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Abstract

 

This thesis describes the design and provides a detailed analysis of Hydra, a chip multiprocessor

(CMP) made up of four normal MIPS cores, each with their own pairs of primary data caches.  The

cores are connected to each other, a shared, on-chip secondary cache, and a high-speed off-chip

DRAM interface by a pair of wide, pipelined buses that are specialized to support reads and writes,

with relatively simple cache coherency protocols.  The basic design supports interprocessor com-

munication latencies on the order of 10 cycles, using the shared secondary cache, allowing a much

wider variety of programs to be parallelized than is possible with a conventional, multichip multi-

processor.  Our simulations show that such a design allows excellent speedup on most matrix-

intensive floating point and multiprogrammed applications, but achieves speedup only comparable

to a superscalar processor of similar area, at best, on the large family of integer applications that

can really take advantage of the low communication latencies provided.

In order to make execution of integer programs easier on Hydra, we examined the possibility of

adding thread-level speculation (TLS) support to Hydra.  This is a mechanism in which processors

are enhanced so that they can attempt to execute threads from a sequential program in parallel

without knowing in advance whether the threads are parallel or not.  The speculation hardware

then monitors data produced and consumed by the different threads to ensure that no thread

attempts to use data too early, before it is actually produced.  If such an attempt is made, the

offending thread is restarted.  In this manner, threads may be generated from existing program

constructs such as loops or subroutines almost automatically.  Such support can be added to Hydra

simply, with a few extra bits attached to the primary caches and some speculation buffers attached

to the shared secondary cache.  In practice, we found that most of our integer applications could be

sped up to a level comparable to or better than an equal-area superscalar processor or our hand-

parallelized benchmarks — and with very little programmer effort.  However, we usually had to

apply several manual optimization techniques to the code to achieve this speedup.
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1 Introduction

 

At the dawn of the twenty-first century, the potential for further microprocessor performance

enhancement using conventional uniprocessor designs is quickly dwindling away.  New designs

that simply add refinements to the existing well-studied art of conventional wide-issue superscalar

processor cores are able to achieve higher performance, but the design costs are becoming more

and more prohibitive even as the performance gains realizable from this design effort are becom-

ing increasingly tiny.  This is leading processor designers towards the use of new design paradigms

that may unlock the way to higher performance processors of the future.  One of the most promis-

ing of these design paradigms is explored in this thesis: the chip multiprocessor, or CMP. 

 

1.1 Chip Multiprocessors: The Future of Microprocessors

 

As time passes, there is one reliable trend in electrical engineering: process engineers will con-

tinue to pack larger numbers of faster transistors on chips that can be mass-produced economi-

cally.  This trend, embodied in Moore’s Law, allows designers to use the enlarged transistor

budgets to build larger and more complex microprocessors.  One of the largest jobs of computer

architects is to stay on top of this progress and design microprocessor architectures that utilize the

current transistor budgets and leading-edge circuit design styles in ways that extract the most per-

formance possible from economically sized-chips [15].

As this trend continues, design problems caused by the exceedingly large number of transistors are

forcing computer architects to look at different alternatives to the conventional single, monolithic

processor on a chip.  Table 1-1 examines five leading contenders to succeed the current generations

of small-scale superscalar uniprocessors that dominate the market today: large-scale superscalar

uniprocessors [16], VLIW uniprocessors [17], simultaneously multithreaded processor cores [18],

chip multiprocessors, and memory-processor integration [19].
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To address these issues, we have proposed [6][7] that future processor design break away from the

default option of simply making progressively larger uniprocessors and instead implement more

than one processor on each chip, adopting the chip multiprocessor as the new architecture of

choice.  The key design issues that led us to this decision are discussed in the in the remainder of

this section, and our proposed design is described in Part I of this thesis.

 

1.1.1 Wire Delays

 

As CMOS gates become faster and chips become physically larger, the delay caused by intercon-

nect between gates is becoming more significant [20].  We are just reaching the point at which it is

not possible to transmit signals across entire chips within a clock cycle in leading-edge processor

designs.  A long wire in a delay path can force a designer of one of these chips to limit the amount

of logic in that path.  These limitations will make the design of large uniprocessors that occupy

entire chips extremely difficult in the near future, since the chips will have to be carefully floor-

planned to keep units that need to communicate quickly close together.  When this is not possible,

 

Table 1-1:

 

 An overview of five potential future microprocessor architectures.

 

Architecture Pros Cons

 

Large-scale Supersca-
lar Uniprocessors

Current software does not need to be 
modified to take advantage of 
increasing parallelism, since it is 
extracted at the instruction level.

Circuitry complexity and design 
effort is exponentially increasing.  
Only a limited amount of ILP is 
available.

VLIW Uniprocessors Control complexity is moved to the 
compiler, which can schedule 
instructions intelligently.

Datapath complexity is still increas-
ing.  Programs must be recompiled 
for each CPU version.

Simultaneous Multi-
threading

Allows multiple threads of execution 
to make optimal use of a large super-
scalar core.

Circuit complexity and design effort 
is still exponentially increasing, since 
the core is still superscalar.

Hydra: Small-Scale MP 
on a Chip

Allows reuse of small CPU designs. 
Can look like a slower uniprocessor 
or a fast MP, as software allows.

Software must be parallelized, or a 
small speed penalty will occur due to 
simple uniprocessors.

Processor-Memory 
Integration

Allows reuse of simple CPU designs 
at a higher performance point, since 
memory delays are reduced.  Makes 
the design of the memory hierarchy 
much easier.

Software must be parallelized into 
small chunks that fit on each CPU.  
Memory configuration is inflexible.  
Putting memory & logic together 
compromises performance of both.
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many long wires will have to be buffered to work over multiple clock cycles in order to avoid

lengthening the cycle time.  However, a CMP can be designed so that each of its small processors

takes up only a relatively small area on a large processor chip, minimizing the length of its wires

and simplifying the design of critical paths.  Only the more infrequently-used, and therefore less

critical, wires connecting between the processors need to be long.

 

1.1.2 Fine-Grain Thread-Level Parallelism Extraction

 

Large-scale and small-scale multiprocessors currently dominate the market in handling scientific

computing applications.  These systems have been able to obtain significant speedups with large

scientific programs that contain a large amount of inherent parallelism.  This parallelism can often

be found and exploited by vectorizing or parallelizing compilers such as the SUIF compiler [21]

developed here at Stanford.  These codes work efficiently on current MP systems by breaking

down the execution into a number of threads that can work fairly autonomously, communicating

only every few thousand instructions over the duration of the program.  The current MPs are also

good at exploiting parallelism at the OS level, when different processes are being scheduled to run

simultaneously on different processors.  In this case, the only communication between threads of

control is occurring in the OS itself.

As Figure 1-1 indicates, however, there is a large amount of parallelism that cannot be extracted by

current MPs due to their long communication delays.  Current MPs typically must either run pro-

grams with only fine-grained parallelism on a single processor, thereby eliminating the advantage

of having multiple CPUs.  When one tries to use their processors together to exploit fine-grained

parallelism, they typically exhibit a 

 

slowdown

 

, instead of a speedup, due to the excessive amount

of time wasted synchronizing the processors.  A CMP, on the other hand, can make the interproces-

sor synchronization process much more quick and efficient, so less time is wasted on each syn-

chronization and more time can be spent on computation.  Having all processors on a single chip

lowers the synchronization times so that communication even every 10-100 instructions in parallel
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code will be feasible while still obtaining a speedup, due to the relatively fast interprocessor com-

munication times illustrated in Figure 1-2.  This vastly increases the opportunity for finding

thread-level parallelism, even on programs where it was once thought impossible.

This ability to extract parallelism using much smaller threads can allow a CMP to use thread-level

parallelism in new ways.  On conventional superscalar processors, additional transistors on chips

are primarily used to extract more low-level parallelism from programs. While some transistors are

used to build wider or more specialized datapath logic (i.e. switching from 32 to 64 bits or adding

special multimedia instructions), most are used to allow processors to extract greater amounts of

instruction level parallelism (ILP) by finding non-dependent instructions that occur near each other

in the original program code.  Unfortunately, there is only a finite amount of ILP present in any

particular sequence of instructions that is executed by the processor, since instructions from the

same sequence are typically closely related.  As a result, processors that use this technique are see-

ing diminishing returns as they attempt to execute larger numbers of instructions per clock cycle,

even as the logic required to process multiple instructions per clock cycle increases quadratically.

By using low-level thread-level parallelism instead of ILP, a CMP avoids this limitation by extract-

ing a completely different type of parallelism, but on a similar scale.  Of course, a CMP may also

attempt to extract small amounts of ILP within each of its individual processors, since some ILP is

just too fine to be extracted by threads.

