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Abstract

Tuning application memory performance can be difficult on any system but is particularly

so on distributed shared-memory (DSM) multiprocessors. This is due to the implicit nature

of communication, the unforeseen interactions among the processors, and the long remote

memory latencies. Tools, called memory profilers, that allow the user to map memory

behavior back to application data structures can be invaluable aids to the programmer. Un-

fortunately, memory profiling is difficult to implement efficiently since most systems lack

the requisite hardware support. This dissertation introduces two techniques for efficient

memory profiling, each requiring hardware support on either the processor or the system

node controller.

The first technique, called TrapPoint, uses processor support for a trapping cache miss

to point out memory bottlenecks. We construct a prototype on the versatile FLASH mul-

tiprocessor to study its feasibility. We show that modest processor support can be used to

construct a useful memory profiler with acceptable overhead.

The FlashPoint memory profiler uses support on the system node controller to collect

similar performance information. The FLASH multiprocessor was designed to allow for

instrumentation of the node controller, enabling us to construct a prototype. Since profiling

is done in the node controller, FlashPoint has access to more information about the memory

traffic, such as cache-coherence events, than a processor-based monitor such as TrapPoint.

It is therefore able to collect an extended memory profile.

Although FlashPoint requires more hardware support than TrapPoint, it overcomes

many of TrapPoint’s shortcomings. The required actions for memory profiling are quite

similar to those required for cache coherence, so there are numerous synergies in imple-

menting memory profiling on the same node controller that manages the cache-coherence

protocol. Performing memory profiling in the node controller therefore allows a memory

iv



profiler to collect more data with lower overhead and higher accuracy than is possible on

the processor.

Since memory profiling data can be so valuable and it can be collected with relatively

little hardware support, we argue that future DSM multiprocessors should be designed with

support for memory profiling. This support is best done in the system node controller, but

for implementations where this is infeasible, an acceptable monitor can implemented with

processor support.
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Chapter 1

Introduction

Memory behavior is often the primary performance bottleneck for many programs on a

broad class of systems because of a large and ever-increasing performance gap between

processors and memory [8]. Despite its importance, however, tuning application memory

performance can be quite difficult. The performance cost of each memory operation is

highly dependent on the performance of the memory hierarchy, which includes both the

main memory and the processor caches.

Memory technology suffers from the trade-off that memories can be manufactured to

be either large or fast, but not both simultaneously. Large main memories are necessary in

modern machines to run large, data-intensive applications, so caching techniques are nec-

essary to obtain high performance. Acacheis a small, fast memory used to hold data that

the processor is predicted to request soon. When the processor makes a memory request,

it first checks to see if the required data resides in the first-level (L1) cache. This is the

smallest, fastest memory in the machine, usually residing on the same chip as the processor

core, and memory requests that can be serviced by the L1 cache (L1cache hits) are the

cheapest form of memory access, often taking only a single processor cycle. Requests that

cannot be serviced by the L1 cache (L1cache misses) are forwarded to the second-level

(L2) cache, which is a larger, though somewhat slower, memory that may or may not be

off-chip. L2 cache hits can be on the order of ten processor cycles. Some architectures even

include a third-level cache that handles L2 cache misses. If a request cannot be serviced by

any level of cache, then the processor has no choice but to issue a request to main memory,

which can take on the order of one hundred processor cycles. The cost of a memory access
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CHAPTER 1. INTRODUCTION 2

depends on the level of the hierarchy that services the access, with L1 cache hits being the

fastest and main memory accesses being the slowest. The goal of memory hierarchy design

is to present the illusion of a memory that is as large as main memory and almost as fast as

the L1 cache. For the remainder of this thesis, we use the termmemoryto refer exclusively

to main memory, not cache memory.

It is important to note that the contents of the caches are maintained by hardware, not

the programmer. Caches exploit the properties ofspatial localityandtemporal localityin

an attempt to capture the data that the processor will access soon. Spatial locality is the

property of programs that if the processor accesses a particular memory address, it is likely

to access nearby addresses soon. Temporal locality is the property that if the processor

accesses a memory address, it will likely access the same address again soon. Spatial and

temporal locality are properties that tend to be true of large sections of most programs. To

the extent that a program exhibits spatial and temporal locality, the hardware will be more

successful in maintaining the illusion that memory is as fast as the smallest levels of cache,

and this will require no special action on the part of the programmer. When the caches

do not perform well, however, the illusion breaks down as the processor must access main

memory directly. In this case, the processor spends most of its time waiting for data from

memory, rather than performing useful work.

It is therefore imperative that high-performance programs be written to maximize the

cache performance. Unfortunately, it can be difficult to determine which memory accesses

in a program will cause cache misses, since the programmer has no explicit control over

the caches. Typically, the programmer will attempt to organize the program to maximize

spatial and temporal locality and hope for the best. When this fails, the program will have

poor performance, and it can be difficult to figure out why. Memory performance tools

are required for determining which accesses cause poor cache behavior, thus giving the

programmer an opportunity to fix the problem.

Multiprocessor environments introduce additional complexity to high-performance pro-

gramming. It can be particularly difficult to write code that exhibits good cache behavior in

an environment with multiple processors (each with its own caches) and multiple physical

memory modules, because the programmer must worry about the physical distribution of

memory and interactions among the processors and caches, in addition to the performance

of each uniprocessor memory hierarchy. Multiprocessor performance issues are discussed
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more thoroughly in the next section.

This thesis focuses on tools for collecting memory performance data on distributed

shared-memory (DSM) multiprocessors. In this chapter, we first describe the DSM archi-

tecture and introduce some memory performance issues particular to this type of machine.

We then describe what types of performance tools are desirable and what implementations

of these tools currently exist. In the remainder of the thesis, we examine a particular type

of performance monitor, a memory profiler, and introduce two efficient hardware imple-

mentations. We prototype both memory profilers on the FLASH [11] multiprocessor and

contrast the two implementations.

1.1 Distributed Shared-Memory Multiprocessors

DSM machines are organized as a network of nodes, where each node contains a compute

processor (possibly more than one), memory, I/O devices, and a system node controller

to manage communication. A block diagram of such a machine is shown in Figure 1.1.

The termdistributedrefers to the fact that portions of memory exist on the compute nodes

rather than in a centralized location. Distributing memory is done in large multiproces-

sors (typically much larger than the four nodes shown in Figure 1.1) since contention for a

centralized memory quickly becomes a performance bottleneck as machine size increases.

The termshared-memorymeans that any compute processor can access any memory loca-

tion. There is one logical address space across the physically distributed memory modules.

The processors simply execute load and store instructions, and the system manages the

communication if those addresses happen to be remote. The node controller orchestrates

the communication: when the processor makes a memory request (i.e., after missing in its

caches), it sends the request to its local node controller. The node controller either services

the request from local memory or forwards the request across the interconnection network

to a remote node controller. Examples of DSM machines include the Stanford DASH [15]

and FLASH [11] multiprocessors and the Origin 2000 and Origin 3000 machines from

Silicon Graphics, Incorporated (SGI). For the remainder of this thesis, we use the term

shared-memory to refer to distributed shared-memory machines.

Since the latency of remote memory is even longer than that of local memory, caching is

even more important in DSM machines than in uniprocessors. Having caches on multiple
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Figure 1.1: Block diagram of a distributed shared-memory (DSM) multiprocessor.

processors, however, introduces the problem ofcache coherence. The contents of any

particular memory location may exist in the caches of multiple processors. As long as a

memory location is only read, there is no problem, but if any processor tries to write a

shared value, the other processors’ caches must be updated or invalidated. One function of

the system node controller is therefore to manage thecache-coherence protocol, which is

the set of messages and state transitions that ensures all processors see a consistent view of

memory. Cache coherence is necessary if caching is to be invisible to the programmer, as

it is with uniprocessors.

The alternative to DSM for large multiprocessors ismessage passing. The hardware
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architecture is actually quite similar to DSM, but message passing machines support a dif-

ferent programming model. In this paradigm, processors can directly access only local

memory, and communication is done via explicit send and receive primitives. Since mem-

ory is not cached by multiple processors, these machines do not have to maintain coherent

caches.

The primary advantage of shared memory is that it presents a much more intuitive pro-

gramming model to the user than does message passing. The user can allocate data struc-

tures that span the memory on multiple nodes and access them through normal memory

operations. The system manages whatever communication is necessary. Having control

over communication is a performance issue for DSM machines, but for message passing it

is a matter of correctness.

Despite their ease of programming from a logical perspective, shared-memory multi-

processors can present significant challenges to programmers who are trying to enhance the

performance of an application. Memory system performance can have a dramatic impact

on application performance, with memory accesses costing from one to several hundred

cycles. Viewed from any particular processor, memory nearby has lower latency then mem-

ory far away. The placement of physical memory therefore has performance implications.

Because of the variations in memory latencies, distributed-memory machines are often

referred to as NUMA (Non-Uniform Memory Access) and DSM machines as ccNUMA

(cache-coherent NUMA). Support for cache coherence, while easing programming, com-

plicates the process of understanding which references are expensive and which are not,

since interactions among the processors can cause additional cache misses (calledcoher-

ence misses). It can be difficult to determine which sections of application source code will

cause remote memory traffic or will interfere with the caches of remote processors, since

communication is handled by the hardware, not the programmer.

Tools are therefore required to study memory performance on DSM machines, and

these tools can be implemented in either software or hardware. The next section describes

software techniques for gathering memory performance data, and the subsequent section

discusses hardware methods.
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1.2 Software Techniques

One way of understanding memory behavior is to simulate the hardware. Simulation is the

only available software technique because the programming model hides caching; there

is simply no way to tell until run time where cache misses will occur. Simulators detect

misses by instrumenting every memory operation and using the resulting miss trace to drive

a model of the memory system.

Most simulation-based tools for studying memory behavior involve the use of simu-

lators to detect cache misses and possibly attempt to determine their cause. We briefly

describe several such tools.

1.2.1 Tango Lite

Tango Lite [9] is a simulation system used to evaluate memory performance. The appli-

cation under study is instrumented by a pre-processing tool,aug , which adds calls to the

simulator for each memory access. It also adds additional instrumentation such as proce-

dure identification and timing estimation.

The goal of Tango Lite is efficient simulation of novel memory architectures. By sim-

ulating only the memory system and using the host machine to execute other application

instructions, simulators such as Tango Lite can be made much faster than full machine sim-

ulators. There is a corresponding accuracy penalty asonly the memory system is simulated

in any detail. Rough estimates are used for all other timings.

Tango Lite was used in the design phase of the FLASH multiprocessor [11]. Linking

Tango Lite with a detailed model of the FLASH memory system enabled the designers of

the FLASH hardware to explore the design space. Similarly, early application performance

studies of with FLASH were done well in advance of hardware [26], so Tango Lite was

used to collect these results.

Tango Lite suffers from the same performance and accuracy problems of all archi-

tectural simulators. So much detail about the system is abstracted away for performance

reasons that the results cannot be trusted completely. We show in later chapters how perfor-

mance analysis done on the FLASH hardware differs with those performed by Tango Lite

in [26]. The performance of Tango Lite also limits its applicability. Even with no memory

system simulator, execution times of a simulated 24-processor system were measured to
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be 10-40 times longer on Tango Lite than on the host machine. Overheads with a memory

system simulator were well over 100 times the execution time. Tango Lite simulates multi-

processors, but the simulator itself is not parallel, so the simulation time is proportional to

the size of the simulated machine. This is clearly a limitation in studying the behavior of

large machines.

1.2.2 Fast-Cache

The Fast-Cache simulator [13] runs on a SuperSPARC microprocessor and is quite similar

to Tango Lite. An instrumentation pass, called EEL [12], instruments each memory in-

struction in the application, and the instrumentation calls into a memory system simulator.

Like Tango Lite, Fast-Cache uses simplistic models of hardware to estimate the time

not spent in the memory system, since it is mainly concerned with obtaining miss rates. The

implementation goal of Fast-Cache is fast memory system simulation, and the instrumen-

tation is optimized to be as lightweight as possible. The common case of a cache hit causes

little overhead, and procedure calls into the simulator are also eliminated (via inlining) even

for misses.

The result is that Fast-Cache is substantially faster than Tango Lite; its authors report

slowdowns of 2-7 versus the performance on an uninstrumented program. Though certainly

much faster than many other simulation techniques, even slowdowns of 2-7 make the cost

of simulating many large applications prohibitive. The other drawback is that detail was

sacrificed in pursuit of performance. Fast-Cache does not simulate multiple processors,

thus severely limiting its applicability. Indeed, the overheads of Tango Lite would be much

smaller (though perhaps not as small as Fast-Cache) if it were only simulating a single

processor.

1.2.3 ATOM

The ATOM (Analysis Tools with OM) system [25] was developed by Digital Equipment

Corporation (now Compaq) as a flexible interface for instrumenting executables with the

goal of understanding their behavior.

ATOM is not a simulator in itself, but it can be used to generate simulators similar to
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Fast-Cache and Tango Lite. Its authors demonstrate an ATOM-generated tool that instru-

ments every memory access with calls into a very simple cache simulator (one level of

direct-mapped 8 kB cache). It models only a uniprocessor, but the instrumented program

still sees a slowdown of 12. ATOM could be used to build a more complex, useful simu-

lator such as Tango Lite, but it would share all of Tango Lite’s performance and accuracy

concerns.

Of the three memory system simulators we have surveyed, only Tango Lite is capable

of simulating multiprocessor memory systems, and it does so with a large (two orders

of magnitude or more) slowdown. Both Fast-Cache and the ATOM-based simulator are

faster, but if they were augmented to perform multiprocessor simulation, they would likely

see performance similar to Tango Lite.

1.2.4 SimOS

The SimOS simulator [21] differs from the other simulators mentioned in that it simulates

an entire machine. The somewhat inappropriately named tool does not simulate an operat-

ing system, but it models the machine in enough detail to boot and run an operating system

on the simulated machine.

The advantage of complete machine simulation is detail. Virtually every aspect of the

system is modeled, and being simulation, an arbitrary amount of instrumentation can be

added to the system and not perturb the performance of the simulated program.

The disadvantage, of course, is performance. SimOS has a fast binary translation mode

used to boot the operating system in a tolerable amount of time. This fast mode, called

Embra, is not useful for collecting memory performance data, however, since it does not

model caches. The more detailed modes that do model the memory system cause run times

to be hundreds or thousands of times what they would be if the application were running

on hardware. The detailed modes also share Tango Lite’s limitation in that the simulator

itself is not parallel, so simulation time is proportional to the number of processors.

The high overhead of complete machine simulation means that it is useful for studying

small programs in great detail, but the simulation time for large applications is prohibitive.

It is also worth noting that even simulators as detailed as SimOS make numerous abstrac-

tions for the sake of performance. Just because certain effects are accounted for in a simu-

lator does not necessarily mean they are modeled correctly in terms of performance [6].
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1.2.5 Summary

Simulation methods have the great advantage that any aspect of the processor or program

that might affect performance can be instrumented. Simulation, however, suffers from

two disadvantages. One is the question of simulation accuracy. As one recent paper [6]

shows, simulators are often highly inaccurate because of omissions or lack of complete

validation against real hardware. The more important disadvantage of simulation is that

it is expensive, with run times of hundreds of times longer than the actual application run

time. For this reason, simulation approaches have limited usefulness for large applications,

especially on large multiprocessors.

1.3 Measuring Memory Performance in Hardware

Because of the extremely high cost of simulation, our focus in this thesis is in hardware

techniques for measuring memory performance. We examine what sorts of information

about memory system performance can be collected and what the costs of collecting such

information are, assuming different levels of hardware support. We show that additional

hardware support can be used to extract more detailed performance information while

maintaining low overhead, little or no interference with the application, and a high degree

of accuracy.

Before we examine methods to instrument running applications, it is useful to examine

what types of information we might want to collect.

1.3.1 What Information to Monitor

Getting detailed information on memory references, including miss counts, requires the

use of some sort of hardware based counters. With the ability to have detailed hardware

instrumentation, four levels of performance data can be collected:

1. Gross event count information, such as the number of cache misses, for an entire

program or for large program segments, such as procedures. We call this levelgross

event counts.
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2. Event counts on a fine-grain basis, usually associated with a single line of code. This

is sometimes calledinstruction profileinformation, since it can be used to compute a

CPI approximation.

3. Detailed information about misses that allows a performance monitor to associate

misses with the data structures that caused them. This is often calledmemory profil-

ing.

4. A memory profile that includes cache-coherence protocol information such as invali-

dations and three-hop misses in addition to normal memory profile data. We call this

extended memory profiling.

Each of these types of information can be used to explain program behavior at succes-

sively more detailed levels. Correspondingly, to obtain successively more detailed levels

of information requires a more extensive instrumentation capability, if the information is to

be gathered at low overhead.

1.3.2 Hardware Implementations

In this section, we discuss hardware implementation techniques and existing tools that

collect the various types of performance data we describe above. We focus mainly on tools

for MIPS processors, though similar tools exist for other commercial microprocessors.

Gross Miss Counts

Gross miss counting tools are implemented with the hardware performance counters that

exist on many commercial microprocessors. We describeperfex , a performance tool

available on SGI systems, as an example of a gross miss counting tool.

The MIPS R10000 processor contains two configurable performance counters, each of

which can be made to count 16 distinct event types, for a total of 30 different event types

(not 32 since two events can be counted by either counter) [28]. Examples of event types

include graduated instructions, issued instructions, L1 data cache misses, L2 cache misses,

and TLB misses. Though only two 32-bit counters exist, the operating system has sole

access to them and is therefore able to provide the appearance of two 64-bit counters per

process. Theperfex tool was implemented using these performance counters. Since
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cache misses are included in the set of countable events,perfex can be used to obtain a

rudimentary view of application memory behavior.

In its simplest form,perfex takes arguments specifying the two events to count and

a program to run. It reads the values of the performance counters, executes the program,

then reads the counters again and reports the number of events counted during the course

of the run. Multiple runs measuring different events can be used to study the application

in more detail than two counters permit. The data returned byperfex is aggregated for

the entire run of the program (actually, for each thread), so it provides no information as

to what parts of the code or data are responsible for the counted events. There is also a

library interface to the performance counters (calledlibperfex ), and calls to this library

can be inserted to read the counters during the execution of a program. This allows some

coarse-level localization. Reading the performance counters requires an expensive system

call, however, solibperfex can only be used to measure large program segments.

The operating system also supports a sampling mode that enablesperfex to sample all

events simultaneously, in a sense. On each scheduling interrupt, the OS switches the events

being monitored, andperfex extrapolates values for all counters from the samples. Since

the scheduling interrupt occurs every 10 ms and each counter multiplexes 16 events, this

technique is only accurate for runs that last much longer (i.e., orders of magnitude longer)

than 160 ms. Typically, the sampling mode should only be used in runs that last at least

several minutes, but it provides, in a single run, counter values for all countable events.

