-charged decoder logic; datapath circesign; control and clocking using
replica timing; and efficient data and address signalingdasidiibution. We then examine
how these highly optimal SRAM blocks are used to form cacR#30s, and scratchpads
in modern memory systems.

Chapter 3 explores motivating factors for reconfigurablenoiey and the architecture
of our proposed memory system. The architecture is drivam fselow by memory circuit
design considerations and driven from above by the requairekitectural flexibility. We
also detail the design and implementation of the base repmafdle memory block called
amemory mat

We continue the description of the proposed memory systediapter 4 by detailing
the interconnection networks between the memory mats atwleba the mats and the
computation. Each network has unique communication reqents and characteristics,
and we tailor the implementations to efficiently meet thoseds.

To explore the feasibility and overheads of our architegtuwe designed and imple-
mented a prototype reconfigurable memory testchip. Ch&ptierscribes the testchip im-
plementation and measured results. From these resultsxtnapelate to larger, more
complex implementations of the proposed reconfigurable ongsystem.

Chapter 2

SRAM Design

In today’s processors and ASICs, one of the most voracionswuers of die area and
device count is the on-die memory. The predominant memahni@ogy used on-die with
computation is 6T SRAM. While embedded DRAM has appeared muraber of aca-
demic and commercial designs, such as the Berkeley IRAMept$].9], gaming consoles
[20][21], and the Mosys 1-T “SRAM” memory block [22], it hastbeen widely used due
to the additional cost of a merged logic-DRAM process andhéigiesign complexity. A
6T SRAM memory, however, can be manufactured in a standgid pwocess and contin-
ues to offer high-performance at a reasonable density awdmpdissipation. SRAMs will
likely remain the dominant on-die memory technology, as 8Rzlls have already been
demonstrated down to the 32nm technology node [23].

A 6T SRAM cell uses a pair of cross-coupled inverters as Hsthible storage element
with two additional NMOS devices for read and write accesgufe 2.1). The cells are
aggregated into cell arrays to share the decoding and 1/©© (Bggure 2.2). On a read, the
decoder raises the wordlin®/() of the desired word. The bitline8(andBL_b) have
been precharged to a reference voltage, and the cell dridéfeeential current onto the
bitlines according to the stored value. The cell currenelatively weak for the bitline
capacitance, so to speed the read operation, a sense amplifie I/O logic amplifies the
bitline differential voltage to produce a full swing logialue. On a write, the write driver
in the 1/0 logic places the write data onto the bitlines akfail signals. The decoder again
raises the wordline of the accessed word, and the cellsttereew data values. A number

CHAPTER 2. SRAM DESIGN 5

BL BL_b

WL

vdd vdd

Figure 2.1: 6-transistor SRAM cell

of cell columns can share /O circuitry via the column muéxor. There are a number of
ways in which designers have optimized the architecturecaedit design of SRAMs to
improve the performance and energy efficiency. In this drapte will review a few of the
most prevalent and significant optimizations.

2.1 Array Partitioning

While the simple monolithic cell array architecture in Fig2.2 is appropriate for small
memories on the order of a few Kbytes, for larger memoriesigiers partition the cell
array for better performance and energy efficiency [24][2%FH] For partitioned arrays, we
will use the same terminology as Amrutur [24] to describeghditioning. An SRAM is

divided intonmmacros, each of which is accessed simultaneously. Everyonoperates

independently, with the exception of possibly sharing aiporof the decoder with the
other macros. Each macro contains a portion of the accessaticalled the sub-word.
Each macro is again divided into a number of blocks. The regaesub-word is contained

CHAPTER 2. SRAM DESIGN

BL BL_b
WL
6T
Row
— dec
addr
- COl g ol sel Col mux
dec
—_1T—® se Sense amps
Control
—1 we Write buffer
data data
in out

Figure 2.2: SRAM block diagram

CHAPTER 2. SRAM DESIGN 7

entirely in the block, which we define as an array of cells #ietres local wordline drivers
and bitline 1/0O circuitst Each block hadw cells in a row, andh cells in a column. The
bitlines run vertically, and the wordlines run horizonyall

Figure 2.3 shows an example partitioning of a 512Kb SRAM. $RAM has 4 macros,
each with 8 16Kb blocks. The blocks are 128 rows by 128 colufimasbh= 128 andow =
128) and have an access width of 16b. The 16b access widtingsgach block to perform
8:1 column multiplexing.

macro
| = === = - = == ——=—==-- = == ——=—==-- = == ——=—==-- =
| | | |

=2 o] 16Kp |1 - | - | - |
:91 block\: \: \: |
\ \ \ \

: \: \: \: \
\ \ \ \

! * ! * ! * ! * \
! ! ! ! \
: \: \: \: \
\ \ \ \

‘ —— [—— [—— [—— I
! ! ! ! \
: \: \: \: \
\ \ \ \

: o \: o \: o \: o \
\ \ \ \

- _-— - -—— - |\ - =" | ", V=
16/ 1@/ 19/ 1§v sub-word

6% word

Figure 2.3: Partitioned 512Kb SRAM array using 4 macros ewtih8 16Kb blocks

In a partitioned SRAM only a portion of the array is activamgry access. By us-
ing hierarchical wordline decoding [27][28] and hieraxdlibitline architectures [29], de-
signers can keep the lines short and avoid significant wiredBl@ys. The shorter, lower
capacitance lines and partial activation of the array strveduce the energy per access.

1A block can be though of as logically a monolithic cell arrayt in practice it does not have to be. For
example, a block could place the decoder in the middle oféfieacray to reduce the wordline RC delay, and
thus actually contain two monolithic cell arrays.

CHAPTER 2. SRAM DESIGN 8

Partitioning does, however, decrease the area efficientyedfRAM, and designers must
trade that off against the improved energy and performageentually this increase in the
area offsets the gains from a smaller block and is detrichémtihe overall performance
and energy dissipation of the memory [24]. The optimal blside depends on the opti-
mization goal é.g. delay, energy, area, energy-delay), SRAM architecturepitistyle,
and technology, but typically is in the 16KB to 128KB rangel an not a strong function
of process technology [25][30][31][24].

1Mb I I I I I I I
A
256Kb |- A -
> A
S 64Kb |- A a 4 -
% A LA A A .
(&)
~ 16Kb| A
S A
m
AKb |- a A —
1Kb |- A —
! ! ! ! ! ! !

16Kb 64Kb 256Kb 1Mb 4Mb 16Mb 64Mb
Total Capacity

Figure 2.4: SRAM block size survey (see Appendix A)

Figure 2.4 shows a scatter plot of the block sizes for a nurobrecent SRAM designs.
The detailed characteristics and full citations of the SRAMN be found in Appendix A.
With the exception of a few outliers, most of the SRAMs havdipan sizes that lie be-
tween 16Kb and 128Kb. This bears out the conclusions of baotinvdur [24] and Evans
[25] that the optimal energy-delay partition size fallshiitthis range. The SRAMs plotted
were fabricated in processes that span the 90nm tquh@6chnology generations. The
large block outliers are SRAMs that were optimized for ariaiency. The small parti-
tion outliers are SRAMs that were optimized for extreme lawpr or high performance

operation.

CHAPTER 2. SRAM DESIGN 9

For a partitioned SRAM, we can break the memory access doterfonr phases: re-
guest transport, block decode, block datapath, and reghgport. In theequest transport
phase, we send the the address and data from the global tophis requested block. A
portion of the decode may occur during this phase in the seteaf which block to access
[27][28]. Theblock decodghase is the local decode from the block address input to the
local wordline assertion. Thalock datapattphase is from the wordline assertion through
the cell driving the bitlines to the output of the local seasgplifier or the cell writing in
the data on the bitlines. Theply transportphase is from the output of the local sense
amplifier to the global data output. This phase is only nexrgs$the request returns data.
Other researchers have chosen to break a memory access/anpatts, calling our first
two stageslecodeand last twadatapath but as we will see in Chapter 3, our four segment
division is logically cleaner for our reconfigurable memadssign.

2.2 Decoder Design

The decoder logic can be thought of as a series of high-faND Aates with a very low
activity factor. For a memory witl®" words, the decoder is logically"h-input AND
gates, designed such that only one AND-gate firesrgises its wordline) for a given n-bit
address input. The decoders are usually hierarchicalZ8y§haring pre-decoder gates for
common boolean terms. The address inputs are typicallyeckss into pre-decode groups
of three to four bits for pre-decoding. The pre-decoder oigtare then combined in the
global and local row decoder gates to generate the blocklimerd

For a fast decoder, we would like to use a low logical effo2][®gic family like
precharged domino logic. However, while domino logic wopitdvide high performance,
the precharge phase is excessively wasteful in energy fard#es, because decoders have
an inherently low activity factor. On each access, only allgpeacentage of the gates in the
decoder fire. But in precharged logic, the precharge costgolal goes to all gates in the
decoder and drives the gate capacitance of all the resetedevegardless of whether they
have discharged or not. This is excessively wasteful inggnérecause we only needed to
reset the gates that fired. Ideally, we would only reset tlgases, because all other gates
would not require resetting.

CHAPTER 2. SRAM DESIGN 10

To retain the high-performance of precharged logic, buteaehlow-power, designers
instead use post-charged, self-resetting logic styleserdecoder [33][34]. As the name
implies, a short delay after a self-resetting gate asstxteutput, it resets itself . The
output is a pulse whose pulsewidth is set by the self-resaydéhe pulse-mode nature of
these gates allows us to carefully control the pulsewidtthefwordline which is critical
for decreasing the read power [35]. For a read, the wordlinsewidth determines how
long the accessed cells drive the bitlines and thus the nélatelswing and bitline energy
dissipation. Generally, the wordline pulsewidth is setequst long enough to generate the
bitline differential voltage needed to overcome offsetthie sense amplifiers. Section 2.3

s o]

discusses this further.

vad vdd vdd vdd
[MO —d M1 M6]b— —d[M4
out
in0 no
M2 —{ M5 —{ M7
inl
M3

4{>07

Figure 2.5: Self-resetting, 2-input, AND gate

Figure 2.5 shows the circuit schematic for a simple, sedétiing, 2-input, AND gate.
Figure 2.6 shows the timing diagram for the gate. When bqibtsin0 andinl pulse high,
M2 andM3 pull nodenO low. NO going low pulls the outpubut high through theM4/M5
inverter. After the three inverter delay goes low turning on the reset devigs. M6 pulls
nO high, back to its quiescent state. We could wait for MiM5 inverter to pullout low

CHAPTER 2. SRAM DESIGN 11

™ /
out / \
g \ -

Figure 2.6: Self-resetting, 2-input, AND gate timing diagr

again, but we can speed tbattransition edge using an explicit reset deWidé. Bothin0
andinl are assumed to be pulses and must be low by therBngees low, turning o6,

to avoid a drive fight betweel2/M3 andM6. The gate that generate¥) andinl must
carefully control their pulsewidth to avoid this drive figl@ther designs for self-resetting
gates can operate correctly without this restriction onrbpets [31].

We can skew the NAND gate formed M0-M3 for a fast assert edge0 pull-down, and
theM4/M5 inverter can be skewed for a famit pull-up. This speeds the assert transition of
the output, but slows the reset transition. By adding thdiekpeset devicedi6 andM7
we can also have a sharp reset edge 6utpull-down). Thus we can precisely control the
pulsewidth of the output, which is key for controlling thedebitline swing and minimizing
the read power [35].

Using self-resetting gates allows the decoder to achietle bigh-performance and
low-power. In 2001, Amrutur and Horowitz explored the desspace and found that the
optimal decoding structure consists of a mixture of differiypes of dynamic AND gates
[34]. Their optimal decoder uses an initial stage of cloddadhbu OR-gates [36], followed
by self-resetting, source-driven NAND gates [37][38].

The Nambu OR-gate allows us to use a fast dynamic NOR gatéoippavhile keeping
the power dissipation low. If we used a traditional dynam{@Rlgate in the predecoder,

CHAPTER 2. SRAM DESIGN 12

vdd Vdd

dl.

clk Al
S

1

vdd

<
o
o

out

L e[L

Sl

clk |

Figure 2.7: Nambu OR-gate

then for each predecoder, all but one of the outputs woultitian. Only the gate that had
all its inputs low would not transition. While this would bdagst circuit topology, it would
dissipate a lot of power. The Nambu OR-gate retains the fasamic NOR topology,
but avoids high power dissipation, by directly cascading tlynamic stages as shown in
Figure 2.7. Correct operation of the gate relies on the dyn&l®R evaluating faster than
the following dynamic inverter and requires careful sizamgl simulation.

A source driven NAND gate (Figure 2.8) implements the NANBdtion using a circuit
topology that only has a single NMOS device in the pull-dotatk. One of the inputisi_n
drives the source of the NMOS device rather than a trangisti@:.In_n is asserted when it
is low, andin_p is asserted when it is high. Thus, when both input are ass#ieeNMOS
device has a full Vdd across its Vgs and is fully on. This gaie achieve delay near that of
an inverter, while still performing the NAND function. Thigpe of gate has also be used
with half-swing inputs to reduce power dissipation if lovt-dévices are available [39][40].

CHAPTER 2. SRAM DESIGN 13

vad

—dL

in_p out WL

—L

Figure 2.8: 2-input source driven NAND gate

2.3 Datapath Design

The block datapath phase is from the assertion of the wasllithrough to the cell 1/0

circuits. The cell I/O consists of the read sense ampliftaesyrite drivers, and the bitline
reset devices. Both the sense amplifiers and write driveysraae a column mux between
them and the bitlines if they are shared among multiple cakim

2.3.1 Sense Amplifier

On aread access, the cells in the selected row drive a diffateurrent on to the bitlines
based on their stored values. The bitlines have been p&yiegualized and reset to a
reference voltage by the bitline reset devices. While wédcsimply wait until the bitlines
have slewed full-rail to a digital logic value, to save powad reduce the read delay, most
design use sense amplifiers to sense the the bitlines as sabeiadifferential voltage
has reached approximately 100mV, enough to overcome thteigense amplifier offsets
[35]. When the sense amplifiers are enabled, the wordlineslao shut off to prevent
additional, unnecessary swing of the bitlines and wast&po

To further reduce power dissipation, designers have esaheatatic sense amplifiers,
in favor of clocked designs. Figure 2.9 shows a commonly leteti-type sense amplifier.
Clocked sense amplifiers have a sense enable sgtizdt triggers the sensing. The figure
shows a 2:1 column multiplex using only PMOS devices. Th&uages that the bitline
reference level is Vdd, so we only need PMOS devices for tesgete column mux. Some

CHAPTER 2. SRAM DESIGN 14

lower reference levelg(g.Vdd/2) may require a full transmission gate for the columnxmu

bitfo] bit[1] bit_b[0] bit_b[1]

sto—if L

sel[1] d

dL

11

vdd vdd

se

:
1

Figure 2.9: Latch-style sense amplifier

There are many different clocked sense amplifier circuitduding both voltage mode
and current mode designs. SRAMSs that are willing to swinddities full-rail on a read
can use skewed inverters for simple single-ended voltagiereensing.

2.3.2 Write Driver

On a write access, the write driver sets the bitlines to thatidata value. After the decoder
asserts the selected wordline, the cell stores the date ealdhe bitlines. For a success-
ful write, the bitlines must typically swing full-rail or rely so. There has been some

CHAPTER 2. SRAM DESIGN 15

work on low-swing writes, but the proposed techniques hastebeen widely adopted
[41][42][39][40][31][43][44][45]. The write enable cortl signalwe controls when the
write driver asserts the input data value on the bitlines. v an NMOS only passgate
mux for the 2:1 column multiplexor, because the write drigalis the bitline to ground
but relies on the bitline reset to keep the bitline that retmdiigh near Vdd. The write
drive as shown has three NMOS devices in a series stack. Feov affective resistance,
this would require the NMOS devices to be quite large. To cedbe stack height, we can
pre-compute the AND ofve anddataanddatab, and only have two devices in the stack
(Figure 2.11).

bit[0] bit[1] bit_b[0] bit_b[1]
sel[0] I~ |
i | [
sel[1]
It L
bit bit_b
we

M1
1

3

data data |

Figure 2.10: Write driver with 2:1 NMOS-only column mux

CHAPTER 2. SRAM DESIGN 16

bit[0] bit[1] bit_b[0] bit_b[1]
sel[0]
= L
sel[1]
= L
bit bit_b
we D_{ we

=N

Figure 2.11: Write driver with reduced NMOS stack height

2.3.3 Bitline Reset

The bitlines sit at a pre-determined reference voltagel ten the block is not active.
On a read or write the bitlines deviate from that referencéage, and the bitline reset
circuits restore the bitlines to the reference voltagelledter an operation. The bitline
loads can either be static or clocked. Static loads do natime@ny complex control or
clocking, but dissipate static power anytime the bitlinegidte from the reference voltage.
Most modern designs use clocked reset circuits like the shewn in Figure 2.12. The
reset devices pull the bitlines to the reference voltaggcally Vdd, when the bitline reset
control signabl_rst b is asserted (low). The shorting device ensurestitigndbit_b reset
to the same voltage level which is especially important éads.

There have been some designs that use a lower bitline reteraftage, usually Vdd-
Vt or Vdd/2, to reduce the bitline energy [39][40] and to redueakage onto the bitlines
from nominally unselected cells [46], but again, these haples have not been widely
adopted.

The amount of bitline reset required is typically quite eitfnt for reads and writes. On
a read, the bitlines only dip about 100mV from the Vdd refeeelevel, but on a write, one

CHAPTER 2. SRAM DESIGN 17

vae vae
bl rst b 1~
e P Jl dl
—
bit bit b

Figure 2.12: Bitline reset circuit

of the bitlines is driven to Gnd. Given the very different sgs that need to be corrected,
some designs have separate read and write bitline reseattsirdhe write reset circuits
use larger devices, because one of the bitlines must be irallghe way from Gnd to
Vdd. Figure 2.13 shows a split reset circuit using largeovecy devices for the write reset
which are enabled byr_bl_resetb.

vdd vdd
large large
wr bl rst b 1~
-0 T I d[
vd vd
bl rst b 1
- I d[
small small
? 3 [1 ? 3
bit bit b

Figure 2.13: Bitline reset circuit with split read and wnitset

Designers can also add static or pseudo-static keeperedamicthe bitlines to mitigate

CHAPTER 2. SRAM DESIGN 18

the effects of leakage and crosstalk. A static load can deusing a grounded gate PMOS
device with the source connected to Vdd and the drain to tiiadai A pseudo-static load,
similar to those used in dynamic logic gates, consists ohegerter driving a PMOS device
as shown in Figure 2.14. The advantage of this techniquatghie keeper PMOS device
shuts itself off during writes, thus avoiding excessive podissipation. However, it may
be difficult to fit the extra devices needed for the pseudbestzad in the small horizontal
cell pitch? Some designs have used more complex techniques to activelgensate for
the leakage onto the bitline due to nominally off cells [48][[50].

vdd vdd
large large
wr bl rst b N
- 0T |~ d[
vdd vdd
bl rst b SN
- |~ d[
small small
? 3 [1 ? 3
vdd vdd
[small [] small]
® [$
bit bit b

Figure 2.14: Bitline reset circuit with pseudo-static keegircuit

2This may become less of an issue as designers move to a skdetcell layout for shorter bitlines and
better manufacturability [47].

CHAPTER 2. SRAM DESIGN 19

Table 2.1: SRAM control signals

signal name unit operation| description

se | sense enablesense amplifier read enables sense of bitlines

we | write enable| write driver write enables drive of write data onto bitlineg
bl_rst | bitline reset| bitline load both turns on bitline reset devices

wi wordline cells both turns on cell access devices

2.3.4 Clocking and Control

An SRAM has a number of key control signals whose timing refesthips must be tightly
controlled to maintain correct operation. There are addéi timing relationships that can
be maintained for high-performance, low-power operatitable 2.1 lists some of the key
control signals.

We can generate the control signals either by delay matavimpck selection. The
clock selection method requires that there be a number dy fapaced clock signals avail-
able. Either by simulation-based dead reckoning at desigmor by a training sequence,
we generate the control signals from the clock edges thatgpond most closely with the
ideal control signal edges [51].

The delay matching method generates the control signaésimasreplica timing paths
that match the delay of the SRAM access path [52][31]. Maighhe delay of elements
in the decoder is relatively easy, because the decoderstsrdilogic gates and buffers.
By using delay elements that are made up of identical gatesiog logical effort and
simulation, a delay element can be made that matches theleledelay reasonably well
across process, voltage, and temperature variations [31].