 

1.1.3 Economy and Ease of Design

 

A side effect of the larger uniprocessors and multiprocessors being built today is that the design

complexity is increasing exponentially.  Designing and verifying a modern commercial micropro-

cessor is an exceedingly complex task.  As a result, designers are now looking for ways to simplify

their designs while still exploiting the full performance offered by the increasingly large dies and



 

Chapter 1: Introduction 5

 

more efficient MP communication that is available.  CMPs attack this problem in two ways: sim-

pler core designs and a simpler interconnection hardware.

While current microprocessors are being designed that utilize 200-400 mm

 

2

 

 of silicon area just for

the processor, each of a CMP’s processors can be designed to be an order of magnitude smaller —

and thereby much simpler.  Each of the individual processors is only comparable to a uniprocessor

from a generation or two ago, but while this means that these processors are easy to design, it does

not mean they are necessarily slow — even if they are just old cores pulled out of past designs.

Instead, increased gate speeds allow these small, simple processors to run at very high clock rates

without excessive amounts of design effort.  In fact, they can often be clocked faster than a large,

complex processor in a similar process technology [61].  This clocking advantage can tend to off-

 

Figure 1-1: 
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set much of the advantage offered by ILP extraction in a complex processor with critical paths that

are harder to optimize.  On top of the basic design size advantage, design costs can be further

amortized in a CMP by using the same cores for a longer period of time.  As technology scales, the

same cores can be re-used over again, but in larger numbers. 

Similarly, large uniprocessors are taxing the ability of circuit designers to actually build circuits

that are necessary to extract parallelism from the instruction stream in the increasingly short cycle

times.  Central components of many of these designs are vastly multiported register files that are

becoming more and more difficult to design as uniprocessors attempt to issue many more instruc-

tions at once.  In addition, building large, multiported L1 caches that can be accessed quickly has

resulted in responses ranging from giving up and making a faster memory hierarchy [22] to vastly

convoluted circuit design [23].  CMPs can easily avoid both of these problems by keeping the indi-

 

Figure 1-2: 

 

Comparison of interprocessor communication latency in a traditional multiprocessor 
and a CMP.

• Conventional, multi-chip MP (more than 100 cycles)

• Hydra (usually about 10 cycles)

CPU #1 CPU #2
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main memory
(50 or more 
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Read from 
main memory
(50 or more 

cycles)
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L2 Cache

Write to
L2 Cache
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cycles)

Read from
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vidual processors very simple, with only small, single-ported L1 caches.  By only attempting to

find parallelism between the CPUs, instead of within them, the number of complex, high-speed

functional unit interconnection structures is reduced considerably.  Instead, the processors execut-

ing threads in parallel on a CMP can communicate using only simple, relatively slow bus struc-

tures.  Such structures are much easier to design and implement, which helps reduce the

implementation time of a CMP.

 

1.2 Thread-Level Speculation: A Helpful Addition

 

Since a CMP addresses all of these potential problems in a straightforward, scalable manner, why

aren’t CMPs already common?  Only a couple of major processor designs, the IBM Power4 [24]

and Sun MAJC [25] have adopted these concepts in a wholehearted fashion.  One reason is that

integration densities are just reaching levels where these problems are becoming significant

enough to consider a paradigm shift in processor design.  The primary reason, however, is because

it is very difficult to convert today’s important uniprocessor programs into multiprocessor ones.

Conventional multiprocessor programming techniques typically require careful data layout in

memory to avoid conflicts between processors, minimization of data communication between pro-

cessors, and explicit synchronization at any point in a program where processors may actively

share data.  A CMP is much less sensitive to poor data layout and poor communication manage-

ment, since the interprocessor communication latencies are lower and bandwidths are higher.

However, sequential programs must still be explicitly broken into threads and synchronized prop-

erly.  Parallelizing compilers have only been partially successful at automatically handling these

tasks for programmers [26].  As a result, acceptance of multiprocessors has been slowed because

only a limited number of programmers have mastered the necessary programming techniques.  To

fully utilize a CMP, however, there needs to be a simple and effective way to parallelize even these

applications.  Hence, we explored the possibility of adding hardware support to our basic CMP

design to ease the parallelization process.
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A survey of some of the leading research in the field suggested that thread-level speculation might

help.  Tom Knight first proposed this process as a way of parallelizing high-level languages in the

1980’s [27].  His scheme proposed a very high-level system that could parallelize lisp code using a

technique similar to the subroutine speculation described in Section 5.1.2.  While impractical, it

set the theoretical groundwork for what was to follow.  At the same time, other researchers were

proposing designs of transactional memory systems to replace standard multiprocessor synchroni-

zation techniques or for use in transactional server applications, such as the design in [45].  These

systems added techniques for adding an “undo” function to memory systems for use when multi-

ple processors wrote to the same area of memory at once over a period of time, without resorting to

conventional explicit synchronization and critical code regions.  In the early 1990’s the Sohi group

at Wisconsin combined these ideas together into the first fully realized thread-level speculative

design, the Multiscalar processor [28].

Thread-level speculation takes the sequence of instructions run during an existing uniprocessor

program and arbitrarily breaks it into a sequenced group of threads that may be run in parallel on a

multiprocessor.  In order to ensure that correct program execution is maintained, hardware must

track all inter-thread dependencies.  When a true dependence violation is detected, the hardware

must ensure that the “later” thread in the sequence executes with the proper data by dynamically

discarding threads (or portions of threads) that have speculatively executed with the wrong data.

This is a considerably different mechanism from the one used to enforce dependencies on conven-

tional multiprocessors.  There, synchronization is inserted into threads that stalls a thread reading

data until after the correct value has been written. 

Speculation allows parallelization of a program into threads even without prior knowledge of

where true dependencies between threads may occur.  All threads simply run in parallel until a true

dependency is detected as the program is executing.  This greatly aids the parallelization of pro-
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grams because it eliminates the need for human programmers or compilers to find synchronization

points in programs statically at compile time or earlier, because all places where synchronization

might have been required are simply found dynamically when true dependencies actually occur.

As a result of this advantage, uniprocessor programs may be 

 

obliviously

 

 parallelized in a specula-

tive system.  While conventional parallel programmers must constantly worry about maintaining

program correctness, programmers parallelizing code for a speculative system can focus solely on

achieving maximum performance, since the speculative hardware will ensure that the parallelized

threads always perform the same computation as the original program. 

Since parallelization by speculation dynamically finds parallelism among program threads at runt-

ime, it does not need to be as conservative as conventional parallel code.  In many programs, there

are points within potential threads that 

 

may occasionally

 

 modify the data that other threads are

using and cause true dependencies, if certain conditions are met at runtime, but where dependen-

cies seldom if ever actually occur.  A speculative system may attempt to run these sorts of threads

in parallel anyway, and only back up the “later” thread and execute serially if and when a depen-

dency actually occurs.  On the other hand, a system dependent on synchronization must always

synchronize at any point where a dependency 

 

might

 

 occur, based on a static analysis of the pro-

gram, whether or not the dependency actually ever occurs at runtime.  Code that modifies data

objects through pointers in C programs are a frequent source of this problem within many integer

applications.  In these programs, a compiler (and sometimes even a programmer performing hand

parallelization) will typically have to assume that any later pointer reads may be dependent on the

latest write of data using a pointer, even if that is rarely or never the case.  As a result, a significant

amount of thread-level parallelism can be hidden by the way the uniprocessor code was written,

and therefore wasted as a compiler conservatively parallelizes a program.

It should be noted that speculation and synchronization are not mutually exclusive.  A program

with speculative threads can still perform synchronization around uses of dependent data, but this
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synchronization is 

 

optional

 

.  As a result, it is still possible for a programmer or feedback-driven

compiler to add synchronization into a speculatively parallelized program 

 

if

 

 that helps the program

execute faster.

 

1.3 Thesis Organization

 

Here at Stanford we have designed and tested the Hydra design, a prototype 4-core CMP design

using a simple, bus-based interprocessor communication scheme on the chip.  The design of Hydra

and its software, and studies done with them are discussed throughout the remainder of this thesis.

Chapter 2 is a brief description of the LESS simulator, our simplified version of the SimOS

machine simulator that we developed to test the design of Hydra, and particularly the design of

speculation.  The remainder of the thesis is grouped into two large sections.

The first part of this thesis, describing the “baseline” version of Hydra without speculation, con-

sists of Chapter 3 through Chapter 4.  Chapter 3 gives an introduction to the design of Hydra fol-

lowed by a full specification of the Hydra design.  After all of the parts of the design have been

fully described, we conclude this part with an analysis of simulations that tested key parts of the

baseline design in Chapter 4.

