
A FRAMEWORK FOR DESIGNING REUSABLE

ANALOG CIRCUITS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Dean Liu

December 2003

c© Copyright by Dean Liu 2004

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Mark A. Horowitz
(Principal Advisor)

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Oyekunle Olukotun

I certify that I have read this dissertation and that, in my opin-

ion, it is fully adequate in scope and quality as a dissertation

for the degree of Doctor of Philosophy.

Stefanos Sidiropoulos

Approved for the University Committee on Graduate Stud-

ies:

iii

iv

Abstract

While the practice of design reuse is well established for digital circuits, it is not easily

applied to analog circuits. One of the largest problems is that design constraints of analog

circuits are sometimes implicit, which makes porting the design to a new environment dif-

ficult and prone to failure. This dissertation describes STAR (Schematic Tool for Analog

Reuse), a system that captures designer’s knowledge as part of the archival circuit represen-

tation, and then describes how this system can be used to create portable design modules.

Creating portable analog modules requires the system to capture not only the sized

schematic of the circuit but also the objectives that the circuit is trying to achieved. It must

also include the constraints on the cell’s environment (for proper operation), and how these

constraints should scale with technology. Furthermore, the system should help the designer

in the current task of creating the design, since it is rare that a designer thinks about creating

IP for someone else.

Our solution captures the design knowledge by enabling the circuit designers to an-

notate their schematics with special comments, called Active Comments. The designers

embed predefined functions in the Active Comments to specify the goals and constraints

of the circuits. An execution engine turns these comments into simulation runs to measure

the circuit parameters and monitors to check the circuit’s operating conditions. There are

two types of active comments. One ensures the design meets the specifications, given some

constraints on the operating conditions. The other checks that these constraints are satis-

fied for each instance of the circuit. Using the circuit’s intrinsic properties to specify the

constraints help make the comment portable.

We demonstrate the capability and utility of this system by examining the reuse of a

phase-locked loop (PLL). Using the design knowledge captured in STAR, the PLL design

v

is ported to a different process technology and re-optimized. The loop dynamics of the

resulting PLL track the operating frequency, with the damping factor varying less than

12% across the frequency range of 500MHz to 1.2GHz. The framework also identified all

the potential issues and verified the functionalities of the modified PLL without requiring

any expertise of the designer. The ported design successfully operated at 1.2GHz.

vi

Acknowledgments

Someone once told me that the road to earning a Ph.D. degree is long and difficult, and one

cannot travel on that road alone. I am very fortunate to have the support and encouragement

of a number of people during my time at Stanford, and I would like to express my gratitude

to them.

First, I would like to thank my advisor, Prof. Mark Horowitz, for being a great mentor

and the best advisor I could ever have. I am very grateful to him for sharing with me his

keen insight and expertise, helping me see the greater picture, and having patience to my

occasional digressions. It has been a privilege working with him these past years.

I would also like to thank Prof. Kunle Olukotun for being my associate advisor, serv-

ing on my orals committee, and reading this thesis. Thanks are also due to Dr. Stefanos

Sidiropoulos for his thorough proofreading and the insightful discussions. I am also grate-

ful to Prof. John Gill who served as the chair of my orals committee.

I have benefited greatly from interacting with the senior students in the Horowitz re-

search group. In particular, helping Gu-Yeon Wei with his project introduced me to the

area of high-speed links and phase-locked loop design, and discussions with Dan Weilader

about the problems in the circuit design flow and in transferring design experiences resulted

in the implementation of the CAD framework described in this thesis.

Friends and colleagues at Stanford have helped made my graduate school experience

memorable. Specifically, I would like to thank Bob Kunz for taking so many classes with

me during my first two years at Stanford and for teaching me the finer details of cache

coherence protocols, Jaeha Kim for listening to my crazy ideas and offering his selfless

support, and Haechang Lee and Elad Alon for being brave enough to be the first to try the

tool and giving me valuable feedback. I am also grateful for Evelina Yeung, Bill Ellersick,

vii

Azita Emami-Neyestanak, and Ken Mai for giving me the opportunity to collaborate with

them on their chip projects to broaden my circuit design experience. I cherish the friend-

ships I made over the years, especially with David Harris, Bennett Wilburn, David Lee,

Vladimir Stojanovic, Ron Ho, Fransçois Labonte, Samuel Palermo, Vicky Wong, Sarah

Harris, Paul Hartke, David Barkin, Brucek Khailany, Ujval Kapasi, Ed Lee, and Andrew

Chang, to name a few.

This research would not have been possible without the generous support of the C2S2

Marco Center. I would also like to thank the staff of both the Computer Systems Laboratory

and the Center for Integrated Systems at Stanford: especially Charlie Orgish and Joe Little

for their technical support and Teresa Lynn, Penny Chumley, Taru Fisher, Deborah Harper,

Terry West, Darlene Hadding, Pamela Elliot, Ann Guerra, and Claire Ravi.

I am grateful to my family for their support and prayers, especially for my mother’s

unconditional love and words of wisdom. Even though my grandmother is no longer with

us, I give my heartfelt gratitude to her for looking after me since the day I was born until

the day she passed away. I also extend my sincere appreciation to my future family-in-law

for their constant encouragement. It is impossible to find appropriate words to thank my

fianćee, Jennifer Nee, who has been a great companion on this journey. She is an everlasting

source of love, encouragement, and happiness to me. I could not have completed this thesis

without her, and so I dedicate this work to her.

viii

Contents

iv

Abstract v

Acknowledgments vii

1 Introduction 1

2 Background 5

2.1 Analog Design Process . 5

2.2 Related Tools . 6

2.2.1 Design Capture System . 7

2.2.2 Automatic Analog Synthesis Tools 8

2.3 STAR . 10

3 Active Comments 11

3.1 Phase-Locked Loop Design . 12

3.2 Active Comments . 17

3.3 Measurement Comment . 17

3.3.1 Simulation Setup . 19

3.3.2 Shared Parameters . 23

3.3.3 Analytic Equations . 24

3.3.4 Reporting Results . 25

3.3.5 Execution Flow . 25

ix

3.3.6 Measurement Comment Summary 27

3.4 Assertion Comment . 27

3.4.1 Design Assertions . 29

3.4.2 Conditional Assertions . 31

3.4.3 Assertion Comment Summary . 32

3.5 Portable Comments . 32

3.6 Summary . 38

4 Prototype Implementation 39

4.1 Schematic Layer . 40

4.1.1 Schematic Capture Tool . 41

4.1.2 Comments Editor . 45

4.1.3 Comments Selector . 46

4.2 Parser Layer . 48

4.2.1 Measurement . 50

4.2.2 Assertion . 52

4.3 Library Layer . 55

4.3.1 Default Functions . 56

4.3.2 Extending Library . 61

4.4 Primitive Layer . 65

4.5 Implementation Complexity . 67

4.6 Summary . 68

5 Phase-Locked Loop Design 71

5.1 Phase-Locked Loop Design . 71

5.1.1 Phase-Frequency Detector . 74

5.1.2 Low-Pass Filter . 76

5.1.3 Voltage-Controlled Oscillator . 84

5.1.4 Divider . 87

5.2 Design Reuse . 92

5.3 Results . 95

5.3.1 PLL Porting Results . 95

x

5.3.2 Hidden Errors . 96

5.3.3 Prototype Tool Performance . 98

5.3.4 Design Reuse Experience . 100

5.4 Summary . 101

6 Conclusion 103

6.1 Future Work . 104

A STAR User Manual 107

A.1 Datatypes . 107

A.2 Global Parameters . 108

A.3 Functions . 110

A.4 Primitives . 149

Bibliography 151

xi

List of Tables

4.1 Matrix of Library Files . 56

4.2 Summary of Functions . 57

5.1 PLL Performance Summary (Simulated at 800MHz) 98

5.2 PLL evaluating zeta expression . 98

5.3 PLL transient simulation checking . 99

A.1 Supported Datatypes in STAR . 108

A.2 Additional Arguments Passed into Functions 110

xii

List of Figures

2.1 Screen Capture of Synopsys CosmosSE System 7

3.1 General Phase-Locked Loop Structure (a) Basic Blocks (b) with Divider

for Frequency Multiplication . 13

3.2 PFD Model and Timing Diagram . 15

3.3 Each Active Comment is Composed of Pre-defined Functions and Pro-

cessed by an Engine . 16

3.4 VCO Test Bench Circuit and Transfer Curves at Two Extreme Operating

Conditions . 18

3.5 The Schematic Produces One Device Netlist (.spi) and Each #DEFINE

Generates a Checker File (ck0/1.hsp) . 21

3.6 HSpice Stimulus File Generated from Measurement Comment 22

3.7 HSpice Probe Command Generated from Assertion Comment 22

3.8 Execution Flow of Measurement Comments 26

3.9 Charge-pump Diagram (a) Idealized Model (b) Circuit Implementation with

Current Source at the Output . 29

3.10 HSpice Probe Command Generated from Assertion Comment 31

3.11 Connection of PFD and Charge-Pump Circuit Blocks 33

3.12 Op-Amp Schematic . 36

4.1 Layering of the Prototype Tool . 40

4.2 Screen Capture of the VCO Test Bench Schematic in SUE 41

4.3 Hierarchical HSpice Netlist for VCO Test Bench Schematic 43

4.4 Hierarchical Comments File for VCO Test Bench Schematic 44

xiii

4.5 Comments View for the VCO Test Bench Circuit 46

4.6 Pop-Up Window Displaying a Description of the Selected Function 47

4.7 GUI for Comments Selection . 48

4.8 Flow of Execution . 49

4.9 Parameter Search Flowchart . 51

4.10 Different Representation of the VCO Test Bench Schematic (a) Instantia-

tion Tree (b) Module Representation . 53

4.11 Perl Code ofSatMargin() . 63

4.12 Pop-Up Window Displaying a Description of the SatMargin Function . . . 65

4.13 UsingFindT ime() to Find Rise Time of a Signal: The function returns

[(t0,d0),(t1,NA),(t2,d2),...] . 66

5.1 PLL Block Diagram . 72

5.2 PLL Block Diagram with Abstraction . 74

5.3 PFD Schematic and Timing Waveforms 75

5.4 PFD Characteristic at 500MHz and 100MHz 76

5.5 Charge-Pump Schematic . 77

5.6 MOS Gate Capacitance Measurement Model and Waveform 80

5.7 Voltage Regulator . 81

5.8 Implementing the PLL Stabilizing Zero 83

5.9 CMOS Inverter-Based VCO . 85

5.10 Level Shifter Schematic . 86

5.11 Semi-Dynamic Flip-Flop . 88

5.12 Normalized Clk→Q/D→Q Vs. Setup Time 89

5.13 Timing Diagram of Enable and Clock . 91

5.14 PLL Block Diagram . 94

5.15 Tracking of PLL Loop Dynamics . 96

5.16 Reference and Feedback Clock Aligned at the Inputs of PFD 97

5.17 Enable Signal Fails Setup Time to Clock 97

A.1 Contents of GlbParam.prm . 109

xiv

Chapter 1

Introduction

Improvements in process technology have enabled us to integrate more transistors on a

chip, leading to more complex circuits, while at the same time market pressures continue

to push for shorter design times. To meet these constraints, designers must reuse proven

designs and leverage them as building blocks in new designs. This kind of design reuse

is well established for digital circuits. However, the same cannot be said about analog

circuits. This thesis examines techniques for designing analog circuits to enable greater

reuse.

Digital circuits are easier to reuse because their operation is modeled by boolean func-

tions. In digital systems, discrete values are mapped into analog levels such that each

signal is quantized with respect to the circuit’s logic threshold to be either logical high or

low. This quantization provides a large noise margin and allows robust operation. As a re-

sult, the circuit performs the correct function and behaves similarly under a wide variation

in operating environment and signal amplitude. The noise rejection properties of digital

gates, where small voltage errors are attenuated and do not affect functionality, allows one

to ignore small differences in the circuit and environment. Static CMOS standard cells

with gate inputs work well as reusable components because they have the largest operating

tolerance. Even when the environment is very noisy, which is becoming more common in

modern fabrication processes, or when the designer uses a less robust circuit family, circuit

checking tools have been developed to ensure operating constraints are met [1][2][3]. For

example, noise from coupling capacitance must be less than the margin of the gate that

1

2 CHAPTER 1. INTRODUCTION

the wire drives. Tools now can estimate this noise and flag gates that might malfunction

due to this noise. These tools estimate the margin of the receiving gates, and therefore

allow less coupling noise when dynamic gates are used [4][5]. Overall, since the operating

constraints and performance goals are similar for a wide class of of digital circuits, one set

of constraints and checks can be applied to a large number of designs. This reuse of the

checking software means that these tools have evolved over time and is one reason these

tools are available for digital designs.

Unfortunately analog circuits are often linear, so noise at the input or coupled from

the operating environment will directly affect the output. The key design challenge is to

keep noise away from critical nodes and to reduce the noise sensitivity of these nodes. But

both the specific requirements and the critical nodes are different for each analog circuit.

Furthermore, the functionalities, goals and constraints of these analog circuits are often

implicit. Essentially, a custom checker is required for each design. This checker needs to

ensure that the circuit goals are satisfied and the circuit performs within specification under

various operating environments. When we reuse an analog block, we can then apply its

custom checker to ensure robust operation.

Without such a custom analog circuit checker, we would like the original designer to

help with the reuse process. But most often this is not the case. Instead, a different de-

signer inherits the design database, which consists of a set of transistor level schematics

along with some simulation routines that are generally not well documented (i.e., the de-

sign knowledge is separated from the implementation). To help make the circuit into a

reusable component, we need to capture the designer’s knowledge into a custom checker

and integrate that into the final design representation, so that the result of a design is both

the current implementation and a custom checker for the circuit.

This thesis describes an annotated schematic capture system that focuses on the design

reuse problem. It integrates into the schematic capture system a method of specifying the

intended circuit functionality and goals as well as constraints on its environment.

Recently there have been a number of tools that attempt to help automate this analog de-

sign process, allowing the designer to state some of the optimization objectives at a higher

level of abstraction and automatically generate some of the simulation control and mea-

surement files that are needed. Since our system leverages some of these ideas, Chapter 2

3

describes these systems in more detail. To keep the design information synchronized with

the archival representation, we use the idea of integrating the design knowledge directly

into the circuit schematics. Finally to enable designers to capture a wide class of circuits,

we use a scripting environment to specify the design information.

Chapter 3 describes our analog design system, STAR. This system introduces the notion

of “Active Comments”, which are schematic annotations that control simulation files. The

active comments are broken into two main forms - measurement comments, which are

similar to other integrated systems, and constraint comments, which are like assertions

in normal programs. Chapter 3 opens with a description of a phase-locked-loop (PLL)

design to provide a concrete example of an analog/mixed-signal design that will be used

throughout this thesis.

Having described the functionality of our system, Chapter 4 describes the prototype we

implemented. Rather than building a fully integrated system, we opt for implementing an

engine that can work with different schematic systems, simulators and analysis tools. The

system is designed to be extensible and general to allow the user to capture new circuits,

including ones that the tool or the tool designer has not seen before. In a large design

group there may be a number of designers accessing the design database. In order to avoid

conflicting variable and function names used in the Active Comments, we need to manage

the name space to ensure that the correct data is being accessed.

Chapter 5 describes how we use STAR to design and reuse our example PLL and shows

the result of using STAR to help port and re-optimize the design. Through reusing the PLL

design, we explore the benefits and limitations of our approach and the performance of the

prototype.

While not perfect, our approach seems promising. Chapter 6 summaries the advantages

of our approach and issues that still need to be resolved in future systems.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Background

To enable reuse, we want to capture the optimization goals and constraints for each analog

block. To do this, we first need to understand the design process for analog circuits to

see how the designers create the original design in the first place. Next we look at recent

changes to analog design tools that aid the design process, since many have created tech-

niques that we will use. One of the more interesting tools we will explore are analog circuit

optimizers. These tools complete the design-validation loop for larger circuit blocks and are

attractive components for future analog design systems. Our approach, STAR (Schematic

Tool for Analog Reuse) focuses on how to integrate these features to make them attractive

to the user. STAR is intentionally very flexible so it can capture a wide class of circuits.

2.1 Analog Design Process

Analog circuit design is usually an interative process alternating between circuit synthesis

and design verification. During circuit synthesis, the designer chooses a circuit topology,

formulates analytic equations to estimate the critical performance parameters of this circuit,

and then adjusts transistor sizes as the result of local optimizations. While trying to meet the

design constraints, there may be local subgoals that need to be achieved. For example, one

objective of the circuit may be to have good power supply noise rejection. To accomplish

this, the designer may want to have high impedance to the supply by adding a current

source between the switching circuit and the supply rail. The designer may constrain the

5

6 CHAPTER 2. BACKGROUND

transistors that function as current sources to operate within their saturation region. In doing

so, the objective of rejecting power supply noise is transformed into checking transistor

saturation margin and output impedance. When this kind of reduction is done, a check

of the real objective, power supply rejection, is also performed at the end of the design

process.

Tightly coupled to the synthesis process is design verification which ensures that under

all conditions the circuit meets the performance envelop set by the target application. Typ-

ically, the design verification is accomplished by using a circuit simulator like SPICE [6],

or one of its derivatives. Running a circuit simulation requires three kinds of input - the

circuit to be simulated, which is normally a sized circuit schematic, the simulation control

file, which is the description of what inputs should be applied to the circuit, and the mea-

surement file, which is the description of what data should be collected and how it should

be analyzed. The algorithms implemented by these pre- and post-processing scripts contain

the implicit optimization goals and heuristics that capture some of the designer’s thought

process and are a critical part of the design record. Often these additional files are lost, or

poorly documented, so when another designer attempts to reuse this design, he/she needs

to reconstruct the critical design issues and then recreate the control and measurement files.

The net result of this loss of design information is that designs get more brittle with time.

In order to enable design reuse, we want to capture these pre- and post-processing scripts

as part of the design’s archival representation.

2.2 Related Tools

Recently, a number of analog design capture and automation tools have been developed

to address some of the problems with designing analog circuits. While these tools may

not be specifically targeting the design reuse issues, they extend the design representation

to include some of the design objectives. These tools can be broadly classified into two

approaches: those geared to improve design capture and those geared to improve synthesis.

2.2. RELATED TOOLS 7

Figure 2.1: Screen Capture of Synopsys CosmosSE System

2.2.1 Design Capture System

The most commonly used design capture tool for analog circuits is schematic entry. With

this tool, the user draws the devices in an electronic canvas to create circuit diagrams which

provide a visual representation of the circuits. Recent design capture systems extend this

approach to enable the designer to specify pre- and post-processing routines and optimiza-

tion algorithms as part of the design database.

These modern capture systems take a more integrated approach to the design process

to preserve some of the designer’s knowledge in the archival representation. They merge

the schematic entry, the circuit simulator, and the results analyzer into one environment to

allow the designers to specify the stimuli and analysis routines directly in the schematics.

The Synopsys CosmosSE[7] is an example of one such integrated system, and a screen

capture of the tool is shown in Figure 2.1. The user selects some voltage and current sources

from a library of stimuli and instantiates them onto the schematic to stimulate the circuits.

8 CHAPTER 2. BACKGROUND

The schematic controls the circuit simulation through a series of pull-down menus. The

results analyzer and signal waveforms are added to the schematic diagram. For example,

to measure the common mode gain of a differential amplifier, the user would connect the

inputs of the op-amp to a voltage source and configure it to sweep the common mode level.

After the simulation, the user can then direct the analyzer to plot the output voltage versus

the input common mode. All these steps are embedded in the schematic. Agilent’s ADS[8]

extends this integrated approach further by allowing the user to cascade the measurements

from different schematics such that the results from one simulation can be accessed and

used in a different simulation.

The Cadence Analog Design Environment[9] extends this integrated approach even fur-

ther by providing a scripting language along with a set of pre-defined analysis functions to

make it easier for designers to specify the pre- and post-processing routines and customize

the simulation runs. For example, the user can dump the measurement routines from the

common mode gain schematic and create a script to specify multiple operating conditions

and transistor corners to measure the gain across these variations. The user can build upon

the pre-defined functions to create their own routines. It is the ability to create reusable

scripts that gives this tool its power, and we use this capability in our system.

These design capture systems make it easier to specify and archive the pre- and post-

processing routines by embedding them as part of the design representation. However,

when these circuits are instantiated in a higher level of the design hierarchy, only the circuit

topology and sizes are propagated to the top level, but not the checks. Consequently, some

of the knowledge that we are trying to capture is lost. In the next chapter we will describe

how to extend these integrated systems to propagate the circuit’s constraints and monitors

along the design hierarchy to ensure that all instances of the design are operating within

specification.

2.2.2 Automatic Analog Synthesis Tools

The main goal of the synthesis phase is to size the transistors in a given topology to meet the

specifications. A number of analog synthesis tools have been developed to automate this

process by performing complicated multi-variable optimizations. These approaches can be

2.2. RELATED TOOLS 9

classified into three categories: knowledge-based, equation-based, and simulation-driven.

The knowledge-based systems [10][11] presented in the 1980s were the first generation

of automated analog synthesis systems. In an knowledge-based system, there is usually

a library of analog cells where designs can be either flat as in the IDAC system [10] or

hierarchical as in OASYS [11]. Each cell in the library has its own hand-crafted design

plan. These plans, containing the analytical equations and the manually derived and pre-

arranged design strategies, are encoded in a computer-executable form. The sizing is done

by executing a prearranged design plan.

As these analytic equations became more complex, more research was devoted into

solving the equations more efficiently. In an equation-based sizing tool, the circuit parame-

ters and specifications are written in the form of analytic design equations. These equations

can be either derived and ordered manually as in OPASYN [12] and STAIC [13] or derived

automatically using symbolic simulation techniques [14][15]. The tools then apply heuris-

tic approaches such as simulated annealing or genetic algorithms on these equations to

optimize the circuit. Recently, it has been shown that certain CMOS analog circuits can

be approximated using posynomial equations. These posynomial equations can be solved

exactly in seconds using convex optimization techniques. The downside to these powerful

tools is that the specification is more complex since it must be formulated to create a con-

vex set of constraints, making it harder for designer/users to add new optimization scripts.

For example in convex optimization [16][17][18], the analog circuits’ objectives and con-

straints must be in a specific form for the optimization to work. This task is currently done

by experts within the vendor company.

In the simulation-based analog synthesis approach [19][20][21][22][23], these tools do

not evaluate any analytic equations. Instead, they leverage numerical simulators to predict

the circuit behavior. These tools use heuristic optimization algorithms such as stochastic

pattern search, simulated annealing, and/or genetic algorithms to find an optimal solution

[24]. However these optimization techniques require a large number of iterations. To

reduce the run time, the solution search and optimization are performed in parallel across

a pool of workstations [22][23]. In [23], downhill optimization algorithms are used to

reduce the number of search steps. While simulation-based optimization can handle more

general constraints, care is still required in the problem setup, and the long runtime makes

10 CHAPTER 2. BACKGROUND

debugging more difficult.

All three synthesis approaches are very powerful optimization engines, and they enable

faster exploration of the design space and quicker closure of the design loop. The user

specifies the goals and objectives of the analog circuit as the optimization criteria. While

these tools focus on the circuit optimization problem, we are interested in finding ways to

enable designers to specify their design objects in a more flexible manner to capture a wide

class of circuits. To a large extent, our goals complement the synthesis tools since we are

capturing and documenting analog designs while the synthesis tools are designed to opti-

mize what we capture. In the future, we wish to incorporate these powerful optimization

engines into the our tool to form a complete system for designing analog circuits.

2.3 STAR

Our goal is to be able to design analog circuits and encapsulate the design information

as part of the circuit representation such that the circuit becomes a portable module. We

built a design capture system, called STAR (Schematic Tool for Analog Reuse), to make

it easier for a designer to encode constraints for a new circuit. From the capture tools,

we leverage the notion of an integrated design document, but we loosen the requirement of

having an integrated tool set. We extended the scripting approach to provide a more general

way to specify the pre- and post-processing routines. The system allows the designer to

create evaluation scripts at a higher level by providing pre-defined functions that cover

common tasks and has mechanisms to enable the designer to create new functions. The

user specifies these routines directly on the schematic as comments. With the routines

tied to the schematic, it is easy to provide a regression capability to help ensure that the

test remain current. In addition to testing the cells in isolation, some of the checks can

be passed along with the schematic for each instance of the sub-cell, thus ensuring these

constraints hold for each instantiation of the circuit.

We found these schematic-based annotations generally fall under two classes. One is

the traditional optimization/measurement comment, and the other represents constraints on

operating conditions. We describe our system in the next chapter.