However, during a read, there is an element in the SRAM aguabsthat is not a logic
gate, namely the cell driving the bitline. Matching the gedéthe cell driving the bitline is
critical for accurately generating the sense enable sitpadactivates the sense amplifiers.
If we assert the sense enable signal too early, there mayenat dufficient differential
voltage on the bitlines to overcome offsets in the senseifierphnd the sense amplifier
may latch-in incorrect data. If we fire the sense enable ta) the SRAM will still operate

\14

CHAPTER 2. SRAM DESIGN 20

correctly, but the performance will not be optimal. Amrufd5] showed that a logic delay
chain does not track the read bitline delay very well overrayeaof process, voltage, and
temperature variations.

However, a replica bitline that mimics the delay of the akhiine can track the actual
bitline delay well over process, voltage, and temperatarégations. To mimic the actual
bitline as accurately as possible, we use a driver cell omgpkca bitline that is identical
to a real SRAM cell, except that it has a hardwired storedevalinlike the actual bitline
that only swings approximately 100mV, the replica bitlineshgenerate a full digital logic
level output level. We can accomplish this by either a cdpace ratioed or current ratioed
replica bitline [35]. A capacitance ratioed replica bidinses a single driver cell and a
replica bitline that is a fraction of the length and capaw®&of the real bitline. A current
ratioed replica bitline uses a full length and capacitantimé, but use multiple driver cells.
The exact length of the replica bitline in the capacitan¢®ead case or the exact number
of driver cells in the current ratioed case can be fine tunathiulation to match the actual
bitline delay. Figure 2.15 illustrates the two types of regplbitlines. The capacitance
ratioed replica bitline uses a rktimes shorter than the real bitline, and the current ratioed
replica bitline usegtimes the drive strength as a regular cell.

While a replica bitline does track the actual bitline mucltérethan a chain of logic
gates, the tracking is not perfect. Additionally, despaeetul simulation-based tuning, the
replica path and the actual path may differ due to randomceéaviismatch, inexact mod-
eling, or local voltage and temperature variations. To emthat the memory will operate
correctly under worst-case conditions, designers padithedplica path by between 10%
and 30% extra delay. This extra time may end up being wastesl ifithe actual path is
faster than the replica path, but ensures correct operatidar worst-case conditions.

2.4 Transport Design

The request and reply transport phases transfer the adarésiata to and from the memory
block. These phases of the memory access can account fordjoetynof the delay and
energy in large, partitioned memories [25][31]. Designgs a number of techniques to
reduce the delay and power of the transport phases.

CHAPTER 2. SRAM DESIGN

n cells

\ vdd

1 rbl

o L

. —i

n cells
°
°

— M n/k cells °
s °
1 :i driver cell
regular capacitance ratio
column replica bitline

—. j driver cells

current ratio
replica bitline

Figure 2.15: Capacitance and current ratioed replicanetli

21

CHAPTER 2. SRAM DESIGN 22

In his SRAM design space study, Evans concludes that “niedgal address line” de-
signs that route address and data to the blocks are optimbdvioenergy and high per-
formance [25][53]. These designs perform a portion of theode in the interconnect in
selecting which blocks should be accessed. Broadcastengetjuest and reply data and
address to all blocks is excessively wasteful of energy.

wire

data clk

‘L - data_out
rcv

wire

data_b ’ A /\‘L/\ A

Figure 2.16: Example differential low-swing interconnect

1.8v
18v 0.5v

Bit }O_{ 8.1/0.18

L8v Wire

1.8v
Bit | }O‘{ 8.1/0.18

Figure 2.17: Example low-swing driver, sized for a QuaBtechnology[54]

<]

To reduce the energy of the transport further many memosesaw-swing signaling
[31][39][40]. Low-swing schemes can also improve the perfance of the interconnect
over full-swing methods [55][54]. There are a number of Iswing signaling techniques
that have been used in memories and other types of desigliSgb5Figures 2.16-2.18

CHAPTER 2. SRAM DESIGN 23

SIR latch ‘

Figure 2.18: Example low-swing interconnect receiveregifor a 0.18m technology[54]

show an example low-swing interconnect system. The wirespagcharged to Vlow, a
voltage near ground. The drivers conditionally pull theentiws Gnd based on the data. The
modified StrongARM latch [57] at the far end amplifies the Iswing differential input
voltage to a full-swing signal.

Low-swing signaling can, however, require an extra supply @recise clocking of the
receiver sense amplifiers. Additionally, the small swings be susceptible to noise, but
this can be mitigated by careful circuit design and layo®][®][54]. The low-swing
drivers and receivers can be merged with the routing loga‘imultiplexed address line”
design.

Since a large portion of the access delay can be in the tramsp® can increase the
cycle rate of the memory by pipelining in the transport. Mamigroprocessors already
allocate multiple cycles for a cache or even a register filess due to the interconnect de-
lay. By pipelining in the transport we minimize the necegdatching elements by placing
them before the block decoder.

CHAPTER 2. SRAM DESIGN 24

2.5 Memory Systems

In the previous sections, we have reviewed the basic aothre of a partitioned mem-
ory array and a number of contemporary SRAM circuit techegjtor achieving high-
performance and low-power. These highly optimized SRAMs rarely used by them-
selves, but rather aggregated together to form more compdemory systems. On modern
processors and ASICs, the on-die memory system occupiege parcentage of the die
area and has a large impact on performance and power diesipdtor current system-on-
a-chip ASICs, the memory occupies on average over half afitharea [58][59]. Similarly,
memory occupies a large portion of the die on modern generglogse CPUs. For exam-
ple, on a recently reported Intel Itanium 2 processor, tlehea account for over 73% of
the total device count and occupy over 50% of the die area [60]

Digital systems use memories for a variety of functions,tbay typically fall into one
of three categories: scratchpads, caches, and FIFO huBeratchpads are simple, fast,
software-managed, local memories mapped directly int@titzess space for storing fre-
guently used data and instructions [61]. For fast, detastinaccess times, scratchpads
are typically small and located close to the computationtt@mother hand, caches facili-
tate fast access to much larger memory spaces for accesegdttiat exhibit temporal or
spatial locality by remapping locations of a larger mema@gce into a smaller, faster cache
memory. Caches improve performance and efficiency of theangsystem by hiding the
latency of large, slow storage or by filtering requests tadwadth limited resources such as
off-chip DRAM. Some access pattern, however, do not extobdlity, but rather streaming
behavior [62][63][64]. Theses access patterns perfornt eftisiently with a FIFO stream
buffer memories [65][66][67][68]. FIFO structures canalse used to provide elasticity
between blocks with variable or bursty computation rates.

Even within each memory type there can be a multiplicity dfedent functionality.
For example, while a cache for a large microprocessor mag stwherence protocol in-
formation, replacement policy information, speculatitege, or dirty information for each

SWhile the on-die memory itself may not necessarily be the idamt source of power dissipation, it
can have a large impact on the number of off-chip memory retgussued. This off-chip I1/O can be quite
expensive in both power and performance. Additionally,ldakage power from large memory structures
can be significant.

CHAPTER 2. SRAM DESIGN 25

line. These extra meta-data bits may require special hagnglich as read-modify-write
functionality. However, a cache for a small micro-congolinay simply store a valid bit,
and not require any additional functionality. Further, theye microprocessor’s caches
are likely to be multi-way set associative and organized meaarchy, while the micro-
controller may only have a single level of relatively smalthes. While these memory
structures can have widely varying functionality, on closeamination, all of them are
guite similar in implementation. Each of them can be decasrdanto a number of RAM
blocks, interconnection between the blocks and the coripanteand interface logic be-
tween the computation and the interconnect.

Processors and ASICs often include examples of all thresstgpmemories in various
sizes and forms on the same die. On a processor, the are mempgatructuresd.g.
main cache hierarchy, branch target buffer, TLB), FIF©g.(instruction queue, reorder
buffer, reservation stations, DRAM write buffer), and schgpad memoriese(g. register
file). Even on more application specific chips such as mullim@rocessors and ASICs,
there can be a mixture of these memory types [69][70][71][58e reason for this variety
of memory structures on-die is that different parts of theigie have different memory
requirements, and each memory type is most efficient fortaioelype of access patterns.
On a larger scope, the memory systems of ASICs targetedfatafif applications vary
widely, because they are optimized for different applmagiwith different memory access
patterns.

Chapter 3
Reconfigurable Memory Architecture

A conventional hardwired memory system is typically imptted for best average-case
performance and efficiency, which is acceptable for an ASk8 awery narrow application
range, but for a general purpose design, a hardwired merysigra that cannot adapt to the
varying memory access characteristics across a range béapgns can be a substantial
hindrance. Because the memory system is often the botkeioeapplications [17], a
sub-optimal memory system can significantly degrade thiopeance and efficiency of
the design [18][72][73][74]. If we had a configurable memeygtem, each application or
application segment could have a memory system tailordd specific needs and thus run
faster and more efficiently [75][76].

A number of researchers have sought to build memory systeamb€dould adapt to the
application characteristics. The concept of caching is w twadynamically reconfigure
the memory to suit the application based on its past memagsadehavior. Researchers
have further enhanced cache performance and efficiencytéyngl the cache structure
itself to meet the application needs. These enhancemevesimauded reconfiguring the
line size [72][77], the set associativity [78][18][72][&nd shutting off unneeded lines or
banks [80][81][82]. Some proposed caches have a direcsacseratchpad-like mode that
eschews the tag check to save power [83]. A few DSP chips camredistribute memory
resources between instruction cache, data cache, andhgmadtmemory, on a cache way
granularity [84][85]. Some researchers have gone furthexdaling the ability to alter the
balance between compute and memory by reconfiguring thesaclbecome computation

26

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 27

[86].

Reconfigurable memory of a different sort can be found on ceroral FPGAs and
coarse-grain reconfigurable computing fabrics. To protigelocal memory that appli-
cations need for buffering and local data storage, dessghave included block RAMs
distributed throughout the computing fabric which have dowverheads than using the
configurable logic blocks (CLBs) as memory [6][5][87][18§]. These block RAMs can
reconfigure their access width, many can become FIFOs, and san be configured as
CAMs or logic blocks [89][90]. These designs provide relaly bare memory modules
and use the surrounding configurable logic fabric to creayehégher-level functionality
needed by the system. However, the high overhead assouwdtethe configurable logic
degrades the performance of more complex memory functions.

The extant work on reconfigurable memory has focused on thetactural aspects of
reconfiguring the memory, but has largely ignored the cirlaviel effects of adding re-
configuration to a cutting-edge memory design. As an exaniipgeFPGA block RAMs
specifications are fairly inefficient and slow when compawedurrent, cutting-edge, em-
bedded SRAM designs [5][91]. In this work, we take a différepproach to the problem
by looking at reconfigurable memory design from a bottomapula rasaperspective,
starting with the circuit design of the memories themselaasd then examining where and
what architecturally useful configurability can be addedda overhead. To provide a re-
alistic evaluation, we apply modern, full-custom, cirdeithniques to both the SRAM and
the peripheral logic, which allows us to achieve perforngaaed power on par with con-
temporary embedded SRAMs. To guide our development of ttiianal logic, we target
three different memory configurations: caches, FIFOs, anatchpads, but the resultant
reconfigurable memory design is not limited to these condigoms.

3.1 Reconfigurable Memory Architecture

Our reconfigurable memory systems consists of three sacttbe memory, the intercon-
nect, and the interface logic. Figure 3.1 shows the bloclrdia of the architecture. For
our design, we leverage the natural partitioning of largé&BR into smaller blocks, by
adding reconfiguration on these partitioning boundarigscl®osing the reconfiguration

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 28

grain size based on circuit- and VLSI-level concerns, wadieger or under partitioning
the array and minimize the reconfigurability overhead costs

/ Memory
! Mat n n n

e i

o

o

Q

n Inter-mat Control Network

>

5 /

g

GE) ! | | | | | |

I

2,

o]

© |\

S

=

(@]

=\

C

g Interconnect

5} \

x

\ Interface Logic

I I A

Processor

Figure 3.1: Basic reconfigurable memory system architectur

The memory section consists of a homogeneous array of melnhacks calledmats
Each mat can be configured to be a portion of a cache, a FIFQ@raichpad memory. We
choose the mat size based on the optimal energy-delay SRAK bize and the necessary
architectural flexibility. A small network called the interat control network runs between
the mats allowing them to pass a few bits of control informrato each other. Mats can be
aggregated together to form larger complex memories sucadches, FIFOs, or scratchpad
memories. Figure 3.2 shows the block diagram of an exampglenfgurable memory
system with 16 mats arranged as an 8 x 2 array. Figures 3.3.4n&h8w this memory
system configured for caching and for stream processingcésply.

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 29

mat
A] A] A i] [L] |] A J=— control bits
| IMCN |
! i i ! i i ! i
Data in/out
Agdgf,ﬁ% | A A | A A A i
P Y Yy vy Y Yy vy A v
Processor Interconnect Network (PIN)
Figure 3.2: Memory system block diagram - 16 mats in an 8 x &yarr
Data Data Tag Data Data Data Tag Data

|
|
|
|
|
l
| hit
|
|
|
|

! ‘
| I
! |
| I
| I
! |
! hit }
; 1
| I
| I
! |
| I
| I

Data Cache Instr Cache

Figure 3.3: Caching configuration with 2-way data and iredtaun caches

77

| ¥ x |
! [[|
| FIFO FIFO FIFO FIFO FIFO |' || Instr ' || Scratch Scratch ||
| [[|
| [[|
| [[1
| [[|
| [[|
| N ¥ |
| [| |
i| FIFO FIFO FIFO FIFO FIFO |' || Instr [' || Scratch Scratch |!
| [[1
I 1] S) S— :
Data FIFOs Instruction Scratchpad
Memory

Figure 3.4: Streaming configuration with data FIFOs, irttaim memory, and scratchpad

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 30

Because many memory structures are internally very simwilarcan use this general-
ized memory mat to form the core of many types of memories. é¥&y memory struc-
tures do differ significantly in the way that they connectlie tomputation engine. For
example, a cache requires requests to two (or more) memockdlthe tag array and the
data array. A FIFO, however, only requires a single memoguest per access. To allow
maximum reconfigurability, we use a dynamically routed shas between the memories
and the computation. Each mat has its own independent gortha interconnection net-
work. The interconnect is actually two uni-directionalardonnection networks: one for
memory requests from the computation to the mats, and oniadareply from the mats
to the computation engine. The computation engine launmaagests into the intercon-
nect, which are then dynamically routed to the addressed.nTdte interconnect allows
for multi-casting from a single request port to multiple sxalhe mat replies are always
routed back to the computation engine port that issued tigest.

Memory structures can be quite varied in the way that thegtéxithe address space.
A scratchpad is typically mapped directly into the addrgsss. However, a cache has no
mapping into the address space, but rather is a surrogatee€anain memory, and must
maintain the illusion that accessing the cache locationgschlly the same as accessing
the main memory location. A FIFO may be addressed as a utiigrrthan on a per word
basis, with simple push and pop commands. The interface bmgiveen the processor and
interconnect translates the address from the processdrdaavare location. This logic is
similar to the address centrifuge of the Cray T3E [92]. Caapgtprovides more details on
the interconnect and interface logic.

3.2 Memory mat

A memory mat is a flexible memory block which can emulate a wialgety of memory
structures. The mat has a fixed access width, corresporalithg tdata word width of the
computation engine. While having variable access widthld/éacilitate applications that
operate on smaller data widths, it decreases the efficiehityeanemory [30] and compli-
cates the design of the mat, interconnect, and interfade.l®je can however aggregate
multiple mats for wider access widths.

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 31

One of the key features that distinguishes many of the merstoagtures we wish to
emulate from basic RAMs is that they store status bits foheeard of data. For example,
a cache tag may store a valid bit, the LRU status, the coherpratocol state, or the
speculation state for each cache line. A FIFO may store &fuafity bit for each data
word to indicate if the word holds valid data. In our reconfajle memory, we support
these status bits by adding a generalized status bits catéaldatebits to each data word.
These bits hold data about the data, hence the name “metd-ddie meta-data bits are
read and written along with the main data on all accessesitidddlly, there are special
operations that only operate on the meta-data.

3.3 Operations

A mat can perform three basic operatiomsad write, and a special meta-data operation
called agangoperation. A read reads the requested word, data and migtgfdean the mat
memory array and sends it to the mat data output. A write wilte accessed word, data
and meta-data, with the word presented to the mat data idpgang operation operates
on all of the meta-data bits in the mat on a per-column basassimgle cycle.

A gang operation can set, clear, or leave alone (NOP) any c@tibns of meta-data
columns. For example, if there were 4 meta-data Iitd[3:0], with a single gang op-
eration, we could saind[3], clearmd[2:1], and NOPmd[0]. Figure 3.5 illustrates this
example gang operation.

There are two additional mat operations used for readingvenitthg the configura-
tion state,configuration readandconfiguration write The configuration state is memory
mapped into a special address space accessible only vialfiguration read and write
operations. The ability to read the configuration state iimarily a testability feature and
not strictly needed.

3.4 Operation Modifiers

There are four operation modifiers than can be applied tohreetbasic operations per
Table 3.1. An “X” indicates that the modifier can be applieth®operation. The modifiers

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 32

meta—data

0110

110]1

0(0]0 1100 |0
o o
° + °
o gang o
0fo0oj1]0 1100 |0
1101110 1100 |0
1100 |1 1100 |1

Figure 3.5: Example gang operation - set md[3], clear md[AOP md[0]

Table 3.1: Mat operation modifier applicability

| Instruction|| Cmp | Ptr | RMW | Cond|]
Read X X X X
Write X X
Gang X

are compare (cmp), pointer (ptr), read-modify-write (RM\&Hd conditional (cond). All
modifiers are orthogonal.

3.4.1 Comparisons

One of the most common logic operations following a memosadres a compare. For
example, the vast majority of accesses to a cache tag mememeads followed by a
compare to determine if there is a cache hit. Some configumathay only want to perform
a comparison on a portion of the stored word. For example cexche tag that stores both
LRU and valid information in the meta-data, a tag check wdhito compare the outgoing
address to the stored tag and ensure that the valid bit isysehdxking that the valid bit

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 33

is set. But the check will not care about the state of the LRidrmation. So we want
compare the main data and the valid bit, but wildcard the LR&l b

The memory mat supports a maskable compare modifier, tHatv®up a read opera-
tion with a comparison. Unlike a normal read, a compare regulata input for the value
to compare the stored value against. Additionally, for treskable comparison, we need
a short mask field to determine which fields are to be compaféd mask field is one
bit longer than the amount of meta-data to allow us to maskaaytcombination of the
meta-data bits and the main data as a chunk. Comparator & dsvrelatively small, so
embedding a comparator in each mat only has a modest ardzeader

3.4.2 Pointer Operations

Many memory structures have a level of indirection in therads path. A simple example
of thisis a FIFO, in which an access is either a pop of the heagbash to the tail. A request
does not name a specific memory address to access, but iagteader, the head or tail, to
access. Internally, the FIFO maps the head and tail poimgan actual memory location. A
more complex example of address indirection occurs in agsaghere the accessed word
is selected based on matching the memory access tag fieldn@uory system requires
use of two (or more) mats to support this type of complex agklmedirection, one to store
the tags and another for the data.

We support one level of simple address indirection via mrinperations. Any read or
write can be a pointer access that names a pointer numbecdéssgcather than a memory
address. A special block in the address path calleghtieter logictranslates this pointer
number into a memory address. Each pointer has an assosiatkrivalue that the pointer
logic uses to update the pointer value after an access. Theepwealue updates are optional
and can be increments or decrements. The pointer and stiligesvare read or written using
configuration reads and writes, described later.

3.4.3 Read Modify Writes

A read-modify-write (RMW) operation is an atomic operattbat reads out a word of data,
performs a logic function on the meta-data, then writes todiffred meta-data back into

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 34

the previous accessed word. The logic function may taker atipaits besides just the read
out meta-data. A write-modify-write operation is also pbkes but the usefulness of such
an instruction is somewhat suspect.