The second half of the thesis describes the enhancements to the Hydra design necessary to add

thread-level speculation support and the software APIs that must be used with this hardware.  The

beginning of Chapter 5 gives an in-depth introduction to the concepts necessary for understanding

thread-level speculation implementations.  Once the reader understands the needs of these imple-

mentations, the remainder of Chapter 5 can be read to get a full understanding of how speculation

has been implemented in Hydra.  Chapter 6 gives a full description of how to write speculative

software for Hydra and then optimize it.  Finally, this part of the thesis concludes with a detailed

performance evaluation of speculative threads on Hydra, showing both the strengths and weak-

nesses of the design.
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The thesis ends with a detailed set of conclusions in Chapter 8.

 

1.4 Thesis Contributions

 

This research has provided insight into the art of CMP design and practical implementations of

thread-level speculation.  The highlights are summarized below:

• Definition of the Hydra CMP design, a simple bus-based, quad MIPS CPU CMP.  Analysis of

this design has shown that the many design tradeoffs made to keep it inexpensive have gener-

ally been good choices.

• Definition of additions to the Hydra CMP design to support speculative thread-level specula-

tion with only a very small amount of additional hardware.

• Definition of two entire sets of software control handlers used to interface between user code

and the Hydra CMP while executing under speculation.

• Definition of a full speculative thread API with suggestions for how to enhance the perfor-

mance of many programs.

• Characterization of the performance of speculative threads on the Hydra CMP with different

software handlers and programming techniques used.

Finally, significant progress has been made towards the development of an FPGA-based prototype

of the Hydra chip that can be used for further hardware and software design efforts by future mem-

bers of the Hydra group.
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2 The LESS Simulator

 

As with previous efforts to develop fundamentally new ways to attach processors together in

unique ways, evaluation of the Hydra hardware design required significant simulation efforts to

test the newly-designed hardware structures before they could actually be implemented in hard-

ware — or even in an RTL.  Many simulators have been made in the past both at Stanford and else-

where.  Two prominent examples at Stanford are Tango-Lite, developed for the DASH project [1],

and SimOS [2], developed for the FLASH project.  A couple of prominent external simulators are

MINT [3] and SimpleScalar [4].  After surveying the field, we took some features from the existing

simulation environments and built a Hydra simulation environment that just contained the features

we needed to simulate the parts of the hardware interesting to us in an execution-driven manner.

Because of the distillation process that occurred, the simulator was dubbed “LESS” (for “Lance’s

Extremely Simple Simulator).  All results shown in later chapters of this thesis have been gener-

ated with various generations of LESS.

Early research that led to Hydra [5][6][7][8] was performed using modified versions of both MINT

and SimOS.  However, as we continued to add more sophisticated hardware structures to Hydra,

the modifications became increasingly difficult to maintain.  In particular, simulations with SimOS

required that we have our modifications be fully IRIX OS-compatible, and this compatibility

proved to be very difficult to achieve in practice.  As a result, it was much simpler to maintain a

system composed of the MIPSY processor core from SimOS surrounded by our own, simplified

memory system harness.  For our benchmarks of interest, system code execution time was not a

primary consideration, so LESS makes some compromise in this area in order to keep the simula-

tor itself simple while still being able to execute code containing the occasional 

 

SYSCALL

 

 instruc-

tion.  The remainder of this section describes the decisions made during the design of LESS to

keep it as simple as possible.



 

Chapter 2: The LESS Simulator 13

 

2.1 How LESS Runs

 

A programmer can use LESS with virtually any IRIX [9] program simply by changing the

“

 

main”

 

 routine of the program to “

 

mainX”

 

 and then linking the simulator in with the targeted

program.  The resulting single, large binary starts up a single simulated processor with its program

counter pointed at the beginning of the 

 

mainX

 

 routine.  Other simulated processors are maintained

in a dormant state until the program being simulated invokes them with special versions of the

 

fork

 

 system call.  Because the simulated program and the simulator are compiled together into a

single binary, they both share the same memory space, a feature unique to LESS.  A rough memory

map of the combined simulator / program combination running under IRIX 5.3 is given in Figure

2-1.

LESS simulates the execution of user code on one or several processors simultaneously by running

all stages of the MIPSY pipeline through one cycle’s worth of work for each processor, in turn.

After all active processors have been given a chance to execute for a single cycle, the hardware in

memory system is simulated for a cycle.  When this is done, the cycle repeats.  This alternating

execution-memory pattern results in a simple pipeline being formed, as illustrated in Figure 2-2.

As is indicated in the figure, this pipeline takes advantage of the branch-delay slot required by the

MIPS architecture, as branches are not resolved until the end of the EX stage of the pipeline.  In

the meantime, the instruction fetch of the instruction in the branch delay slot will already have

been initiated.  On the other hand, the structure of the pipeline makes load results available at the

“beginning” of the next instruction’s EX cycle, so the MIPS load delay slot is not absolutely neces-

sary.

 

2.2 System Call Handling

 

The primary reason why LESS uses its unusual combination memory map is to ease the handling

of system calls.  While LESS can execute all user-level code quite easily, including the code in

shared libraries such as 

 

printf

 

 and other 

 

libc

 

 routines, it is impossible for the user-level code
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Figure 2-1: 
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in LESS itself to fully emulate the instructions within a system call without simulating the entire

IRIX system, as is done in SimOS [2], or at least all key system calls, as in MINT [3] or SimOS-

Solo [2].  To avoid the complexity of significant system call emulation code, LESS simply per-

forms a context switch when a 

 

SYSCALL

 

 instruction is encountered by saving the LESS stack and

register set out to memory while bringing the simulated process’ register state and stack pointer

into the real processor’s registers.  The LESS simulator process is thereby swapped out, and the

simulated process is temporarily allowed to run natively for the duration of the SYSCALL.  As a

result, all I/O and other system operations may be executed by the simulated process just as if they

had occurred during the normal execution of the simulated program.  To the user, it looks just as if

the program was executing normally, albeit at a somewhat slower pace.

While this system is very flexible, and allows the simple simulation of a wide variety of system

calls, it does have its limitations.  First and foremost, no timing information about the time spent in
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the system call may normally be obtained.  As a result, the entire system call appears to happen

“instantaneously” in a single cycle to the simulated program, as far as statistics are concerned.

Hence, any program that involves a large amount of system time in its critical regions, such as a

server application, should probably not be simulated on LESS.  Since the benchmarks of interest to

us during most of this research had most of their system activity limited to their startup and shut-

down phases, we did not consider this to be a major liability.  Another problem is that a few critical

system calls like fork  cannot be simulated at all.  A fork  would normally just create a second

copy of the simulator, instead of a second process within the simulator, working on another of its

simulated processors.  As a result, code which uses this or similar UNIX system calls must be

adjusted to use LESS’s own version of fork  or different code altogether.  We found that finding

and adjusting these calls was usually a fairly trivial task.  Finally, we occasionally found that the

simulator and simulated program could interfere with each other, a problem that cropped up peri-

odically throughout our research.

2.3 Using the Real Machine to “Fast Forward”
Another use of LESS’s ability to context switch between the simulator and one of its simulated

processes is to speed execution of the simulated program.  We frequently found places in our

benchmarks where startup code that we were not interested in measuring took significant amounts

of time to simulate.  As execution of these regions was necessary before we could reach the criti-

cal, and therefore interesting, portions of the programs, we found it helpful to execute the startup

code on the real machine, in a manner analogous to how LESS already handled system calls.

While this process sounds complex, it is actually remarkably simple to use.  One just has to insert

a pair of special LESS “system calls” to tell the system when to drop into fast forward mode

(sys_goto_real() , or spec_goto_real()  if we happen to be running speculatively) and

when to come back out again (sys_goto_less(runningCPU, savedRegs) , where the

parameters are pointers to a pair of globals that LESS uses to restore itself to operation).  Between
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these function calls, all code in the program will be executed on the real machine.  They just need

to be carefully located in pairs wherever real-machine operation is desired, or runaway real-

machine operation may occur.

