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Abstract

Continuing trends in computer systems have adversely effected the ability of VLSI chip

designers to operate graphically on any significant fraction of a layout in an interactive or

accurate manner using current methods. While transistor counts of designs have grown at

the rate given by Moore’s Law, key components contributing to the real-time and accurate

display with existing methods (CPU to memory bandwidth, CPU to GPU bandwidth, mon-

itor resolution) have not grown as fast. Consequently, when using today’s CAD systems

to view a large chip at low zoom, the display can take dozens of seconds or more to re-

fresh and the resulting image can contain visually misleading artifacts which yield no clues

about the design’s structure.

We present a new visualization infrastructure for VLSI physical design datasets called

a “chipmap.” First, we show how it can be used to visualize the canonical VLSI database,

the layout, in an accurate, interactive, and fluid manner. Visual fidelity is achieved with

standard computer graphics anti-aliasing techniques modified to take advantage of the spe-

cial rectilinear, hierarchical, and layer dependence properties inherent to VLSI datasets.

Interactivity is realized by using texture mapping and mipmapping so the information sent

to the display is bounded, and the image rendered on the display is filtered correctly.

Our experimental implementation shows that real-time navigation can be achieved on

arbitrarily large layouts with a reasonable memory overhead. Results also show an average

image error of about 2% (RMS error) between our images and rigorously generated “per-

fect” images while other layout systems produce errors up to 38% when compared to these

images.

Next, we extend the use of a chipmap showing how it can be used to visualize other

types of VLSI physical design data. Common operations include selecting feature sets,

iv



back-annotating analysis information and computing device densities. Using these tools,

we demonstrate additional accurate and interactive visualizations of floorplan, DRC, criti-

cal timing paths, clock skew, and other information.
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Chapter 1

Introduction

Of the many challenging aspects ofVery Large Scale Integrated(VLSI) chip design, per-

haps data management is the most difficult. While the number of transistors on the largest

designs continues to double every two years[Intel, 2000a], the number of humans respon-

sible for those designs grows at a much slower rate. Consequently, each designer is faced

with the ever increasing task of managing more and more data.

In the face of such enormous challenges, theElectronic Design Automation(EDA)

industry has created better tools to allow designers to cope with expanding datasets. De-

signers today can describe designs with high-level languages, then synthesize them auto-

matically into transistors. In a perfect world, theseComputer Automated Design(CAD)

tools would allow higher and higher levels of abstraction, keeping pace with chip growth

and hiding the underlying complexity. Unfortunately, the reality of VLSI chip design in

2002 is not that good. Manual intervention is still almost always necessary. Additionally,

CAD tools are not so good that a designer only need specify a high level design description

and have the photo-lithographic masks used for chip manufacture produced as the output.

Designers are still required to guide and massage the process. Decisions that have impor-

tant consequences later in the design cycle are constantly being made. Even though many

designers never face the task of operating on the entire design at once, those who do are

burdened most by the enormous size of today’s designs.

Entervisualization. Visualization is the process of putting a dataset into a form most

amenable to communicate a particular idea in a visual manner. Typically, visualizations

1



CHAPTER 1. INTRODUCTION 2

are images, but that is not a strict requirement. Anything that takes advantage of a human

being’s tremendous ability to assimilate information in a two or three dimensional visual

context is a viable visualization.

The goal of our research is to show how visualization can be used to facilitate the design

of VLSI chips. Specifically, we address how we can aggregate the enormous amounts

of data present in the various stages of VLSI design and create images and interactions

that will allow a designer to do the job more efficiently and more effectively. We see

visualization as a productivity tool. Our techniques will not inherently make VLSI chips

run faster, nor make them smaller or consume less power, but visualization can help a

designer work faster and smarter.

1.1 Current Visualization in VLSI Design

The previous published work on visualizing large VLSI datasets is scarce. First, our own

work [Solomon and Horowitz, 2001] is a shorter and less detailed examination of im-

proving large VLSI layout redraw. A primary goal of this thesis is to expand upon the

first paper. Next, Restle[Restle, 2001] showed visualization techniques for small datasets

(i.e. the voltage and current for one wire) with animation, and other larger dataset visu-

alizations (congestion, power grid, and clock skew); however, all the visualizations were

custom-made for specific datasets and the techniques were never generalized for broad

purposes.

Our search of previous work leads us to believe that most of the visualization work in

VLSI has taken place in the EDA industry itself. Small scale visualization, such as trying

to model a single circuit in exact 3-D detail, is offered by more than one company[Ansoft,

2002] [Silvaco, 2002], but for large scale visualization, most companies offer only one-off

or ad-hoc visualization solutions for specific datasets.

Of course, by default, most VLSI design systems do come with perhaps the most im-

portant visualization tool of all, a VLSI layout editor or viewer. In the next section, we will

explore the current state-of-the-art in VLSI layout viewing.
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Figure 1.1: An example VLSI layout

1.1.1 Current VLSI Layout Visualization

The VLSI layout isthefundamental visualization in VLSI design since it is the information

that best represents what ultimately will be manufactured.

Figure 1.1 is an example of a VLSI layout which shows the various layers of the de-

sign, represented by different colors and patterns. Polygons1 of the same color or pattern

make up an entire layer, and all of the layers together form the design. The visualization

represented in Figure 1.1 shows about 1,000 rectangles. To create the image, each visible

element is drawn on the display by means of theCentral Processing Unit(CPU) sending

the object’s coordinates to theGraphics Processing Unit(GPU), which renders the image

on the display. When the display needs to be redrawn, the image is cleared and the process

is repeated.

1The overwhelming majority of polygons in VLSI layouts are rectangles. The rest of the thesis will refer
to layouts made up solely of rectangles, although the techniques described could be adapted to any type of
polygon.
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This algorithm can create VLSI layout visualizations effectively in real-time when the

number of rectangles to draw on the display is below a certain threshold. Problems only

arise when trying to view orders of magnitude more layout information on the screen at

one time than is shown in Figure 1.1, that is, millions and millions of rectangles. Drawing

millions of rectangles on a computer display with existing layout editors has two main

problems: the redisplay time is long and accuracy of the image is poor.

A lack of caching causes the inordinately long redraw times. There is always an un-

avoidable amount of time necessary to draw a display the first time. When performing an

incremental viewpoint change, however, existing tools cache nothing; they actually redraw

the entire image from scratch.

The images accuracy is poor due to the fact that many of the small rectangles have

a scaled size on the display that is less than one pixel in at least one dimension, and the

graphics library does not have the ability to handle this appropriately. All layout editors that

we know of use the X11[X Consortium, 1986] Windowing System graphics library, which

not only does not have the ability to draw rectangles with sub-pixel resolution, but also

guarantees that all rectangles will be drawn a minimum of one pixel in both directions2.

When the layout features are forced to have one pixel dimensions, gross errors are evident

on the display.

For many designers, the problems of slow redraw and image inaccuracy are frustrating.

If a designer knows that a certain viewpoint change may cause a delay of dozens of seconds

in tool responsive while the screen is refreshed, they may change their interaction patterns

to avoid it.

In an attempt to mitigate these problems, EDA companies[Cadence, 2002a] [Synopsys,

2002] [Mentor Graphics, 2002] [Magma, 2002] have employed many techniques to speed

the display process. Here are the ones that we were able to uncover3:

Draw no rectangles Start with a blank display, possibly showing only the top level bound-

ing box. The user selects an area of the design explicitly to display. Users are aware

that redisplay can be lengthy if too much area is selected to display at once.

2See XDrawRectangle(3X11) for details.
3Information about these techniques was obtained by observing various commercial tools run or via

private communications with engineers at the cited companies.
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Draw only large rectangles Allow a user to specify a minimum dimension threshold;

rectangles smaller than the threshold are not drawn.

Draw random rectangles When too many rectangles are present to draw, only draw the

largest rectangles and some additional smaller rectangles that are randomly selected.

The number of randomly selected rectangles will usually be a small fraction of the

total number.

Stop drawing on demand Allow a user to cancel the redraw process while it is in pro-

cess. Occasionally, the user can signal a redraw interruption by trying to change the

viewpoint, but frequently it is necessary to press a mouse button or hit a particular

keystroke.

Hide all hierarchy Default to draw all hierarchical detail as hidden and draw bounding

boxes instead. Sometimes it is desired to hide hierarchy, but this technique is also

used to speed re-display.

Unfortunately, the problems we have described will continue to get worse if current

trends in computer systems hold. First, chips are becoming more and more complex, and

the number of transistors on them is growing faster than the bandwidth and computation

required to display them4. In other words, the time for a single redraw is slowly growing

over time. Additionally, the resolution of the average display is growingmuchmore slowly

than any other aspect of computer systems. While bandwidth and computation have been

steadily growing at rates approaching 30% to 60% annually, display resolution has been

increasing at a paltry 10%5. This slow growth of resolution means there are comparatively

more rectangles with sub-pixel resolution than in the past, which results in even more

inaccuracy.

4The time to redisplay a chip is related to all aspects of the system–the memory bandwidth, the CPU
speed, the graphics bandwidth, the software efficiency. Given that transistors are growing at a rate predicted
by Moore’s Law[Moore, 1965], all other system components must grow at a rate equaling to or exceeding
this rate tomaintaincurrent redraw speeds. This has not occurred to date and is unlikely to happen based on
existing trends.

5This figure was computed by assuming the average display in 2002 was 1920×1200 and the average dis-
play in 1984 was 1024×768. This is based on our estimates and Stanford’s CS448A[Akeley and Hanrahan,
2001] class notes.
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A corollary to these trends is that graphical display was not a problem at the advent

(circa 1980) of interactive VLSI design for just the opposite reason that it is a problem

now. That is, compared to design size, displays were large enough and processors were

fast enough so that redraw and accuracy were not huge problems. At this point, research

focused on efficient ways to store geometry in a database. The list of early interactive VLSI

layout editors include Caesar[Ousterhout, 1981], Cabbage[Hseuh, 1979], KIC2 [Keller

and Newton, 1982], and others[Kedem, 1982] [Bentley and Friedman, 1979]. This period

of research culminated with the Magic Layout System[Ousterhout et al., 1984] which has

since been the mainstay of academic VLSI layout editors. In fact, our test implementation

was built upon Magic since it was best available layout editor with source code available.

In conclusion, the current experience of viewing a large layout with existing layout

systems is becoming slower and less accurate as time passes. Not only does the slightest

viewpoint change cause the entire redraw process to be repeated, but the accuracy of the

image once it’s complete is prone to massive errors.

1.1.2 Visualizing Other VLSI Datasets

As VLSI layouts continue to grow at an enormous rate, so do the other datasets related to

VLSI design. A large chip is going to have an equally large database that holds the wire

connectivity, timing, IR drop, power, clock skew, and floorplan information. Since these

datasets can be just as large as the layout, they suffer the same display problems we have

previously described for the layout.

1.2 Research Goals & Methods

The goals of our research are two-fold. First, we attempt to solve both problems related to

layout display – accuracy and speed. Second, we try to extend the techniques developed in

solving the display problem to produce other visualizations for the other types of datasets

we have mentioned.
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In addition, we want to create visualizations as part of an interactive system for VLSI

designers. Our system will be used in a real-time manner, not as a batch job for off-line

viewing, so we would like the following constraints to always be met:

Fast display A user should wait a minimal amount of time for a visualization to appear;

optimally, no wait at all. In the cases when a delay is unavoidable, the user should

be given a visual cue of the progress. In all cases, the display should be updated fast

enough so that fluid interaction is possible. This usually is about 5-10 frames per

second (fps).

Useful display The visualizations should always show useful information to the designer.

In the context of VLSI layout, this means an accurate display of information. Re-

gardless of the amount of data being visualized, it will always be aggregated in a

way that does not mislead the user.

Interactive The visualizations should always be interactive. Even though some visualiza-

tions will take non-zero time to produce, the user should be able to stop or change

the visualization being created with minimal delay.

Reasonable memory overheadA system that meets the previous three goals but requires

all of the system memory would not be very useful. We will try to minimize the

amount of memory needed for our techniques so that our system can co-exist with

other CAD tools running on the same platform.

1.3 Thesis Organization

Many of the visualization techniques used in this work are extensions of techniques used

in computer graphics. Chapter 2 first reviews these methods and provides the foundation

for the rest of the thesis. The chapter also describes three design examples that will be used

to benchmark our implementation throughout the thesis.

The next two chapters give our solution to solving the VLSI layout redraw problem. In

Chapter 3, we introduce the primary data structure of this thesis, thechipmap, and show

how it gives us a way to efficiently manage the layout visualization regardless of viewpoint
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or overall layout size. Next, in Chapter 4, we describe the techniques we use to generate

the image data that is contained in our chipmap structure.

In Chapter 5, we describe how we can create different types of data to place into the

chipmap structure to view alternate types of information in a useful manner. While the

previous two chapters focused exclusively on layout display, Chapter 5 shows techniques

for selecting data, back-annotating information, and other types of visualization in general.

In Chapter 6 we show the results of trying to solve the layout redraw problem. Specifi-

cally, we’ll measure whether we were able to produce accurate visualizations of layout in

a timely manner and with a reasonable memory overhead.

Finally, in Chapter 7, we speculate on possible future directions for chipmap and VLSI

visualization in general, and we summarize our thesis contributions.



Chapter 2

Computer Graphics Review & Design

Examples

To meet our research goals of fast display speed coupled with accuracy, we drew upon

the techniques and technology currently prevalent in the field of computer graphics. This

chapter presents those techniques as a foundation for subsequent chapters. Additionally,

we introduce three example designs that represent the full range of designs commonly

found today. These designs will serve as our benchmarks throughout the rest of the thesis.

2.1 Computer Graphics Review

A significant component of the field of computer graphics is the study of techniques to

accurately and efficiently transform input geometric descriptions into a 2-D array of pixel

values that is viewed on a computer display. Since this is basically what we are trying to

accomplish given the specific geometric input of VLSI layout databases, it is no surprise

that the key techniques we employ come directly from computer graphics.

We now review some of these key techniques to lay a foundation for the discussion in

Chapters 3 and 4. The first two techniques will help us with image accuracy, while the last

three help with redisplay speed and interactivity.

9
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Geometry

Aliased

Anti-aliased

Figure 2.1: The triangle on the left is rasterized into pixel values on the two middle im-
ages. On the top, the pixels whose centers are covered by the triangle are colored the same
as the triangle, while on the bottom, the pixels values are set to vary by an amount propor-
tional to the percentage they are covered by the triangle. On the far right, the rasterized
triangles are shown roughly at natural scale to demonstrate how each rasterization scheme
effects the triangle’s appearance. The anti-aliased triangle more accurately reflects the
shape of the original geometry.

2.1.1 Rasterization

The first important technique for image accuracy israsterizationbecause it sets the funda-

mental way that we will deal with finite pixel size. Rasterization is the process of convert-

ing a geometric polygon into a set of two-dimensional pixel values. Each individual part of

the polygon is called afragmentafter it has been converted into a value which can then be

added to a pixel. Given our input specification, proper rasterization is absolutely essential

to achieve an accurate representation.

Let us demonstrate this with an example. On the left side of Figure 2.1, a triangle has a

pixel grid superimposed on it. In the middle top, the fragments are colored the same as the

triangle for each pixel where the triangle covers the pixel center. In the middle bottom, the
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fragments’ color varies according to the percentage that is covered by the triangle. On the

right side of the figure, the two rasterized triangles are shown on a smaller, more realistic

scale to demonstrate the effect each rasterization scheme has on the final appearance of the

triangle. Most people agree that the upper triangle appears inaccurate and “jaggy,” while

the lower triangle appears more “correct” and smooth.

We say that the upper rasterized triangle isaliased, because the rasterized outcome

contains gross errors that make it appear blocky. The lower triangle isanti-aliased, which

means that more information has been encoded into the fragments, allowing the triangle to

be reproduced more accurately. Although anti-aliasing leads to more accurate and pleasing

images, it does require more computation which is a consideration for many applications,

including ours, although this cost is unavoidable for us since accuracy is one of our goals.

Notice that as the object size shrinks relative to the pixel size, the amount of perceived

blockiness grows. Said another way, it is most important to rasterize thesmallestobjects

in an anti-aliased fashion if visual accuracy is desired. Since visual accuracy is one of our

requirements and since the overwhelming majority of input primitives in VLSI designs will

be very small at low zoom in relation to the pixel grid, anti-aliasing (and thus rasterization)

is a topic of great importance for us. Chapter 4 will discuss rasterization and anti-aliasing

in-depth.