We find thatperfex is most useful for determining whether or not a program is dom-

inated by memory effects. The primary disadvantage it shares with all other gross miss

counting tools is that it provides no details as to what those memory effects are or what

regions of code or data are responsible for them.

Instruction Profiling

To generate the information needed to create an instruction profile, we use sampling driven

either by timer interrupts or by counter overflows. The key idea is that sampling can be

used to interrupt the program and find the program counter (PC). This gives a distribution

of where in the code the application spends most of its time. Early systems used timers

to sample the execution, producing profiles of execution time distribution. More recent

systems, such as SpeedShop [28] and DCPI [2], use counter overflow to generate sampling
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interrupts. On a counter overflow, the counters are unloaded and reset. The location of the

counter overflow is used to associate the events with specific locations in the code, since

the probability of counter overflow is an approximation of the distribution of the events that

cause the counter to be incremented. This is superior to sampling based on timers since

using clock interrupts risks correlation with application behavior [28]. Sampling based on

counter overflow can obtain a distribution of counter events that enables a performance

tool to associate events such as cache misses or branch mispredictions with specific lines

of code.

The SpeedShop suite of performance tools runs on SGI platforms and was augmented

for the R10000 processor by adding support for instruction profiling [28]. Here we describe

only the instruction profiling functionality of SpeedShop, which is based on the same hard-

ware performance counters asperfex .

SpeedShop allows the user to specify an overflow value of the performance counters.

For instance, the user can request an overflow interrupt on every hundredth L2 data cache

miss. On each interrupt, the handler will record the value of the PC. The output data for

SpeedShop is then a histogram of program counters that triggered event counter overflows.

This instruction profile allows the user to locate exactly where in the disassembled

code certain events such as cache misses take place. Post-processing tools can often as-

sociate lines of source code with PC values, though compiler optimizations can make this

somewhat ambiguous. If an application contains a few regions of code that dominate per-

formance, then instruction profiling is the ideal tool for finding them. For instance, if

long-running instructions are located in inner loops, an instruction profiler such as Speed-

Shop will identify this situation. It provides a very low-level view of application behavior,

however, and instruction profile data is often not the correct tool for determining whether

structural or algorithmic changes are necessary.

Another instruction profiler was implemented using DCPI (Digital Continuous Profiling

Infrastructure) [2]. DCPI runs on Alpha processors, but the underlying data collection

mechanism is quite similar to SpeedShop. DCPI was designed along with the Alpha pro-

cessor, and this led to a particularly good implementation. The sampling period varies

from 4096 to 65536 cycles, and the reported performance overhead is excellent — typi-

cally in the range of 1-3%. One consequence of the long sampling period, however, is that

only long-running programs can be effectively profiled. Although cycle counts are used
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for interrupt generation, on each interrupt the counters are initialized to a random value to

eliminate correlation effects with the application.

The main difference between DCPI and SpeedShop (other than that DCPI has lower

overhead and was designed to run for long periods of time), is that DCPI attempts to diag-

nose performance problems based on the result of the instruction profile. It does this in a

post-processing stage by examining both the sample information and the application exe-

cutable. It builds a control flow graph for each procedure and uses this in conjunction with

the samples to estimate the frequency and CPI of each instruction. It then uses a model of

the hardware to suggest possible reasons for stalls.

In short, DCPI runs with low overhead and produces an extremely detailed performance

report. Even though much of the report is estimation and conjecture, it is generally accurate

enough to enable performance tuning. It has the same basic advantages and disadvantages

as SpeedShop: it is an excellent source of detailed information on specific performance hot

spots, but it is less useful for pointing out high-level problems with application behavior.

We note that DCPI has recently been extended to perform value sampling [4], and this

allows it to perform more detailed analysis of memory behavior. DCPI value sampling is

discussed in more detail in Section 3.5.1.

Memory profiling

Previous to this work, there wereno hardware implementations of memory profiling or

extended memory profiling for cache-coherent DSM machines. This area will be covered

in subsequent chapters.

1.4 Thesis Overview

Fast and efficient hardware performance monitors for gross miss counts and instruction

profiling already exist, so this thesis focuses on memory profiling and extended memory

profiling. Chapter 2 describes memory profiling in greater detail. It shows examples of how

the data is used in performance tuning and describes implementation challenges. Chapters 3

and 4 introduce two new memory profilers, TrapPoint and FlashPoint, that are the basis of

this work. We then conclude by comparing the two techniques and commenting on the

feasibility of implementing them on future machines.



Chapter 2

Memory Profiling

Memory profiling is a useful way of studying program behavior, particularly on shared-

memory multiprocessors. Due to implementation difficulties, however, memory profilers

are not nearly as widely implemented nor as well-understood as gross miss counters or in-

struction profilers. This chapter describes how memory profiling can be used to diagnose

performance problems and shows examples of using a memory profiler to tune applications.

We then discuss implementation difficulties that limit the applicability of memory profil-

ers, what implementations currently exist, and we introduce two new memory profiling

techniques.

2.1 Description

A memory profiler is a tool that attributes cache misses to the data structures that caused

them, is able to differentiate between local and remote misses, and performs some code

localization, such as to the procedure in which the misses occur.Memory profiling is

not intended to be a replacement for all other code-oriented performance monitors such

as instruction profilers. Instruction profiling has shown itself to be a valuable technique

for focusing a programmer’s attention on the small regions of code that dominate per-

formance. Both previous studies [16, 27] and our experience have shown, however, that

having both data-oriented and code-oriented views of application performance can be use-

ful in understanding performance. While localizing misses to an entire procedure is much

14
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1: for(i = 0; i<N ; i++) {
2: for(j = 0; j<N; j++) {
3: Z[i][j] = 0;
4: for(k = 0; k<N; k++) {
5: Z[i][j] += X[i][k] * Y[k][j];
6: }
7: }
8: }

Figure 2.1: Naive matrix multiplication implementation

more coarse-grain than the per-line or even per-instruction categorization produced by in-

struction profilers, this higher level view can illuminate problems in applications that are

difficult for instruction profilers to diagnose, as we discuss in this section.

2.1.1 Data Layout

Poor data layout can be a performance problem in a wide variety of programs. Program-

mers of DSM multiprocessors should exploitphysical localityin addition to the the opti-

mizations for uniprocessors. Physical locality is the property that data exists in memory

near the compute processors that access it. Data structures should be organized in mem-

ory to maximize spatial, temporal, and physical locality. The absence of spatial locality

leads to excessive cold misses, the absence of temporal locality leads to large numbers of

capacity misses, and the absence of physical locality can lead to long remote miss times.

Memory profilers are better-suited than other performance tools to identifying problems in

data layout.

As a simple example, consider a naive implementation of a matrix multiplication,

shown in Figure 2.1. An instruction profiler would easily determine that line 5 is responsi-

ble for majority of the execution time. Many such profilers would also be able to determine

that cache misses were the dominant effect, as they surely would be with large matrices.

It would be substantially more useful, however, if a performance tool could identify which

matrix was causing the poor memory behavior and provide some details on the specific

access patterns, thus informing the programmer of possible problems with how data is ar-

ranged in memory. This is the role of a memory profiler. For such a simple example as
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Figure 2.1, an instruction profiler that reported data on machine instructions would actually

be able to separate the behavior of these three matrices. If the code were parameterized

to operate on many different matrices, however, data layout problems with an individual

matrix (e.g., if one matrix were accidentally placed on a remote node) would be obscured.

Instruction profiles can also be difficult to interpret because compiler optimizations can

often move and transform code in such a way that it is difficult to map the results back to

source code. Memory profilers, since they track references to data objects, do not suffer

from this problem.

The best way to improve the performance of matrix multiplication is toblock the com-

putation for the memory hierarchy. Blocking is the operation of reorganizing a matrix com-

putation to operate on small blocks instead of complete rows or columns with the intent of

increasing temporal locality. Memory profilers are far better suited than instruction profil-

ers for informing the programmer whether or not blocking is necessary or if it is already

present, whether or not it is performing as intended.

Data layout problems can affect performance whenever certain data structures are ac-

cessed, which may or may not be localized to a few regions of code. Consider, for instance,

a large two-dimensional matrix in C. Since C matrices are stored in row-major order, se-

quential access along a row exhibits good spatial locality, but access along a column does

not. If a program, possibly ported from a column-major language such as FORTRAN, op-

erated primarily on columns, it would experience a large number of cache misses. Whether

or not an instruction profiler could identify the problem depends on the properties of the

program: if matrix operations were localized to small regions of code, then the instruc-

tion profiler would be able to identify the regions, as the strength of instruction profilers is

identifying small pieces of code that are the primary performance bottlenecks. A knowl-

edgeable programmer might then intuit that the problem was the layout of the matrix. If

there are many column-based operations spread throughout the program, however, then

there are no specific regions of code that serve as bottlenecks. Rather, a data object is the

bottleneck, as any column-based access to the object will suffer from poor performance. A

memory profiler would be able to identify that accesses to the matrix exhibit a large number

of cache misses wherever they occur. This would direct the programmer to either transpose

the matrix in memory or adjust the algorithm to operate on rows.
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2.1.2 Data placement

One common performance problem that we have observed with many parallel applications,

including highly-optimized codes, is thatdata placementwas done poorly. Data placement

is the NUMA-specific operation of ensuring that data structures reside in memory near the

processors that operate on it to exploit physical locality. Data placement is the domain of

the operating system, since the OS controls the mapping from virtual to physical addresses.

Nevertheless, NUMA systems generally provide the programmer with directives that can

influence the manner in which the operating system places memory. To obtain high perfor-

mance, it isimperativethat programmers either use these directives with their critical data

structures or write code that takes advantage of the operating system’s specific placement

policies.

If the placement is done poorly, then although accesses to a data structure might exhibit

good spatial and temporal locality, misses will have high latency due to the long remote

miss times and possibly memory or network contention. Memory profilers easily identify

the problem, since they can show the fraction of remote misses for each data structure. The

programmer can then examine how the data structure is allocated and placed and quickly

fix the problem if the algorithm allows.

Data placement problems are far more difficult to diagnose with instruction profiling

tools. If the tools sample on processor-based cache miss counters, they will have no in-

formation as to which misses are associated with local or remote addresses, and therefore

they will not present any data on physical locality. If they instead sample based on cycle

count (i.e., time), there will be a disproportional number of samples for accesses to remote

addresses, since those addresses will take more time than local accesses. Still, determining

that the reason the tool reports the misses it does are because of long remote miss times and

not other effects is a very large leap for the programmer.

2.1.3 False Sharing

Another performance problem unique to shared-memory multiprocessors is that ofcoher-

ence misses. These are cache misses that are caused not by capacity or conflict problems,

but by actions of remote processors. For instance, when one processor writes to a shared

line, it first must invalidate the shared copy in the caches of other processors. The next time
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those other processors read that cache line, they will miss. The most pathological case of

coherence misses is the phenomenon offalse sharing, where coherence misses are caused

by unrelated data structures sharing a cache line and not by any real communication of

data.

Consider the worst-case example: if one variable is read-shared among many proces-

sors, then as long as it is read often, it will be cached in the shared state by all readers. The

fact that it is remote to most of the processors will be of little relevance. If another vari-

able is often written by a single processor, then it will likewise maintain an exclusive copy

in its cache and cause no memory traffic. If these two variables happen to reside on the

same cache line, however, there will be a substantial performance degradation. Each time

the writer wishes to write the cache line, it must obtain an exclusive copy, which means

sending invalidations to all sharers (and waiting for their acknowledgments, in the case of

sequential consistency). Each reader will experience not only the overhead associated with

the invalidations, but it will also take a cache miss on each access that follows a write.

Combined, these two effects create a large amount of memory traffic. Worse yet, the traffic

is completely unnecessary since there is no actual communication. An instruction profiler

would show that the line which does the read (and perhaps also the write) often misses. A

memory profiler would show write misses to a supposedly read-only variable — a hallmark

of false sharing.

2.2 Examples

We have implemented two memory profilers, introduced in Section 2.5 and described in

detail in subsequent chapters. In this section, we show examples of how our memory

profilers were used to diagnose and fix performance problems in real applications. All runs

were done on the Stanford FLASH machine [11], described in Section 3.1.

2.2.1 Blocking in FFT and Radix

We first investigate two programs from the SPLASH-2 benchmark suite [26], FFT and

Radix. We originally profiled these codes only to verify the accuracy of our memory pro-

filers, since we “knew” what the results would be. After all, these are benchmark codes
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that have been thoroughly studied by many researchers. Surprisingly, we found that both

of these programs exhibited rather severe and somewhat similar performance problems.

FFT

FFT is a C program that performs a Fast Fourier Transform on a matrix of complex doubles.

The code is parallelized such that each processor is allocated a contiguous section of rows

in the large matrix. The algorithm requires operations on both rows and columns, but

column-wise access would be disastrous for performance since traversing a column lacks

both spatial and physical locality. Therefore, FFT is structured such that it operates on

local rows, then transposes the matrix to turn columns (most of which are remote) into

rows so it can perform the column-wise operations in local memory. This transpose phase

is responsible forall the communication and most of the cache misses in FFT.

To the first order, optimizing the performance of FFT is optimizing the performance

of matrix transposition. Transposition consists of reading columns of a source matrix and

writing rows of a destination matrix. Spatial locality is perfect for the writes: there will

be a single miss when the first word of a cache line is written, but subsequent writes will

fall in the same cache line and will therefore hit. Reading the columns, however, is more

problematic. Since each value in the column occupies a separate cache line, there is no

spatial locality reading the first column. When thesecondcolumn is read, however, the

reads could potentially hit in the cache, since data from the second column resides on the

same cache lines as data from the first column. Unfortunately, if the size of a column is

larger than the number of lines in the cache, as it would be for a large matrix, these lines

will no longer be present in the cache when the second column is read.

The performance of the transposition can be improved substantially by blocking. In-

stead of reading an entire column and writing an entire row of anN × N matrix, we read

columns and write rows of ab× b blocks, whereb is chosen to be smaller than the number

of lines in the cache. That the transpose phase in FFT should be blocked is well-known and

well-documented [26]. It has also been shown that the block size should be chosen so that

a block fits in the smallest level of the memory hierarchy, assumed to be the first level (L1)

data cache. Our memory profilers have shown this assumption to be incorrect.

When FFT is blocked for the first level data cache, memory profiling produces results

shown in Figure 2.2. The results shown are only for the procedureTranspose , since
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Figure 2.2: Transpose phase of a four-processor FFT blocked for first level data cache.

it is responsible for the most of the misses. FFT allocates two matrices, calledx and

trans . It callsTranspose three times, each time transposing one matrix into the other,

and the results shown are aggregated across all three runs ofTranspose . We see that,

as expected, there are reads to both local and remote addresses, and writes are only to

local addresses. There are, however, a large number of TLB misses. Unlike an instruction

profiler, the memory profiler is able to indicate that these TLB misses occur to the matrices

x and trans during the transpose phase, and this saves the programmer from having to

investigate TLB misses coming from any other source, such as from system interference.

The TLB, or Translation Look-aside Buffer, is a small, fully-associative cache of the

page table. It needs to be accessed on every user mode memory reference to translate the

virtual address into a physical address. When the requisite translation does not exist in

the TLB, the processor takes a TLB miss, an exception which loads the translation from

the page table. This is a costly operation, taking on the order of 60 cycles on a MIPS
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R10000, which is comparable in time to a local secondary cache miss. While not part

of the cache hierarchy proper, the performance of the TLB can be quite significant, and

TLB performance is dictated by the same factors that dictate cache performance: spatial

and temporal locality. The TLB on the R10000 is 64 entries, with each entry mapping

two consecutive 16 kB pages. This means that the miss rate of the TLB will be similar to

that of a fully associative cache with 64 entries and a 32 kB line size, with the differences

stemming from the fact the the kernel must occasionally flush TLB entries.

The version of FFT shown in Figure 2.2 has a block size,b, of 256 since this block

size is the maximum allowable such that all cache lines from the first column will still be

resident in the L1 cache when the second column is read. Note, however, that 256 is much

larger than the number of TLB entries, so the TLB does not benefit from temporal locality.

If the matrix is large (i.e., if the rows are larger than 32 kB), then there will be no spatial

locality as well, soeveryread from an element in the source matrix will cause a TLB miss.

This is the behavior shown in Figure 2.2.

The solution to this dilemma is to block FFT for the TLB, rather than the L1 cache. Us-

ing a block size smaller than 64 dramatically reduces the number of TLB misses. Reducing

the block size nearly doubles the performance of the transposition and improves the overall

performance of FFT by 14% on a uniprocessor and 16% on four processors with a million-

point source matrix [6]. It surprised us that there was so much room for improvement on

code as heavily studied as FFT. The reason that improper blocking parameters have been

in use foryears is that the original studies that recommended blocking FFT for the L1

cache [26] were done on a simulator that did not model the TLB [6]. The block size had

not been examined since migrating the code to hardware. Memory profiling, however, was

able to quickly identify the TLB as the primary performance bottleneck, and this enabled

us to fix the blocking parameters.

Radix

Radix is an integer sorting program. It sorts by one “digit” at a time, with a digit size of

log2 r bits, wherer is a parameter known as theradix. Each processor owns a section of the

unsorted array. It begins by histogramming its entries by the digit currently being sorted,

starting with the least significant. All processors then communicate to combine their local

histograms into a global histogram. Once this global histogram is built, each processor



CHAPTER 2. MEMORY PROFILING 22

key
0

key
1

0.0

0.5

1.0

1.5

2.0

M
is

se
s 

(i
n 

m
ill

io
ns

)

Legend
TLBRemoteMisses

TLBLocalMisses

RemoteWriteMisses

LocalWriteMisses

LocalReadMisses

Figure 2.3: Permutation phase of a four-processor Radix sort with a radix of 256.

is able to calculate positions in the destination array for each value of the digit. In other

words, the processor is able to compute: “I can write all of my 0’s starting at index A, all

of my 1’s starting at index B, all of my 2’s starting at index C, etc.” In the subsequent

permutation phase, each processor copies each of its entries into the destination array. The

process is then repeated with the other digits until the entire array is sorted.

The vast majority of the memory traffic occurs during the permutation phase with writes

to primarily remote addresses. A memory profile of this phase is shown in Figure 2.3.

Radix holds its data in two arrays, namedkey0 andkey1 . It starts with all the data in

key0 , sorts it by the first digit intokey1 , sorts by the next digit back intokey0 , and so

on. Again, we see the dominance of TLB misses.

The size of the radix, 256, was chosen to be large to reduce overhead associated with

forming histograms. This means, however, that during the permutation phase, each proces-

sor writes into 256 different locations of the destination. There is not sufficient temporal
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locality to maintain acceptable TLB performance. If the destination array is large and these

256 locations are separated by more that 32 kB, there will not be any spatial locality, and

nearly every write will cause a TLB miss, as shown in Figure 2.3. The solution is to use a

radix smaller than the TLB, such as 32. This improves the performance of Radix by 31%

on a uniprocessor and 34% on four processors with a two million point input array [6].