Like the execution of system calls, fast forward operation has some drawbacks.  Once again, it is

impossible to get simulation statistics during fast forwarding.  While the lack of timing statistics is

usually not a problem, since normally one only fast-forwards through uninteresting regions of the

program, the fact that the caches are not simulated can create some timing variations later during

simulation.  This is because the caches will not be as “warmed up” as they normally would.  Code

that takes advantage of special LESS functionality obviously cannot be sped up in this manner,

either.  This is also not much of a limitation because such code will probably be in the heart of the

critical region where simulation is desired.  The only real drawback is the fact that only one simu-

lated processor may be sped up at a time.  Any other simulated processors are effectively sus-

pended while one LESS process is running on the real machine.  As a result, if the process running

on the real machine ever requests data from one of the other simulated processors without switch-

ing back to LESS itself, the whole simulation will deadlock.  We avoided this hazard by carefully

checking our code to ensure that no multiprocessor synchronization routines were present within

any region under consideration for fast forward operation.
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3 The Base Hydra Design

This part of the thesis describes the baseline Hydra chip multiprocessor, a combination of four

MIPS processor cores on a single chip with a shared L2 cache array.  After a brief overview of the

Hydra design itself, this chapter offers a detailed specification of the baseline Hydra design.  The

chapter is organized so that descriptions of the various parts of the Hydra chip move outwards

from the modifications immediately surrounding the IDT cores to the new external interfaces

defined to flow off of the Hydra chip itself.

Because most of the complexity in the Hydra system is centered on the central buses and the con-

trollers that sequence accesses to those buses, this portion of the chapter is by far the largest.  This

part of the Hydra chip contains much of the custom design work, and it is what gives Hydra the

unique features that may make it a good alternative for future processor development — a low-

latency but fairly simple communication medium between the four CPUs and memory that can sat-

isfy the bandwidth requirements of four small but hungry processor cores.  Due to the fact that all

four of the CPUs are located on a single chip, it has been designed to much different specifications

than a conventional multiprocessor bus controller.  For example, a central arbitration mechanism is

used to arbitrate for several key chip resources on a cycle-by-cycle basis.  In contrast, most CPU

buses are arbitrated for on a much coarser “all or nothing” basis every few cycles.

The portions of the chapter that discuss the design in detail are roughly divided up into four parts:

datapath, control, caches, and off-chip interfaces.  Section 3.4.1  and Section 3.4.2 are the “datap-

ath” sections, and cover the data buses that are responsible for transporting user data, and the

address of that data around the chip, respectively.  Section 3.4.3 and Section 3.4.4 are the “control”

sections.  The former discusses the structures used by the interconnection system to keep the data-

paths running smoothly, while the latter goes over the functionality of the units during “typical”

memory accesses.  The caches are covered before and after the discussion of the memory intercon-
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nection system, in Section 3.3 and Section 3.5.  Finally, the off-chip interfaces are discussed in

Section 3.6.  Also, since this is a research vehicle, many of the elements in this system will be

instrumented to facilitate performance measurements and analyses.  These features are discussed

periodically throughout the chapter.

3.1 Hydra Design Overview
This section of the thesis gives a brief introduction to the design of the Hydra chip, as depicted in

Figure 3-1.

3.1.1 CPUs and MMUs

The core of the system is the array of four IDT RC32364 MIPS cores.  Each tiny core is a 200

MHz single-issue MIPS processor core with its own built-in MMU.  Our cores differ from the

commercially sold processors at the external interface, which has been removed to allow a direct

connection to the Hydra memory system.  Each core is similar to a conventional MIPS R3000 pro-

cessor.  The cores run all 32-bit MIPS-I (R3000) code with some extensions from the MIPS-IV

Figure 3-1: An overview diagram showing the major portions of Hydra and how they interconnect 
through the read and write buses.
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(R10000) set, plus a few extensions designed for embedded use and memory-management instruc-

tions optimized to work in this particular implementation.

The core includes the CPU, MMU, and most of the existing L1 cache controller from the commer-

cial IDT part with only minor modifications.  When memory accesses fail to hit in the L1 cache,

however, they are passed to the Hydra memory system instead of the normal bus interface unit

included in IDT’s chips.  A few other minor modifications have been made to allow external inter-

vention into the L1 data cache tags and the attachment of speculation support resources.  It should

be noted that the IDT cores themselves are not described anywhere in this chapter.  Readers look-

ing for a detailed description of these cores should look to the IDT reference manual [33] for full

specifications. 

3.1.2 Separate L1 Instruction and Data Caches

The L1 data caches in Hydra consist of separate 8K (increased from the default 2K), 2-way asso-

ciative, 256 sets (increased from 64) with 16 bytes/line, write-through, no-allocate-on-write caches

for all four processors.  The instruction caches are 8K, 2-way associative caches with 512 16-byte

lines each.  These have been integrated directly into the CPU cores by IDT.  The size and design of

the caches have been optimized so that all eight of the L1 caches may operate in parallel each cycle

to provide each processor with a 32-bit instruction per cycle and a single 32-bit word of data each

cycle.  Due to their small size, the design of each cache is fairly simple.  While not sufficient for

typical workstation processors, these cache sizes are fairly typical for embedded-application cores.

Attached to the caches is a special cache-invalidation port that the memory system uses to invali-

date lines from the caches externally.  The memory system has its own collection of “shadow” tags

for each of the L1 data caches so that invalidations (which tie up the L1 cache tags for 1–2 cycles)

will only occur when a line that is actually in an L1 cache is modified by another processor.  These
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additional shadow tags also include several bits used to control the contents of the data caches

while a processor is executing a speculatively parallelized thread.

3.1.3 Memory Controllers 

Pairs of “state machine” controllers attached to each processor are responsible for controlling all

aspects of L1 cache misses and write-throughs.  A ninth controller is responsible for controlling

on-chip resources after data returns from main memory.  These controllers sequence the use of the

Hydra chip’s resources by individual accesses.  In order to prevent the different controllers from

interfering with each other, two central resource arbiters are included in the system.  One prevents

multiple controllers from using the same resources simultaneously, while the other prevents multi-

ple accesses to the same address from being processed by the memory system simultaneously.

3.1.4 Memory Communication Buses 

The core of the Hydra system is the Read/Replace (or just “read”) and Write-through (or just

“write”) buses the run through the center of Figure 3-1.  These two buses carry all of the data

between the four processor / L1 cache combinations and the lower levels of the memory hierarchy.

In addition, they are the primary points of synchronization and communication in the system.

Since all major parts of Hydra have to communicate through these buses, the control system for

these buses is quite sophisticated and is the topic of Section 3.4, the largest section of this chapter.

The write bus is a word-wide (32 bit) bus that carries every write made by any of the processors to

their standard caches.  The order that this bus is allocated imposes a distinct sequencing on the

writes between the different processors.  Only when a write has actually passed over this bus has it

actually “occurred,” as far as the other processors in the system are concerned.  If a different pro-

cessor reads an address before a write has passed over this bus, it will get the old data, since only

the processor that wrote the data may immediately read it before it is transmitted over the write

bus.  As the key synchronization point, the write bus is responsible for invalidating all older data in
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the L1 caches of any other processors that may be sharing the cache line containing the data, so it

has a direct connection to the shadow tag system of each L1 data cache.  On the other side, it has a

direct connection to the L2 cache, which it must update with every word of written-through data

— a task which keeps it busy constantly.

The read bus is an L2-line-wide (32-byte, 256-bit) bus that carries cache lines into the processors

on demand (using half of the bus) and is also used to move lines around between the lower levels

of the memory hierarchy, because it is not as heavily utilized as the write bus.  While the write bus

has a single, specialized job, the read bus is the workhorse that does everything else.

These two buses work as a team to allow the four processors to work together quickly and effi-

ciently in the Hydra system.

3.1.5 Shared, On-Chip L2 Cache

The remaining die area is occupied by the shared L2 cache.  This cache is designed to absorb the

write bandwidth coming through the write-through L1 caches and to allow sharing between the

four processors without tying up the off-chip memory port.  It will necessarily be a writeback,

write-allocate cache to properly handle these tasks.  On a reasonably small die, the size of this

cache should be about 64K - 128K, preferably with at least 4-way associativity.  This would obvi-

ously be easy to enlarge using a larger die, however, so for simulation purposes we frequently

enlarged the cache.  The line size is set at 32 bytes/line, twice the size of the L1 cache lines.

3.1.6 Main Memory and I/O Interface

For references that do not hit in any of the on-chip caches, Hydra will recover the necessary data

from main memory.  The interface to the main memory and a fairly simple memory-mapped I/O

port has changed significantly over the lifetime of the Hydra project.  For the most part, it has been

conceived as a direct connection to a bank of DRAM using various interfaces (Rambus, most fre-
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quently).  However, by the final implementation the main memory interface had largely trans-

formed into a bus bridge to the I/O interface.  The I/O interface also includes features to load

benchmarks into the Hydra system, perform basic I/O operations, and check results after test com-

pletion.