2.1.2 Compositing

The second important technique for image accuracy iscompositing, which is the process

of taking rasterization output (i.e. fragments) and producing final pixel values. This is im-

portant because image accuracy is only achievable with techniques that let us model many,

many small rectangles that each overlap a single pixel. A simple example of compositing

is shown in Figure 2.2.

The figure shows two triangles being added into a final image. When adding the second

triangle we have made an arbitrary decision that it should appear on top of the first triangle.

For each pixel, we then composite the two triangles’ fragments together. For many of the

pixels, the compositing is trivial because it contains fragments from only one triangle. In

this case, the pixel value is fragment value. It is also simple in the cases where the second
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Figure 2.2: Two triangles are each added to the final image to show an example of
compositing. The highlighted pixel is an example of a pixel where the compositing is
the most complex, that is, the final pixel value should reflect that fact that both triangles
partially overlap it, and that the red triangle is on top of the blue triangle.

red triangle completely covers a pixel that is also overlapped by the blue triangle since the

blue fragment will not contribute to the final pixel value.

The complex case arises when both triangle’s fragments partially contribute to a pixel.

This case is highlighted on the right in Figure 2.2. In this situation, the final pixel value

is a combination of the two fragments given how much each fragment overlaps the pixel,

and how much the fragment on the top overlaps the fragment on the bottom. The most

straightforward way to compute the final pixel is to linearly interpolate between the two

fragment values. We will go into much further detail on how we composite these types of

fragments in Chapter 4.

2.1.3 Texture Mapping

Texture mappingis the prevalent computer graphics technique that helps us achieve fast

redisplay. An image of a VLSI layout is transformed into a texture which is then efficiently

rendered on the display. Figure 2.3 showstexture mappingin its simplest form, applying

an image to geometry as a decal.

A textureis a static image comprised of elements calledtexels. The values contained

in each texel can be any type of visual information such as intensity, transparency or, most

commonly, red green blue (RGB) triplets. A texel in a texture is distinguished from a pixel
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Geometry Texture

Figure 2.3: The cube on the left is texture mapped with the image of the flower. The
result is shown on the right.

on the display in that a texel can represent more or less area than a pixel depending on the

texture’s final scaled size on the screen.

The main advantage of texture mapping from our point of view is hardware efficiency.

When texture mapping is supported in hardware, the process of rendering texture-mapped

geometry is very fast, allowing incremental changes in the viewpoint. This feature is es-

sential for real-time display.

2.1.4 Mipmapping

The second important technique for fast redisplay ismipmapping. Figure 2.4 shows a 2-D

texture on the left with the scene containing it, from the video game Unreal[Epic Games,

2000], on the right. Box 1 shows an area in the final scene where the texture would have

about a one-to-one correspondence between texel and pixel. On the the other hand, box 2

shows an area that is much smaller than the original texture, which means that the larger

texture area will have to be mapped to the smaller pixel area in some fashion. It would be

inefficient to filter down the original texture to the smaller size on-the-fly for two reasons.

First, the more texels being mapped to a single pixel, the more bandwidth required to

process the conversion. Second, since the final value of the pixel is an aggregation of all

the texels, additional computation is needed to perform the down-sampling.

As a solution to these two problems, instead of using the original texture in all situ-

ations, we precompute a set of averaged-down images and use texels from these smaller

images where appropriate. Figure 2.5 shows this set of images from the carpet texture,
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1

2

Figure 2.4: The texture of the carpet on the left is used in a scene from a popular game
on the right. Box 1 shows an area in the scene where the texels match the pixels approx-
imately one-to-one. For box 2, each pixel maps to many texels in the original texture,
taking up more bandwidth and computation resources to compute the final pixel value.

128×128

64×64

32×32
...

1×1

Figure 2.5: The set of mipmap textures for the carpet shown in Figure 2.4. Each level
is smaller by a factor of two in both dimensions, all the way to 1×1. While the original
128×128 texture might be the most appropriate for box 1 in Figure 2.4, the 8×8 texture
is most appropriate for box 2. Using the smaller mipmap for box 2 saves on both filtering
computation and memory bandwidth.
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(a) Mipmap pyramid rep-
resentation

(b) Mipmap pyramid with correct memory scale

Figure 2.6: On the left, the levels of a mipmap have been arranged to resemble a pyramid.
On the right, the levels are shown with a correct memory scale.

which is collectively known as amipmap[Williams, 1983]. In a mipmap, each averaged-

down image is smaller by a factor of two, all the way down to the smallest mipmap which

has a dimension of 1×1 texel. Using this mipmapped representation of a texture allows the

averaged-down textures to be computed in any desired fashion, so more care can be taken

in producing them than if they were filtered on the fly. Also, we can choose the mipmap

level appropriate for a pixel so that only a few texels are needed to compute its value. Be-

cause of this, using a mipmapped representation is a constant time operation, which is the

primary advantage in using it.

The disadvantage of mipmapping is increased memory cost. Since the levels are ge-

ometrically smaller, however, the overhead of the extra levels is only an additional 33%

(each level is 1/4 the size of the previous level). When the mipmap levels are abstractly

stacked on top of each other with the smallest resolution levels on top, the structure resem-

bles a pyramid, known as amipmap pyramid, shown in Figure 2.6(a). Figure 2.6(b) shows

the same pyramid but in correct memory/resolution scale.

We will use the image on the left throughout this thesis to represent the levels of a

mipmap. We will also refer to levels as either “low” or “high” in the pyramid. The “low”

and “high” designations refer to the levels’ height with respect to other levels as shown in

Figure 2.6(a).

When rendering a polygon with a mipmapped texture (like the carpet texture in Fig-

ure 2.5), the final pixel values of the polygon are computed by determining the mipmap

level on a per pixel basis. The mipmap level is determined by computing the ratio of the
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Figure 2.7: A clipmap is a mipmap except that only the required portion of any level
is rendered on the display. For extremely large textures, the amount of data “clipped”
from the high resolution levels can be enormous. The dotted lines in the figure represent
the constant memory cost of displaying a texture, which represents an ever decreasing
percentage of the total memory cost of higher resolution levels of the pyramid.

pixel area to the area of texture to be drawn in the texture’s base units. Intuitively, se-

lecting the proper mipmap level corresponds to selecting the level that has the closest to a

one-to-one ratio of pixel to texel area.

In the general case, a different mipmap level may be appropriate for each pixel in both

thex andy dimensions because the polygon to which the texture is mapped could have an

arbitrarily oblique orientation in the scene. In the specific case of rendering a 2D image

parallel to the screen, as is the case with VLSI layouts, the same level applies to all pixels.

2.1.5 Clipmapping

Every known platform that supports mipmapping has a limit to the size of the base texture

that it can handle, which can range from 256 texels on a side to 16,384 texels on a side.

Since VLSI layouts can be many times larger than this, we must consider how to handle a

texture that is greater than the hardware limits of any known system.
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The clipmap[Tanner et al., 1998] was presented as a solution for viewing arbitrarily

large images. A clipmap takes advantage of the fact that although the full mipmap pyramid

may be huge, the portion that is currently visible at any one time is bounded and small

because of a fixed screen resolution. The example used in the clipmap paper was a 40

million by 20 million, 11 petabyte, texture of the Earth at one meter resolution. This is

represented in Figure 2.7 which shows the Earth texture mapped onto a very large mipmap

pyramid. While the base texture is 11 petabytes, the smallest levels are only kilobytes or

megabytes. When this texture is rendered on a display of 1600× 1200 pixels, the max

memory cost of three-byte texels to cover the display is around 6 MB. So regardless of the

mipmap level necessary, the total amount of texture data needed is very small compared to

the immense size of the entire pyramid. The dotted lines in the figure represent the fixed

memory cost required regardless of the size of the mipmap level that is appropriate given

the viewpoint.

The only downside to using a clipmap is the memory management issues associated

with handling an 11 petabyte texture. Real-time interaction requires specially modified

hardware and optimized disk-caching techniques.

Since the clipmap has been presented as a way to view arbitrarily large textures, con-

sider using one to view the very large VLSI layout of Intel’s McKinley Itanium[Naffziger

and Hammond, 2002] processor. The Itanium processor has an area of 421 mm2 and was

designed in a 0.18µm process on a 0.02µm grid. This translates into a 2TB image which

certainly can be handled by a clipmap. However, we believe that using a clipmap to view

such designs is not a feasible solution. Specifically, there are enormous computation and

resource costs associated with transforming the design into a 2TB image. The entire de-

sign needs to be rasterized and saved to disk. Once this transformation has taken place,

the image is now static and not easily changed except by a re-computation of the image.

Worse, the size of the image on disk (2TB+) could be many times the size of the design

database in its canonical form. This fact will be demonstrated explicitly in the next section.

One of the goals of Chapter 3 is to explain how a clipmap can be modified to exploit

the special properties of VLSI layouts so that the transformation cost, in terms of both

computation time and disk resources, can be mostly avoided.
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2.1.6 Graphics Review Summary

To summarize, the field of computer graphics gives us all of the necessary techniques to

achieve our research goals. Using anti-aliasing techniques in rasterization and composit-

ing will result in accurate visualizations. Texture mapping, mipmapping, and clipmapping

techniques present a formalized data abstraction that allows real-time interaction given the

appropriate graphics hardware. The next two chapters show explicitly how these tech-

niques are used and, in some cases, modified to best suit our specific problems.

2.2 Three Example VLSI Designs

Throughout the rest of this thesis, we will refer to and discuss the three example VLSI

designs shown in Figures 2.8, 2.9, and 2.10. These designs were chosen as examples

because they represent typical blocks that you might find today. Most modern designs

have areas that are non-hierarchical, or flat, containing only standard cells, while other

areas are full-custom memories that are dense and hierarchically deep. We have chosen

designs that represent both ends of the spectrum. One design is very flat, the other is very

hierarchical, and the third is a mix of the two extremes.

Figure 2.10 is the node controller chip from theStanford Flash Multiprocessor[Kuskin

et al., 1994], Figure 2.8 is the six-portDatabuffermemory that was used in the Flash chip,

and Figure 2.9 isSU Block, a set of seven student designs that were fabricated together.

The Databuffer design is actually part of the Flash design (note the matching empty area

in the Flash image), but we will consider them separately because they have very different

properties. The other empty areas shown in the Flash design are for proprietary embedded

memories, so the layouts are not available.

The Flash design is a 0.50µm standard cell design that was created almost entirely

with automated tools. Its register-transfer level description was synthesized into gates and

then placed and routed with commercial tools. There was some custom datapath routing

and placement done, but the majority was automatic. The Databuffer design, obviously

manufactured in the same process, was done entirely by hand with the Magic. SUBlock,

manufactured in a 0.25µm process, was done mostly by hand with Magic but also with
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Figure 2.8: The Databuffer design.

some automation for routing. So that all of our test designs could be read by Magic, the

Flash design database was converted with a script from the commercial format into the

Magic format.

Table 2.1 summarizes the statistics of the three designs, showing that all three have a

similar number of total rectangles but widely varying number of unique rectangles. The

ratio of total rectangles to unique rectangles tells us how much hierarchy is contained in

the design. Flash is a mostly flat design, having only a single layer of hierarchy containing

its standard cells. Databuffer is massively hierarchical with a total rectangle to unique

rectangle ratio of over 100 to 1. SUBlock is a mix of hierarchical and flat structures with

a ratio in between the other two designs.

While the number of metal layers in each design, three, is fairly modest by commercial

standards in 2002, the more important data point is the number of Magictile types, shown

in the last column. A Magic tile type represents one kind of substance in a design, for
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Figure 2.9: The SUBlock design.
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Figure 2.10: The Flash design.



CHAPTER 2. COMPUTER GRAPHICS REVIEW & DESIGN EXAMPLES 22

Databuffer SUBlock Flash
Base Dimensions 58 K× 39 K 100 K× 109 K 158 K× 158 K
Total Rectangles 13.0 M 15.6 M 7.0 M
Unique Rectangles 115 K 863 K 5.0 M
Total/Unique Ratio 113 19 1.4
Metal Layers 3 3 3
Tile Types 26 31 6
GDS-II File Size 7 MB 53 MB 319 MB
Clipmap Size 9 GB 44 GB 100 GB

Table 2.1: Statistics for Flash, SUBlock and the Databuffer designs.

example,polysilicon, metal3, nwellsubstratecontact, orpdiffusion. Typically, they are each

drawn on the display differently, so the more tile types a design has, the more passes

required to render on the display.

Finally, compare the GDS-II file size of each design against the size of the image file1

if each design were converted into a clipmap. The GDS-II file size is roughly three orders

of magnitude smaller in each case. As we first mentioned in Section 2.1.5, while it would

be possible to view these designs using a pure clipmap solution, the tremendous memory

cost makes it unattractive.

The size of the designs that we chose as examples was limited primarily by the memory

footprint of the Magic layout system. Magic uses aCorner-stitched[Ousterhout, 1984]

data structure to hold the layout information which explicitly maintains a record of the

empty space between rectangles so that an entire plane of rectangles resembles a quilt

made up of what Magic calls “tiles.” This data structure is an extremely compute-efficient

way to store rectangles for interactive modifications but the explicit empty space tiles incur

a 2× to 3× overhead in memory cost. We were not able to manipulate truly large designs

because large designs would cause Magic to eclipse the 4 GB 32-bit addressing limit. In

light of this, we do not claim that these three designs are on the cutting edge for 2002 in

any of the metrics lists in Table 2.1, but they are non-trivial designs nonetheless and serve

well as benchmarks.

1The clipmap size was computed by multiplying the base dimensions by 3 bytes/texel to compute the
memory cost of the base image, and then multiplying by 4/3 to account for the cost of the other levels.



Chapter 3

A Chipmap

Previous chapters discussed existing work in the area of arbitrarily sized image display

and manipulation. Most notably, there is a mipmap, which allows economical display of

images by precomputing down-filtered views, and a clipmap, which is an improvement

upon a mipmap for very large images. We extend this further for the class of images that

include VLSI data by introducing thechipmap. A chipmap builds on a clipmap in the way

that each only requires the texture data that is visible on the display to be computed and in

memory at one time. For VLSI designs, this is very important because the designs can be

very big. A chipmap is differentiated from a clipmap, however, in a very important way.

While a clipmap is used for viewing image data that comes from some source, it does not

specify how the data is created. By contrast, a chipmap fundamentally specifies exactly

how the image will be generated and displayed at every resolution. As a result, a chipmap

not only includes the texture resolution structure of a mipmap and clipmap, it also includes

the VLSI database itself, the various caches and the image generation algorithms for the

data. Each of these topics will be discussed in detail in this and subsequent chapters.

We will also initially limit our discussion to one particular type of VLSI database, the

VLSI layout. As we’ve stated previously, the canonical VLSI database is the layout itself.

We say it’s canonical because it is the fundamental database that allows the design to be

manufactured. Since the layout is so fundamental and has an actual physical corollary,

almost every VLSI design system comes equipped with a tool that views layouts so it is

23
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Statically Computed
Textures

Dynamically Generated
Textures

Geometry Drawn
Directly

Figure 3.1: A cross-section of a chipmap.

very easy to compare the speed and accuracy of our new methods with pre-existing ones.

Chapter 6 shows the results of these comparisons.

For the rest of this chapter and the next, we will concentrate on how a chipmap structure

can be used to visualize a VLSI layout. In Chapter 5, we’ll discuss how this fundamental

structure can be used to visualize other types of VLSI databases.

Lastly, we will discuss a chipmap as if it is being implemented on a platform that

supports the OpenGL[Segal and Akeley, 1999] graphics library. Where relevant, it will be

noted where implementations that do not use OpenGL (like X Windows) would deviate.

3.1 A Chipmap Pyramid

Figure 3.1 shows a cross-section of a chipmap. This figure builds on Figure 2.7 which

shows a similar view of a clipmap. The similarities are that a chipmap will also only load

the portions of the mipmap that would be visible at any one time. This is the fundamental

difference between a mipmap and a clipmap and it applies to a chipmap as well. However,

as we saw in the previous chapter, treating a VLSI layout strictly as an image requires

a huge amount of storage space. Figure 3.1 shows that a chipmap is divided into three

regions. Each region denotes a level of resolution where the image generation is conducted

in a different manner. These three regions are:

1. Geometry. Shown in blue. At the lowest levels of the chipmap pyramid, the database

can be used directly to draw the layout. The algorithm to draw the layout at these

levels is exactly the same as other VLSI layout editors.
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2. Dynamically Generated Textures. Shown in green. In this region, texture data

is dynamically generated and cached as the viewpoint changes. It may need to be

re-created again if it is discarded from the cache.