As with FFT, Radix has traditionally been run with incorrect parameters, at least for the

R10000, because the original studies [26] that recommended parameter values were done

with a simulator that does not model the TLB [6]. While this problem could have been

found with existing tools, the simple fact is that it wasn’t. A memory profiler made the

pathological TLB behavior glaringly obvious, and once found, it was easily fixed.

2.2.2 Data Migration in IRIX

In addition to the problems mentioned above, our SPLASH-2 studies led to the discovery

of another performance anomaly. While studying FFT, we displayed the graph from Fig-

ure 2.2 broken down by individual processor and saw that the total number of cache misses

for CPU 0 was substantially less than the number of misses on the other processors. This is

confusing because the transposition algorithm is completely symmetric across processors.

SinceTranspose is so regular, it is trivial to compute the expected number of cache

misses. We found that CPU 0 had the expected number of misses, and the other processors

had more misses than we could explain.

The memory profiler was able to point out the problem, and upon further investigation,

we discovered that there was a bug in the operating system. FLASH runs a modified version

of IRIX, and at the time we were running version 6.4. The way FFT initializes its data

is that the master thread, which runs on CPU 0, allocates and initializes all shared data

structures. IRIX has a first-touch placement policy, meaning that it attempts to allocate

physical memory on the memory local to the cpu that touches it first. This means that

all data is initially placed on node 0. The program then makes a call to the ANL macro

SYS PLACERANGEto move regions of data to other nodes. It subsequently creates its

parallel threads and starts the computation.

TheSYS PLACERANGEmacro expands into system calls that invoke an explicit data

migration. This migration works in the sense that the data actually moves to the intended

node. The bug, however, was related tocache coloring. The processors each have a 2 MB,
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2-way set-associative second-level cache with a line size of 128 bytes. This means that

there are 8192 cache lines in each way of the cache (2 MB
2 ways×128 bytes

= 8192), so the lowest

13 address bits are used to address the cache. The lowest 7 bits (6 : 0) are offsets within a

cache line, so the 13 bits19 : 7 are used to index the cache. The default page size on IRIX

is 16 kB, which implies that the lower 14 bits of the virtual address and physical address

must be identical. The OS, however, has complete discretion in assigning bits39 : 14 of the

physical address (these bits are known as the physical page number). Note that bits19 : 14

overlap in that they are part of both the physical page number and the cache index. These

bits are known as thecache color. The cache is physically indexed, so the value of these

cache color bits can affect the cache performance. For instance, if the user allocates a 1 MB

array as a contiguous virtual address range, he may believe that there will be no internal

cache conflicts. This may or may not be the case, however, as the OS could easily give

multiple pages the same cache color, causing them to conflict with each other in the cache.

The OS has several heuristics for cache coloring, and it is usually successful in avoiding

unnecessary conflicts.

When data is migrated, the code checks the color bits in the source range and attempts

to allocate a page on the destination node that has the same color. This is exactly what the

programmer would want, assuming that the algorithms which originally colored the pages

were working correctly. The bug was that when it checked the color bits on the source

node, it mistakenly read thelevel 1cache color. The L1 cache is substantially smaller:

32 kB, 2-way set-associative, and there isno overlap between physical page number and

level 1 cache index bits. The macro to read the cache color would therefore always return

zero! The migration code would then request that all pages on the destination node have

a level 2 cache color of zero. The data would migrate as intended, but all migrated ranges

would have color bits of zero, so they would all conflict with each other in the level 2

cache. This is the cause of the additional cache misses on all non-zero nodes. Since CPU 0

originally had all data allocated to it, it did not need to migrate its own data and was

therefore unaffected by the bug.

This bug was reported to SGI and fixed in IRIX 6.5.
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2.2.3 Microbenchmarks and Cache Replacement Policy

When evaluating the performance of a machine’s memory system, it is common practice

to write suites of microbenchmarks to measure various memory latencies. An example

of a microbenchmark suite designed to be portable is lmbench [18]. Since the timing

granularity is often on the same order as a cache miss latency, cache misses can only be

reliably timed by forcing the processor to take a large,knownnumber of cache misses and

dividing the total time by the number of misses. Unlike most programs, knowing the precise

number of cache misses is essential to the proper operation of these microbenchmarks. This

requires putting the cache in a known state before the test begins, typically by flushing a

data array from the caches. To effect a cache flush, many processors, including the MIPS

R10000, have privileged instructions for directly accessing the cache, and the operating

system provides system calls that use them. These calls are quite system-specific, however,

so programs that were designed to be portable, such as lmbench, do not use them. Rather,

they assume that striding through a large array (one with more cache lines than the cache)

will flush the cache.

The MIPS R10000 has a two-way set-associative L2 cache. This means that when a

line is to be added to the cache, the hardware has a choice of two ways from which to evict

a line. The R10000 is documented [19] to have a least recently used, or LRU, replacement

policy so striding through an array the size of the cacheshouldcompletely flush the cache.

Memory profiling shows that it does not. It shows a lower than expected number of misses

in tests run after the cache flush, indicating that some of the data that was present in the

cache before the flush was still present afterwards. After noticing this anomalous behavior,

we spoke to R10000 architects, who confirmed that the cache replacement policy on the

R10000 is actually random, not LRU, in contradiction with its documentation.

While most programs are insensitive to the cache replacement policy, some microbench-

marks such as lmbench are adversely affected. With a random replacement policy, the cache

cannot be reliably flushed by striding through a large array (though a flush can be asymptot-

ically approached if the array is much larger than the cache). This is the primary reason that

system-specific tools provide more accurate timings than lmbench on the R10000. Find-

ing this problem requires a profiler that provides exact, not sampled, miss counts. Though

this behavior could be observed with traditional miss counters, such counters always have

some error introduced by the system calls needed to read the counters. The user can never
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be sure that the counts are exact, and this makes it more difficult to make strong claims

such as “some datamuststill be in the cache”. However, a memory profiler can say with

certainty which accesses were made to the various user data structures, allowing the user

to put more faith in the exact numbers reported by the tool.

2.2.4 Cache Transfers in AMMP

To measure the performance of OpenMP on various hardware platforms the SPEC High-

Performance Group published a suite of benchmarks called SPEC OMP 2001 [24]. One C

program included in this suite is called AMMP (Another Molecular Mechanics Program).

The SPEC benchmark version of AMMP is a simplified version of a real molecular mechan-

ics program. Using extended memory profiling, we have identified its central bottlenecks.

AMMP begins execution by reading a list of atoms from a file. It constructs anATOM

structure for each atom. The main computation of the program iterates over the atoms.

For each one, the program computes its effects on all other atoms. The parallelization has

to be done carefully, since there is much more work for atoms early in the list than for

atoms later in the list because when each atom is visited, interactions with earlier atoms

have already been computed. Properly load-balancing the application therefore requires a

dynamic scheduling algorithm (eitherdynamicor guidedin OpenMP parlance).

Preliminary memory profiling results revealed that the program does all of its work after

initialization in one parallel section of one procedure. All cache misses were to theATOM

data structures. Figure 2.4 shows the extended memory profiling results for theATOMdata

structures in the main parallel section. This figure reveals several performance problems

with AMMP.

Load Balancing

The most obvious problem from the graph is that CPU 0 takes nearly 80% more misses

than the other processors. While a difference in the number of cache misses does not

necessarily indicate a load balancing problem (execution time, not number of misses, is the

true measure of load balancing), a disparity that large is nearly always a problem. In this

case, the problem is most likely caused by the OpenMP scheduling algorithm that allocates

iterations to threads. Assigning iterations to threads when the iterations have differing
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Figure 2.4: Extended memory profile of the main parallel section of AMMP.

amounts of work is a difficult problem in general, so it is not surprising that the OpenMP

library does a suboptimal job.

Data Placement

Another problem clearly evident from Figure 2.4 is that CPU 0 takes mostly local cache

misses while all other CPUs takeonly remote cache misses. This indicates that theATOM

structures were placed on CPU 0. This is clearly undesirable since it causes a mem-

ory bottleneck there. AMMP, in fact, runs faster with the OpenMP placement directive

ROUNDROBIN, which indicates that the operating system should try to spread data evenly

across nodes and not try to allocate it on the node where it is first used as per the default

OpenMP (and IRIX) placement directive ofFIRST TOUCH.

The reason thatFIRST TOUCHperforms so badly for AMMP is that all atoms are read

serially from a file by the master thread and allocated individually by a call tomalloc .

The fact it is done by a single thread means that data will tend to be placed on a single
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node. Some attempts were made to mitigate this by placing a small parallel section in the

code that allocates anATOMin an attempt to “trick” the operating system into placing the

ATOMon a different node. This technique is sometimes successful, but in this case it was

not. OpenMP was not designed to give the user explicit control over data placement, and

working around the OpenMP library is often not possible without resorting to OS-specific

system calls, which are not allowed in portable benchmark codes such as AMMP.

In addition to the limitations of OpenMP, the placement suffers from a performance

problem common to many applications we have examined. When trying to take advantage

of the system’s first-touch behavior, it is important to know exactly where a page of the

virtual address space is touchedfirst. Usingmalloc on small regions of memory, such as

anATOM(roughly 2 kB), the way AMMP does, gives the user poor control over the virtual

address space and should be avoided. The data returned bymalloc may or may not be

on the same page that has been returned by a previous call tomalloc and subsequently

placed. If the page has already been placed, then any present action to manipulate its

placement will not succeed.

Even more insidious is that if the programevercalls free , then it is entirely possible

that the pointers returned by subsequent calls tomalloc will have been used and placed

before, and this will foil any attempt to take advantage of first-touch placement. We have

found that there are two reliable ways under IRIX and OpenMP to place memory on desired

nodes. The first is to explicitly use IRIX placement and perhaps even migration directives.

The more portable (and slightly less reliable) method is tomalloc a large range of page-

aligned memory and immediately touch it (bzero does exactly the right thing) on the

desired node. If there is a possibility thatfree has been called, then in System V variants

such as IRIX, you can replace the call tomalloc with anmmapof /dev/zero . It has

much the same effect asmalloc , but it will always return a new section of the virtual

address space.

Sharing Patterns

The final problem we note in Figure 2.4 is the sharing pattern. The extended memory profile

data shows numerous invalidations, interventions, and three-hop misses. These are not

cache misses themselves, but they provide more detail about what sort traffic was caused

by the cache misses. Since invalidations, interventions, and three-hop misses are coherence
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protocol events, not simple miss counts, extended memory profiling techniques are required

to collect this information. These events come about in AMMP because the program is not

careful about managing its sharing.

For example, if CPU 1 wants to write anATOM, it will take a remote write miss (remote

since allATOMs are allocated on node 0). It will then have an exclusive copy of the cache

line in its cache, which it can write at will. The cache of CPU 1 will therefore have the only

valid copy of that cache line in the system. If CPU 2 then decides to read that cache line,

it sends a message to node 0 in attempt to find the line. Node 0 will redirect the request to

node 1, causing a three-hop miss (so named since three nodes are involved in the critical

path). The node controller on node 1 must retrieve the line from the processor’s cache. The

operation of the node controller forcibly taking a cache line away from a processor is called

an intervention. A simple load on CPU 2 will have caused a remote read miss on CPU 2,

an increment of the three-hop miss counter on CPU 2, and an intervention to be received

on CPU 1.

Note that since the total of interventions, invalidations, and three-hop misses for proces-

sors 1 through 7 are nearly equal to the total of cache misses, we find that a large fraction

of misses are serviced by remotecaches, not remote memories. This leads to poor per-

formance, as reading from a remote cache has roughly double the latency of reading from

a remote memory. The intervention itself also interferes with computation on the target

processor, thus causing more overhead. Cache-to-cache transfers can be so slow, in fact,

that some programs might actually benefit fromsmallercaches!

The performance can be improved slightly by adding padding theATOMsuch that the

fields that are often written reside on different cache lines than those that are only read.

Unfortunately, most of the reads occur to fields that are often written, so this improvement

is small. The parallel section of AMMP would have to be radically reorganized to alleviate

the sharing problem. We note, however, that Figure 2.4 was generated from a short run of

AMMP. In a problem with moreATOMs, this effect is less pronounced since increasing the

problem size has a similar effect to shrinking the caches.

It is important to realize that although a simple memory profiler could have identified

the load balancing and data placement problems with AMMP, extended memory profiling

was necessary to identify the problematic sharing behavior.
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2.2.5 Placement and False Sharing in VirtualMesh

We used an extended memory profiler to improve the performance of VirtualMesh, a FOR-

TRAN code that uses OpenMP compiler directives to express its parallelism. This is a

scientific code that solves the Navier-Stokes equations, which describe the motion of a

fluid. The solution is advanced in time by a low-storage, third-order Runge-Kutta method.

The equations are solved by a fractional step method and an immersed-boundary method is

used to handle complex geometries. The particular problem we used for tuning computes

the air flow over a car. VirtualMesh is not a benchmark code. Rather, it is actively used for

mechanical engineering research. The code is mature in that it has been used and studied

for years, and it has no clear primary performance bottlenecks. Typical data runs last for

weeks, so even small percentage performance improvements can save a substantial amount

of time. For profiling runs, we ran the full problem but only for a small number of time

steps, since our goal is simply to run long enough that the profiling run is representative of

a full run.

The primary unknowns are three velocity components and pressure, represented as

three-dimensional arrays. Each array contains several million elements. Preliminary mem-

ory profiling runs indicated that one performance problem was caused by a large number

of remote misses. Profiling showed that the velocity and pressure arrays were allocated

completely on node 0. The default placement policy for OpenMP is to place data on the

node that first touches it. Many OpenMP programs share this placement problem because

they often initialize their data in the master thread (for instance, by reading initial values

from a file) and data is consequently placed on the node where the master thread runs. This

issue was described in more detail in the previous section. For VirtualMesh, we were able

to force proper placement by zeroing the arrays in a parallel section before they are touched

by the master thread. Since FORTRAN 77 lacks dynamic memory allocation, the problems

with malloc discussed in Section 2.2.4 do not apply. Placing data correctly improves the

performance of VirtualMesh by roughly 15%, which corresponds to several days of run

time with typical data runs.

After fixing placement problems, a profile of memory traffic by procedure was com-

puted and shown in Figure 2.5. Note that there are many more procedures in the program,

but none with as many misses as the ones shown — they were simply eliminated for the
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Figure 2.5: Extended memory profile of the procedures in VirtualMesh on 8 processors.

sake of clarity. Memory profiling clearly shows that thephcalc-fish procedure is re-

sponsible for a large amount of cache misses. The extended memory profile also shows that

many of these misses cause interventions and three-hop misses. This behavior is indicative

of multiple processors writing the same cache line, which is a performance problem and is

best avoided if at all possible.

This procedure is instrumental in solving the Poisson equation, which is a critical part of

the code in terms of performance. Solving the Poisson equation involves a one-dimensional

FFT, solving equations in the remaining two dimensions, and transforming the results back.

Thephcalc-fish procedure is used to solve the two-dimensional problems in the trans-

formed space. When we use the extended memory profile to examine the data structures in

phcalc-fish , we see in Figure 2.6 that two data structuresqcap anddph are respon-

sible for the misses.
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Figure 2.6: Extended memory profile of the data structures in thephcalc-fish proce-
dure of VirtualMesh.

To understand the poor memory behavior, we examine excerpts from the code, shown

in Figure 2.7. The OMP statement is a directive to the compiler to split iterations of the

do i=1,n1mh loop across the threads. The parallelization is done this way to achieve

acceptable performance of the FFT. Successive values ofqcap anddph in thei dimension

are in consecutive locations of memory, so an FFT in thei direction will see good spatial

locality. The matrices are rather small in thei direction (i.e.,n1mh is 64 with this particular

problem), but each iteration can be lengthy, so this is an effective way to parallelize the

code.

From Figures 2.5 and 2.6, we saw behavior that indicated several processors were writ-

ing the same cache line in theqcap anddph arrays. The elements in these arrays are

8-byte double-precision floating point numbers, and since the hardware cache line size is

128 bytes, there are 16 elements on a cache line. FORTRAN stores multi-dimensional

arrays in column-major format, so for a given value ofj andk , there are 16 consecutive

values ofi that reside on the same cache line. Iterating overi , j , thenk results in strided
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FFT in i direction

!$OMP PARALLEL DO
do i=1,n1mh

----> phcalc-fish begins here

code which reads qcap, solves problem in temp array yfisl

do j=1,n2m
do k=1,n3m

qcap(i,j,k) = yfisl(k,j)
end do

end do

code which reads dph, solves problem in temp array yfisl

do j=1,n2m
do k=1,n3m

dph(i,j,k) = yfisl(k,j)
end do

end do

---->phcalc-fish ends here

end do
!$OMP PARALLEL END DO

Inverse FFT in i direction

Figure 2.7: Code excerpts from VirtualMesh
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memory access, exhibits no spatial locality, and is best avoided. Indeed, this is the only

region of VirtualMesh that accesses the arrays this way, but it is necessary for acceptable

performance of the FFT computation, as mentioned above.

Worse even than the complete lack of spatial locality is the fact that the parallelization

is done across iterations ofi , so different processors can be writing parts of the same cache

line! This is the cause of the three-hop misses and interventions shown in Figures 2.5 and

2.6. This problem could be solved by requiring that OpenMP place a consecutive block of

16 iterations (or a multiple of 16) on a single thread. Unfortunately, since there are only

64 iterations ofi , this only leaves enough work for 4 processors. The small number of

iterations isnot a consequence of scaling the problem down for profiling. It has to do with

the geometry being modelled. The only modification we made to the program for profiling

was reducing the number of time steps, which is independent of the number of points in

the i direction. Scaling the problem past 4 processors (the profiled runs were done on 8

processors) requires a different solution.

We modified the code so that instead of writing toqcap anddph in phcalc-fish ,

we write into new matrices, which are transposed versions ofqcap anddph . Writing into

the transposed arrays exhibits perfect spatial locality and sees no interference among the

processors. Of course, this introduces the additional step of having to transpose data back

into qcap anddph afterphcalc-fish has completed. This transposition is blocked for

the caches and TLB, just as in the FFT code in Section 2.2.1, so it also sees spatial and tem-

poral locality. In other words, writing the transposed arrays should see one miss per cache

line, and the transposition itself should see one cache miss per cache line. Even though

there is overhead in doing an additional transpose step, this should increase performance

over the base case, which has one cache miss for each write (due to poor locality) and

where many of those misses are slow, three-hop intervention misses (due to false sharing).

Using transposed arrays eliminates the write misses toqcap anddph , but there are still

a substantial number of read misses to these structures. We made the small optimization of

adding some explicit prefetches, and this slightly improved the performance of the code.