3.2 Some Related Work
Other than an early effort by Texas Instruments to make a DSP processor using a very simple CMP

[29], the Hydra research group at Stanford was generally at the forefront of the call for chip multi-

processing.  While most other research groups were still looking at techniques for stretching the

performance of conventional uniprocessors or multi-chip multiprocessors, here at Stanford

research efforts looked at the various aspects of processor design that would tend to lead one to

consider a chip multiprocessor and then to a series of publications and a thesis that conclusively

showed the advantages of such a design [6][7][8].  This work led directly to the design of Hydra.

On the other hand, since the Hydra design was first publicized we have seen many industry efforts

to adopt some of its ideas.

Looking towards the server market, the IBM Power4 [24] has directly adopted the idea of Hydra-

style chip multiprocessing.  Each processor chip consists of two processor cores, each with their

own private L1 caches, and a shared L2 cache.  Moreover, the Power4 has been designed so that up

to four processor chips may be ganged together into essentially an 8-way “CMP” like design using

a high-performance MCM substrate.  The Compaq Piranha project [30] has also adopted the use of

an 8-way CMP and a shared L2 cache on a chip.  While the Power4 uses very high-performance

cores, the Piranha is centered around a group of fairly simple cores, very much like the Hydra

design, because the Piranha project is focused on commercial server applications and there is a

considerable amount of evidence that shows server workloads benefit little from superscalar pro-

cessing.
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At the other end of the spectrum, there is even more CMP activity ongoing as this thesis is being

written.  Numerous asymmetric CMPs have been built to provide single-chip systems with the

advantages present in more than one different processor core.  The most frequent combination is

that of a microcontroller and a DSP processor [31].  In the multimedia market, even a few symmet-

ric CMPs have been designed to handle the massive parallel-processing jobs found there.  The Sun

MAJC chip [25], targeting the Java-based multimedia market, uses two processors sharing the

same L1 data cache to make a multiprocessor system that can share even more closely than the

processors on Hydra can.  Meanwhile, Sony has produced an MPEG-processing chip [32] that

looks like a direct implementation of Hydra.

3.3 The L1 Data Cache Tags
In order to support the frequent inter-processor invalidations that will be required of each CPU, the

L1 data cache tags must be duplicated, as depicted in Figure 3-2. While one set of tags is used to

handle normal cache traffic from the CPU, the second set snoops on the address bus associated

with the write that is currently being processed on the write bus. If the second set finds a tag within

the cache that matches the address on the write bus, an invalidation cycle is initiated to eliminate

the line from the cache by clearing its valid bit.

The primary complexity in this system is due to the fact that tag updates may be generated by both

the primary and the “shadow” tags simultaneously, yet there is only one write port to the tag

arrays. In these rare collisions, the CPU is stalled for a cycle while the invalidation is allowed to

continue.

One additional bit of added complexity is introduced by the ability of the core to issue a single

non-blocking load.  When this occurs, the cache tag is updated immediately to reflect the fact that

the line will soon be in the L1 cache.  However, the address of the load-in-progress is maintained

in a side buffer at the tag comparison logic, where it can be compared with addresses of further
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memory reference instructions sent by the processor.  Any “hits” to the line that may occur while it

is still being fetched from the rest of the memory system are cancelled until after the line has been

successfully returned from memory.

3.4 Memory Interconnection System Overview
A basic overview of the memory interconnection system is given in Figure 3-3.  All of the high-

speed computational and memory resources on the Hydra chip (the CPUs and their L1 caches)

must use a set of buses that run down the center of the Hydra chip to talk with the lower-speed

memory and I/O resources (L2 cache and the external interface).  In the course of performing

transactions, the lower levels of the memory hierarchy use the buses to send data and addresses

between each other, as well.  All of the parts are insulated from each other by a system of buffers,

for the data buses, and state machines, that synchronize and sequence the interacting units.

The buses at the center of the diagram are all located in the center wiring channel of the chip,

where they interconnect all of the major units of Hydra.  There are 12 main buses: 9 32-bit address

Figure 3-2: The enhanced L1 data cache tag system.
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buses associated with each of the 9 state machines that control the memory interconnection net-

work, a 32-bit data bus that exclusively handles writebacks from the CPUs to the caches (the write-

back or “write” bus), and a 256/128-bit data bus that handles all other data transactions between

units in the system.  Each state machine is responsible for maintaining its own address bus in the

correct state, but the shared data buses are arbitrated for through the central arbitration scheme

between the different state machines.

State machines are located at the interface to all of the “active” elements of the chip — the CPUs

and the external memory interface, which are capable of initiating their own accesses to the other

units.  As the different elements initiate accesses, the state machines for the units translate each

access request into the proper sequence of arbitrations for and accesses to other units.  These

accesses to other units are then controlled by the buffers that connect each unit to the central buses

only when such connections are actually required.  Working in tandem, the ring of state machines

and buffers manages to keep everything flowing through the interconnection network in a smooth

manner.

3.4.1 Datapath Resources

The data-carrying resources in the Hydra chip are summarized in Figure 3-4.  This figure shows

the two primary buses — the read and write buses — and the ring of buffers that act as gates to

control access to and from the buses and the other functional units on the chip.  The following two

sections first discuss the functionality of the two data buses, and then of the individual buffers that

allow access to the buses.

3.4.1.1 Data Buses

The data buses are responsible for carrying data between all of the major sections of the Hydra

chip: the CPUs, the L2 cache, and the external interface.  The two buses can be written by several
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different drivers, so access is arbitrated on a cycle-by-cycle basis in the central arbitration mecha-

nism (see Section 3.4.3.3).  In most other respects, the two buses differ widely.

Read Bus: (256/128 bits wide) The “read” bus is responsible for carrying most of the traffic

between the units on the Hydra chip.  Half of the bus is used for carrying 16-byte L1 cache

lines, while the full bus is used to carry 32-byte L2 cache lines to and from the external inter-

face.  Physically, the portion of the bus between the L2 cache and the external interface is

twice as wide as the rest of the bus.  Much of its work involves shuttling entire cache lines of

data between the different units, so it is a fairly wide bus.  Sometimes, critical words of data

may be sent back to the CPUs before the rest of the line.  In these cases, the data on only part

Figure 3-3: An overview of the Hydra memory interconnection system.
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of the bus may be valid — but the controller will know which portion of the bus is valid on any

particular cycle, and will be able to handle the partially-active bus correctly.

The sections of the bus interact through a series of muxes. When the external interface “broad-

casts” the line coming back from memory, it puts the entire 32 bytes on the wide section of the

bus.  The L2 reads the full-width bus directly, thus filling its line in a single cycle.  On the

other hand, only half of the broadcast data is needed by the L1, so the mux passes just the crit-

ical half of the cache line onto the narrow portion of the read bus.  This mechanism enables

two sizes of lines to be delivered to different parts of the system in a single cycle.

Write Bus: (32 bits wide + support lines) The “write” bus is responsible for only a single task:

handling the write-through data traffic from the CPUs to the L2 cache.  Because the L1 caches

do not filter out these accesses, a large number of them must be passed out through the bus at

all times.  To prevent the read bus from being constantly tied up by these transfers, they are

carried on the special write bus.  The data portion of the write bus is only 32 bits wide, since

Figure 3-4: A summary of the data buses that connect the parts of Hydra together.
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that is the maximum data size that any particular MIPS-I store instruction can write at once.

Each write is allocated a cycle on the write bus to transfer its data.  Other fields are also asso-

ciated with the write bus, as described in Table 3-1.

Since different writes can carry differing amounts of data, a line is associated with each byte-

lane that tells the L2 cache whether or not that particular byte is valid.  The L2 cache can then

take the valid bytes and store them away.  A critical function of the write bus is to serialize the

writes, so that writes from different processors appear to occur in a specific order.  When each

write’s cycle on the write bus occurs, all other CPUs may see those new contents of the

address for the first time.  At this point, all older versions of the data in the L1 caches of the 3

other CPUs are invalidated, using the special invalidation port on the CPUs described in Sec-

tion 3.3.  This forces the other CPUs that may be sharing the data to read in the new data from

the L2 cache.

After the speculation support described in Part II is added, further lines are required to control

the speculative state of each access.  First, a single bit line is added just to notify receivers that

the access is indeed speculative, since speculative processors will typically mix and match

speculative and non-speculative references during execution.  Second, a 2-bit CPU identifier is

sent along with each write so that other processors may determine how they should process the

write during snoop accesses.  Finally, the store PC is broadcast on a parallel bus so that viola-

tion statistics may be maintained by the processors.  The write bus also gets a slightly

enhanced protocol when invalidations are triggered by writes passing through it.  Speculative

CPUs that read incorrect data will be restarted after seeing writes of new data broadcast on the

write bus.
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3.4.1.2 Buffers

The ring of buffers around the central data buses are a set of flip-flop based registers that are

responsible for latching data from the buses at the end of every cycle or driving data onto the buses

whenever necessary.  Most of the buffers are wider than the buses, so multiplexers are usually

located at the inputs and outputs of the buses to properly align data as it is transmitted.  In general,

the multiplexers are used so that data moving around the chip are always aligned according to the

low-order bits of the actual addresses of the data, for the sake of consistency.  Moving around Fig-

ure 3-4, this section discusses the function of each of the buffers in turn.