3. Static Textures. Shown in red. For this region, the texture data is created in the

same manner as the dynamically created data except that it is locked in the cache.

Keep in mind that Figure 3.1 is not drawn to correct resolution scale or memory usage

scale; this would require each lower level to be four times as wide as the level above it. We

distort the scale to show more levels on the same diagram.

The rest of this chapter is devoted to explaining how the data is managed in each region

and how the boundaries between the regions are determined.

3.2 Region 1: Geometry

The first dividing line in Figure 3.1 signifies the boundary between textures and geome-

try. For levels below the dividing line, the layout is drawn directly to the display from the

database; for levels above the line, texture data is used. Basically, as one displays the layout

in greater detail, there comes a point when drawing the layout with textures becomes un-

necessary for two equally important reasons. First, as one zooms in, the size of the average

rectangle is greater than a few pixels in each dimension, so drawing it without anti-aliasing

is visually accurate. Second, there are few enough rectangles that it is computationally

feasible to draw all of them each frame in a fluid fashion.

Drawing geometry is exactly equivalent to what all current VLSI layout viewers/editors

already do. The algorithm is as follows:

1. For each viewpoint, compute the bounding box of the display on the layout

2. Iterate over all the elements visible in that bounding box

3. Using whatever native drawing capabilities exist, draw the elements to the display

4. As the viewpoint changes, go back to step 1

For high detail views, this algorithm is the most preferred because:
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1. It requires no extra memory; since the image is created on-the-fly, no extra data

structures are required

2. It is the fastest method computationally on both the CPU and GPU; drawing a rect-

angle that covers many pixels in bothx andy as a rectangle is more efficient for both

the CPU and GPU than rasterizing it and rendering it as a texture

3. Other details such as stipples and lines can be easily added

4. Since the display is being redrawn from scratch each frame, using this algorithm to

implement a layout editor is straightforward

Note that for this algorithm, small designs are equivalent to highly zoomed views of

very large designs. The most important thing is the amount of visible data, not the total

amount of data.

3.2.1 Texture vs. Geometry Boundary

Determining the level to place the texture/geometry boundary requires that one choose

between two factors. The boundary can be placed based either on the number of visible

rectangles or on the size of the visible rectangles. While it may seem intuitive to place the

boundary based on the number of visible rectangles, we will show that this method is not

preferred since it is very dependent on the graphics capabilities of the host platform. The

second method, placing the boundary based on the size of the rectangles, is preferred since

it is dependent more on human perception, for which it is easier to analyze.

Prioritizing Based on Number of Features

The first way to decide how to divide between geometry and texture is by analyzing the

number of layout features that would have to be drawn at any particular resolution. As

one zooms out, the number of features grows, taxing both the channel between the CPU

and GPU and also the hardware itself as it becomes necessary to draw more and more

rectangles.
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One must first decide on the threshold number of rectangles that will be the dividing

line. Then, any view which contains more than the threshold number of rectangles will

be drawn from texture data, while any number that contains fewer will be drawn directly

from the layout database. How does one pick this threshold number? Unfortunately, this

is extremely system-dependent. A very high-end system might have both a CPU to GPU

bandwidth and a rasterization rate which exceeds the capability of a low end system by a

factor of 100 or more. This means that trying to have a one-size-fits-all threshold number

will be ineffective.

In addition, in VLSI layouts, the number of rectangles in any given area varies with

the location of the design. In densely populated areas like memory cells, the number of

rectangles could be many factors more than in other areas which contain no rectangles

or very few rectangles. Given this, one could either have an adaptive scheme where the

dividing line changed over the area of the layout, or one could just choose a number that

reflected the highest rectangle density since that would be the most conservative choice

given the system’s capabilities. Once the threshold number of rectangles has been chosen

based on system characteristics, an analysis can run on the target layout to determine at

which level would a full-screen image of the layout would never contain more than the

threshold number of rectangles.

Finally, we have to consider what would happen if the threshold were high enough

such that many of the rectangles appearing on the display were too small to look correct

without anti-aliasing measures. In this case, either native anti-aliasing techniques must

be used or the threshold must be lowered until it is low enough such that the rectangles

drawn directly are large enough not to require anti-aliasing drawing techniques to appear

correct. Again, we see that the ability to draw rectangles in an anti-aliased fashion is very

system-dependent. On some systems, this would incur no performance penalty, while on

others the penalty would be severe (including the lack of ability to draw rectangles in an

anti-aliased fashion at all).

Our implementation did not divide texture and geometry based on the number of visible

features for the reasons given above. It is too system- and design-dependent, requiring

vastly different thresholds given different systems and different locations in the layout.
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Average
Level Shorter Dimension

4 1.6λ
3 3.2λ
2 6.3λ
1 12.6λ
0 25.2λ

Table 3.1: Average shorter dimensions for a hypothetical VLSI design.

Prioritizing Based on Feature Size

Another way to specify the texture/geometry dividing line is to base the boundary on fea-

ture size. Using this criterion eliminates the two problems of using the number of features

discussed in the previous section, but it also causes a new problem. If the metric of the

boundary is based on feature size, then how does the metric account for the different sizes

of the rectangles in an average VLSI layout? To answer this question we say that we will

only consider theshorterdimension of the rectangles to determine the boundary. While

the longer dimension of rectangles in a layout will vary wildly from the minimum allowed

in the technology to rectangles that span across the entire layout, the shorter dimension

will vary to much less of a degree. Also consider that using the shorter dimension is a re-

quirement for visual fidelity if no anti-aliasing techniques will be used, for it is the shorter

dimension that will determine when a rectangle exhibits aliasing artifacts.

So the heuristic used in determining the boundary based on feature size is to average

the shorter dimension of every rectangle in the layout and then choose the dividing line so

that levels below the line have an average shorter dimension greater than some threshold

while levels above it have an average shorter dimension that is less. For example, consider

a VLSI design whose rectangles have an average shorter dimension of 25.2λ. Lambda

(λ) represents the underlying units of measurement used in the design. Table 3.1 shows

the average shorter dimension for the chipmap of this hypothetical design. The average

shorter dimension of the rectangles is smaller by a factor of two for each higher level in

the chipmap.

If the boundary threshold were chosen at five pixels, then levels three and above would

be rendered as textures while levels two and below would be drawn directly as geometry.
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How does one choose a threshold? This decision is based on human perception and

assumes that rectangles, when drawn directly, will be rendered in an aliased fashion. At

some magnification, the artifacts created by drawing aliased rectangles will be tolerable by

the majority of users. The size of rectangles at this magnification should be chosen as the

threshold. Aliased rectangles that appear about 100 pixels on the screen might actually be

99 or 101 pixels when drawn in an aliased fashion depending on rounding. This 1% error

would not be noticeable to many people, a two pixel rectangle, on the other hand, might

actually be one pixels or three pixels which gives a much larger 100% or 50% error, would

would be noticeable to most people. We choose a five pixel threshold, which yields about

a 25% aliasing error, because it represented the maximum error that we could tolerate.

Finally, consider that even though we have chosen the boundary based on rectangle

size, we are still at the mercy of the the host platform’s rendering capabilities. We have

done nothing to guarantee that any system will be able to render the number of rectangles

we will attempt to draw in a real-time fashion. We have only attempted to guarantee that

the rectangles, if drawn in an aliased fashion, will appear visually correct. However, in

practice this does not turn out to be an issue. Most graphics systems are designed to balance

primitive size versus drawing performance. This means that if one covers the display with

primitives that are at least a small integer number of pixels in each direction, the resulting

performance will be adequate. On lower end systems, the performance might just be a few

frames per second, but this is sufficient for VLSI design.

3.2.2 Texture/Geometry Boundary Grid Resolution Invariance

One nice property inherent in a chipmap is that the texture/geometry boundary is invariant

to the underlying grid resolution of the design. Consider again the hypothetical design of

Table 3.1. Imagine that the technology was redefined to have a grid resolution ten times

more fine in each dimension. Now, every rectangle in the layout is ten times larger in

relations to the base grid resolution in each dimension although not actually physically

larger. Table 3.2 shows the average shorter dimensions for this updated layout.

Now the dividing line between geometry and texture is levels five and six, given the

same five pixel threshold. More levels are now drawn as geometry, but nothing else has
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Average
Level Smaller Dimension

6 3.9λ
5 7.9λ
4 15.8λ
3 31.5λ
2 63.0λ
1 126.0λ
0 252.0λ

Table 3.2: Average shorter dimensions for the hypothetical VLSI design of Table 3.1 up-
dated to show the effects of increasing the grid resolution by 10× in each dimension.

changed. The size of the chipmap has grown by three levels but the boundary where

textures end and geometry begins will appear to be exactly the same place when rendered

on the display.

Note that a transformation like this would cause a 100× increase in memory usage if

we were to convert this layout into an image and view it as a clipmap.

3.3 Region 2: Dynamically Generated Texture Data

The second region of Figure 3.1 signifies viewpoints from which the texture data will

be dynamically generated directly from the layout database. The rendering strategy is as

follows:

1. Given the viewpoint, determine the chipmap pyramid level

2. Lazily create only the texture data that is visible on the display

3. Draw the texture data

4. As the viewpoint changes, go back to step 1

3.3.1 Tiled Texture Pyramid

The second step in the rendering strategy above says that only the visible texture data

will be generated. Up to this point, a pyramid level in a mipmap or clipmap has been



CHAPTER 3. A CHIPMAP 31

Figure 3.2: The top three levels of a tiled texture pyramid.

thought of as one continuous texture. However, we need a way to think of a pyramid level

as something that we can generate in discrete parts. To accomplish this, we use atiled

texture pyramidwhich is shown in Figure 3.2. A tiled texture pyramid is distinguished

from a mipmap or clipmap pyramid in that each pyramid level is an array of texture tiles

where the size of each of the tiles, in texels, is fixed. Lower levels of the pyramid will

simply have more tiles than higher levels, as the tile pyramid shows in Figure 3.2. The

texel dimensions of each of the tiles is the same while the total dimensions of each level,

in texels, is different. Dividing up the texture pyramid levels in tiles has three important

advantages.

First, the tile size is chosen to meet the hardware limits of the host platform. We

discussed earlier how all known graphics systems have limits on the size of a single texture

that can be used. Using a tiled approach circumvents this issue since any one texture is

smaller than the limit. Also, since the tile is the unit of texture that is known to the graphics

hardware, there is no requirements that each pyramid level have power of two dimensions.

This allows each pyramid level to basically equal the scaled size of the design, modulo to

the size of a tile.

Second, a tiled representation is a very simple way of only creating the desired portion

of a pyramid level. A clipmap uses a more complex approach (toroidal addressing[Tanner

et al., 1998]) that is more efficient in managing massive mipmaps in the general case; in
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the special case of VLSI layouts, however, a tiled representation is adequate. The seams

between the texture tiles do require special care to ensure visual artifacts between them are

not noticeable, but this implementation detail does not detract overall from a tiled approach.

Finally, a tiled representation is a very natural way to quantize texture data generation

in a multi-threaded implementation. Later, we will see that texture data generation is the

most computationally expensive operation in a chipmap; having multiple processors to

accomplish the task can yield linear speedup forN processors over a single processor. A

tiled representation is a very natural way to express this parallelism.

Choosing a Tile Size

Choosing the tile size for the texture tiles is the next important step in building a tiled

texture pyramid. Larger tile sizes have the advantage of lower overhead per tile, but the

disadvantage of possibly having a smaller percentage of overlap with the visible display,

causing wasted work. Smaller tile sizes are the exact opposite.

The basic characteristics of the texture tiles are that they will be square and have a

dimension that is a power of two. While there is no requirement that they be square, the

symmetry of a square tile makes much of the computation easier and there is no advantage

to not being square. The tiles should be a power of two in each dimension because most

known graphics systems require this to be true.

Additionally, as we have discussed earlier, graphics systems like OpenGL have limits

on both the maximum and minimum size of textures. We must, therefore, choose di-

mensions within that range. All graphics systems that support OpenGL have a minimum

dimension of 64 texels on a side while the maximum dimension is system-dependent and

can vary between 256 texels on very old systems to 16,384 texels on more modern systems.

Implementations built on an OpenGL library will be required to conform to these limits.

The final selection of tile size, in addition to the previous factors, should be based on

the maximum display size. The resolution of modern displays can vary from about 800

pixels to about 2000 pixels on a side. A tile size should not approach these values because

of the wasted computation done to generate texture data that will not be visible.

We have observed that choosing tile sizes at either extreme can affect the performance

of the system negatively. At 64 texels, the extra overhead incurred from processing the
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same rectangles that overlap multiple tiles added to the overhead of drawing many, many

more textures makes the redraw times slower. At the other extreme, when the tile size

is set to approximately the display size, the screen does not refresh as quickly since it

only changes as each tile is computed and, on average, a larger total number of texels are

computed, many of them not even visible.

In the end, a texture tile size of 256 was chosen as the default size for our implemen-

tation. We observed that 256 texels strikes a nice balance between low tile overhead and a

low amount of extra computation. However, our implementation allows us to modify the

dimension easily should some of the factors that are used to choose it change.

3.3.2 Rendering Texture Data

When rendering the texture data to the display, it is highly improbable that any particular

viewpoint will lie exactly at the same resolution as any level of the chipmap pyramid.

When a viewpoint lies between levels, texels must either be minified from the level below

or magnified from the level above. This is also known as texturefiltering. Mipmapping

theory provides different filtering strategies that trade off image quality and computation

time for different situations. In the case of filtering in a chipmap, a different strategy is

employed depending on whether the viewpoint is being panned or zoomed.

Filtering Texture Data While Zooming

When the viewpoint zooms, the size of the texels as they appear on the display is incre-

mentally changing every time a frame is drawn. In terms of the chipmap structure, the

viewpoint is moving vertically through different levels of resolution, requiring different

levels of the pyramid to be rendered. It is desirable to minimize visual artifacts from both

the changes in the texel size and the transition from one pyramid level to the next. This is

especially important for VLSI layout texture data, which very much tends to be high fre-

quency in nature. Without a careful filtering strategy, the visual popping and shimmering

could be distracting.

To minimize visual artifacts to provide the smoothest transitions between frames, our

chipmap implementation choose a trilinear filtering strategy for zooming. To accomplish
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this, the two surrounding pyramid levels are bilinearly filtered via OpenGL hardware sup-

port and then blended together in proportion to their distance from the viewpoint.

Filtering Texture Data While Panning

While zooming requires a computationally intensive filtering strategy to minimize visual

artifacts, panning can use bilinear filtering because the size of the texels is not changing

from frame to frame, only their location. Bilinear filtering is still required because the texel

size will almost never match the pixel display resolution. Additionally, instead of using the

nearest pyramid level to the viewpoint, the lower pyramid level is always chosen to give

the sharpest image. As with trilinear filtering used with zooming, the hardware is used for

bilinear filtering.

3.3.3 Panning and Zooming Without Hardware Support

The previous sections have stated a texture rendering strategy based on the assumption that

underlying hardware support exists. However, sometimes it does not and in this case it is

still desirable to approximate animation to the best of the host platform’s capability. In this

case, an implementation could choose to force the viewpoint to lie exactly on a pyramid

level and always choose a panning location that had integer coordinates.

Doing these two things would simplify the task of mapping the image data (we now

call it image data instead of texture data because we reserve the term ”texture” to mean an

image that can be mapped with hardware support). Since no minification or magnification

is required, no blending or filtering is required either. Panning is accomplished by mapping

the image data directly to the display and zooming changes are forced to jump from one

pyramid level to the next.

An implementation could also choose to support arbitrary zoom viewpoints, but then

the implementation itself would be responsible for filtering and blending, relying on soft-

ware to accomplish what is normally done in hardware on today’s GPUs, possibly causing

a severe degradation in rendering performance.