Chapter 3

Active Comments

A widely used approach for annotating an analog design is to add comments to the schemat-

ics. Using comments to clarify one’s intention is commonly done in many applications. For

example, programmers insert comments into their computer programs to give readers some

insight into the purpose of the code as well as the programmer’s intentions. One problem

with writing these comments is that once they are written, they are not always updated

to reflect the latest implementation. Our approach to address this problem is to make the

comments part of the implementation. In the context of the analog design process, we

would like to turn these comments in the schematics into executable code to automate the

generation of simulation and data collection scripts. This way, in addition to annotating the

design, these comments also aid the designers, thereby offering incentives to the designers

to use these comments in the first place. We call these comments Active Comments.

Turning the comments into executables require some constructs to specify the process

of simulation and data gathering needed for its implementation. Since it is difficult to create

all the possible routines one would ever need for the simulation control and results analy-

sis, our goal was to create a flexible framework which can be extended by user specified

routines. These user supplied extensions can then be archived along with the annotated

schematic, enabling design reuse.

Having a system that automatically generates the pre- and post-processing routines

from user annotation does not mean that the generated routines can be used with a dif-

ferent process technology. Any process specific parameters used in the routines and design

11

12 CHAPTER 3. ACTIVE COMMENTS

constraints would make these comments non-portable. We need to capture these constraints

and code the pre- and post-processing functions in a process independent manner in order

to help make the analog designs into portable modules.

Section 3.2 describes the basics of Active Comments, followed by a detailed description

of the two different types of comments in Section 3.3 and Section 3.4. We examine the

issues with making the Active Comments portable in Section 3.5. Since a phase-locked

loop (PLL) is used as a concrete analog/mixed-signal circuit example in this and later parts

of the thesis, we start this chapter with a brief review of PLL design.

3.1 Phase-Locked Loop Design

Phase-locked loops (PLL) are often found on contemporary digital and mixed-signal VLSI

systems. For example, PLLs are used as clock generators in all the microprocessors de-

signed today and in many I/O subsystems. The main goal of a PLL is to create an internal

clock with a precise timing relation relative to an external reference. While there are many

design objectives for a PLL, the primary ones usually focus on the quality of the generated

clock, specifically, its phase offset and jitter. Phase offset is the “DC” error in the timing of

the output clock and jitter is the “AC” timing noise. Many circuit parameters affect phase

offset and jitter, and we must design the circuits to minimize their effects.

Figure 3.1(a) shows a general structure of PLL, which consists of three main blocks: a

phase comparator, a low-pass filter, and a voltage-controlled oscillator (VCO). The VCO

generates a periodic signal,ck. This clock signal is fed back to the phase comparator to be

compared to an external reference. The comparator measures the phase difference between

these two periodic signals and outputs a signal to indicate the error. The low-pass filter

converts this phase error to a change in the control voltage which modulates the phase and

frequency of the VCO generated clock. Ifck lags the reference, the control voltage is

adjusted to increase the VCO frequency such thatck advances its phase. Conversely, ifck

leads the reference, then its frequency is reduced to retard its phase. The control voltage

is adjusted until no phase error is detected. Notice that we are adjusting frequency but

comparing phase. Since phase is the integral of frequency, the output phase of the VCO

is proportional to the integral of the control voltage and introduces a pole in the frequency

3.1. PHASE-LOCKED LOOP DESIGN 13

N

Vctrl
VCO

Ref

ck_fb

ck
Low−Pass
Filter

Error

(a)

(b)

Phase

Comparator

Low−Pass
Filter

Vctrl
VCO

Ref

ckError

Phase

Comparator

Figure 3.1: General Phase-Locked Loop Structure (a) Basic Blocks (b) with Divider for
Frequency Multiplication

domain transfer function. In order to achieve zero phase error, the loop filter introduces

another integration into the feedback loop [25]. As a result, the closed loop feedback

system is often linearized and modeled as a second order system. The transfer function

contains two poles at the origin, and thus requires a zero before the unity gain frequency in

order to improve the phase margin and stabilize the loop. This zero is usually implemented

within the low-pass filter along with one of the integration poles.

With the phase comparator detecting no error, the generated clock and the reference

must have the same frequency. We can extend this architecture to enable frequency mul-

tiplication by adding a frequency divider in the feedback path, as shown in Figure 3.1(b).

The divider makes the VCO output N times higher in frequency than the reference and

feedback inputs, thus allowing the PLL to perform frequency multiplication.

Like most modern integrated circuits, each of the PLL sub-blocks is hierarchical and

is composed of one or more analog/mixed-signal components. There are many approaches

14 CHAPTER 3. ACTIVE COMMENTS

for building each of these elements. The VCO can be based on LC circuits [26][27], multi-

vibrators [28], or ring structures. For our example we will use a ring based oscillator since

it is the most flexible design and can be operated over the widest frequency range. This

type of oscillator is composed of identical delay elements cascaded in a ring configuration

with inverting feedback between the two elements that close the ring. A ring oscillator can

typically generate a wide range of frequencies with a linear relationship between frequency

and control voltage. Unfortunately, it is also has higher noise sensitivity than some of the

other topologies. Any high frequency noise coupled to the VCO is not corrected by the loop

and directly affects the quality of the clock, since the feedback loop has finite bandwidth.

Therefore, care is needed to ensure supply noise does not couple into the VCO.

The phase comparator compares the phase of the the generated clock to that of the

external reference. The comparator can be implemented using a XOR gate [29], a SR

latch [30], or D flip-flops [31][32]. In a PLL application, the phase comparator needs to

detect both phase and frequency differences because the feedback clock and the reference

can be at different frequencies when the loop starts up and is not in lock with the exter-

nal reference. In our implementation, we use a D flip-flop based design that detects both

phase and frequency errors. This detector is commonly called a phase-frequency detector

(PFD). Figure 3.2 shows the block diagram of the PFD with its timing waveform. The PFD

compares the rising edges of the reference and feedback clock to output a pair of pulses,

up anddown. The rising edge of the feedback clock asserts theup signal, and the rising

edge of the reference clock asserts thedown signal. After both outputs have risen, the PFD

self-resets to de-assert both outputs which aligns the falling edge of the outputs. If the

reference is early, then theup pulse will be wider. On the other hand, if the feedback clock

is early, then thedown pulse will be wider. Ideally, the difference in the widths of the two

output pulses equals the phase error and is zero when the two signals are aligned. To avoid

introducing any phase offset, the signal path of the reference clock and that of the feedback

clock must be identical with matched input edge-rates.

The low-pass filter converts the phase error detected by the PFD to a change in con-

trol voltage to modulate the VCO. This task is generally accomplished using three circuit

blocks: a charge-pump, a capacitor, and a resistor. Together the charge-pump and the

3.1. PHASE-LOCKED LOOP DESIGN 15

QD

R

QD
up

R

clk

ref

down

∆φ

ref

up

down

clk

Figure 3.2: PFD Model and Timing Diagram

capacitor achieve the error-to-voltage conversion by adding or subtracting a charge propor-

tional to the phase error onto the capacitor [25]. The resistor forms the zero that stabilizes

the PLL. This resistor can be implemented using a passive element in series with the ca-

pacitor. In this case, the control voltage is the sum of the instantaneous voltage formed by

the current through the resistor and the voltage integrated across the loop filter capacitor.

Alternatively, active elements can be used to form an effective resistor in a feed-forward

manner [33][34][35][36]. This latter approach adds an extra copy of the charge-pump cur-

rent directly to the bias current used to control the VCO. By setting the the capacitance

and resistance of the RC low-pass filter, the designer determines the frequency of the zero.

These values must be carefully chosen to ensure loop stability and a high quality output

clock.

The schematics of these analog components are archived in the design database. We

call this set of schematics the production schematics because every transistor in this set

has a corresponding layout in the cell being created. In addition to these schematics, the

database also contains another set of schematics that are used to help characterize and verify

16 CHAPTER 3. ACTIVE COMMENTS

Active Comments

Predefined
Function
Library

Execution
Engine

Figure 3.3: Each Active Comment is Composed of Pre-defined Functions and Processed
by an Engine

both the components and the overall system. While the designers can measure some of the

circuit parameters directly from the production schematics, most often, individual analog

cells or groups of cells are used with the addition of some type of test scaffolding. This

scaffolding might directly drive some internal nodes, add explicit noise to some nodes in

the environment etc. to help characterize the circuit. For example, one cannot simulate the

VCO to find how fast it will oscillate after it is integrated into the PLL since the feedback

will lock it to the input clock. Instead, it is easier to simulate the VCO in isolation with

its bias circuit and the estimated load to measure these parameters. The designer would

construct a schematic to include these elements, which is an example of a “test bench”

schematic. A complete design database would include many of these test bench schematics

along with the set of schematics needed to build the production PLL. How our system deals

with these schematics is described next.

3.2. ACTIVE COMMENTS 17

3.2 Active Comments

The basic operation of the Active Comments is shown in Figure 3.3. It starts with writing

the comments into the circuit schematic. The designer composes these comments out of a

set of predefined functions from a library, and an execution engine processes these com-

ments to generate the necessary simulation and analysis routines. We have developed two

types of Active Comments: Measurements and Assertions. The Measurement Comment

sets up the simulation runs and measures the circuit parameters. It also allows the user

to formulate analytical expression and evaluate the expression based on the simulation re-

sults. The Assertion Comment monitors the circuit’s environment to ensure that the design

constraints are not violated.

Where the comments are added and how they are used is based on the how the schemat-

ics are used. To characterize a design or measure a circuit parameter, the schematic being

used is always the top-level or a test bench schematic. So the Measurement Comments are

written into these top level schematics. On the other hand, we need to ensure that all the

sub-circuits are functioning correctly whenever they are used, so the Assertion Comments

can be placed in the production schematics of any cell that needs to be checked.

The following sections examine these two types of comments in more detail, starting

with the Measurement Comment.

3.3 Measurement Comment

In most analog and mixed-signal designs, there is a broad range of parameters that needs to

be optimized, such as: voltage, current, delay, pulse width, output impedance, bandwidth,

gain, etc. While the schematics clearly show the topology of the solution, most of the

parameters that the designer is interested in are the result of the operation of the circuit,

and are not directly apparent from just looking at the topology. Measurement Comments

allow the designer to explicitly record both the parameters that are important for this circuit,

and what tests should be run to measure these parameters. Thus by using Measurement

Comments, a designer can write equations and place them in the schematic instead of

creating a number of simulation files to extract the parameters of interest.

18 CHAPTER 3. ACTIVE COMMENTS

vLo

sslh

ffhl

vHi Vctrl

Freq

o1o0
ck

Vctrl
OTA

Figure 3.4: VCO Test Bench Circuit and Transfer Curves at Two Extreme Operating Con-
ditions

We use the VCO to demonstrate the use of the Measurement Comments. Figure 3.4(a)

shows the test bench of the VCO, which consists of a five-stage inverter ring, an operational

transconductance amplifier (OTA) to convert the control voltageV ctrl to a drive current

for the oscillator, a level shifter that amplifies the small swing VCO clock to full CMOS

level, and an estimated load. AsV ctrl increases, the oscillation frequency also increases.

Figure 3.4(b) plots the oscillation frequency vs. control voltage transfer curves. Since

integrated circuit manufacturing has some variability, a designer needs to test the circuit

over a range of manufacturing variations. This leads to simulating the circuit at the extreme

points of the manufacturing distribution. These extreme points are usually called corners.

Figure 3.4(b) shows simulation at two corners; one when all transistors are as fast as they

can be, and the other is at the slow corner

The linearized PLL model assumes a linear relationship between the VCO oscillation

frequency and the control voltage. However, the slope of the transfer curve (Figure 3.4(b))

flattens at the extremes of the control voltage because devices in the OTA go out of satu-

ration. Since the VCO frequency is linear withV ctrl only within a range of voltages, the

VCO operating range must be limited to the linear portion of the transfer curve to keep the

PLL model valid.

3.3. MEASUREMENT COMMENT 19

To find the frequency (and the corresponding control voltage) limits of the VCO, we

need to take the most conservative boundary by simulating the circuit at the extreme cor-

ners. We determine the lower frequency limit with the fast transistor model and the high

limit with the slow transistor model. Bounding the range of the control voltage this way

guarantees that the VCO frequency is linear with respect toV ctrl across all process and

operating corners. The upper and lower bounds of the voltage range are used as control

parameters in all of our PLL simulations.

Measuring the desired parameters, like the VCO range in the previous paragraphs, can

require analyzing the data from a number of simulation runs. In general these simulation

runs require different types of information. First the simulation needs to read some global

parameters that used in a set of different tests. For example these might be the initial state

of the circuit, simulation parameters, and/or simulator settings. Once we have the global

information we next need to specify what simulations need to be run, and then what analysis

routines we want to run over the direct simulation output. Finally once all the calculations

are done, we would like a way to report these processed results either back to the user or to

the program to be used in future calculations. To accomplish all these tasks STAR provides

four types of Measurement Comments: GLOBAL, DEFINE, CALCULATE, and REPORT.

Since most of these tasks are performed in the define comment, the next section starts by

explain how this comment works. It then explains the function of the other comments.

3.3.1 Simulation Setup

STAR provides the DEFINE statement to enable users to specify the simulation and anal-

ysis routines. The statement consists of three parts: the first part specifies what simulation

to run and what operating conditions to use, the second part describes how to analyze the

simulation results, and the third part allows one to name some of the results so they can be

used for other routines.

For example, to find the upper and lower bounds of the control voltage we can sweep

the control voltage across the entire supply range, plot the transfer curve, and then find the

inflection points. All this can be done in a DEFINE comment:

20 CHAPTER 3. ACTIVE COMMENTS

DEFINE vLo=LoRange(vctrl,Freq(ck)) w/ SweepV(vctrl,gnd,vdd) @ ffhl

DEFINE vHi=HiRange(vctrl,Freq(ck)) w/ SweepV(vctrl,gnd,vdd) @ sslh

We use keywords,# DEFINE, w/, and@, to separate the different fields in the com-

ments, and the fields are processed in reversed order, starting from the right end.

The four letter symbolsffhl andsslh explicitly name the type of transistors and the

operating conditions under which the simulations are run. Each letter denotes the setting

of an item. Together the four letters specify the speed of the PMOS and NMOS transistors,

the supply voltage, and the operating temperature, respectively. In general,f means fast,

s slow, l low, andh high. The lettersffhl correspond to the operating condition where

the transistors are operating the fastest with fast PMOS and NMOS transistors, high supply

voltage, and low junction temperature, whilesslh specifies the opposite condition. With

four letters,ffhl (sslh), the comment specifies the fastest (slowest) operating conditions

to find the lower (upper) inflection point of the curve. If this field is omitted, then the

simulation defaults to the typical condition,tttt. Appendix A describes how users can

override the default settings.

To the left of the operating condition are the two parts in the comment that specify

the simulation stimuli and the analysis procedures. The stimuli are generated in a pre-

processing step, and the analysis procedures post-process the simulation results. The func-

tion SweepV () is a pre-processor that directs the simulator to sweep the control voltage,

vctrl, from gnd to vdd.Freq() is another pre-processor, and it uses the simulator’s mea-

surement capability to find the frequency ofck. The simulator’s measurement command

contains a reference name to identify the measured value in the simulation results, and this

name is return byFreq(). The post-processors,LoRange() andHiRange(), use this ref-

erence name to access the oscillation frequency in the simulation outputs, find the lower

(upper) inflection point of the VCO transfer curve, and return the corresponding voltage.

The post-processing results are the values of the critical parameter that are specified

with the # DEFINE statement. We assign the results to variables so that these values

can be used by other routines. In general, these variables can either be scalars or arrays.

The datatype of the variables is not declared a priori. Instead, the variables are casted based

on the return value of the post-processor. In this example, the post-processors,LoRange()

3.3. MEASUREMENT COMMENT 21

#DEFINE vHi= ...
#DEFINE vLo= ...

<file>.sch

<file>_ck0.hsp <file>_ck1.hsp

<file>.spi

Figure 3.5: The Schematic Produces One Device Netlist (.spi) and Each #DEFINE Gener-
ates a Checker File (ck0/1.hsp)

andHiRange(), return the lower and upper bounds of the control voltage, respectively.

The return values are assigned as scalars into two variables,vLo andvHi, which are used

to control other PLL simulations.

Normally when a user creates a netlist from a schematic, a single file is created which

contains information about the devices shown in the schematic. Adding Active Comments

increases the number of files produced during this operation. Each# DEFINE statement

in the schematic is really a set of instructions for a simulation run plus a post processing

step, so each generates it own control file, as shown Figure 3.5. For the control voltage

range measurement explained in the previous paragraphs, the test bench schematic is named

“vcoV2,” and the corresponding netlist is named “vcoV2.spi.” From the two# DEFINE

statements, two simulation decks, “vcoV2ck0.hsp” and “vcoV2ck1.hsp,” are generated.

Figure 3.6 shows the HSpice stimulus deck generate by the comment that definesvLo. The

simulation corner specification,ffhl, in the comment are turned into the fast-fast transis-

tor corner, 0-degree simulation temperature, and 110% of the nominal supply voltage in

lines 4, 6, and 9 in the HSpice deck, respectively. TheSweepV () function generates the

parameter declaration in line 17 and the sweep command in line 19. TheFreq() function

22 CHAPTER 3. ACTIVE COMMENTS

1 * checker simulation deck
2 ***** h e a d e r b e g i n ********************
3 .prot
4 .lib ’/home/dliu/lib/spice/tsmc-0.35/mosis.lib’ ff
5 .unprot
6 .temp 0
7 .opt post accurate
8 .option post_version=9007
9 .param vddval=’1.1*3.3’
10 .param vlow=0
11 vdd vdd gnd dc vddval
12 .inc ’/home/dliu/tool_test/pll_rc/vcoV2.spi’
13 .inc ’vcoV2_checker_set.hsp’
14 ***** h e a d e r e n d ************************
15
16 .param swp_vint=0
17 Vswp_vint vint gnd dc swp_vint
18 .tran 32p 160n uic
19 +sweep swp_vint 0 3.3 ’(3.3-0)/20’
20
21 * generate a vdd/2 reference
22 efreq_ck vfreq_ck gnd vdd gnd 0.5
23 .meas tran per trig v(ck,vfreq_ck) val=0 rise=5
24 + targ v(ck,vfreq_ck) val=0 rise=6
25 .meas tran freq_ck param=’1/per’
26
27 .end
28

Figure 3.6: HSpice Stimulus File Generated from Measurement Comment

1. ***** Global Parameter File **********************
2 .ic v(o0)=0
3 .ic v(o1)=vddval

Figure 3.7: HSpice Probe Command Generated from Assertion Comment

3.3. MEASUREMENT COMMENT 23

produces lines 21 through 25 to make two calls to the simulator’s built-in measurement

function to find the frequency ofck. The first measurement finds the period of the signal,

and the second calculates its reciprocal to convert the period to oscillation frequency. The

name of the second measurement,freq ck, is generated by theFreq() function and passed

back as its return value into the STAR system. This enables the post-processing routines,

LoRange() andHiRange(), to find the measurement results in the simulation output file.

All the technology dependent parameters such as the supply voltage, the operating temper-

atures, and the location of the transistor model are all stored in a global parameter file that

STAR accesses. The organization and implementation of the Measurement Comments are

described in more detail in Chapter 4.

In addition to including the transistor netlist in line 12, the generated deck also includes

a file called “vcoV2checkerset.hsp” in line 13. This file contains the parameter and initial

condition settings that are common to all the measurements and is included by all the decks

generated from this schematic. The contents of that file is specified with a different type of

statement which is described in the next section.

3.3.2 Shared Parameters

The # GLOBAL statement allows the designers to specify parameters that are shared

among different simulations specified within the same schematic. These global param-

eters include voltage, current, initial values, and simulator parameters. A# GLOBAL

statement is a declarative statement that consists of function calls to set the value of the

parameter. We use the# GLOBAL statement to initialize the oscillator to a known state

to make taking the measurements consistent and repeatable:

GLOBAL InitV(o0,0), InitV(o1,vddval)

TheInitV () is a pre-defined function that initializes a node to the specified voltage. In this

example, nodeso0 ando1 in the oscillator (see Figure 3.4) are initialized to 0 and Vdd, re-

spectively. Figure 3.7 shows the generated parameter file, “vcoV2checkerset.hsp,” which

contains the two initial condition HSpice commands. These global parameters are written

24 CHAPTER 3. ACTIVE COMMENTS

into a file which is to be included in all the stimulus decks produced by the# DEFINE

statements on the same schematic. With the# GLOBAL statement, designers only need

to specify these parameters once and the values will be automatically placed in all the

generated simulation routines.

Using# DEFINE and# GLOBAL, the user can specify the simulation procedures

to measure circuit parameters. The next section describes how these parameters can be

manipulated after they are extracted from simulation results.

3.3.3 Analytic Equations

An important tool for analog circuit designers are the analytic equations used to help pre-

dict the circuit behavior. By manipulating the values of the parameters in the equation, the

designer can very quickly estimate the performance that a parameter change will have, or

conversely, how to set the parameters to achieve the desired performance. These equations

offer insights to how the circuit behaves, and also how to optimize the circuit. The user can

order these equations using the# CALCULATE statement which has a similar syntax to

a C-style mathematical expressions. The equation contains the critical parameters defined

in # DEFINE statements and the result is assigned to a variable. The statement is written

in following form:

CALCULATE VAR NAME = EXPRESSION

TheEXPRESSION is the user specified analytic equation that combines the parameters

measured in# DEFINE statements. The flexibility and generality of the C math library

allow the designer to code any analytic equation. The result of theEXPRESSION is

stored inV AR NAME. Before evaluating the equation, STAR examines the size of each

variable used in theEXPRESSION . If the critical circuit parameters in# DEFINEs

are vectors, thenEXPRESSION is evaluated as a vector and its result is stored as a

vector inV AR NAME.

The# CALCULATE statements on the schematic are evaluated independently from

each other. AnEXPRESSION can include parameters defined in the#DEFINEs on

3.3. MEASUREMENT COMMENT 25

the same schematics and other variables evaluated earlier in other schematics, but it cannot

use anyV AR NAME that are being defined by the other# CALCULATE statements

on the same schematic. Furthermore, if aV AR NAME is being defined by more than one

CALCULATE, there will be a name collision. This condition must be avoided by the

user since the current version of STAR does not check for name collision errors.

3.3.4 Reporting Results

The variables holding the measured circuit parameters and evaluated expression results are

stored internally within the execution engine. If the designer wants to view them in a plot

or a report, or to store them in the database for other Active Comments to use, he/she needs

to explicitly specify the post-processing functions to manipulate the data. STAR provides

the# REPORT construct to enable designers to specify how the final values of the pa-

rameters are used. Similar to the# GLOBAL statements, the# REPORT statements

are declarative statements consisting of a list of function calls. In the case of the VCO

range example, one can use the reporting construct to export thevLo andvHi variables so

other Active Comments can access them:

REPORT Export(vLo), Export(vHi)

The Export() function writes the value of the variables into a file so that other Active

Comments can access them. This enables Measurements from different schematics to be

cascaded.

3.3.5 Execution Flow

The Measurement Comments are declarative statements where the ordering between the

different types of statements is important. The execution of the Measurement Comment do

not follow the order in which the comments were written. Instead, the sequence of exe-

cution depends on the type of comment which follows the flow of information outlined in

Figure 3.8. Data that is shared among the Measurements on the same schematic must be

processed before the simulation decks are generated. The# GLOBAL statements set the

26 CHAPTER 3. ACTIVE COMMENTS

: displays and stores resultsREPORT

: formulate equationsCALCULATE

: controls simulationsDEFINE

: sets global variablesGLOBAL

Figure 3.8: Execution Flow of Measurement Comments

global parameters used in all the automatically generated pre-processing routines, so they

are processed first. Following that are the# DEFINE statements which generate the

simulation decks and specify the analysis routines. Each# DEFINE statement is split

into two parts; the pre-processing portion generates the decks used to control the simula-

tion, while the post-processing portion is executed after the simulation results are available.

After the critical circuit parameters are extracted from the simulation runs and stored into

the variables declared in the# DEFINE statements, the analytic equations formulated

in the# CALCULATE statements are evaluated. The,# REPORT statements are exe-

cuted last to present the results in graphical or tabular form and to write the final results to

the design database.

While the ordering between the different types of statements is important, the state-

ments within each type on the same schematic are independent from each other. So, the

sequence in which they are processed can be relaxed . In fact, it may be possible to execute

them in parallel as a performance enhancement. On the other hand, Measurement Com-

ments in different schematics may not be independent from each other since STAR enables

the designer to use variables defined in one schematic to be used by Measurement Com-

ments in other schematics. Cascading measurements this way naturally creates a causal

3.4. ASSERTION COMMENT 27

chain. The ordering of these schematics is determined by where the variables are being de-

fined. If any Measurement Comment attempts to use a variable that has not been evaluated,

STAR would search through all the schematics in the database to find where that variable

is defined and warn the user to execute that schematic before the current one can be used.