An example use of this operation would be in a cache tag tbeesLRU information
for each line. In a mat configured as the tag, the LRU bit(s)ld/be stored in the meta-
data. When the tag is accessed, we calculate the new LRU kakexl on the previous
LRU value, the local hit/miss result, and the global hitsnissult. By using a RMW
operation, we can perform this very simple logic and write theta-data back all within
the memory. While the operation implementation may be pipélinternally, we maintain
the appearance of atomicity to all requesters. So if a RMWwhimeédiately followed by a
read of the same word, the second read returns the updateddiatet value generated in
the modify logic.

3.4.4 Conditional Operations

Many memory structures have operations whose executioonisngent on an internal or
external condition. An example of a conditional operatiasdd on an external condition
would be the data write of a cache. In the data memory, thewhbuld only occur if there
is a hit in the tag. The hit signal must be passed from the tagongeto the data memory
to tell it whether or not to execute the data write.

A conditional operation based on an internal condition istic@ent on a pattern match
against the meta-data of the word. An example of this would B8¢FO push, a write
into tail pointer location. The write is conditional on th&B having an empty sloi.é.
the FIFO is not full). The write is therefore contingent om timeta-data bit storing the
full/empty information being 0O indicating an empty locaticAn internal conditional oper-
ation specifies the condition similar to specifying the mimsknaskable compares.

Any operation can be a conditional operation. A normal megmead does not alter
the state of the data word, and thus a conditional read ddeserm strictly necessary, but
when aggregating multiple mats to form larger memory stmgd, a conditional read can
be useful. For any operation than can change the state ofdfe (se. a write or a read-
modify-write), a conditional operation is needed. A coiudial gang operation requires

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 35

Table 3.2: Conditional gang clear truth table

md[1] | md[0] || md{[O]
0 0 0
0 1 1
1 0 0
1 1 0

additional support as described next.

3.4.5 Conditional Gang Operations

A conditional gang operation gang sets or clears a metatatzased on the value of
another meta-data bit. Figure 3.6 shows a conditional gkaag ofmd[0] based ommd[1].

If md[1] is 1, we cleamd[0], otherwisemd[O] is left alone. Table 3.2 shows the truth table
for this operation.

meta—data
110
111
0fo0
o o
° + °
i cgang clr i
0|1 0|1
111 110
110 110
5% s s
T & T &
c cC
(@] (@]
(&) (&)

Figure 3.6: Example conditional gang clear operation -rated[0] if md[1] ==

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 36

Table 3.3: Mat I/Os

| Signal | Bits | Description

opcode 0 | pre-decoded one-hot control signals
address a | memory address or pointer number
mask m+1 | bit mask for compares and gang ops
mdatain m | meta-data input
datain d | datainput
mdataout| m | meta-data output
dataout d | data output
extin e | external control input
extout e | external control output
matchout| 1 | compare result
valid_out 1 | valid status of output data
complete| 1 | general completion signal

Systems that allow speculative memory operations sucheabiykra multiprocessor
[93] can make extensive use of conditional gang operatigash processor in Hydra runs
a different thread, all but one of which is speculative. Hydaches have a number of
special status bits that they use to keep track of the spa@ikstate of the cache lines.
The Modified bit keeps track of whether a line has been spteelawritten by the local
processor, set to 1 if it has. This bit would be stored in theéantata of a mat acting
as the cache tag in a Hydra implementation on our reconfiggiraemory system. If a
processor speculates incorrecttyd. speculatively reads a word that is later written by a
less speculative thread), then it must perform a backupraradidate all lines in the cache
that it has speculatively written. If the Modified bit is siten the processor has incorrectly
speculatively written the line and must clear the Valid Bhis requires a conditional gang
clear of the Valid bits based on the Modified bits.

3.5 Mat Interface

In order to support the variety of operations beyond simgéels and writes, the mat inter-
face is more complex than a basic memory. Table 3.3 liststieeface signals. Thepcode

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 37

signal iso bits wide and indicates what operation the mat should perfdrhis takes the
place of the usual read and write enable signals. The maessidsa bits wide, meaning
the mat stores®2words. In pointer and gang operations that do not need toigaan
address, we embed other necessary operation specifiets aaltlness. Pointer operations
embed the pointer number, update enable, and update atitdtdwspecifier. Gang oper-
ations embed thgangdatafield, which is used in conjunction witmaskto determine
which columns to set, clear, or NOP. Compares also usm#skfield to determine which
bits to use in the compare. Teaskfield is one bit wider than the meta-data, because
compares can mask out the main data word as a chunk.

Each word hasl bits of main data andh bits of meta-data. The interface to the IMCN
used for communicating control information to/from otheatsnis via thee bits wideextin
andextout signals. The mat exports control dataextout and receives it oextin. The
matchoutsignal is the result of the comparison. If the operation issmompare, the signal
remains low. Thevalid signal indicates to the interconnect that the mat has valid tb
output. Thecompletesignal is a general purpose completion signal to tell themdation
that the memory request has executed successfully.

There are many ways to implement this reconfigurable memaiyanchitecture. The
next section presents a full-custom implementation that weed in the prototype testchip
discussed in Chapter 5.

3.6 Micro-architecture and Implementation

This section examines a full custom circuit design impletaton of the reconfigurable
memory mat architecture that emphasizes tight integratidim the SRAM core, low la-
tency, fast cycle time, and low overhead. Chapter 5 dissusdditional details and exper-
imental results from the prototype testchip using this giesiThe SRAM design uses the
techniques discussed in Chapter 2 for high performance finkecy.

To a basic SRAM array, we add meta-data and peripheral ldgakb to create a flex-
ible memory mat. The overarching goal for these additiongid blocks is to have small
performance, power, and area overheads, and yet be gendrierible enough to meet
the needs of many memory configurations. We generalize thie ldocks and functions

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 38

as much as is feasible to increase hardware sharing aciftergnli configurations and to
increase flexibility.

For this peripheral logic, we primarily used hardwired lpgather than reconfigurable
logic such as the look-up tables (LUTs) used in FPGAs, berawes only need a few,
relatively simple peripheral logic blocks. By using harded logic, we ensure that the
logic will be small, fast, and efficient, at the cost of havsmme unused peripheral logic
blocks in some configurations. This also reduces the amduoordiguration state and
reconfiguration time, because we don'’t have large LUT artaysogram.

The peripheral logic can be broken down into two basic blocddress logic and
datapath logic. The address logic sits between the addnpss$ and the memory array
decoder and operates on the address bits. The datapathsisgietween the data I/O and
the SRAM core and performs logic on the data read from or &mito the memory array.
Figure 3.7 shows a block diagram of a generic memory builthiogk. Our design adds
the necessary peripheral logic blocks for the target cordigans, as shown in Figure 3.8.

Despite adding this peripheral logic for additional funatlity, we wish to maintain
high performance. Thus, we chose an aggressive cycle tirmeajd 0 fan-out-of-four
inverter delays (FO4) based on the achievable access ton8&AM arrays in the optimal
energy-delay size range. This short clock tick stressegitbait design of the memory
cores as well as the peripheral circuits. Due to this agyesgcle time, the mat access is
pipelined, and the total delay through the mat is 2 cycle0df@4. The first half-cycle is
spent in the pre-access logic: pointer logic or write buffeme next full cycle is spent in
the SRAM access. The last half-cycle is spent in the postsactogic: control logic and
the comparator. The mat is fully pipelined, accepting a nequest every 10 FO4 cycle.

In comparison to our memory system’s 10 FO4 clock cyclegstéithe-art micropro-
cessors generally run at 15-20 FO4 [94], a typical syntleelscustom ASIC at 40 FOA4,
and FPGAs at around 100 FG4Nhile a few compute blocks [95] and caches [96][97] op-
erating at approximately 10 FO4 have been demonstratedmmescial microprocessors,
these units were usually internally “double pumped,” opegaat twice the main clock
rate. One notable exception is the IBM/Toshiba/Sony Caltpssor which does clock at

IWwhile the theoretical maximum clock frequency of FPGAs isally around 50 FO4, configured FPGAs
typically run at around 100 FOA4.

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE

decoder

addr
logic

T

addr

WLs
———

core
T addr

oo
©
o
- cell array
©
IS
mdata data
BLs BLs
cell /O
core core
t mdata t data

datapath logic

:

mdata in/out

:

data in/out

Figure 3.7: Generic memory structure

39

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 40

WLO o
_> (.6
©
& cell array
WL1)
S 3
xXo ©
mdata data
BLs BLs
cell 110
A core
addr core core
mdata data
tr .
Ioogic WB write buffer
comparator
addr PLA
mdata in/out data in/out

Figure 3.8: Mat block diagram showing meta-data with suplogric (RMW decoder and
PLA) and peripheral logic blocks (pointer logic, write berifand comparator)

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 41

Table 3.4: Clock cycle comparison for virtual multi-podin

| | Clock cycle (FO4)| Frequency in 0.18m (MHz) | Accesses per cycle

Memory 10 1000 1
CPU 20 500 2
ASIC 40 250 4
FPGA 100 100 10

11 FO4 [98]. The local memory of the Cell processor is pipdifio9] to meet the fast
clock cycle.

Running the memory system at a faster clock rate than theepsoc allows us to vir-
tually multi-port the memory. During a single processorleyiime, we could access the
memory multiple times, thus emulating the functionalityaomemory that has multiple
read/write ports. Even for a state-of-the-art microprecesunning at 20 FO4, we could
make two memory accesses per cycle with our 10 FO4 memorgraydtor an ASIC or
FPGA, we could make many more accesses per cycle, as deteilatle 3.4.

By using a fast single-ported memory, rather than a trueirpolted memory, we can
achieve significant savings in both area and power, espeaiasystems that demand a
large number of ports [100]. In a virtual multi-ported memdhe accesses are staggered,
because the accesses are not truly simultaneous. Thisieflasfactor in systems where
the memory runs much faster than the processing units, sieageemory accesses are only
staggered by a small amount of timee(one memory clock cycle) from the processing
unit’s perspective.

To meet our aggressive access and cycle time goals, we eniy@dyghly optimized
circuit techniques used in modern SRAMs for high perforneaaied low power through-
out the design. In this way, the peripheral logic can matehpglrformance and power
characteristics of the memory core. The next section facasdhe implementation of the
meta-data bits, because they are the key feature that ertakleonfigurable memory and
required the most circuit innovation.

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 42

3.6.1 Meta-data

We tightly integrate the meta-data with the main data SRAMyato share as many re-
sourcesé.g, decoder, replica control path) as possible for low ovedfaal high-performance.
Thus, we implement the meta-data using additional storatie io the main SRAM array
(Figure 3.8). The meta-data bit cell, shown in Figure 3.anexplicitly two-ported cell to
efficiently support RMW operations.

b0 b1 b1_b bO_b
WLO
vdd vdd
® [1 [°
a > < a_|
WL
’ [M1 Mo || ’
gset gclr

Figure 3.9: Meta-data bitcell

All normal accesses use port [0, b0, bQb). The main decoder drive&d/L0which
goes to all meta-data cells and all single-ported normad detls in a row. Port 1 is a
special port used by read-modify-write operations. No#d the special wordlin&VL1
goes only to the meta-data cells as shown in Figure 3.10. ipratotype implementation,
the single-ported data cell has a free horizontal metakirahich allows the meta-data cell

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 43

Meta—data Data

-~ -_— o~
~ -~

WLO
WL1

2—port 1-port
cell cell

Figure 3.10: One mat cell row

to be laid out in the same cell pitch as the single-ported citausing the free metal track
for WL1in the meta-data cells.

As was discussed earlier, we support a number of speciahtvpes on the meta-data.
Gang operations allow us to operate on all bits of the meta-dia a per-column basis in
a single cycle. Any meta-data column can be gang set, gaagedgor left alone (NOP).
To implement gang operations, we add two additional devitéise meta-data bitceMO
andM1. All cells in a column share thgsetandgclr lines. Assertingysetsets all cells in
a column to 1. Assertingclr clears all cells in a column to 0. Figure 3.11 shows the gang
I/0O logic which generates thgsetandgclr signals.Gangenis simply the gang operation
enable signaf.

The additional wordline and gang control lines can increébsesize of the meta-data
bitcell. In some cell designs there is a free horizontal intesak, in which case, the cell
height can remain the same as the normal single-ported @édita cThe cell may then
become wider due to the addition of the gang control lines Wbl not adversely affect
the vertical cell pitch. If there is no free metal track thetaadata cell will be taller than
the normal data cells, and so if we wish to have the meta-datalata cells in the same
row, the row vertical pitch will have to increase. This dexses the area efficiency of the
memory, because the normal data cells are now no longerrtheimum size. To avoid

2The same functionality could also be achieved by groundiegdd of one side of the cell. This may
be more efficient, because it does not require additionatdswr control lines in the cell. However, it does
require that the cell Vdd's and Gnd’s run vertically. Thel emsled in the testchip used horizontal Vdd’s and
Gnd’s, so this technigue was not adopted. Some modern e@friedo run Vdd and Gnd horizontally, and
thus could use this technique to implement gang operations.

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 44

gset[n] gclr[n]

gang_en l
gmask[n] ®

gdata[n] ._l>07

Figure 3.11: Gang operation 1/O logic for one column

this problem, we can interleave the meta-data cells (sear€ig.12) to keep the normal

data cell pitch at a minimum.

0 0 oo 0 0

0=word 0

1 0 oo o 1 0 l1=word1
1 1 oo 1 1

Meta—data cells Data cells

Figure 3.12: Two cell rows using interleaved meta-dataetigc

Conditional Operations

Conditional operations require additional logic in the aadata cell. A conditional opera-
tion based on an internal condition is contingent on a mattieomdatain with the stored

value’s meta-data. This could be performed as a pipelinegcR operation, similar to a
read-modify-write. However, because a conditional opent final access may read or

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 45

write the main data, we would either have to stall the mat draadecond port to the main
data word.

As an alternate implementation, we could add CAM-like coradagic to the meta-
data bit cells and gate the main wordline based on the masciftré&igure 3.13 shows the
modified meta-data bit cell. The I/O logic would drive thielatain value to be matched
against on th& andK_b lines masked by theaskinput field. All meta-data bits masked
out would drive a 0 on botlK andK_b preventing a mismatch on that bit position. This
implementation takes the match out of the critical pathalise the match occurs in parallel
with the main decode.

The wordline driver will be slightly slower due to the addial input of the match
result. The additional match circuitry and signal linesr@ase the size of the meta-data
bitcell. It is unlikely that the cell can be layed out in a n@single-ported cell pitch, and
we would have to use an interleaved meta-data cell arrangfegseshown in Figure 3.12.
We would need to detect whether the operation successfultypteted and return this result
to the processor via the general purpose completion sighaks could be implemented
using a wide OR of the wordlines. While this enables condélaeads and writes based
on internal conditions, conditional gang operation areecish case discussed in the next
section.

Conditional Gang Operations

Conditional gang operations also require special suppantits in the meta-data. Since
most configurations that use conditional gang operatiohg reed one bit conditionally
cleared, we limit our conditional gang implementation tattfunction. We link two meta-
data columns, with one columa.. md[1) as the control column and another colurerg(
md[0]) as the target column. On a conditional gang clear, thettacdemn is cleared if the
meta-data bit in the condition column is 1. This is the sanmetion previously described
in Table 3.2.

A conditional gang clear can be implemented by linking twlnuomns with a two NMOS
pulldown stack (Figure 3.14). Whesgangis asserted, if the cell imd[1] is 1, then the
pulldown stack connects the a storage nodmdf0] to Gnd, writing a 0 into the cell.

An alternate method of implementing conditional gang ctedy uses a single NMOS

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 46
b0 bl bl bb0 b
WLO
vdd vdd
L= L 1 A
| |
= 4 T
WL1
4 I M1 MO I ®
ML
[3 '
a_b— —— a
X © ~ QO
) S x

Figure 3.13: Meta-data bit cell with embedded match circuit

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE

il
1

md([1] E md[0] {>O
o< o<

cgang

Figure 3.14: Conditional gang clear implementation uswmg transistors

Il
1

md[1] j md[0] j
oLl o

cgang

Figure 3.15: Modified conditional gang clear implementatising one transistor

47

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 48

Table 3.5: Modified conditional gang clear truth table

md[1] | md[0] || md[1] | md[O]
0 0 1 0
0 1 0 1
1 0 1 0
1 1 1 0

device to conneand[1]_b to md[0] with the device gate controlled lmgang(Figure 3.15).
This performs the desired logic function ard[0], but in the case whenad[0] is 0, and
md[1] is 0, a 1 will be written intand[1]. If md[1] will be gang cleared before further use
(e.gthe Modified bit in Hydra is cleared on a speculative threatkbp after the conditional
gang clear of the Valid bits [93]) then this push-back fromd[0] is a benign side-effect.
Table 3.5 shows the truth table for the modified gang clearatios.

Because all other operations on the meta-data bits supjploetr ¢rue or complement
operations, having a uni-directional conditional gangrapen still makes the meta-data
bits logically complete. The sense of any of the bits couwdbstks be inverted without the
loss of any functionality.

Read-Modify-Write Decoder

To support read-modify-write operations, we need an anfthti special decoder, called the
RMW decoder, and a reconfigurable logic block to modify theaydata bits. The latency
of a read-modify-write operation is much longer than a fngkemory access, because it
requires two memory accesses, a read and a write, plus teeddmthe modify logic. We
pipeline read-modify-write operations to avoid adversafgcting the memory mat cycle
time. Additionally, since a new operation can arrive eactle&ywe use the second port
of the meta-data bits for the RMW write so that it does not ¢onflith the incoming
operation.

Thus, a read-modify-write operation is a pipelined, 3-eylatency operation. In the
first cycle, a standard read operation reads a word out ofrtlag.aln the next cycle, a
reconfigurable logic block operates on the read-out meta4oiés. In the final cycle, the

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 49

output of the reconfigurable logic block is written back itke meta-data of the word
accessed two cycles ago. From the requester’s standpoimpperation is atomic: any
subsequent read of the word will retrieve the updated mata-and no subsequent write
will be over-written by the RMW writeback.€. no WAW hazard). The first cycle operation
could also be a compare or even a write.

The RMW decoder remembers which word was accessed durinigitiaé cycle of a
RMW operation and drives the meta-data second port wordlimang the write cycle. To
minimize the number of forwarding paths, we want a simultarsemain read and RMW
write to return the newest meta-data value. Thus the RMW alrcmust fire the second
port wordline before the main wordline activates. This nedast RMW decoder oper-
ation eliminated the possibility of latching the read addrand re-doing a full decode for
the RMW write. Instead we chose to conditionally latch thedlioes using a crosscoupled
inverter storage cell sized as an SRAM cell (Figure 3.16)lenRMW read. Figure 3.17
shows the timing diagram for the RMW decoder operation.

WLO

vad

store M3 M4 L |ﬁr2
L TP

— M2 > > > WL1
M1 store_b ﬂ no

rmw_b rst

L

I

Figure 3.16: RMW decoder

During the RMW read cycle, the RMW 1/O logic assemsw_b low. In the accessed

50

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE

rst

Figure 3.17: RMW decoder timing diagram

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 51

row, the main decoder puls®gL0which writes a 1 into the storage cell Mdl. Therst
signal stays low in this cycle. During the modify cycteqw_b is held high, andst stays
low. In the write cycle,rst rises which brings10 low throughM2 in the row that was
accessed in the read cycl®lO going low assert®WL1 and activates the self-reset delay
chain. The delay chain drive low, turning onM4. M4 then resetsi0 andWL1 Asr2
goes lowM3 clears the storage cell. The decoder can now accept anoér &oeration.
In rows accessed in the read cycle, the storage cell undeegtsead” whenst assertsM3
must be carefully sized to avoid excessive power dissipatio

The rst signal is not just a delayed version of thew_b signal, because a write to
the same word during the modify cycle aborts the writebacthefmodified data. This
condition must be checked in thst drive logic. Because the writeback occurs early in
the cycle, a write to the same word during the writeback cyadleoverwrite the modified
data. Because the mats are fully pipelined, we can have RiV&& operations in-flight at
any given time. Thus, we need three storage cells per rom(€ig.18), and there are three
sets ofrmw_b andrst signals,rmw_b[2:0] andrst[2:0]. Which cell and signal pair is used
rotates on a per cycle basis. On system reset, all RMW destolege cells are reset to 0
via a reset NMOS device (not shown).