L1 Write Buffers:  (1 word each, 8 entries) The write buffers are critical in presenting a consistent

view of memory to the processors, as well as facilitating synchronization.  The full contents of

each buffer are summarized in Table 3-2. The write buffers each hold a single word from a par-

ticular CPU’s latest write operations.  The write data is latched here until the controlling state

machine manages to acquire the write bus for an L2 write cycle.  If these buffers fill, then the

processor must be stalled before it is allowed to perform another store operation.

Table 3-1: Write Bus Fields

Bus Segment Size Function

Write Data 32 bits Carries write data to the L2 cache

Write Bus Valid 1 bit Strobe indicating that the bus is active

Write Bus EIB # 5 bits EIB number of the access that’s driving the write bus

Active-byte controls 4 bits Strobes that indicate which bytes of data are valid written 
data

Write Address Indicator 4 bits (or 
9 if not 

encoded)

A set of lines that indicate which state machine is using the 
write bus, so that snooping CPUs will access the proper 
address bus.  More likely, an entire 30-bit address bus can 
be placed here, to avoid muxing from the address buses at 
every fanout point.

Speculative Write Indicator 1 bit Strobe indicating that this write is speculative, so invalida-
tions should be processed accordingly and the L2 write 
buffers should handle this access

CPU Identifier 2 bits Indicate the CPU that produced the write

Store PC Address 30 bits Address of the store that made this write
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While the write sits in the write buffer, it may be forwarded back to the CPU that just wrote it

as part of a cache read, transparently — but only to the CPU that actually performed the write.

To facilitate this operation, the write buffers associated with a particular processor are attached

to a 16-byte wide branch off of the read bus that goes into the processor. At the fork there is a

mux, controlled by the write buffer. When a line is broadcast back to this CPU over the read

bus, all the write buffers snoop their contents, and set their muxes to merge the most recent

data onto the CPU’s branch of the read bus.  The number of parallel compares required to con-

trol this muxing is the most important factor limiting the depth of the write buffer.  Needless to

say, the logic required to do the parallel snoop among the different write elements and then

perform the necessary multiplexing is the most difficult bit of logic in the entire buffer system.

When the controlling state machine acquires the write bus, the buffer dumps one entry onto the

write bus.  At this time, the write becomes globally available to all four of the CPUs, and is

cleared out of the buffer that was holding it.  In addition to buffering the write data, the write

buffer remembers if the write it is storing is the result of a store-conditional. If so, special han-

dling is necessary to ensure that a failed store-conditional never gets a chance to commit. The

write bus is the single mechanism that serializes writes, so the write buffers must continuously

observe all other write transactions on the write bus.  If they detect another write to the same

address, then any write buffer entries holding store-conditional writes must invalidate itself.

When an invalidated store conditional is given a chance to commit, the write does not pass

over the write bus, and the CPU that made the request is notified of the failure.  Otherwise, the

SC commits normally and the processor is notified of the success.

L1 Read Buffers: (2 for data fetches, 1 for instruction fetches) Each L1 data-instruction cache

pair has a designated read buffer that holds all read requests issued by the cache to lower mem-

ory. To service the instruction cache, the instruction read buffer latches the L1 instruction



Chapter 3: The Base Hydra Design 32

request, and puts it on the request port to its designated state machine.  Since the L1 instruc-

tion cache blocks on a miss, a one entry buffer will never overflow.  The two data read buffers

provide equivalent service for the L1 data cache.  There are two buffers due to the fact that the

R32364 CPU will not block until two cache misses are outstanding.  If accesses are sent to

both the instruction and data buffers simultaneously, the data access will be given higher prior-

ity because it presumably came from an older instruction in the instruction stream.

After initiating an access to lower memory using the proper state machine, these buffers snoop

the read bus to latch the data into the appropriate L1 cache, acting as miss status handling reg-

isters (MSHRs).  Since more than one data request can be in flight at any time, the buffers

must do a full parallel compare of the returning access with all functioning entries that have

issued to decide which one is being broadcast over the read bus on any particular cycle.  The

full list of fields necessary to fulfill this functionality is given in Table 3-3.

L2 Cache Read Buffer: (8 words for each of 4 cache ways) This buffer latches the output from all

8 ways of the L2 cache simultaneously, so any one of them may be accessed on the next cycle.

Table 3-2: Write Buffer Fields

Field Size Function

Write Data 32 bits Holds data being written

Write Address 32 bits Holds address being written

External Interface & Jam 
Buffer Number

5 bits Number of the external interface and address check buffer 
assigned to this access

Uncached Write Control Bit 1 bit Bit that is set if this access is uncached

SC Bit 1 bit Bit set if this is a Store Conditional reference

Store PC Address 30 bits Address of the store that made this write (for use with specula-
tion only)

Speculative Reference 1 bit Bit indicating that this reference is speculative (speculation 
only)
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All 32 bytes of the entire cache line from each way are latched, so once the way is selected the

entire cache line may be put on the read bus at once.

L2 Cache Write Buffer: (8 words) The L2 write buffer accepts one entire 32-byte cache line from

the read bus at once or a single byte-to-doubleword write from the write bus for writing into

the L2 cache.  This buffer is always used, no matter which bus the data comes from.  The out-

put is written into the L2 cache on the next cycle, no matter what.  Partial-line writes from the

write bus are written directly into existing cache lines without writing over the rest of the line,

since byte-lane selects are honored for writing into the L2 cache.  If a write is to a line not in

the L2 cache, then the write state machine controlling the write will make sure that the write

appears on the write bus at the same time that the rest of the line is read from main memory on

the read bus.  On that cycle, the write buffer will latch the data from both into a new, composite

cache line that can be written into the L2 cache all at once.

External Interface Buffers: (32 buffers of 32-64 + bytes each) The external interface acts as the

“translator” between the external system bus protocol, and the protocol enforced on the inter-

nal read and write busses.  These buffers must combine data from both the processor and the

L2 cache into a format necessary for accessing main memory. In order to do this, several of the

fields must be allocated during the L2 access, in order to collect bits of data as they become

Table 3-3: Read Buffer Fields

Field Size Function

Read Address 32 bits Holds address being read

External Interface & Jam 
Buffer Number

5 bits Number of the external interface and address check buffer 
assigned to this access

Instruction Fetch Bit 1 bit Notes if this is an instruction fetch

Uncached Read Control Bit 1 bit Bit that is set if this access is uncached

LL Bit 1 bit Bit set if this is a Load Locked reference

Speculative Reference 1 bit Bit indicating that this reference is speculative (speculation 
only)
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available. These “control” fields are summarized in Table 3-4. Fields without an asterisk after

the name are loaded as the access starts accessing the L2 cache, from the state machine’s

address bus, while the marked fields are loaded through the special writeback path from the

L2, indicated on Figure 3-5, following the L2 cache access made for the reference.  The

address jamming mechanism eliminates the need for sophisticated disambiguation logic

among these buffers, which would otherwise be necessary.

The second part of the external interface buffers buffer the actual data going to and from main

memory. The interface must buffer L2 write-backs until they can be committed to lower mem-

ory, and data coming back from main memory.  Each buffer is capable of latching a 32-byte

line.  In the initial version of Hydra, these data buffers are directly attached to the control buff-

ers, but in a more sophisticated design they could be separately arbitrated for at the start of the

main memory access stage of the read and write state machines.  With such a design, only a

Table 3-4: External Interface Buffer Fields, control portion

Field Size Function

Writeback Address* 27 bits Holds address of the line being written back to main memory, 
if any

Writeback Required* 1 bit Signals that a writeback is occurring during this main memory 
access (set after L2 miss with dirty writeback)

Read Address 27 bits Holds address of the new line being read into memory, if any

Read Required* 1 bit Signals that the main memory and memory SM need to pro-
cess this reference (set after L2 miss)

Memory Block* 1 bit This is set to temporarily hold up a main memory read when 
there is no room in the L2 to receive the returned data (i.e. all 
lines in the set are locked by speculative writes)

Read/Write Buffer Number 4 bits Number of the original CPU read or write buffer associated 
with this access

CPU Number 2 bits CPU associated with this access

Uncached Access Control 
Bit

1 bit Bit that is set if this access is uncached

Control-to-Data Pointer** 3? bits Pointer from EIB control buffer to data buffer, if they are sepa-
rate
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small number of physical data buffers would be necessary (probably 4-8, but this may need to

vary depending upon the speed of the memory interface).  In the latter case, the optional field

pointing from each control buffer to its corresponding data buffer is required, as indicated by

the double-asterisked entry. These buffers are loaded are allocated during the RSM/WSM

main memory arbitration, and later loaded with data upon a writeback or when a line returns

from main memory. The full list of fields is summarized in Table 3-5.