Sometimes Measurement Comments can be written in the production schematic of a

cell rather than requiring a separate test bench. Since a Measurement creates an entire

simulation environment, including the stimuli to the underlying circuit, when this circuit

block is integrated into a higher level, its Measurements are not executed.

3.3.6 Measurement Comment Summary

Using Measurement Comments allows a designer to specify simulation runs and analysis

routines in the circuit’s schematic representation. Furthermore, it encourages the designer

to keep the simulation scripts up-to-date with the circuit implementation since the designer

is actively using these scripts. To provide further incentives, regression tests could be run

on all circuits as part of the design to find stale files. Finally, circuit schematics convey

relevant design information which other design tools might be able to leverage.

In fact analog synthesis tools would provide an additional capability for the Measure-

ment Comments, since they automate the sizing of transistors in a given analog circuit

by performing complicated multi-variable optimizations. Thus our plan is to integrate

these synthesis tools into our system to create more powerful library operations, such as

multi-variable optimization routines, for the designers to use, in additional to the simpler

operations we have already implemented. For established blocks, there might be one opti-

mize/measure comment that essentially generates the entire circuit.

3.4 Assertion Comment

In addition to measuring and optimizing the critical circuit parameters, a designer must

also check that the circuits’ environment always satisfy their operating constraints. For

example, transistors acting as current sources need to be in the saturation region or delay

28 CHAPTER 3. ACTIVE COMMENTS

matching circuits must maintain certain timing margin with the signal being tracked. An-

other example might be that when a circuit was tested, the designer assumed that noise

on the analog circuit’s bias voltage must caused less than a 1% variation on the current it

produces.

While designing each component, the circuit designer must guarantee that the compo-

nent functions correctly under the worst possible operating environment. However, as other

designers reuse the circuit and integrate it into different parts of the system, the operating

condition may change from what the circuit was originally designed for. To ensure that the

circuit operates within its specified environment, we created the Assertion Comments to

actively check the constraints placed on the circuit’s operations and perform these checks

each time the circuit is used. Therefore, these assertion checks must propagate from the

component level to the system level. By embedding the Assertion Comments in the design,

we tie the operating constraints to the design itself. So, the designer only needs to embed

the checks on the properties of interest, and these Assertions will monitor all the properties

in all the simulations, across the system hierarchy.

To illustrate how one can embed an Assertion Comment to check the circuit’s oper-

ation, we use a charge-pump circuit as an example. The charge-pump adds or subtracts

from the filter capacitor an amount of charge proportional to the phase error. A model of a

charge-pump is shown in Figure 3.9(a), where the output of the charge-pump is connected

to two current sources. The upper current source deposits charge to the filter capacitor (not

shown) whileupb is asserted, and the lower current source withdraws charge whiledn is as-

serted. The amount of charge deposited or withdrew equals the product of the total current

multiplied by the duration the switches are asserted. Note, the currents from the current

sources are identical such that when bothupb anddn are asserted, no net charge is added

or subtracted. It is critical that the current level from each source maintains roughly con-

stant during the time the corresponding control signal is asserted. And to avoid introducing

any static phase offset or disturbing the control voltage, there must be no current flowing

into or out of the charge-pump when both control signals are de-asserted or simultaneously

asserted.

Figure 3.9(b) shows the circuit implementation of the charge-pump along with a zero-

volt voltage source,vmeas, at the output node. This voltage source is used as a current

3.4. ASSERTION COMMENT 29

biasVout

(a) Idealized Model (b) Circuit Implementation

Bias
Circuit

vmeas

cs

cs

Mn

Mp

upb

dn

Vcn

Vcp

upb

dn

Vout

Figure 3.9: Charge-pump Diagram (a) Idealized Model (b) Circuit Implementation with
Current Source at the Output

meter to measure the current flowing to and from the circuit. In the following sections we

show how to use Assertions to check the circuit’s operations to ensure the circuit’s critical

requirements are always satisfied.

3.4.1 Design Assertions

In Figure 3.9(b), the two inner transistors, Mp and Mn, implement the current sources in

the charge-pump. In order for these transistors to function as current sources to produce

constant current, they need to be operating in the saturation region under all the operating

conditions in all simulation runs.

30 CHAPTER 3. ACTIVE COMMENTS

To check the transistor saturation, we need to measure the Vds and Vdsat of the tran-

sistor. For robust operation, the transistor must have a saturation margin, (Vds-Vdsat), of

at least 5% of the supply. In this example, we mark the transistors that need to be checked

with a label so a program can find the transistor in the netlist. We added acs label, short

for current source, to the transistor property .

The essential features for an Assertion are the specification of a routine to process the

simulation data and the constraint that the circuit must hold under all operating conditions.

The comment to check the saturation margin of transistors is as follows:

ASSERT SatMargin(cs)>= 0.05*Vdd

where the keyword# ASSERT denotes an assertion, andSatMargin() is a predefined

function that calculates the saturation margin of a transistor. The right hand side of the

inequality sets the margin to be 5% of the supply voltage. When the transistor’s Vds-Vdsat

is less than 0.05*Vdd, STAR prints out a failure message.

As part of the netlisting process, theSatMargin() function first finds all transistors

in the sub-circuit that are labeled with thecs property. Then, in a pre-processing step,

generates the appropriate HSpice probe commands into a file to find the transistor’s instan-

taneous Vds and Vdsat. Figure 3.10 shows the generated commands. The function finds

the two transistors in the sub-circuit with thecs property: Mp and Mn. The HSpice .probe

commands call other functions provided by the simulator to find the Vds and Vdsat of the

transistors and to calculate the saturation margin. The references to the probes,vmprb 0

andvmprb 1, are unique and need to be passed back to STAR to allow the post-processing

routines to access them. For this example, the post-processor simply reads the values of

vmprb 0 andvmprb 1 in the simulation results and compares them to the constraint in the

Assertion Comments.

If a cell is used multiple times throughout the design hierarchy, STAR will traverse the

hierarchy to find all the Assertion Comments in each instance and generate the appropriate

probe statements into one file. The circuit designer then includes the generated file when

running the simulation and use STAR to post-process and analyze the results.

The Assertion Comment in this simple form is suitable for checking those constraints

3.4. ASSERTION COMMENT 31

1. ***** Include File for Assertions ****************
2. * add .include to the simulation deck
3 .probe vmprb_0=par(’abs(vds(Mp))-abs(vdsat(Mp))’)
4 .probe vmprb_1=par(’abs(vds(Mn))-abs(vdsat(Mn))’)

Figure 3.10: HSpice Probe Command Generated from Assertion Comment

that must always be satisfied. However, not all constraints are structured this way. The

next section describes how we augment this simple form to support more complicated

constraints.

3.4.2 Conditional Assertions

Sometimes what performance constraints to check are based on the circuit’s operation. For

example, we may want to delay the start of our saturation margin checks in the charge-pump

until the simulation has passed the initial transient to avoid any false assertion violations

before the circuit has settled. This creates a condition which must be met to activate the

checks. We extend the simple# Assertion statement to include a validation condition as

part of the comment:

ASSERT SatMargin(cs) IF Time(bias)>= 5ns

This comment contains two Assertions separated by a new keywordIF . The first is the

same saturation margin check described in the previous section and the second checks the

simulation has progressed longer than 5ns. TheTime() function returns the time value at

each simulation step to give us a timing reference. The input to this function can be any

node in the circuit since all nodes are evaluated at locked step. TheIF keyword marks

the beginning of the conditional clause. The Assertion following the keyword specifies the

conditions under which the first# ASSERT statement is valid. STAR will first process

all the Assertions after theIF keyword. If the results of these assertions make the IF clause

true, then STAR will evaluate the first Assertion and report its result.

32 CHAPTER 3. ACTIVE COMMENTS

3.4.3 Assertion Comment Summary

Embedding assertions in every simulation can warn the user when margins are violated and

prevent the circuit from operating outside the desired limits. These checks can spot errors

that are missed when only functionality is tested. Often when the constraints are violated,

the circuit will still function but with reduced robustness. These checks guarantee that all

circuits are operating within the conditions for which they are valid. An added benefit of

coupling the assertion with the design is that it enables seamless design reuse: when the

block is integrated as part of a system by another designer, the same set of checks will be

performed automatically.

3.5 Portable Comments

While Active Comments can be used to capture the design knowledge, simply embedding

them into analog circuits do not automatically turn these circuits into reusable components.

How well a circuit can be reused depends on how portable its design representation is.

While Active Comments allow one to attach constraints to the designs, they do not a priori

make the constraints portable. For example, constraints that use absolute values such as

seconds, volts, and amps may no longer hold true as the target process technology changes,

thus rendering these constraints non-portable. One way to improve the portability of the

constraints is to transform these absolute values into relative values by using process inde-

pendent metrics such as gate delays, supply voltages, and reference currents. Using process

independent metrics reduces the dependencies on the technology, but does not convey much

information about the true issues with the underlying circuit. The best way to constrain the

circuit is to use some inherent properties of that circuit (i.e., we should use what the circuit

is designed to do) to constrain the circuit. This constraint then describes the circuit at a

higher level. Ideally, we want to archive the design information at this level.

We illustrate the concept of portable comments using two examples. In the first exam-

ple, we transform a non-portable comment into a portable one. In the second example, we

show how a constraint that is already scalable with process evolves to capture the designer’s

knowledge without becoming process dependent.

3.5. PORTABLE COMMENTS 33

dn

down

I

I

PFD Charge−Pump

∆Q = I ∆φ

clk

ref

R

up
D Q

R

D Q

Vout

dni

upi upb

Figure 3.11: Connection of PFD and Charge-Pump Circuit Blocks

In the first example, we applied Active Comments to constrain the interface between

the PFD and charge-pump of the PLL circuit and show how these comments evolved and

become more robust and scalable. Together, the PFD and charge-pump (Figure 3.11) con-

vert the phase information into voltage. The PFD outputs are pulses where the difference

in theup anddown pulse widths equals the phase error,∆φ. These pulses turn the current

sources in the charge-pump on and off such that the net change,∆Q, from the charge-

pump is proportional to∆φ. To reduce static phase offset, we want to overlap the up and

down currents while minimizing the current pulse widths to reduce the effect of current

mismatches. To achieve this, our charge-pump has tuned delay-matching inverter chains to

shape theup anddown control signals. However, if the control pulses from the PFD are

too narrow, they will disappear in the inverter chains because of the limited bandwidth of

the inverters. Therefore, we need to set a limit on the minimum pulse width.

From simulation, we found that if the pulse width is less than 500ps, then the pulses

34 CHAPTER 3. ACTIVE COMMENTS

will disappear in the inverter chain under some process corners. To ensure the pulses are

wide enough, we constrain the pulse width to be at least 500ps as follows:

ASSERT PulseWidth(up)<= 500ps

ASSERT PulseWidth(down)<= 500ps

While the 500ps constraint correctly bounds the pulse width for the up and down control

signals for the 0.35µm technology, that value is too wide for technologies with finer ge-

ometries. To improve the scalability of this assertion, we normalize the pulse width to the

delay of a fanout-of-four (FO4) inverter, and transform the constraint to be 3*FO4:

ASSERT PulseWidth(up)<= 3*FO4

ASSERT PulseWidth(down)<= 3*FO4

Recoding this assertion using gate delays reduces the its dependency on the process tech-

nology and thus improves the scalability of the comment. We can update the value of these

metrics as part of the technology calibration step. But this is still not quite right.

By examining what the comment is trying to constrain, we can further refine it. In this

example, we are interested in making sure that if there is a pulse at the input of the inverter

chain, a pulse appears at the output of the chain. Taking advantage of the fact that the PLL

is periodic, we can turn the constraint into checking for a pulse at the output when there is

a pulse at the input:

ASSERT PulsePropagation(upi,upb)

ASSERT PulsePropagation(dni,dn)

By looking for the existence of pulses, the assertion now checks exactly what the circuit is

designed to do – propagate pulses through the inverter chain. Coding the comment this way

not only offers more insight to the circuit’s intended function, but also make the constraint

completely independent of the process technology. Note, one now needs a separate check

to check the minimum width of the pulse.

3.5. PORTABLE COMMENTS 35

Often a constraint may already be in a portable form. But as the designer transforms

the problem or specification into circuit implementation, the constraints evolve to provide

more insight on how the circuit should behave. In the second example, we look at the prob-

lem of isolating the supply noise. Noise in the power supply network causes uncertainty in

the output voltage, current or timing. So, rejecting the power supply noise is a requirement

commonly found in analog circuits. Often, the supply rejection is specified as a ratio of

the supply noise to output noise. This ratio indicates how well isolated the circuit is from

noise. How the specification is written depends on the application. For oscillators, we are

interested in the sensitivity of the delay and phase of the output clock to the supply noise.

One common figure of merit is %-change-delay/%-change-supply [37][36][38]. We apply

Measurement Comments to the VCO critical path schematic (Figure 3.4) to measure the

dynamic supply sensitivity of the VCO. We code the comments by mimicking the specifi-

cation:

DEFINE periodHi=Max(Period(ck)), periodLo=Min(Period(ck) w/\
StepV(Vdd,vddval,0.9*vddval,1ns), SweepV(vctrl,vLo,vHi)

CALCULATE psrr = ((periodHi-periodLo)/periodHi)/0.1

Using # DEFINE, we measure the effect of a supply step on the VCO’s output fre-

quency across its operating range. We sweep the control voltage fromvLo to vHi using

theSweepV () function, wherevLo andvHi were found in the previous measurement. The

supply is modulated by a step using theStepV function. This function takes four inputs:

the node to apply the step, the initial voltage, the final voltage, and the time at which the

step is applied. ThePeriod() function reads the transient waveforms and continuously

measures the clock period. TheMax() andMin() functions find the maximum and min-

imum periods of the VCO at a given control voltage. This captures the delay deviation

caused by the supply noise. The variables storing the measurement results,periodHi and

periodLo, are vectors where each entry in the vector corresponds to a control voltage level.

The value of PSRR is calculated using# CALCULATE. The numerator calculates

the percentage change of the VCO period, and the denominator is the 10% change in supply.

This ratio is evaluated for each control voltage level. The variablepsrr stores the results as

36 CHAPTER 3. ACTIVE COMMENTS

Vout

Vcp

V− V+

cs

cs

Figure 3.12: Op-Amp Schematic

a vector. The ratio of output distortion to the induced supply noise gives us a measurable

quantity of the power supply rejection.

Since PSRR is a ratio of two quantities, this constraint does not depend on the process

technology and is therefore portable. However, this specification is also independent of the

circuit implementation. Measuring the constraint this way does not offer much insight to

how the rejection is achieved. From the test bench schematic, we find that the ring oscil-

lator is shielded from the supply by an op-amp. The supply sensitivity of this amplifier

determines the overall PSRR of the VCO. Figure 3.12 shows the circuit of the amplifier.

The supply rejection of this circuit is achieved by keeping the output devices and the tail

current source in saturation. The saturated devices increase the impedance looking into

the supply, thereby isolating the circuit from the supply noise. The circuit implementation

transforms the problem of rejecting supply noise into checking the devices’ saturation mar-

gin and their output impedance. Using Assertions, we can constantly monitor the devices’

operating conditions to ensure sufficient saturation margin and output impedance:

ASSERT SatMargin(cs)>= 0.05*Vdd

3.5. PORTABLE COMMENTS 37

ASSERT OutputResistance(cs)>= 1 Mega

The OutputResistance() function finds the output resistance of the transistors that are

labeled with thecs property. To isolate the circuit from supply noise, the current source

transistors must have their output impedance in the mega ohms. Checking the devices

operation this way captures how the designer intends to have the circuit achieve supply

rejection.

The Assertion Comments are very good at monitoring circuit performance, but they

can only check those constraints specified by the designer. The Assertions described in

the previous paragraph monitor the circuit’s operation to ensure the impedance between

the supply rails and the switching transistors are sufficiently high, but they do not prevent

other causes of failure such as noise feed through from capacitive coupling. Therefore, it

is important to use these Assertions in conjunction with the PSRR Measurement described

earlier. If the Measurement fails but the Assertions are not violated, then that indicates that

mechanisms different from the ones we are checking for are causing the failure, and more

Assertions need to be added.

Transforming the constraint from absolute value to relative value usually can be done

by normalizing the absolute values to a process independent metric. However, recasting the

constraint from a relative value to using circuit properties requires a good understanding

of the underlying circuit. It may be unreasonable to expect the designer who designed the

original circuit to write all the Active Comments in the scalable form. However with the

capability of our tool, we expect other designers to continue to refine the comments as they

reuse the circuits. With better understandings of the circuit, the designers can rewrite the

comments to be more intrinsic to the underlying circuit, and therefore making the design

representation more robust and scalable. To encourage the designers to move along this

path, we can enlist the help of other experts to reformulate the constraints as part of the

design review process.

38 CHAPTER 3. ACTIVE COMMENTS

3.6 Summary

The Active Comments capture the designers’ knowledge as part of the design representa-

tion by enabling them to formally specify their intentions. The Measurements describes

the critical circuit parameters that the design is being optimized for, and the Assertions

ensure that the circuits perform within the specification everywhere they are instantiated.

To ensure the portability of the Active Comments, we must avoid process dependent con-

straints. Instead, we should constrain the circuit using its intrinsic properties. This way, the

comments not only offer insight, but also are guaranteed to scale with process.

In the next chapter, we discuss the prototype that we implemented to process the Active

Comments and to support the notion of scalable comments.

Chapter 4

Prototype Implementation

Based the functional description of the Active Comments in Chapter 3, we constructed a

prototype of STAR to help automate the generation and the verification processes for ana-

log circuits. STAR translates the Active Comments in the schematics into simulation decks

and analysis directives. After simulation, the results are combined with the analysis di-

rectives and verified automatically by the tool. We use this prototype to demonstrate the

utility and feasibility of the proposed design capture system. The prototype is designed to

be flexible to allow the user to extend the pre-defined functions used to construct the Ac-

tive Comments, while at the same time shielding the user from complicated programming

effort. Furthermore, the prototype handles the communications between the pre-defined

functions used by the Active Comments, thus allowing the user to focus on the implemen-

tation of these pre-defined functions and not the interactions between the different func-

tions. Finally, the design database of this prototype integrates the Active Comments into

the circuit implementation to ensure that the annotation is coupled and up-to-date with the

implementation.

The prototype is composed of four layers, as shown in Fig. 4.1. The top-most layer,

the schematic layer, implements the schematic user interface and is written in Tcl/Tk [39]

while the middle two layers form the library and the execution engine and are written in Perl

[40]. The primitive layer contains C++ code [41] optimized for the calculation intensive

data processing routines. We want these layers to be modular so that each is not tied to how

the others are implemented.

39

40 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Active Comments

Predefined
Function
Library

Execution
Engine

Schematic Capture

Parser

Libraries

Primitive

Figure 4.1: Layering of the Prototype Tool

This chapter is organized according to the implementation of the prototype. Each of the

first four sections describes one of the layers, followed by a discussion of the implementa-

tion complexity in Section 4.5.

4.1 Schematic Layer

For analog circuits, the schematic diagrams are the most commonly used circuit repre-

sentation. Having the circuit designers interface with the prototype framework through a

schematic capture tool is a natural extension to current design practice. So we designed the

main interface to our framework to be a schematic capture tool. In our prototype, we lever-

aged an existing schematic capture tool, SUE [42], as the starting point for the schematic

layer. In addition to providing the conventional functions of a graphical design entry sys-

tem such as drawing circuits and generating circuit netlists, the schematic layer must also

provide a way for the circuit designers to enter Active Comments and pass these Comments

to the parser layer. To ensure that the Active Comments are tied to the circuit implementa-

tion, they should be integrated into the same database as the schematic, such that there is

4.1. SCHEMATIC LAYER 41

Figure 4.2: Screen Capture of the VCO Test Bench Schematic in SUE

only one copy of the Active Comments.

In the following subsections, we start by giving a brief overview of SUE, followed by

a description of the extensions that allow the circuit designer to add and modify the Active

Comment, in Section 4.1.2 and Section 4.1.3.

4.1.1 Schematic Capture Tool

SUE supports hierarchical and parameterized designs, so the user can instantiate the symbol

of a device or cell, enter the sizes, and draw the interconnections. The tool is written in

Tcl/Tk and the schematic interface is shown in a Tk canvas. Figure 4.2 shows a screen

capture of the tool displaying the test bench schematic of the VCO. Each cell in SUE has a

schematic view that shows the topology and sizes and an icon view that shows the symbol

of the cell. A netlister is included as part of the schematic tool to generate a hierarchical

42 CHAPTER 4. PROTOTYPE IMPLEMENTATION

HSpice netlist.

In order for the back-end engine to process the Active Comments, the schematic layer

must pass the Comments into the parser layer. We extended the netlister to produce a

comments file that contains the Active Comments in each sub-circuit. Figure 4.3 lists the

HSpice netlist (.spi). For clarity, some of the details are omitted. The netlist file contains

all the cells used in the design. The definition of each cell starts with.SUBCKT and ends

with .ENDS. Each cell is defined once and may be used multiple times. For example,

the delay cell,invV , is defined once between lines 20 and 23 and used five times in the

regulated supply oscillator,roscV , in lines 26 through 28. Within each sub-circuit block,

transistor definitions begin withM and cell instantiations begin withX. In this example,

there are five sub-circuits (inv, lo2hi, opAmp, invV , androscV), and one top-level circuit

(vcoV 3).

The corresponding comments file (.cmt) of the VCO circuit is shown in Figure 4.4. The

comments file follows the same structure as the netlist and contains the same set of cells

as the netlist. In the definition section for each cell, the transistors and cell instantiations

are replaced by the Active Comments shown on the schematic of that cell. The ’+’ sign at

the beginning of lines 21, 22 and 23 means the line is a continuation of the preceding line.

The connectivity information about where the cells are instantiated can be derived from the

transistor netlist.

The Active Comments are integrated into the schematic, as shown in the red text in

Figure 4.2. In the first implementation of the interface, we simply wrote the Active Com-

ments directly into the schematic as text. During the netlisting process, the netlister scans

the schematic and prints out all the text that begins with the keywords used in the Active

Comments. However, we found that while these Active Comments may be easily parsed

by a computer program, they require some annotation to clarify their intentions to other

circuit designers. Adding detailed description to each Active Comment in the schematic

is prohibitive as this approach soon fills the schematic with text. To address this issue, we

created a new view, comments view, in addition to the typical schematic and iconic views.

This view is edited using a Comments Editor. With it, the user not only codes the Active

Comments for the underlying schematic but also enters detailed description about these

comments.

4.1. SCHEMATIC LAYER 43

1 .SUBCKT inv in out WP=16 LP=2 WN=8 LN=2
2 M_0 out in Gnd Gnd NMOS W=WN L=LN GEO=1
3 M_1 out in Vdd Vdd PMOS W=WP L=LP GEO=1
4 .ENDS
5
6 .SUBCKT lo2hi in inb out
7 Xinv29 net_1 out inv WP=28 LP=2 WN=14 LN=2
8 Xinv79 pb net_1 inv WP=16 LP=2 WN=8 LN=2
9 M_0 net_3 net_4 net_2 Vdd PMOS W=16 L=2 GEO=1
10 ...
11 M_9 pb net_3 gnd Gnd NMOS W=8 L=3 GEO=1
12 .ENDS
13
14 .SUBCKT opAmp inM inP out
15 M_0 cs csM net_1 Vdd PMOS W=64 L=3 GEO=1
16 ...
17 M_7 cs cs gnd Gnd NMOS W=32 L=3 GEO=1
18 .ENDS
19
20 .SUBCKT invV in out vtop WP=16 LP=2 WN=8 LN=2
21 M_0 out in gnd Gnd NMOS W=WN L=LN GEO=1
22 M_1 out in vtop vtop PMOS W=WP L=LP GEO=1
23 .ENDS
24
25 .SUBCKT roscV o3 o4 vvdd
26 XinvV0 o4 o0 net_1 invV WP=32 LP=2 WN=16 LN=2
27 ...
28 XinvV4 o3 o4 net_1 invV WP=32 LP=2 WN=16 LN=2
29 Vmvvdd vvdd net_1 DC 0
30 .ENDS
31
32 * .SUBCKT vcoV3 ck vint $ start main CELL vcoV3 $
33 M_0 gnd vvdd gnd Gnd NMOS W=40 L=10 GEO=0 M=25
34 Xrosc o3 o4 net_1 roscV
35 Xamp vvdd vint vvdd opAmp
36 Xoamp60 o4 o3 ck lo2hi
37 * .ENDS

Figure 4.3: Hierarchical HSpice Netlist for VCO Test Bench Schematic

44 CHAPTER 4. PROTOTYPE IMPLEMENTATION

1 .SUBCKT inv
2 .ENDS
3
4 .SUBCKT lo2hi
5 .ENDS
6
7 .SUBCKT opAmp
8 ASSERT SatMargin(cs) >= 0.05*vhigh
9 ASSERT OutputResistance(cs) >= 1Mega
10 .ENDS
11
12 .SUBCKT invV
13 .ENDS
14
15 .SUBCKT roscV
16 ASSERT swing(n4)
17 .ENDS
18
19 * .SUBCKT vcoV3
20 DEFINE periodHi=Max(Period(ck)),
21 +periodLo=Min(Period(ck)) w/
22 +StepV(Vdd,vddval,0.9*vddval,1ns),SweepV(vctrl,vLo,vHi)
23 CALCULATE psrr = ((periodHi-periodLo)/periodHi)/0.1
24 REPORT Print(psrr),Print(periodHi),Print(periodLo)
25 DEFINE Kvco=SlopeArray(vint,Freq(ck)) w/
26 +SweepV(vint,vLo_c,vHi_c)
27 REPORT Export(Kvco)
28 * .ENDS

Figure 4.4: Hierarchical Comments File for VCO Test Bench Schematic

4.1. SCHEMATIC LAYER 45

Having a separate view of the design enables the user to write detailed description of

the circuits and the Active Comments used to capture the circuit. In addition, as the circuit

evolves, the user can keep a record of all the checks that were used to constrain the circuit

to let later designers know how the circuit has evolved and what checks worked and what

did not. However, turning the comments view into a repository means there are many

Active Comments in the view, and not all are applicable to the underlying circuit. So,

simply writing an Active Comment in this view does not make it executable. We wrote a

selector to allow the user to choose which Active Comments are enabled. In the next two

subsections, we describe the editor and selector in more detail.