Reconfigurable PLA

The other support block for RMW operations besides the RM\&bder is the reconfig-
urable logic block that performs the modify logic. There arany ways to design a re-
configurable logic block, but we chose to implement this klasing a reconfigurable PLA
(Figure 3.19), because PLAs are dense array structuresbuibr small logic functions.
The reconfigurable PLA is a NOR-NOR PLA (Figure 3.20), witk first NOR plane im-
plemented as a ternary CAM, and the second NOR plane impleshas an SRAM with
a special logic line. Because the PLA is basically a CAM an@&BAM, we can apply the
fast, low-power SRAM circuit techniques seen in Chapter &&PLA implementation.
The PLA can perform three operations: configuration readfigoration write, and
logic. Configuration reads and writes allow requests to eeabwrite the CAM and SRAM
storage locations to change the programmed logic funciitee. logic operation performs
the programmed logic function on the incoming meta-dats during a logic operation,

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 52

WLO
store[0]
LI
oI —
store_b[0] I:_
vdd
store[1] —[‘hrz
L ~
mE Dc >O—| >o——
store_b[1] I::I n0
store[2]
L
1
store_b[2] I—:I
rmw_b[2:0] rstf2:01

Figure 3.18: Pipelined RMW decoder

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 53

I
I I
| | |
| | [LWL
I ML I
I : I
I I
I : I
I I
I 4{ }7 : I
I I
I
I I
I | | : I
! ‘ 2In] oln] ‘ ‘
I I
I ! I
| k k_b : |
| | [logic
o ____ s o ___ J
-7 /
-7 /
-7 /
- /
N -7 N /
N e N /
-7 /
-7 /
-7 /
-7 /
ML
LWL
TCAM TCAM L TCAM TCAM SRAM LG SRAM
° ° ° °
° ° ° °
[) [) [) [) []

TCAM TCAM ® e e | TCAM TCAM <D7 SRAM L SRAM

rml_b

replica matchline

Figure 3.19: PLA block diagram

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 54

programmable

connection\ 1st NOR plane 2nd NOR plane
(S L 1 _ _ L JdJd_- - _—]
I

in0 inl in2 out0 outl out2

Figure 3.20: Example 3-input, 3-output NOR NOR PLA struetur

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 55

the CAM performs a match operation and the SRAM uses its aplegjical wordline for a
wired-NOR read.

WL

ML

1 1
il

K bo bO b kb bl bl_b

Figure 3.21: Ternary CAM trit cell

The NOR-style ternary CAM uses self-resetting matchlimesl the activation of the
second NOR plane is timed using a replica matchline. Each @#&Mell consists of two
6T storage cells and two NMOS pull-down stacks (Figure 3.2lhe CAM’s relatively
small size allows for full-swing matchlines. Each row of trells forms a NOR gate with
the matchline as the output. The ternary CAM cells pull dolva tatchline on a mis-
match, and after a delay, self-reset circuits restore asynaiched matchlines to vVdd. The
self-resetting matchline scheme will save power over aglotatchline precharge scheme
provided the configurations have relatively low matchling\wty factors. Table 3.6 shows
the correspondence between the stored values and logiealimge

The activation of the second NOR plane is based on a repli¢cehiirae. One of the
challenges in a NOR-style CAM design is to know when the niatek have settled. In the
rows that match, the matchlines remain high, but in the rovasmismatch, the matchlines

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 56

Table 3.6: Ternary CAM stored value meaning

| z| o Value| Action |
0|0 * Match on all

1 1 Match on 1

0 0 Match on O

1| Null | Mismatch on all

=

are pulled low by some number of CAM cells. The falling deldytiee matchline varies
depending on the number of cells in the row that mismatch. 8ggia replica matchline
that only mismatches on one cell, we replicate the worst-caatchline pull-down delay.
Because both the actual matchlines and replica matchlireefuli-swing signals, there
is no signal amplification needed between the actual andceepiatchlines as in SRAM
replica bitlines [35].

The replica matchline generates a positive pulse onrtthdd line that mimics the delay
of the worst-case matchline going low on a mismatch. Theafete gate, a static CMOS
NAND followed by an inverter, ANDs together the matchlineslaml_b to generate the
logical word line signald WLswhich go to the SRAM array. Figure 3.22 shows a timing
diagram of the ternary CAM and interface gate operation.

To ensure that theWLsof all mismatched words do not erroneously glitch high, the
matchline low time must be long enough to fully encompasgrtiieb positive pulse. We
designed the replica matchline to be 1 FO4 delay slower tawbrst-case real matchline
delay to ensure that rising edge of ttmel_b positive pulse occurs after the falling edge of
even the slowest falling matchline. We also must ensurethi@imatchlines do not reset
too early, thus causing a glitch on the back-edgendfb. In the worst-case, a row could
mismatch on all cells and thus the matchline would be puldedads quickly as possible
starting the matchline self-reset chain as early as passiliie matchline self-reset delay
must be long enough to ensure that the matchline low timesuillfully encompass the
rml_b pulse under these conditions.

On the matchlines, we want both a long pulsewidih. (ong low time) and fast cycle
time. If we used a standard self-reset circuit (Figures ar&83.24), in order to get a long

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 57

: match : mismatch :
| | |
kK '/ 0\ | |
| | |
| IR |
k_b | |
| | |
? ? |
ML \ \ \ /
| |
| |
|

Figure 3.22: PLA ternary CAM timing diagram

pulsewidth, we must unnecessarily extend the cycle timeéadeaa drive fight. After the
matchline has been reset, we must traverse the delay chaooad time beforévl is
turned off and we can pull-down the matchline again. If we dowait, then there will
be a drive fight betweeN1 and the CAM cell(s) pulling the matchline low. The second
traversal of the delay chain uses the opposite transitmm the first traversal. For a long
pulsewidth and short cycle time, we need to skew the delaywd¢baa slow assert edge, to
get a long pulsewidth, and a fast de-assert edge, to geteyfasttime. One way to do this
is to skew the P/N ratios of the inverter in the delay chainwkleer, this causes extremely
slow slew rates on the slow transition which burn shorttgtrcurrent and are susceptible
to noise.

Instead, we replace the second-to-last inverter with a N&R @igures 3.25 and 3.26).
The delay chain behaves as normal during the assert t@msiiowever, on the second
traversal, once the matchline reaches the logic thresHadliledNOR gate, the NOR gate
fires, skipping over the first two inverters. This shortens delay chain de-assert time
to two gate delays: one NOR gate and one inverter. We leavgeiiNOR gate and final

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE

vdd Vvadd

Mo m]b

ML

0]

rl

r2

r3

Figure 3.24: Normal self-reset circuit timing diagram

ML

ro

ri r2

Figure 3.23: Normal self-reset circuit

r3

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 59

vdd Vvdd

v i

rl
%)Q + >0—|><F
ML ro r3

= r2

Figure 3.25: Fast reset off self-reset circuit

el o\

o/ \
rl \ /S
2 /\

3 __/%7

M1 off

Figure 3.26: Fast reset off self-reset circuit timing dagr

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 60

inverter to allow the matchline time to reset all the way tadMdbm the NOR gate logic
threshold. There is an additional keeper devid@) on each matchline to ensure that the
matchline reaches Vdd. By using this technique we can hamegdulsewidth, fast cycling
matchline, while maintaining fast edges on all transitiohthe delay chain.

"
o
oI L 1a abt [1 o
o<
]

Figure 3.27: PLA SRAM cell

The LWLs generated from the matchlines anmdl_b activate the second NOR plane
implemented as an SRAM with a special logic output line. Ehbitbell of the SRAM
array (Figure 3.27) has a special logic linegdic) that is shared among all cells in a col-
umn. Within a column, all cells that store a one form a wiredRof the logical word
lines (LWL9, with the logic node as the outputLogic is a full swing signal which is
precharged early in the cycle, during the CAM evaluation.e Bmall number ofogic
lines and their light loading made the precharge overhdatively small and a reasonable
trade-off against the increased area of self-reset delaynsh

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 61

3.6.2 Peripheral Logic

In addition to the meta-data and associated support logecadd three peripheral logic
blocks to a basic SRAM array: the pointer logic in the addpesh for pointer operations,
the comparator in the datapath for comparisons, and a waftertin both the address and
data paths for conditional writes on external conditionsithithe aggressive cycle and
access time targets for the mat, the implementation of eggnlogically simple structures
such as these require advanced circuit techniques.

Pointer Logic

The pointer logic consists of two small SRAMs and an addbtfagter (Figure 3.28). A
dual-ported SRAM stores the pointer address values, amjesported SRAM stores the
strides, one stride per pointer. The “address” input togmeemories is the pointer number
specified by the operation.

On a pointer operation, the pointer SRAM reads out the addresesponding to the
named pointer and sends it to the main decoder. The strideVB&tsultaneously reads
out of the associated stride. The adder/subtracter casulgdated pointer address value
from the pointer address and stride. We then optionallyenthie updated pointer address
back into accessed pointer stored in the pointer addres®V6RA

We dual-port the pointer address SRAM to allow simultangumister address read and
write-back of an updated pointer value. The SRAM propertytias the write-through case
when the same pointer is simultaneously updated and reaatpytting the updated pointer
address value to the read. This allows us to do back-to-baitkgr operations using the
same pointer number. Because the strides do not need to béedpthe stride SRAM is
only single-ported. The pointer address values and staoesead- and write-able via the
configuration read and write instructions.

For a simple FIFO, we only need to store two pointers, the lagadhe tail, with each
of their strides set to 1. However, by storing more than twiofgos per mat, we can enable
using a single mat as multiple FIFOs. For example, the tgstotplementation stores four
pointers per mat, which allows us to hold two FIFOs in a simgét. We could use pointers
PO andP1for FIFO 0 andP2 andP3for FIFO 1. By using a stride of 2 and offsetting the

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 62

) ptr SRAM stride
pOIN{e! g 2-port SRAM
1-port

write port read port
A ptr addr stride

N\ add/sub v/

B {0 main decoder

updated pointer

Figure 3.28: Pointer logic block diagram

starting head/tail values by one, we can interleave FIFOJORARO 1 in a single mat, with
FIFO 0 occupying all even addresses, and FIFO 1 occupyirugidlbddresses. Figure 3.29
illustrates this configuration.

We can also enable FIFOs larger than one mat by storing agradtress value that
is longer than necessary to address the words of one mat.edliests to the FIFO are
multicast to all mats in the FIFO, and the mats range checkipiper bits of the pointer to
determine which mat the request should access. All mats tke#ppointer logic in lock-
step, so even if the mat is not accessed, the pointer logiedated. The number of extra
bits in the pointer addresses determines the maximum FIE® &ior example, a pointer
that has two extra bits allows for a maximum FIFO size of foatsn Chapter 4 discusses
how the interconnect structure can multicast to all the nmeise FIFO. Figure 3.30 shows
a single FIFO that spans four mats.

Maskable Comparator

The maskable comparator implementation is relatively smgiiffering only slightly from
regular comparators, on which there is a large body of wo@d J[1.02][103][104]. Our
comparator differs in that it can mask out select fields ofdat, treating them as don't

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE

Mat O
0000 ... 00
°
°
°
0011..11

Addr

g A W N P

word 0

word 0

word 1

word 1

word 2

word 2

Mat 1
0100 ... 00
°
°
°
0111..11

FIFO O
Stride = 2

FIFO 1
Stride = 2

Figure 3.29: Storing two FIFOs in one mat

Top 2 bits are
range checked

Mat 2 Mat 3
1000 ... 00 N 1100 ... 00
® ® Al
° °
° L A
1011 ... 11 1111 ... 11

Figure 3.30: A FIFO spanning four mats

63

Address range
of mat

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 64

cares. We can mask out any combination of the meta-datarfalttha main data as a chunk.
The comparator (Figure 3.31) uses a single mashkiaigk[O]for all of the main data, but
individually masks each bit of meta-data . We implement thalfwide fan-in AND gate
as a tree of smaller fan-in gates using the principles othgffort [32].

mdataO[m-1]
mdatal[m-1]

mask[k]

mdataO[0]
mdatal[0]

mask[1]

dataO[d-1 —
datal[d-1

mask[0]

i

tree |—— Match_out

i

dataO[0]
data1[o] i’D

mask[0]

Figure 3.31: Maskable comparator gate-level diagram

The comparator is implemented as a tree of dynamic gatesoWe embedded the ini-
tial comparison XOR gate in the bitline column muxes, bt thiroduces more complexity
in the column mux circuits. Depending on the implementattbrs could also introduce
another series device in the bitline path.

Write Buffer

To enable writes contingent on an external condition, we adetite buffer in both the
address and data paths. On a conditional write, the writiebsfores the incoming write

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 65

address, data, and opcode. When the external conditionateal the write buffer invali-
dates the entry if the condition fails, or allows the entrywite into the main data array in
a pipelined fashion if the condition is met. This occurs ia #ame way that some cache
designs pipeline writes to allow single cycle cache writs [i05] as described below.

In a traditional cache implementation, a cache write op@manust serialize the tag
check and the write into the data array. Because the writetive data array is an unre-
coverable change of state, we cannot execute it until we kheivthe access is a cache
hit. The serialization of the tag check and data write insesahe latency of a cache write
significantly?

A well-known technique to hide the data write dependencehantag check is to
pipeline the cache write into two logical stages: tag chelgta write. Because not ev-
ery access is a write, the operations are not pipelined om eypée basis, but rather on a
per write basis. This technique requires a small write uffehe data array to store the
incoming write data until its tag check has completed. Thalmer of storage locations in
the write buffer depends on the mat implementation, spedlfion the latency of the tag
check. The write buffer must be searchable to ensure thatesads or compares to the
stored write address that occur before the data can be mvitite the main array behave

properly.

3.7 Summary

In this chapter, we explored the motivation for a reconfigleanemory system and our
proposed memory architecture. This chapter also examiveedisign of the reconfigurable
memory mat that forms the core of the memory system. By adtiegneta-data bits and a
few peripheral logic blocks to a simple RAM array, we can tegeaflexible memory block

that can emulate a portion of a cache, a FIFO, or scratchpadonye We have proposed
an implementation of that architecture using full-custorawst design techniques for high
performance and efficiency. The next chapter will detail tbi@aining portions of the

3For highly set-associative caches, designers take adyamtiathis dependence to save power. They
intentionally serialized the tag check with the data ac¢egsn for reads) to reduce the number of data arrays
that are activated from (number of ways) to just 1 (hit) or 0 (miss in all ways).

CHAPTER 3. RECONFIGURABLE MEMORY ARCHITECTURE 66

reconfigurable memory system: the inter-mat control nekwtire memory to processor
interconnect, and the processor interface logic.

Chapter 4
Interconnect Networks

As seen in the previous chapter, because memory structseesrilar building blocks, we
can use a generalized memory mat to form the core of our regoafile memory system.
However, memory systems do differ significantly in the wagttiney connect the memory
blocks to the computation and to each other. For examplecathe, each memory request
goes to both the tag and data array, and the tag array comatesilcit/miss information
to the data array. However, in a simple scratchpad memocy) Bemory request only
goes to one memory block, and the memory blocks that make aigdratchpad never
communicate with each other. So, for our configurable memsgsgem that can emulate
multiple types of memories, we need a configurable intereonmetwork between the mats
and the processor and between the mats themselves.

The interconnect network must handle two types of commudimicamat-to-mat and
mat-to-processor, that have quite different requiremants characteristics. Mat-to-mat
communication is primarily one-to-mang.@.a tag mat sending its hit/miss information to
multiple mats in the cache data array), and the width of thia @ typically very narrow,
consisting of only one or two bits. Additionally, the matttat communication is unidi-
rectional, requiring only outgoing data pushes without epties from the recipients. The
latency, however, must be extremely low, because the conwattion can be in the critical
path of the memory structure.

67

CHAPTER 4. INTERCONNECT NETWORKS 68

On the other hand, mat-to-processor communication is reetional and many-to-
many. There can be multiple concurrent outgoing requesta the processor, all to dif-
ferent mats, as well as multiple returning replies from thetsn The requests and replies
are wide, composed of data, meta-data, and possibly opcataduiress fields. While the
latency of the mat-to-processor communication must be b@sause it can be in a critical
loop that determines the minimum processor cycle timejlitcgtn be on the order of a
cycle.

mat

| | | | | | | |] |] i] i] ! ITComrolbitS

Data in/out
Addresse>4>

Opcod

Processor Interconnect Network

Data in/out
Address - A
Opcod Y

Request
port

Processor Interface Logic

Figure 4.1: Interconnect overview

Because the mat-to-mat communication and mat-to-proce&ssomunication differ
significantly in their characteristics and requirements, separate the interconnect into
two networks: the mat-to-matter-mat control networland the mat-to-processproces-
sor interconnect networkFigure 4.1 shows an overview of the interconnection netsior
We implement the inter-mat control network as multiple segtad buses and the processor
interconnect network as a pair of crossbars. However, befelving into the specific archi-
tecture and implementation of the networks, we first revieme relevant issues regarding

CHAPTER 4. INTERCONNECT NETWORKS 69
interconnection network design.

4.1 Interconnection Network Design

For many years, interconnection networks have been useahtzect computers and dis-
crete processors [106][107]. Today’s die capacities, lweweallow multiple processor
cores and large module blocks such as memories to fit on aesilgyl Thus, researchers
have proposed on-die interconnection networks to connecegsors and large modules
together rather than hardwired global routing [108][1Q2f}][111]. These networks offer
a more structured communication environment than custafadjirouting, which allows
for more design re-use and easier application of custoritiechniques for lower power
and higher performance.

While the concept of a “network on a chip” to connect large oled together has
gained popularity, the use of interconnection networks/beh processor functional blocks
has been quite limited [112]. Most functional blocks aré stinnected together with fixed
routing or buses. While buses do offer a some communicatexbflity, they do not
perform well under communication patterns with multiplexcorrent requests [113]. For
increased request concurrency, some designs use spgihtiiion buses where the requester
releases the bus while waiting for the reply [105][85], arldeo transactions can use the
bus for requests or replies in the mean time.

Another technique to improve bus bandwidth is to physicsdigment the bus and allow
concurrent transactions on different segments [114][11%]. This technique can achieve
high concurrency for communication patterns where unitaroonicate locally. Bus seg-
mentation can also reduce the power dissipation of the busriyng the portion of the
bus that is activated.

Buses are very area efficient, but as the number of concumamactions increases,
they are no longer the optimal interconnection topologyrdssbar interconnect topology
handles multiple concurrent transactions better than dbhsed system [113][117] because
itis a fully non-blocking network. Any of the inputs can benccted to any of the outputs
as long as both the input and output are free. A crossbar igdop networki(e. has no
intermediate stages between the input and output) and #drubave low latency. As per

CHAPTER 4. INTERCONNECT NETWORKS 70

convention, we will denote a crossbar withinputs andM outputs as alN x M crossbar,
with each possible connection point known as a crosspoimtN A M crossbar would have
N*M crosspoints. Figure 4.2 shows an example 4 x 6 crossbar.

crosspoint
'”[0].= P s N s s s n s s S o
T gy
] O N N N N NI
T gy
'”[2].= P s N s s s n s s S o
T gy
'”[3].= P NS N s s s s s s S o
T — g g

outlO1 outlll outl2] outl31 outl4] outl5I1

Figure 4.2: 4 x 6 crossbar

Crossbars topologies have been used in many networkingtsnggtarchitectures [107][106],
and most previous crossbar implementations have either $taad-alone designs for net-
working switches [118][119][120] or on-chip interconniect networks connecting proces-
sors to main memory [121][122][123][124]. Crossbars tma¢liconnect individual func-
tional blocks are much rarer [112][125][126], althoughgorery common crossbar-like
interconnection structure between functional units igelmed processor’s functional unit
bypass network [105][127][128].

While a crossbar does support multiple concurrent requestslicts can occur if more
than one input requests the same output. Telecom crosshmdscanflicts using complex
input queues, arbiters, and scheduling logic [129][13R][{132]. The arbitration and
scheduling add to the latency, area, power, and complekiiyeodesign. The delay from
input to output is now dependent on the request pattern andrisdeterministic. This is
tolerable in networking switching applications, but forefikpipeline, inter-functional unit

CHAPTER 4. INTERCONNECT NETWORKS 71

networks a deterministic latency that is as low as possthhesirable. An alternative to
dynamic scheduling is to statically schedule the crossbhrs avoids the added latency
and complexity of arbitration, while still allowing multig concurrent requests [122].