After adding the transposition and prefetch code, the per-procedure extended profile

is shown in Figure 2.8. There are clearly far fewer misses inphcalc-fish than were

shown in Figure 2.5, and although the newly-added procedurenewtranspose contains
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Figure 2.8: Extended memory profile of the procedures in VirtualMesh on 8 processors
after a transpose phase has been added.

misses, overall there are 11.7 million fewer misses than before. This represents a 9% re-

duction in the total number of misses in VirtualMesh! In addition, there is no false sharing,

so there are only a negligible number of interventions and three-hop misses. This version

of code runs 15% faster than the version without the extra transposition. The combined

performance gain from improving data placement and eliminating false sharing is 28%,

which translates into roughly a week of run time for typical data runs.

2.3 Implementation Issues

Since both we and previous researchers [16, 27] have found memory profiling to be so use-

ful, it may seem surprising that memory profilers are not more common. The reason is that
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it is difficult to perform memory profiling efficiently. We view overheads less than 20% of

the execution time as desirable for a performance monitor. Tools with this magnitude of

overhead can be used even on applications with long run times. For shorter programs, 20%

may not even be noticeable. While we have no doubt that heavier weight performance mon-

itors have their uses, they suffer from several drawbacks: they are typically unable to handle

large programs in a reasonable (to the programmer) amount of time, the high overhead pre-

vents them from being used in all but the most dire performance debugging projects, and

the high-overhead performance monitors may seriously distort the performance they are

trying to monitor. Currently, no memory profiler for hardware cache coherent distributed

shared memory multiprocessors exists that even approaches this level of performance. In

this section, we discuss the implementation issues that have prevented memory profiling

from being implemented with the requisite efficiency.

One straightforward method of memory profiling would be to instrument every cache

miss in software. Unfortunately, this cannot be done since the programming model hides

caching. Determining which memory accesses will miss in the cache cannot be done until

run time, so any software instrumentation technique must instrumenteverymemory ac-

cess. The instrumentation would make calls into a memory system simulator, which would

determine which accesses miss, and profile them accordingly. This is the technique used

by MemSpy [16], which is discussed in the next section. Neither MemSpy nor any other

software instrumentation technique, however, is capable of achieving the desired level of

performance. Memory accesses are so common that instrumenting each access by even a

single instruction would produce a system with borderline overhead. Of course, memory

system simulators will take far more than a single cycle per access, so overheads of 50

times the execution time or more for this sort of technique are not uncommon.

Thus, high performance memory profiling requires that some hardware support exist

to trigger monitoring only on cache misses. A sampling approach using counter overflow

works well for instruction profiling. Such an approach cannot, however, be used to perform

accurate memory profiling. Instead there are two possible techniques for obtaining the

data needed to perform memory profiling. The first technique is to trap into a performance

monitor on every cache miss or on a fraction of misses. Since the miss address and the

breakdown of application data structures is not generally available to hardware performance

monitors, obtaining the miss address requires generating an interrupt on each cache miss.
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We examine a memory profiler that generates interrupts on cache misses in the next chapter.

Another approach requires the ability to monitor every cache miss on the fly and collect

whatever information is required to construct a memory profile. This approach is the other

method we examine for generating measurements for memory profiling. In particular, we

make use of the programmable nature of MAGIC, the memory and coherence controller in

the FLASH multiprocessor [11], to monitor every second-level (L2) cache miss generated

by the processor. We restrict our attention to L2 cache misses because the cost of an L2

miss is substantially larger than an first-level (L1) cache miss. Many modern processors

can often effectively hide the latency of an L1 miss, but this can rarely be done with L2

misses due to their high latency. Also, in DSM machines, coherence is maintained among

the L2 caches (because of inclusion, this also maintains coherence in the L1 caches), and

this makes the L2 cache a more useful level at which to monitor the system.

Performing extended memory profiling requires that we be able to instrument a multi-

processor at several points. In particular, capturing information such as the frequency of

three-hop coherence transactions, requires that we instrument a memory reference at mul-

tiple points: when it is generated, when the home directory for the request is accessed, and

when the result is finally returned. It is not possible to perform this type of performance

monitoring with either sampling or interrupt-driven approaches since these only capture

the initiation of a memory reference. The only way to perform extended memory profil-

ing is by using built-in support in the memory controller. DASH [15], for instance, uses

trace buffers in the memory controller, while an extended memory profiler that runs on the

FLASH system (see Chapter 4) relies on the programmability of MAGIC to instrument a

memory reference at multiple points. The primary disadvantage of the DASH approach

is that the limited space for storing reference information means that the processor must

periodically interrupt its execution and unload the trace buffers. In contrast, in the case of

FLASH, the trace information is stored in memory, reducing the overhead of collecting the

information.

2.4 Existing Implementations

In this section, we examine the state of the art for memory profiling. We discuss two

memory profilers, MemSpy and Paradyn, that meet all of our memory profiling criteria (see
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Sections 2.1 and 2.3) except for performance. We also examine two higher-performance

techniques that fall short of actually providing a memory profile.

2.4.1 Simulation: MemSpy

The MemSpy memory profiler [16] is a simulation-based tool that computes a complete

memory profile for an instrumented program. The source code of an application under

study is instrumented for MemSpy, as described below. The compiled binary is then rewrit-

ten so that each load or store instruction in the program is instrumented to make a call into

the Tango memory system simulator [5], the precursor to Tango Lite. Likewise, procedure

entry and return is instrumented for use by Tango. Tango simulates the memory hierarchy

so it can determine which memory accesses cause misses. Since MemSpy runs as part of

Tango, it can record counts as misses occur.

To categorize misses by application data structure, MemSpy instruments the application

source code to assignbin numbersto each application data structure. These bin numbers

are simply tags for the data structures. The simulator maintains an address-to-bin number

translation table so it can create a histogram of miss statistics based on the bin number of

the data structure that caused the miss.

As mentioned in Section 2.1, memory profilers should provide a code-oriented, as well

as a data-oriented, view of application behavior. MemSpy does this by categorizing misses

by application procedure, as well as by data structure. When a program is instrumented for

use with Tango, instructions are added to log procedure entry and exit. MemSpy is able

to use this information to accurately determine the current procedure. It is therefore able

to categorize misses by both data structure and procedure, providing a complete memory

profile.

MemSpy produces exactly the sort of memory profile data we desire. In fact, our work

in subsequent chapters is an extension of MemSpy. Our work addresses MemSpy’s two

important limitations: performance and accuracy. While the marginal performance cost of

adding MemSpy to Tango is rather small, the user must endure the hefty simulation over-

head of Tango. Uniprocessor applications run 22-58 times slower with MemSpy-Tango

than when running natively on the processor [16]. The overhead of simulating a multipro-

cessor application is far worse, since Tango interleaves the execution of multiple applica-

tion threads into a single simulator thread. This means that an application withN threads
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will see at least a factor ofN performance degradation over the already high MemSpy-

Tango overhead. Such overheads can easily be a factor of several hundred — hardly the

20% overhead we desire. While simulation technology has improved since MemSpy and

Tango were developed, we contend that no simulation technique for memory profiling is

or will be capable of running with 20% overhead. Simulators must detect, as well as in-

strument cache misses, and they will always have unacceptable overhead since they must

instrument every memory access to do this detection.

The accuracy problems associated with MemSpy come from the limitations of Tango.

The extensive instrumentation of the program hopelessly alters the instruction cache behav-

ior to such a degree that Tango does not even bother simulating instruction cache behavior.

There is also no kernel running on the simulated machine so there are no kernel effects such

as data placement, cache coloring, or TLB behavior. While Tango does have directives for

placing data, they are implemented by the simulator. Typically, users want to know about

the effectiveness of the data placement on their hardware with their operating system, not

on an arbitrary simulation platform. Tango, like all simulators, also suffers from not mod-

eling the system in perfect detail. Perhaps a given run of the simulator models all important

effects, and perhaps not. There is simply no way to tell. Blind faith in simulation can lead

to some unpleasant surprises and incorrect conclusions [6].

2.4.2 Software Shared Memory: Paradyn

The Paradyn system [27] from the University of Wisconsin implements an enhanced vari-

ant of memory profiling they term “shared-memory performance profiling.” In addition to

producing a memory profile as we define it, Paradyn also performs pattern detection in the

memory reference stream to allow the tool to determine sharing patterns in user data struc-

tures. Their reported overheads are 2-10%, so at first glance, high-performance memory

profiling seems to be a solved problem. The reason it is not has to do with their hardware

platform.

Paradyn runs on a cluster of workstations (40 Sun SPARCStation 20 workstations con-

taining dual 66 MHz processors, connected by Myricom Myrinet and 100MB Ethernet)

running a fine-grain distributed shared memory system known as Blizzard [22]. Cache co-

herence is maintained by Blizzard, which runs the cache-coherence protocol as a process

on each of the compute processors. The Blizzard processes communicate with each other to
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Machine Processor Clock Remote Access (cycles)Remote Access (µs)
FLASH 225 MHz 256 1.1
Blizzard/CM-5 33 MHz 6000 182

Table 2.1: Overhead of remote memory access on Blizzard and FLASH.

present the shared-memory abstraction to other user processes. Since the shared-memory

abstraction is maintained by software on the compute processors, platforms that work in

this manner are calledsoftware shared-memorymachines. These machines are popular in

the research community for studying shared-memory because large shared-memory ma-

chines can be built from inexpensive compute nodes and commodity interconnection tech-

nologies. The obvious disadvantage of software shared-memory is performance. Commu-

nication runs at network speeds, which can be orders of magnitude slower than memory

speeds. The cache coherence process also runs on the compute processor, so it interferes

with the performance of the user application, thus causing additional overhead.

Paradyn collects its data by instrumenting the Blizzard cache-coherence protocol. As

the authors report, overhead due to the Paradyn instrumentation is quite small. The cost of

remote memory access on Blizzard, however, is enormous compared to a hardware cache-

coherent machine, as shown in Table 2.1. Blizzard is a software system that exports a

shared memory interface on hardware platforms that do not support it. Therefore, it has the

burden of detecting remote accesses as well as handling them. Performing this detection

in software requires simulation techniques, and Blizzard is in fact based on the Fast-Cache

simulator [13] discussed in Section 1.2.2! Each store in the program is instrumented with

50 instructions that perform a table lookup and decide whether a memory access is remote

or requires some other coherence transaction. For loads, Blizzard is able to exploit the

memory’s error-correcting codes (ECC) as hardware support to dramatically reduce the

cost of detecting remote accesses. When remote access does occur, however, the system

must context switch from the application to and from a Blizzard process, and these context

switches are costly operations.

Blizzard was originally implemented on a Thinking Machines CM-5 [14] that had a net-

work latency of 3-7 microseconds, depending on topology. The round-trip cost of remote

memory on Blizzard, was estimated by the authors to be 6000 processor cycles [22]. With

33 MHz processors, this translates to 182 microseconds — far higher than the underlying

machine network access time. This is in stark contrast with the hardware cache-coherent
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FLASH machine, where a remote memory access to the nearest remote node has a round-

trip latency of 1.1 microseconds, only 2.6 times the latency of a local memory access.

The hardware platform used to report Paradyn results, as stated above, is a cluster of

workstations, not a CM-5, and the authors do not report Blizzard performance data on that

platform. Nevertheless, Blizzard must perform the same actions as on the CM-5 and will

therefore see similar overhead. In fact, nodes on a cluster of workstations are likely to be

less tightly coupled than the nodes in a CM-5, and this could cause the remote memory

latencies to be even higher, particularly when expressed in processor cycles.

Because Blizzard has such long communication latencies, Paradyn is able to perform

an almost arbitrary amount of computation and still have a negligible effect on application

performance. Paradyn performs both memory profiling and pattern detectionin softwareon

a stream of memory references, while the memory references are occurring, with less than

10% overhead! It is important to remember that although Paradyn adds only a small per-

centage overhead, a small percentage of a huge remote memory latency is still a substantial

amount of time.

We agree that it is both possible and desirable to perform memory profiling by in-

strumenting a cache-coherence protocol. In fact, we examine this technique ourselves in

Chapter 4. In hardware cache-coherent machines, the class of machines of interest in this

work, considerable expense and engineering effort was made to allow the cost of remote

memory access to be small. This makes memory profiling far more challenging, since

hardware cache-coherent machines present a tight set of performance constraints. Moni-

tors such as Paradyn are too expensive to run on such machines. For instance, if we make a

conservative estimate that Paradyn adds 10% to the remote memory latency (conservative

since it assumes the reported 10% overhead was for a completely remote-memory-bound

application), that would imply 600 processor cycles of Paradyn instrumentation per remote

memory access. On the FLASH machine, 600 cycles of overhead would more than triple

the cost of remote memory access!

2.4.3 Hardware Counters:snperf

Thesnperf suite of performance tools [20] uses hardware performance counters on the

Origin 2000 to profile application memory behavior. Most platforms offer processor-based

performance counters which can count, among other metrics, the number of cache misses
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taken by a program. The Origin 2000, however, also implements hardware performance

counters in the system node controller (called HUB) and in the routers. The goal of the

snperf tools is to use sampling of the HUB and router performance counters to provide

the same sorts of insights into the memory behavior of a program that SpeedShop provides

on the processor behavior.

The data collected bysnperf is similar to extended memory profile data in that it

counts events invisible to the processor such as local vs. remote cache misses, the number

of cache interventions and invalidations, and the utilization of various system resources. It

suffers from the same drawback of all performance counter-based tools, however, in that

there is no mechanism to tie events back to the application data structures that cause them

since only aggregate counts are kept. Also, there is no hardware or system software support

for interrupting the processor on an overflow of a HUB or router counter, so instruction

profiling is not possible withsnperf , though one could imagine a different hardware

architecture where this was possible. This means thatsnperf is essentially a gross event

counting tool — just one that can count a large variety of quite low-level events. As a

result,snperf is most useful for understanding the detailed memory behavior of small

sections of code, where the user already knows the location of the central bottleneck and

is trying to make improvements. Unlike a memory profiler,snperf is not able to focus a

user’s attention on the code and data structures that limit performance.

2.4.4 Page Reference Counters

We note that an approximation of memory profiling can be done with per-page reference

counters, such as those in the Origin 2000. Such counters typically exist to provide the op-

erating system with data on when page migration and/or replication might be worthwhile.

This approximation is crude, however, as counts are only obtainable on a per-page basis.

Also, operating system intervention is required to handle the physical-to-virtual translation

necessary to make the miss counts meaningful to the user. This intervention can either be

done during the execution of the monitored program or by post-processing. The former

causes high overheads, as the entire virtual address space of the application must be exam-

ined, and the latter is inexact, as virtual-to-physical mappings can change over the course

of the run.
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2.5 New Implementations

In this work, we introduce two high performance memory profilers, TrapPoint and Flash-

Point. Both rely on hardware support that is not standard in current machines to achieve the

requisite performance, but we make use of the flexibility of the FLASH multiprocessor [11]

to prototype both systems.

TrapPoint, described fully in Chapter 3, is a processor-based technique that works by

trapping into the performance monitor on cache misses. The hardware support required

is a trapping cache miss, a processor innovation which has been proposed [10], but not

implemented on any commercial microprocessor. TrapPoint has the distinguishing feature

that it allows high-performance memory profiling with only a modest amount of additional

processor hardware. This additional processor hardware does not exist on FLASH, but the

system’s flexibility makes prototyping TrapPoint possible.

The other memory profiler we have implemented, FlashPoint (discussed in Chapter 4),

relies on instrumentation in the system node controller. Flexible instrumentation of the sys-

tem node controller is a unique aspect of the FLASH machine [11]. This allows FlashPoint

to perform extended memory profiling, and it addresses several of TrapPoint’s shortcom-

ings.

The remainder of this dissertation describes the implementation of both TrapPoint and

FlashPoint. We study the performance and accuracy of each memory profiler, and draw

general conclusions on the feasibility of high performance memory profiling.



Chapter 3

Processor-Based Memory Profiling

Using the processor for high performance memory profiling requires hardware support to

trigger the performance monitor on the processor when cache misses occur. This triggering

could be done either by the processor itself when it detects a miss or by the system when

it receives a memory request. The most straightforward triggering method would be a

mechanism for trapping on a cache miss. Several methods of implementing miss traps

have been proposed by Horowitz et. al. [10] Since memory profilers categorize as well as

count cache misses, the miss trapping mechanism must possess two characteristics. The

first is that the trap handler must have access to the address that caused this miss. This is

necessary because the performance monitor cannot determine the data structure that caused

the miss unless it has access to the miss address. The second restriction is that the trap be

precise. This is required so that the monitor can collect temporal statistics, such as which

procedure caused the cache miss. We note that if the interrupt is precise, it should be

possible to determine the miss address from the program counter and the register state, and

this relaxes the first constraint somewhat.

Many commercial processors implement performance counters that can count cache

misses. Some even support interrupts that are triggered on overflows of these counters.

Unfortunately, none of them fully account for our two restrictions, probably because they

were not designed with memory profiling in mind.

This chapter describes TrapPoint, a performance monitor that uses miss traps to enable

memory profiling. We first discuss the Stanford FLASH Multiprocessor, the hardware

platform used for the TrapPoint prototype. We then describe the TrapPoint implementation

44
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Figure 3.1: Block diagram of a FLASH node.

and evaluate it for performance and accuracy.

3.1 FLASH, the prototype hardware

We prototype our memory profilers on the Stanford FLASH (FLexible Architecture for

SHared memory) multiprocessor [11], so we briefly describe the FLASH architecture.

FLASH is a cache-coherent distributed shared-memory multiprocessor. The machine

is organized as a network of nodes. Figure 3.1 shows a diagram of a node in the FLASH

machine. Each node contains a MIPS R10000 compute processor, a portion of globally-

accessible memory, and a node controller. The node controller, called MAGIC (Memory

And General Interconnect Controller), manages all communication among the compute

processor, the memory, the I/O subsystem, and interconnection network.

The principal contribution of the FLASH machine is that the MAGIC chip contains an

embedded processor and is programmable. Most machines implement their node controller,

and thus their cache-coherence protocol, as a set of hardware state machines. In FLASH,
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Figure 3.2: MAGIC block diagram.

however, the cache-coherence protocol is implemented as a set of MAGIC functions, called

handlers. Whenever the compute processor experiences a miss in its secondary cache, it

sends a request to MAGIC. The source and type of the incoming message are used to

schedule the appropriate handler on MAGIC’s embedded protocol processor. The handler

code is responsible for sending whatever messages are necessary to memory, I/O, or even

remote MAGIC chips (which will then invoke their own handlers). MAGIC also manages

cache coherence and performs cache interventions and invalidations as necessary.

Though MAGIC contains a programmable processor, it was designed to give perfor-

mance comparable to a pure hardware implementation [11]. Figure 3.2 shows the MAGIC

architecture. Incoming messages are split into header information and data. The embed-

ded protocol processor examines the header information and coherence state and constructs

outgoing messages. Data transfers are handled by specialized hardware so as not to burden

the protocol processor.