4.1.2 Comments Editor

Figure 4.5 shows the comments view of the VCO test bench. The contents in the edi-

tor consist of groups of Active Comments. Each group is divided into three parts: title,

description, and Active Comments. The title marks the beginning of a group of related

comments and gives an one-line summary of the purpose of that group. In this example,

there are two groups: PSRR measurement and Kvco measurement. Each title begins with

an identifier,t followed by an integer. The tool uses the identifier to keep track of the dif-

ferent groups. The description section is the notes that describes this group of comments in

more detail. Any text that does not begin with an identifier is considered a description. And

the last section within a group is the Active Comments. Similar to the title, each Active

Comment is identified with ac followed by an integer.

The annotation in the comments view describes what the designer intended the Active

Comments to do. However to someone not familiar with the set of pre-defined functions

used in these Active Comments, it may still be difficult to decipher the Comments even

with the annotation. Therefore, in addition to explaining the Active Comments into a more

understandable and readable form, the editor also provides a mechanism to describe what

each function was designed to do. This is analogous to using a dictionary to find the mean-

ing of each word in a sentence. The user double clicks on the function in the comments view

to bring up a window that displays a description of the function, as shown in Figure 4.6.

46 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.5: Comments View for the VCO Test Bench Circuit

This description is written by the programmer as part of the pre-defined function. The dou-

ble clicking action activates a program in the editor to read the library files to dynamically

generate a database of the function and its description. In addition to the description, the

program also finds the function’s input parameter list to inform the user on how each func-

tion is called. Extracting these information about the function relies on the programmer’s

willingness to write the description and to follow a specific coding style. This coding style

is described in Section 4.3.2.

4.1.3 Comments Selector

With the comments view being a live document of all the Active Comments that have been

applied to the circuit, we need a mechanism to choose which Comments to execute. An

4.1. SCHEMATIC LAYER 47

Figure 4.6: Pop-Up Window Displaying a Description of the Selected Function

Active Comment is activated when the user instantiates it into the schematic using the

graphical selector shown in Figure 4.7. The selector shows all the Active Comments in the

comments view, and the one chosen by the user is added into the schematic. Along with

adding Active Comments to the schematic, we also want to include an one-line description

about them to give other designers some idea of these Comments when they review the

schematics. So, when instantiating one of the Active Comments from a group for the first

time, the group title will be automatically added to the schematic, thus ensuring that there is

always a short description associated with the Comments. We guarantee the synchronicity

between the design information and the schematic by storing the only copy of the Active

Comments in the comments view. Any place that needs to display a Comment must gener-

ate it from the source. For example, the Comments in the schematic window in Figure 4.2

are generated from the contents in the comments view and can only be modified using the

comments editor.

48 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Figure 4.7: GUI for Comments Selection

4.2 Parser Layer

The parser layer implements the engine of the STAR system to execute the Active Com-

ments. The parser reads the Active Comments, which are declarative statements with vari-

ables and nested functions, and translates them into another set of programs to control

circuit simulation. After the simulation completes, its results are processed by the analysis

functions called by the parser. Many tasks performed by the parser are similar to those done

by a compiler, so we can leverage some of these existing techniques when implementing

this layer.

Figure 4.8 shows the execution flow of our implementation. The parser takes three

inputs – the hierarchical spice netlist of the design (.spi), the comments file (.cmt), and a

global parameter file (GlbParam). The global parameter file is part of the tool distribution

and contains all the technology specific parameters such as the supply level, FO4 delay, and

the location of the device models. This file enables the Active Comments to be written in

a process independent manner by coding the comments using these parameters instead of

the actual value. For users who work on projects that target different process technologies,

the user can set an environment variable to point to the appropriate parameter file.

The execution flow is divided into two phases: generation and verification. In between

4.2. PARSER LAYER 49

(.inc)

(.hsp)

(.tr)

(.mt)

Parser (Verification Phase)

Parser (Generation Phase)

Library Layer

Si
m

ul
at

or

(.spi)

(.cmt)

GlbParam

Results

Figure 4.8: Flow of Execution

these two phases is circuit simulation. The generation phase executes all the pre-processing

routines used in the Active Comments to generate the simulator stimuli files. After the sim-

ulations are completed, the parser enters the verification phase. All the simulation results

are read into the system and processed with the appropriate post-processing functions in

the library layer. All performance violations are reported in the Results file. While the

two types of Active Comments share most of the execution flow, the Assertions have a few

more requirements than the Measurements. The next subsection describes how the parser

processes the Measurements, followed by a description of the extensions made to process

the Assertions.

50 CHAPTER 4. PROTOTYPE IMPLEMENTATION

4.2.1 Measurement

During the generation phase, the parser reads the device netlist (.spi) and comments file

(.cmt) produced by the schematic interface. The process ordering of the Measurement

Comments follows the sequence outlined in Chapter 3. When implementing the parser to

process the Measurements, we had to address two practical issues. One is the handling of

variables used in the Active Comments. Since the variable used in both Measurements and

Assertions can come from other Measurements, how the parser supports these variables can

affect how they are used. The other issue is the handling of nested functions in the Active

Comments. Nested functions offer a compact notation but requires the parser to provide a

mechanism to enable different functions to pass data between each other.

When the parser encounters a variable in the Active Comment, it substitutes the appro-

priate value for that variable. This variable can be from one of three sources. The first is

from the internal data structure of the current session such as a# CALCULATE state-

ment using a variable defined by a# DEFINE statement on the same schematic. The

value of this variable is still in the memory system of the computer, so the parser just need

to reference that variable to make the substitution. The second type of variable is a process

independent parameter such as Vdd or FO4. The values of these parameters are technology

dependent and are stored in the GlbParam file. Finally, the third type of variable is one

that is defined by a Measurement in a different schematic. In this case, the parser needs

to locate the file that contains the evaluated result of that variable or to inform the user

which schematic to run to define that variable. Figure 4.9 shows the flowchart of the search

algorithm.

The parser underwent a few rounds of redesign to support this last type of variable.

In the first implementation of the parser, there was a flat name space for all the variables.

The exported variables from the Measurements are written into the GlbParam file, just like

the technology independent variables. Consequently, the variable written by one Measure-

ment may be corrupted by other Measurements. We modified the prototype so the results

of the Measurements are exported to an unique file, one file per schematic. In the Com-

ments, the user can specify the file that stores the variable by specifying the variable as

<filename>.<variable>. If the filename is omitted, then the parser falls back to the search

4.2. PARSER LAYER 51

Parser

Internal
Memory

GlbParam

External
Files

Warn User

Variable

No

No

No

Yes

Yes

Yes

in

Substitute

Values

Figure 4.9: Parameter Search Flowchart

scheme described in the previous paragraph. We keep the three tier search algorithm for

convenience and backward compatibility. By prepending the filename to the variables, we

get around the flat name space problem.

The other practical issue with writing the parser is the transfer of data from one function

to another. For example, many post-processing analyzer need multiple processing steps.

These complicated analysis are often specified as a set of nested functions and require the

results of one function to be passed to another. Returning to the PSRR measurement ex-

ample in Chapter 3, finding the maximum and minimum period is a complex routine with

nested functions:

DEFINE periodHi=Max(Period(ck)), periodLo=Min(Period(ck)) w/\

52 CHAPTER 4. PROTOTYPE IMPLEMENTATION

StepV(Vdd,vddval,0.9*vddval,1ns), SweepV(vctrl,vLo,vHi)

Implicit in the nested function notation is passing the results of thePeriod() function to the

Max() andMin() functions. We looked at how compilers support passing data between

nested functions since most computer languages use this notation. One common approach

to do this is to use temporary variables to hold the results of the inner functions and then

pass the temporary variable into the outer function [43]. We use a similar approach to pass

data between the analysis functions. First, we created a global hash table to store and keep

track of these temporary results. Then, each analysis function allocates a new array to store

its results. At the completion of the function, it generates an unique reference name and

add the results array into the hash table using the reference as the key. This reference is

the return value of the function so that other functions can access the data by using the

reference as the index into the global hash table. Unlike most compilers, the parser in our

system does not allocate the temporary variable because it does not know the data type of

the analysis result. Instead, each function generates its own temporary variable, and the

parser just passes the references between the nested functions.

4.2.2 Assertion

The Assertions differ from the Measurements in two ways. First, while only the Mea-

surement Comments in the top level schematic are executed, all the Assertions across the

hierarchy must be processed. This requires the parser to find all the instances of the As-

sertions. The second difference is that unlike the Measurements, the Assertions are not

associated with any circuit stimulus. They ensure the circuit performs within specification

regardless of it is excited.

In order to propagate the Assertion Comments across the design hierarchy, the parser

needs to find all the instances of the cells that contain Assertions. The transistor-level spice

netlist, like most VLSI connectivity files, is a tree with the root being the top-most circuit

and the edges pointing from the parents to their children. Figure 4.10 shows the instantia-

tion tree of the VCO test bench where each arc from the parent to the child represent one

4.2. PARSER LAYER 53

(a) Instantiation Tree

inv

inv

vcoV3

roscV
opAmp

lo2hi

invV

invV

(b) Module Representation

vcoV3

inv invV

roscVopAmplo2hi

Figure 4.10: Different Representation of the VCO Test Bench Schematic (a) Instantiation
Tree (b) Module Representation

instance of that child. Making each instance of a cell unique requires flattening of the hier-

archy. This can be accomplished in a pre-processing step by searching breadth first or depth

first from the root. Alternatively, each instance can be found by performinng a depth first

search from the cell towards the root. For historical reasons, the prototype implemented

the latter approach. While the search from the leaf node to the root can be executed by

recursively traversing the netlist, it is not very efficient since the connectivity information

is only from the parents to the cells. Instead, the parser creates a tree with double edges

pointing in both direction to enable efficient traversal of the graph.

The Measurement Comments completely specify the pre- and post-processing proce-

dures of a simulation, so the generation, simulation, and verification steps are all encapsu-

lated in one session. All the data can be passed internally between the two generation and

verification phases. However, the Assertion Comments are intended to be used even when

the stimuli is not generated by STAR. As the analog block is integrated into the complete

system, the simulation routines may be generated from other sources such as verilog or

manual coding by other designers. To support this model, the parser produces an include

file (.inc) which contains the simulation monitors from all the Assertion Comments, such

as the .probe command from theSatMargin() function. The designers and verification

engineers include this file as part of their simulation runs and use STAR to ensure all levels

of the circuit performed within the specification.

54 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Each simulation monitor in the include file has an unique reference name that post-

processing functions use to identify the monitor in the simulation results. There needs

to be a mechanism to associate the reference to the original Assertion Comment so that

the Comment can be properly executed when the simulation is completed. While linking

the reference and the Assertion can be done easily when the generation, simulation, and

verification loop is encapsulated one STAR session, since Assertions supports the notion

of having the simulation directives be generated by other sources, the loop is broken, and

it is possible that the schematics, Active Comments, and/or the pre-defined functions used

during the generation phase have changed while the design is in simulation. We cannot

simply parse the database again to reproduce the simulation monitors and references.

There are a number of ways to solve this problem. One approach is to write out the

analysis procedures as scripts during the generation phase. These scripts would then con-

tain all the reference names, and the user can just execute these scripts at the end of the

simulation run. The problem with this approach is that it will be difficult to modify these

generated script to perform a different analysis on the simulation results. Another approach

is to save the netlist and comments file and take a snapshot of the pre-defined functions in

the library. This way, we are guaranteed to be able to recreate the references to the probes

and measurements. With the references available, the user can modify the post-processing

routines in the library to perform different analysis on the simulation results, if necessary.

Since we are not going to change the pre-processing routines after the simulation, it is

not necessary to save a snapshot of the library. Actually, we do not need to recreate the

references. Instead, we only need to preserve the relationship between the reference name

with its Assertion Comment. Our approach is to write the parse tree into a file. This file

represents the state of the parser at the end of the generation phase. At the beginning of

the verification phase, the designer loads the parse tree file to restore the state and then

proceed with the verification of the Assertions. This way, we are still able to modify the

analysis routines, if necessary. To ensure that we load in the correct state, a time stamp

is added to the parse tree file and the include file. This approach preserves the needed

information in the prototype engine to analyze the simulation results. However if there are

assertion failures, then we would need the original schematics to debug the design. While

not implemented in the current prototype, the schematics should be placed under revision

4.3. LIBRARY LAYER 55

control and be tagged with the same time stamp.

After loading the parse tree and checking its time stamp against the one in the include

file, the parser reads the simulation results. The Assertion Comments monitor the design at

each time step of the simulation. In general, there are two ways to process the Assertions.

One way is to traverse the simulation result once and evaluate all the Assertions at each

time step. The other way is to evaluate one Assertion after another and traverse through

the entire simulation results during each processing of the comment. While the second

approach is less efficient given the overhead of opening and reading the simulation files,

we choose this approach because some analysis routines require multiple passes at the data

set.

While the parser layer implements the execution platform, the actual processing func-

tions are stored the library layer. In the next section, we describe the organization and

implementation of the library.

4.3 Library Layer

In addition to the schematic layer, the designers also interface with the library layer. They

use the pre-defined functions stored in this layer to compose the Active Comments. This

layer is organized into pre-simulation and post-simulation libraries. Each library is a file

containing the definition of the pre-define functions. When STAR is executed, the contents

of these files are linked into the tool to form one executable. Dividing the libraries this way

allows the same function be split across circuit simulation, so that the stimuli generation

portion can be placed in the pre-simulation library and the verification portion can be placed

in the post-simulation library. There are four libraries, two for the pre-processing functions

and two for the post processing functions. The pre-processing functions for the Measure-

ment and Assertions are stored in MeasGenerate.pm and AsrtGenerate.pm, respectively.

Similarly, MeasAnalysis.pm and AsrtAnalysis.pm hold the post-processing function. Ta-

ble 4.1 summarizes the libraries.

Having an extensible library means that some of the functions in the library will be

written by circuit designers instead of CAD developers. The implementation of library

layer should be geared towards reducing the programming effort for the designers when

56 CHAPTER 4. PROTOTYPE IMPLEMENTATION

they create their own functions. Judging from the HSpice simulation decks and the Active

Comments, we anticipate the functions to perform text processing and regular expression

matching. The datatype of the parameters in the Active Comments can be either scalar or

vector, so the underlying language must support at least these two datatypes. To reduce the

effort of using the variables when writing the pre-defined functions, the library implemen-

tation should shield the user from managing memory usage such as allocating and freeing

memory.

Perl seems like a good fit for this application. The language is designed to support text

processing with regular expression. Perl also provides three basic datatypes – scalar, array,

and hash – and pointers to variables. By using a combination of arrays and hashes, the user

can create any data structure [44]. The runtime system includes a memory manager which

supports dynamic memory allocation to allow user to freely increase the size of the data

structure and automatic garbage collection to free unused memory. An added benefit of

using an interpreted language is that the code is easily accessible to the circuit designers.

The functions used to capture a design depend on the class of circuits. In Section 4.3.1,

we describe the set of default functions that we include as part of the tool distribution. In

Section 4.3.2, we describe how to extend the library and the issues associated with having

an extensible library.

4.3.1 Default Functions

For the type of circuits used to build a phase-locked loop, we were able to construct all the

functions needed for our Active Comments based on the functions listed in Table 4.2. To

manipulate the inputs, we created some functions to set the voltage to a particular value,

ramp the voltage for some pseudo dc simulations, and sweep the voltage. A similar set

of functions are created to manipulate the current. We found that the simulator can give

us better access to the inner operations of the transistors. So, we leverage the simulator

Table 4.1: Matrix of Library Files
Measurement Assertion

Generation Functions MeasGenerate.pm AsrtGenerate.pm
Analysis Functions MeasAnalysis.pm AsrtAnalysis.pm

4.3. LIBRARY LAYER 57

Table 4.2: Summary of Functions
Name Description
SetV, SetI, Input stimuli to set, sweep, or ramp (for pseudo DC
SweepV, SweepI, simulations) a voltage
RampV, RampI
MeasRout, Use simulator to measure transistor’s operating
MeasRch, condition
SatMargin
V, I Access raw simulation output
FindDelay, Process output waveforms to find the delay, slope, or
FindSlope, running average
RunningAvg

to find the transistor’s channel resistance, gate capacitance, and saturation margin. To

analyze the simulation results, we need to access the raw voltage and current waveforms.

We also need to process the output before doing the analysis, and we found three functions

to be very useful. With theFindDelay() function, we can find the time when the signal

transitions or crosses a preset threshold. TheFindSlope() function is useful in finding the

first derivative or slope of the curve. Finally, theRunningAvg() function help smoothes

the signal waveform. Below we briefly describe each of the functions. Appendix A contains

a more detailed description of the implementation of the functions.

SetV, SetI

These two functions set the voltage at a node or current through a node to a DC value by

adding a voltage or current source to the specified node. The functions are in the following

form:

SetV(node,value)

SetI(node,value)

wherenode is the name of the node in the circuit andvalue is the DC voltage or current.

These functions return the name of the voltage or current source added to the circuit.

58 CHAPTER 4. PROTOTYPE IMPLEMENTATION

SweepV, SweepI

These two functions sweep the voltage or current across a range of values. Using these two

functions result in multiple simulation runs where each run corresponds to one value of the

voltage or current. The functions are in the following form:

SweepV(node,value1,value2)

SweepI(node,value1,value2)

wherenode is the name of the node in the circuit andvalue1 andvalue2 are the limits of

the sweep. These functions first create a parameter in the stimulus deck, then sweep that

parameter across fromvalue1 to value2. The number of points in the sweep is a parameter

in the GlbParam file. The instantiated voltage and current sources are grounded such that

the voltage values are relative to ground and the injected current is sourced from ground.

These functions return the name of the parameter they create.

RampV, RampI

These two functions ramp the voltage or current across a range of values. These functions

are used for pseudo DC simulations. UnlikeSweepV () andSweepI(), there is only one

simulation run when using these two functions. The functions are in the following form:

RampV(node,value1,value2)

RampI(node,value1,value2)

wherenode is the name of the node in the circuit andvalue1 andvalue2 are the limits of

the ramp. These two functions ramp the voltage or current by adding a piece-wise-linear

voltage or current source to the specified node. Similar toSweepV () andSweepI(), the

voltage or current source are also grounded sources. These functions return the name of

the voltage or current source added to the circuit.

4.3. LIBRARY LAYER 59

MeasRout, MeasRch, SatMargin

These three functions uses the simulator’s built-in functions to find the transistor’s proper-

ties or operating conditions. These include the device’s output impedance, channel resis-

tance, and saturation margin. The functions are in the following form:

MeasRout(trprop)

MeasRch(trprop)

SatMargin(trprop)

where tr propt is the name of the transistor property assigned by the designer. These

functions add the appropriate simulation directives and probes to extract the information

from the simulator. The return values of these functions are the names of the probes added

to the simulation deck. During the verification phase, the parser uses these names to access

the probe waveforms in the simulation results. The datatype of these waveforms are arrays

of (time,value) wheretime is the time at each simulation step andvalue is the value of

the probe at that time instant.

All the functions described up to this point are used during the generation phase of

execution. They create simulation directives or add measurements and probes to monitor

the circuit performance. The following functions are called during the verification phase.

They are used to read and manipulate the simulation data.

V, I

These two functions read simulation transient results and return the raw values of the wave-

forms. The functions are in the following form:

V(node)

I(volt src)

wherenode is the name of the node in the circuit andvolt src is the name of the voltage

source (or current meter). The return value of the function is the reference to an array of

60 CHAPTER 4. PROTOTYPE IMPLEMENTATION

(time,value) ordered pair, wherevalue is the node voltage or current through thevolt src.

FindDelay

This function finds the timing relationship between two signals. The function is written

to be as general as possible which results in a long argument list. The function is in the

following form:

FindDelay(signal1,threshold1,direction1,signal2,threshold2,direction2,numOfTran)

wheresignals1/2 are the name of two signals,threshold1/2 are the voltage levels to

initiate the measurements,direction1/2 are the direction of transition (rise or fall), and

numOfTran refers to the number of transitions the second signal waits after the first

signal reaches its threshold. The first signal/threshold is sometimes called the triggering

event and the second signal/threshold the target event. If the same signal name is used

for bothsignal1 andsignal2, then the function finds the timing properties of that signal.

Because of the long argument list, the function is not used in this form. Instead, wrappers

were written to handle the different timing measurements we made in the PLL design.

Chapter 5 describes what wrappers are used, and Appendix A describes these wrapper in

detail. The return value of the function is the reference to an array of (time,value) ordered

pair, wheretime is the time instant when the triggering event happened andvalue is the

delay between the trigger and target events.

FindSlope

This function finds the instantaneous slope (or first derivative) of a waveform by calcu-

lating the change in the horizontal and vertical directions between each time step of the

waveform. The function is in the following form:

FindSlope(signal)

wheresignal is the name of the signal waveform. The return value of the function is the

4.3. LIBRARY LAYER 61

reference to an array that contains the slope of the input waveform at every time step.

RunningAvg

This function finds the running average of a waveform by taking the average within a tim-

ing window and sliding that window across the waveform. This effectively smoothes out

the any noise on the signal. The function is in the following form:

RunningAvg(signal, size)

wheresignal is the name of the signal waveform andsize is the width of the window over

which the function takes the average. The return value of the function is the reference to an

array that contains the running average of the input waveform.

By writing wrappers to nest the functions or combine them with simple arithmetic op-

erators, we constructed the functions we used in our Active Comments. For example, the

noise on the bias current can be found by taking the ratio of the instantaneous current

through a current meter and the running average at that instant as follows:

NoiseI(t)= (I(t)-RunningAvg(I(t),30*FO4) / RunningAvg(I(t),30*FO4)

TheRunningAvg() function smoothes the signal using a window that is 30 FO4 delays

wide to remove the noise, then the difference is the actual noise.

4.3.2 Extending Library

The library layer is designed to be flexible and extensible. Consequently, the layer is de-

signed to enable the users to add their own functions to their private library in the local work

area to extend or override the default functions provided by the tool distribution. During

execution, the parser first uses the libraries in the directory pointed by the environment

variable,$STAR USER LIB before using the ones in the distribution directory.

There are a number of practical issues with having each designer creating his/her own

function library. One problem is that different designers may name some of their functions

62 CHAPTER 4. PROTOTYPE IMPLEMENTATION

the same, causing name collisions. In order to avoid colliding function names, we need to

manage the name space of the user provided functions similar to how the schematic names

are managed (e.g., prepending unique project and module names to the function name).

Another problem with the user-provided functions is that the design knowledge is split

between the schematic and the local function library. Therefore, the designers must check-

in both the circuit schematics and the supporting function library as part of the archival

process. The third problem is when the design database is passed along to other users,

we want to use the user interface in Figure 4.6 to provide some information about these

user defined functions. Ideally, we would like to extract the functionality from the code.

However, this is very difficult. So instead, we would like to enforce some coding style and

annotation guidelines to help the tool to extract some information from the function.