Despite its larger area, a crossbar can be more energy efffpée transaction than a
segmented bus architecture, due to the large amount of cency available [137]. One
way to significantly decrease the energy consumption of sstrar is to use low-swing in-
terconnect techniques [56][55][133][134], because astrashas a large number of long,
high-capacitance wires. To further reduce the energymhs&isin, we can segment a cross-
bar to decrease the wire capacitance driven [135][124].

Besides crossbars, there are many other non-blocking netwpologies and hybrid
topologies that offer a different trade-offs between aféeiency, energy consumption, and
performance [106][107]. For the inter-mat control netward the processor interconnect
network, we chose topologies that seemed most suitableetcdmmunication patterns
on those networks. Next, we will examine an implementatimnthe inter-mat control
network.

4.2 Inter-mat Control Network

The inter-mat control network allows the mats to pass a fes/dficontrol information to
each other. For example, in a cache configuration, the tagmuastt pass the hit/miss infor-
mation to the data mat, so that the data mat knows whethertéo abort its operation. On
a hit, the data mat proceeds with its operation, but on a ntiabprts. We implement the
IMCN as multiple, 1-bit, segmented buses. Figure 4.3 shawasxample implementation
with four buses with four mats per segment. The IMCN is weitesito this implemen-
tation, because it is a network with uni-directional, oonextany communication. The bus
segments are set at configuration time via configuratiorsre.

We use full-swing wires in the IMCN, for a number of reasonsstf-it is a relatively
short-haul network, and the overhead latency of the lowrgwidriver and receiver are not
tolerable. Second, because the latency is a fraction ofla,dyere is no convenient clock
edge off of which to trigger the sense amplifiers. Finallg tMCN does not contribute
significantly to the overall power dissipation of the recgafable memory system, so the

CHAPTER 4. INTERCONNECT NETWORKS 72

bus
segmenter

samere YAy h |y 4 & & & by
\:C; 06 r\rr\: o0& ’\’\. O "’\. O ©—0 bus[0]
. . . bus[1]
| [] bus[2]
& | [] D bus(3]
A v A v A Y A Y A Y A Y A y ext_out[1:0] A y ext_in[1:0]

Figure 4.3: Inter-mat control network

overall savings from reducing the IMCN power would not bendigant.

Each mat has a two-bit output to the IMCé&kt out, and a two-bit input from the IMCN,
extin. A number of signals are multiplexed to generate the twodfiext out as seen in
Figure 4.4. Similarlyextin is demultiplexed to a number of locations as shown in Figure
4.5 The inputs and outputs are statically configured via gondition registers.

The IMCN bus drivers can implement a wired-OR function onlthie. The driver is
a pull-down only driver and thus can form a wide OR gate witly ather active drivers
on the bus segment. Figure 4.6 show the bus driver and pulirapit. The wired-OR
functionality is useful for aggregating control informati For example in a multi-way
cache configuration, by OR-ing the hit/miss signal from gwegay, we can generate the
global hit/miss for the cache.

The pre-charged IMCN bus line is vulnerable to signal couplbut the weak keeper
helps mitigate coupling problems. If the IMCN lines arel stdemed too vulnerable, shield
wires could be routed next to each IMCN line to reduce cogpéifiects. Given the small
number of IMCN lines, the additional area penalty of the Ehli@es is not too great.

CHAPTER 4. INTERCONNECT NETWORKS

control outputs
configuration from mat core

registers \ ‘

N /

ext_out[i]

7

bus[0]

bus[1]

bus[2]

bus[3]

Figure 4.4:Ext outlogic

configuration to mat core

registers\

ext_in[i]

M s \

Figure 4.5:Ext.in logic

bus[0]
bus[1]
bus[2]
bus[3]

73

CHAPTER 4. INTERCONNECT NETWORKS 74

vdd

vdd
pa_b _q
bus[n]

weak keeper

ext_out[i]—

config[i] —

Figure 4.6: IMCN wired-OR driver and pull-up circuit

CHAPTER 4. INTERCONNECT NETWORKS 75

4.3 Processor Interconnect Network

In our reconfigurable memory system, the processor intecmetwork takes the place of
the fixed interconnection between the computation and thmangin hardwired systems.
The processor issues memory requests from request pots interface logic. Any port
can send a request to any memory mat. The mat always retiensyily to the port that
issued the request. Section 4.3.4 describes the intedgoerequest ports more fully.

We implement the processor interconnect as a pair of usetional crossbars as shown
in Figure 4.7. For the sake of clarity in the figure, the cresstare shown as distinct, but
in the implementation, they are interleaved into one blddierequest crossbarutes the
requests from the processor ports to the memory mats, angphecrossbaroutes the
replies from the mats back to the requesting processor port.

We chose to use crossbars for the processor interconneetidee they support mul-
tiple concurrent transactions, have low, one-hop lateany, offer high flexibility in the
interconnections. We made the design decision to use twditgttional crossbars rather
than a single bi-directional crossbar to simplify both tlirewt design and system archi-
tecture at the cost of some area. The circuit design for @inactional crossbar is simpler,
and we avoid the additional delay and energy from drivinga@easitic capacitance of the
drivers and receiver of the unused signaling direction.h&tdystem level, a bi-directional
crossbar would require more careful memory access schmegldspecially for requests
that both push and pull data, such as a compare. This coulireegybitration for cross-
bar and cause the memory access latency to be non-detdrayifuigher complicating the
processor interaction with the memory system.

4.3.1 Request Crossbar

The request crossbar is a dynamically-routed, multicapable crossbar responsible for
routing requests from the processor ports to the memory.r&aish request port can send
a request to any mat or group of mats. Every request inaatdD field that determines the

destination of the request. This routing based omtla¢ ID can be used as the high-level
decode for multi-mat memory structures, similar to the kleelection mechanism of large
SRAMs [53][25][31]. Figure 4.8 shows a block diagram of teguest crossbar with each

CHAPTER 4. INTERCONNECT NETWORKS 76

Mat Mat LA Mat Mat
Reques? T T T Reply
N A Yy Yy _____ | A
|
|
Request Crossbay |
|
I Reply Crossbal
|
|
Request ¢ ¢ ¢ ‘Reply
Port ‘ ‘ Port LA Port ‘ ‘ Port ‘

Figure 4.7: Processor interconnect overview

crosspoint detailed in Figure 4.9. Table 4.1 lists the retjamssbar 1/0 signals.

Themat ID andmat ID maskdetermine the request destination mat(s). pagloadis
the request itself that goes to the mat. It contains all thiempat fields from the processor:
opcode address mask mdatain, anddata.in. Thevalid bit indicates whether or not the
outgoing request is valid. Threply bit alerts the reply crossbar scheduler that the request
has reply data. The crosspoint will then schedule a replg patket transfer on the reply
crossbar.

To avoid request conflicts, we statically schedule whichgloave access to which mats
in the processor interface logic. The request crossbadgtibmically routes the requests
based on thenat IDfield, so the ports have some freedom in which mats to sene:st¢m
and can use the crossbar for high-level decoding in multimeamory structures. However,
there is no need for queuing, arbitration, or schedulingclognd the delays through the
crossbar are fixed and deterministic.

An example of static mat scheduling would be splitting theess to a multi-processor

CHAPTER 4. INTERCONNECT NETWORKS

Memory Mats

U U U VU U VU VU VU d VU U WU\
OO — 00— DO T D ODD
O O— T TP
-0 00+00 S-S0
Port[1] Port[2] Port[3]
Processor Interface Logic
Figure 4.8: Request crossbar
Table 4.1: Request crossbar I/0O signals
| Name | Width | Description

mat ID [Which mat to send the request to?

mat ID mask| i Allows for wildcarding in the mat ID,

payload p Request to the memory mat

valid 1 Is this a valid request

reply 1 Does this request have return data]

CHAPTER 4. INTERCONNECT NETWORKS

enable

maskable
comparator

> I

A

crosspoint ID

mat ID / valid

to mat

mat ID mask

payload

Figure 4.9: Request crossbar crosspoint

CHAPTER 4. INTERCONNECT NETWORKS 79

cache tag between the normal access and the snoop accesy.et#ve cycle would be
dedicated to the local processor cache access and everyodeéda the snoop access. If
we ran the memory and crossbar at twice the rate of the processe, the processor would
still get one cache access per processor cycle. This is dicagn of virtual multi-porting
described in Chapter 3.

The downside is that static mat scheduling potentially eastandwidth on low us-
age requesters, and we need to ensure that there is enoudlvitidnto the memories
to satisfy all requesters under the static allocation goliEtthe memory mats and cross-
bar have more bandwidth available than most applicatioes nstatically allocating the
bandwidth, although wasteful in some cases, may not adyeaffect the application per-
formance. Also, because the processor interconnectiavoneemulates the static inter-
connect found in hardwired memory systems, we do not exmedtgurations to require
dynamic scheduling. However, using static mat allocatsamat fundamental to the design,
and the reconfigurable memory system could be implementad dgnamic scheduling at
the cost of increased design complexity.

4.3.2 Reply Crossbar

The reply crossbar routes memory replies from the mats lmattket processor ports. The
crossbar always routes the reply back to the requesting génis, we can schedule the
reply crossbar based on the request routing and which requiihave replies as indicated
by thereply bit in the request. Because the mat latency is fixed, the sitingcbf the reply
crossbar is simply a time delayed version of the requestdsde Figure 4.10 shows an
overview of the reply crossbar, and Figure 4.11 details & req@ssbar crosspoint. Table
4.2 lists the 1/0 signals for the reply crossbar.

The contents of the reply packet depend on the request aperétthe request is any
form of a read €.g. read, compare, read-modify-write), then the reply corstaiata and
meta-data. Writes and gang operations do not return dataeta-data. Every request
operation returns three control bitglid, match andcompletein the reply packet.

The request crossbar can multicast requests to multiple, fioat there can be only one
valid reply to a multicast request. The reply crossbar mldkes the outputs of the accessed

CHAPTER 4. INTERCONNECT NETWORKS

Table 4.2: Reply crossbar 1/0 signals

| Name | Width | Description

data d Main data

mdata m Meta data

valid 1 Is this data valid?

match 1 Match output result

complete] 1 General completion bit

‘ Memory Mats

OO — 0 — 0 O—D DD DD
OO — 00— DO T D ODD
O O— T TP
-0+ OO0 SO+ O6SO

|

|———

‘ Port[0] Port[1] Port[2] Port[3]

Processor Interface Logic

Figure 4.10: Reply crossbar

CHAPTER 4. INTERCONNECT NETWORKS

from mat

— ~
— -

data
valid mdata

—

reply_d3

enable

A

, data/mdata

/
to port |
v valid

\

reply_d3 = 3 cycle delayed reply signal

Figure 4.11: Reply crossbar crosspoint

81

CHAPTER 4. INTERCONNECT NETWORKS 82

mats and only send a single reply back to the processor pbevdlid bit from the mats
indicates which mat has the valid reply packet. By desigmetioan only be one valid
reply to a multicast request, and this must be guaranteelleébgdanfiguration of the mats.
This type of multicast-request/multiplexed-reply condiian is useful for configurations
such as multi-way set associative caches. In such confignsatve multicast the memory
request to all ways of the cache, but only want the reply foy that hits. If no way hits,
no reply is received.

4.3.3 Implementation

For both the request and reply crossbar, we employ low-swdifigrential signaling using
NMOS only drivers and clocked sense amplifiers [54]. The NM®i8er circuit, shown
in Figure 4.12, pulls one of the differential output lines\tdd.low and the other line to
Gnd based on the data inpufdd.low is a special, low-voltage supply that can either be
generated locally via DC-DC conversion [136] or taken imrthe outside world. By
using a lowered supply, rather than just limiting the swing, can achieve a quadratic
energy savings in swinging the wire [56]. We do then, howereed to route, decouple,
and potentially generate the lowered supply voltage. Tloeiver sense amplifier is a
modified StrongARM latch (Figure 4.13) [57]. Because we usanaswing, differential
signaling scheme, we require two wires to transmit each Wk twist the differential
lines and interleave them with power supply lines to redneedifferential crosstalk noise
[56][39][40]

There are additional techniques for reducing the poweretthssbar such as segmen-
tation [135], but we chose not to employ them in our desigretepkthe design as simple as
possible and avoid any excess increase in the latency. Tlageebeen a number of works
that explore the energy consumption of crossbars in mucle ehetail [137][135][138].

Conceptually a crossbar has all inputs arriving from thesihd all outputs exiting on
the top and/or bottom as in Figure 4.2. For our design, bathmiemory mats are above
the crossbar and the processor ports are below the crogsshéhieve a rectangular shape
for the entire reconfigurable memory. Figures 4.8 and 4.bWghe wiring arrangement
needed to support this configuration.

CHAPTER 4. INTERCONNECT NETWORKS 83

Vdd_low Vdd_low
data [data b [
out out b

Figure 4.12: Low swing driver

We allocate an entire clock cycle for signals to traversectbesbar. The drivers trans-
mit the signals on the rising edge of the clock. The receiftepgsthem on the next rising
edge. From circuit-level models of the crossbar, 10 FO4jdpsr target 0.18m technol-
ogy, is enough time to traverse the crossbar in either dimecA study of inter-functional
unit crossbars shows that a similar 16-port, 32-bit crosdleaign can maintain sub-1ns
latency in a 0.2m technology [112]. Chapter 5 provides more details on tk&chép
implementation of the crossbars.

4.3.4 Processor Interface

While the memory mats connect directly to the processordontenect network, the proces-
sor launches requests into the processor interconnecbrietia theprocessor interface
logic. The main function of the interface logic is to translatertiemory address issued by
the processor to the address space used by the intercorteork.

Hardware Address Space

In modern computing systems, there are often two sets okaddipaces, virtual and phys-
ical [105]. The applications operate in individual virtwaddress spaces. Virtualizing the
memory removes the burden of memory management from thécapph programmer,
and allows multiple applications to more easily share thetéd physical memory. The
physical address is used to address the physical main memory

CHAPTER 4. INTERCONNECT NETWORKS

b_ in_b

}_ clk

rb s b
Vvdd Vdd Vvdd Vdd
sbﬂ_E\/q rb
out out_b
® ®
\Y \Y

Figure 4.13: Low swing receiver - modified StrongARM latch

CHAPTER 4. INTERCONNECT NETWORKS 85

When the processor issues a memory request, the requess laendesired virtual
address location. This virtual address undergoes addeessdtion to a physical address
via a translation table which maps the virtual address spagehysical address space.
Because the translation table itself can be quite largenaised translations are cached
near the processor in a look-up structure calledttheslation look-aside buffefTLB). In
a hierarchical memory system, the virtual to physical i@ can take place anywhere
in the hierarchy before the main memory.

Memory is broken up into fixed size chunks calfsjesor variable sized chunks called
segments Because the total amount virtual memory is larger than thesipal memory,
data in the virtual address space is stored on disk and pagechain memory by the OS
when needed. The main memory can be thought of as a cacheefdisthsystem, similar
to how the on-die processor cache is a cache for main memomleWirtual memory is
a useful for systems that run multiple concurrent applacetj some simpler systems, such
as some DSPs and embedded systems, only use a single agdessEheir applications
are responsible for memory management, but the overabsyist less complex.

For our reconfigurable memory system, we introduce a thidies$ space, theard-
ware address spagevhich is conceptually below the physical address spacst akithe
physical address designates locations in the main memuwyhardware address names
memory locations in the on-die reconfigurable memory syst@ine hardware address
consists of two fields, thmat ID andmat addresg The processor interconnect network
uses the mat ID to route requests to the proper mat. The matldeases the mat address
to select the desired word in the mat. In a hardwired memosyesy, the hardware ad-
dress space is not necessary, because the local memorypmodessor die is “addressed”
implicitly via the hardwired interconnections between ginecessor and memory.

The basic issue is that the processor generates virtuatsgkl, but in order to access
the correct local memory, the virtual address must be tadé@dlinto a hardware address.
Usually since the hardware is fixed, the mapping betweenitheavaddress and the hard-
ware address is hardwired into the hardware structures eMenyvfor a reconfigurable sys-
tem, the memory configuration is not fixed, and as a conseguébectranslation between

n a tiled system with multiple mat arrays, there can also tieedD field that denotes which tile the
memory location resides in.

CHAPTER 4. INTERCONNECT NETWORKS 86

the virtual and hardware address spaces is not fixed. Thuseae a block that performs
the virtual to hardware address translation. This addresslhation is fairly simple when
compared to the virtual to physical address translation.

Address Splitter

From the virtual address issued by the processor, we neeshygte two fields to properly
access the reconfigurable memory, the mat ID and the matssldrbe mat ID can either be
represented as a bit vector or a mat ID number and mat ID médms& |atter representation
restricts multicasting to groups of powers-of-two matsngl@owers-of-two boundaries.
The mat address is simply the internal mat address of theeséed word.

Because the reconfigurable memory system takes the plabe batdwired first-level
memory system of the processor, we need low latency acces®siincreasing the delay
of critical pipeline loops. Thus, we choose to employ a handvranslation method similar
to the address centrifuge used in the Cray T3E [92] to perftvenvirtual-to-hardware
address translation. For each of the fields we must genevatextract a portion of the
virtual address and use it as an offset from a base value. d$e\alue is either statically
assigned to the issuing port or determined from the higlerobits of the virtual address.
While this type of hardware address translator reducesdteesasing flexibility, it is fast,
avoiding large table look-ups.

Theaddress splitteunit performs the virtual-to-hardware address tranghatidhe mat
ID base, mat ID mask, and mat address base are determinedaftookup table index
by the high-order bits of the virtual address. We call theggh-order bits thdogical
memory ID They identify which logical memory structure to accessogital memory is
a collection of mats that make up a logical memory unit, suech aache tag array, cache
data array, scratchpad memory, or FIFO. The logical menidi$o determines the fields
of the virtual address that are extracted to form the mat Bedfand mat address offset.
The logical memory ID can have different interpretationpeteding on the processor port.
So the same virtual address sent to processor ports haraltiaghe’s tag and data, will
route the requests to different mats, the tag mats and datarespectively.

The extractor unit extracts the mat ID offset and mat addoéfset from the virtual
address. Each extraction is a mask and shift operation. eTtiéset fields are added to

CHAPTER 4. INTERCONNECT NETWORKS

LM ID
— LUT

Extract
config
Mat ID

base

H

Mat ID

Mat ID > + To xbat
offset

——— Extractor

Virtual address

P
Mat addr Mat addr
base > + To xbat

Mat addr
offset

-

Figure 4.14: Address splitter block diagram

CHAPTER 4. INTERCONNECT NETWORKS 88

previously determined base fields to generate the final mainkDmat address. Having a
mat address base field allows a single mat to be shared amdtiglenlgical memories.
In accesses to cache tag arrays, the unused remainingmpoftioe virtual address is used
as input data to the mat for the compare.

We can avoid added delay of the logical memory ID lookup tlifle@ach processor
port only ever accesses one logical memory. For exampleplibeessor port is dedicated
to be the instruction cache tag port, then the mat ID base)Dnatask, mat address base,
and offset field split can be held constant, and no table Ipakmecessary.

Mat O Mat 1 Mat 2 Mat 3

Scratch Scratc Scratgh Scratch

2048 x 32b

8192 word scratchpad

Figure 4.15: Scratchpad mat configuration for addressepékample

Figures 4.16 and 4.17 show example address splitter coafigns for a scratchpad
memory detailed in Figure 4.15. The example memory systesrilBamats each holding
2048 32b word, and the scratchpad memory spans four mats Onb@B. The address split
in Figure 4.16 is for a configuration with the scratchpad wegodcked contiguously into
four mats. The address splitin Figure 4.17 is for a configomawith the scratchpad words
interleaved among the four mats. So word 0O is in mat 0, wordrhahl1, word 2 in mat 2,
and so on. This banking arrangement would be desirable id a¥quest conflicts if there
were multiple requesters for the scratchpad. In a stayicalhedule crossbar, this would
allow multiple requesters to simultaneously access tretdgpad as long as their requests
were guaranteed to access different banks.