CHAPTER 3. A CHIPMAP 35

3.3.4 A Texture Tile Cache

As the viewpoint changes, texture tiles are created and rendered on the display. If left

unchecked, the number of texture tiles created and, correspondingly, the amount of mem-

ory consumed would grow to the full size of the texture tile pyramid. As was noted pre-

viously, the memory footprint of a full tiled texture pyramid for a large size VLSI layout

could be on the order of terabytes. Clearly, it is not feasible to allocate new memory blindly

every time a new texture tile is created.

As a solution to this problem, a fixed size texture tile cache is created. As texture tiles

are computed, they are placed into the texture tile cache. When a tile is created and there

is no room left in the cache, a suitable tile is found to replace. We defer discussion of

possible texture tile replacement policies, including the one that our implementation uses,

until we fully explain our rendering architecture in Section 3.5.

Minimum Texture Tile Cache Size

The minimum size of the cache should be set such that the entire display could be covered

with texture data using the most aggressive rendering strategy with all the texture data

fitting into the cache. Consider a display that has a resolution of 1600×1200 pixels using

a trilinear rendering strategy blending two layers of texture data on top of each other. The

worst case scenario in terms of texture data quantity would be a viewpoint where the lower

pyramid level was being minified nearly 2× in both dimensions, yielding a lower pyramid

level texture resolution of 3200×2400. The upper level resolution would be almost one-

to-one or 1600×1200. If each texel is three bytes, the minimum size of the texture tile

cache given this screen resolution would be about 29 MB.

If the texture tile cache size is not set to at least this minimum, then severe performance

degradation will occur if any replacement other thanMost Recently Used(MRU) is used,

since each rendered frame would cause intense thrashing in the cache.

Maximum Texture Tile Cache Size

The maximum tile cache size should be bounded by the amount of main memory on the

host platform because it is generally the case that the time spent recomputing a texture tile
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is less than the time needed to swap a computed texture tile from disk. This maximum,

however, is only a theoretical maximum. Practically, the cache need not be much larger

than the minimum because of the way that the chipmap renders the display. As we will

describe in Section 3.5, even when the texture data is not in the cache, the display can be

updated in a way to give the user a visual cue of the progress.

3.3.5 Managing Dedicated Graphics Texture Memory

When a chipmap implementation is written to take advantage of hardware-accelerated tex-

ture mapping, it raises issues with managing the dedicated texture memory that exists on

the majority of such hardware. Typically, the amount of dedicated memory in these sys-

tems is an order of magnitude less than the amount of main memory. If an implementation

chooses to size the texture tile cache larger than the amount of texture memory, it is usu-

ally advantageous to decouple the texture tile cache from the dedicated texture memory by

having an additional cache that will manage the dedicated texture memory. This cache of

“texture objects” gives a chipmap implementation a way to manage the dedicated texture

memory explicitly.

On some graphics system platforms, it has been observed that a “texture spill,” or what

happens when there is a capacity conflict on the graphics hardware itself, has very bad

performance ramifications. These spills can be avoided altogether with the texture object

cache. Once this cache is in place, the graphics system sees that the same portions of

texture memory are being used over and over again with no capacity conflicts.

Compressed Textures

It has been suggested that usingcompressed textureswould be a way to increase the utility

of the dedicated texture memory. Texture compression is a scheme that compresses the

texture data before it is sent to the graphics hardware. Once it is compressed, it requires

less CPU to GPU bandwidth to transmit and less dedicated graphics memory to store. It

can be a big win for applications that pre-create all of their texture data. However, for

a chipmap, where all the texture data is dynamically generated, a 2× to 4× overhead is
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incurred in the texture compression stage. This overhead erases any benefit that would be

gained in saved bandwidth or storage space.

One type of texture compression does have benefits, however, because the computa-

tion cost is so low. While the texture data created on the host platform is nominally three

bytes/texel (24-bits), it can be stored on the graphics hardware as only two bytes/texel,

also known as “16-bit textures.” Transforming 24-bit textures to 16-bit textures is com-

putationally simple and incurs little overhead at the expense of two or three bits of lost

color precision. This loss of precision is generally tolerable and will greatly enhance an

implementation’s usability on graphics systems with a scant amount of dedicated texture

memory.

3.4 Region 3: Static Texture Data

The last region of the chipmap shown in Figure 3.1 is the static texture data portion that

comprises the highest levels of the pyramid. A very common operation for a VLSI layout

viewer is showing the entire design. Users typically always start from a full view and then

zoom in on an area of interest. A new area of interest will usually be chosen by returning

first to a full view of the design. Consequently, viewing the entire design should always be

fast.

Full screen views will be optimally fast to redraw when the appropriate texture data

already exists by keeping it separate from the general texture tile cache discussed in Sec-

tion 3.3.4. Then any time a full design view point is requested, the data will always be

available and the redraw time will be nearly instantaneous.

3.4.1 Static/Dynamic Texture Boundary

There is no hard and fast rule on how set the boundary between the static and dynamic

portions of the chipmap pyramid. Our implementation chose to set the static boundary at

the level of the pyramid that would be used if the full design were viewed on a window

the size of the display. We also include all levels above this level because they are only an

additional 33% memory cost. Section 6.4 on Page 89 shows how the size of this section
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can be up to a few dozen megabytes on a 1600× 1200 display. We chose this level so

that full views would always be fast, but implementations can choose different levels to

trade-off memory cost and redisplay time.

At one extreme, an implementation could choose to have no static portion at all. In the

next section, we’ll explain why this is not recommended.

While at the other extreme, an implementation could permanently compute the entire

chipmap. In this case, no texture data generation is required except at startup, at the cost of

potentially enormous amounts of memory. Note that this scenario effectively transforms a

chipmap back into a clipmap.

3.5 Rendering Architecture

There should be no limit to the speed at which users are allowed to change the viewpoint.

At any moment, the user should have the ability to move to an arbitrary viewpoint. Given

this, what should be rendered on the display when the viewpoint changes too fast for all of

the appropriate texture tiles to be created? One possible solution is to delay redraw until

all texture tiles have been created. While this ensures optimum visual fidelity, it totally

undermines tool responsiveness, creating an atmosphere of user frustration. At the outset

of this thesis, one of the stated goals was a visualization system that provided the best

user experience. This means absolute responsiveness regardless of the speed of viewpoint

changes.

To meet this goal, we employ a multi-threaded rendering architecture: One “drawing”

thread renders the texture tiles on the display while one or more “worker” threads create

the tiles. The number of worker threads is usually set to the number of processors on the

host platform. When the drawing thread does not have access to all of the texture tiles,

it can look farther up in the pyramid for another texture tile that covers the same area.

A tile found higher up in the pyramid will be a coarser view of the desired area, but it is

better to draw a fuzzier view of the layout than nothing at all. This scheme exposes another

benefit of the static portion of the chipmap discussed in Section 3.4. Because these tiles

are guaranteed to exist,somecoarser view of the desired area will always be available. The
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blurriness acts as a visual cue of the overall progress to the user, and is not a distraction

since tool responsiveness is always instantaneous.

The result of this multi-threaded approach is that, as the viewpoint changes very quick-

ly, the layout may become fuzzy because the necessary texture tiles have not yet been

created. As the viewpoint remains constant, and the necessary tiles are created, the image

refines itself.

Having now described our rendering architecture, let us now revisit two topics that we

deferred discussion from earlier in this chapter; possible texture tile replacement policies,

and the placement of the static/dynamic boundary in the chipmap pyramid.

There are many possible replacement policies that one could use in selecting a suitable

tile to evict from the texture tile cache when necessary. Since viewpoint changes exhibit

spatial locality, one possible policy evicts the tile farthest away from the current viewpoint.

We have found, however, that aLeast Recently Used(LRU) policy provides good enough

performance so that other, more exotic, policies are not necessary. Generally, the LRU tile

will be far away from the current viewpoint, but more importantly, our rendering architec-

ture, since it guarantees that some data will always be drawn, hides the delay of not having

all of the needed texture tiles.

For the rendering architecture to be effective, at least one level must exist in the static

portion of the chipmap pyramid. If there is no static portion, then some fast viewpoint

changes may cause areas of the display to be vacant of data sinceno coarser view of the

design exists. So we advise that the static portion of pyramid no only provides a benefit,

but is a necessity if the display is always to be completely covered with data.

3.6 Example Chipmaps

Having laid out the groundwork for the chipmap structure, we now present the chipmaps

(Figure 3.3) for the three benchmark designs introduced earlier. The colors delineate the

regions as in Figure 3.1. The figures shown on the chipmaps are the dimensions of the

texture tile grids for each level. Using a texture tiled grid has allowed the total size of each

level to approximately match the scaled size of the designs. These dimensions are also

shown in the figure. The pre-computed/dynamic texture boundary was computed assuming
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(c) Databuffer

Figure 3.3: The chipmap structures for the three example designs.

a screen resolution of 1600×1200. All three designs have only one level in the geometry

region, because each design has rectangles with an average shorter dimension mostly near

the grid resolution. Readers should not get the impression that having a single level in the

geometry region is always guaranteed. Throughout the course of our research, we tested

nearly a dozen other designs, some having up to four levels of the chipmap pyramid devoted

to the geometry region. These three designs, because they were hand designed with Magic

(or, as in the case of the Flash design, converted to the same scale of the Databuffer design)

have a single level of geometry because manual designs tend to have a minimum dimension

at or near the grid resolution.

3.6.1 Viewing Very Large Designs

The preceding example show chipmaps of varying sizes. Earlier we discussed Magic’s

limitations, and correspondingly our limitations, with regard to viewing the largest designs

that exist in 2002 with our test implementation. Let us now speculate on the chipmap for

one such design.

Figure 3.4 is the approximate chipmap for Intel’s McKinley design that we introduced

earlier. We will demonstrate in Chapter 4 that the time to generate a texture tile is strictly

dependent on the amount of data contained in a tile, with tiles at the highest levels taking

the longest because they, by definition, contain the most data. For McKinley, the amount

of time required to create a viewpoint high in the pyramid will simply be longer than any
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Figure 3.4: Intel’s McKinley design as a chipmap. If we assume two levels of geometry,
the equivalent clipmap size for this design is 25 TB.

design that we have currently tested. Besides this extra time, there is no fundamental lim-

itation to the size of design that can be viewed with a chipmap. A system’s ability to

display McKinley is more dependent on its overall system capacity than its graphical capa-

bility since the size of the internal database may require main memory not only in excess

of the 4 GB 32-bit memory limit, but also an amount practically unreasonable for today’s

high-end 64-bit workstations. Ultimately, this memory requirement effects all applications

that wish to operate on a design so large.

3.7 Summary

This chapter introduced the concept of a chipmap. With this structure, we can efficiently

navigate an arbitrarily sized VLSI layout. At high zoom, the geometry is directly drawn,

taking advantage of the fact that it is computationally and visually feasible. At the lowest

resolutions, we permanently keep the texture data so that drawing a full screen view, a

common operation, is always instantaneous. And in between these regions, the texture

data is dynamically generated as the viewpoint changes, but the memory consumption is

constant, reasonable and independent of the size of the design. The next chapter shows

how the characteristics of VLSI design can be leveraged to improve the quality and speed

of texture generation.



Chapter 4

Image Generation

Earlier we stated that the fast and accurate dynamic generation of texture data was a key

to the success of chipmap as a visualization tool. Chapter 3 laid the groundwork for the

structure that houses the data, allowing it to be rendered on the display in a timely and

memory efficient manner. This chapter focuses on explaining how the image data is created

to accurately represent the layout data at any resolution. The basic problem we are solving

is that of sub-pixel resolution, or how should we model rectangles that are shorter than one

pixel in one or more dimensions. By modeling this correctly, we help accomplish one of

our stated goals: accurate visualizations.

This chapter is divided into four parts. First, we consider techniques to rasterize the

sub-pixel geometry in an anti-aliased fashion. We focus on developing a technique that is

accurate but also has a low memory overhead and is comparably fast. Second, we describe

how the output of rasterization is composited together in different ways, depending on

specific situations. Here we use the special properties of VLSI designs to give us more

accurate results than might otherwise be possible. Third, we describe two ways in which

we rasterize and composite the geometry and explain in which scenario each one is most

appropriate. Fourth, we discuss how explicitly instantiated hierarchy can be pre-rasterized

at start-up, speeding up on-the-fly image creation.

For the rest of the chapter, we will refer to the data as texture data, as opposed to

image data, since we will focus on using the data in an environment with texture mapping

capability. For the same reason, we will talk about the individual data elements as texels

42
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(a) Rectangles larger than texels. (b) Rectangles slightly smaller
than texels

(c) Rectangles much smaller than texels.

Figure 4.1: Figure 4.1(a) shows rectangles at greater than the given texel resolution. Fig-
ure 4.1(b) and figure 4.1(c) show rectangles increasingly smaller in relation to texel size.

rather than pixels. However, the data generated could be used as images or on platforms

that do not explicitly support texture mapping.

4.1 Anti-aliasing Techniques

At each higher level of a chipmap pyramid, the texture tiles, and the texels that make up

those tiles, correspond to more layout area than the levels below. Figure 4.1 shows three

examples of texel grid superimposed on a representative layout at different resolutions.

In figure 4.1(a), the layout rectangles are all nicely aligned with the texels. Rasterizing

the layout information into texel information in this case is trivial. Either a texel is covered
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by a rectangle or it is not. The other cases, however, are not so simple. In figure 4.1(b), the

texels are only partially covered by a rectangle and in figure 4.1(c), each texel is covered

by many rectangles, some representing different layers. Yet, each texel will ultimately be

a single color.

Consider that all other known layout viewers take no measures to accurately anti-alias

layout information in this situation. This leads to the massive visual errors we discussed in

the introduction. The problem now before us – the key to visual fidelity – is to accurately

compute texel values given that an arbitrary amount of information may lie within their

boundaries, a process we described as anti-aliasing in Chapter 2.

In this section we explore three possible ways to compute the texel data accurately.

For each method, we consider creating a texture tile on a level of the chipmap pyramid

that contains rectangles with sub-texel dimensions similar to Figure 4.1(c). Clearly, it

would be desirable to have an anti-aliasing technique that creates perfectly accurate texel

values while using minimal resources (memory, computation time). We will see that it is

necessary, however, to trade-off between accuracy and resource cost in order create texels

in a timely fashion.

The first technique we consider produces the most accurate texel values but at an un-

acceptable computation and memory cost. The second technique has an initially feasible

accuracy/cost trade-off, but ultimately it must be discarded because in order to be useful

it must be used in a such a way that it degenerates into the first technique. Ultimately, we

decide on the third technique, which is fast, has a very low memory overhead, and though

not as accurate as the first technique, is accurate enough for our requirements.

4.1.1 Level Zero Rasterization & Averaging

Perhaps the easiest way to solve the problem of anti-aliased rectangles is to avoid it al-

together. An arbitrary tile in the chipmap pyramid can be computed by rasterizing the

equivalent layout area at a resolution where no sub-texel resolution occurs, similar to the

case shown in Figure 4.1(a). After the rasterization is complete, the resultant texels are

averaged down to the size of the texture tile. This technique incurs a high computation
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cost of averaging down the huge, high resolution texture to the small texture tile and a high

memory cost of creating, storing, and touching the high resolution texture.

While this method is simple and produces very accurate texel values, we generally

reject it because of the enormous cost of touching the required memory. A texture tile high

up in the pyramid may represent a huge amount of memory when rasterized at pyramid

level zero. Even if the cost of rasterization and down-sampling were zero, the time it

would take to touch all the memory precludes this technique from being practical for real-

time use.

Consider a texture tile of dimension 256× 256 on level seven (a reasonable number

of levels for a large design) of a chipmap. That would map to a texture of size 32,768×
32,768 at level zero. If each texel were three bytes, this would translate into a 3 GB

texture! Worse, this cost would be duplicated for each tile visible on the display (a display

resolution of 1024× 1024 would require 48 GB of data). The memory bandwidth and

footprint requirements are too severe to be feasible.

In conclusion, while rasterizing at level zero and averaging has the advantage of creat-

ing very accurate texels, it essentially converts a chipmap back into a clipmap, incurring a

huge memory resource cost and making it impractical for real-time use.

4.1.2 Point Sampling

A very common anti-aliasing technique in computer graphics ispoint sampling. Point

sampling involves testing the value of the geometry at some number of points to determine

the image value. In our case, point sampling would test the value of the VLSI database

at some frequency to determine the texel values. Sampling theory tells us that in order

to adequately characterize the image, we must sample at an appropriately high frequency.