We useSatMargin() as an example on how to write a pre-defined function with the

coding style that would enable the tool to pass back information about the function. The

SatMargin() function is used in Assertion Comments to find the saturation margin of

transistors. This function takes the name of the transistor property as its argument and

generates the appropriate HSpice .probe command to calculate the saturation margin of the

transistors that has the specified property.

Figure 4.11 lists the Perl code implementing the function. The definition of the function

begins with a block of comments describing the what the code does. Lines 8 through 11

are the inputs to the function. These inputs are passed into the function by position, and the

shift function (built-in in Perl) assigns each argument to the internal variables. While Perl

provides a default array variable to hold the argument list passed into a function, STAR

imposes a coding style that requires these inputs be assigned to scalars or arrays and be

commented so that the utility program in the comments editor can identify them.

Recall that in the Assertion CommentSatMargin() only takes one argument – the

name of the transistor property. However, there are four input variables in the function im-

plementation because the parser automatically adds three additional arguments during the

function call. These three arguments are provided by the system to simplify the program-

ming tasks and are always appended to the end of the argument list for any function called

in the generation phase. Of these three additional variables, the first variable is the name of

the sub-circuit where the function is used, the second is the name of the top-most circuit,

4.3. LIBRARY LAYER 63

1 ##
2 # #
3 # Adds HSpice statements to check the saturation #
4 # margin of a current source transistor #
5 # #
6 ##
7 sub SatMargin{
8 my $pattern = shift; # transistor name
9 my $cktName = shift; # subckt name
10 my $topCktName = shift; # top level ckt
11 my $$measCnt_ptr = shift; # ptr to counter
12
13 my $CK_HSP_DIR; # checker hspice directory
14 my $incFile; # include file for ASSERTION
15 my $txPath_ptr; # ptr to the transistor path
16 my $tx; # temp variable
17 my $tmpStr; # temp string
18 my @varName; # name of the measure variable
19
20 $txPath_ptr = &FindTx($pattern,
21 $topCktName,
22 $cktName);
23
24 $incFile = &GetIncFile();
25 open (INC, ">>$incFile");
26 foreach $tx (@$txPath_ptr) {
27 $tmpStr = "vmprb_".$measCnt++;
28 push(@varname,$tmpStr);
29 printf INC (".probe $tmpStr=par(";
30 printf INC ("’abs(vds($tx))-abs(vdsat($tx))’)\n");
31 }
32 close(INC);
33 return (\@varName);
34 }
35

Figure 4.11: Perl Code ofSatMargin()

64 CHAPTER 4. PROTOTYPE IMPLEMENTATION

and the last is a pointer to a counter. The first two variables are necessary for searching

and identifying all the instances of the sub-circuit, while the counter enables the function

to generate an unique name for a spice measurement or probe. The user creates an unique

name by incrementing the count by one and appending the new value to the name. Since

this count is passed into every function as a pointer, we can guarantee that each function

receives a different count value.

In lines 20 through 22, the function callsFindTransistorProperty() to find all the

transistors whose property contains the input pattern. The search function is very general

and can search from any part of the graph to any other part of the graph. So we pass in

the name of the top most circuit and the name of the sub-circuit that contains the Active

Comment as the limits of the search space. The search function returns an array containing

the full path of those transistors that match the search pattern.

For the rest of the function, we process this array to create a simulation probe for each

transistor. In line 24, we locate the file name of the include file that our HSpice commands

are to be written in. This file is opened in append mode because there may be other As-

sertion functions that will write to it. We write a probe statement for each transistor in the

array using thefor loop in lines 26 through 31. Each probe statement has a unique ref-

erence name which is stored in another array. The memory address of this array is passed

back to the parser as the return value of this function.

Previously in Section 4.1.2 we described an utility in the comments editor that pro-

duces a dialog window to display information about the function. The auto-generated help

window for this example function is shownd in Figure 4.12. The content of the window

includes the comment in the “#” text box in lines 1-6, the input variables, which are those

defined with the Perlshift function call in lines 8-11, and the return variable, which is

marked by the Perlreturn() funcion line line 33.

By restricting the coding style and having a guideline for adding comments, a tool

can easily recognize the inputs and outputs of a function without carefully analyzing the

code, extract the comments from the library, check for the existence of comments as part

of the archiving process, and auto-generate a template to help get the user started on a new

function. While it still rely on the programmer to enter the correct comments, this approach

provides a mechanism to relay some information about the functions to the user.

4.4. PRIMITIVE LAYER 65

Figure 4.12: Pop-Up Window Displaying a Description of the SatMargin Function

4.4 Primitive Layer

Having the analysis function written in an interpreted language can lead to long runtime.

To improve the performance, we re-implemented some of the common tasks in C++. These

tasks are associated with reading and processing the transient waveforms when verifying

the simulation results, and they are very IO and computation intensive. The two C++

functions areFindWave() andFindT ime().

To process the results, we first need to load them into the system. TheFindWave()

takes the signal name as its argument, reads the transient results file, and returns the voltage

and current waveforms. For example:

FindWave(clk)

returns an array of (time, value) ordered pair for theclk signal. This primitive is called

by the pre-defined functionsV () andI() in the library layer to find the voltage and current

waveforms. It is important to note that since the the primitive layer interfaces with the

library not the parser, the primitives do not have access to the global hashtable used by

66 CHAPTER 4. PROTOTYPE IMPLEMENTATION

d2t2NAt1t0 d0

80%

20%

Figure 4.13: UsingFindT ime() to Find Rise Time of a Signal: The function returns
[(t0,d0),(t1,NA),(t2,d2),...]

the parser. Therefore, unlike the analysis functions in the library, the return value of the

primitives are the actual arrays of ordered pair not thereference to an array stored in the

global hashtable.

For mixed-signal circuits, designers often need to extract timing information from the

waveforms such as rise and fall times, delay between two signals, and period of a signal.

We wrote theFindT ime() primitive to process these waveform. The primitive has the

same argument list as theFindDelay() function in the library layer:

FindTime(signal1,threshold1,direction1,signal2,threshold2,direction2,numOfTran)

wheresignals1 andthreshold1 are the signal name and threshold voltage of the trigger-

ing event,signal2 andthreshold2 are the signal name and threshold voltage of the target

event,direction1/2 are the direction of transition (rise or fall), andnumOfTran refers

to the number of transitions the second signal waits after the trigger. The return value of

the primitive is an array of (time,value) ordered pair, wheretime is the time instant when

the triggering event happened andvalue is the delay between the trigger and target events.

Since the delay is measured from trigger to target, it is always positive. This process of

measuring the delay repeats for the entire simulation results. For example, to measure the

rise-time of a signalsig, the function call will be:

FindTime(sig,0.2*vdd,rising,sig,0.8*vdd,rising,1)

4.5. IMPLEMENTATION COMPLEXITY 67

We measure the elapse time between whensig rises to 20% of vdd and the time the signal

rises to 80% of the supply. The operation is illustrated in Figure 4.13. If the signal glitches

such that there are two transitions to 80% of the supply after the trigger event, as in the

case of the third pulse, the function returns the delay to the closest target as specified in the

function call. On the other hand, if the signal fails to reach the second threshold by the time

the first threshold is met again, as in the case of the second pulse, then the function returns

“NA” as the second value of the order pair. Depending on how the primitive is being used,

the wrapper calling the function can choose to ignore the “NA” or to interpret it as a failure.

For example, if the primitive is used to find the delay between two signals, then the “NA”

may be ignored since the absence of the target may be because that logically the second

signal is not suppose to transition. However, if the primitive is used to check the existence

of a pulse of a transition, then an “NA” must be interpreted as a violation.

Since the simulator evaluates the circuit at discrete time steps, the simulation result may

not contain a data point at exactly the time when the waveform crosses the threshold. In this

case, the function interpolates linearly between adjacent points. This primitive is used by

theFindDelay function in the library to process the timing information of the waveforms.

4.5 Implementation Complexity

The first version of the prototype contained about 4000 lines of Perl code and was built in

three weeks. It implemented only the basic functionality of the parser and a subset of the

pre-defined functions stored in the current version of the library. The prototype was refined

and repartitioned over the following year as issues related to multiple projects, constraint

protability, and analyzer performance were discovered. The C++ code was added in the

form of primitives to improve the run time. Finally, user interface and documentation were

addressed by creating the comments editor which took a few days to implement once we

understood the required features. The final prototype contains about 1100 lines of Tcl/Tk

code implementing the comments editor and other modifications to SUE, 5100 lines of Perl

code implementing the parser layer, 2000 lines of Perl code in the library layer, and 4000

lines of C++ code to implement the two primitive functions. The Tcl/Tk and Perl code are

platform independent and the C++ code is compiled for solaris and linux.

68 CHAPTER 4. PROTOTYPE IMPLEMENTATION

The prototype contains about 1100 lines of Tcl/Tk code to implement the comments

editor and other modifications to SUE, 5100 lines of Perl code in the parser layer and 2000

lines of Perl code in the library layer, and 4000 lines of C++ code to implement the two

primitive functions. The Tcl/Tk and Perl code are platform independent and the C++ code

is compiled for solaris and linux. The first implementation was built in three weeks and

contained most of the features described in this chapter, except the comments editor which

took a few days to implement once we understood the required features.

During the development, most of the time was spent on coding the parser layer which

resembled a mini compiler project. The implementation effort was split between processing

parameters in the Comments and supporting nested functions. Since in the STAR system,

there is no concept of datatype and name space, the parser needs to determine whether

the variable is a vector or scalar and to search a large number of files to find the value

of the variable for parameter substitution. We also tried a number of different approaches

to passing data between the different functions that are nested before settling down to the

current implementation described in the previous sections.

One problem that we did not address in this prototype is the debugging of simulation

results. Currently, every time the circuit violates an assertion, STAR prints an error message

stating the violation and the time it happened. It is up to the user to bring up the waveform

and trace the signal path. Finding the cause of the violation and creating a dependency

chain is a difficult problem that should be addressed in the future.

4.6 Summary

We implemented a prototype of STAR to execute the Active Comments described in Chap-

ter 3. The system is designed to be flexible to enable the users to extend it to capturing new

circuits. The prototype is composed of four layers: schematic, parser, library, and primi-

tive. Partitioning the implementation into four layers enabled us to study what features are

necessary to support the concept of Active Comments and encourage its adaptation by the

designers.

In the schematic interface, we created a comments view to enable user to document

both the Active Comments and the design. This way, the Comments continue to evolve

4.6. SUMMARY 69

with the circuit as it is transferred and reused.

The parser layer executes the Active Comments. One problem with the Active Com-

ments is its flat name space which results in Measurement Comments from different schemat-

ics overriding each other’s results. While the parser circumvents the problem by prepending

a filename when reading and writing variables, a more robust approach may be to create

different name spaces for the different type of parameters used in the Comments.

The key to the flexibility of our system is the extensible library. The users can create

their own pre-defined functions and use them in the Active Comments. STAR imposes

some coding style and annotation guidelines to help encourage the users to document their

extended functions. Having description and comments for the functions can provide infor-

mation to others using the system, but we may need to use the review process to encourage

the designers to annotate their code.

70 CHAPTER 4. PROTOTYPE IMPLEMENTATION

Chapter 5

Phase-Locked Loop Design

In the previous chapters we described the process of designing custom circuits and a frame-

work that simplifies the design tasks while capturing design knowledge. In this chapter, we

demonstrate how to use STAR to specify the critical circuit parameters and the performance

constraints a process independent manner. We use our proposed system to design a PLL in

one process, then reuse it as a building block after porting it to a different process.

Our example PLL is composed of a number of analog and mixed-signal blocks. In

Section 5.1 we describe each circuit block in detail along with the Active Comments used

to capture the design. This PLL was later used as a module in a different testchip. The

new testchip imposed a number of new requirements and resulted in a few changes to the

original PLL. The VCO was replaced to one that generates multi-phase clock, and the loop

filter was simplify to reduce power. We discuss the porting process in Section 5.2. STAR

is used to guide the re-optimization of the PLL and ensure robust performance across the

design hierarchy. Section 5.3 describes the results of the optimization and explores the

benefits and the limitations of the prototype system in the context of designing and porting

the PLL.

5.1 Phase-Locked Loop Design

We designed the PLL to be used as clock generator in processor cores and I/O subsystems.

Our primary design objective was the quality of the generated clock, specifically, phase

71

72 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Ref

Vvdd

Vctrl

dnb

upb

CP2

en
ck

AmpN

CP1PFD

Figure 5.1: PLL Block Diagram

offset and jitter. Static phase offset is usually the result of asymmetry in the design and

transistor mismatches, while jitter is commonly caused by noise, particularly supply noise,

coupled into the circuits. We also must design the PLL to have a well damped loop response

and the circuits to have good supply noise immunity.

Figure 5.1 shows the block diagram of the example PLL which was implemented in a

0.35µm technology [36]. Since jitter is often dominated by power supply coupling into the

VCO, this design uses a regulator to both control the oscillation frequency and to isolate

power supply noise. The VCO is composed of a five-stage inverter ring to produce a single-

ended clock. Following the VCO is a two-stage amplifier that converts the low-swing VCO

output to full CMOS levels. The programmable divider outputs a pulse that fully overlaps

the high phase of the VCO clock to qualify the clock when the number of rising clock edges

reaches the divide value. The clock buffers after the qualifying NAND gate complete the

clock feedback path. The phase-frequency detector (PFD) compares the feedback clock

and the reference clock and controls the charge-pump to dump either positive or negative

charge onto the capacitor. The matching of delay between the clock buffers and buffers in

5.1. PHASE-LOCKED LOOP DESIGN 73

the feedback path is critical for low phase offset, as is the design of the PFD. The output of

the first charge-pump is integrated onto the filter capacitor to produce the integral control

voltage,V ctrl. The control voltage at the filter capacitor is replicated using an unity-

gain amplifier whose output impedance along with the output of the second pump provides

the proportional control to the loop. To achieve a wide operating range, all the analog

components are biased usingV ctrl [34].

The closed-loop transfer function of the linear second-order PLL is shown to be [25]:

H(s) =
1 + 2 ∗ ζ ∗ s/ωn

1 + 2 ∗ ζ ∗ s/ωn + (s/ωn)2
(5.1)

where the loop damping factorζ and bandwidthωn are given by:

ζ = 0.5 ∗R ∗
√

ICP ∗KV CO ∗ CCP /N (5.2)

ωn = 2 ∗ ζ/(R ∗ CCP) (5.3)

whereICP is the charge-pump current,KV CO is the VCO gain,CCP is the capacitance of

the loop filter,R is the resistance of the loop filter, andN is the frequency multiplication

factor.

Regrouping the building blocks in the design, we can map the components into the

simplified PLL model presented in Chapter 3. The PFD implements the phase comparator

block. The low-pass filter is implemented by the two charge-pumps, the NMOS capacitor,

and the op-amp. The ring oscillator together with the level converter form the VCO block.

The divider block includes the actual divider and the qualifying NAND gate. Figure 5.2

shows the mapping.

As part of the PLL design representation, Active Comments are embedded in all levels

of the design hierarchy. We use Measurement Comments to measure critical circuit pa-

rameters such as the VCO gain, the charge-pump current, and the loop filter capacitance.

Assertion Comments are used to monitor the circuit performance as well to set the con-

straints at the interfaces between different sub-blocks. When we first captured the design,

not all of the Active Comments where written in the scalable form. In order for the Active

Comments to be applicable when the design is reused, all the absolute constraints were

74 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Ref

Vvdd

Vctrl

dnb

upb

CP2

en
ck

AmpN

Divider

VCO

Filter

Low−PassComparator

Phase

CP1PFD

Figure 5.2: PLL Block Diagram with Abstraction

recoded to be more scalable. In the following subsections, we describe each circuit com-

ponent in detail and explain how we use Active Comments to capture this PLL design. We

start from the input to the loop, the phase-frequency detector.

5.1.1 Phase-Frequency Detector

The PFD schematic is shown in Figure 5.3(a). In high frequency linear PLL design, the

Phase-Frequency Detector (PFD) capture range sets the frequency limit of the reference

clock and affects the lock acquisition time [45]. Ideally, the sequential PFD implemented

by our circuit has a capture range of +/-2π [46]. However, in practice the capture range is

often affected by the operating frequency. Figure 5.4 plots the capture range of the PFD at

two input frequencies and shows the capture range reduces as the frequency increases. The

capture range is reduced because the delay to assert and de-assert the PFD output becomes

a larger fraction of the cycle time as the operating frequency increases. To illustrate the

different components of this delay, we plot the PFD timing diagram in Figure 5.3(b). This

fixed delay is composed of the delay from clock to output, the output pulse, and some time

5.1. PHASE-LOCKED LOOP DESIGN 75

(a)

Rst

Up

Dn

Rstb

Ref

Clk
1

2

(b)

Up

Rstb

Clk

Dn

Ref

Clk Up

Rstb Up

4

2

3

4

1

Up Rstb

Up Rstb

3

Figure 5.3: PFD Schematic and Timing Waveforms

to de-assert the self-reset so the next clock edge can assert the output. We can bound the

capture range of the PFD by:

Tfix = Tclk−>up/dn + 2 ∗ Tup/dn−>rstb + Trstb−>up/dn (5.4)

Range = [−2π ∗ (Tperiod − Tfix)

Tperiod

, +2π ∗ (Tperiod − Tfix)

Tperiod

)] (5.5)

Using the node names in the figure,Tclk−>up/dn is the delay between input rising to output

asserting. The pulsewidth is expressed asTup/dn−>rstb+Trstb−>up/dn. And an additional

Tup/dn−>rstb delay is need to de-assert the reset.Tfix is the minimum delay between con-

secutive input rising edges or equivalently the maximum operating frequency of the PFD.

To achieve fast phase acquisition, we want the capture range of our PFD to be at least

+/-π at the high reference frequency. We use the Measurement Comments to find the PFD

capture range:

76 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Figure 5.4: PFD Characteristic at 500MHz and 100MHz

DEFINE tLo=LoRange(Offset(ref,ck),PulseDiff(up,dn)),\
tHi=HiRange(Offset(ref,ck),PulseDiff(up,dn)) w/ SweepClk(ref,ck,10*FO4)

TheLoRange() andHiRange() functions find the lower and higher inflection points, re-

spectively. TheSweepClk() sweeps the two input clocks,ref andck, from -2π to 2π. The

delay is based on the operating frequency, which is set to 1/(10*FO4) in this example. The

PulseDiff() adds HSpice measurements to find the difference in the output pulse widths.

And theOffset() adds HSpice measurement to find the offset betweenref andck.

5.1.2 Low-Pass Filter

Following the PFD is the low-pass filter which converts the phase error to a change in

control voltage. The low-pass filter in our PLL design is composed of two charge-pump, a

NMOS capacitor, and an op-amp functioning as a voltage buffer.

5.1. PHASE-LOCKED LOOP DESIGN 77

C2 C0C1

upi

dnidn

up

bias

Vout
Vsrc

Figure 5.5: Charge-Pump Schematic

Charge-Pump

The two charge-pumps are controlled by the PFD. The charge from the first pump, CP1, is

integrated onto the filter capacitor while the output of the second pump, CP2, is summed

with that of the op-amp to drive the VCO. While the two charge-pumps are sized indepen-

dently, they share the same circuit topology. Figure 5.5 shows the transistor level schematic

of the push-pull type charge-pump used in this PLL design. The charge-pump is biased

through a current mirror based DAC whose bias is established by the loop control voltage

V ctrl. The charge-pump current scales as the square of the change in operating frequency

thus tracks the loop dynamics according to Equation 5.2. The DAC control words for the

two charge-pumps can be configured independently and are programmed to compensate

for varying frequency multiplication factor N to enable the loop to always achieve close to

optimal characteristics.

The most important circuit parameter associated with the charge-pump is the current,

Icp, that it sinks from or sources onto the filter capacitor. To measure the pump current, we

78 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

add a voltage source at the charge-pump output. This voltage source is ramped fromvLo

to vHi, to measure the output current across the operating range of the PLL. We bias the

circuit with the filter voltage using a voltage-controlled voltage source (vcvs) controlled by

the charge-pump output. The PMOS current source is turned on and current flows into the

voltage source at the output. This test setup is specified with the following Measurement

Comment:

DEFINE Icp1=I(RampV(Vout,vLo,vHi)) w/ SetE(bias,gnd,Vout,gnd,1),\
SetV(up,vdd),SetV(dn,gnd)

The RampV () function adds a voltage source toV out and ramps the voltage fromvLo

to vHi. The function returns the name of the voltage source which is passed intoI() to

monitor the output current. TheSetE() function adds a vcvs, or e-element in HSpice ter-

minology, betweenbias andgnd and sets the voltage potential between these two nodes to

be the same as that betweenV out andgnd. The second charge-pump CP2 similarly de-

fines Icp2. Instead of drawing a separate test bench schematic to include these extra voltage

sources, we created the simulation environment by adding the Measurement Comment di-

rectly into the production schematic of the charge-pump. This helps reduce the number of

test benches in the archival database. Although the Measurement is part of the production

schematic, it is not executed when the charge-pump is integrated into the PLL.

Measuring just the pump current is not sufficient to capture the design. There are two

practical issues with implementing the circuit. One is to match the up and down currents

to minimize the static phase offset, and the other is to limit the noise on the bias voltage in

order to keep the current variation small.

When PLL is locked, the up and down currents are overlapped. If the currents do not

match, then the residual charge is integrate on the filter capacitor and causes a static phase

error. We use a Measurement Comment to find the value of the mismatched current by

turning on both current sources and monitor the current into the voltage source at the out-

put:

DEFINE Idiff=I(RampV(Vout,vLo,vHi)) w/ SetE(bias,gnd,Vout,gnd,1),\

5.1. PHASE-LOCKED LOOP DESIGN 79

SetV(up,vdd),SetV(dn,vdd)

Excessive mismatches in the currents not only causes phase error but also affects the loop

dynamics since the linear model assumes only one current value. We use the above Com-

ment to measure the static current offset and minimize its value during circuit optimization.

Even if the up and down currents are matched statically, they can still vary during op-

eration. Any noise coupled into the bias voltage distribution affects the output current. We

must ensure that the noise on the bias voltage is kept small such that the change in the bias

current is less than 1%. An Assertion is added to check the bias current:

ASSERT NoiseI(i(vsrc))<= 1%

As described in Chapter 4,NoiseI() is a wrapper function that usesRunningAvg() and

I() to find the instantaneous noise on the current through the zero-voltage source,vsrc.

Filter Capacitor

The capacitor integrates the phase error to generate the PLL control voltage. This voltage

is also used to bias all the analog components to enable the loop dynamics to scale across

process variations and operating frequencies. The capacitance value is an important design

parameter in determining the loop dynamics. We choose a NMOS capacitor because all the

circuits are referenced to ground for better supply noise isolation. The source, drain, and

bulk terminals of the transistor are connected to ground, and the gate terminal is connected

to the output of the charge-pump. The transistor is operating in inversion mode, and the

capacitance is mostly determined by the oxide thickness and the gate area [47]. We use a

Measurement Comment to find the gate capacitance of the NMOS transistor:

DEFINE Ccp=MeasureCap(MCcp)

TheMeasureCap() function is a wrapper that calls uses pre-defined functions to setup the

simulation stimuli and measure the capacitance. The function first initializes the gate ter-

minal tovLo, usingInitV (), then charges the gate with a constant currentI, with SetI().

80 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

initialize
to vLo

Vcp

I

Ccp

∆ vHi vLoC= (I * t) / (−)

∆ t
Time

Vcp

vHi

vLo

Figure 5.6: MOS Gate Capacitance Measurement Model and Waveform

After the simulation,MeasureCap() finds the time it takes to charge the gate voltage to

vHi. This Measurement Comment is applied directly to the capacitor without a test bench.

Figure 5.6 shows a visual representation of the Comment and the simulation waveform.

Knowing the current,I, the change in voltage,∆V , and the time to charge the capacitor,

∆T , we calculate the capacitance as:

Ccp = I ∗∆T/∆V (5.6)

Equation 5.6 assumes a linear capacitor such that the change in voltage is a ramp. This

assumption is valid within the VCO’s operating range bounded byvLo andvHi [47].

Connecting the loop filter directly to the source terminal of the PMOS devices in the

VCO will deplete the charge stored on the capacitor. Instead, the loop filter must be con-

nected to a high impedance node. We use an op-amp to buffer the analog voltage. The

amplifier is described next.

Voltage Buffer

At the heart of this PLL architecture is the voltage buffer which is implemented using the

op-amp which shown in Figure 5.7. This buffer servers four functions: suppressing the

5.1. PHASE-LOCKED LOOP DESIGN 81

Vcp

inn
Min Mip

Vsrc

Mn

Mp

Voutinp

Figure 5.7: Voltage Regulator

effects of supply noise, replicating the filter voltage, providing the loop stabilizing zero,

and providing drive current to the VCO.