Each of the buffers may be controlled by any applicable state machines — the central arbitration

mechanism for the read and write buses ensures that no two state machines attempt to use the same

buffer at once.

3.4.2 Address Resources

Figure 3-5 gives an overview of the address-handling system used to transmit addresses among the

different portions of the Hydra chip.  It is centered around a group of 9 address buses — one con-

trolled by each of the 9 state machines that synchronize the interconnection system. Since each

state machine controls a different address bus, address-bus arbitration is not necessary.

Many units can drive signals onto the buses: CPUs (for most loads and stores), the external inter-

face (to invalidate lines), and the caches (to write back lines from those caches).  All drivers are

dedicated to particular address buses, as is indicated by drive-in lines on Figure 3-5.  In the figure,

the buses are read 0, write 0, read 1, . . . , write 3, and memory.  On the other hand, many units can

Table 3-5: External Interface Buffer Fields, data portion

Field Size Function

Writeback Data 32 
bytes

Holds data being written back to main memory

Read Data 32 
bytes

Holds data being read from main memory (if the memory 
interface timing allows, the buffers may be combined into 
one)
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read addresses from any of the different buses.  Lines out to “multiplexer” trapezoids indicate a

port out of the buses that can read from any one of the address buses.

Details of most of the address resources are given in the chapters associated with the different por-

tions of the Hydra chip.  However, common resources that are shared by the units are noted below.

3.4.2.1 Address Format

The CPUs are designed to work with 32-bit virtual and physical addresses, so the entire Hydra

memory system is built around 32-bit address buses.  Virtual addresses are only used within the

CPU / MMU core, so refer to the CPU core documentation [33] for more on their interpretation

and translation.  Figure 3-6 shows the different ways that the 32-bit physical addresses are broken

Figure 3-5: A summary of the address resources in Hydra
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down and used by the different portions of the Hydra chip.  Here is a summary of the different for-

mats, from the top:

CPU: The CPU produces the full 32-bit address after translating the virtual address to a physical

one.  Hydra makes no distinctions among the different portions of the address, although the

CPU’s MMU may, depending upon what address translation modes it is currently using.

L1 Caches: At the L1 caches, the lower 4 bits are used as a block offset within a 16-byte cache

block, while the next 8 bits are used to select one of the 256 sets in the 8K, 2-way associative

caches.  The upper 20 bits are then all used for the tags associated with each set.

L2 Cache: The L2 cache is considerably larger than the L1 caches, and therefore has a smaller tag.

In a 128K, 4-way configuration 17 bits are allocated for the tag, 10 are used for the index

(1024 sets), and 5 bits are needed for the block offset within the 32-byte blocks used in the L2

cache.

 

Memory:  The main memory interprets the address as one big index, except for the 5 lower bits

that form the block offset within a particular cache line.  In the case of uncached memory ref-

erences, even this distinction is moot, as these references are handled individually.

3.4.2.2 Address Buses

As previously mentioned, each state machine is associated with its own address bus, in order to

eliminate a point of contention in the system and keep the arbitration mechanism simpler.  Another

critical reason for this breakdown is speed.  By not requiring arbitration for the address buses, each

state machine may put the address it wants to use on the address bus at the very beginning of a

memory access, while arbitration for other resources is occurring.  Since these are at most 32-bit
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buses, running several of them for long distances is not as wasteful as making multiple copies of

the data buses.

These buses are simple sets of wires, for the most part, which connect the pairs of memory control-

lers associated with the CPUs to the other CPUs (to allow them to snoop write operations), the L2

cache, and the external interface. Table 3-6 summarizes the wires included in each bus. The single

controller associated with the external interface has a similar bus connecting it to the L2 cache and

the CPUs.  Finally, there is a small address bus connecting the L2 cache to the external interface

Figure 3-6: Address formats at different levels of the Hydra cache hierarchy
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which the L2 cache uses to pass writeback addresses to the external interface before writing data

back to main memory.

3.4.2.3 Address Check Buffers

One possible problem that could occur in the system would be for 2 different CPUs to access the

same address at once and cause a correctness problem due to an illegal interaction between the two

state machines.  For example, one could be writing back a line from a cache while the other reads

a stale copy of the same line into its cache.  To eliminate this possible problem, among others, the

address check buffers provide a simple system for delaying accesses that may “collide” in the

memory system.  By delaying possible collisions, accesses that could cause correctness problems

if they were allowed to run at the same time are serialized and the problems are inherently elimi-

nated.  It should be noted that this system is inherently conservative, and a less restrictive but more

complex scheme might be able to avoid some of the “false sharing” that this scheme will serialize.

A “possible” collision is defined as addresses that may have the same index bits during any cache

access.  With the address interpretation layout in Figure 3-6, bits 14–5 must match in order to force

an access to block, allowing 1024 different addresses to be active at once.  If desired, this could be

increased in alternative implementations by decreasing L2 associativity and/or increasing L2 size,

thereby increasing the number of L2 index bits, with corresponding increases in the number of

possible active addresses.

Table 3-6: Address Bus Wires

Field Size Function

Address 30 bits Holds address of the line (or uncached word) being read or 
written

Read/Write Buffer Number 3 bits Number of the read or write buffer associated with this access

External Interface & Jam 
Number

5 bits Number of the external interface and address check buffers 
associated with this access

CPU Number 2 bits CPU associated with this access

Uncached Access Control 
Bit

1 bit Bit that is set if this access is uncached
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The address check buffers are consulted in parallel with L2 tag checks. When each access misses

in the L2 cache, it locks its address into an address buffer, depicted in Figure 3-5 and Figure 3-7. If

the access hits in the L2 cache, the address is not permanently locked.  One lock port is for reads,

one for writes, and the third dedicated port is for the external interface controller.  There are a total

of 32 buffers, which are allocated using a free-buffer list that tracks the buffers which may still be

allocated.  This number was chosen to be equal to the number of memory buffers, so both could be

arbitrated for with one arbitration.

As the address is locked into the buffer, a parallel compare with the other address buffers and any

higher-priority locking addresses coming in at the same time (prioritized read, write, and finally

memory) is performed.  The results of all the compares come out and are stored in the “jam regis-

ter” for that access.  Usually, the compares will miss, and a zero-detector associated with each jam

register will signal that the state machine is clear to continue.  However, if any of the compares hit,

then that access will “jam” and be queued until all earlier misses to the same address have been

processed. Each access completion causes the “clear line” associated with the just-completed

access to be raised, and all jam register bits that were set due to comparisons with that access’

address buffer are cleared out.  When the jam register associated with a state machine is cleared,

then the access is returned to the “new access” queue in the state machine and reprocessed as soon

as possible.  If an address is very popular, and has several state machines trying to use it at once,

then a queue will effectively be formed by the collection of jam registers.  This occurs because

accesses that start later will have bits set in their jam registers for all of the preceding accesses to

that address, and can therefore only occur after all of those accesses have completed.  Because they

are so common, writes that hit in the L2 cache must be sure to release their jam registers very

quickly, to prevent queues from forming unnecessarily just because everyone is writing to the

same cache line.
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3.4.3 Control: The State Machines

Ten state machines provide control for the interconnection system.  They are located where

accesses may be initiated: 2 at each CPU (1 to handle reads, and 1 to handle write-throughs) and 1

at the memory interface (to control returning data from main memory and external intervention

accesses).  Each “state machine” is actually made up of several smaller state machines, each of

which can take an access through a portion of the steps needed to handle that access.  The different

small state machines may each be handling a different access simultaneously.  If a particular

access requires the services of several different small state machines, it is passed between them

using queues inside of each individual memory controller.

3.4.3.1 State Machine Structure

The structure of an interconnection system state machine is pictured in Figure 3-8.  The core of the

state machine (the darker section in the center of the figure) is essentially just a textbook design.

Due to speed considerations, the next-state and output logic will probably have to be “hard-wired”

logic.  There is one slightly deceptive feature about this portion of the diagram, however.  On the

real chip, the next-state and output logic will actually be distributed throughout the controlled ele-

ments, since otherwise numerous control lines will have to be run across much of the chip, instead

Figure 3-7: The address-check buffers in the Hydra chip
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of just the encoded state and a few feedback lines.  The other parts of Figure 3-8 are described in

Section 3.4.3.2 for the FIFOs at the top, and Section 3.4.5.1 for the state counters at the bottom.