The address split for a cache is more complex. Figure 4.1&skho example 2-way
set associative cache. Each way’s tag is held in one mat,camahfats make up each data
array. Each way holds 2048 4 word lines. Mats 0 and 1 are thddaganats, and mats
8-15 make up the two data arrays. This mat numbering allowsdsy multicasting of the
tag and data accesses, since the tag and data arrays aregh@nvernumber and along

CHAPTER 4. INTERCONNECT NETWORKS

2 11 2
Lse | Byte Mat addr offset | Mat1D 000 ... 000 LM ID
offset offset
11 2
LI TP PPy fofof [
- -
Mat addr base|0 [0 [0 | o] o] oo | of o] o]0] | o| of d o MatiDbase
11 4
Y
Mat addr Mat ID

Figure 4.16: Address split for contiguous word scratchpad

2 2 11
LsB | Byte MatlD | \at addr offset 000 ... 000 LM ID
offset offset

LI Lo fo]
n +
Mat addr base [0 [0 [0 | o] o] o]o | o] o] ofo| | o] o] o dwmatiDbase
11 4
y
Mat addr Mat ID

Figure 4.17: Address split for interleaved word scratchpad

89

MSB

MSB

CHAPTER 4. INTERCONNECT NETWORKS 90

Mat O Mat 8 Mat 9 Mat 10 Mat 11 \
\
Tag Data Data Data Data) Way 0
/
Mat 1 Mat 12 Mat 13 Mat 14 Mat 15
\
Tag Data Data Data Data) Way 1
/
2048 x 32b ’
2-way set associative
2048 lines
4 words/line

Figure 4.18: Cache mat configuration for address splittamgpte

power-of-2 boundaries.

Figures 4.19 and 4.20 show the address splits of the tag dadatpiests respectively.
The data split assumes that the lines are packed contiguintisithe data mats. Note that
in the tag array, the remainder portion of the virtual adslissised as compare data in the
tag access. Figures 4.21 and 4.22 show the address spiitfagéhe tag and data, but for
a cache with the line interleaved among the four data arrag.ma

The address spilitter logic could be combined with the regadaress generation logic
typically done in the EX processor pipeline stage. Addiiby the mat decoder could be
implemented a sum-addressed-decoder [139] to remove simelogic from the address
splitter. This would however increase the width of the addreeld sent to the mat. We
assume that the traditional virtual-to-physical addresmsdiation occurs at higher levels of
the memory hierarchy. The local caches built from mats ateially-indexed, virtually-
tagged.

To make up a traditional memory requese (full data-width address and data) to a
cache would require two ports, one for the address and ortedéatata. The "address” of
the request packet is just the hardware address that thegubigl sent to. For example, in a
system with a cache, the physical address is really justdktee mbrtion of one of the ports
which is sent to the mat(s) acting as the cache tag.

CHAPTER 4. INTERCONNECT NETWORKS 91

2 2 11
Lsg | Byte Line Line Remainder LMID | MSB
offset offset
7
LI T T T T TTTT) [ofolofo]
n n
Mat addr base [0 [0 [0 | o] o] o]o | o] o] ofo | [0 o Jo [* | matip base
11 4
\j Y
Mat addr Mat ID To data field

Figure 4.19: Cache tag address split for contiguous woral aaty

2 2 11
LsB | Byte Line Line Remainder LMID | mMsB
offset offset

LI Lo Jo]
n +
Mat addr base [0 [0 [0 | o[o] o]o | o] o] ofo| |1 |*]o]o|matiDbase
11 4
y
Mat addr Mat ID

Figure 4.20: Cache data address split for contiguous waalateay

CHAPTER 4. INTERCONNECT NETWORKS 92

2 11 2
LsB | Byte Line Line Remainder LMID | MSB
offset offset
11
LI T TP T TPl] [ofofofo]
+ +
Mat addr base|{0 |0 [0 [0| o] o]0 | o] o] oo | [0 Jo Jo [*] matipbase
11 4
Y \j
Mat addr Mat ID To data field

Figure 4.21: Cache tag address split for interleaved woral alaay

2 11 2
LsB | Byte Line Line Remainder LMID | MSB
offset offset
;/ \
LI TP PPt fofof]
+ +
Mat addr base [0 [0 [0 | o] o] o]0 | o] o] ofo| |1 |*]o]o | matiDbase
11 4
Y
Mat addr Mat ID

Figure 4.22: Cache data address split for interleaved wata aray

CHAPTER 4. INTERCONNECT NETWORKS 93

If a system had 8 ports, the ports could be configured as 4titadi memory ports.
However, if the processor was only going to address local angnthen all 8 ports could
be used to push/pull a data word every cycle. Any mix of thevahe also possible. A
single address port could be associated with multiple dates po pull down a wide data
word. Or some ports could use a traditional address spa@rsghwhile others directly
accessed the hardware addresses.

4.4 Summary

This chapter described the two interconnection networksiireconfigurable memory sys-
tem: the inter-mat control network and the processor iot@mect network. The inter-mat
control network allows the mats to pass a few bits of contrfdiimation to each other. It

uses narrow, one-to-many communication, and we implenhasta number of segmented
buses. The processor communicates to the mats via the povdagerconnect network.

It must support wide, many-to-many communication with maagcurrent requests. We
implement this network as two uni-directional crossbang for the requests from the pro-
cessor ports to the mats and one for the replies from the naatstb the processor ports.
There are many ways to implement these networks, and we ahteseonnect topologies

that were suited to their respective communication pastand emphasized flexibility over
area or energy efficiency. But the optimal topology deperdsity on the specific memory

architecture and optimization goals.

Chapter 5
Experimental Results

In the previous chapters, we have detailed a reconfigurabhaary design based on a re-
configurable SRAM mat and a flexible interconnection netwddkir design goal was to
make the memory flexible, yet maintain high performance dficiency. As a proof-of-
concept for our design, we implemented a prototype recorsija memory testchip. The
testchip demonstrates that we can build a fast, flexiblesieffi reconfigurable memory,
sanity checks our design decisions, and quantifies the figooability overheads. From
the prototype results, we can also extrapolate the oveshieadarger, more complex re-
configurable memory designs.

5.1 Testchip Overview

We designed and fabricated a reconfigurable memory testchi.1§m CMOS 6-metal
Al TSMC process (Figure 5.1) [140][141]. The die measuresn3oy 3.3mm and has 68
pads along the periphery. It was packaged in a 84-pin cerlmadtess chip carrier. Table
5.1 summarizes the testchip and process technology feature

Figure 5.2 shows the testchip block diagram. The testchipatios four reconfigurable
memory blocks (MemO-3), a dynamically routed, low-swingssbar interconnect, test
vector storage, and a process monitor block. MemO containSRAM core that uses
a self-timed, pulsed-mode circuit style for fast access stmuft cycle time. Meml1 and
Mem2 contain complete memory mats using the SRAM core froomBleMema3 contains

94

CHAPTER 5. EXPERIMENTAL RESULTS 95

I

1

B ELE
Bl
po-o
| B W

o]

T THS
mf
LB

-

L]

&
>
=
-,.‘
=il
o)
[
=
)
&

— P

i]

ol

Test
vectors

B0 O s e

I'l!ilIITi:

¥l
imEms

f
[T
[.
l
]

T P,
'& aﬁﬂunlnaaa"'

Figure 5.1: Testchip die photo

CHAPTER 5. EXPERIMENTAL RESULTS 96

Table 5.1: Process and testchip features

Mat area 0.6 mn?

SRAM area 0.4 mn?

Cell area 9 um?

Meta-data cell area | 18 um?

Supply voltage 1.8V

Frequency 1.1GHz

Mat power dissipation 125 mW (50% reads, 50% writes)
Technology 0.181m CMOS, 6-metal Al
Transistors NMOS Vvt = 0.5V, PMOS Vt =-0.5V

the pointer logic and PLA used in the mats. We separated eutttm0 SRAM and the

Mem3 peripheral blocks for increased observability andstdate their power measure-
ments. MemO and Mem3 use isolated power supplies so that mweneasure the power
dissipation of each block.

We chose an aggressive cycle time goal of 10 fan-out-of+ifouarter delays (FO4) for
the testchip. This short clock tick stresses the circuitglesf the memory cores as well as
the peripheral circuits and interconnect. Also, this cyofee would allow us to virtually
multi-port the memory system for a slower cycling procesasrdescribed in Chapter 3.
Due to this aggressive cycle time, the mat access is pigklered the total delay through
the mat is 2 cycles or 20 FO4. The first half-cycle is spent éngte-access logic: pointer
logic or write buffer. The next full cycle is spent in the SRAddcess. The last half-cycle is
spent in the post-access logic: control logic and the coaiparThe mat is fully pipelined,
accepting a new request every 10 FO4 cycle. For each crosabarsal, we allocate a full
10 FO4 cycle. An entire memory access requires 4 cycles, 6GH)

5.1.1 SRAM core

The SRAM core used in MemO, Mem1, and Mem2 has a capacity ob18Kis is on

the small end of the 16Kb to 128Kb optimum energy-delay ratigeussed in Chapter 2.
We chose this capacity to keep the area of the testchip rabknmwhile still being able to
include a number of SRAM cores on the die. The SRAM holds 16Kdata, arranged as

CHAPTER 5. EXPERIMENTAL RESULTS

MemO
SRAM

Mem1l
Mat

Mem?2
Mat

Mem3
PLA/Ptr

Request? ¢

by

by

by

Crossbar

Request? ¢ Reply

TVMO

Process
Monitor

Requestf ¢ Reply

TVM1

Figure 5.2: Testchip block diagram

97

CHAPTER 5. EXPERIMENTAL RESULTS 98

512 32b words. Along with each data word, we store an additidrbits of meta-data, so
the SRAM is logically 512 x 36 bits. To balance the wordling dnitline lengths, we use
4:1 column multiplexing to achieve a nearly square cellyaofal28 x 144 cells. The row
address is then 7 bits and the column address is 2 bits.

Our decoder structure closely follows the optimal topolpggsented by Amrutur and
Horowitz in 2001[34]. The pre-decoder divides the 7 bit raddigess into two groups and
decodes them using a 3:8 decoder and a 4:16 decoder. Ea@h2#f glne-decode gates uses
a modified Nambu OR-gate (Figure 5.3) [36][142]. We insertadmays-on full CMOS
transmission gate in the clock path to the dynamic invedetightly delay its clock. This
reduces the output glitch on the gates that do not fire.

vad vad

Ik
: et dL
vdd vdd

no out

in0| in1|
| | °"_{

i
PR

Figure 5.3: SRAM predecoder gate

The wordline driver gates are self-resetting, two-inpatirse-driven AND gates (Fig-
ure 5.4) [37][38][33][40]. There is an explicit pull-dowrutoff device to avoid drive
fights during reset. The 3:8 pre-decoder generates theimegaisesn_n[7:0] that drive
the source inputs of the wordline driver gates. The 4:16de@ader generates the positive
pulsesin_p[15:0] that drive the gate inputs of the wordline driver gates. Tiniéelo delays

CHAPTER 5. EXPERIMENTAL RESULTS 99

for the 3:8 pre-decoder and 4:16 pre-decoder are desigredtatched so that the positive
and negative pulses arrive at the wordline driver gateseasdime time.

vad

o o o
inp____ | L {>O {>O_l>07 WL

I

Figure 5.4: SRAM wordline driver gate

The decoder also contains the read-modify-write decodeteasribed in Chapter 3.
The decoder drives the wordlines into the cell array. Thearedy contains both the two-
ported meta-data cells and the single ported data cells.midta-data cells fit in the cell
pitch of the regular single-ported data cells, but they aidewto accommodate the two
pairs of bitlines. The prototype meta-data cells supp@dneodify-writes and gang oper-
ations, but not conditional or conditional gang operations

The cell bitlines feed into the cell I/O block that contaihe read and write support
circuits. The read cell I/O consists of a 4:1 PMOS passgdtemaomux and a StrongARM
amplifier followed by a skewed SR latch (Figure 5.5) [57]. Wese this design over the
more common latch-based sense amplifier to remove a seneedsom the bitline data
path. To further reduce the bitline loading, the write drissepull-down only which allows
the write column mux to be a simple 4:1 NMOS passgate mux.

After an access, the bitlines must be reset to Vdd beforedkeaperation. The bitline
reset circuits (Figure 5.6) consist of a keepdO(@ndM1), read resetNI2, M3, andM4),
and write resetNI5 andM®6). During writes the bitlines swing full-rail, and we needda

CHAPTER 5. EXPERIMENTAL RESULTS 100

bit[0] bit[1] bit[2] bit[3] bit_b[0] bit_b[1] bit_b[2bit_b[3]
\
\
sel_b[0] \
dF dr Y
sel_b[1] \
Sis dL "
, Col mux
sel_b[2]
ot dl K
/
sel_b[3] A ,
g dl /
/
bit bit_b \
vdd Vdd vdd Vdd Y
\
\
\
\
reset_b set_ b \\
\
\
/\ Sense amp
/

Y

reset

se

vdd vdd vdd vdd

reset_b \

\
; SR latch

Figure 5.5: SRAM read I/O circuits

CHAPTER 5. EXPERIMENTAL RESULTS 101

devices to fully reset the bitlines before the next accessveyer, only 1 out of 8 bitlines
needs to be reset from Gnd to Vdd, because we use 4:1 coluntiplexihg and only one
bitline per activated pair is discharged in a write. We uskrssetting bitlines to avoid the
excess power dissipation of activating unnecessary wegetrdevices. A self-reset delay
chain activates the write reset devichy andM6. The self-reset activation is predicated
on write enable being de-asserted (en.b being high) to prevent a drive fight between the
reset device and the write driver.

wr_en_b

vdd vdd

o] o0

vdd vdd

Vdd

bl_reset_b M2 I~

Figure 5.6: SRAM bitline reset circuits

We use a current ratioed replica bitline [35] to time thewatton of the clocked sense
amplifiers, for good tracking of the replica path with theuattdata path across process,
voltage, and temperature variations. The full replica tignpath consists of a mimic
pre-decoder gate, mimic wordline driver gate, replica Woej scan tunable replica cell,
replica bitline, and sense enable buffer. The delay of theesenable buffer is matched to
the delay of the pre-decoder output driver using logicairefi32]. Figure 5.7 shows both
timing paths and the matching of each of the delays such ligas¢nse enable signal is

CHAPTER 5. EXPERIMENTAL RESULTS 102

aligned in time with the desired bitline split of 200mV.

pdec, pdec buf wldrv cell
I I I I I

pdec IWI_ d[vI replica ! se bqu
mimic mimic cell

Figure 5.7: SRAM replica timing path

Proper replica wordline loading requires an extra row of duyncells, and proper
replica bitline loading requires an extra column of dummijsc®espite the careful match-
ing, the replica path delay can be slightly different frora thata path due to the slow edge
rate of the replica bitline, device mismatch, or inexactglaracking across PVT varia-
tions. To combat the possible problems with replica pathchiag, we implemented a
tunable replica bitline pull-down. Ten replica bitline wiis, two per driver cell, are laid
out in the replica row as shown in Figure 5.8. A scan-set-gdgester determines the num-
ber of drivers enabled via tharive[n] signals. In simulation, the replica path matched the
data path at the middle setting with 5 drivers enabled. Tihesva for 5 steps in either di-
rection, faster or slower, if the replica path does not matdte prototype implementation
performed at its maximum 1.1GHz clock frequency with thdioapbitline driver at the
nominal setting.

5.1.2 Peripheral Logic

Mem1 and 2 are complete memory mats containing the SRAM cecenfigurable PLA,
pointer logic, maskable comparator, write buffer, and oanbgic. The reconfigurable
PLA has 16 logic termsi.e. rows) with 6 input and 4 outputs. The 6 inputs are 4 bits
of meta-data, the 1 bit match result from the mat comparatat,one external bit. The 4
outputs correspond to the 4 meta-data bits.

The pointer logic stores pointers that are 11 bits long, Wwis bits longer than neces-
sary to address all 512 words in the main SRAM array. The Zdits allow a maximum

CHAPTER 5. EXPERIMENTAL RESULTS

rbl

< rwi

/ rbl

vdd Vvdd Vdd

/
’ o4
I’

driver cells (5) dummy cells (139)

Figure 5.8: SRAM replica bitline and wordline

© I\
N !
=} ;o
2} ® ! \
o) . N . . ,
o ° o cell array I \ . drive[1] drive[O] ,
> e N /
S ° ce o ! ~ <
E | ~ ~ -
-g oo == - =" -
I _ - -
- rwl
X0 _ oo o

103

CHAPTER 5. EXPERIMENTAL RESULTS 104

FIFO size of 4 mats. The pointer storage array holds 4 pargkowing for a maximum
of two FIFOs per mat. The strides were chosen to be 4 bits [bhg.pointer storage array
decoder gate is a self-resetting, pulse-latch with emltimtgc (Figure 5.9). We imple-
ment the adder/subtracter using complex dual-rail domategyand uses a mixed carry-
tree/carry-select topology. We previously detailed thantgw logic micro-architecture in
Section 3.6.2.

Vdd

vdd MZ]
1P

no {>O*>> WL

CLK —

addr[0]

addr[1]

Figure 5.9: Pointer logic decoder gate

5.1.3 Interconnect and Test Infrastructure

The memory blocks connect to the two test vector memoriesmaeadynamically routed,
uni-directional, low-swing crossbars. The request crassiiutes 60b request packets from

CHAPTER 5. EXPERIMENTAL RESULTS 105

the two test vector memories to the four memory blocks. Ilpsuts multicasting to any
combination of the memory blocks. The reply crossbar rod@sreply packets from the
memories back to the test vector memories. It supports nywfithe return data as detailed
in Chapter 4. We used low-swing wires in the crossbars inrai@eeduced their power
dissipation. If we had used full-swing wires, the crosshapsild have burned as much
power as the rest of the testchip. We implemented low-swifigrdntial signaling using
NMOS-only drivers and clocked sense amplifiers as desciib€thapter 4.

The two test vector memories (TVMs) emulate processor samsling requests into
the reconfigurable memory system and receiving the repli&sch TVM stores 16 64b
requests and can launch a request every cycle. The TVMs agare the replies coming
back from the memory system. Each TVM can store 16 40b repiesepting one per
cycle. Putting the TVMs on die allows us to test the memorysnadispeed without using
high-speed I/0 pins or a high-speed tester.

We implement the TVMs as wide looping shift registers thapatia memory request
and record a response every cycle. All of the test vector ngstorage cells are connected
in a serpentine scan chain which allows us to read and wrienihut and output vectors
via a simple, low-speed, scan interface. The TVMs can bemunlooping mode where
the 16 requests are repeated over and over again. This modefid for taking power
measurements and for probing internal nodes with the onaliage samplers.

The testchip has 43 voltage samplers on key internal nodetharclock. These voltage
samplers were described by Ho in 1998 [143], and our sampel&gd is identical to that
used on an earlier testchip in the same technology [56]. &hmpker uses a boosted supply
voltage to allow the NMOS sample-and-hold passgates to learoftages up to the normal
core Vdd. By running the sampler clock at a slightly diffearsequency as the core clock,
we sub-sample the signal and can generate a time dilatewafsthe signal. This time
dilated signal is a much lower frequency than the actualadignd is easily driven off chip.
By using the clock sampler output as a reference, we carertatsampler time-dilated
output to actual time. In the next section, we show a wavefapture of a number of key
nodes in the SRAM core using the samplers.

The testchip contained a process monitor block (Figure)syhich allows us to mea-
sure the delay of various logic gates including the fandtftar inverter delay of each die

CHAPTER 5. EXPERIMENTAL RESULTS 106

slave_clk

mas_data

sample_out

M1 M2
data Oe——vs] 1ab~ w ml 0zbw sl 07 mel 0cba | 378
Vel D M

M4

mas_calib

52 2.16 8.1:0.72 81:0.72
enable D
126
]
Gnd G

nd

Figure 5.10: On-die voltage sampler with device widths gms for a 0.18m
technology[56]

[144]. The block contains four ring oscillators, each usangjfferent type of gate for the
delay element. A mux selects which of the ring oscillatorpoits goes to a by-32 toggle
flop frequency divider. Its output is buffered then sent taatput pad. The block has 10
dedicated power and signal I/0O pads. The pads are not alengetfiphery of the die and
require special bonding.

5.2 Measured Results

The testchip operated at 1.1GHz at the nominal 1.8V supplyraoam temperature. The
process monitor block measured the fanout-of-four invetéday to be an average of 89ps
across 5 die. The 1.1GHz operating frequency correspondstaoget cycle time of 10
FO4. The area breakdown for the SRAM core, memory mat, andhigsare shown in
Tables 5.2, 5.3, 5.4 respectively. The meta-data, metaedditl/O, and the RMW decoder
occupy 24% of the total SRAM area.