We use Active Comments to help ensure that these functionalities are properly carried

out. The op-amp rejects the supply noise by increasing the impedance looking into the

supply. In Chapter 3 we described how to use Active Comments to measure the PSRR and

monitor the circuit’s saturation margin and output impedance. So this section focuses on

the three remaining functions of the amplifier.

i. Closed-Loop Voltage Gain

Arranged in the unity-gain configuration, the op-amp buffers the filter voltage. Ideally, the

output of this voltage buffer should equal its input, or equivalently the op-amp should have

a closed loop gain of 1. Since the output of the op-amp is within the larger PLL feedback

loop, we could relax the voltage offset requirement between the input and output. However,

this offset should still be bounded as a measure of how well the op-amp tracks the input

in the presence of high frequency noise coupled into the circuit. The following Assertion

Comment is added to check that the voltage offset between the output and input is less than

82 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

1%:

ASSERT abs(v(inp)-v(Vout))/v(inp)<= 1%

We defined the offset as a ratio of the voltage difference between the input and the output

to the voltage at the positive input terminal. Using a ratio instead of an absolute value

allows this constraint to scale across technology. It is important to note that this constraint

is assuming perfect transistors without any mismatches.

ii. Loop Compensation Zero

The transfer function of the PLL contains two poles at the origin. In order to stabilize the

loop, this PLL architecture provides a feed-forward zero with the output impedance of the

amplifier. Implementing a PLL stabilizing resistor through active components has been

originally proposed in [33] and adopted by the self-biased differential PLL in [34]. As

illustrated in Figure 5.8(a) the control voltage of a conventional PLL at any point in time

is determined by the aggregate charge stored on the loop capacitor plus the instantaneous

voltage across the filter resistor. This configuration is equivalent to the one depicted in Fig-

ure 5.8(b) where the integral voltage across Ccp is first buffered by the unity gain amplifier

and then augmented by the instantaneous voltage formed by the second charge pump and

the amplifier output impedance. We can calculateV cp as follows:

V cp(t) =

∫ t
0 Icp(τ) dτ

Ccp
+ Icp(t) ∗R =

∫ t
0 Icp1(τ) dτ

Ccp
+

Icp2(t)

gmOP

(5.7)

The amplifier output impedance is the impedance of the input transistor (1/gm) divided

by the inter-stage mirroring ratio RM which is set to 3 in our implementation. Since RM

is kept low, the amplifier is virtually a single pole system and does not require stabilizing

compensation. To measure the output impedance of the amplifier, we constructed a test

bench to put the op-amp in unity gain configuration and add the following Measurement

Comment:

DEFINE roamp=MeasRout(Mip) w/ RampV(Vcp,vLo,vHi)

5.1. PHASE-LOCKED LOOP DESIGN 83

Icp1

(a)

1/gmop

Icp2

Vcp

Ccp

(b)

Ccp

R

Icp

Vcp

Figure 5.8: Implementing the PLL Stabilizing Zero

CALCULATE R=Icp2/Icp1*roamp/3

Using MeasRout() function, we measure the output impedance of the input transistor,

Mip (Figure 5.7) for the entire operating range of the PLL. The impedance is multiplied by

the ratio of the charge-pump currents to determine the effective resistanceR. The resistance

value is optimized based on Equations 5.2 and 5.3. This Measurement Comment not only

automates the measurement of the resistance, but also documents theRout of Mip as an

important design parameter for this PLL architecture and that any modification to the op-

amp must take this into consideration.

iii. Amplifier Output Current

The op-amp buffers the voltage and in turn provides the current to drive the oscillator. The

inverter-based ring generates noise on its control voltage while switching. To suppress this

noise, the current into the NMOS transistor, Mn, must be at least twice the load current

into the VCO. The VCO will cease to oscillate if the VCO requires more current than what

84 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

the amplifier can provide. To guarantee that the current requirement is satisfied when the

two cells are used together, we placed two zero-volt voltage sources as current probes. One

voltage source,vsrc (xopamp.vsrc), is in series to Mn (Figure 5.7) and the other (xvco.vsrc)

is at the input of the VCO. We add the following Assertion into the parent cell that instan-

tiated the buffer and the VCO to check the current requirement:

ASSERT i(xvco.vsrc)/i(xopamp.vsrc)<= 1/2

Using Assertion to check the current ratio ensures that the constraint is satisfied at the

interface of these two circuit blocks, independent of the operating frequency and process

technology. The buffer drives the VCO which is described next.

5.1.3 Voltage-Controlled Oscillator

The voltage-controlled oscillator (VCO) generates the internal clock in the PLL. In our PLL

architecture, the VCO is comprised of five CMOS inverters arranged in a ring configuration

followed by a level shifter.

Ring Oscillator

Figure 5.9 shows the five-stage ring oscillator. The oscillation frequency is controlled by

modulating the supply voltage. In order to keep the PLL predictable by a linear model, we

limit the range of its oscillation frequency. In Chapter 3, we used a pair of Measurement

Comments to find the control voltage range and store low and high limits in two variables:

vLo andvHi. We will use these two variables to control the circuit parameter measure-

ments for all the circuit blocks in our PLL.

The oscillation frequency at a particular control voltage is determined by theRon of the

inverter at that voltage and the load capacitance driven by the delay element. The quantity

of how much the VCO frequency changes given a change in the control voltage is called

the VCO gain orKvco. To find this parameter, we return to the VCO test bench schematic

and regenerate the VCO transfer curve. TheKvco is the slope of the curve and can be

measured by:

5.1. PHASE-LOCKED LOOP DESIGN 85

n1n0 n2 n3 n4

Vctrl

vsrc

Figure 5.9: CMOS Inverter-Based VCO

DEFINE Kvco=Slope(vctrl,Freq(ck)) w/ SweepV(vctrl,vLo,vHi)

We measure the slope across the range of the control voltage fromvLo to vHi and store the

values as a vector.Kvco is a design parameter that we adjust when optimizing the PLL’s

performance.

One problem with the ring-type oscillator is when the frequency is too high, the inter-

nal edges do not swing to rail. This leads to an increased sensitivity to supply noise and

distortion of the duty cycle. One must prevent the oscillator from operating at those high

frequencies. The following Assertion Comments monitor the voltage swing of the VCO:

ASSERT Swing(n4)

TheSwing() function is a wrapper around theFindT ime() primitive. The wrapper uses

FindT ime() to find the 2-98% risetime ofn4, where the 100% voltage level is the instan-

taneous voltage at the source terminal of the PMOS transistor. If there is a rising transition,

but the signal does not reach 98%, then the Assertion fails. Checking whether the signal

86 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

M4M3

M2M1 V+V−

Vout

Figure 5.10: Level Shifter Schematic

swings to at least 98% of the source voltage makes the Assertion independent of the pro-

cess technology and the operating frequency. Since the maximum swing of the oscillator

is limited to the control voltage, its output must be converted to the full supply level before

driving any CMOS logic.

Level Shifter

The level shifter, depicted in Figure 5.10, is a simple two-stage current-mirror based am-

plifier that converts the partial swing signals generated by the ring oscillator to full CMOS

level. Similar to the VCO, the output of the level shifter must also reach 98% of its supply,

which in this case is the full CMOS level. The finite gain-bandwidth product of the level

shifter and the larger required swing mean that the circuit may fail to propagate the clock

at high frequencies before the oscillator fails its swing assertion. To guarantee the output

of the level shifter completes its transition, we added the following Assertion:

ASSERT Swing(Vout)

5.1. PHASE-LOCKED LOOP DESIGN 87

In the Assertion call, we only need to specify the node to check since theSwing() function

automatically finds the correct swing level by tracing the PMOS transistor connected to the

node.

Shifting voltage levels distorts the duty cycle of the input. The two inverters following

the second stage are sized to offset the distortion introduced in the amplifier. We add two

Assertions to check the duty cycle of the final output:

ASSERT PulseWidth(Vout)/Period(Vout)>= 48%

ASSERT PulseWidth(Vout)/Period(Vout)<= 52%

ThePulseWidth() andPeriod() are wrappers which useFindDelay() to find the high

phase and period of theV out signal, respectively. Since the PFD used in this design only

compare the rising edges, we relax the duty cycle constraint to allow a +/-2% variation.

To enable frequency multiplication, the output of the VCO is divided down in frequency

before comparing to the reference by the PFD. The frequency division is accomplished

using a divider.

5.1.4 Divider

The divider in the feedback path divides the internal clock to enable the VCO to oscillate

at N times the reference clock frequency. In this design, we implemented the divider as a

binary counter using static CMOS logic. The counter can be programmed to count to 1, 2,

4, or 8. When the number of clock edges reached the pre-programmed divide value, the

counter output is asserted for one VCO cycle. This way, the period of the counter output

equals to that of the reference clock, with the high phase of the signal being one VCO cycle

long.

As with most digital blocks, and the two most important design objectives of the divider

are correct functionality and meeting cycle time. By coding the logic of each state bit into

the conditional clause of an Assertion, we could check the signal transition at the input

of each flop. However, there are a number of commercial tools available to help analyze

the functionality and delay of the circuit [48][49], and the designers should use them to

88 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Q

Qb

Clk

D

Figure 5.11: Semi-Dynamic Flip-Flop

guarantee design robustness. Our goal is not to replace those tools, but to capture the

design constraints so that we can monitor the circuit during the system level mixed-signal

simulation. In this design, we verify the logic implementation with a functional simulator

Verilog-XL [50] and use Active Comments to validate the timing.

Since the goal is to check the timing of the circuit, constraints are added to the clocked

element in this design. To support the fast cycle time, we used the semi-dynamic flip-flop

[51], shown in Figure 5.11. Intuitively, we would bound the data arrival time of the flop to

ensure that it meets the setup time. We specify the timing constraint as follows:

ASSERT delayRR(D,ck)>= 0.5*FO4

ASSERT delayFR(D,ck)>= 0.5*FO4

wheredelayRR() finds the delay between every rising edge ofck to rising edge ofQ,

anddelayRF () is similarly defined. If the combination logic results in the data input, D,

transitioning multiple times before the clock rises, theFindT ime() primitive will gener-

ate “NA”s for all but the last data transition since D is the trigger signal. However, the

5.1. PHASE-LOCKED LOOP DESIGN 89

Figure 5.12: Normalized Clk→Q/D→Q Vs. Setup Time

wrapper function safely ignores these “NA”s since only the last data transition needs to be

constrained. The Assertions ensure that the last data transition occurs half an inverter delay

before the clock rises.

While this set of constraints correctly ensures the proper design margin, we may be able

to relax the constraints. Figure 5.12 shows the clk→Q and D→Q of the flop with respect

to its setup time, normalized to the FO4 delay. The clk→Q of the flop increases as the

data arrives later relative to the clock (more negative setup time). Note that the output of

the flop still transitions even with some negative setup time; in fact the minimum D→Q

occurs when the data arrives about half an inverter delayafter the clock. It is reasonable

to recast the setup time problem into bounding the clk→Q delay. This way, we can relax

the constraint on the data arrival time as long as the the clk→Q delay is not pushed out

to cause failure in downstream logic. Adding the following Assertion Comments to the

90 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

flip-flop bounds the output delay:

ASSERT delayRR(ck,Q)<= 2.5*FO4

ASSERT delayRF(ck,Q)<= 2.5*FO4

Using the above Assertions ensures that the clk→Q is never more than 2.5 times the FO4

delay and indirectly ensures sufficient setup time for the flop to capture the data. We chose

the constraint to be2.5 ∗ FO4 because it is the clk→Q at the minimum D→Q.

Divider-VCO

Although the divider output has the same frequency as the the reference, we should not

compare it to the reference clock directly because this signal has a static phase offset equal

to the Clk→Q delay of the flop. Instead of comparing the output pulse to the reference,

we use it as an enable signal to qualify the feedback clock. This imposes a set of timing

constraints between the enable signal and the feedback clock to ensure correct operation

of the PLL. Specifically, the enable signal must completely overlap the high phase of the

VCO clock. These edges can be constrained with two Assertions.

To check the assertion edge of the enable signal, we must make sure that the rising edge

of en comes before that ofck, as shown in Figure 5.13(a). Constructing the assertion as

follows captures this behavior:

ASSERT delayRF(en,ck)-delayRR(en,ck)>= 0

Checking the rising edge of the enable signal against both the rising and the falling edges

of the feedback clock ensures that the enable’s rising edge is placed during the low phase

of the clock. If this set of timing relationship is not observed, the loop may still lock to

the correct frequency, but there will be an inherent static phase offset between the clock

distribution output and the reference clock. This phase offset could be difficult to detect

because the inputs of the PFD may be perfectly in phase.

However, checking only the setup of the signal is not sufficient. If the enable pulse

is too short such that it does not overlap the rising edge of the feedback clock, then there

5.1. PHASE-LOCKED LOOP DESIGN 91

Pass: delayRF(en,ck) > delayRR(en,ck) Failed: delayRF(en,ck) < delayRR(en,ck)

ck

en

ck

en

(a)

ck ck

en en

Pass: delayRR(en,ck) < PulseWidth(en)

(b)

ck ck

en en

Pass: delayRR2(en,ck) > PulseWidth(en) Failed: delayRR2(en,ck) < PulseWidth(en)

(c)

Failed: delayRR(en,ck) > PulseWidth(en)

Figure 5.13: Timing Diagram of Enable and Clock

92 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

would not be any signal at the input of the PFD. Figure 5.13(b) shows that the enable signal

must fall after the rising edge of the feedback clock in order to qualify it. On the other hand,

if the pulse is too wide such that it overlaps with the high phase of the next feedback clock,

then the PFD will incorrectly sense a higher frequency clock. Figure 5.13(c) shows that

the falling edge of the enable signal must occur during the next low phase of the feedback

clock. These two timing constraints can be enforced by adding the following Assertions:

ASSERT delayRR(en,ck)-PulseWidth(en)<= 0

ASSERT delayRR2(en,ck)-PulseWidth(en)>= 0

wheredelayRR2() finds the delay ofen rising to the second rising edge ofck, andPulse−
Width() measures the pulse width, or the delay between the rising and falling edges, of the

signal. Both of these functions are wrappers aroundFindDelay(). Checking the relative

timing of these signals instead of imposing a specific delay value allows the constraints to

automatically scale with the VCO frequency and the divide ratio.

5.2 Design Reuse

Often when reusing a design to target a new application, we need to modify the circuits

beyond simply scaling the device sizes. While we would like to leverage the entire proven

design to reuse it as-is, new applications and/or new process technology may force us to

modify parts of the circuit in order to meet the new performance envelope.

The example PLL described in the previous section was fabricated and proven to work

in the 0.35µm technology. We intend to reuse this PLL as a component in a different sys-

tem, using the Active Comments already embedded in the design database along with the

prototype framework to help with the reuse process. The database of the original PLL was

transferred to a different designer who ported and reused the circuits in a new application.

In the target application, the PLL is to be used as a plug-in module in an optical transceiver

testchip. The testchip will be fabricated in the 0.25µm process targeting an I/O bit-rate

of 5Gb/s/link while achieving low power consumption to enable large-scale integration.

The cycle time of the core logic is limited by the minimum clock waveform that can be

5.2. DESIGN REUSE 93

distributed by the inverters which is typically 6 to 8 FO4 delays [52]. In the 0.25µm tech-

nology, the FO4 delay is about 125ps which sets the maximum frequency to 1GHz. Data

rates higher than the core frequency can be achieved by multiplexing the I/O where a set of

parallel transmitters and receivers operating at a lower frequency rotate their duties in time

[53][54]. The timing of the active period of each transmitter and receiver is controlled by

equally-spaced, multiple phases of the lower frequency clock.

Our example PLL is used to generate the multi-phase clock to control the timing of

the transmitter and receiver. To achieve the 5Gb/s I/O bandwidth in a 0.25µm technology

requires the transceiver to operate at five times the internal core frequency. To control

the sequencing of the 5:1 multiplexing and de-multiplexing operations, the PLL needs to

generate ten evenly spaced clock phases. However, the single-ended VCO in our example

PLL only generates five of the ten needed clock phases. To produce the needed clock

phases, we couple two of these five-stage ring oscillators as proposed in [55].

Using the differential oscillator results in a much higher power consumption than orig-

inally anticipated. With two rings and the coupling inverters, the number of gates in the

oscillator is quadrupled. The differential VCO required four times more current than the

single-ended version and thus failed the current ratio Assertion at its interface to the voltage

buffer. Keeping a low inter-stage multiplication factor in the op-amp forces us to up-size

all the devices in the amplifier by a factor of four to provide the current needed for the

VCO to oscillate. In addition to driving the VCO, the voltage buffer also provides the sta-

bilizing zero of the PLL. Up-sizing the circuit compromises the loop stability. In order to

maintain the same loop dynamics, the sizes of both charge-pumps must also be quadrupled.

As a result of changing the oscillator, all the analog cells are increased by a factor of four.

With the larger voltage buffer and charge-pumps, the differential PLL meets the frequency

specification at the cost of quadrupling the power consumption.

We would like to modify some of the circuits, possibly changing the circuit topology,

to reduce the power consumption. Since the voltage buffer consumes the most power, we

replaced it with a more power efficient design [56][57]. Instead of using the load current as

in the original design, the modified topology uses a capacitive load at the output to filter out

the high frequency noise. To further reduce power, we removed the proportional charge-

pump CP2 in Figure 5.1, and replaced the feed forward zero with a more conventional

94 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Ref

Vvdd
dnb

upb

en
ck

AmpN

Vctrl
PFD CP1

Figure 5.14: PLL Block Diagram

series RC loop filter [25]. Finally, decoupling the buffer from the stability zero allows the

remaining charge-pump to be sized down for more power savings.

The RC filter is implemented with a PMOS transistor in series with the NMOS loop

capacitor. To achieve a wide operating range, the PMOS resistor is biased with Vctrl to

compensate for the PVT variations and to allow the loop dynamics to track across a wide

operating frequency [38]. With Vds=0, the PMOS transistor is operating in the triode re-

gion and the resistance is the channel resistance, which is different from the “effective”

resistance provided by the 1/gm of the saturated transistor. As a result, the resistance

measurement (usingMeasRout()) was removed from the op-amp schematic (but kept in

the comments view for record) and a new Measurement Comment usingMeasRch() was

added to find the series resistance in the RC filter.

The block diagram of the final PLL is shown in Figure 5.14. For clarity the figure

only shows one VCO buffer driving a level shifter in the feedback path. In the actual

implementation, the other four buffers are also driving identical level shifters to produce

the multiple clock phases. Originally, the PLL modification was limited to only replace

5.3. RESULTS 95

the single-ended VCO with a differential design in order to generate the multi-phase clock

needed by the new application. However, the goal of minimizing power consumption led

us to modify other circuit blocks. Even though we changed the circuits, most of the Active

Comments in the modified blocks were carried over from the original design. The only

change is that we measure the channel resistance of the PMOS transistor in the RC loop

filter instead of the output impedance of the amplifier to reflect the simplified filter topology.

5.3 Results

5.3.1 PLL Porting Results

Since the testchip was to be fabricated in a 0.25µm process, we need to port the design and

resize the devices. All the analog circuits need to be re-optimized, and we focus our design

objective on reducing jitter and static phase offset. To have small jitter, the PLL needs to

have an over-damped response to minimize noise amplification, and a high loop bandwidth

to minimize noise accumulation. In terms of the standard loop parameters, this means that

the damping factorζ should be greater than 0.7 and the loop bandwidthωn should be close

to its theoretical maximum of 10% of the reference frequency.

Since each term in the loop dynamics equations is implemented by a different sub-block

in the PLL, we used the Measurement Comments embedded in each block to find the cir-

cuit parameters in the sub-circuit, then evaluated the damping factor and loop bandwidth

equations at the system level to help guide our optimization decisions. We can express the

loop dynamic equations (Equations 5.2 and 5.3) with Measurement Comments:

CALCULATE zeta=0.5*R*sqrt(Icp*Kvco*Ccp/N)

CALCULATE wn=sqrt(Icp*Kvco*Ccp/N)/Ccp

Figure 5.15 shows the resulting loop dynamics tracking across the operating range with

ζ always being above 0.7. Theωn is pushed lower to about a quarter of the theoretical

maximum of 10% of the reference frequency to account for the delay in the loop and to

filter out some low frequency noise in the reference clock.

96 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Figure 5.15: Tracking of PLL Loop Dynamics

The PLL was manually re-optimized based on the values ofζ andωn. This may be done

more efficiently with the help of some of the modern analog synthesis tools [58][59][60].

5.3.2 Hidden Errors

In addition to automatically measuring and evaluating the critical circuit parameters, STAR

is also used to monitors the circuit performance in the background. Often, designers pay

close attention to the circuits they designed or modified and assume that the other parts are

working correctly. Unfortunately, this assumption is not always valid. The new applications

or process may introduce errors in the unmodified circuits, but these errors may be masked

by top level signals. STAR uncovered a hidden error in the lower hierarchy that causes a

static phase error between the internal clock and the external reference.

The top level simulation results in Figure 5.16 show the the rising edges of the feedback

clock aligned with those of the reference clock at the PFD inputs. This implies that the loop

is running at the target frequency with negligible phase offsets between the two clocks.

From these waveforms, one would expect that the PLL is working properly, and all the

sub-circuits are performing within the specification. However, this is not the case.

While a designer may not be able to check every signal in the simulation results, STAR

automatically processes all the Assertion Comments embedded in the design. Even though

the clocks are aligned at the PFD inputs, the tool reported a number of assertion failures at

5.3. RESULTS 97

Figure 5.16: Reference and Feedback Clock Aligned at the Inputs of PFD

Figure 5.17: Enable Signal Fails Setup Time to Clock

the sub-block level. Specifically, the failed assertions are the timing constraints associated

with the flip-flops in the divider and the qualifying NAND gate in Figure 5.14. The clk→Q

of the flop is pushed out and causes the clock qualifying signal,en (Figure 5.14), to rise

after the clock has risen, as shown in Figure 5.17. This results in a significant phase offset

between the generated clock and the reference clock, even though the inputs to the PFD

are aligned. Although the PLL is still functional and locks in simulation despite this error,

the design margin is nevertheless reduced. The circuit is operating near the edge of failure.

Uncovering this error made the ported design more robust.

Using STAR, we are able to successfully port and reuse this PLL design. Simulation

98 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Table 5.1: PLL Performance Summary (Simulated at 800MHz)
Operating Range: 125-1200MHz
Active Area: 0.098mm2

Phase Offset: < 20ps
Jitter: < 80ps (10% Vdd noise)
Power Dissipation: 72mW @ 2.5V
Technology: National 0.25µm CMOS 1poly-5metal

results indicate that the operating range of the final PLL is 125-1200MHz. When simulating

at 800MHz VCO frequency and N=4, the final design achieves a period jitter of 20ps and

peak to peak jitter of< 80ps with 10% step on the power supply. Table 5.1 summarizes the

simulated PLL performance.

5.3.3 Prototype Tool Performance

We use the run time of the PLL porting experiment to study the performance of the proto-

type and evaluate the design decisions we made when implementing the the prototype. For

our PLL design, the types of simulations and results analysis range from short simulations

to measure specific circuit parameters to very long loop transient simulations that explore

the loop dynamics. This large variation in the size of the data allows us to test the prototype

under different circumstances.

Table 5.2 shows the total times the prototype took to simulate and extract all the pa-

rameters needed to evaluate the damping factor expression. The simulation time for most

of the parameters was about 5 seconds each, except for measuringKvco which took about

17 minutes. The longer run time for theKvco measurement was because the simulation

swept the control voltage to find the corresponding frequencies, and the simulation time for

Table 5.2: PLL evaluating zeta expression
Simulation Type: Kvco Icp R Ccp
Simulation Time: 17min 5sec 5sec 5sec
Simulation Results: 1.3K 19K 19K 0.15K
Reading Results: 1sec 1sec 1sec 1sec
Processing Measurements:1 Sec

5.3. RESULTS 99

Table 5.3: PLL transient simulation checking
Simulation Time: > 1 day
Simulation Results: 267M (248 variables, 280707 data points/var)
Reading Results: 49sec
Process Assertions:50min 37sec (40 assertions total)

each run in the sweep was determined by the lowest frequency. Reading and processing the

measurement results took on the order of seconds for each parameter. On an absolute time

scale, the overhead of using the tool to process the results of these short simulations is very

small.