For this study, we ran MAGIC at 75 MHz. Its embedded processor is a two-issue

VLIW modified MIPS core. The compute processor is a 225 MHz MIPS R10000. As in

the SGI Origin 2000, the nodes are connected via CrayLink and SPIDER routers. FLASH

runs a slightly modified version of IRIX 6.5. Some boot code and device drivers specific to

the SGI Origin 2000 were altered to boot IRIX on FLASH.
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struct StatsRecord {
uint64 LocalReadMissCount;
uint64 LocalWriteMissCount;
uint64 RemoteReadMissCount;
uint64 RemoteWriteMissCount;

}

Figure 3.3: Stats Record definition for TrapPoint

3.2 TrapPoint Implementation

We wish to prototype TrapPoint on FLASH, but as mentioned previously, a trapping cache

miss mechanism is not supported by commercial processors, including the MIPS R10000.

Fortunately, we can make use of FLASH’s flexibility for our prototype. We program

MAGIC to send the processor an interrupt whenever it services a cache miss. Note that

while we are using MAGIC support for our prototype, we are not making use of any in-

formation not known to the processor. Thus, if the R10000 implemented trapping cache

misses, no MAGIC support would be necessary.

This section describes the TrapPoint implementation in detail. We start by describing a

simplified version which only collects gross miss counts on each node. We then show how

this initial design was augmented until it was capable of memory profiling.

3.2.1 Gross Miss Counts

We begin by defining a data structure in kernel memory on each node called theStats

Record, as shown in Figure 3.3. Misses are categorized by type (read vs. write) and by

location (local vs. remote).

The main work of TrapPoint is done in the interrupt handler, which runs on the pro-

cessor after being invoked by MAGIC’s cache miss interrupt. The interrupt handler polls a

MAGIC register that contains the physical address which caused the miss and a load/store

bit. It uses the load/store bit to determine whether the miss was caused by a read or write.

The home node of the address is encoded in the address itself, and the interrupt handler uses

this to determine whether the access was local or remote. Once the handler has categorized
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the type of miss, it simply increments the appropriate field of the Stats Record. This tech-

nique can count all secondary cache misses, save for those that occur while interrupts are

disabled.

This method gives gross miss counts for each node, categorized by type and location.

This simplified version of TrapPoint is similar in functionality to existing tools based on

performance counters.

3.2.2 Data Structures

The goal of memory profiling is to categorize the misses by the data structures that caused

them. To extend the simplified TrapPoint monitor described above into a memory profiler,

we must add instrumentation to both the application and the kernel.

Application Instrumentation

The user applications to be profiled are instrumented to tag each of their data structures

with abin number. These bin numbers are then used to histogram misses by data structure.

The assignment of bin numbers to virtual addresses is arbitrary and can be done any way

the application programmer sees fit. The application is responsible for informing the kernel

which bins correspond to which ranges of virtual addresses. It does this with a system call

giving start address, length, and bin number.

Though any application can be instrumented by hand, we use a heuristic that allows

many applications to be instrumented automatically. Each static instance ofmalloc be-

comes its own bin. A program calledfp instrum , a special pass of the SUIF [1] com-

piler, replaces calls tomalloc with calls to an instrumented version. This proves to be a

useful mapping for many programs, as users are typically interested in the memory behav-

ior of entire arrays much more than the behavior of individual indices. Statically-allocated

variables are handled by a script calledstaticBins that examines the compiled appli-

cation and assigns bin numbers to the data symbols. It dumps this information into a file.

When the application starts, it reads this file and makes the requisite system calls to inform

the kernel of its bins.

The granularity of binning is a secondary cache line, 128 bytes on FLASH, so any

two addresses on the same cache line will necessarily belong to the same bin. Since 128
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bytes is small relative to most data structures, we have not observed this to be an important

limitation. Having some minimum granularity is necessary to limit the size of kernel data

structures, though making it the size of a cache line is arbitrary for TrapPoint. However, we

wish to compare TrapPoint to another memory profiler, FlashPoint, described in the next

chapter. As we will discuss, FlashPoint must have a cache line granularity, and since there

is no reason to use a different size for TrapPoint, we choose to use 128 bytes for TrapPoint

as well. Data structures smaller than 128 bytes can still be instrumented. They can either

be padded out to 128-byte boundaries, or multiple data structures can be aggregated into

the same bin.

Kernel Instrumentation

Once the application has partitioned its data structures into bins, the remainder of the in-

strumentation is done by the kernel. Kernel involvement is necessary since the application

assigns bin numbers tovirtual addresses, while the interrupt handler will see onlyphysi-

cal addresses. The kernel manages the page table, so only it can do the requisite address

translation.

Region bin array. Under IRIX, an application’s virtual address space consists of contigu-

ous segments calledregions. Examples are program text, the heap, and memory-mapped

files. TrapPoint extends the region data structure to contain an array of bin numbers, called

the region bin array, with one element for each cache line in the region. This data struc-

ture allows the kernel to look up a bin number, given a virtual address. It simply finds the

region data structure associated with the address, and then uses the cache line offset from

the beginning of the region to index the array.

When new regions are created, all cache lines have a bin number of zero assigned to

them. This makes bin zero an “other” bin, in that all memory accesses to uninstrumented

data structures are attributed to bin zero. The region bin array is not allocated for a region

until the first non-zero bin number is assigned. This improves the performance of non-

instrumented applications.

The region bin array is written when the application makes a system call to map bin

numbers to virtual addresses. Other than this initial allocation, it only needs to be updated

when the region data structure itself is copied, split, or destroyed.
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Figure 3.4: FLASH physical address layout.

Bin map. The most important TrapPoint data structure in the kernel is called thebin

map. The bin map is an array of bin numbers accessed by physical address. Since the

format of the 40-bit physical address has implications in how the bin map is constructed,

we briefly describe the physical address format of FLASH here. The physical address space

of FLASH is discontiguous; each node contains a contiguous range of physical addresses,

but they are not adjacent to each other. The layout of a physical address on FLASH is

shown in Figure 3.4. The home node for each physical address is contained in the highest

eight bits of the address. Within each node, the node offsets (bits31 : 0) range from zero

through the size of memory on the node.

Each node contains a portion of the bin map for its local addresses, and there is one bin

map entry for each cache line on the node. Thus, the bin map is implemented as an array of

bin numbers, indexed by bits31 : 8 of the physical address. The bin map gives the kernel

a mechanism for obtaining a bin number, given a physical address.

When a physical page is allocated by the kernel and mapped to a virtual address, the

kernel uses the region bin array to look up bin numbers for each cache line on the page.

It then writes them into the appropriate entries in the bin map for the physical page being

allocated. It does the same operation when an application does a system call to assign bins

to a range where physical memory has already been allocated. Similarly, when physical

memory is deallocated, the bin map entries are cleared to zero. Updates to the bin map are

infrequent; they are only done during bin allocation and during paging.

Interrupt handler. Once the kernel instrumentation is in place to build and maintain the

bin map, extending the interrupt handler to categorize misses by data structure is straight-

forward. The Stats Record is extended to be an array of structures on each node, called the
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Stats Record Array. The interrupt handler uses the bin map to look up a bin number for the

address that caused the miss. It then uses the bin number as an index into the Stats Record

Array.

The described instrumentation allows TrapPoint to collect memory profile data. All

misses are categorized by the data structures that caused them. Misses to uninstrumented

data structures are aggregated together in bin zero. The cost of running an interrupt handler

can be high, but as will be shown later in this chapter, the marginal cost of adding memory

profiling to such a handler is not. TrapPoint also makes efficient use of statistics memory

since it bins misses on a granularity that is meaningful to the application programmer: data

structures. This avoids overheads of storing data of an arbitrary granularity, such as pages.

3.2.3 Procedures

A memory profile is a high-level view of application behavior. It does not, as instruction

profiles do, attempt to attribute memory behavior to specific instructions. It instead pro-

vides a broad mechanism for studying how an application uses memory. Nevertheless, a

gross instruction-based breakdown, such as at the procedure level, can add useful informa-

tion to the memory profile.

TrapPoint accomplishes this by having applications instrument their procedures. Each

procedure is numbered, and macros are added to the entry and exit of each procedure to

maintain a stack of procedure numbers. This instrumentation can be done either by hand

or by the special pass of the SUIF [1] compiler,fp instrum . The current procedure

number for each processor is maintained on a page of memory that is special in that the

kernel has pinned it in physical memory so that it is never paged out or moved. The kernel

can access this page to find the current procedure number of the thread running on any of

its processors.

Since the kernel maintains one procedure number for each processor, this technique

requires that instrumented jobs be pinned to a particular processor for their entire run and

that only one instrumented job run on a processor at a time. Instrumenting the context-

switching code would lift these constraints, but we did not find that necessary for this

implementation.

We extend the array of Stats Record Array on each node into a second dimension. The

interrupt handler simply looks up the current procedure number and uses it as an index into



CHAPTER 3. PROCESSOR-BASED MEMORY PROFILING 52

the second dimension.

Note that the current “procedure number” need not actually number procedures, as

TrapPoint does not actually interpret this number. It is simply a way of having a temporal

index into the Stats Record Array. The index is temporal in the sense that once it is set, it

doesn’t change until set again, so it can be used to categorize misses that happen before or

after certain events. It could just as easily number loop iterations or even the hour of the day.

We simply find procedures to be the most generally useful. It is important to realize that

because of the way procedure numbers are implemented, when misses occur in a procedure

that has not been instrumented, those misses will be attributed to the procedure’s caller.

With the data structure and procedure extensions, the TrapPoint implementation is now

complete. It categorizes misses by the data structures and procedures that caused them. We

have also implemented a visualization tool [3] that allows for exploration of this data.

3.3 Methodology

To evaluate the performance and accuracy of TrapPoint, we use a collection of applica-

tions, described in this section. We evaluate performance by comparing the run times

of TrapPoint-instrumented programs on a TrapPoint-enabled system to the times of unin-

strumented runs of the same applications on an uninstrumented system. We evaluate the

accuracy of TrapPoint by comparing the memory profile collected by TrapPoint with the

profile collected by FlashPoint. FlashPoint is described in Chapter 4, and for reasons de-

scribed there, it collects much more accurate memory profiles than TrapPoint. All data

was collected for 16 processor runs on a FLASH machine with more than 16 processors to

minimize operating system interference.

3.3.1 SPLASH-2 Applications

We select four commonly-used benchmark programs from the SPLASH-2 suite [26]: FFT,

Radix, LU and Ocean. Problem sizes were chosen to be quite large, so they are represen-

tative of real applications. The problems are sized to give execution times on an uninstru-

mented system of roughly one minute on a sixteen-processor machine. These problems are

therefore substantially larger than those typically run in simulation. The SPLASH-2 pro-

grams used here are all written in C, they express their parallelism through calls tosproc
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(an IRIX system call, similar tofork , in which the child process runs in the same virtual

address space as the parent), and they were instrumented for TrapPoint automatically by

fp instrum . More detail on these programs can be found in [26].

FFT

FFT is a Fast Fourier Transform program described in detail in Section 2.2.1. The input

matrix is a sixteen-million point matrix of complex doubles (256 MB), and a block size of

32 is used for optimal TLB performance.

Radix

The Radix application sorts large arrays of integers and is described in Section 2.2.1. The

source array is 256 million integers (1 GB), and we use a radix of 32 for good TLB behavior.

LU

LU does a dense-matrix LU factorization. We use a source matrix of sixteen-million dou-

bles (128 MB). It is blocked into16 × 16 blocks for good L1 cache behavior. We have

made one major modification to the code from the version described in [26]: instead of

allocating and placing each block separately, we first allocate a large range of data on each

of the nodes and allocate blocks from those ranges. This substantially improves both the

initialization time and the cache conflict behavior of LU.

Ocean

Ocean simulates large-scale ocean movements. A2050×2050 grid was used as the problem

size.

3.3.2 SPEC OMP Applications

OpenMP is an industry-standard method of expressing parallelism. It consists of programmer-

inserted compiler directives to identify parallel regions and a runtime library. The SPEC

OMP suite of benchmarks was released in June 2001 with the goal of providing a platform-

independent benchmark suite of shared-memory applications [24].
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These applications were instrumented for TrapPoint by hand since the SUIF compiler

does not correctly interpret the OpenMP directives. Unlike those handled byfp instrum ,

programs that were instrumented by hand do not have every procedure and every data struc-

ture instrumented, since the time involved with exhaustively instrumenting large codes can

be prohibitive. The typical use of TrapPoint for large applications is to instrument the main

routines and the larger data structures. We then successively add instrumentation only in

those locations where many misses occur.

Swim

Swim is a widely-used benchmark application. It is a FORTRAN program that models

shallow-water dynamics. The problem size is a scaled down version of the training input

set. It uses 80 iterations instead of 800 to achieve tolerable execution times.

AMMP

The AMMP (Another Molecular Mechanics Program) benchmark code is a scaled-down

version of a popular molecular dynamics engine. It is written in C. The application is

described in detail in Section 2.2.4. The test input data files were used.

3.3.3 Research Application

One program used for our evaluation, VirtualMesh, is not part of any benchmark suite.

This FORTRAN program, described in Section 2.2.5, is a research code from the Center

for Turbulence Research at Stanford. It solves the Navier-Stokes equations for modelling

fluid flow — in this case, air flow over a car. Typical runs of this application last for weeks.

For profiling, we use the full problem but only compute the first four time steps, which

gives us uninstrumented execution times of roughly one minute.

3.4 Overhead

The drawback of TrapPoint is its intrusiveness. The processor takes an interrupt on every

cache miss, and while the interrupt handler is running, the application is not progressing.
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Application Normalized Execution Time
FFT 15.89
Radix 28.33
LU 10.56
Ocean 25.84
Swim 12.01
AMMP 3.65
VirtualMesh 8.76

Table 3.1: TrapPoint overheads.

This not only causes large increases in run time, but also can cause significant performance

distortions.

The overheads of TrapPoint on the applications are shown in Table 3.1. The runtimes

are normalized to those of uninstrumented applications on an uninstrumented system. In

other words, all times would be 1.0 if TrapPoint had no overhead. The overheads shown,

3x-28x, are so large as to be intolerable. In fact, these speeds are comparable to simulation.

There are two operative effects. The first and most obvious is that the cache miss

time is greatly increased. The other is a side-effect of TrapPoint running on the compute

processor. Although misses caused by the interrupt handler itself are not counted, they

pollute the processor caches. This cache pollution can evict user data, which will cause

user misses that would not have occurred had the instrumentation not been present. Indeed,

most programs under study exhibit pathological cache behavior caused by TrapPoint. The

large data sets present in many of these applications, particularly those from the SPLASH-

2 suite, are substantially larger than the caches, so the TrapPoint interrupt handler causes

a large number of both conflict and capacity misses. For instance, Radix, which has the

largest data set and not coincidentally, the highest overhead, experiences 1.9 times as many

cache misses with TrapPoint than without. This does not even even take into account the

unreported misses taken by the TrapPoint interrupt handler! The facts that programs take

more misses with TrapPoint and that these miss times are quite long are the reasons that all

applications see high overhead.

We find that the overheads depend strongly on the problem size used for the applica-

tions. Preliminary TrapPoint studies with the SPLASH-2 programs on much smaller data

sets gave us much smaller, though still considerable, overheads of 3-7x. The discrepancy

occurred because these small data sets could exist in the cache along with the TrapPoint
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data structures. Conflict misses, then, were the only problem. We view the large program

results as more relevant, however, since none of the smaller applications ran longer than

five seconds — hardly the sort of application it is important to profile.

TrapPoint causes so many additional cache misses that its memory profiling results are

of no value. The cache misses caused by profiling generally outnumber the misses caused

by program behavior, so the results say more about TrapPoint than about the application

under study. We therefore conclude that TrapPoint, as currently described, is not an accept-

able memory profiling technique.

3.5 Sampled TrapPoint

Both the overhead and distortions of TrapPoint can be mitigated by sampling. For the Sam-

pled TrapPoint implementation, we add a small amount of instrumentation to the MAGIC

cache-coherence protocol. Instead of sending the processor an interrupt on every cache

miss, we now send interrupts only for selected misses. We choose not to sample at regular

intervals (i.e., every 256th miss for a period of 256), since there is a possibility of perfor-

mance artifacts due to correlation between the samples and the cache miss behavior. We

have not observed this behavior, but we recognize the possibility and wish to avoid it. The

correlation issue is solved by sampling at random intervals. The only problem is that since

MAGIC software controls the sampling, MAGIC needs to be able to generate a random

number. The protocol processor on MAGIC was optimized for common cache coherence

transactions, not for complex math. The processor, for instance, lacks both a multiplier and

a divider, which makes random number generation difficult. Though MAGIC does contain

a cycle counter which could potentially be used for random numbers, a cycle counter might

also suffer from correlation behavior. Therefore, we implement a 63-bit LFSR and XOR

its value with the cycle counter to obtain a random number. With random sampling, a pe-

riod of, say 256, means that on average one miss in 256 generates an interrupt. This is not

an optimal source of random numbers, but more sophisticated techniques would require

hardware support that MAGIC lacks.
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Application Period 8 Period 64 Period 128 Period 256 Period 4k Period 64k
FFT 6.39 1.64 1.38 1.28 1.17 1.15
Radix 4.95 1.69 1.55 1.45 1.41 1.37
LU 3.16 1.25 1.18 1.15 1.12 1.11
Ocean 12.90 2.04 1.47 1.28 1.16 1.13
Swim 5.88 1.67 1.34 1.21 1.09 1.08
AMMP 2.40 1.73 1.67 1.61 1.56 1.58
VirtMesh 4.63 1.75 1.60 1.44 1.42 1.38

Table 3.2: Normalized execution time for Sampled TrapPoint at several average sampling
periods.

3.5.1 Overhead

Table 3.2 shows that the overheads are dramatically reduced by interrupting the processor

on only a fraction of the cache misses. With an average sampling period of 65536 (64k),

all overheads are less than 58%. In fact, save for AMMP, which has the worst overhead

with a period of 65536, the applications run in the range of 11-38% overhead. This exceeds

our ideal target performance of 20% (see Section 2.3), but it is close. The poor behavior

of AMMP is explained later in this section. While sampling improves the conflict behav-

ior substantially, pathological cases are still possible. Most programs, however, see little

conflict behavior with the higher sampling periods.

The observed performance of sampled TrapPoint is similar to (actually, slightly worse

than) recent work with DCPI value sampling [4]. DCPI uses performance counters to in-

terrupt the processor. These interrupts cause the program to drop into a simulation mode.

Since the simulator has access to the operands of each instruction, it is able to sample the

values of these operands. DCPI achieves high performance by using hardware to send

interrupts only in “interesting” sections of code, so the simulator does not need to instru-

ment every memory access to find misses. It should be possible to collect memory profile

data with the DCPI infrastructure, since miss addresses are simply operands to memory

operations that cause cache misses.