When that frequency requires more than one sample per texel to be taken, it is known

as super sampling. We can reexamine Figure 4.1 and see that the minimum frequency

required for each of the three magnifications is very different. While one sample per texel

would be adequate in Figure 4.1(a), perhaps two would be needed in Figure 4.1(b), while

many would be needed in Figure 4.1(c).
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(a) Sample once. (b) Sample four times. (c) Sample at the layout fre-
quency.

Figure 4.2: The same view of a VLSI layout contained within a single texel on a texture
tile high in the pyramid is drawn three times with sample grids of differing frequencies.
The black dots are the sample points.

In Figure 4.2, we show three times same portion of a VLSI layout representing one texel

of a texture tile high up in a chipmap pyramid. Over each view, we have superimposed a

sample grid of varying frequency.

Figure 4.2(a) shows the simplest sampling pattern, one sample. It is obvious that one

sample would produce not only an incorrect value, but possibly a misleading value the

majority of the time.

Figure 4.2(b) shows sampling at a higher frequency. We have missed some rectangles

altogether and our samples will not accurately represent the composition of the geometry.

While the amount of error when compared to Figure 4.2(a) is less, the final result is still

likely to be misleading.

To accurately sample this texel, the dense sample pattern shown in Figure 4.2(c) is

required. Unfortunately, this situation is no different than the level-zero rasterization tech-

nique discussed in Section 4.1.1. In fact, level-zero rasterization is just a special case of

point sampling where the sampling frequency matches the data frequency.

Point sampling presents a speed/accuracy trade-off. To maintain a constant amount of

error regardless of resolution, the number of samples must be increased as one traverses

higher levels of the pyramid – with a huge computation and memory cost for the highest
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levels. On the other hand, a constant computation cost can be had if one is willing to accept

an increasing amount of error at higher resolutions.

In conclusion, point sampling is rejected as an anti-aliasing technique because under-

sampling would cause some rectangles to be skipped, while appropriate sampling would

degenerate into the same memory cost problem as level-zero rasterization, again trans-

forming the chipmap into a clipmap.

4.1.3 Area Sampling

The last anti-aliasing technique that we will consider isarea sampling. With area sampling,

each rectangle will contribute to a texel’s final value in some proportion to the amount that

it overlaps the texel.

Computer graphics theory defines different types of area sampling with accuracy/speed

trade-offs. There are two factors that effect this trade-off: how one chooses to model the

shape of the texel, and whether the overlap contribution is weighted or not. The simplest

filter shape is a square because computing bounding-box overlaps with squares is com-

putationally easy, although not the most accurate since texels are not really shaped like

squares[Smith, 1995]. More complex filter shapes, like circles, produce more accurate

results, but require far more computation. The simplest type of overlap contribution tech-

nique isunweighted area samplingin which the overlap contribution is independent of

the distance of the overlap from the texel’s center. Alternatively,weighted area sampling

weighs the contribution so that overlap near the texel’s center contributes more than overlap

at the texel’s edge.

The combination of using square texels with unweighted area sampling is known as

a box filtersince the shape of the filter, considering both the texel shape and how overlap

contributes to the texel’s value, is a box. Contrast this to the cone shape of a circular filter in

combination with weighted area sampling. Interested readers can see[Foley et al., 1996],

Chapter 14.10 for more information on other more advanced filtering techniques.

Our implementation used box filter to determine coverage values because of its com-

putational simplicity and low perceived error. Section 6.2 on Page 80 shows that our final
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(a) A 100% covered texel. (b) A 50% covered texel
via one rectangle.

(c) A 50% covered texel
via many rectangles.

Figure 4.3: The middle texel is covered in three different ways. In Figure 4.3(a), it is fully
covered giving a trivial coverage value of 1.0. The other two figures are 50% covered via
different means.

image quality was very good using a box filter. Let us now describe a box filter in more

detail.

Figure 4.3 shows three different resolutions where the middle texel is covered by rect-

angles to varying degrees. Figure 4.3(a) is a familiar view of a texel that is fully covered

by a rectangle. The coverage value in this situation is 1.0. This case is equivalent to point

sampling at pyramid level zero. Figure 4.3(b) shows a texel with 50% coverage contributed

by a single rectangle while Figure 4.3(c) shows a texel also with 50% coverage; this value,

however, is contributed by summing the contributions of multiple individual rectangles.

We find many favorable qualities to area sampling as compared with level-zero ras-

terization and point sampling. First and foremost is that the memory requirements of area

sampling are small. While point sampling degenerates into level-zero rasterization to avoid

missing any rectangles, area sampling will never miss any rectangles. With area sampling,

the time to create a texture tile is totally dependent on the number of rectangles that overlap

it and the cost of touching the associated memory is small.

When using area sampling to anti-alias rectangles of different colors that will overlap

and occlude each other, it is necessary to render them in a sorted front-to-back ordering to

achieve correct results. This requirement is a potential downside of area sampling since

rectangle sorting may incur a large performance penalty. Fortunately, VLSI layouts have

inherent properties that eliminate this problem because they are already stored in a sorted
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fashion requiring little or no cost to render them from front-to-back. Also, as we will see,

since we perform the rasterization on the CPU instead of the GPU, we can use our own

data structures to eliminate the sorted requirement altogether.

4.1.4 Rasterization

We now use a unweighted area sampling to turn a rectangle with sub-texel dimensions

into fragments. The basic idea is to scale the coordinates of the rectangle by an amount

equal to 2level wherelevel is the current level of the chipmap pyramid. For example, if

we are computing a texture tile on level 5 of the chipmap pyramid, then the coordinates of

the rectangles would be divided by 25 or 32. After the scaled rectangle coordinates have

been computed, area overlap tests are performed for each affected texel to determine the

fragment values.

A key point needs to be made here. Notice that when scaling rectangle coordinates,

we will always be dividing by a power of two since pyramid levels differ by a factor of

two in each dimension from level to level. It is critically important to realize that it is

a fundamental property of a mipmap that allows us to divide by two, a computationally

trivial task (simply a right shift), rather than being forced to divide by some other number.

Mipmaps were invented so that some level would always more or less correspond on a

one-to-one texel space to pixel space basis. We take advantage of the fact that scaling

coordinates to mipmap levels is trivial because each level is some power of two different

in size than the base level.

4.2 Compositing

Now that we have chosen unweighted area sampling as our anti-aliasing technique and

described how rasterization will convert these samples into fragments, we will describe the

algorithms used to combine these fragments into texel values. Final texel values will carry

only color (RGB) information; Since the fragments will mostly be sub-texel in resolution,

however, we have to create an additional field for every texel that tracks the amount that

they contribute.
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So let us definecoverageto be the amount that a fragment contributes to a texel. A

fragment’s coverage value is bounded between 0.0 and 1.0 inclusive. The value 0.0 signi-

fies that the fragment does not touch the texel and the value 1.0 signifies that the fragment

fully covers the texel.

The steps of creating the texel values in a texture tile are as follows. Each rectangle

is rasterized using the unweighted area sampling techniques to generate fragments. These

fragments are combined in some manner to the texels they affect. Finally, we use the

coverage values to modulate and compute the final full color (RGB) value of the texels.

While computer graphics literature defines many ways to combine fragments, the frag-

ments generated from VLSI rectangles have special properties that allow them to be com-

bined in ways that maximize visual fidelity and minimize perceived errors.

4.2.1 Coverage Equals Transparency

The idea of coverage has a mathematical equivalence to the common graphics idiomalpha

(α), which represents transparency. A rectangle that overlaps a texel by 50% will have

a coverage value of 0.5. Equivalently, a rectangle that completely covers a texel but is

represented with 50% transparency will also have a 0.5 coverage value. Throughout the

rest of this thesis, we use the symbolα to represent coverage and we use the terms alpha

and coverage interchangeably.

Because of this equivalence, it is trivial to represent layers transparently. In addition,

since our area sampling anti-aliasing technique already requires that we keep track of cov-

erage, no additional computation cost is incurred.

4.2.2 Different Layer Compositing

In combining fragments from different layers, thus different colors, we assumearbitrary

overlap. This behavior is captured in Equation 4.1:

α′
src = (1.0−αdst)αsrc (4.1)
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α′
src is the resulting amount of contribution given that the texel is already covered byαdst

and is now overlapped by the incoming fragment byαsrc. If the incoming fragment com-

pletely covers the texel (i.e..αsrc equals 1.0), then the contribution will be the uncovered

portion of the texel, given by(1.0−αdst). Remember that we must allowαdst to occlude

αsrc for correct front-to-back anti-aliased compositing.

The arbitrary overlap assumption is the only assumption one can make if no other

special information is known about the relationship of the geometry. This assumption has

been the standard in computer graphics for independent geometry since it was put forth

by [Porter and Duff, 1984].

4.2.3 Same Layer Compositing

While we do not have any special information about how different layer rectangles are

aligned to help us composite them, same layer rectangles may have such information be-

cause of the way that the data is stored. In particular, Magic’s corner-stitched data structure

guarantees that same layer rectangles within a subcell will not overlap. The only way that

same layer rectangle can overlap in Magic is to have different subcells overlap. Each de-

sign is different and pathological cases can be constructed, but in general we have found

that most same layer rectangles do not overlap in Magic. Our three designs, for example,

as a percentage of rectangle area, have a same layer overlap of 6.9%, 14.7%, and 0.06%

for Databuffer, SUBlock, and Flash respectively.

These numbers tell us that the assumption of non-overlap will produce the most accu-

rate images for these designs, however, with other database formats it could make more

sense to assume other properties about how the rectangles overlap.

α′
src = min(1.0−αdst,αsrc) (4.2)
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Equation 4.2 shows that a same layer fragment will contribute the maximum amount possi-

ble given the amount of the texel not already covered1. α′
src is the amount that the incoming

fragment,αsrc, contributes to the new texel and(1.0−αdst) is the amount uncovered.

In the worst case, if two fragments completely overlapped, Equation 4.2 would be

wrong by 50%. On the other hand, if we used Equation 4.1 for same layer compositing, the

worst case error would be 25%. Why have we chosen then to use a compositing equation

that would give a maximum error that is twice as large? It is far more likely for same layer

rectangles to be exclusive of each other. So while Equation 4.2 gives a large maximum

error, it produces texel values closer to the correct value a greater percentage of the time

given that same-layer geometry does not actually overlap that often.

4.2.4 Color Compositing

We now define howα′
src, the ultimate contribution made by a fragment, is used to generate

the full color value of the texel. Texels are made up of four channels, RGB color channels,

andα, alpha, the coverage or transparency. Together, we have a color, C. Given a texel

is a color,Cdst, and the incoming fragment represents a layer with color,Csrc which has a

coverage value ofα′
src, we can blend the colors together with Equation 4.3:

Cdst = Cdst+Csrcα′
src (4.3)

This equation is the equivalent to the standard computer graphics blending relation with

the destination’s blend factor set to 1.0. Sinceα′
src was derived fromαdst, their sum can

never be greater than 1.0 which means the equation will never overflow. Also notice that

the alpha channel of the source color could itself have an independent value that would

represent the layer’s transparency separate from the coverage. As we noted earlier, since

transparency and coverage are mathematically equivalent, they simply multiply together.

1Dependent geometry is not new in computer graphics. Most 3-D models are composed of triangles
that are perfectly aligned with each other so that they appear solid. When rasterizing these models, it is
important to composite the seams between the triangles correctly or visually disturbing artifacts will result.
Equation 4.2 fits the bill. In fact, readers familiar with OpenGL will recognize Equation 4.2 as the blending
factorGL SRC ALPHA SATURATE.
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4.3 Texture Tile Creation Strategies

We have now selected our anti-aliasing technique and determined how we will composite

fragments from different layers and same layers. We have explained how transparency is

added to the compositing process and how we arrive at color texel values. This section

draws all these techniques together and describes two techniques to actually populate a

texture tile from a chipmap with RGB texel values. Our two algorithms differ in both

visual quality and speed. One algorithm tends to be faster very high up in the pyramid,

while the other is better at resolutions that are more zoomed in low in the pyramid.

4.3.1 Coverage Map Tile Creation

The first tile creation algorithm we will discuss is calledcoverage map tile creation. Fun-

damental to this algorithm is a structure called acoverage mapshown in Figure 4.4.

A coverage map is the coverage information for a single layer of layout data. While a

texel in a texture tile contains full RGB color information and is usually three bytes wides,

a texel in a coverage map holds only aggregated coverage information for one layer and is

usually one byte per texel.

Figure 4.4(a) shows rectangles from a single layer of a VLSI layout with a texel grid

superimposed on top of it. Then Figure 4.4(b) shows the corresponding coverage map

encoded with gray scale values. Since coverage maps always contain information from

just a single layer, we invoke the assumption of non-overlap presented in Equation 4.2.

Tile creation using coverage maps is simple and occurs in two steps. First, a set of

coverage maps, with the same dimensions as the texture tile, are used to rasterize each

layer separately. Then the individual coverage maps are blended from front to back to

form the final texels.

The memory overhead of the coverage map structure is reasonable. For a texture tile

that is 256×256 on a side, each coverage map is 64KB given 8-bit precision. An average

design might have a few dozen visible layers, which would be a memory cost of a few

megabytes. An extraordinary design could have hundreds of visible layers, but still the

total cost would be tens of megabytes, small in comparison to the size of the design itself.
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(a) A single layer with sub-texel
resolution.

(b) The corresponding coverage
map.

Figure 4.4: On the left is a single layer of layout information with sub-texel resolution.
On the right is the corresponding coverage map encoded with gray scale values. Darker
values indicate more coverage.

If an implementation uses a multi-threaded approach, then one coverage map structure is

needed for each worker thread.

4.3.2 Direct Tile Creation

The other tile creation algorithm is calleddirect tile creation. In direct tile creation, the

rectangles are directly rasterized into the final texture tile without a coverage map. The

layout rectangles are visited in a front-to-back manner and composited directly into the

texture using Equation 4.3.

Equation 4.3 requires a value ofα′
src. Which value should we use? If the incoming

coverage value is from the same layer as the existing coverage value, then Equation 4.2

would be appropriate. However, if we are compositing different layers, then arbitrary

overlap would be more correct and Equation 4.1 would be a better choice. To allow a

distinction to be made, we introduce a fifth texel element to be used in direct tile creation.

We call it alayer identifier, or lid , and it is simply a small integer that reflects the very first

type of rectangle to be composited into a texel.

The first time a texel is written, thelid is set to equal the layer identifier of whatever

layer type is writing to it. Then, whenever another coverage value is to be blended in via

Equation 4.3,α′
src is computed via Equation 4.2 if thelids match and via Equation 4.1 if

they do not.
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The use of thelid is a heuristic and does not guarantee that the correct assumption

will always be made. If one type of rectangle first establishes thelid value, and then

two coverage values from the same rectangle type as each other but different from the

first rectangle type are composited later, each will be blended using the arbitrary overlap

assumption since neither of theirlids will match the texellid . In practice though, this is

not a significant problem because direct tile creation is not used in situations where an

incorrect assumption would be noticeable.

4.3.3 Discussion

The two tile creation algorithms presented in the previous sections each have strengths in

different situations.

For texture tiles high up in the pyramid, coverage map tile creation is preferred. These

tiles contain the most rectangles, so rasterization time is the biggest performance bottle-

neck. To minimize this bottleneck, coverage map tile creation is generally faster for two

important reasons.

First, since each coverage map is made up of a single value, Equation 4.3 need only

operate on a single alpha channel, making the rasterization as fast as possible. The other

three values of the texel do not come into play until the final blending stage.

Second, the coverage map tile creation requires only one pass through the layout

database, since rasterization can take place in an arbitrary order. For certain designs and/or

layout database implementations this could make a huge difference in total computation

time. Imagine a layout database that simply kept all rectangles in an unordered linked list.

Coverage map tile creation would require only a single pass over this list while direct tile

creation would requireN passes givenN types - takingN times as long. While not as

pathologically bad as an unordered linked list, Magic’s corner-stitched data structure also

incurs a performance penalty due to the need to traverse multiple times.