Figure 5.12 shows the percentage area breakdown of the ntet.pdripheral logic
occupied 32% of the mat area, but over half of the 32% wasngudrea. With better
optimized layout, we could have reduced the routing aremifgigntly. Figure 5.13 shows

CHAPTER 5. EXPERIMENTAL RESULTS 107

Enable[3:0]

FOA4 Inverter
Ring

FO1 Inverter
Ring

Out

DIV 32

FO3 NAND2
Ring

FO2 NOR2
Ring

Figure 5.11: Process monitor block

Table 5.2: SRAM area breakdown

| Unit | Area mnf |
Decoder 0.029
RMW decoder| 0.029
Mdata array | 0.052
Data array | 0.186
Data cell /0O | 0.036
Mdata cell /0| 0.012

Table 5.3: Mat area breakdown

| Unit | Areamnf |
SRAM | 0.376
PLA 0.021
Pointer | 0.017

WB/Cmp | 0.05
Routing | 0.097

CHAPTER 5. EXPERIMENTAL RESULTS 108

Table 5.4: Testchip area breakdown

| Unit | Area mnf |
SRAM 0.376
Mat 0.637

PLA/Ptr 0.047
Crossbars 1.62

TVM 0.241

Process Monitor 0.388

Table 5.5: Mat power breakdown

| Unit | Power mW]|

SRAM | 104.4
PLA 9.9
Pointer | 6.3
WB/Cmp | 4.4

the area overhead as a function of the mat capacity, keelpgngata and meta-data widths
constant. The projected area overheads are generatedamsBiAM area estimator [24]

and and the testchip area results. With a 64Kb mat, the paaplogic occupies less than
15% of the total area, still using the non-optimal periphkagic layout.

The power breakdown for a memory mat is shown in Figure 5.4 Table 5.5. The
peripheral logic accounted for 23% of the power. The testorewas an even mix of
compare-modify-writes and pointer writes. The PLA funotiwas a 4-bit counter. Figure
5.15 shows the power overhead as a function of the mat cgpasitwith the area projec-
tions, the data and meta-data widths are kept constant. rbijecged power overheads are
generated using an SRAM power estimator [24] and and thehtiegbower results. With a
64Kb mat, the peripheral logic accounts for less than 10% epower.

Figure 5.16 shows a waveform capture from the SRAM using thdie voltage sam-
plers for a worst-case read after write at 1.0GHz and 1.8¥.White occurs from time -1ns
to Ons, and the read occurs from time Ons to 1ns. The bitliage hpproximately 90mV

CHAPTER 5. EXPERIMENTAL RESULTS 109

B SRAM
EPLA
Optr
Omisc
Brouting

8%

3%

4%

Figure 5.12: Area overhead and breakdown

CHAPTER 5. EXPERIMENTAL RESULTS 110

35 | | | | | |
30 =
251 =

20 .

Percent area in peripheral logic

5 | | | | | |
0 20 40 60 80 100 120 140

Capacity (Kb)

Figure 5.13: Area overhead vs. SRAM capacity

of split when the sense enable signal fires. Due to insuftidenoupling capacitance on
the sampler supply, the bitline samples are DC shifted ugby&200mV. The jaggedness
of the bitlines near Gnd is due to noise and increased séhsiif the sampler calibration
near ground.

5.3 Summary

This chapter described the implementation of a prototyperntgurable memory testchip
and the measured results. The testchip contained four nyetesir structures, including
two complete 16Kb memory mats, a low-swing crossbar intanect network, test vector
storage, and a process monitor block. The testchip opeaaithd target 10 FO4 clock cycle
under nominal conditions. The fast cycle time of both the mgnmats and interconnect
opens the possibility of virtual multi-porting the memogstem. The reconfigurable logic
occupied 32% of the mat area and accounted for 23% of the magrpd he mat memory
capacity is on the small end of the optimal range, and we praéfet for larger memory

CHAPTER 5. EXPERIMENTAL RESULTS 111

3%

5%

H SRAM
EPLA
Optr
Omisc

Figure 5.14: Power overhead and breakdown

CHAPTER 5. EXPERIMENTAL RESULTS

Percent power in peripheral logic

\oltage (V)

112

e s
D 0 O N DM O OO
| | | | | | | |

N

0 20 40 60 80
Capacity (Kb)

Figure 5.15: Power overhead vs. SRAM capacity

100 120

140

15F /

05 we ! i wi
.
|' i clock cycle

0 L) 1

)

)

|
-1 -0.5 0 0.5
Time (ns)

Figure 5.16: Worst-case read at 1GHz, 1.8V, room temperatur

CHAPTER 5. EXPERIMENTAL RESULTS 113

capacity mats, the overheads for area and power would fediwb&5% and 10% respec-
tively. These results show that we can implement the praposeonfigurable memory
design with reasonable overheads while maintaining higffiepmance operation.

Chapter 6
Conclusions

In this work, we have examined a reconfigurable memory achite and evaluated its
feasibility via a prototype testchip. The motivation forchuan architecture stems from
current process technology and design trends that indicateustom ASICs will become
increasingly difficult and costly to design. However, f@pplications will require more
efficient, high-performance computation than current gar@urpose processors can pro-
vide. One promising approach to breaking this impasse iséoreconfigurable architec-
tures that keep the low non-recurring engineering costepéal purpose silicon, yet still
provide the efficiency and high-performance near that ofausASICs. For such recon-
figurable architectures, we propose adding reconfigutgldithe memory system as well
as the computation. While reconfigurable logic has beeneduektensively, the design
space for reconfigurable memory is relatively unchartedvéi@r, in modern designs, the
memory system plays an increasingly important role in theral/performance, area, and
power of the design.

Unlike previous attempts at reconfigurable memory desigrtpek a bottom-up, circuit-
level approach, starting with an efficient SRAM design andiagl configurability where
and when it could be done for low overhead. In Chapter 2, wéoegg modern SRAM
design to understand the base design substrate. Modern SRAMhighly partitioned de-
signs that use specialized circuits in the decoder, ddtapat request/reply transport for
high-performance and low-power. For the low-activity taaiecoders, designers use self-
resetting logic to achieve the speed of a dynamic logic famithout the excessive power

114

CHAPTER 6. CONCLUSIONS 115

dissipation of a global precharge signal. To save powerarbttlines, the read bitlines only

swing a fraction of Vdd, but this requires a sense amplifielegiore the read out data to
full logic levels. Clocked sense amplifiers are used for lawer, but they require precise
and robust triggering. Using replica bitlines allows us¢ourately time the sense amplifier
activation across process, voltage, and temperaturetiearsa To reduce the power in the
transport phases, we use low-swing signaling techniquekewires. These highly opti-

mized SRAMs are used to build common memory structures ssiskcratchpads, caches,
and FIFOs.

Looking closely at these memory structures, we recognizatithey use very similar
memory building blocks. We designed a single reconfiguratdenory mat that could form
the core of a many common memory structures. To the memaay,ame add a few extra
bits of meta-data and logic to support read-modify-writad gang operations. Pointer
logic in the address path enables a level of address indtireftir FIFO configurations. A
comparator and write buffer in the mat datapath enable coespand conditional writes.
For a realistic design evaluation, we use modern SRAM didesign practices described
in Chapter 2 in the mat design and tightly couple the meta-dat peripheral logic with
the memory core.

Despite having very similar memory building blocks, theygtrmemory structures vary
widely in how they connect their memory blocks to each otimer i@ the computation. To
support this diversity, we use two flexible interconnectmatworks, the inter-mat control
network (IMCN) for mat-to-mat communication and the pramsinterconnect network
for mat-to-compute communication. These two networks rdifferent communication
needs and we tailor our implementations accordingly: thheomaone-to-many IMCN im-
plemented as a segmented bus, and the wide many-to-mangspoyanterconnect im-
plemented as a pair of multicasting/muxing crossbars. dpgnty interface between the
crossbar and the computation, the address splitter pesfaddress translation from the
address space used by the computation to the memory systdwmeana address space.

To evaluate our design, we implemented a prototype recaadigel memory testchip
based on our architecture in a Oub8 CMOS technology. The testchip demonstrates that
we can build such a reconfigurable memory with low overhedu|ewstill maintaining
a fast 10 FO4 cycle time. While this cycle time did require apipeline the memory

CHAPTER 6. CONCLUSIONS 116

access, it opens the possibility using such a fast memoryiriwaal multi-ported fashion,
especially if the computation is a relatively slow runnin§l& or FPGA. The prototype
uses a 16Kb SRAM mat, a capacity on the low end of the optimaiggndelay range,
but still achieved area and power overheads of 32% and 23%eofatals respectively.
Our projections based on the experimental results showhbatconfiguration overheads
can be reduced to below 15% of the area and below 10% of therfdoymasing SRAMs
larger than in our prototype design, but still in the neaiiroptn energy-delay block size
range. These overheads may reduce even further if we meeggetiipheral logic with
other necessary logic already present in the SRAM, such 4S& &ntroller.

Thus, we can build a fast, efficient, reconfigurable memaoglbby adding only a small
amount meta-data and peripheral logic to a basic memory.arhee meta-data was a com-
mon memory paradigm used across many memory structurede Wiki peripheral logic
blocks were more tailored to individual memory structuthkse,necessary logic was limited
and thus the overhead for hardwired peripheral logic uniéts small. Where the memory
structures did vary significantly is in the way that the ma&sevconnected to each other
and to the computation. This led us to use very rich interechstructures for the inter-
mat control and the processor interconnect networks. &intal conventional memories,
the performance and power of reconfigurable memory desigysh@gin to be dominated
not by the memory cores themselves, but rather by the imeexdion networks. To that
end, we believe that the design of interconnection netwtmkseconfigurable memories
warrants additional scrutiny. Under further study, a senpdw-overhead interconnection
topology may emerge that can emulate the necessary integcbfor many memory struc-
tures, just as our memory mat does for the memory cores.

Appendix A

SRAM Survey

In Figure 2.4, we plotted the block sizes of a number of coptaary SRAM against the
total SRAM capacity. These SRAMs ranged in total capaciynfr72Mb to 15Kb, in
technologies from 0.68n to 90nm. However, the majority of the designs used bloadssiz
that only ranged from 16Kb to 128Kb. This supports the casiolus of both Amrutur [24]
and Evans [25] that the optimal energy-delay partition fale within this range. For our
reconfigurable memory, we set the mat memory capacity basttte@ptimal energy-delay
block range. Table A.1 below shows the raw data used to geneigure 2.4. The SRAMs
are sorted by total capacity, in descending order.

117

APPENDIX A. SRAM SURVEY

Table A.1: SRAM survey data

118

| Citation | Capacity (kb)| Block size (kb)| Technology im) | Process type
Cho[145] 73728 16 0.10 CMOS
Weiss[146] 24576 24 0.18 CMOS
Zhao[147] 18432 64 0.18 CMOS
Pilo[148] 18432 72 0.18 CMOS
Osada[149] 16384 512 0.13 CMOS
Ishibashi[150] 4096 64 0.25 CMOS
Braceras[151] 4096 36 0.30 CMOS
Ishibashi[152] 4096 64 0.25 CMOS AT
Bateman[153] 4096 9 0.35 CMOS
Kimura[154] 2048 64 0.65 BICMOS
Kushiyama[155] 1024 4 0.35 CMOS
Shibata[156] 1024 128 0.30 CMOS/SOI
Shibata[157] 1024 32 0.50 CMOS
Shimizu[158] 288 288 0.18 CMOS
Pelella[159] 288 36 0.50 CMOS
Sato[160] 256 32 0.40 BICMOS
Akiyoshi[161] 144 36 0.09 CMOS
Mori[39] 32 1 0.25 CMOS
Lu[162] 15 4 0.50 CMOS

Bibliography

[1] P. Silverman, “Who Can Afford Advanced Lithography®icrolithography World
Nov. 2003.

[2] R. Merritt, “Gurus Urges IC Design OverhauEE Times Sept. 2, 2003.

[3] N. Zhang and R. Brodersen, “The Cost of Flexibility in 8ms on a Chip Design for
Signal Processing Applications,”
http://bwrc.eecs.berkeley.edu/Classes/EE225C/Papensiesign.doc, 2002.

[4] N. Tredennick and B. Shimamoto, “The death of micropsswes,”"Embedded Sys-
tems ProgrammingAug. 11, 2004.

[5] Xilinx Inc., "Using the Virtex Block SelectRAM+ Featuss
http://www.xilinx.com/bvdocs/appnotes/xapp130.pdipplication Note XAPP130
Dec. 18, 2000.

[6] Altera Inc., "TriMatrix Embedded Memory Blocks in Stimatll Devices,” Stratix I
Device Handbookvol. 2, chapt. 2,
http://www.altera.com/literature/hb/stx2/stratikdndbook.pdf, Document Number
SII5V2-1.3, July 2004.

[7] S. Hauck,et al,, “The Chimera Reconfigurable Functional UnilEEE Symposium
on FPGAs for Custom Computing Machin&897.

[8] J. Hauser and J. Wawrzynek, “Garp: a MIPS Processor WReeonfigurable Co-
processor,IEEE Symposium on FPGAs for Custom Computing Machir@sy7 .

119

BIBLIOGRAPHY 120

[9] http://www.stretchinc.com

[10] K. Sankaralingamet al,, “Exploiting ILP, TLP, and DLP with the polymorphous
TRIPS architecture,Proceedings of the International Symposium on Computer Ar-
chitecture 2003.

[11] R. Krashinskyet al,, “The vector-thread architecturdjiternational Symposium on
Computer ArchitectureJune 2004.

[12] M. Taylor, et al, “The RAW microprocessor: a computational fabric for saftes
circuits and general-purpose programEEE Micro, Mar/Apr 2002.

[13] K. Mai et al,, “Smart Memories: A Modular Reconfigurable ArchitecturBfoceed-
ings, International Symposium on Computer Architegtppe 161-71, June 2000.

[14] Pact Corp.,“The XPP white paper,”
http://www.pactcorp.com/xneu/download/xpfnite_paper.pdf, Mar. 27, 2002.

[15] D. Parlour, “The Reality and Promise of Reconfigurabter@uting in Digital Signal
Processing,Tutorial, IEEE International Solid-State Circuits Conéeice Feb. 2004.

[16] K. Wu and Y. Tsai, “Structured ASIC, evolution or revahn?,” International Sym-
posium on Physical DesigApril 2004.

[17] R. Sites. “It's the Memory, Stupid!Microprocessor Repoyrpages 19-20, August 5,
1996.

[18] C. Zhang,et al, “A highly configurable cache architecture for embeddedesys,”
Proceedings, International Symposium on Computer Archite, June 2003.

[19] D. Pattersonet al, “Intelligent RAM (IRAM): Chips that remember and complite,
Digest of Technical Papers, IEEE International Solid-8t&ircuits Conference~eb.
1997.

[20] A. Khan, et al, “A 150 MHz graphics rendering processor with 256Mb embedde
DRAM,” Digest of Technical Papers, IEEE International Solid-8t@ircuits Confer-
ence Feb. 2001.

BIBLIOGRAPHY 121

[21] B. Dipert, “Cutting-edge consoles target the telesmisi EDN, December 12, 2001.

[22] W. Leung,et al, “The ideal SoC memory: 1T-SRAMProceedings of the 13th An-
nual IEEE International ASIC/SOC Conferen&ept. 2000.

[23] D. Fried, et al, “Aggressively scaled (0.1461%) 6 T-SRAM cell for the 32 nm node
and beyond,Technical Digest Electron Devices Meetjiigec. 2004.

[24] B. Amrutur and M. Horowitz, “Speed and Power Scaling &/M’s,” IEEE Journal
of Solid-State Circuits~eb. 2000.

[25] R. Evans, “Energy consumption modeling and optimaafior SRAMs,”Ph.D. dis-
sertation Dept. of Electrical and Computer Engineering, North GamlState Uni-
versity, July 1993.

[26] T. Wada,et al.,, “An analytical access time model for on-chip cache mensgriEEE
Journal of Solid-State CircuifAug. 1992.

[27] M. Yoshimoto,et al, “A 64kb CMOS RAM with divided word line structurePigest
of Technical Papers, IEEE International Solid-State CitsiConferenceFeb. 1983.

[28] T. Hirose,et al,, “A 20ns 4Mb CMOS SRAM with hierarchical word decoding archi
tecture,’Digest of Technical Papers, IEEE International Solid-8t@ircuits Confer-
ence Feb. 1990.

[29] K. Osadagt al,, “A 2ns access, 285MHz, two-port cache macro using douldbail
bit-line pairs,” Digest of Technical Papers, IEEE International Solid-8t@lircuits
ConferenceFeb. 1997.

[30] R. Evans and P. Franzon, “Energy consumption modeling a@ptimization for
SRAMSs,” IEEE Journal of Solid-State Circuitdlay 1995.

[31] B. Amrutur, “Design and analysis of fast low power SRAMPN.D. dissertation
Dept. of Electrical Engineering, Stanford University, AU§99.

[32] I. Sutherlandet al, Logical Effort: Designing Fast CMOS CircuitdMorgan Kauf-
mann, January 1999.

BIBLIOGRAPHY 122

[33] T. Chappell,et al,, “A 2-ns cycle, 3.8-ns access 512kb CMOS ECL SRAM with a
fully pipelined architecture JEEE Journal of Solid-State Circuitdlov. 1991.

[34] B. Amrutur and M. Horowitz, “Fast low-power decoders ®AMs,” IEEE Journal
of Solid-State CircuitsOct. 2001.

[35] B. Amrutur and M. Horowitz, “A replica technique for waline and sense control in
low-power SRAMs,"IEEE Journal of Solid-State Circuit®\ug. 1998.

[36] H. Nambu,et al., “A 1.8ns access, 550MHz 4.5Mb CMOS SRAMigest of Tech-
nical Papers, IEEE International Solid-State Circuits Gerence Feb. 1998.

[37] K. Sakai,etal, “A 15ns 1-Mbit CMOS SRAM,"IEEE Journal of Solid-State Circuits
Oct. 1988.

[38] M. Matsumiya,et al,, “A 15ns 16-Mb CMOS SRAM with interdigitated bit-line ar-
chitecture,”IEEE Journal of Solid-State Circuitdlov. 1992.

[39] T. Mori, it et al., “ A 1V 0.9mW at 100MHz 2k*16b SRAM utiling a half-swing
pulsed decoder and write-bus architecture in r28lual-Vt CMOS”Digest of Tech-
nical Papers, IEEE International Solid-State Circuits Gerence Feb. 1998.

[40] K. Mali, et al, “Low-Power SRAM Design Using Half-Swing Pulse-Mode Tech-
niques,”IEEE Journal of Solid-State Circuitdov. 1998.

[41] J. Alowerssonet al, “SRAM cells for low-power write in buffer memories|EEE
Symposium on Low Power Electroni€3ct. 1995.

[42] H. Mizuno, et al., “Driving source-line cell architecture for sub-1-V higipeed low-
power applications JEEE Journal of Solid-State Circuitg\pril 1996.

[43] M. Margala, et al., “Low-power SRAM circuit design,Records of the 1999 IEEE
International Workshop on Memory Technology, Design arstifig Aug. 1999.

[44] J. Wang,et al, “Low-power embedded SRAM with the current-mode write tech
nique,”|EEE Journal of Solid-State Circuitdan. 2000.

BIBLIOGRAPHY 123

[45] K. Kanda,et al, “90% write power-saving SRAM using sense-amplifying meyno
cell,” IEEE Journal of Solid-State Circuitdune 2004.

[46] S. Heo,et al, “Dynamic Fine-Grain Leakage Reduction using Leakages&iaBit-
lines,” International Symposium on Computer Architectiviay 2002.

[47] K. Osada,et al, “Universal-vVdd 0.65-2.0-V 32-kB cache using a voltageyated
timing-generation scheme and a lithographically symroaticell,” IEEE Journal of
Solid-State CircuitsNov. 2001

[48] K. Agawa,et al., “A bitline leakage compensation scheme for low-voltagd&R,”
IEEE Journal of Solid-State Circuitdlay 2001.

[49] V. Ye,etal, “A6-GHz 16-kB L1 cache in a 100-nm dual-Vt technology usirigjtline
leakage reduction (BLR) techniquéEZEE Journal of Solid-State CircuitMay 2003.