We examine the overhead breakdown in Figure 3.5. Each bar is broken down into

various components of execution time as explained below:

1. Base. This represents the execution time of an uninstrumented application on an

uninstrumented system. Since all execution times are normalized to the base case,
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Figure 3.5: Overhead breakdown for Sampled TrapPoint at various sampling periods.

this component is shown as 1.0.

2. Protocol. The protocol overhead is the increase in execution time due solely to the

cache-coherence protocol instrumentation. This was measured by a run that had the

protocol instrumentation present, except for the code that actually sends the interrupt.

There is still significant protocol code instrumentation, even without the interrupt,

because the sampling mechanism is implemented in MAGIC software. Much of

protocol instrumentation is, in fact, the sampling mechanism, so protocol overhead

decreases only slightly as the sampling period increases. A hardware implementation

would not see any such overhead.

3. Interrupt. The interrupt overhead is the overhead due to the interrupt mechanism.
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This was measured with a fully instrumented TrapPoint run except that the TrapPoint

interrupt handler simply returns (technically, it drains a MAGIC buffer to ensure

forward progress, then returns). This is the overhead of running any sort of interrupt.

Bear in mind that this is the overhead from adding the interrupt handler, not the time

actually spent taking the interrupt. Any extra cache misses in user code caused by the

behavior of the interrupt mechanism will be counted as interrupt overhead. Since this

overhead is proportional to the number of interrupts taken, we expect it to decrease

as the sampling period increases.

4. TrapPoint. The TrapPoint component is the additional overhead of actually running

the full TrapPoint interrupt handler, which involves looking up a value in the bin

map, finding the current procedure number, and updating the Stats Record Array.

Again, any interference misses will contribute to this overhead. As with the inter-

rupt overhead, we expect the TrapPoint overhead to decrease as the sampling period

increases.

Our results show the protocol overhead to be insignificant at low sampling periods.

For most runs, the overhead of taking an interrupt is the major performance factor, and

it far exceeds the overhead of the interrupt handler itself. This shows that an alternative

mechanism for sampling, namely sending all interrupts and having most of them return

prematurely, would suffer from much worse performance than the current scheme. Taking

an interrupt is an expensive operation since it involves spilling the application’s registers

to memory, context switching into the kernel, going through the kernel’s interrupt dispatch

code, and context switching back to user mode. Processor support for a fast miss trap [10]

could somewhat reduce this overhead, but this will likely be the major source of overhead

in any trap-based monitor.

The large overheads of the low sampling periods are prohibitive not only because of

the increase in execution time, but also because their intrusiveness substantially alters the

behavior of the application, as will be shown in the next section. This indicates that slower

sampling (i.e., longer sampling period) leads to better memory profilers. Therefore, we

now restrict our attention to sampling periods of 128 and higher, as shown in Figure 3.6.

For the applications where protocol overhead is noticeable, it is largely insensitive to

the sampling period, as expected. The counterintuitive result shown in Figure 3.6 is that

the interrupt overhead doesnot decrease as the sampling period increases for AMMP and



CHAPTER 3. PROCESSOR-BASED MEMORY PROFILING 60

1.
38

12
8

1.
28

25
6

1.
17

40
96

1.
15

65
53

6

FFT

1.
55

12
8

1.
45

25
6

1.
41

40
96

1.
37

65
53

6

Rad
ix

1.
18

12
8

1.
15

25
6

1.
12

40
96

1.
11

65
53

6

LU

1.
47

12
8

1.
28

25
6

1.
16

40
96

1.
13

65
53

6

Oce
an

1.
34

12
8

1.
21

25
6

1.
09

40
96

1.
08

65
53

6

Swim

1.
67

12
8

1.
61

25
6

1.
56

40
96

1.
58

65
53

6

AM
M

P

1.
60

12
8

1.
44

25
6

1.
42

40
96

1.
38

65
53

6

Virt
M

es
h

0.0
�

0.2

0.4

0.6

0.8�
1.0

�
1.2

1.4

1.6

1.8�

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Legend
TrapPoint

Interrupt
�

Protocol
�

Base
�

Figure 3.6: Overhead breakdown for Sampled TrapPoint at high sampling periods.

VirtualMesh. This odd effect occurs because the embedded MAGIC protocol processor

takes more instruction cache misses when it runs the version of the protocol that sends

the interrupts. MAGIC has an undersized direct-mapped instruction cache, so instruction

cache conflicts are always a concern. This is discussed in more detail in Section 4.2.1. The

result is that overhead that is actually related to the cache-coherence protocol is mistakenly

reported as interrupt overhead. This means that Radix, AMMP, and VirtMesh all experience

significant protocol overheads, and the fact that this is not mitigated by sampling is the

reason that these applications see the highest overhead with long sampling periods. A

related effect is that the reported protocol overhead for VirtualMesh is actuallynegative.

Negative protocol overhead is shown on the graph by subtracting from the height of the base

bar. The version of the protocol used to measure protocol overhead, which does sampling
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but does not send interrupts, actually has slightly fewer instruction cache misses than the

base protocol for VirtualMesh.

The existence of substantial protocol overhead for Radix, AMMP, and VirtualMesh is

not an important result since it is simply an implementation artifact of MAGIC. A hardware

trapping cache miss would not see this overhead. For applications without significant pro-

tocol overhead, TrapPoint overhead is quite tolerable (28% or less) for sampling periods of

256 and higher. In fact, at sampling periods of 4096 and above, these applications meet the

design goal of 20% overhead. Sampled TrapPoint is therefore a viable memory profiling

technique, provided that the profiles it produces are accurate.

3.5.2 Accuracy

To investigate the accuracy of Sampled TrapPoint, we compare its reported memory profiles

to the true memory profiles of these applications. The true profiles were obtained by a more

exact tool, FlashPoint, which is described in the next chapter.

For each benchmark at each sampling period, we compute theerror fraction. For each

cpu/procedure/bin combination, we compute the absolute value of the difference between

the number of misses reported by TrapPoint (number of samples times the sampling pe-

riod) and the number of misses reported by FlashPoint. This represents the number of

erroneously classified misses. The sum of these bad counts across all cpu/procedure/bin

combinations is the total number of misses in error. The reported error fraction is the num-

ber of misses in error divided by the total number of misses reported by FlashPoint.

We compute error in this manner because it measures both effects that we are attempting

to capture. The first is that TrapPoint, in general, reports more misses than the program

would take if TrapPoint were not present. This is because the TrapPoint instrumentation

pollutes the processor caches, causing more misses. We define the terminterference error

to mean error caused by TrapPoint changing the behavior of the monitored program, such

as extra misses caused by TrapPoint cache pollution. This type of error tends to decrease

as the sampling period increases. The other effect is that if the sampling period is long,

then it is possible that samples do not occur frequently enough to get an accurate picture

of program behavior. This is calledsampling errorand it increases as the sampling period

increases.

A graph of error fractions at various sampling periods is shown in Figure 3.7. At low
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Figure 3.7: Error fractions for Sampled TrapPoint at several sampling periods.

sampling periods, interference error is the dominant effect, and error is reduced by in-

creasing the sampling period. If the period is increased too much, however, then sampling

error dominates, so the mid-range sampling periods of 128, 256, and 4096 perform the best

across the applications.

Our results show that a sampling period of 65536 is inadequate for capturing the behav-

ior of these programs, particularly Ocean, AMMP, and VirtualMesh. There are simply not

enough samples for each cpu/procedure/bin combination to get an accurate performance

estimate. Longer running applications would tend to improve the accuracy of the longer

sampling period, but a performance monitor that was only accurate for very long runs

would be difficult to use in many performance debugging situations.

We believe that in general, the best sampling periods are 256 and 4096. A period of

256 produces the most accurate memory profiles, while a period of 4096 has slightly more

error but also slightly lower overhead. Since Sampled TrapPoint is a performance monitor,

some error is tolerable. The real concern is that it reports memory profiles that are “good

enough” to find performance problems in applications. With sampling periods of 256 or
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4096 , it generally does. All important real effects show up in the data, though occasionally

some anomalous results may cause the user to search for problems that do not exist.

3.5.3 Evaluation

Though none our measured results with Sampled TrapPoint met our goal of 20% overhead,

when we disregard protocol overhead (as it would not be present with real hardware miss

traps), a sampling period of 256 yields overheads of 15-28% and a period of 4096 yields of

9-17%. These are acceptable overheads and would not preclude TrapPoint’s use in many

situations. This overhead could be reduced further if the miss traps were implemented

in hardware in such a way as to not require context switches. A fundamental problem,

however, would remain: TrapPoint runs monitor code on the processor being monitored,

and it therefore distorts its behavior. Multiprocessor applications, particularly when they

experience poor behavior such as cache-to-cache transfers or hotspotting, can be quite tim-

ing dependent in that their performance depends on the specific interleaving of events, and

TrapPoint alters these.

TrapPoint with a period of 256 or 4096, despite its limitations, is an acceptable memory

profiler. The memory profiles produced by a period of 256 or 4096 are accurate enough

to use, provided that the user keep in mind that some results may just be artifacts of the

monitoring. It is clearly superior to any existing implementation. Its main distinguishing

feature is that the only required hardware support is the addition of a trapping cache miss to

the processor. The next chapter describes FlashPoint, a memory profiler that requires more

hardware support but addresses many of TrapPoint’s shortcomings.



Chapter 4

Node Controller-Based Memory

Profiling

As an alternative to processor monitoring, we can perform memory profiling on the system

node controller. To understand why this is both possible and desirable, we examine the

required support for hardware memory profiling.

1. A triggering mechanism is needed to activate the profiler when cache misses occur.

2. Handler code needs to run when triggered.

3. The handler needs access to state storage to record the events it monitors.

For instance, in TrapPoint, the cache miss traps provide the triggering mechanism, the

interrupt service routine serves as the handler, and normal memory provides the state stor-

age. We notice that the required hardware support already exists in the node controller of

a cache-coherent shared-memory multiprocessor sincethese same criteria are required to

implement cache coherence![17]

When a processor in a shared-memory multiprocessor misses in its caches, it sends a

request to the system node controller (MAGIC, in the case of FLASH). Thus, the arrival of

a memory request at the node controller serves as a triggering mechanism for cache misses.

In the FLASH multiprocessor, MAGIC runs a section of code, called a handler, in response

to a cache miss, which satisfies criterion 2. In full hardware implementations, such as the

SGI Origin 2000, the handler is actually a hardware state machine, but its required actions

64
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are the same. The handler, either hardware or software, needs access to the coherence state

of the cache line and to memory.

The system node controller seems ideally suited to memory profiling. By using the

node controller as a coprocessor, we can remove the burden of memory profiling from the

compute processor. This offers advantages in both performance and accuracy. There is

considerable performance gain since the processor is never interrupted — it can continue

to execute application instructions while profiling is occurring. Accuracy also improves

since the profiler is not running on the compute processor, polluting its caches. Memory

profilers that run on the node controller are also able to collect extended memory profile

information, which is impossible for processor-based tools such as TrapPoint.

This chapter discusses FlashPoint, a performance monitor that uses FLASH to point out

program memory behavior. FlashPoint is implemented by modifying the cache-coherence

handlers that run on MAGIC. On systems without a flexible node controller, memory pro-

filing would require additional hardware. We believe this additional hardware support,

however, would be minimal since the actions required by FlashPoint are quite similar to

those the node controller already performs.

4.1 FlashPoint Implementation

FlashPoint consists of instrumentation at three levels of the system: the cache-coherence

protocol, the kernel, and the application.

4.1.1 Protocol

We redefine the Stats Record structure as shown in Figure 4.1. This represents aggregate

counts of common protocol events and is very similar to the structure described for Trap-

Point, shown in Figure 3.3. In addition to the fields collected by TrapPoint, FlashPoint

also collects information on TLB misses to local and remote addresses. The mechanics

of how we collect these statistics is described below. Just as in TrapPoint, we allocate a

two-dimensional Stats Record Array on each node, indexed by procedure number and bin

number. The memory footprint for the Stats Record Array is twice as large for FlashPoint

as for TrapPoint because of the extra TLB fields (for fast indexing, the Stats Record should

be a power of two, which requires some padding). The main difference is that FlashPoint
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struct StatsRecord {
uint64 LocalReadMissCount;
uint64 LocalWriteMissCount;
uint64 RemoteReadMissCount;
uint64 RemoteWriteMissCount;
uint64 TLBLocalMisses;
uint64 TLBRemoteMisses
uint64 Padding[2];

}

Figure 4.1: Stats Record definition for FlashPoint

allocates the Stats Record Array in memory that is reserved for the cache-coherence proto-

col, while TrapPoint allocates it in kernel memory.

The cache-coherence protocol is instrumented to count each type of cache miss as it is

serviced. A code example of how this instrumentation works is in Figure 4.2. When a load

instruction causes the processor to miss in its cache, it sends aGETrequest to the MAGIC

on the local node. MAGIC receives aGETmessage through its processor interface (called

the PI). It then must schedule an appropriate handler to run on the embedded protocol

processor. The hardware dispatch mechanism does this by examining the message type

(GET), the source interface (the PI), and the address to determine whether it is local or

remote. In the event that MAGIC receives aGETrequest on the PI to a local address, it will

schedule the handlerPILocalGet , some of which is shown in Figure 4.2.

Before it can take any action,PILocalGet must first determine the current coherence

state of the cache line. The protocol maintains a data structure, thedirectory, that contains

the coherence state of each local cache line. That is to say that each cache line in the system

has one directory entry (also called its head link), and it resides on the home node for that

cache line. SincePILocalGet runs only for local addresses, the protocol can simply read

the head link from the local memory, which is accomplished by theREADHEADLINK

call. The simplest case forPILocalGet is the case where local memory contains the

latest copy of the data: no invalidations are pending for the line and no processor’s cache

contains a dirty copy of the line. This is the case shown in Figure 4.2. For this case, the

protocol should simply return the data to the processor and update the head link to show

that the processor cache on the local node contains a copy of this cache line.
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PILocalGet(addr) {
// Read directory entry
headlink = READ_HEADLINK(addr);
if(!headlink.pending && !headlink.dirty) {

// Common protocol case - latest copy resides in memory
// Simply return the data to the processor

PI_SEND(data);

// Data transfer to processor now in progress
// Following code is overlapped with transfer

// Mark local node as a sharer
headlink.local = 1;

// Added FlashPoint instrumentation
StatsRecord[procedure_num][headlink.bin].

LocalReadMissCount++;

} else {
... more complex protocol cases ...

}
}

Figure 4.2: ThePILocalGet protocol handler runs in response to a processor’sGET
request for local memory.
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MAGIC was designed for high-performance, and even this short handler exhibits sub-

stantial concurrency. Before thePILocalGet code is even scheduled to run, MAGIC

speculatively initiates a data transfer from the local memory into one of its internal data

buffers. The call toPI SENDwill begin a data transfer from this internal data buffer,

through the processor interface (the PI), to the processor. Protocol code that is executed af-

ter thePI SENDwill therefore not affect the latency of the memory requestat all, though

the handler must run to completion before MAGIC will be able to schedule another handler

on the protocol processor.

Updating the head link to mark the local node as a sharer does not need to happen be-

fore thePI SEND, and placing this code after thePI SENDtakes it off the latency path.

Similarly, the code added for FlashPoint instrumentation is not on the latency path of the

handler. The entire instrumentation involves only an array access and an increment oper-

ation, and it does not affect the memory latency. The procedure number and bin number

used to index the Stats Record have the same meaning as in TrapPoint — exactly how they

are determined is described later in this section. Note that no computation is necessary to

determine the type of miss (Local Read), sincePILocalGet is only executed in response

to local read misses. Similar handler instrumentations are used to count remote read misses,

local write misses, and remote write misses.

4.1.2 Data Structures

Just as in TrapPoint, FlashPoint needs a mechanism to associate physical address with ap-

plication data structures. In fact, FlashPoint uses the identical application instrumentation;

the application associates bin numbers with its data structures and communicates these

mappings to the kernel via system calls. However, the kernel instrumentation in FlashPoint

is different.

The principal difference is that the bin map (Section 3.2.2), which associates bins with

physical addresses, needs to be accessible by the cache-coherence protocol, rather than by

a kernel trap handler. Recall that maintaining the bin map is a two-step process. First, the

kernel must associate bin numbers with application virtual addresses, since the application

specifies virtual address ranges for each bin. This mapping is done by the region bin array,

which is identical in FlashPoint and TrapPoint. The second step is to associate bin numbers

with physical addresses (i.e., update the bin map) when virtual-to-physical mappings are
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created or destroyed. In TrapPoint, the bin map is maintained as an array of bin numbers

on each node, indexed by bits31 : 8 (see Figure 3.4) of the physical address. While the

arrangement would be possible with FlashPoint, it would suffer from poor performance.

The layout of the bin map is nearly identical to the layout of the directory, and Flash-

Point makes use of this similarity. When a MAGIC handler runs on the home node, it

must retrieve the directory entry for that cache line. The directory is implemented as an

array of entries (each entry is 8 bytes) in a region of memory reserved for the coherence

protocol. The protocol uses bits 31:8 of the physical address as an index into the array of

directory entries. This is exactly how theREADHEADLINKmacro, shown in Figure 4.2,

is implemented. This macro is always called by handlers that run on the home node, since

the directory state is needed to determine which coherence action to take. Since the bin

map lookup mechanism is identical to the directory entry lookup, we combine the two into

a single operation. The cache-coherence protocol on FLASH has a directory entry format

that contains ten unused bits. FlashPoint simply uses these bits to store a bin number. This

implies that FlashPoint does not need to perform any explicit bin map lookup — the bin

number is contained in the directory entry which is already loaded into a MAGIC register

when the handler starts.

Since the directory stores information on a per-cache line basis, it is the natural granu-

larity for binning. This is the reason, alluded to in Section 3.2.2, that each cache line has

its own bin number. Having a different granularity than the directory would require Flash-

Point to maintain an explicit bin map, and the additional lookups would adversely affect

performance. There are other performance implications of storing bin numbers in memory

reserved for the cache-coherence protocol. Although the protocol is capable of reading

and modifying the contents of normal (i.e., processor-accessible) memory, it is much more

efficient for it to use memory that is inaccessible to the processor. One reason is that the

memory reserved for use by the protocol is not cache-coherent, so using it saves the over-

head of running coherence handlers. Also, MAGIC has a data cache that can be used to

reduce the observed memory access time. Cached memory accesses, however, can only

be used by MAGIC when accessing its reserved section of memory since MAGIC’s data

cache is not coherent with the processor caches.