In contrast to the short simulations for the measurements, the loop transient simulation

took over a day to complete. The long simulation time for the PLL loop transient is de-

termined by two time constants associated with the circuit. One time constant is the loop

bandwidth which dictates the simulation time, and the other time constant is the frequency

of the signals which dictates the time step. The simulation produced a 267MB transient

waveform (.tr0) file which contains 280,707 data points for each of the 248 variables. The

prototype took 49 seconds to load the transient file into the internal data structure and an-

other 50min 37sec to process the 46 Assertion Comments embedded throughout the design

hierarchy. Table 5.3 summarizes the performance.

From this experiment, we learn that simulation time dominates the design turn-around

time for parameter measurements and loop transient simulations. We also found that in

the verification phase, reading simulations results (I/O) is not the bottleneck. Instead, the

system performance is limited by the processing time. Some of the performance degrada-

tion is the result of our choice of using Perl for its easy of implementation and flexibility.

Another reason for the long processing time is that the current implementation processes

one assertion at a time. Some of the performance can be gained back by processing the

assertions in parallel since the Assertion Comments are independent from one another. We

manually coded a three pass verification scheme where in the first pass we read the sim-

ulation results and load all the signal waveforms that are needed by the Assertions in the

entire design. We pre-calculate all the signals and data that are used in the multi-pass As-

sertions in the second pass. In the final pass, we execute the Assertions in sequence using

the pre-compute data. Using this manually coded system, the same set of Comments took

100 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

15 minutes to complete.

5.3.4 Design Reuse Experience

The porting and reuse of the circuit was performed by a graduate student who was not fa-

miliar with the framework and was designing a PLL for the first time. Using the embeded

Measurement Comments to automatically generate the simulation runs and analysis rou-

tines, he was able to assess the loop performance on the first day of inheriting the database.

The notes in the comments view for each schematic not only helped explain the Active

Comments, but also served as a teaching tool to identify the key design criteria for each

analog cell. The framework’s capability of cascading measurements and checking depen-

dencies between critical circuit parameters ensures that the simulations are executed in the

correct order. The PLL was ported and optimized in about three man-weeks which included

the time to learn both to use the framework and to design a PLL.

The feedback from applying the framework to help reuse the design focused on the

learning curve of using Active Comments to create new simulation runs, which is different

from the traditional paradigm of writing spice decks taught in the analog design classes

today. While the user liked using spice decks generated from the existing Measurement

Comments, he found that creating new Measurements required more understanding of both

the framework and the pre-defined functions provided in the tool distribution. This initially

demanded more time to create a new simulation run when compared to writing a new

spice deck. However, once the user was familiar with the set of available functions and

was comfortable with using Measurement Comments to control the simulations, he liked

the ability to cascade measurements and reuse circuit parameters in the same framework

without writing each line of the spice deck and creating his own scripts to process the

results. Compared to the Measurements, the concept of analog assertions was very well

received from the beginning. The user found that the Assertions greatly improved the

robustness of the design because the critical performance constraints were automatically

checked without requiring him to have extended knowledge of all the components in the

reused design.

5.4. SUMMARY 101

5.4 Summary

We used STAR to capture a PLL design and then used the PLL as a building block in

an optical testchip fabricated in a different process technology. During the reuse process,

we modified the VCO, voltage buffer, and loop filter of the PLL to meet the performance

requirement set by the new application. We used the Measurement Comments in STAR

to guide the manual re-optimization of the loop and the Assertion Comments to check and

validate the system integration. STAR uncovered an hidden error in the lower level of the

design which caused a significant static phase error between the internal clock and external

reference.

The design turn-around time during the reuse process is dominated by the simulation

run time. STAR adds about 5% to the total turn-around time for the long loop verification

transient simulations. Most of the run time is spent in the Perl analysis routines not the I/O

since we already optimized the reading of long simulation results with C. We can further

decrease the STAR overhead by processing the Analysis routines in parallel.

102 CHAPTER 5. PHASE-LOCKED LOOP DESIGN

Chapter 6

Conclusion

Reuse of analog circuits requires the archival representation to be more than just the circuit

topology and sizes. The archive must include some design knowledge about how the circuit

was designed and what constraints were assumed when the device was simulated. We need

to check these constraints not only when designing the circuit in isolation, but also for each

instance of the circuit where it is used.

We created a system that addresses many of these issues using Active Comments. This

system is flexible enough to allow the designers to easily extend it to capture the constraints

of new designs. We were able to capture a PLL design as a reusable analog module using

a combination of ten base functions.

To enable designers to create their own functions to capture the constraints and assump-

tions, two programming language interfaces are provided. One is a scripting language

which enables rapid prototyping, and the other is a compiled language which provides

higher performance at the cost of higher programming effort. By using these two inter-

faces, the designer can trade-off between development time and processing speed. With

a mixture of Perl functions and two compiled C routines, our prototype system incurred a

verification time overhead of less than 5%.

The key additional requirement for making reusable blocks is that Active Comments

metrics should be coded in a process independent way, preferably by using the inherent

properties of the underlying circuit. While currently this approach requires some additional

effort, we hope if systems like this become more common, designers will become more

103

104 CHAPTER 6. CONCLUSION

comfortable with it, and start coding this way naturally.

6.1 Future Work

The work presented in this dissertation can be extended in several ways. While designers

can use the current version of STAR to specify the circuit parameters and performance

constraints, they still need to manually optimize the design. A natural extension to STAR

is to integrate the recently available multi-variable optimization engines into our framework

to form a complete system for designing and reusing analog modules.

Work on designing and reusing analog circuits has primarily focused on constraint spec-

ification and circuit optimization. One area that has been ignored by the CAD community

is the debugging of circuits performing outside the specification. Being able to find the

causes of the problem is key to design reusability since the persons instantiating these ana-

log modules are often not the original designer and therefore not familiar with the design.

Performance degradations are caught in the form of assertion failures. Often each assertion

failure is the result of other failed assertions. By creating a dependency graph between the

assertions, we can trace the graph to find the possible causes when a violation is encoun-

tered.

In addition to improving the debugging process for the back-end verification, we can

also extend our design capture front-end to embed more design information into the circuit

representation. In the examples used throughout this dissertation, we alternate between

production and test bench schematics to measure circuit parameters. However these two

sets of schematics are two representations of the design and may become out of sync over

time. Since the test benches are modeled after the intended operating environment of the

module, one should be able to derive them from the top level production schematic. It may

be possible to combine the test bench and the production schematics into one unified design

representation. User can include additional devices and group the different components on

the schematic to indicate the different test benches. From this unified representation, the

design system can generate the user specified view on the fly. This way, any changes to the

production design can be automatically reflected in the test benches.

6.1. FUTURE WORK 105

We anticipate that in the future, analog circuits will continue to be designed by experi-

enced designers but with more help from CAD tools to ensure robustness and reusability.

The framework described in this dissertation can be used to capture design goals and check

performance of both manually designed and automatically generated circuits. Using this

type of design tools should help expedite the adaption of analog synthesis tools as they

become commercially available.

106 CHAPTER 6. CONCLUSION

Appendix A

STAR User Manual

The STAR design framework provides a set of pre-defined functions that enable designers

to capture performance goals and operating constraints of analog and mixed-signal circuits.

The functions used to capture an example PLL design are included as part of the tool

distribution. The details of these functions are presented in this appendix along with a brief

description of the datatypes and global parameters supported in the prototype.

This appendix is organized as a manual to using the STAR system. The syntax of the

Active Comment enables the user to define variables which are type casted at run time.

Section A.1 describes the available datatypes. Section A.2 describes the global parameters

provided by the STAR framework to support technology independent specifications and

constraints and to facilitate data passing between functions. All the functions created to

capture the example PLL design are listed alphabetically in Section A.3 while the two

primitives used to improve the performance of the tool can be found in Section A.4.

A.1 Datatypes

Variables used in the Active Comments can take on one of three datatypes:scalar, vector,

andwave. A scalar is a single data value which can be a string, an integer, or a float, while

avector is an one dimensional array ofscalars. Thewave datatype is an array of ordered

pairs such as (time,value). The ordered pair identifies a point in a two dimensional plot,

and together all the pairs in the array form a curve or signal waveform from a transient

107

108 APPENDIX A. STAR USER MANUAL

Table A.1: Supported Datatypes in STAR
Datatype Description
scalar integer, float, or string
vector array of scalar
wave array of (time,value) ordered pair

analysis. Thescalar andvector datatypes are used for circuit parameters defined by the

Measurement Comments, andwave is the datatype used for transient signal waveforms in

Assertions. These three datatypes are summarized in Table A.1.

These three types of data are represented in STAR using native Perl datatypes. The

scalar and vector types map to the Perl scalar and array structures. While there is no

nativewave-like data structure in Perl, awave data is represented by an array of strings,

where the value of the string is “time,val”. Concatenating the ordered pair into a string

allows thewave to be represented in a simple array instead of using more complicated

structures such as an array of arrays or an array of hashes. This simplifies the designer’s

coding effort when creating new functions in the library.

A.2 Global Parameters

In STAR, the Active Comments and library functions use technology independent param-

eters to improve the portability of the design. These parameters are stored in the Glb-

Param.prm file, and the values of the parameters are updated for each technology process

and design project. Figure A.1 displays the contents of the GlbParam.prm file. The pa-

rameters in this file includehspLib, vsup, FO4Delay, FO4RiseT ime, defaultCorner,

andvectorSize. The parameter names are used as keys to a hash table, and their values

are the corresponding entries. Using a hash table separates the name space of these global

parameter from the variables used in the engine and simplifies the process of loading these

parameter into memory and searching their values during run time.

The parameterhspLib holds the location of the device model file,vsup is the supply

voltage,FO4Delay and FO4RiseT ime are the process dependent gate delay metrics,

defaultCorner sets the simulation corner when it is omitted in a# DEFINE statement

A.2. GLOBAL PARAMETERS 109

$glbList->{"hspLib"} = "\$ENV{PROJ}/lib/fets.lib";
$glbList->{"vsup"} = "3.3";
$glbList->{"FO4Delay"} = 180e-12;
$glbList->{"FO4RiseTime"} = 180e-12;
$glbList->{"defaultCorner"} = "tttt";
$glbList->{"vectorSize"} = 20;

Figure A.1: Contents of GlbParam.prm

, andvectorSize sets the size of the vectors for the variables defined by the Measurement

Comments. Defining the size of the vector as a global variable guarantees that all the

vectors defined by the Measurements are the same size and can therefore be operated on

together. The pre-processing functions in the MeasGenerate.pm use this parameter when

creating sweeps and ramps.

In STAR, the parser layer provides a global hash table to store the results computed

by the analysis functions. Each function passes the reference (or key) to the entry in the

hash table as its return value such that the passing of parameters between functions is done

using these references. The global hash table is called %ResultTable, where the % sign

denotes a built-in hash table datatype in Perl syntax. In addition to storing the analysis

results, the hash table also contains additional information about the comments used by the

parser. Consequently, each entry in the table is referenced by a combination of two keys:

the actual text string of the Active Comment that instantiated the function ($cmtName) and

a reference name generated by the function ($refName). The first key is used to identify

the comment, while the second key uniquely identifies the data. For example:

$ResultTable{$cmtName}{$refName}[$i]

accesses the ith element in the array entry referenced by $cmtName and $refName. The

values of $cmtName and $refName are passed into the parser, and the details are described

in the next section.

110 APPENDIX A. STAR USER MANUAL

Table A.2: Additional Arguments Passed into Functions
Generate Functions Analysis Functions

$cktName sub-circuit name $cktName sub-circuit name
$topCktName top-most circuit $topCktName top-most circuit
$$masCntptr pointer to counter $$masCntptr pointer to counter

$cmtName Active Comment

A.3 Functions

In order for the functions in the library layer to access the hash table and to create unique

reference names, the parser passes a few extra arguments into the function at runtime. The

argument list is different for the generation functions and the analysis functions. For the

generation functions (especially for the Assertions), we need to know which sub-circuit the

Assertion was embedded in order to find all the instances of that sub-circuit. The search

routine that traverses the netlist also requires the name of the top level circuit. Therefore,

these two values, $cktName and $topCktName, are the first two parameters in the list of

extra arguments. The last parameter in the list, $$measCntptr, is a pointer to a counter

variable that can be used to generate an unique name to reference the measurement, probe,

and voltage or current sources produced by these functions. In addition to this set of extra

arguments, the parser passes one more parameter into the analysis function. This param-

eter, $cmtName, is the Active Comment that instantiated the function. When a cell is

instantiated more than once, the Assertion embedded in that cell will be expanded to con-

tain the full path to the cell. This way, $cmtName is guaranteed to be unique. Table A.2

summarizes the different parameters which are passed into the functions.

When creating new functions, the programmer must account for these extra arguments

in the code. However, from the tool user’s perspective, these parameters are hidden and are

not part of the function’s interface. For clarity, the function description below only includes

arguments a designer would enter in the comments editor when creating Active Comments.

A.3. FUNCTIONS 111

Abs

Abs(signal) => abs $measCnt

Description

This function finds the absolute value of thesignal. The result is stored in the global

hash table. The datatype of the result is an array of (time,value) ordered pair, wheretime

is the time step of the simulation andvalue is the delay.

Arguments

signal: name of signal

Value Returned

abs $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

Abs(I(vsrc))=> “abs i 0”

Effect: @{$ResultTable{$cmtName}{“abs i 0”}} contains the absolute value of the

current entering the voltage source vsrc

112 APPENDIX A. STAR USER MANUAL

FindDelay

FindDelay(signal1,thres1,dir1,signal2,thres2,dir2,numOfTran) => dly $measCnt

Description

This function finds the delay from the time instant whensignal1 reachesthres1 (trig-

ger event) to the time instant whensignal2 reachesthres2 for numOfTran times (target

event). The result is stored in the global hash table. The datatype of the result is an array

of (time,value) ordered pair, wheretime is the time of the trigger andvalue is the delay.

The delay is measured once per trigger.

Arguments

signal1: name of trigger signal

thres1: threshold level to initiate the trigger

dir1: direction of the transition (rise or fall)

signal2: name of the target signal

thres2: threshold level to initiate the target

dir2: direction of the transition (rise or fall)

numOfTran: the number of transitions the target signal waits after the trigger event

Value Returned

dly $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

FindDelay(clk,0.2*vdd,rise,0.8*vdd,rise,1)=> “dly 1”

Effect: @{$ResultTable{$cmtName}{“dly 1”}} contains the rise time of the node clk

A.3. FUNCTIONS 113

DelayRR,DelayRF,DelayFF,DelayFR

DelayRR(signal1,signal2) => dlyrr $measCnt

DelayRF(signal1,signal2) => dlyrf $measCnt

DelayFF(signal1,signal2) => dlyff $measCnt

DelayFR(signal1,signal2) => dlyfr $measCnt

Description

This function finds the delay from thesignal1 rising/falling to 50% of vdd tosignal2

rising/falling to 50% of vdd. The result is stored in the global hash table. The datatype of

the result is an array of (time,value) ordered pair, wheretime is the time of the trigger and

value is the delay. The delay is measured once per trigger.

Arguments

signal1: name of trigger signal

signal2: name of the target signal

Value Returned

dlyrr $measCnt: name of the key to entry in the global hash table where the data is

stored

dlyrf $measCnt

dlyff $measCnt

dlyfr $measCnt

Example

DelayRR(clk,clk)=> “dlyrr 2”

Effect: @{$ResultTable{$cmtName}{“dlyrr 2”}} contains the period of the node clk

114 APPENDIX A. STAR USER MANUAL

DelayRR2,DelayRF2,DelayFF2,DelayFR2

DelayRR2(signal1,signal2) => dlyrr2 $measCnt

DelayRF2(signal1,signal2) => dlyrf2 $measCnt

DelayFF2(signal1,signal2) => dlyff2 $measCnt

DelayFR2(signal1,signal2) => dlyfr2 $measCnt

Description

This function finds the delay from thesignal1 rising/falling to 50% of vdd to the second

timesignal2 rising/falling to 50% of vdd. The result is stored in the global hash table. The

datatype of the result is an array of (time,value) ordered pair, wheretime is the time of

the trigger andvalue is the delay.

Arguments

signal1: name of trigger signal

signal2: name of the target signal

Value Returned

dlyrr2 $measCnt: name of the key to entry in the global hash table where the data is

stored

dlyrf2 $measCnt

dlyff2 $measCnt

dlyfr2 $measCnt

Example

DelayRR2(en,clk)=> “dlyrr2 3”

Effect: @{$ResultTable{$cmtName}{“dlyrr2 3”}} contains the delay fromen rising

to the second timeclk rises

A.3. FUNCTIONS 115

FindNode

FindNode(pattern,topCktName,cktName) => @MatchedNode

Description

This is a helper function used by other functions and not directly called by the user. The

function traverses through the netlist to find all the nodes within the subckt,cktName, that

match the regular expressionpattern.

Arguments

pattern: regular expression for the node to be found

topCktName: name of the top-most circuit in the netlist

cktName: name of the sub-circuit where the nodes are to be found

Value Returned

@MatchedNode: array of full path to the nodes that matchpattern

Example

n0 is in subckt oamp and the top-most circuit is called PLL

FindNode(n0,PLL,oamp)=> (xoamp.n0)

116 APPENDIX A. STAR USER MANUAL

FindTx

FindTx(tx prop,topCktName,cktName) => @MatchedTx

Description

This is a helper function used by other functions and not directly called by the user. The

function traverses through the netlist to find all the transistors within the subckt,cktName,

that contain the property,tr prop.

Arguments

tr prop: name of transistor property added to the transistor of interest

topCktName: name of the top-most circuit in the netlist

cktName: name of the sub-circuit where the transistors are to be found

Value Returned

@MatchedTx: array of full paths to the transistors that have thetr prop

Example

m0 and m1 in subckt oamp are tagged withcs property

FindTx(cs)=> (xoamp.m0, xoamp.m1)

A.3. FUNCTIONS 117

Freq

Freq(node) => freq $measCnt

Description

This function adds spice .meas commands to calculate the frequency of the signal at

nodenode.

Arguments

node: node in the schematic

Value Returned

freq $measCnt: reference name of the measurement command added to the spice

deck, used to access simulation result

Example

Freq(clk)=> “freq 4”

Effect: two .meas statements are added to the spice deck to find the frequency of clk

118 APPENDIX A. STAR USER MANUAL

HiRange

HiRange(xV ar,yV ar) => hi x

Description

This function finds the upper inflection of a curve. An inflection point is defined as a

more than 20% change in the slope of the curve.

Arguments

xV ar: name of measured parameter that forms the independent (x) axis

yV ar: name of the measured parameter that forms the dependent (y) axis

Value Returned

hi x: value of the xVar at the upper inflection point

Example

vctrl is the swept parameter, freqck is measured frequency, upper inflection point oc-

curs at vctrl=2.7V

HiRange(vctrl,freqck) => 2.7

A.3. FUNCTIONS 119

I

I(vsrc) => i $measCnt

Description

This function reads the specified current waveform from the simulation transient results

into the memory of the executing prototype. The data is stored in the global hash table. The

datatype of the waveform is an array of (time,value) ordered pairs.

Arguments

vsrc: name of the voltage source that the current being measured is flowing into

Value Returned

i $measCnt: name of the key to enter into in the global hash table where the data is

stored

Example

I(vsrc0)=> “i 5”

Effect: @{$ResultTable{$cmtName}{“i 5”}} contains the current waveform

120 APPENDIX A. STAR USER MANUAL

InitV

InitV(node,value) => node

Description

This functions initializes node to a voltage value.

Arguments

node: name of node in the schematic

value: voltage to be initialized at the node

Value Returned

node: name of the node to be initialized

Example

InitV(bias,100m)=> “bias”

Effect: the nodebias is set to 100mV DC relative to ground

A.3. FUNCTIONS 121

LoRange

LoRange(xV ar,yV ar) => lo x

Description

This function finds the lower inflection of a curve.

Arguments

xV ar: name of the measured parameter that forms the independent (x) axis

yV ar: name of the measured parameter that forms the dependent (y) axis

Value Returned

lo x: value of the xVar at the lower inflection point

Example

vctrl is the swept parameter, freqck is the measured frequency, lower inflection point

occurs at vctrl=1.2V

LoRange(vctrl,freqck) => 1.2

122 APPENDIX A. STAR USER MANUAL

HiRange

Max(var) => max var

Description

This function finds the maximum value in a vector.

Arguments

var: name of measured parameter that forms the vector

Value Returned

max var: maximum value in the given vector

Example

per ck is a measured parameter with values [1 2 3 4 3 2 1]

Max(perck) => 4

A.3. FUNCTIONS 123

MeasCap

MeasCap(node) => mc $measCnt

Description

This function creates a complete spice run routine to measure the effective capacitance

atnode.

Arguments

node: name of the node in the schematic

Value Returned

mc $measCnt: name of the spice measurement created by the function, used to find

the measured capacitance in the simulation results

Example

node0 has 20pF

MeasCap(node0)=> “mc 6”

124 APPENDIX A. STAR USER MANUAL

MeasRch

MeasRch(tr prop) => \@probe

Description

This function adds spice .probe commands to find the channel resistance of transistors

marked withtr prop in the schematic.

Arguments

tr prop: name of transistor property added to the transistors of interest

Value Returned

\@probe: pointer to an array of probe names added to the spice deck

Example

m0 and m1 are tagged withcs property

MeasRch(cs)=> pointer to (prbm0, prbm1)

Effect: two probes, prbm0 and prbm1, are added to the spice deck

A.3. FUNCTIONS 125

MeasRout

MeasRout(tr prop) => \@probe

Description

This function adds spice .probe commands to find the output impedance of the transis-

tors that are marked withtr prop in the schematic.

Arguments

tr prop: name of transistor property added to the transistor of interest

Value Returned

\@probe: pointer to an array of probe names added to the spice deck

Example

m0 and m1 are tagged withcs property

MeasRout(cs)=> pointer to (prbm0, prbm1)

Effect: two probes, prbm0 and prbm1, are added to the spice deck

126 APPENDIX A. STAR USER MANUAL

HiRange

Min(var) => min var

Description

This function finds the minimum value in a vector.

Arguments

var: name of measured parameter that forms the vector

Value Returned

min var: minimum value in the given vector

Example

per ck is a measured parameter with values [1 2 3 4 3 2 1]

Min(per ck) => 1

A.3. FUNCTIONS 127

Mt0Reader

Mt0Reader(mt0File,var) => \@measResult

Description

This function reads the mt0 file which contains the results of all .meas commands in the

spice simulation run.

Arguments

mt0File: name of mt0 file

var: name of the measured parameter to be read in

Value Returned

\@measResult: pointer to array of measured values in the mt0 file

Example

vctrl is the swept parameter and freqck is the measured frequency

mt0Reader(vcoV3.mt0,freqck) => pointer to (freq,)

128 APPENDIX A. STAR USER MANUAL

Noise

Noise(signal) => noise $measCnt

Description

This function finds the noise on thesignal waveform (usually a DC signal). The result

is stored in the global hash table. This function leverages theRunningAvg function and

the averaging window is set to 30 FO4 delays. The datatype of the result is an array of

(time,value) ordered pair, wheretime is the time step of the simulation andvalue is the

delay.

Arguments

signal: name of signal

Value Returned

noise $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

Noise(i(vsrc))=> “noise 7”

Effect: @{$ResultTable{$cmtName}{“noise i 6 7”}} contains the instantaneous noise

on the current through the voltage source vsrc

A.3. FUNCTIONS 129

OutputResistance

OutputResistance(tr prop) => \@probe

Description

This function adds spice .probe commands to find the output resistance of the transistors

that are marked withtr prop in the schematic. This function is used in Assertions where

MeasRout is used in Measurements.

Arguments

tr prop: name of transistor property added to the transistor of interest

Value Returned

\@probe: pointer to an array of probe names added to the spice deck

Example

m0 and m1 are tagged withcs property

OutputResistance(cs)=> pointer to (prbm0, prbm1)

Effect: two probes, prbm0 and prbm1, are added to the spice deck

130 APPENDIX A. STAR USER MANUAL

Period

Period(node) => per $measCnt

Description

This function adds spice .meas commands to find the period of the signal at nodenode.

Arguments

node: name of signal waveform

Value Returned

per $measCnt: reference name of the measurement command added to the spice deck,

used to access simulation result

Example

Period(clk)=> “per 8”

Effect: one .meas is added to the spice deck to find the period of the signal at node clk

A.3. FUNCTIONS 131

PulseWidth

PulseWidth(signal) => pw $measCnt

Description

This function finds the pulse width of thesignal. The result is stored in the global hash

table. The datatype of the result is an array of (time,value) ordered pair, wheretime is the

time of the trigger andvalue is the delay.