[50] A. Alvandpour.et al, “Bitline leakage equalization for sub-100nm cach&sgceed-
ings of the 29th European Solid-State Circuits ConfereSept. 2003.

[51] S. Tachibanagt al., “A 2.6-ns wave-pipelined CMOS SRAM with dual-sensingetat
circuits,” IEEE Journal of Solid-State Circuit&\pril 1995.

[52] S. Schusteet al, “A 15-ns CMOS 64K RAM,”IEEE Journal of Solid-State Circuits
Oct. 1986.

[53] T. Higuchi,et al,, “A 500MHz synchronous pipelined 1Mbit CMOS SRAM&chni-
cal Report of IEICEMay 1996, pp. 9-14,if Japanesg

[54] R. Ho, et al,, “Efficient On-Chip Global InterconnectsDigest of Technical Papers,
Symposium on VLSI Circujtdune 2003.

[55] H. Zhanget al, “Low-swing on-chip signaling techniquesJEEE Transactions on
VLS|, pp. 414-419, April 1993.

[56] R. Ho, “On-chip wires: scaling and efficiencyh.D. dissertationDept. of Electrical
Engineering, Stanford University, Aug. 2003.

BIBLIOGRAPHY 124

[57] B. Nikolic, et al, “Sense Amplifier Based Flip-FlopDigest of Technical Papers,
IEEE International Solid-State Circuits Conferenéeb. 1999.

[58] L. Benini, et al, “Energy-aware design of embedded memories: A survey ¢f-tec
nologies, architectures, and optimization technigu&&M Transactions on Embed-
ded Computing Systentseb. 2003.

[59] F. Balasagt al, “Background memory area estimation for multidimensiasighal
processing systemdEEE Transactions on VLSI Systerdane 1995.

[60] J. Stinson and S. Rusu, “A 1.5GHz third generation lamiprocessor,Digest of
Technical Papers, IEEE International Solid-State CirsutonferencegFeb. 2003.

[61] R. Banakaret al,, “Scratchpad memory: a design alternative for cache op-ct@m-
ory in embedded systemdjiternational Symposium on Hardware/Software Code-
sign May 2002..

[62] R. Lee and M. Smith, “Media processing: a new designagtdEEE Micro, Aug.
1996.

[63] D. Zucker,et al,, “Improving performance for software MPEG playem®fbceedings
of Compcon1996.

[64] K. Diefendorff and P. Dubey, “How multimedia workloadsll change processor de-
sign,” IEEE ComputerSept. 1997.

[65] N. Jouppi, “Improving Direct-Mapped Cache Performaiy the Addition of a Small
Fully-Associative Cache and Prefetch Buffetbceedings of the International Sym-
posium on Computer Architectyrglay 1990.

[66] S. Rixner,et al, “A Bandwidth Efficient Architecture for Media Processihdnter-
national Symposium on Microarchitectyf998.

[67] S. Palacharleet al., “Evaluating stream buffers as a secondary cache replaténre
Proceedings of the 21st Annual International Symposiumampliter Architecture
pages 24-33, 1994.

BIBLIOGRAPHY 125

[68] K. Farkasset al, “How useful are non-blocking loads, stream buffers anaslaive
execution in multiple issue processors#i Proceedings of the First International
Conference on High Performance Computer Architectpeges 78-89, Jan. 1995.

[69] W. Dally, et al, “Merrimac: supercomputing with streamsroceedings of the
ACM/IEEE Supercomputing Conference SC2003v. 2003.

[70] N. Jayasenaet al, “Stream register files with indexed accesBfbceedings of the
Tenth International Symposium on High Performance CommpAitehitecture Feb.
2004.

[71] E. Kilgariff and R. Fernando, “The Geforce 6 series #extture,” GPU Gems 2
Addison-Wesley, 2005.

[72] D. Albonesi, “Selective cache ways: on-demand cacheurce allocation,Interna-
tional Symposium on Microarchitectyr£999.

[73] D. Albonesi,et al, “Dynamically Tuning Processor Resources with Adaptive-Pr
cessing,TEEE ComputerDec. 2003.

[74] R. Balasubramoniaret al., “Memory hierarchy reconfiguration for energy and per-
formance in general-purpose processor architecturetgtnational Symposium on
Microarchitecture Dec. 2000.

[75] P. Pandaet al,, “Data memory organization and optimizations in applcatspecific
systems,1IEEE Design and Test of Computelay-June 2001.

[76] P. Pandagt al, “Local memory exploration optimization in embedded syste
IEEE Transactions on Computer-Aided Design of Integratéduits and Systems
Jan. 1999.

[77] A. Veidenbaumget al,, “Adapting cache line size to application behavidnterna-
tional Conference on Supercomputji®99.

[78] P. Ranganathaet al., “Reconfigurable caches and their application to mediags®c
ing,” Proceedings, International Symposium on Computer Archite, 2000.

BIBLIOGRAPHY 126

[79] M. Qureshietal, “The V-way cache: demand-based associativity via glodglace-
ment,” International Symposium on Computer Architectuene 2005.

[80] S. Kaxiras,et al., “Cache decay: exploiting generational behavior to redrahe
leakage power,International Symposium on Computer Architecfuiene 2001.

[81] N. Kim, et al, “Drowsy instruction caches: leakage power reduction gigig-
namic voltage scaling and cache sub-bank predicti®rgteedings of the 35th annual
ACM/IEEE International Symposium on Microarchitectuxsv. 2002.

[82] A. Malik, et al., “A low power unified cache architecture providing power gedfor-
mance flexibility,”International Symposium on Low Power Electronics and Desig
2000.

[83] E. Witchel, et al,, “Direct addressed caches for reduced power consumptizty
International Symposium on Microarchitectui@ec. 2001.

[84] Texas Instruments Inc., "TMS320C621x/C671x DSP Twwdldnternal Memory
Reference Guide (Rev. B),”
http://www-s.ti.com/sc/psheets/spru609b/spru609b.pd’| Literature Number:
SPRUG609B, June 2004.

[85] B. Ackland, et al,, “A single chip, 1.6-billion, 16-b MAC/s multiprocessor P3
IEEE Journal of Solid-State Circuitdlarch 2000.

[86] H. Kim, et al, “A Reconfigurable Multifunction Computing Cache Archite,”
IEEE Transactions on Very Large Scale Integratiéung. 2001.

[87] V. Srini, et al,, “Reconfigurable memory module in the RAMP system for streaoh
cessing,’Proceedings of International Symposium on Computer Agchite Work-
shop June 2001.

[88] T. Ngai,et al, “An SRAM-programmable field-configurable memorfgEE Custom
Integrated Circuits Conferencé&995.

BIBLIOGRAPHY 127

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

F. Heile,et al,, “Programmable memory blocks supporting content-addidesnem-
ory,” International Symposium on Field Programmable Gate Arr&@90.

S. Guccionegt al,, “A reconfigurable content addressable memoy@ceedings of
the 15th International Parallel and Distributed Procesgiworkshops (IPDPSMay
2000.

Personal communications with Manoj Chirania, Xilininc., Jan. 2004.

S. Scott, “Synchronization and communication in th&TBultiprocessor,Proceed-
ings of the Architectural Support for Programming Langusg@a&d Operating Sys-
tems Oct. 1996.

L. Hammond, “Hydra: a chip multiprocessor with suppfmt speculative thread-
level parallelization,”Ph.D. dissertationDept. of Electrical Engineering, Stanford
University, Mar. 2002.

M. Horowitz and W. Dally, “How Scaling Will Change Progsor Architecture’Di-
gest of Technical Papers, IEEE International Solid-State@ts ConferencgFeb.
2004.

D. Sager.et al, “A 0.18um CMOS IA32 Microprocessor with a 4GHz Integer Ex-
ecution Unit,” Digest of Technical Papers, IEEE International Solid-8t&lircuits
ConferenceFeb. 2001.

M. Matson.et al., “Circuit Implementation of a 600MHz Superscalar RISC Mjoro-
cessor,”Proceedings of the International Conference on Computesidgde October,
1998

S. Hsu,et al, “A 4.5-GHz 130-nm 32-KB LO cache with a leakage-toleranf se
reverse-bias bitline scheméEEE Journal of Solid-State Circuitdlay 2003.

D. Pham.et al,, “Design and implementation of a first-generation CELL @%sor,”
International Solid-State Circuits Conferendesb. 2005.

BIBLIOGRAPHY 128

[99] S.Dhongetal, “A 4.8GHz fully pipelined embedded SRAM in the streamingges-
sor of a CELL processorfhternational Solid-State Circuits Conferendeesb. 2005.

[100] S. Rixner,et al, “Register organization for media processingternational Sym-
posium on High Performance Computer Architecfuian. 2000.

[101] O. Ergin,et al,”A Circuit-Level Implementation of Fast, Energy-Effice@MOS
Comparators for High-Performance MicroprocessolSEE International Confer-
ence on Computer Desig8ept. 2002.

[102] C. Wang,et al, “High fan-in dynamic CMOS comparators with low transistor
count,” IEEE Transactions on Circuits and Systems |: Fundamentabfjhand Ap-
plications Sept. 2003

[103] C.Huangetal, “High-performance and power-efficient CMOS comparatdE:E
Journal of Solid-State Circuit$-eb. 2003

[104] H. Mizuno,et al,, “A 1-V, 100-MHz, 10-mW cache using a separated bit-line mem
ory hierarchy architecture and domino tag comparatde&€E Journal of Solid-State
Circuits, Nov. 1996

[105] J. Hennessy and D. Patters@umputer Architecture, a Quantitative Approagnd
Ed. 1996.

[106] W. Dally and B. TowlesPrinciples and Practices of Interconnection Netwqoider-
gan Kaufmann,2004.

[107] J. Duatogt al., Interconnection Network#lorgan Kaufmann, 2003.

[108] C. Seitz, “Let’s route packets instead of wire8dlvanced Research in VLSI: Pro-
ceedings of the Sixth MIT Conferend®9o0.

[109] W. Dally and B. Towles, “Route packets, not wires: dmgcinterconnection net-
works,” Proceeding of the ACM/IEEE Design Automation Conferedaae 2001.

[110] L. Benini and G. DeMicheli, “Networks on chips: a newGgaradigm,”|EEE
ComputeyJan. 2002.

BIBLIOGRAPHY 129

[111] P. Magarshack and P. Paulin, “System-on-chip beybednanometer wall,Pro-
ceedings of the ACM/IEEE Design Automation Confergdiaee 2003.

[112] S. Dutta.et al, “High-performance crossbar interconnect for a VLIW vidsgnal
processor,Ninth Annual IEEE International ASIC Conference and ExhiPioceed-
ings, Sept. 1996.

[113] A. Boxer, “Where buses cannot géEZEE SpectrumFeb. 1995.

[114] Y. Zhang,et al,, “An alternative architecture for on-chip global interoatt: seg-
mented bus power modeling;onference Record of the Thirty-Second Asilomar Con-
ference on Signals, Systems and Compuidos. 1998.

[115] J. Chengt al, “Segmented bus design for low-power systenSEE Transactions
on Very Large Scale Integration Systeuarch 1999.

[116] J. Plosilagt al., “Implementation of a self-timed segmented buEEE Design and
Test of ComputersNov.-Dec. 2003.

[117] V. Lahtinen,et al, “Comparison of synthesized bus and crossbar intercoiumect
architectures,Proceedings of the International Symposium on Circuits @ystems
May 2003.

[118] R. Naik,etal.“Large integrated crossbar switct®toceedings of the Seventh Annual
IEEE International Conference on Wafer Scale Integratitan. 1995.

[119] K. Choi and W. Adams, “VLSI implementation of a 25625®ssbar interconnec-
tion network,”Proceedings of the Sixth International Parallel ProcegsBymposium
March 1992.

[120] N. McKeown,et al.“Tiny Tera: a packet switch corelEEE Micro, Jan.-Feb. 1997.

[121] A. Lines, “Asynchronous interconnect for synchroadoC design,IEEE Micro
Jan-Feb. 2004.

BIBLIOGRAPHY 130

[122] M. Borgatti,et al,, “A multi-context 6.4Gb/s/channel on-chip communicatioet-
work using 0.18m Flash-EEPROM switches and elastic interconnedsgjest of
Technical Papers, IEEE International Solid-State CirsutonferencegFeb. 2003.

[123] S. Leeget al, "An 800MHz star-connected on-chip network for applicatio sys-
tems on a chip,Digest of Technical Papers, IEEE International Solid-8t&ircuits
ConferenceFeb. 2003.

[124] K. Lee, et al, “A 51mW 1.6GHz on-chip network for low-power heterogengou
SoC platform,’Digest of Technical Papers, IEEE International Solid-8t&ircuits
ConferenceFeb. 2004.

[125] J. Labrousse and G. Slavenburg, “A 50 MHz microproocesgth a very long in-
struction word architectureDigest of Technical Papers, IEEE International Solid-
State Circuits Conferen¢é&eb. 1990.

[126] L. Lin, et al,, “CCC: crossbar connected caches for reducing energy ogotson
of on-chip multiprocessors Proceedings of the Euromicro Symposium on Digital
System DesigrSept. 2003.

[127] K. Sankaralingamet al.,, “Routed inter-ALU networks for ILP scalability and per-
formance,”Proceedings of the 21st International Conference on CoerpDesign
Oct. 2003.

[128] E. Fetzerget al,, “A fully bypassed six-issue integer datapath and regigeeon the
Itanium-2 microprocessorlEEE Journal of Solid-State Circuit®lov. 2002.

[129] P. Gupta and N. McKeown, “Designing and implementirigsd crossbar scheduler,”
IEEE Micro, Jan.-Feb. 1999.

[130] J. Liang,et al. “"ASOC: a scalable, single-chip communications architextuPro-
ceeding of the International Conference on Parallel Arebitires and Compilation
TechniquesOct. 2000.

BIBLIOGRAPHY 131

[131] K. Lee, et al, “A high-speed and lightweight on-chip crossbar switchestiier
for on-chip interconnection networkConference on European Solid-State Circuits
Sept. 2003.

[132] K. Lee,et al, “A distributed crossbar switch scheduler for on-chip nates,” Pro-
ceedings of the IEEE Custom Integrated Circuits Confere8eet. 2003.

[133] M. Sinha and W. Burleson, “Current-sensing for cr@ssti Proceedings of the 14th
Annual IEEE International ASIC/SOC Conferen8ept. 2001.

[134] P. Wijetunga, “High-performance crossbar desigrsimtem-on-chip,Proceedings
of the IEEE International Workshop on System-on-Chip falHéme Applications
2003.

[135] H. Wang,et al., “Power-driven design of router microarchitectures inabrp net-
works,” Proceedings of the International Symposium on Microaeattiire 2003.

[136] A. Stratakoset al., “A low voltage CMOS DC-DC converter for a portable battery-
operated systenProceedings of IEEE Power Electronics Specialists Comiege
June 1994.

[137] Y. Zhang and M. Irwin, “Power and performance compamssof crossbars and buses
as on-chip interconnect structure§bnference Record of the Thirty-Third Asilomar
Conference on Signals, Systems, and CompuBats 1999.

[138] E. Geethanjaliet al,, “An analytical power estimation model for crossbar intere
nects,”15th Annual IEEE International ASIC/SOC Conferergept. 2002.

[139] R. Heald,et al, "64 KByte sum-addressed-memory cache with 1.6 ns cycle and
2.6 ns latency,Digest of Technical Papers, IEEE International Solid-8t&ircuits
ConferenceFeb. 1998.

[140] K. Mai, et al,, “Architecture and Circuit Techniques for a Reconfiguraldiemory
Block,” Digest of Technical Papers, IEEE International Solid-8t&ircuits Confer-
ence Feb. 2004.

BIBLIOGRAPHY 132

[141] K. Mai, et al,, “Architecture and circuit techniques for a 1.1GHz 16klomfigurable
memory in 0.18@m CMOS,” IEEE Journal of Solid-State Circuitdan. 2005.

[142] S. Vangalget al,, “5-GHz 32-bit integer execution core in 130-nm dual-Vt CBO
IEEE Journal of Solid-State Circuitdlov. 2002.

[143] R. Ho, et al,, “Applications on On-Chip Samplers for Test and Measurenoén
Integrated Circuits, Digest of Technical Papers, Symposium on VLSI Circuyfs
138-9, June 1998.

[144] R. Ho,et al, “The Future of Wires,'Proceedings of the IEERpril 2001.

[145] U. Cho,etal, “A 1.2V 1.5 Gb/s 72 Mb DDR3 SRAM,Digest of Technical Papers,
International Solid-State Circuits Conferendeb. 2003.

[146] D. Weiss,et al., “An on-chip 3MB subarray-based 3rd level cache on an itaniu
microprocessor,Digest of Technical Papers, International Solid-StatecGits Con-
ference Feb. 2002.

[147] C. Zhaogt al, “An 18-Mb, 12.3-GB/s CMOS pipeline-burst cache SRAM witb4
Gb/s/pin,”IEEE Journal of Solid-State Circuit®lov. 1999.

[148] H. Pilo, et al,, “An 833 MHz 1.5 W 18 Mb CMOS SRAM with 1.67 Gb/s/pin,”
Digest of Technical Papers, International Solid-StatecGits ConferenceFeb. 2000.

[149] K. Osadaetal, “16.7 fA/cell tunnel-leakage-suppressed 16 Mb SRAM fandilang
cosmic-ray-induced multi-errorsPDigest of Technical Papers, International Solid-
State Circuits Conferenc&eb. 2003.

[150] K. Ishibashiet al., “A 300 MHz 4-Mb wave-pipeline CMOS SRAM using a multi-
phase PLL,’Digest of Technical Papers, International Solid-StatecGits Confer-
ence Feb. 1995.

[151] G. Braceraset al,, “A 350 MHz 3.3 V 4 Mb SRAM fabricated in a 0.gm CMOS
process,Digest of Technical Papers, International Solid-StatecGits Conference
Feb. 1997.

BIBLIOGRAPHY 133

[152] K. Ishibashigt al, “A 6-ns 4-Mb CMOS SRAM with offset-voltage-insensitivereu
rent sense amplifierslEEE Journal of Solid-State Circuité\pril 1995.

[153] B. Batemangt al., “A 450 MHz 512 kB second-level cache with a 3.6 GB/s data
bandwidth,” Digest of Technical Papers, International Solid-StatecGits Confer-
ence Feb. 1998.

[154] T. Kimura,et al, “Design of 1.28-GB/s high bandwidth 2-Mb SRAM for integrelt
memory array processor application#?EE Journal of Solid-State Circuitslune
1995.

[155] N. Kushiyamagt al., “A 295 MHz CMOS 1 M (256) embedded SRAM using bi-
directional read/write shared sense amps and self-timé&egwvord-line drivers,”
Digest of Technical Papers, International Solid-StatecGits ConferenceFeb. 1995.

[156] N. Shibata.et al, “A 2-V 300-MHz 1-Mb current-sensed double-density SRAM
for low-power 0.3pum CMOS/SIMOX ASICs,"IEEE Journal of Solid-State Circuits
Oct. 2001.

[157] N. Shibataet al,, “A 1-V, 10-MHz, 3.5-mW, 1-Mb MTCMOS SRAM: with charge-
recycling input/output buffersJEEE Journal of Solid-State Circuitdune 1999.

[158] H. Shimizuet al, “A 1.4 ns access 700 MHz 288 kb SRAM macro with expandable
architecture,'Digest of Technical Papers, International Solid-StatecGits Confer-
ence Feb. 1999.

[159] M. Pelella,et al,, “A 2 ns access, 500 MHz 288 Kb SRAM macr@igest of Tech-
nical Papers, Symposium on VLSI Circyilsine 1996.

[160] H. Sato.et al,, “A 3.6 mW 1.4 V SRAM with non-boosted, vertical bipolar lé
contact memory cell,Digest of Technical Papers, International Solid-StatecGits
ConferenceFeb. 1998.

[161] H. Akiyoshi, et al, “A 320ps access, 3GHz cycle, 144Kb SRAM macro in 90nm
CMOS technology using an all-stage reset control signaégear,” Digest of Tech-
nical Papers, International Solid-State Circuits Confere Feb. 2003.

BIBLIOGRAPHY 134

[162] P.Lu,etal, “A 15Kb 1.5 ns Access On-chip Tag SRAMProceedings of Technical
Papers, International Symposium on VLSI Technology, 8wstand Applications
June 1997.