The differences between the kernel instrumentation in FlashPoint and TrapPoint are

that the FlashPoint kernel does not allocate space for a bin map and that any place the
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TrapPoint kernel would update the bin map, FlashPoint sends a directive to MAGIC. These

directives take the form of uncached stores to special addresses that MAGIC interprets as

commands. They invoke specialized handlers on MAGIC that write bin numbers into the

directory entries. These handlers are expensive in terms of performance since they can

occupy the MAGIC protocol processor for an extended period of time while they write bin

numbers to multiple directory entries. Fortunately, this operation is rare as it only occurs

during initialization and paging.

The FlashPoint method of storing bin numbers in the directory entry is attractive since

it allows misses to local addresses to be categorized by data structures without any impact

on the local memory latency. It is also illustrative of the similarity between the primitives

required for cache coherence and those required for memory profiling. Figure 4.2, for

instance, shows how the bin number is available without any lookups or computation. There

is some latency penalty, however, for remote accesses because the requester always updates

the Stats Record when it sends data to the processor and only the home node has access to

directory state. A handler that runs on the home node must include the bin number in any

network messages it sends so that the requester will have access to it when it updates the

Stats Record. Forming the network messages is on the critical path of a remote cache miss,

so there is a non-zero FlashPoint overhead for such misses. A protocol example of how

remote misses are implemented is shown later in this section.

4.1.3 Procedures

FlashPoint uses the same procedure numbering scheme as TrapPoint. The only difference

is that with FlashPoint, the current procedure number is stored in a protocol variable, rather

than a kernel variable. This means that the application macros that set the current procedure

number now contain uncached store instructions. These uncached stores are interpreted by

MAGIC as commands to set the node’s current procedure number.

The code in Figure 4.2 is actually slightly inaccurate. The code that updates the Flash-

Point statistics is shown as a two-dimensional array access.

StatsRecord[procedure_num][headlink.bin].

LocalReadMissCount++;

Note that the index of the first dimension changes only when the current procedure number
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changes, so the offset in the first dimension does not need to be computed in each handler.

In the actual implementation, the protocol stores the pointer value of the first index, rather

thanprocedure num directly, to speed the indexing. The application macros that set

the current procedure number actually send MAGIC a delta between the current procedure

number and the old procedure number. MAGIC then increments its pointer by

delta * MAX_BINS * sizeof(struct StatsRecord)

Since the latter two terms are not only constants, but also powers of two, the pointer in-

crement translates into only two MAGIC instructions: a shift and an add. This keeps the

MAGIC overhead for procedure changes to a minimum. Since the real protocol code to

access the correct Stats Record is much less readable than the code in Figure 4.2 but has

the same effect, we use the two-dimensional array access in sample protocol code for the

sake of clarity.

Even with the aforementioned performance optimizations, under certain circumstances

there can be noticeable overhead due to procedure instrumentation. The application macros

which set the procedure number contain 14 assembler instructions that maintain a stack

of procedure numbers and do an uncached store of the procedure number delta. Each

procedure contains two such macros (call and return), so 28 instructions are added to each

procedure. For many procedures, 28 instructions is insignificant, but it can be noticeable

overhead for very short procedures.

Procedure calls can be frequent, so performance dictates that we make one more kernel

modification. The kernel normally does not allow user programs to access hardware via

uncached stores for obvious reasons. In this case, however, we need to send an uncached

store at the beginning and end of every procedure. The normal mechanism for user code

of making a system call, thus allowing the kernel to make the restricted accesses, is inad-

equate since transitioning into and out of kernel mode is a very expensive operation that

could take thousands of processor cycles. The resultant overhead would make procedure

instrumentation impractical. Instead, we modify the kernel to allow a user application to

map MAGIC registers uncached directly into its virtual address space. This gives us the

necessary performance, but it unfortunately has security implications since any user pro-

gram can now crash the machine by hostile writes to MAGIC register state. Even if the

FlashPoint registers were segregated on “safe,” mappable pages, the user could still wreak

havoc, for instance, by storing an out-of-bounds value for the procedure number.
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Figure 4.3: Handlers and Messages invoked on a remote read miss.

If FLASH were a commercial machine, writes to MAGIC registers would have to be

error-checked. A unique fragment of MAGIC handler code runs for each register access,

and this code could easily be augmented to perform the necessary checks. Error checking,

however, substantially increases the overhead of procedure instrumentation, and since we

do not wish to pay the performance penalty, we accept this small amount of vulnerability.

After all, if a user is intent on crashing a machine, he can usually find a way to do it, even

on a commercial system. We do not view this as a limitation of our technique, however,

as a full hardware implementation of FlashPoint would be able to perform the error check

with no performance overhead.

4.1.4 Remote Miss Example

The protocol code example shown in Figure 4.2 is the simplest protocol case since no

remote nodes were involved. The protocol instrumentation is more complex for remote

transactions because FlashPoint statistics are counted on the requesting node, but the bin

number information is stored with the directory at the home node. This section describes

an example of how FlashPoint counts a remote cache miss.

Figure 4.3 shows the messages and handlers that run in response to a read miss to
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remote memory. The following is a description of how the system responds to a remote

read miss, even without FlashPoint.

1. The requesting processor misses in its cache and sends aGET request to its local

MAGIC. In response, MAGIC schedules thePIRemoteGet handler, so named

since the request entered MAGIC through the PI (the processor interface), it was

to a remote address, and it was aGETrequest. The handler realizes that it cannot

service this request, so it forwards theGETrequest to the home node.

2. The GET request arrives at the home node’s MAGIC chip, which schedules the

NILocalGet handler since the request arrived through the network interface, the

NI, and was aGETrequest to a local (to this node) address.

3. The simplest case forNILocalGet is when a valid copy of the requested address

exists in memory. In this case, it retrieves the cache line from the local memory. As

the data returns from memory it formats aPUTreply with the data and sends it back

to the requester. Before the handler exits, it must add information to the directory

that marks the requesting node as a sharer of the cache line.

4. ThePUT reply arrives at MAGIC on the requesting node. It schedules the handler

NIRemotePut , which simply forwards the reply back to the processor.

5. The processor receives thePUTreply and the memory request is satisfied.

The FlashPoint instrumentation is constrained by the fact thatonly theNILocalGet han-

dler can look up the bin number. The bin numbers are stored in the directory, the directory

resides on the home node, andNILocalGet is the only handler that runs there. Likewise,

FlashPoint statistics are always updated as the reply is being sent to the processor, so this

update must occur in theNIRemotePut handler.

The FlashPoint instrumentation code for a remote read miss is shown in Figures 4.4

and 4.5. The code forPIRemoteGet is not shown since it contains no FlashPoint instru-

mentation. TheNILocalGet handler, shown in Figure 4.4, is the handler that runs on the

home node. Its FlashPoint instrumentation extracts the bin number from the directory entry

(the head link) and adds it to the reply message header. This only adds a small amount of

overhead, but it is on the latency path, since it occurs before theNI SEND. This means
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NILocalGet(addr) {
headlink = READ_HEADLINK(addr); // read directory entry
msg.len = LEN_CACHELINE; // reply will have data
msg.msgType = MSG_PUT; // reply will be a PUT

if(!headlink.pending && !headlink.dirty) {
if(headlink.numsharers == 0) {

// no previous sharers

// Added FlashPoint instrumentation
msg.bin = headlink.bin;

// send the reply
NI_SEND(msg, data);

// not on latency path
// mark the requesting node as a sharer
headlink.ptr = msg.source;
headlink.headPtr = 1;

} else {
... more complex protocol case ...

}
} else {

... more complex protocol cases ...
}

}

Figure 4.4: TheNILocalGet protocol handler runs on the home node to service remote
memory requests.
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NIRemotePut(addr, data, msg) {
PI_SEND(data);

// Added FlashPoint instrumentation
StatsRecord[procedure_num][msg.bin].

RemoteReadMissCount++;

}

Figure 4.5: TheNIRemotePut protocol handler runs on the requesting node in response
to data reply.

that FlashPoint does add a small amount of latency to remote memory accesses. When the

PUTmessage is received by the home node, it runsNIRemotePut shown in Figure 4.5.

The code is very simple, since it only needs to forward the reply to the processor. The

FlashPoint instrumentation increments the appropriate entry in the Stats Record. The only

difference between this update and the update for the local case, shown earlier in Figure 4.2,

is that the bin number is extracted from the network message, rather than from the directory

entry.

4.1.5 TLB Misses

Poor memory locality causes TLB misses in addition to cache misses. TLB misses can be

an important effect, yet many programmers often overlook TLB performance. We found it

useful to enable FlashPoint to track TLB misses as well as cache misses.

Counting TLB misses is not as natural an application of MAGIC as cache-miss count-

ing because TLB misses are processor events — MAGIC is not usually aware of their

occurrence. Since TLB misses on the R10000 are handled in software, we can instrument

the TLB miss handler to inform MAGIC. We simply do an uncached store of the page table

entry (which is already in a processor register). The page table entry contains a physical

address, which MAGIC can use to extract a bin number. Unfortunately, the page table’s

physical address is always page-aligned, so MAGIC is forced to use the bin number of the

first cache line in the page. Though this entails some loss of accuracy, we have yet to find

a real application where this is problematic.
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The TLB miss handler is quite performance critical, so even the small amount of instru-

mentation can cause noticeable overhead. It is therefore an optional part of FlashPoint. The

kernel is compiled with two copies of the TLB miss handler, one of which is instrumented.

The machine boots with the standard (i.e., uninstrumented) handler. When a FlashPoint-

instrumented application starts, it checks the environment to see if the user desires TLB

instrumentation, and if so, it makes a system call that rewrites the interrupt vector to use

the instrumented TLB miss handler. This method ensures that the overheads of TLB miss

instrumentation are only seen when the instrumentation is desired.

Though it would have been possible to instrument the TLB miss handler in TrapPoint,

this was not done since it could not have been done efficiently. The miss handler is a

very short piece of code that can be called often, so adding even a few instructions causes

substantial overhead. The handler only has two available processor registers, since the

authors of the operating system recognized that spilling user registers to memory would

cause unacceptable performance. The fact that the code is extremely register-limited is

of no consequence to FlashPoint. One of the registers already contains the page table

entry. FlashPoint temporarily uses the other to hold the address of the uncached store. The

more complex operations of looking up the bin number, reading the procedure number,

and updating the statistics take place on MAGIC, so they occur in parallel with the miss

handler and do not use processor registers. TrapPoint, however, runs on the processor, so

TrapPoint TLB miss instrumentation could not run in parallel with the TLB miss handler,

and it would have to spill user registers to memory to do its computation. The overhead of

collecting TLB miss data on TrapPoint is therefore prohibitive.

The technique of using uncached stores to inform MAGIC of processor events is a

general technique that can be used to count a wide variety of events. Adding uncached

stores to the appropriate kernel code could, for instance, be used to count page faults or

context switches.

4.2 Overhead

FlashPoint is designed to have as little performance impact as possible. Nevertheless, there

are some overheads. These are caused by instrumentation of the cache-coherence protocol,

instrumentation of the application, and instrumentation of the TLB miss handler. These
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Figure 4.6: Overheads for FlashPoint. Execution times normalized to an uninstrumented
run on an uninstrumented system. Note that the graph does not start at zero to make the
overhead breakdown more visible.

overheads are shown in Figure 4.6. The base component is the execution time of an unin-

strumented program on an uninstrumented system. The protocol, application, and TLB

components are the overheads due to cache-coherence protocol instrumentation, applica-

tion instrumentation, and TLB miss instrumentation, respectively.

The bars in Figure 4.6 are execution times normalized to an uninstrumented run on an

uninstrumented system, so if FlashPoint had no overhead, all bars would have a height of

1.00. Note that to make the overhead breakdown more visible, the axis does not begin at

zero, and this has the effect of making the overheads appear larger than they are. The data

were collected by first running a base case (i.e., no instrumentation), successively adding

more instrumentation, and subtracting the execution times. The anomalous result of the

base being less than 1.00 for many of the applications is due to negative protocol overhead,
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which is explained later in the section. Negative protocol overhead is shown on the graph

by reducing the height of the base component.

Figure 4.6 shows that the FlashPoint overhead is quite small, with the highest reported

overhead of 19%, including TLB instrumentation. Without the TLB instrumentation, the

highest overhead is only 15%. Unlike Sampled TrapPoint, FlashPoint is able to countevery

cache miss with only a small cost in performance.

4.2.1 Protocol Overhead

There is a small performance degradation due to the cache-coherence protocol instrumen-

tation. As mentioned previously, there is zero overhead for a local access that can be

serviced from local memory because the added instrumentation is not on the latency path

of the handler. Remote accesses generally have a 5-7% overhead. Although FlashPoint

adds little to the latency of a memory access in isolation, FlashPoint instrumentation does

occupy MAGIC’s embedded protocol processor for several cycles. This has no effect on

accesses that occur in isolation because the time is overlapped with data transfer. The

increase in occupancy, however, will delay an incoming request that has already arrived

and is waiting to run a handler, since a new handler cannot be scheduled until the current

handler relinquishes the protocol processor. For this reason, the 5-7% remote memory la-

tency increase is not an upper bound on protocol overhead. In practice, however, MAGIC

occupancy caused by FlashPoint has not been a serious problem.

Figure 4.6 shows that the the protocol overhead is at most 13% for the applications

under study. Radix, which exhibits this high overhead, has mostly bursty, remote write

traffic, so this high overhead is a combination of the increased remote miss latency and

some modest protocol processor occupancy effects.

The protocol overhead in many of the applications is actuallynegative. This result is

counterintuitive since FlashPoint instrumentation should only make the protocol slower.

The cause of this behavior has to do with the MAGIC hardware. MAGIC has a small

(16 kB), direct-mapped instruction cache for protocol code. The line size is 128 bytes,

which only leaves (16 kB
128B

= 128) 128 cache lines, so instruction cache conflicts are a serious

concern. The protocol processor running the base protocol normally spends about 3% of

its non-idle time servicing instruction cache misses. Different applications exercise the

protocol in different ways, however, so higher overheads are possible. Some applications
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run faster with a FlashPoint protocol because with their access patterns, the FlashPoint

protocol has fewer instruction cache conflicts than the base protocol. This is simply a

MAGIC implementation artifact, however, as all applications would have positive protocol

overhead if only MAGIC had a larger instruction cache.

4.2.2 Application Overhead

There is negligible overhead for instrumenting data structures for the vast majority of ap-

plications, since the overhead of allocating bins is done only when data structures are first

instrumented and when they are paged in. Most applications will instrument the important

data structures during initialization, so the cost is only incurred once. Although writing bin

numbers into MAGIC directory entries is a time-consuming operation, after initialization

it only occurs during paging. Paging is both rare and expensive, so this overhead is also

insignificant.

The real cause of the overhead due to application instrumentation is the procedure call

and return macros. These macros translate into 14 assembly instructions, including an

uncached store. For large procedures, this overhead is negligible, but for very short proce-

dures, it can be considerable. The overhead due to application instrumentation is propor-

tional to the dynamic frequency of instrumented procedure calls, and this can be controlled

by the user by selectively not instrumenting certain procedures.

We have found it advantageous not to instrument very short procedures. This not only

reduces overhead, but it also improves the quality of results from the point of view of

understanding program behavior. Not instrumenting these procedures has the effect of

attributing misses to their callers. If every procedure in LU is instrumented, for instance,

the results show that nearly all misses occur in the proceduredaxpy . That function is a

simple vector operation, and since it is used to do nearly all of the computation, this result is

not helpful. It is much more important to determine which calls todaxpy are problematic.

By not instrumentingdaxpy , we not only reduce the overhead, but we also obtain a more

high-level view of where in the application misses occur. The results in Figure 4.6 for LU

are for the version with no instrumentation indaxpy .

The results in Figure 4.6 indicate that the impact of application instrumentation varies

across the applications. FFT, Swim, and VirtualMesh, for instance, have a low dynamic

frequency of procedure calls, so the cost of application instrumentation is near zero. Radix
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and LU have the highest amount of per-procedure overhead (3.6% for LU and 1.5% for

Radix), because they only operate on small amounts of data a time. LU uses small blocks

to optimize L1 cache performance, and Radix uses a relatively small radix of 32, necessary

for good TLB performance (see Section 2.2.1). These optimizations, however, cause the

program to do only a small amount of work in each phase, thus increasing the frequency

of procedure calls. The other applications have negligible application overheads. While

pathological cases for procedure overhead are possible, they canalwaysbe resolved by

removing instrumentation from troublesome procedures, thus attributing the misses to the

procedures’ callers.

4.2.3 TLB Overhead

Instrumentation of the TLB miss handler significantly increases the cost of a TLB miss,

so the overhead seen by this instrumentation is proportional to the number of TLB misses.

Figure 4.6 shows that FFT has by far the worst TLB miss overhead (13%). This is because

the Transpose phase in FFT, even with the blocking fixes described in Section 2.2.1, has a

substantial number of TLB misses with large matrices. The other applications show much

smaller overheads due to the TLB.

4.2.4 Memory Overhead

Though FlashPoint comes at a small performance cost, it has an associated memory over-

head. The overhead is in three data structures: the directory in the protocol, the protocol

statistics, and the kernel’s region data structure.

There is one directory entry for every cache line in the system, and FlashPoint maintains

a ten bit bin number in each one. Since there are 128 bytes per cache line in FLASH, there

is a memory overhead of 1% of the total machine memory (10 bits
128 bytes×8 bits

byte

). On FLASH,

a section of main memory is reserved for protocol directory and protocol data, so this

memory overhead comes out of normal DRAM. On other systems, such as the Origin 2000,

where directory memory is in fast SRAM, this cost would be more substantial.

In its current configuration, FlashPoint is configured to have room to store 128 bins and

64 procedures on each node. This can be modified by recompiling the cache-coherence

protocol. The current size of the Stats Record Array is 64 bytes times the number of bins
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times the number of procedures. This leads to a footprint of 1 MB per node. This is a part

of main memory that is reserved by the protocol and is unavailable for other uses. Still, this

is small compared to the total amount of memory in the system (256 MB per node) and can

be reduced by recompiling the protocol should the need arise.

The other memory overhead is the kernel data structure that stores bin numbers for each

region. This is an array of 2 byte bin numbers, one for each cache line in the region. This

leads to an memory overhead of 1.5% (2
128

). This overhead exists for any region that has

non-zero bins. In the case of a region with no instrumented data structures, this array is

never allocated. Also note parallel threads that share an address space (such as those created

by sproc ) also share regions. This means the memory overhead is not proportional to the

number of threads.

4.3 Extended FlashPoint

In addition to the memory profiling statistics described above, an enhanced version of

FlashPoint is able to record some transient protocol state with essentially the same overhead

as base FlashPoint. The result is a low-overhead extended memory profiler.

4.3.1 Protocol Extensions

The Extended FlashPoint protocol collects several statistics in addition to the normal Flash-

Point memory profile.