Arguments

signal: name of signal waveform

Value Returned

pw $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

PulseWidth(clk)=> “pw 9”

Effect: @{$ResultTable{$cmtName}{“pw 9”}} contains the pulse width of clk

132 APPENDIX A. STAR USER MANUAL

PulsePropagation

PulsePropagation(signal in, signal out) => pp $measCnt

Description

This function checks the propagation of the signal fromsignal in to signal out by

finding the delay fromsignal in to signal out. The result is stored in the global hash

table. The datatype of the result is an array of (time,value) ordered pair, wheretime is the

time of the trigger andvalue is the delay. Ifsignal out has not transitioned by the second

time signal in has switched, then thevalue is set to “failure”.

Arguments

signal in: name of input signal

signal out: name of output signal

Value Returned

pp $measCnt: name of the key to entry in the global hash table where the data is stored

Example

PulsePropagation(upi,upo)=> pp 10

Effect: @{$ResultTable{$cmtName}{“pp 10”}} contains the delay from upi to upo

A.3. FUNCTIONS 133

RampI

RampI(node,value1,value2) => i $measCnt

Description

This function adds a current source intonode and ramps the current fromvalue1 to

value2. The ramp rate is set to the risetime of a FO4 inverter. This function is used in

pseudo DC simulation.

Arguments

node: name of node in the schematic

value1: initial current value

value2: final current value

Value Returned

i $measCnt: name of the current source added to the spice deck

Example

RampI(bias,100m,200m)=> i 11

Effect: a current ramping linearly from 100mA to 200mA is injected into the nodebias

134 APPENDIX A. STAR USER MANUAL

RampV

RampI(node,value1,value2) => v $measCnt

Description

This function adds a grounded voltage source tonode and ramps the voltage from

value1 to value2. The ramp rate is set to the risetime of a FO4 inverter. This function is

used in pseudo DC simulation.

Arguments

node: name of node in the schematic

value1: initial voltage value

value2: final voltage value

Value Returned

v $measCnt: name of the grounded voltage source added to the spice deck

Example

RampV(bias,100m,200m)=> “v 12”

Effect: the voltage at nodebias ramps linearly from 100mV to 200mV

A.3. FUNCTIONS 135

RunningAvg

RunningAvg(signal,size) => ravg $measCnt

Description

This function finds the running average of a waveform by taking the average within a

timing window and sliding that window across the waveform. The result is stored in the

global hash table. The datatype of the result is an array of (time,value) ordered pairs,

wheretime is the time of the simulation step andvalue is the running average.

Arguments

signal: name of signal

size: size of window in absolute time over which the values are averaged

Value Returned

ravg $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

RunningAvg(bias,30*FO4)=> “ravg 13”

Effect: @{$ResultTable{$cmtName}{“ravg 13”}} contains the running average of the

signal bias

136 APPENDIX A. STAR USER MANUAL

SatMargin

SatMargin(tr prop) => \@probe

Description

This function adds spice .probe commands to find the saturation margin, (Vds-Vdsat),

of transistors marked withtr prop in the schematic.

Arguments

tr prop: name of transistor property added to the transistor of interest

Value Returned

\@probe: pointer to an array of probe names added to the spice deck

Example

m0 and m1 are tagged withcs property

SatMargin(cs)=> pointer to (prbm0, prbm1)

Effect: two probes, prbm0 and prbm1, are added to the spice deck

A.3. FUNCTIONS 137

SetE

SetE(node0, node1, node2, node3 value) => e $measCnt

Description

This functions adds a voltage-controlled voltage source (VCVS) betweennode1 and

node2. The voltage between these two nodes is the voltage betweennode3 andnode4

multiplied byvalue

Arguments

node1: name of higher controlled-voltage node in the schematic

node2: name of lower controlled-voltage node in the schematic

node3: name of higher controlling-voltage node in the schematic

node4: name of lower controlling-voltage node in the schematic

value: multiplication factor of the controlling voltage

Value Returned

e $measCnt: name of the VCVS added to the spice deck

Example

SetE(bias,gnd,Vout,gnd,1)=> “v 14”

Effect: the nodebias is set to the same voltage asV out and a VCVS is added to the

spice deck

138 APPENDIX A. STAR USER MANUAL

SetI

SetI(node,value) => i $measCnt

Description

This functions injects a DC current into the specified node.

Arguments

node: name of node in the schematic

value: current to be injected into the node

Value Returned

i $measCnt: name of the current source added to the spice deck

Example

SetI(bias,100m)=> “i 15”

Effect: 100mA is injected into the nodebias

A.3. FUNCTIONS 139

SetV

SetV(node,value) => v $measCnt

Description

This functions sets the specified node to a constant voltage with a voltage source.

Arguments

node: name of node in the schematic

value: voltage to be set at the node

Value Returned

v $measCnt: name of the grounded voltage source added to the spice deck

Example

SetV(bias,100m)=> “v 16”

Effect: the nodebias is set to 100mV DC relative to ground

140 APPENDIX A. STAR USER MANUAL

Slope

Slope(xV ar,yV ar) => \@slope

Description

This function finds the slope of each data point of a curve by calculating∆Y/∆X be-

tween adjacent data points.

Arguments

xV ar: name of measured parameter that forms the independent (x) axis

yV ar: name of the measured parameter that forms the dependent (y) axis

Value Returned

\@slope: pointer to an array of scalars where the scalar value is the slope of the curve

Example

vctrl is the swept parameter and freqck is the measured frequency

vctrl=(x1, x2, x3,....) and freqck=(y1, y2, y3,....)

Slope(vctrl, freqclk) => pointer to (y2−y1

x2−x1
, y3−y2

x3−x2
,)

A.3. FUNCTIONS 141

StepV

StepV(node,valueOld,valueNew,time) => v $measCnt

Description

This functions steps the node voltage fromvalueOld to valueNew at timetime. The

transition time is set to 1/10 of the FO4 risetime. This function is usually applied to the

supply node.

Arguments

node: name of node in the schematic

valueOld: voltage to be set at the node until the time of the step

valueNew: voltage at the node after the step

time: the time at which to apply the step

Value Returned

v $measCnt: name of the grounded voltage source added to the spice deck

Example

StepV(Vdd,vddval,0.9*vddval,1ns)=> “v 16”

Effect: the nodeV dd is set to vddval from time 0 until 1ns, at which time it becomes

0.9*vddval

142 APPENDIX A. STAR USER MANUAL

SweepClk

SweepClk(node1,node2,period) => swpc $measCnt

Description

This function generates two 50% duty-cycle clocks, one atnode1 and another atnode2.

The period of the clocks isperiod and the delay/phase between these two clocks is swept

from -2pi to +2pi. This is a specialized function to characterize the phase-frequency-

detector.

Arguments

node1: name of the first clock node

node2: name of the second clock node

period: period of the generated clocks

(vectorSize): default number of points in sweep, set in GlbParam

Value Returned

swpc $measCnt: name of the sweep parameter for the phase of the second clock

Example

SweepClk(ref,ck,10*FO4)=> “swpc 17”

Effect: a clock signal with the period of10∗FO4 is added toref andck, and the delay

of ck to ref is swept from -10 ∗ FO4 to +10 ∗ FO4.

A.3. FUNCTIONS 143

SweepI

SweepI(node,value1,value2) => swpi $measCnt

Description

This function adds a current source tonode and sweeps the current fromvalue1 to

value2.

Arguments

node: name of node in the schematic

value1: initial current value

value2: final current value

(vectorSize): default number of points in sweep, set in GlbParam

Value Returned

swpi $measCnt: name of the sweep parameter added to the spice deck

Example

SweepI(bias,100m,200m)=> “swpi 18”

Effect: a DC current sweeping from 100mA to 200mA is injected into the nodebias

144 APPENDIX A. STAR USER MANUAL

SweepV

SweepV(node,value1,value2) => swpv $measCnt

Description

This function adds a grounded DC voltage source tonode and sweeps the voltage from

value1 to value2.

Arguments

node: name of node in the schematic

value1: initial voltage value

value2: final voltage value

(vectorSize): default number of points in sweep, set in GlbParam

Value Returned

swpv $measCnt: name of the sweep parameter added to the spice deck

Example

SweepV(bias,100m,200m)=> “swpv 19”

Effect: voltage at nodebias is swept from 100mV to 200mV

A.3. FUNCTIONS 145

Swing

Swing(signal) => sw $measCnt

Description

This function finds the rise time of thesignal from 2% to 98% of a reference. The

reference is set to the source voltage of the PMOS transistor connected to the signal node.

The result is stored in the global hash table. The datatype of the result is an array of

(time,value) ordered pair, wheretime is the time of the trigger andvalue is the delay. If

signal does not reach 98%, then thevalue is set to “failure”.

Arguments

signal: name of signal waveform

Value Returned

sw $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

Swing(clk)=> “sw 20”

Effect: @{$ResultTable{$cmtName}{“sw 20”}} contains the rise time of clk

146 APPENDIX A. STAR USER MANUAL

Time

Time(signal) => time $measCnt

Description

This function finds the the time value at each simulation step to give us a timing refer-

ence. The result is stored in the global hash table. The datatype of the result is an array of

(time,value) ordered pair, wheretime andvalue are both the time value at each simulation

step.

Arguments

signal: name of signal waveform

Value Returned

time $measCnt: name of the key to entry in the global hash table where the data is

stored

Example

Time(clk)=> “time 21”

Effect: @{$ResultTable{$cmtName}{“time 21”}} contains the time value at each sim-

ulation step

A.3. FUNCTIONS 147

V

V(signal) => v $measCnt

Description

This function reads the specified voltage waveform from the simulation transient results

into memory. The data is stored in the global hash table. The datatype of the waveform is

an array of (time,value) ordered pair.

Arguments

signal: name of the signal to be read in

Value Returned

v $measCnt: name of the key to entry in the global hash table where the data is stored

Example

V(clk) => “v 22”

Effect: @{$ResultTable{$cmtName}{“v 22”}} contains the voltage waveform of the

node clk

148 APPENDIX A. STAR USER MANUAL

Write

Write(parameter) => parameter

Description

This function writes the value of the parameter defined by the# DEFINE and

CALCULATE statements to<design>.prm where<design> is the basename of the

design being checked by STAR.

Arguments

parameter: name of the parameter

Value Returned

paramter: name of the parameter, not expected to be used

Example

vLo is defined by# DEFINE in vcoV3.sue

Write(vLo) => “vLo”

Effect: The value of vLo is written into vcoV3.prm

A.4. PRIMITIVES 149

A.4 Primitives

FindTime

FindTime(sig1,thres1,dir1,sig2,thres2,dir2,numTran) => \@delayWaveform

Description

The primitive finds the delay from the time instant whensig1 reachesthres1 (trigger

event) to the time instant whensig2 reachesthres2 for thenumTran times (target event).

The datatype the result is an array of (time,value) ordered pair, wheretime is the time of

the trigger andvalue is the delay.

Arguments

sig1: name of trigger signal

thres1: threshold level to initiate the trigger

dir1: direction of the transition (rise or fall)

sig2: name of the target signal

thres1: threshold level to initiate the target

dir2: direction of the transition (rise or fall)

numOfTran: the number of transitions the target signal waits after the trigger event

Value Returned

\@delayWaveform: pointer to the array of (time,value) ordered pair, wheretime is

the time of the trigger andvalue is the delay.

Example

FindDelay(clk,0.2*vdd,rise,0.8*vdd,rise,1)=> pointer to (t1,d1 t2,d2 ...)

150 APPENDIX A. STAR USER MANUAL

FindWave

FindWave(signal) => \@signalWaveform

Description

This function reads the waveform of the specified signal frmo the simulation transient

results into memory. The signal can be a node voltage or current through a voltage source.

The waveform is an array of (time,value) ordered pair.

Arguments

signal: name of signal to read; signal can be a node voltage or current through a voltage

source

Value Returned

\@signalWaveform: pointer to the array of (time,value) ordered pair, wheretime is

the time at the simulation step andvalue is the value of the signal

Example

FindWave(clk)=> pointer to (t1,v1 t2,v2 ...)

Bibliography

[1] Ron Ho. Private communication on proprietary circuit checkers at Intel. 2003.

[2] Kathirgamar Aingaran.Noise Tool: Noise Analyzer for High-Performance CMOS

Circuits. proprietary tool at Sun Microsystem, 1997.

[3] R. Arunachalam, K. Rajagopal, and L. T. Pileggi. TACO: Timing Analysis with Cou-

pling. In Proc. Design Automation Conference, pages 266–269. IEEE/ACM, June

2000.

[4] Patrik Larsson and Christer Svensson. Noise in Digital Dynamic CMOS Circuits.

IEEE Journal of Solid-State Circuits, 29(6):655–662, June 1994.

[5] Ki-Wook Kim and Sung-Mo Kang. Crosstalk Noise Minimization in Domino Logic

Design. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 20(9):1091–1100, September 2001.

[6] Laurence W. Nagel.SPICE2: A Computer Program to Simulate Semiconductor Cir-

cuits. PhD thesis, University of California at Berkeley, May 1975.

[7] CosmosSE User’s Guide. Synopsys, Inc., Mountain View, CA, 2002.

[8] Advance Design System User’s Guide. Agilent Technology, 2002.

[9] Analog Design Environment. Cadence, 2002.

[10] M Degrauwe. IDAC: An interactive Design Tool For Analog CMOS Circuits.IEEE

Journal of Solid-State Circuits, 22:1106–1115, December 1987.

151

152 BIBLIOGRAPHY

[11] R Harjani, R Rutenbar, and L.R. Carley. OASYS: A Framework for Analog Circuit

Synthesis.IEEE Trans. Computer-Aided Design, 8:1247–1265, December 1989.

[12] H Koh, C Sequin, and Paul Gray. OPASYN: A Comiler for CMOS Operational Am-

plifier. IEEE Trans. Computer-Aided Design, 9:124–125, Febuary 1990.

[13] J Harvey, M Elmasry, and B Leung. STAIC: An Interactive Framework for Syn-

thesing CMOS and BiCMOS Analog Circuits.IEEE Trans. Computer-Aided Design,

11:1402–1416, November 1992.

[14] G Gielen and W Sansen.Symbolic Analysis for Automated Design of Analog Inte-

grated Circuits. Kluwer, Norwell, MA, 1991.

[15] Walter Daems, Georges Gielen, and Willy Sansen. Simulation-Based Automatic Gen-

eration of Signomial and Posynomial Performance Models for Analog Integrated Cir-

cuit Sizing. InProc. International Conference on Computer Aided Design, pages

70–74. IEEE/ACM, November 2001.

[16] Maira del Mar Hershenson, Stephen P. Boyd, and Thomas H. Lee. GPCAD: A Tool

for CMOS Op-Amp Synthesis. InProc. International Conference on Computer Aided

Design, pages 296–303. IEEE/ACM, November 1998.

[17] Maira del Mar Hershenson, Stephen P. Boyd, and Thomas H. Lee. Optimal Design

of a CMOS Op-Amp via Geometric Programming.IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems, 20(1):1–21, January 2002.

[18] Pradip Mandal and V. Visvanathan. CMOS Op-Amp Sizing Using a Geometric Pro-

gramming Formulation.IEEE Trans. on Computer-Aided Design of Integrated Cir-

cuits and Systems, 20(1):22–38, January 2001.

[19] F. Medeiro, F. V. Fernandez-Fernandez, R. Dominguez-Castro, and A. Rodriguez-

Vazquez. A Statistical Optimization-Based Approach for Automated Sizing of Ana-

log Cells. InProc. Design Automation Conference, pages 594–597. IEEE/ACM, June

1994.

BIBLIOGRAPHY 153

[20] E. Ochotta, Rob A. Rutenbar, and L. Richard Carley. Synthesis of High-Performance

Analog Circuits in ASTRX/OBLX.IEEE Trans. on Computer-Aided Design of Inte-

grated Circuits and Systems, 16:273–294, March 1996.

[21] Rodney Phelps, Michael Krasnicki, Rob A. Rutenbar, L. Richard Carley, and James R.

Hellums. Anaconda: Simulation-Based Synthesis of Analog Circuits via Stocastic

Pattern Search.IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems, 19(6):703–717, June 2000.

[22] Michael Kransnicki, Rodney Phelps, Rob A. Rutenbar, and L. Richard Carley.

MAELSTROM: Efficient Simulation-Based Synthesis for Custom Analog Cells. In

Proc. Design Automation Conference, pages 945–950. IEEE/ACM, June 1999.

[23] Michael Kransnicki, Rodney Phelps, James R. Hellums, Mark McClung, Rob A.

Rutenbar, and L. Richard Carley. ASF: A Practical Simulation-Based Methodology

for the Synthesis of Custom Analog Circuits. InProc. International Conference on

Computer Aided Design, pages 350–357. IEEE/ACM, November 2001.

[24] George G.E. Gielen and Rob A. Rutenbar. Computer-Aided Design of Analog and

Mixed-Signal Integrated Circuits.Computer-Aided Deisgn of Analog Integrated Cir-

cuits and Systems, pages 3–30, 2002.

[25] F. Gardner. Charge-Pump Phase-Locked Loops.IEEE Trans. Come., 28(11), Novem-

ber 1980.

[26] M. E. Frerking.Crystal Osillator Design and Temperature Compensation. Van Nos-

trand Reinhold, New York, 1978.

[27] J. K. Clapp. Frequency Stable LC Oscillators. InProc. IRE, volume 42, pages 1295–

1300, August 1954.

[28] A. B. Grebene. The Monolithic Phase-Locked Loop – A Versatile Building Block.

IEEE Spectrum, 8:38–49, March 1971.

[29] Roland E. Best.Phase-Locked Loops: Design, Simulation, and Applications. New

York: McGraw-Hill, 1997.

154 BIBLIOGRAPHY

[30] Stefanos Sidiropoulos and Mark Horowitz. A Semidigital Dual Delay-Locked Loop.

IEEE journal of Solid-State Circuits, 32(11):1083–1092, November 1997.

[31] J. I. Brown. A Digital Phase and Frequency-Sensitive Detector.Proc. of IEEE, pages

717–718, April 1971.

[32] J. D. Alexandar. Clock Recovery from Random Binary signals.Electronics Letters,

19:541–542, October 1975.

[33] Ilya I. Novof, John Austin, Ram Kelkar, Don Strayer, and Steve Wyatt. Fully Inte-

grated CMOS Phase-Locked Loop with 15 to 240MHz Locking Range and +/- 50ps

Jitter. IEEE Journal of Solid-State Circuits, 30(11):1259–1266, November 1995.

[34] John Maneatis. Low-Jitter Process Independent DLL and PLL Based on Self-Biased

Techniques.IEEE Journal of Solid-State Circuits, 31(11), November 1996.

[35] R Baghwan and A Rogers. A 1GHz Dual-Loop Microprocessor PLL with Instant

Frequency Shifting. InProc. International Conference on Solid-State Circuits, pages

336–337. IEEE, Feburary 1997.

[36] Stefanos Sidiropoulos, Dean Liu, Jaeha Kim, Gu-Yeon Wei, and Mark Horowitz.

Adaptive Bandwidth DLLs and PLLs using Regulated Supply CMOS Buffers. In

Proc. Symposium on VLSI Circuits, pages 124–127. IEEE, June 2000.

[37] Anatha Chandrakasan, William Bowhill, and Frank Fox.Design of High-Performance

Microprocessor Circuits. IEEE Press, 2000.

[38] Mozhgan Mansuri and Chih-Kong Ken Yang. A Low-Power Low-Jitter Adaptive-

Bandwidth PLL and Clock Buffer. InISSCC Digest of Technical Papers, pages 430–

431. IEEE, Febuary 2003.

[39] John K. Ousterhout.Tcl and the Tk Toolkit. Addison Wesley, Reading, MA, 1994.

[40] Larry Wall, Tom Christiansen, and Randal L. Schwartz.Programming Perl. O’Reilly

& Associates, Inc., Sebastopol, CA, 1996.

BIBLIOGRAPHY 155

[41] Bjarne Stroustrup.The C++ Programming Language, Third Editition. Addison Wes-

ley, Reading, MA, 1997.

[42] Lee Tavrow.Schematic User Environment. Micro-Magic Inc., Sunnyvale, CA, 1994.

[43] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.Compilers, Principles, Techniques,

and Tools. Addison Wesley, Reading, MA, 1988.

[44] Jon Orwant, Jarkko Hietaniemi, and John Macdonald.Mastering Algorithms with

Perl. O’Reilly & Associates, Inc., Sebastopol, CA, 1999.

[45] Mozhgan Mansuri, Dean Liu, and Chih-Kong Ken Yang. Fast Frequency Acquisition

Phase-Frequency Detector for GSamples/s Phase-Locked Loops.IEEE Journal of

Solid-State Circuits, 37(10):1331–1334, October 2002.

[46] W. Dally and J. Poulton.Digital Systems Engineering. New York: Cambridge Uni-

versity Press, 1998.

[47] robert F. Pierret.Semiconductor Device Fundamentals. Addison Wesley, Reading,

MA, 1996.

[48] PathMill User Manual. Synopsys, Inc., Mountain View, CA, 1996.

[49] PrimeTime UserGuide. Synopsys, Inc., Mountain View, CA, 2002.

[50] Verlog-XL User Maual. Cadence, 1996.

[51] F. Klass. Semi-Dynamic and Dynamic Flip-Flop with Embedded Logic. InProc.

Symposium on VLSI Circuits, pages 108–109. IEEE, June 1998.

[52] Chih-Kong Ken Yang. Design of High-Speed Serial Link in CMOS. PhD thesis,

Stanford University, December 1998.

[53] Sungjoon Kim, Kyeongho Lee, Deog-Kyoon Jeong, Davod D. Lee, and Andreas G.

Nowatzyk. An 800Mbps Multi-Channel CMOS Serial Link with 3x Oversampling.

In Proc. Custom Integrated Circuits Conference, pages 451–452. IEEE, 1995.

156 BIBLIOGRAPHY

[54] Chih-Kong Ken Yang, Ramin Farjad-Rad, and Mark Horowitz. A 0.6mum CMOS

4Gb/s Transceiver with Data Recovery using Oversampling. InProc. Symposium on

VLSI Circuits, pages 71–72. IEEE, June 1997.

[55] Jaeha Kim and Mark Horowitz. Adaptive Supply Serial Links with Sub-1V Operation

and Per-Pin Clock Recovery. InISSCC Digest of Technical Papers, pages 268–269.

IEEE, Febuary 2002.

[56] Ming-Ju Edward Lee, William J. Dally, and Patrick Chiang. Low-Power Area-

Efficient High-Speed I/O Circuit Techniques.IEEE Journal of Solid-State Circuits,

35(11):1591–1599, November 2000.

[57] Jaeha Kim and Mark Horowitz. Adaptive Supply Serial Link with Sub-1-V Operation

and Per-Pin Clock Recovery.IEEE Journal of Solid-State Circuits, 37(11):1403–

1413, November 2002.

[58] Neolinear. NeoCircuit. http://www.neolinear.com/sections/

products_solutions/neocircuit_brochure.pdf .

[59] Analog Design Automation. Creative Genius. http://www.

analogsynthesis.com/products/creative_genius.php .

[60] Barcelona Design. Prado Synthesis Platform. http://www.

barcelonadesign.com/products/prado.asp .

http://www.neolinear.com/sections/products_solutions/neocircuit_brochure.pdf
http://www.neolinear.com/sections/products_solutions/neocircuit_brochure.pdf
http://www.analogsynthesis.com/products/creative_genius.php
http://www.analogsynthesis.com/products/creative_genius.php
http://www.barcelonadesign.com/products/prado.asp
http://www.barcelonadesign.com/products/prado.asp

	
	Abstract
	Acknowledgments
	Introduction
	Background
	Analog Design Process
	Related Tools
	Design Capture System
	Automatic Analog Synthesis Tools

	STAR

	Active Comments
	Phase-Locked Loop Design
	Active Comments
	Measurement Comment
	Simulation Setup
	Shared Parameters
	Analytic Equations
	Reporting Results
	Execution Flow
	Measurement Comment Summary

	Assertion Comment
	Design Assertions
	Conditional Assertions
	Assertion Comment Summary

	Portable Comments
	Summary

	Prototype Implementation
	Schematic Layer
	Schematic Capture Tool
	Comments Editor
	Comments Selector

	Parser Layer
	Measurement
	Assertion

	Library Layer
	Default Functions
	Extending Library

	Primitive Layer
	Implementation Complexity
	Summary

	Phase-Locked Loop Design
	Phase-Locked Loop Design
	Phase-Frequency Detector
	Low-Pass Filter
	Voltage-Controlled Oscillator
	Divider

	Design Reuse
	Results
	PLL Porting Results
	Hidden Errors
	Prototype Tool Performance
	Design Reuse Experience

	Summary

	Conclusion
	Future Work

	STAR User Manual
	Datatypes
	Global Parameters
	Functions
	Primitives

	Bibliography