On the other hand, for texture tiles low in the pyramid, the direct tile creation algorithm

is preferred. Viewpoints low in the pyramid by definition consist of fewer, larger rectan-

gles. With coverage map compositing, many of the individual coverage maps would be

sparsely populated, and the performance cost of blending these sparse maps could easily
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Dynamically Generated
Textures

Coverage Map
Rasterization

Direct Rasterization

Figure 4.5: A cross-section of a chipmap showing the coverage map vs. direct rasteriza-
tion boundary.

outweigh the cost of direct tile creation. Since the total number of rectangles is small, the

direct tile creation cost of visiting them in a sorted front-to back ordering is not a bottle-

neck. Finally, since texels will likely be covered by a small number of rectangles low in

the pyramid, errors, like the ones due to usinglids discussed in the previous section, by

definition do not occur as often.

Another way to choose between the different tile creation strategies is to consider how

many rectangles will be represented by each texel. If each texel will overlap many rect-

angles, which is likely for tiles high up in the pyramid, coverage map tile creation is best

to minimize the rasterization computation. On the other hand, if each texel will overlap

just one or two rectangles, which occurs at high zoom, it is better to use direct tile creation

which does not have the overhead of a final blending stage.

Coverage Map Tile Creation vs. Direct Tile Creation Boundary

Given that we have two ways to create texture tiles, and it is probably faster to use coverage

map tile creation high in the pyramid and direct tile creation low in the pyramid, where

should the boundary be drawn between the two? Unfortunately, there is no hard and fast

rule. The speed of one technique versus the other is highly design- and database-dependent

so any boundary must be based on a heuristic.

Figure 3.1 is redrawn in Figure 4.5 to show this new dividing line. The boundary further

divides the dynamically generated texture data region discussed in Section 3.3.
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In our implementation, the boundary level is two levels above the primary geome-

try/texture boundary. That is, the first two pyramid levels in the dynamically generated

region use direct tile creation, while all the levels above it use coverage map tile creation.

While empirical evidence generally supports this number (for our three example designs

this boundary represents the cross-over point between the two algorithms), we can also

derive this number based on our previous design decisions.

Looking back to Section 3.2.1, see that we have chosen five pixels to be the average

shorter dimension of rectangles at the boundary between geometry and texture. This means

that the average dimension two levels above this boundary would be about one pixel. Since

direct tile creation is more effective when each texel has only one or two visible rectangles

overlapping it, it makes sense that we place our boundary two levels above the geome-

try dividing line. For levels higher than this, the average texel will cover more than one

rectangle, making coverage map tile creation more attractive.

4.4 Pre-rasterized Hierarchy

By far, the bottleneck in the process thus far is the rasterization step required for each

rectangle. Now, we will now describe an optimization that can speed up the tile creation

process by as much as a factor of four (based on experimental results), by pre-computing

rasterization results for selected parts of the design. To do this, we take advantage of the

explicitly instantiated hierarchy (also known assub-designsor cells) that frequently exists

in VLSI designs. The level of instantiation can be nested arbitrarily, providing a way to

describe an enormous amount of redundant complexity. One of our example designs, the

Databuffer, has 100×more total rectangles than unique rectangles, which is not uncommon

for these types of designs.

We pre-rasterizeselected sub-designs such that when the sub-design overlaps a par-

ticular texture tile, its pre-rasterized hierarchy data is simply copied and the on-the-fly

rasterization step is eliminated. Thishierarchy cacheis a block of preallocated memory

used to store the hierarchy data. For a VLSI layout viewer, the cache is created and pop-

ulated at startup and remains static throughout the life of the program. For an editor, the
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cache can be updated dynamically with different designs or modified as changes to existing

designs are made.

The rest of this section will explain the entire process of using hierarchy data in the

texture tile creation process. This includes how the data is stored and used in tile creation,

how sub-designs are selected to be included in this cache, how the size of the cache is

set, and an explanation of the error artifacts that are generated as a consequence of using

hierarchy data.

4.4.1 Hierarchy Data Format

The hierarchy data is a set of coverage maps for each level of resolution in the main design’s

chipmap pyramid. The coverage maps themselves are very similar to the coverage map

structure described in Section 4.3.1. Unlike that structure, however, the maps’ dimensions

are whatever the scaled size of the cell happens to be. This data does not have to be tiled or

a power of two in size because it is never used directly for display; it is only copied into the

final texture tile. We compute a set of coverage maps for each level in the pyramid where

textures are created dynamically so that the data is immediately available when needed.

A particular sub-design can itself contain other child sub-designs. When the hierarchy

data for a cell is created, it is advantageous to “flatten” the design data from all the child

cells directly into the parent’s coverage maps. For deeply nested designs, this yields large

performance benefits because time is saved traversing down the hierarchy. In addition,

since the memory requirement of a cell is determined by its overall bounding box, there is

no memory penalty to flattening the data. If an implementation is designed as an editor,

then any modification of a child design will cause all parent designs and their descendants

to be recomputed.

4.4.2 Using Hierarchy Data In Tile Creation

The process of using hierarchy data to create a texture tile via the strategies discussed in

Section 4.3 is straightforward. Both strategies visit each rectangle contained in a tile to

rasterize it. Along the way, it is necessary to descend through the design hierarchy to

access the data. We now add an extra step. For each sub-design that intersects the tile and
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has been included in the hierarchy cache, we can simply use the hierarchy data directly,

copying it into the appropriate structure. In particular, for coverage map tile creation, each

of the appropriate coverage maps from the hierarchy data is added to the main coverage

map structure using Equation 4.2. The final blending step is unchanged. For direct tile

creation, the hierarchy data is added directly into the final texture using Equations 4.1 and

4.3. In both cases, we have eliminated the total on-the-fly rasterization time that would

have been needed for the cell and, because the hierarchy data is flat, we also have avoided

descending further into the design to process more rectangles.

It is now clear why the hierarchy data is stored in coverage map form. Correct com-

positing requires that fragments be added to texels in a given layer stacking order. If the

hierarchy data were pre-composited, it would be impossible to accomplish this. Even if the

stacking order were fixed, rectangles from other cells or the parent design could overlap a

sub-design’s bounding box, causing incorrect results.

4.4.3 Sub-design Selection Algorithm

How does one select which cells out of the whole design to pre-rasterize? First, we would

like to pre-rasterize the sub-designs that would show the most benefit. For every sub-

design, it takes some amount of time,X, to copy in its pre-rasterized data, and a different

amount of time,Y, to rasterize the data on-the-fly. Thespeed-upis the ratioY/X and there

are two variables that determine the speed-up for a sub-design: the amount of geometry

contained in the sub-design and the current level of the chipmap pyramid for which tiles

are being created.

To understand the geometry dependence variable, consider two sub-designs that have

exactly the same dimensions but differ in the number and size of the rectangles they con-

tain. The amount of time to copy each sub-design’s pre-rasterized data into a tile would be

the same, but the amount of time necessary to rasterize the geometry on-the-fly could be

very different for each sub-design, yielding very different speed-up values.

To explain the speed-up dependence on the current level of the pyramid, think about a

sub-design withN rectangles and an area ofM texels at some chipmap pyramid level. The

time to rasterize data on-the-fly is strongly related to the number of rectanglesN while the
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(a) Databuffer (b) Databuffer

(c) SU Block (d) SU Block

Figure 4.6: The images on the left show the Databuffer and SUBlock designs in their
entirety. Compare them with the corresponding images on the right which renders them
only showing the contents of their 32 MB hierarchy caches. The Databuffer design, be-
ing much more hierarchical, is able to store 87% of its layout area in the cache while
SU Block can only store 28%.
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time to copy the pre-rasterized data is dependent on the number of texels to copy,M. Now

move up one level of the pyramid and the number of rectangles to rasterize on the fly is

still N while the number of texels to copy for pre-rasterization would now beM/4. As we

continue higher, each level reduces the computation to copy by a factor of four while the

amount of time necessary to rasterize on-the-fly is still strongly related toN, the number of

rectangles. Thus, as we move up the chipmap pyramid, the effectiveness of using hierarchy

data increases.

To account for each of these variables, each sub-design’s speed-up at each level of the

pyramid could be measured and ranked. However, we have found this is not necessary

because we can generalize both effects. First, we ignore the fact that there is a geometry

dependence by making the hierarchy cache large enough to hold most of the designs that

have the largest speed-up benefit. (See Section 4.4.4 for more details.) Second, we account

for the pyramid level dependence by assuming that because most rectangles are similarly

sized, we can determine a cut-off level below which hierarchy data will not be used. For

the same reasons discussed in Section 4.3.3, hierarchy data coverage maps are only used

when the coverage map tile creation algorithm is active.

Given that we have decided to ignore the variability in sub-design speed-up, the factor

we use to preferentially rank sub-designs is the number of instantiations of each design.

This maximizes the number of texels on the display that are represented in the cache. We

now have the problem of trying to maximize the total number of instantiations present

in the cache given that it is a fixed size. This is a bin-packing problem which has no

optimal solution that can be computed efficiently so we must rely on heuristics. We have

experimentally determined that ranking sub-designs strictly by instance count is basically

as good as other more complex heuristics in packing the hierarchy cache, so we simply

place sub-designs by instance count greedily into the cache until no more sub-designs fit

into the cache.

4.4.4 Selecting Hierarchy Cache Size

In the previous section, we concluded that placing sub-designs with the highest instance

count in the hierarchy cache would generally yield the most speed-up, but we have not
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Figure 4.7: For hierarchical VLSI designs, the speed-up possible as hierarchy size in-
creases grows quickly and then tails off quickly. See Section 6.3.2 on Page 86 to see how
speed-up varies with hierarchy cache size for our three example designs.

answered the question of exactly how large to make the hierarchy cache. Experimentally,

we have found that the hierarchy cache size versus speed-up graph generally follows the

pattern shown in Figure 4.7.

Figure 4.7 shows that a small amount of memory generally accounts for the majority of

the speed-up. This is because it is always the case that the sub-designs that are instanced

the most, thus yielding the largest speed-up, are also the smallest, and thus are the most

beneficial to add to the cache from a memory perspective. This property is guaranteed

because a parent sub-design must be at least as large as each child and a parent cannot be

instanced more times than its children.

Further examining Figure 4.7, it seems most appropriate to set the hierarchy cache

size just to the right of the knee in the curve to get the majority of the speed-up with the

minimum memory cost. As we will see in Section 6.3.2, the smallest knee in the curve

for our three example designs is about 32 MB, which is what we use as a default in our

implementation. As designs continue to grow in the future, the knee in this curve will

continue to move to the right, mandating that more memory be allocated to the hierarchy

cache.
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A
B

Figure 4.8: A texture tile superimposed with its texel grid and the outline of two sub-
designs. Sub-design A is perfectly aligned with the grid, while sub-design B is not which
will cause errors when its data is used.

4.4.5 Hierarchy Errors

The use of hierarchy data is not without a drawback. Unfortunately, errors are introduced

in the compositing stage that can produce noticeable visual artifacts. The problem is that

both hierarchy data and texture tiles are aligned to their own local coordinate systems but

they are arbitrarily aligned to each other.

Figure 4.8 shows a texture tile with a texel grid superimposed on it in addition to two

sub-designs, A and B. The bounding box of sub-design A is exactly aligned with the texel

grid so no errors are incurred because the local coordinate systems of the sub-design and

the texture tile are the same. However, the bounding box of sub-design B is mis-aligned

with the texel grid. This sub-design must be snapped to the closest texel grid point, which

is down and to the left, in order to be copied into the main tile. The error occurs when

the hierarchy data is composited into the main tile because the coverage values from the

hierarchy data are not exactly aligned with the area they are supposed to represent.

The worst case error occurs when the sub-design falls in the middle point of a texel,

yielding a 1/2 texel error in both directions. Additionally, the probability thatsomeerror

will occur increases with higher levels of the pyramid since each texel covers a larger area

of the overall design.

It is not possible to create one set of hierarchy data that always matches the coordinate

system of each instantiation because the offsets could be different. While it is possible
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(a) Hierarchy Errors. (b) No Errors.

Figure 4.9: Figure 4.9(a) shows a portion of just the Flash design rendered with a large
number of hierarchy errors. Figure 4.9(b) shows the same view without any errors.

that some sub-designs may only be instantiated once, or that all instantiations will have the

same offsets, neither of these scenarios is very likely to be true with any frequency.

In practice, this error occurs and does produce noticeable visual artifacts. Figure 4.9

shows just such a situation. Both images show the pad ring of the Flash design. Each

individual pad is exactly flush with the metal neighboring it, producing a smooth ring that

circles the chip. This is correctly shown in Figure 4.9(b). The hierarchy errors shown in

Figure 4.9(a) manifest themselves as thin black lines between each pad. This artifact could

mislead the viewer into believing that space does indeed exist between the pads and the

rest of the pad ring.

Fixing Hierarchy Errors

Even though it is not possible to create one set of hierarchy data that matches the offsets

of every sub-design instance, it is possible to createevery possibleoffset at the expense of

extra memory.
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Each coverage map derives four averaged down coverage maps with different offsets.

One is centered at the(0,0) point in the texel as before, but the other three are created

so that they are centered at(0, 1
2), (1

2,0) and (1
2, 1

2) respectively. The process continues

recursively creating a coverage map structure whose memory size is constant per level.

Said another way, one level of areaN derives 4 coverage maps, each with area ofN/4 and

a combined area ofN. The next higher level consists of 16 coverage maps each with an

area ofN/16, and so on.

Using this structure is as simple as choosing the correct coverage map given the off-

set of the sub-design in the main design. This is how Figure 4.9(b) was produced. The

glaring drawback of this method is that it incurs a 4× memory penalty. Given a fixed size

hierarchy cache, this decreases the number of sub-designs it can hold by the same factor

of four. Although hierarchy memory does not consume any graphics memory (a very lim-

ited resource), an implementation could just choose to increase the size of its cache. Our

implementation used a 32 MB hierarchy cache, and even with this modification, the cache

was large enough to provide 2× to 4× performance boost for the three designs presented

here. See Section 6.3.2 for more information.

4.5 Summary

The purpose of this chapter was to explain how the specific properties of VLSI layouts

could be exploited to achieve certain goals. We have demonstrated how to create the texture

tiles that populate the chipmap structure described in Chapter 3, allowing for the fast and

accurate creation of VLSI layout visualization data with a very minimal memory overhead.

The techniques presented in this chapter were given in the context of creating an accu-

rate image of a layout. In Chapter 5 we will show how the same techniques can be used

to create texture tiles that are used to create other useful visualizations in the VLSI design

process.



Chapter 5

Other Visualizations

The previous chapter detailed how photo-realistic VLSI layout image data is created.

While viewing VLSI layout in a photo-realistic manner is very useful, it is not the only

type of visualization that would be helpful to a chip designer. In this chapter, we will de-

tail the other ways that VLSI physical design data could be displayed within the chipmap

infrastructure.

The purpose of this chapter is to demonstrate what is possible with a chipmap. All of

the visualizations we will present have been created in one form or another on other sys-

tems, although those systems have the same speed and accuracy limitations in displaying

this type of information as with layout data. We believe that by using a chipmap, these

visualizations become even more powerful and intuitive.

First, we will show how we can use exaggeration and layering to enhance the data

selection process. Next, we detail how a chipmap can be used to visualize a chip floorplan

and cell placement information. Finally, we explain how we can back-annotate analysis

information onto a layout to help a designer gain insight into the quality of the analysis

results.

66
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(a) SUBlock errors selected but not exaggerated(b) SU Block errors exaggerated to 15 pixels

Figure 5.1: The image on the left shows the DRC errors of the SUBlock design selected
without exaggeration. One the right, is the same data except that it has been exaggerated
to at least 15 pixels on a side.

5.1 Data Selection Visualization

A very common operation in VLSI design isdata selection. A designer often wants to

highlight a particular feature or group of similar features either to physically find it, or to

determine if that group of features presents a pattern.

The first example of data selection, shown in Figure 5.1, is the DRC error information

in the SUBlock design. In the image in Figure 5.1(a), however, the errors have not been

exaggerated, while in Figure 5.1(b) they have been exaggerated to a minimum 15 pixels on

a side. As the viewpoint zooms in, the relative amount of exaggeration needed gradually

goes to zero so that, at some point, the errors appear as they would in the layout. This level

of exaggeration is important to make the sparse nature of the errors stand out.