Invalidations. In a multiprocessor environment, cache misses can be caused by actions

on remote processors. These are known as coherence misses. For instance, if a processor

reads a shared variable often, this variable will be stored in its cache. If a different proces-

sor, however, writes to this variable (or any part of the cache line containing the variable),

it will send aninvalidationmessage to all sharers. The reader will take a cache miss on its

next access, even though it may have had no problems with capacity or conflicts.

When MAGIC receives an invalidation message, it runs a specific handler to service

it. We can therefore count invalidations in this handler. The home node always sends the

invalidations, and it adds the bin number to the network message header, so that nodes

receiving invalidations are able to find the correct bin number.
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Interventions. Another multi-processor event of interest occurs when a processor makes

a request for a cache line and the only valid copy of the cache line is in the cache of another

processor. In this case, MAGIC must retrieve the cache line from the processor’s cache.

This is called aninterventionand can be a slow operation. For instance, on FLASH the

observed round-trip time for a read request to remote memory is 75% longer when the data

is dirty in the home node’s cache than when the data can be read directly from the home

node’s memory (the time is longer still if the data is dirty in a third processor’s cache).

Since interventions are slow, they can be of interest in performance tuning. They are

counted by instrumenting the protocol at every point it sends an intervention request to the

processor. As with invalidations, the bin lookup is done at the home, and the bin number

is added to the network message header if the intervention is to take place on a different

node.

Three-hop Misses. The other protocol case that we found interesting was for the case of a

three-hop miss. This occurs when a processor does a request to remote memory. The home

node’s MAGIC, however, finds that the only valid copy of the cache line exists in a third

node’s cache. It sends a message to the third node, instructing it to intervene the line out

of its cache and forward the result to the requesting node (there are other messages as well,

but this is the critical path). This is the slowest protocol case, since its critical path includes

handlers on three different nodes. Three-hop misses are a special case of interventions

where the intervention does not take place at the home node. We find it useful to count

three-hop misses in addition to interventions because the extra network messages involved

in the extra hop add significantly to the cost of a cache miss.

The slow, three-hop case can be counted easily by using a bit in the network message

header to signify the three-hop miss. This bit is set by the home node, and when the reply

finally makes it back to the requester, it checks the bit to see whether or not to increment

the three-hop counter.

Summary. These three protocol enhancements taken together: invalidations, interven-

tions, and three-hop misses, are what we refer to as Extended FlashPoint. Extended Flash-

Point collects protocol statistics over and above the straight categorization of cache misses.

The full Stats Record data structure for Extended FlashPoint is shown in Figure 4.7.
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struct StatsRecord {
uint64 LocalReadMissCount;
uint64 LocalWriteMissCount;
uint64 RemoteReadMissCount;
uint64 RemoteWriteMissCount;
uint64 TLBLocalMisses;
uint64 TLBRemoteMisses;
uint64 Invalidations;
uint64 Interventions;
uint64 ThreeHopMisses;
uint64 Padding[7];

}

Figure 4.7: Stats Record definition for Extended FlashPoint

Since indexing the arrays of Stats Record is performance-critical, the size of the Stats

Record needs to be padded out to a power of two. This enables indexing using shifts instead

of multiplications.

Extended FlashPoint offers substantially more detail about memory performance than

FlashPoint. Cache-to-cache transfers, which cause interventions instead of memory ac-

cesses are a serious performance concern, as shown in Sections 2.2.4 and 2.2.5. The infor-

mation on interventions and three-hop misses collected by Extended FlashPoint was essen-

tial in diagnosing the pathological memory behavior in AMMP and VirtualMesh. Note that

extended memory profile data cannot be collected by a processor-based technique such as

TrapPoint.

4.3.2 Overhead

Figure 4.8 shows overheads of both FlashPoint and Extended FlashPoint on the bench-

marks. Again, all execution times are normalized to runs with uninstrumented applications

on an uninstrumented protocol. The FlashPoint data is exactly the same as Figure 4.6 and

is included here for comparison.

The extra code associated with Extended FlashPoint causes little extra latency. While

Extended FlashPoint does occupy MAGIC for a few more cycles in some protocol handlers,

none of our benchmarks ran significantly slower with Extended FlashPoint than with base
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Figure 4.8: FlashPoint and Extended FlashPoint overheads.

FlashPoint. The expected result is that Extended FlashPoint should have slightly larger

overhead due to the protocol, but that other overheads should be close to the same. This is

the observed behavior for Radix and AMMP. VirtualMesh actually has slightlylessover-

head with Extended FlashPoint due to reduced MAGIC instruction cache conflicts.

Some of the applications show differences in the application instrumentation overhead

and the TLB instrumentation overhead between FlashPoint and Extended FlashPoint. This

is somewhat counterintuitive, since these components are unaffected by the extensions.

These differences account for only a small fraction of total execution time, however. The

extra protocol instrumentation simply causes a slightly different interleaving of events on

the MAGICs, and this causes small performance variations.
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Our results show that extended memory profile information can be collected quite ef-

ficiently, as the highest overhead seen by Extended FlashPoint was 22%. Extended Flash-

Point does incur additional memory overhead: the size of the Stats Record array is twice

that of basic FlashPoint.



Chapter 5

Conclusions

Memory profiling on hardware cache coherent machines has not been widely applied be-

cause no efficient implementation has existed. This thesis demonstrates prototypes of two

efficient memory profilers. We show not only that an efficient implementation is possi-

ble but that the insights it provides into memory system behavior are extremely useful for

identifying and fixing performance problems.

5.1 Usefulness

Since our memory profilers have been developed, we have found them to be incredibly

useful in performance debugging. Extended FlashPoint, in particular, has been used both

to study mature codes and to aid in writing new, efficient parallel programs. Several specific

examples were discussed in Section 2.2.

FlashPoint has been used to get performance improvements even out of highly-optimized

mature codes. For instance, it was used to obtain large performance gains in three SPLASH-

2 applications: FFT, LU, and Radix. This was a quite surprising result since the behavior

of these applications has been extensively studied. FlashPoint was also used to study ap-

plications for the SPEC OMP 2001 benchmark suite [24]. Silicon Graphics (SGI) is one of

the major vendors interested in SPEC OMP, and since FLASH is binary compatible with

their machines, we used FlashPoint to study applications that experience poor speedup on

the SGI systems before the benchmark suite was released. FlashPoint was able to easily

diagnose the problems in several of the supposedly well-tuned applications, and improved

86
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#define FLASHPOINT_CALL_PROC(_name, _num) { \
FP_ProcedureNames[_num] = _name; \
... push _num onto procedure stack ... \
... send _num to MAGIC ... \

}

Figure 5.1: Original FlashPoint procedure call macro.

versions were sent back to SGI. In fact, these optimizations were used by SGI to make rec-

ommendations to SPEC on how the benchmarks could be modified to better utilize shared

memory. The current SPEC OMP benchmarks reflect some of these changes.

As another example, VirtualMesh, a research code used by the Center for Turbulence

Research at Stanford, has been in use for several years and has been highly tuned. Neverthe-

less, FlashPoint provided enough data to allow optimizations that give a 28% performance

improvement on eight processors. This can shorten the execution of a typical run by as

much as a week! Our experience in studying mature codes is that with few exceptions,

FlashPoint can point out enough memory performance problems to allow at least 10-15%

performance gains and sometimes much more.

With less optimized codes, the FlashPoint results are much more dramatic. FlashPoint

enabling speedup of over an order of magnitude is not uncommon. When writing programs

that access large amounts of data, it is quite easy to create large miss rates. With shared

memory programs, the additional complexities of sharing patterns and data placement in-

crease the chances of accidentally creating performance bottlenecks. Often small changes

in code or data layout can lead to huge performance improvements as pathological behavior

is eliminated.

FlashPoint was even used to fix a sharing problem in the FlashPoint instrumentation

itself! The original implementation of the macro that sets the current procedure number is

shown in part in Figure 5.1. The FlashPoint application library maintains a list of procedure

names so that it can associate meaningful names with the procedure numbers used for data

collection. Procedure names do not change over the course of a run and since the assign-

ment of the stringname is simply a pointer assignment, the rationale was that it would be

cheaper to assign toFP ProcedureNames on every procedure call rather than to check

to see if it was already assigned. This performance “optimization,” however, was disastrous
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#define FLASHPOINT_CALL_PROC(_name, _num) { \
if(!FP_ProcedureNames[_num]) { \

FP_ProcedureNames[_num] = _name; \
} \
... push _num onto procedure stack ... \
... send _num to MAGIC ... \

}

Figure 5.2: Updated FlashPoint procedure call macro.

as multiple threads calling procedures simultaneously caused the cache lines containing

FP ProcedureNames to be moved around the system in a large number of cache-to-

cache transfers. Extended FlashPoint immediately pointed out the problem by showing

numerous three-hop, remote write misses toFP ProcedureNames . This problem was

easily fixed by not writing toFP ProcedureNames if it has already been written. The

updated version is shown in Figure 5.2. There is an extra branch, but it results in a large

overall performance gain.

Our experience has been that if FlashPoint is being used on an application during its

development, then large performance problems can be found and fixed soon after they are

created. This sort of tool is invaluable since it works to mitigate a major disadvantage of

shared memory. The chief advantage of shared memory over alternatives such as message

passing is that shared memory makes having tight control over communication a perfor-

mance issue, while for message passing, it is necessary for correctness. Shared memory

thus provides a much more user-friendly programming paradigm. The argument in favor

of shared memory is that the user only needs to carefully manage communication in those

regions of code and on those data structures where it significantly affects performance. Un-

fortunately, finding such places is exceedingly difficult, making shared memory machines

easy to program, but difficult to program efficiently. Memory profilers such as FlashPoint

attack the core of the problem by making memory behavior easy to examine, diagnose, and

fix.

Many of the codes mentioned in this work (and several others) were brought to our

attention by users of SGI Origin systems who were trying to improve their program’s per-

formance. FlashPoint is ideally suited to this since the system architectures of FLASH and

Origin are quite similar and the two platforms are binary compatible.Everyone of these
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programmers who saw FlashPoint and its associated visualization tool, Thor [3], was im-

pressed by the fact that FlashPoint could find in minutes performance problems that had

eluded them for weeks, months, or even years. They were quite disappointed, however, to

learn that FlashPoint does not run on an Origin. It could run on future versions, though, if

the requisite hardware support were designed into the system node controller.

5.2 Implementation

Efficient memory profiling requires hardware support because software is not able to iden-

tify cache misses without resorting to simulation. With the hardware support, however, we

show that memory profiling can be done with little overhead. The hardware must be able

to trigger the performance monitor on cache misses and allow the monitor access to the

address that caused this miss. This support can be built into either the processor or the

system node controller.

5.2.1 Processor Based

In Chapter 3, we discuss TrapPoint, a performance monitor that uses processor support for

memory profiling. Sampling techniques must be used to achieve tolerable performance and

accuracy, but we show that with a carefully-chosen sampling period (one every 256 or 4096

misses), this technique yields a useful memory profiler.

The advantage of this technique is that the required hardware support is rather modest,

namely a cache miss trap. Such miss traps have already been proposed [10] for use in

simpler performance monitors. If some sampling mechanism were added, then sufficient

hardware support would exist for an efficient memory profiler.

Our work shows that the TrapPoint overheads are somewhat higher than our design goal

of 20%, but when we factor out protocol overhead as an implementation artifact, we meet

the design goal with a period of 4096 and come close with a period of 256. With hardware

support absent in our prototype, this overhead could undoubtedly be reduced somewhat, but

some amount of perturbation will always exist in any performance monitor that runs code

on the monitored processor. The perturbation causes both overhead and accuracy concerns

for TrapPoint arising from several sources:
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1. The monitor pollutes the processor caches.

2. The monitor spills user data to memory to free registers for itself.

3. Instrumentation can significantly disturb the timing of multiprocessor events.

4. Monitor interference can cause the operating system to make different resource allo-

cation and scheduling decisions.

In fact, much of the error reported in Section 3.5.2 is due to interference error. This is

error not caused by TrapPoint incorrectly reporting on the behavior of the system but by

the way TrapPoint has changed the system’s behavior. In other words, TrapPoint correctly

reports a memory profile, but it has modified the profile in the process. The magnitude of

this problem is related to the quality of our implementation (which is necessarily limited

by the lack of a hardware miss trap), but the existence of the problem is endemic to this

sort of performance monitor. Sampling reduces, but does not eliminate, this effect.

It is impossible to collect extended memory profile information on the compute pro-

cessor, since cache-coherence protocol transactions are not visible to the processor. We

have found extended memory profile information to be valuable in the diagnosis of shar-

ing problems that cause cache-to-cache transfers, such as false sharing. The inability to

perform extended memory profiling is therefore a significant limitation of processor-based

memory profiling techniques.

5.2.2 Node Controller Based

Our preferred method of memory profiling is to use the system node controller. FlashPoint,

described in Chapter 4, works in this manner. It addresses many of the shortcomings of

TrapPoint, but it requires more sophisticated hardware support.

The two main advantages of using the node controller for memory profiling are that re-

moving monitoring code from the processor dramatically reduces the interference error and

that the cache coherence transactions are visible to the monitor, thus permitting extended

memory profiling.

FlashPoint and Extended FlashPoint only experience protocol overhead in two places:

there is a small latency penalty for remote accesses, and contention for the MAGIC pro-

tocol processor can cause occupancy effects under high load. Even these small overheads
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(at most 13% for the applications under study) can be reduced or even eliminated by a full

hardware implementation since the requisite actions (adding the bin number to the network

message and updating the Stats Record) could be done in parallel with the necessary com-

putation. The other source of overhead, procedure instrumentation, is usually small, and it

can always be reduced by the user by selectively removing instrumentation.

The low overhead of FlashPoint makes sampling unnecessary, so there is no sampling

error. FlashPoint could possibly introduce a small amount of interference error because of

protocol and procedure instrumentation. This interference, however, is quite small and does

not in general pollute the caches because the procedure instrumentation almost never causes

cache misses and the cache-coherence protocol does not even access the processor caches.

Unfortunately, what little interference error may exist is impossible to quantify since the

“correct” memory profile cannot be measured without using FlashPoint. The overheads of

FlashPoint are well within the known errors of our architectural simulators [6], making any

sort of simulation comparison meaningless. In several years of using FlashPoint to tune

applications, we haveneverfound an interference problem caused by FlashPoint, so we do

not view this to be a relevant effect.

Extended memory profiling on the system node controller is both possible and quite

easy, as shown by Extended FlashPoint. The additional information has proven useful in

performance debugging when the application experiences many cache-to-cache transfers,

perhaps caused by false sharing or excessive synchronization. Since these are warning

flags of pathological memory behavior, we believe this data is extremely important. The

overheads are so low that our default cache-coherence protocol for the FLASH machine

has Extended FlashPoint instrumentation. Users not using Extended FlashPoint experience

only the protocol overhead, which is small enough that they do not even notice it is present!

5.3 Conclusions and Future Work

Since memory profilers are so useful and our work shows that they can be implemented

efficiently, we believe that future shared memory multiprocessors should be designed with

hardware support for memory profiling. Our preferred implementation is an extended mem-

ory profiler with support in the system node controller, though a processor-based tool could
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provide a reasonable approximation if node controller support were infeasible for a partic-

ular implementation.

Extended memory profiling can be implemented on a flexible machine such as FLASH

with no additional hardware. Machines with a pure hardware node controller, such as

the SGI Origin 2000 and Origin 3000, would require hardware changes, but we believe

these changes to be minimal since the work required for memory profiling is so similar

to the work these machines already perform for cache coherence. The main cost on such

machines would be the memory required for storing both the bin numbers and the statistics.

As shown in Section 4.2.4, the memory required for FlashPoint is only a small fraction of

the total RAM, but the memory used for profiling must be easily accessible to the node

controller. FLASH uses normal DRAM with caches for the directory and other protocol

data, so the cost of the additional memory is of little concern. The SGI machines, however,

use special SRAM for this purpose. An efficient profiler would need to store bin numbers

into the directory and store its Stats Record in the SRAM, and since SRAM is substantially

more expensive than DRAM, this could be an issue. Nevertheless, we believe the usefulness

of the data that memory profilers can produce far outweighs the cost.

Though a flexible node controller is not required for memory profiling, our work has

shown the flexibility of FLASH to be extremely useful. The design of FlashPoint and

Extended FlashPoint evolved over a period of years. Some features, such as TLB miss

counting, were added after we discovered a need (i.e., after finding several applications

that were limited by TLB performance). Other features that were present in early iterations

of the tools, such as Extended FlashPoint counting cold misses, were phased out when

they were shown not to be useful (what exactly constitutes a “cold” miss makes much

more sense in simulation than it does on hardware). This could not have been done if the

cache-coherence protocol had been frozen in place when the machine was manufactured.

One useful property of Extended FlashPoint, for instance, is that it can be easily extended.

Granted, extending it requires that a user be fluent in the cache-coherence protocol, but

if such a user suspects that some previously unmeasured protocol transaction is limiting

performance, he can easily add code to the protocol to measure these transactions. This is

impossible on other shared memory machines that lack this flexibility.

This thesis describes using FlashPoint to understand application behavior. It is equally
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useful, however, for understanding cache-coherence protocol behavior. As more cache-

coherence protocols are ported to the FLASH hardware, we expect that FlashPoint instru-

mentation will be added to them. For instance, even with simple cache-coherence proto-

cols, designers can be faced with a situation such as to whether to fully handle a particularly

difficult transient condition at substantial hardware cost or negatively acknowledge (NAK)

such requests at perhaps considerable performance cost. In practice, simulation is used

to provide the necessary data (i.e., the frequency of this condition) needed to make this

trade-off. Simulation is only feasible for small data sets, so information gathered in this

manner may or may not be representative of what will be run on the production machine.

FlashPoint, however, could be used to collect this sort of data on hardware with full size

data sets.

More complex cache-coherence protocols exhibit more complex performance issues,

and we expect that much of the future work with FlashPoint will be to study them. For

instance, a Remote Access Cache (RAC) [23] protocol can be used where a portion of

local memory is reserved as a cache for remote addresses. Remote accesses first access

this “cache”, and if it hits, the remote access is avoided. Once this protocol is ported

to hardware, FlashPoint could be used to study how different organizations of the RAC

affect the miss rate. Similarly, MAGIC could be programmed such that part of memory

is non-coherent, and block transfers could be efficiently implemented in this space [7].

When this is ported to hardware, FlashPoint could be used to study its performance. Such

techniques have thus far only been studied in simulation, and the flexibility of FLASH and

the availability of FlashPoint are the necessary components for studying complex protocols

running on hardware with large data sets.

In summary, we have shown that efficient, accurate extended memory profiling is pos-

sible on distributed shared memory machines and that it requires only modest hardware

support. Such profilers have proven invaluable for performance debugging on these ma-

chines. We have also shown the usefulness of flexibility in the FLASH machine for our

prototypes, and we believe that our memory profilers will be useful in the future cache-

coherence protocol research for which FLASH was designed.
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