In other situations, this level of exaggeration would only obscure the selection. In

Figure 5.2(a), the 17,539 flip-flops of the Flash design have been selected with no exagger-

ation, while in Figure 5.2(b), they have been rendered to have a minimum dimension of 15
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(a) Flash flip-flops selected but not exaggerated(b) Flash flip-flops exaggerated to 15 pixels

Figure 5.2: The image on the left shows all the flip-flop devices of the Flash design
selected without exaggeration. One the right, is the same data except that it has been
exaggerated to at least 15 pixels on the side.

pixels on a side. In this case, no exaggeration is desired because of the size and density of

the flip-flop cells. When the exaggeration is too great, the selected elements overlap each

other, making it difficult to discern the individual flip-flops. This results in hiding their

total number and also hiding any patterns that might be present in their placement – the

un-exaggerated view more clearly shows the individual hand-placed rows of flip-flop cells.

The visualizations in Figures 5.1 and 5.2 were both created withoverlay textures, which

is an additional layer of texture data that is blended into whatever image is already on the

display. On systems supporting texture mapping, blending an additional layer of data can

usually be done with little performance penalty. In this case, the overlay data is a coverage

map-like structure that has the capability to display a single color modulated from fully

opaque color to completely transparent. In other words, the selection texture data is another

set of different texture tiles that is also computed at the same time as the regular image

texture tiles are created. The advantage to keeping the selection data separate from the

primary image is that changing the overlay texture data requires no recomputation of the

primary image.
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To produce visualizations similar to those in existing systems, ahardware overlay plane

must be employed to achieve the same effect. A hardware overlay plane is a separate area

of framebuffer memory that is available with some higher-end graphics systems. There are

two main drawbacks to using a hardware overlay plane versus an overlay texture. First,

The data in the overlay plane can either fully occlude the data underneath it, or it can be

totally transparent. It is not possible to blend the values of the overlay plane with the main

framebuffer as it is with an overlay texture. Second, the number of layers that can be added

is limited to the number of physical overlay planes present on the system. This number can

be as high as four, but is usually just one. On the other hand, the number of overlay textures

that can be blended is only limited by system memory constraints.

The important point about using overlay textures with with a chipmap is it presents a

formalized way of adding an arbitrary number of additional data layers without disturbing

the original image.

5.2 Floorplan Data Visualization

Floorplanning a VLSI design involves partitioning the die at a global level with the loca-

tions of the functional blocks, hard macros, and embedded memories. After a floorplan is

in place, it is usually used by another tool as a starting point for cell placement. That is,

the cells contained within a particular floorplan block will nominally be placed within that

block. The chipmap infrastructure can visualize this process.

Figure 5.3(a) shows the Flash design’s floorplan blocks. The embedded memories are

all shown in the same shade of lighter blue while every other functional block has a color

randomly assigned. Figure 5.3(b) shows the approximately 87,000 placeable cells of the

Flash design colored to match the blocks they are a part of. The cells were rendered into

texture tiles using the same anti-aliasing techniques that were used to render the layout

rectangles.

Figure 5.4 demonstrates how transparency can be used to further give insight into the

floorplanning process. Here we show two views of the floorplan where the blocks have

been transparently blended on top of the cells. By using transparency, this visualization

gives better insight into how the cells were placed. In Figure 5.4(b) it is apparent that few
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(a) Flash floorplan blocks (b) Flash placeable cells

Figure 5.3: Screenshots of the Flash floorplan. On the left are the global blocks. On the
right are the placeable cells colored to match the block from which they originate.

(a) Flash floorplan blocks and cells (b) Flash floorplan zoomed in

Figure 5.4: Screenshots showing the Flash floorplan blocks rendered with 40% trans-
parency on top of the cells. The image on the right is a zoomed in portion of the upper
left corner of the design.
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cells were placed outside of the blocks to which they were assigned. The fact that the placer

rigidly respected the hard boundaries of the blocks may or may not have been the desired

behavior and using transparency allows a designer to see that immediately. Contrast this to

Figure 5.3, where the blocks were either shown or hidden, making it more difficult to see

the placer’s behavior.

The floorplan visualization is important for two reasons. First, it shows that the chip-

map infrastructure can be used to display information other than layouts. Fundamentally,

a floorplan and a layout are both made up of rectangles, which allows them to be created

in the same way. Second, displaying the floorplan blocks and cells simultaneously using

transparency is a powerful way to view this information. While stipple patterns or outlines

could be used to achieve this effect, true adjustable transparency allows the designer a

flexibility that other techniques do not.

5.3 Back-annotated Data Visualization

We now consider two examples of back-annotating the results of an analysis tool into a

chipmap. This demonstrates how we can use color, thickness, and ordering to make the

most interesting parts of the analysis stand out. Both analysis examples are static timing

related. The first highlights the worst violated paths, and the second shows the clock nets

with the greatest skew.

5.3.1 Static Timing Analysis Visualization

The first type of specific visualization we will consider is mapping the results of a timing

analysis run on to the VLSI layout. Typically, timing analysis log files are as large as

the layout databases themselves and difficult to comprehend in total. Designers usually

will examine the top offending paths in an attempt to notice a pattern or they will try to

discover an area of the design that is particularly troublesome by matching the text names

of the nets. Using the text names can be misleading because two nets that are textually

very similar may not be similar at all in the way that they are routed.
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(a) Histogram of violated setup
time paths

(b) Flash

Figure 5.5: The image on the right is the Flash design colored to only show the nets that
are part of paths that have setup time violations. The number and severity of the violation
is represented by the histogram on the left.

Back-annotating the timing analysis log file information onto the layout minimizes

these problems. Now, instead of coloring the rectangles based on their logical layer asso-

ciation, they are colored based upon their back-annotated value.

In Figure 5.5(b), we rasterize and color only those rectangles in the Flash design that

make up nets that are part of violated timing paths. In this visualization, each net is colored

based on the worst timing path of which it is a part. In Figure 5.5(a), a histogram of all

the violated paths is shown. The Flash design had a target clock frequency of 100MHz.

The histogram shows the timing of all 4659 (out of 85201) nets that have violated the

10ns period. Three visualization techniques are used to encode the information to make it

intuitive to understand.
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First, the paths with the worst timing have been colored pure red while the least violated

have been rendered in pure blue. The color of intermediate violators has been linearly

interpolated between red and blue based on the amount of the violation. The blue/red

color scheme gives immediate meaning to the paths and allows a designers to quickly

digest meaning and discern patterns. Visualization theorists call this type of color scheme

sequential[Brewer, 1994] since the data has an ordering. Contrast this to thequalitative

coloring scheme of a regular layout where no importance is implied by the colors chosen

for the individual layers.

Second, the minimum thickness of the rectangles has been increased to a minimum

overall value that is additionally scaled thicker based on the amount of violation. The

largest violators are rendered with thicker rectangles, causing them to stand out. In this

visualization, the minimum rectangle dimension is 0.25 pixels for paths that are barely

violated while the max violators are rendered as 2.0 pixels wide.

Lastly, the most violated paths are rasterized to appear on top of other less violated

paths. This is an additional measure to ensure that the biggest violators stand out the most.

The combination of the histogram and the visualization shown in Figure 5.5 gives a

powerful view of the setup-timing violations of the Flash design. The histogram shows

that there is no long tail of outliers, as a designer would hope to see, because it would

indicate that fixing a few paths would speed up the entire design. (This is because this

example shows the final timing of the Flash design after all possible timing optimizations

had been performed.) The visualization itself shows dramatically where the timing hot-

spots are located over the surface of design. In the lower right corner, we can see a large

number of bright red wires which happens to indicate a timing problem between an internal

register file and a computation core.

Without the color or thickness encodings, the visualization loses meaning and becomes

more difficult to interpret. Consider Figure 5.6.

In Figure 5.6(a), the nets are rasterized at their natural thickness without any minimum

value, making them difficult to discern. In Figure 5.6(b), the nets have minimum thickness,

but they have all been colored identically making it impossible to tell where the biggest

violators are located.
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(a) No minimum thickness encoding (b) No color encoding

Figure 5.6: The image on the left removes the minimum thickness encoding from Fig-
ure 5.5(b), while the image on the right shows the visualization without color. Both im-
ages are difficult to interpret without the data encoding.

5.3.2 Clock Skew Visualization

Figure 5.7 colors the paths of the clock tree in the Flash design to show their delay from the

main clock driver to the net that drives the clocked elements. In contrast to thesequential

color scheme we used in the timing analysis visualization, here we use adivergingcolor

scheme to highlight the end values the worst, with the central value most desired.

Figure 5.7(a) shows that while the majority of the 1293 clock nets are bunched around

a median value, some outliers are causing the majority of nets to be skewed towards the

lower bound (red). This makes Figure 5.7(b) useless since almost all the nets are various

shades of red. The histogram is interactive, however, allowing us to filter out the highest

nets in the histogram so that it is possible to separate the bunch at the bottom. The result

of that filtering is shown in Figure 5.8.

Once we have determined that the 9 nets filtered out are unimportant or erroneous for

Flash (and in fact they are), we can look to Figure 5.8(b) and see that the worst skew
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(a) Histogram of clock skew de-
lay

(b) Flash

Figure 5.7: The clock skew delays of the Flash design are represented. Because a small
number of outliers make the majority of the paths located closer to the histogram’s edge,
the meaning of the visualization is obscuring because most of the paths are colored mostly
red.

in the Flash design is in the lower left and upper right corners and the global skew is

approximately 420ps.

5.4 Data Density Visualization

Our last example is a visualization of wire density in the Flash design. This visualization is

different from the others in that the layout information is aggregated in a very non-photo-

realistic manner. Here, we will show how the density of particular metal layers varies

across the die.
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(a) Histogram of clock skew de-
lay

(b) Flash

Figure 5.8: The clock skew delays of the Flash design are represented. By filtering outlier
datapoints, a better picture of global clock skew emerges.

Typically, placement and wire routing is run multiple times depending on the quality

of results. In order to determine how successful a particular placement or routing run has

been, it is useful to see any potential hot-spots of cell or wire congestion.

Figure 5.9 shows the Flash design overlaid with a density map of metal layers 2 and

3. To construct the visualization, a grid is created over the design that corresponds to the

routing channel dimension of the design. For Flash, this corresponds to a 1024×1024 grid.

Then, the number of metal 2 and 3 wires that cross each grid is counted. Finally, to capture

the averaged effect of wire density over an area, a 2-D convolution kernel is run over the

grid of data. The width of kernel can be varied to affect the amount of averaging that takes

place. The result of using a kernel width of 15 is shown in Figure 5.9(a). The areas of
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(a) Flash metal layers 2 & 3 density (b) Flash metal layers 2 & 3 filtered density

Figure 5.9: The image on the left shows the complete density of metal layers 2 & 3 in
the Flash design. The image on the right shows the same data but filtered to highlight the
areas of highest density.

brightest white reflect the highest wire density and the areas most transparent are the least

dense. To further highlight the areas of high density, Figure 5.9(b) shows the bottom 2/3

of the data filtered out. Now it is very easy to identify the areas of the design with the

highest wire density.

The data density visualization is unique in this chapter because it is the only visualiza-

tion where the data displayed does not directly correspond to layout features. Also, it is the

only visualization where the data does not increase in resolution as the viewpoint zooms in

since the number of elements in the grid is constant.

We show the data density visualization as an example of using the chipmap infrastruc-

ture to make more apparent information that is secondarily related to the actual layout.



Chapter 6

Results

This chapter evaluates the techniques described in Chapters 3 and 4 along three dimen-

sions – image quality, performance, and memory footprint. We begin by providing a brief

overview of how the system was implemented, what hardware was used, and the other lay-

out viewers to which it will be compared. Section 6.2 then examines at image quality in

more detail, providing both quantitative and qualitative results. Section 6.3 compares our

implementation’s rendering speed under various conditions against a state-of-the-art com-

mercial layout editor. Lastly, in Section 6.4, the memory footprint of our implementation

is compared against the same commercial layout editor.

6.1 Implementation

A demonstration program called “ChipMap” was created. The Magic Layout System was

used as the source code base to read and store the layout data; its user-interface was then

modified using a combination of C and C++ and the OpenGL API for graphics rendering.

ChipMap was run on two test systems. One system was a Dimension 8200 PC from

Dell Computers[Dell, 2001] running the Redhat Linux 7.2[Redhat, 2002] operating sys-

tem. It had a 1.8 GHz Pentium 4[Intel, 2000b] processor with 1 GB of PC800 RDRAM

memory[Rambus, 2000] and a Geforce4 Ti 4600[Nvidia, 2002] graphics adapter. The

second system was a SunBlade 2000 workstation from Sun Microsystems[Sun, 2002]

running Sun’s Solaris 8 operating system. It had two 1050 MHz Ultrasparc III processors
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with 8 GB of memory and an XVR-1000 graphics adapter. In one test concerning multiple

processors, a four processor Sun Microsystems 400MHz UltraSparc II system with 2 GB

of memory was used. This use is noted.

Comparisons were made between ChipMap running in different configurations and also

against the following systems:

Cadence Design Systems’ Virtuoso[Cadence, 2002b] (v4.4.6) Virtuoso is currently the

most popular and widely-used VLSI layout editor and we compare to it to relate real-

world performance. Virtuoso was configured to always draw filled rectangles and to

have no threshold for discarding small rectangles. This best matches the work that

ChipMap performs when it renders a layout. Virtuoso uses the X11 graphics library

to render layouts.

Magic Magic and ChipMap share a common code base for storing the layout database. We

include Magic in our comparisons to eliminate this factor as a variable. Similarly to

Virtuoso, Magic also uses X11 to draw layouts.

OpenGL Finally, we compare ChipMap configured to draw all rectangles individually

with OpenGL. OpenGL rectangle rendering is different than X11 rendering in that

drawing in an anti-aliased fashion is possible. To achieve this, OpenGL was config-

ured to haveGL POLYGON SMOOTH enabled and to use the blending factorsGL SRC-

ALPHA SATURATE andGL ONE. We compare against OpenGL to see how an explicitly

hardware optimized path to draw anti-aliased rectangles compares against ChipMap.

All tests were run on both the PC and Sun systems where this was possible. The

exceptions were that no multiple processor tests were run on the PC since it has only a

single processor. Also, the comparisons with Cadence’s Virtuoso were only run on the Sun

workstation because Cadence’s software is not supported on a PC. The data given in this

chapter does not differentiate between runs that came from the PC or the Sun because both

machines showed similar relative performance numbers.

All benchmarks were run using the three example designs introduced in Section 2.2 on

Page 18.
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6.2 Image Quality Comparison

To measure image quality, a rigorously created “perfect” image was generated using an

algorithm that is approximately 50 times slower than the image generation techniques de-

scribed in Chapter 4, but which results in images containing no visible artifacts. To do this,

the “perfect” algorithm generates a pixel value by computing an exhaustive visibility test

for each rectangle that intersects that pixel. No approximations are done.

6.2.1 Formal Image Quality Comparison

To formally compare the quality between the perfect images and those created by other

methods, each pixel error is individually computed and then the Root Mean Square (RMS)

error of all pixels errors is computed. Each pixel error,E, is found with equation 6.1:

E =
|R−R′|+ |G−G′|+ |B−B′|

3
(6.1)

where RGB is the color of a pixel in the perfect image and R’G’B’ is the corresponding

pixel in the test image. The RMS error is given by equation 6.2:

RMS=

√
∑E2

N
(6.2)

whereN is the number of pixels that were compared. Pixels from the two images that

match the background color exactly are not used in the comparisons.

We conducted comparisons rendering the three example designs in three ways - Chip-

Map native rendering, X11 rendering emulation, and OpenGL rendering. Each resulting

image was a full-screen view of each design on a monitor with 1600× 1200 resolution.

X11 rendering emulates the way in which Virtuoso and Magic draw layouts. When these

systems draw rectangles using the X11 system, rectangles are guaranteed to be at least one

pixel on the display. Table 6.1 gives the RMS error results of the comparisons.

The ChipMap images are the closest match to the perfect images. The OpenGL anti-

aliased images show larger discrepancies primarily because only one assumption of de-

pendent overlap was made when blending fragments together. Section 4.2 explained how
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Databuffer SUBlock Flash
ChipMap 2.1% 1.9% 1.7%
OpenGL Anti-aliased 9.3% 6.5% 17.2%
X11 Emulation 12.1% 11.7% 38.0%

Table 6.1: RMS error between the “perfect” test image and images generated via three
other methods for the three example designs.

different assumptions were necessary for different and same-layer rectangles for accurate

compositing to be achieved. The X11 emulation shows the biggest difference from the per-

fect images because all rectangles are forced to be at least one pixel on the display, causing

massive errors.

Keep in mind that an error of only 33% would result if just one color of the RGB pixel

were 100% different while the other two channels matched identically. The only way to

measure 100% error overall would be to compare all white pixels to all black pixels and

that two randomly generated images would have, on average, an error of 33%.

The images for the designs are shown in Figures 6.1 and 6.2. The Databuffer has been

placed in context inside the Flash design to save space. While the differences between

the perfect image and the ChipMap image are not easily discernible, the errors between

the OpenGL rendering method and the X11 emulated method are severe enough to be

seen easily. Figure 6.1(c), showing an image of the Flash and Databuffer designs using

OpenGL, may appear to be “sharper” than both the perfect image and the ChipMap image,

but the distinct lines seen in the image are the result of systematic rounding errors that have

caused an evenly spaced number of wires to appear as lines.

6.2.2 Ad-hoc Image Quality Comparison

Performing actual image comparisons between ChipMap and currently existing tools is

difficult on a pixel by pixel basis because lining up comparable images exactly is almost

impossible. This is why, in the previous section, the formal comparisons were done be-

tween images each generated by our implementation. An ad-hoc comparison can be done

however by comparing screenshots. We compare images created with Virtuoso and Magic

against the perfect image shown in Figures 6.1(a) and 6.2(a). All of the images in Fig-

ure 6.3 show the same visual artifacts as those seen in Figures 6.1(d) and 6.2(d).
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(a) Perfect (b) ChipMap

(c) OpenGL anti-aliased rectangles (d) X11 emulated one pixel rectangles

Figure 6.1: Screenshots of the Flash and Databuffer designs. The Databuffer design is
shown instantiated in the Flash design.
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(a) Perfect (b) ChipMap

(c) OpenGL anti-aliased rectangles (d) X11 emulated one pixel rectangles

Figure 6.2: Screenshots of the SUBlock design.
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(a) Virtuoso rendering Flash (b) Magic rendering Flash

(c) Virtuoso rendering SUBlock (d) Magic rendering SUBlock

Figure 6.3: Screenshots of Flash, SUBlock and Databuffer designs rendered by Virtuoso
and Magic.
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Databuffer SUBlock Flash
ChipMap 1.0 1.0 1.0
Virtuoso 1.3 1.4 1.2
OpenGL 1.3 1.5 1.6
Magic 1.8 2.1 2.7

Table 6.2: ChipMap, configured with no hierarchy cache and running on a single proces-
sor, rendering times versus OpenGL, Virtuoso and Magic. All times have been normalized
so that ChipMap’s time is 1.0.

6.3 Rendering Speed Comparisons

We now examine how quickly our implementation can create an image under various con-

ditions. We start with the design already loaded into memory and then measure how long

it takes to render the entire design once in a window the size of the display at a resolution

of 1600×1200.

We begin by comparing ChipMap in an unaccelerated configuration, with no hierarchy

cache and running on a single processor. Then we introduce both optimizations to see how

they affect performance.

6.3.1 Unaccelerated Rendering Times

Table 6.2 shows the rendering times for the three designs, comparing ChipMap configured

with no hierarchy cache on a single processor to OpenGL, Virtuoso and Magic. All times

have been normalized so that ChipMap’s time is 1.0.

Table 6.2 shows ChipMap to be comparable to, or slightly faster than, to both OpenGL

and Virtuoso and for all three systems to be somewhat faster than Magic. The disparity

between Magic and the other systems is probably due to the particularly inefficient way that

Magic renders a design, making multiple passes through the database for each rectangle1.

The message from Table 6.2 is that ChipMap’s implementation is reasonable since it

performs slightly faster than Virtuoso, the standard in commercial layout editors, when

drawing the same number of rectangles.

1In Magic, each rectangle’s appearance is the sum of any number ofstyles. A pass is made through the
database for each style.
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Databuffer SUBlock Flash
OpenGL - 32 MB VA cache 0.17 0.38 1.4
ChipMap - 32 MB hier. cache 0.26 0.34 0.8
ChipMap - no hier. cache 1.0 1.0 1.0
OpenGL - no VA cache 1.3 1.5 1.6

Table 6.3: Normalized rendering times using a 32 MB hierarchy cache for ChipMap and
a 32 MB vertex array cache for OpenGL versus using no caches at all.

6.3.2 Hierarchy Cache Rendering Times

The first acceleration structure we benchmark is enabling a hierarchy cache of 32 MB

for both ChipMap and OpenGL. The OpenGL runs were configured with a 32 MB vertex

array cache (1 million equivalent rectangles), allowing OpenGL to take advantage of design

hierarchy. Table 6.3 shows the results, with ChipMap’s time without a hierarchy cache is

normalized to 1.0. OpenGL’s times with its vertex array cache disabled are duplicated from

the previous table for comparison.

As we would expect, the design with the most hierarchy, Databuffer, shows the largest

benefit from the hierarchy cache, almost a 4× speed-up with ChipMap. Next, SUBlock,

with less hierarchy, shows a speed-up of about 3×, while Flash, the design with the least

hierarchy, only shows a speed-up of about 20%.

Note that OpenGL does substantiallybetter (6× versus 4×) than ChipMap for the

Databuffer design. This is because 32 MB is enough vertex array memory to fit theentire

design in a vertex array. When this occurs, rendering speed is limited by the rasterization

rate of the hardware. For SUBlock, the vertex array data makes OpenGL nearly as fast

as ChipMap, but more vertex array memory is needed to become rasterization limited. For

the Flash design however, 32 MB is not sufficient to contain a large enough portion of

the database to improve its time significantly. It is interesting to note that in the case of

the Databuffer, ChipMap, with its 32 MB hierarchy cache is nearly as fast as the fully

accelerated, rasterization-limited OpenGL configuration.

Varying Hierarchy Cache Size

Figure 6.4 shows how the speed-up varies given different hierarchy cache sizes for the

three designs. A cache size of zero bytes corresponds to 1.0, or no speed-up. Keep in mind
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Figure 6.4: The size of the hierarchy cache is varied to show its effect on rendering speed-
up.

that unlike all the other tables in this section, Figure 6.4 plotsspeed-up, not time, so higher

is better in this figure. The cache size is varied from zero up to 512 MB. The SUBlock

design shows cache effectiveness rolling off at about 32 MB while the Databuffer really

flattens out at about 64 MB although the majority of the speed-up occurs also by 32 MB.

Databuffer, being more hierarchical, shows a steeper slope and a higher final value than

SU Block, while Flash shows little speed-up with larger cache sizes since it contains little

hierarchy to begin with.

Figure 6.4 generally matches the shape of the curve in Figure 4.7, that is, most of the

speed-up possible can be obtained with a small amount of memory when compared to the

amount of memory that would be required to pre-rasterizeall sub-designs.

6.3.3 Parallelized Rendering Times

In Section 3.5 it was claimed that our chipmap rendering architecture allowed for an ef-

ficient parallel implementation. In this section, we put that to the test by rendering each
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Databuffer SUBlock Flash
4 processors 0.26 0.27 0.29
2 processors 0.51 0.51 0.51
1 processor 1.00 1.00 1.00

Table 6.4: Rendering times on machines with multiple processors.

Databuffer SUBlock Flash
ChipMap - 4 processors 0.26 0.27 0.29
ChipMap - 2 processors 0.51 0.51 0.51
ChipMap - 1 processor 1.0 1.0 1.0
ChipMap - no hier. cache 3.8 2.9 1.3
Virtuoso 6.4 3.8 1.4
Magic 8.9 6.1 3.5

Table 6.5: Rendering times summary. Lower is better.

design on a 1, 2 and 4 processor machine. The times are shown in Table 6.4. For the

four processor case, ChipMap was run on a 4× Sun Microsystems 400MHz Ultrasparc II

processor system with 2 GB of memory. The speed-up was computed by comparing this

time to the time using only a single processor on this system. Table 6.4 shows nearly ideal

speed-up for the two processor and four processor case for the Databuffer design. The

speed-up falls off a bit in the four processor case for SUBlock and Flash because of load

imbalances. With Flash this is especially evident, as the imbalance created by the missing

data of the internal memories results in an uneven distribution of work.

6.3.4 Rendering Speed Comparison Summary

The previous three sections have compared speed-ups and rendering times of ChipMap

against differing hierarchy cache sizes, processors and other programs. Let us put all the

information together to see the combined effects of our optimizations.

Table 6.5 shows the information from Tables 6.2, 6.3, and 6.4. All times have been

normalized such that the configuration of ChipMap on 1 processor with a 32 MB hierarchy

cache is 1.0. Table 6.5 shows that ChipMap’s acceleration structures have a pronounced
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Databuffer SUBlock Flash
ChipMap 0.004 s 0.004 s 0.003 s
Virtuoso 9 s 12 s 5 s

Table 6.6: Full design view refresh times in seconds for ChipMap and Virtuoso.

combined effect on rendering speed. Running on four processors with a 32 MB hierar-

chy cache is between 5× and 25× faster than Virtuoso depending on the design, making

ChipMap the fastest way to render a VLSI layout that we are aware of.

6.3.5 Refresh Speed Comparison

The previous section focused on rendering the full design view once. None of the data

tested the time to refresh the display given an incremental change in viewpoint. Because

ChipMap explicitly saves the display with textures, the time to refresh the display when the

viewpoint changes incrementally is close to zero2. However, all other known VLSI layout

editors/viewers have to completely redraw the entire design for even the smallest changes

in viewpoint. This behavior is captured in Table 6.6, which shows the refresh time for each

design in seconds. The times shown are not normalized.

As Table 6.6 shows, any type of fluid interaction with Virtuoso would be impossible at

a full design view.

6.4 Memory Usage Comparison

The last performance metric we compare is memory usage. As Table 6.7 shows, the mem-

ory cost of ChipMap is dominated by the texture tile, hierarchy and the top pyramid caches.

The sizes of the texture tile and top pyramid caches are not directly related to design size

but more related to the resolution of the display. This design independence allows the to-

tal cost of ChipMap to remain small. The hierarchy cache size can be tuned to trade off

rendering speed-up for memory footprint, although a modest size like 32 MB is usually

sufficient.
2This time is dependent on the fill-rate of the GPU and can possibly be bounded by the vertical refresh

rate of the monitor. On the Linux test system, this time varied between 3 ms and 11 ms.
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Databuffer SUBlock Flash
Texture Tile Cache 64 M 64 M 64 M
Hierarchy Cache 32 M 32 M 32 M
Top Pyramid Cache 16 M 23 M 12 M
Design Pyramid 1 M 4 M 10 M
ChipMap Total 117 M 125 M 119 M
OpenGL 32 M 32 M 32 M
Virtuoso 0? 0? 0?

Table 6.7: Memory usage in MBs for ChipMap, OpenGL with 32 MB of vertex array data
and Virtuoso. The ChipMap statistics are broken down further in the top part of the table.

The memory usage for OpenGL and Virtuoso are also shown. Since Virtuoso is pro-

prietary, it is impossible to know exactly the memory cost of rendering a design, but a first

order guess would be that little or no extra resources are expended based on the size of the

process footprint we observe while Virtuoso is running. The OpenGL memory footprint is

also modest and the amount of memory that one could devote to vertex arrays is scalable

and tunable in the same way as ChipMap’s hierarchy cache size.

6.5 Summary

This chapter has presented results showing that ChipMap can render layouts as fast as or

faster than any other system that we are aware of. Happily, this speed does not come at

the expense of image quality. In fact, ChipMap’s image quality is also the most accurate

of any interactive system that we are aware of. Finally, ChipMap’s architecture allows

it to redisplay a layout in essentially zero time, giving the user the most fluid interaction

of any system that we know about. The cost of ChipMap’s enhancements is a modest

amount of memory which is generally independent of design size and dependent on display

resolution.
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Conclusions

This thesis has focused on improving large dataset visualization in VLSI design. We be-

lieve that our primary accomplishment was in solving the “layout redraw” problem that

has plagued designers over the last decade. Secondarily, we demonstrated how the tech-

niques we developed to help redraw could also be used help visualize other types of design

information.

With current methods, as the designer attempts to view a larger and larger section of a

VLSI layout, two undesirable things occur: thetimethat it takes to create the visualization

is so great, perhaps dozens of seconds, that interactivity is impossible, and theaccuracyof

the visualization once it has been created is very poor. Both of these problems adversely ef-

fect designer productivity. By drawing on advancements in the field of computer graphics,

we were able to create methods that address both of these problems.

In order to solve the redisplay speed problem, we defined a structure called a chipmap,

which is an extension of mipmaps used in graphics, that formalized a way to view the

tremendous amounts of data in large VLSI layouts, and we used a rendering architecture

that allowed the viewpoint to change as quickly as the user desired. A key point is that we

did not fundamentally change the initial time it takes to draw a layout. In fact, our meth-

ods are approximately equivalent to current methods in drawing a layout for the first time.

What we did accomplish was to formally specify a way to re-use already rendered parts

of the image given incremental viewpoint changes. Then, we decoupled the drawing of

91
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the display from the creation of the displayable image with multi-threading so that view-

point change speed could be unconstrained. Ultimately, an implementation using these

techniques can redraw very efficiently because graphics hardware exists to accelerate the

process.

To solve image accuracy, we also looked to the field of computer graphics. We used

unweighted area sampling with a box filter as our rasterizing technique to anti-alias lay-

out features, and we used standard computer graphics compositing techniques to combine

those rasterized fragments. To increase accuracy even more, we exploited the fact that the

relationship between rectangles from the same layer is known beforehand. Along the way

in producing the image data we also found ways that the process could be further sped up.

One way was to pre-rasterize hierarchical subcells so that they could be copied in directly

during the image creating process; the other way relied upon multiple processors to create

the image in parallel.

Using the chipmap architecture has a number of advantages. First, we are able to

produce accurate images with a minimal memory overhead. Basically, the image data is

produced directly from the design database each time. We were never forced to expand

the layout to its full size image, even temporarily, which we showed could be many orders

of magnitude larger than the layout in its canonical state. Another way to think about it

is that the layout database is a compressed form of the layout image. Because we only

decompress the visible portion, the amount of memory and computation required is always

the minimum.

Our architecture is also very amenable to parallelization. This is possible because all of

the rasterization takes place on the CPU, not the GPU. Current methods are fundamentally

different because they pass off all rendering to the GPU, which becomes the rendering

bottleneck, making an efficient parallel approach impossible since only one GPU exists. At

the outset of this research, this parallelizing property was not something that was sought,

but we believe it is an advantage to our approach. In fact, many CAD tools users develop

on large compute machines which have 8, 16, or 32 processors, making our approach that

much more attractive.
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Another advantage of having the rasterization take place on the CPU is that efficient

display over a possibly slow network is feasible. This is because the bandwidth of infor-

mation sent to the GPU is determined not by the number of objects to draw, but by screen

resolution, and also because image re-use even further reduces the bandwidth requirement.

This enables the display of the largest layouts in situations where it previously would have

been so slow as to be impractical.

Our implementation is solely a data viewer, no editing is possible. Extending this

work to include editing, which is essential for a commercial tool, would not pose any

fundamental new problems. We have stated that the time it takes to create the layout

initially is about the same for our approach as it is for current methods. Since this is true,

then the time to create any smaller part of the image initially is also the same. Since editing

is about incrementally re-creating small parts of the display, we believe that our approach

could support editing at least as well as current methods.

Besides solving the layout redraw problem, we also demonstrated a glimpse of what

might be possible in the future with this technology. We showed how exaggerated features,

texture overlays, and transparency could create new visualizations that convey powerful

messages to the user. Ultimately, we believe that the usefulness of our research lies in this

direction. In the future, we imagine a visualization environment for the designer which is

rich in its ability to view all types of VLSI data, from high level code, to global routing, to

waveforms, to manufacturing errors, and to layout.

At the outset of our research, the vision was: how can visualization help VLSI design?

From that question, the vision was narrowed to a single application which seemed the most

natural since it was a compelling problem with an equally compelling solution. We would

like to address the question again: how can visualization help VLSI design?

We think the field is wide open. The reality is that the systems being sold by the major

EDA vendors have visual interfaces deeply rooted in X11 and legacy display methods and

it is generally a point of major irritation for its users.

We hope that readers find chipmap not only a compelling application on its own, but

also an indication of the myriad things that are possible when you combine the fields of

computer graphics, visualization, and VLSI design.
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