The state machines sequence actions primarily by controlling the various buffers that surround the

data buses, locking data into the buffers and enabling the outputs of the buffers at appropriate

times.  In the caches, they also control some internal sequencing signals.

Figure 3-8: A typical state machine that controls the memory system
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3.4.3.2 Event FIFOs

All of the state machines possess an “idle” state in their state encodings, where they hold when

they are not in use.  Most of the state machines wait for a particular event before leaving the idle

state: read SMs wait for reads either directly from their associated CPU or from the address jam-

ming mechanism, write SMs wait for writes from their CPU or address jammer, and the memory

SM handles many different requests.  Therefore, these SMs need queues to collect all of these

events and feed them to the state machine one at a time.  In the actual system, 2 queues will be

used — one for high priority work (unjammed accesses for read and write state machines or

unjammed external interventions for the MSM) and one for lower priority requests (new accesses

from the CPUs for read and write SMs, or all other requests for the memory state machine).  In

addition to assigning a priority to the events, each queue can be simpler, since fewer write ports

will be necessary on both queues.  Inside each large SM, smaller but similar FIFOs with no prior-

ity control are also included to buffer accesses moving from one sub-SM to the next within a par-

ticular memory controller.

The queues themselves are fairly simple circular buffers, with head and tail pointers.  Whenever

the SM hits the “idle” state, it tries to grab an event off of the head of the high-priority queue, or

the low-priority queue if the high-priority queue is empty.  New events are written on at the tail of

the queues.  Read SMs need 2 low-priority ports, since a CPU can only start 2 reads per cycle

(instruction and data).  However, they need 3 high-priority ports to handle the case when all three

read accesses from a CPU are unjammed at once.  Write SMs need 1 and 8 ports, for similar rea-

sons.  For the memory SM, only a single write port can write the tail of the high-priority queue

each cycle, since only the external interface can put entries on this queue.  The low-priority queue

also has a single port, where accesses that miss in the L2 cache can place read and writeback

requests.  Since only one other state machine may use the L2 cache at a time, only a single port is

necessary here, also.
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Each entry in the queues for the read and write state machines consists of a pointer to an entry in

the L1 read or write buffers (4.2.1.2) associated with the access being queued.  A pointer to each

entry will always be somewhere in the system, feeding the access represented by the buffer into the

appropriate portion of the read or write state machines. Table 3-7 summarizes the places where

read or write buffer pointers may be found as they flow around in a continuous cycle from the

buffer free list and through the system.

Simultaneously, External Interface Buffer pointers flow around the system in a much less cyclic

path in order to properly control allocation of the EIBs to various accesses being processed by the

system.  The memory state machine and the external main memory interface itself use these point-

ers to control how they process references.  The locations where these pointers are used is summa-

rized in Table 3-8.

These queues completely sequence accesses through the memory state machine (MSM) and main

memory.  Figure 3-9 shows the basic flow of an access through these paths.

Table 3-7: Buffer Pointer Queues

Location Function

Free List Holds pointers to buffer entries that are not being used.

R/W State Machine Low-Prior-
ity Queue

Holds pointers to entries that have just been read or written by a 
CPU, and are waiting for processing by a read or write state machine.

R/W State Machine High-Prior-
ity Queue

Holds pointers to entries that have just been unjammed, and are wait-
ing for processing by a read or write state machine

R/W State Machine Pointer Reg-
ister, L2 Access Stage

Holding register for pointers being processed by the first half of the 
read or write state machines.

R/W State Machine L2-to-Mem-
ory Queue

Holding queue for pointers moving from the first half of the read or 
write state machines into the second half.  This queue may be 
removed, with some loss in performance, if an additional state is 
added to the L2 access stage

R/W State Machine Pointer Reg-
ister, Memory Access Stage

Holding register for pointers being processed by the second half of 
the read or write state machines.

External Interface Buffers Pointers are held here while references are working their way 
through the memory system.
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Table 3-8: External Interface Buffer Pointer Queue

Location Function

Free List Holds pointers to empty External Interface Buffers.  EIB pointers are 
dumped here when they are eliminated from L1 R/W buffers, after 
L2 accesses hit or following main memory references.

L1 R/W Buffers During the L2 access stage of each reference, EIBs are stored here 
only.  During main memory references, the copy is maintained here 
so that data values returning from the main memory may be associ-
ated with the proper reference.

Outgoing-to-Memory Queue Holds EIB pointers to entries that are waiting for their turn to use the 
main memory interface.

In Memory Buffers Holds EIB pointers to the entries that are currently being processed 
by the memory system.  These buffers are contained in the memory 
controller itself, and pipeline EIB pointers around along with the ref-
erence through the memory system.

Back-to-SM Queue Holds EIB pointers that are going back to the memory state machine, 
so it may process each EIB at the correct time.  This may actually 
hold the same EIB more than once, since entries are put here for each 
section of a line coming back from memory, as it arrives.

Figure 3-9: Flow of memory references through the main memory interface.
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3.4.3.3 The Central Arbiter

The arbiter is a single circuit that centralizes the decision-making needed to ensure that multiple

state machines do not attempt to use shared resources in the same cycle.  With nine different mem-

ory controllers containing 18 different state machines all attempting to perform accesses at once,

there will often be collisions between different accesses that need the same resources.  The central

arbiter resolves these conflicts, while enforcing strict priority ordering among requests.  The cen-

tral arbiter watches for any “requests” made by the different state machines.  When a state machine

needs resources, it activates the appropriate request line, which the arbiter understands to corre-

spond to a specific set of resources needed on specific set of cycles in the near future.  The arbiter

prioritizes and compares all requests being made on this cycle, and then sends “continue” signals

to as many requestors as possible who do not happen to need the same resources at the same time.

The current request priority, described below, is used to break any ties.  Requestors that are denied

access to their desired resources must simply try again until they finally succeed at getting the

desired arbitration.

The arbiter controls access to seven shared resources, which are listed and described in Table 3-9.

Table 3-9: Arbiter-controlled Resources

Resource Function

ReadBus The 128/256-bit bus that carries all the read data, as well as the L2 write backs.

WriteBus The 32-bit write bus that broadcasts the CPU writes and speculation commands 
so that all CPUs may see the writes and synchronize on them.

L2TagRead & Write The L2 tag read port (and the write port, 2 cycles later).  Latency = 2 cycles.  
Throughput = 1/cycle.  This also controls access to the address jammer, which is 
always accessed simultaneously.

L2DataReadWrite The L2 array read/write port.  Latency = 2 cycles.  Throughput = 1/cycle.

Mem Address Port The single port to the external interface buffers, used to initiate requests to main 
memory

MemBuffer Counter used to keep track of the number of available address check buffers and 
writeback buffers in the external interface.  If a reduced number of EIB data 
buffers is desired, the data registers must be arbitrated for separately.
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The “MemBuffer” resource is different from the others, in that it is not allocated on a cycle-by-

cycle basis.  Instead, all arbitrations requiring access to a memory buffer are not allowed while no

memory buffers are left remaining.  They are forced to retry their arbitration until a buffer is free.

The other resources need to be allocated ahead on a cycle-by-cycle basis, because accesses use

them in a pre-defined sequence.  To control access to those resources, the arbiter maintains a small

shift register for each one.  The bits in the registers correspond to cycles, so the arbiter has a short

look-ahead capability.  The cycle following the arbitration is bit “zero” of each register, and all the

registers are shifted one bit on each cycle.  A “one” in the shift register signifies that the resource

has been allocated on that particular cycle.  The shift registers are best seen as a small array, in

which the arbiter tries to find specific patterns of “holes” of unused resources over the next few

cycles that match the requested allocation pattern.  Where such a “hole” is found, it is filled by

recording which resources are now allocated on which cycles, and subsequently by notifying the

requestor that their arbitration has been granted.

Table 3-10 shows the various arbitrations that may occur, and the resources needed to satisfy them.

The numbers in the table show for which cycles ahead of the current one a resource must be

reserved.  A “-” signifies a resource that is not needed for the particular arbitration.

Requests coming from the state machines may conflict on any given cycle, in which case the cen-

tral arbiter must resort to priority ordering among state machines to resolve the conflict.  Any

request will fail if it requires reallocation of a previously allocated resource.  If two simultaneous

requests attempt to use the same resource that is presently free, then the one with the higher prior-

ity will win the allocation.  The arbiter orders the state machine priorities as follows: memory,

read, and write.  This overall order is fixed, since requests coming back from the main memory

should occur as quickly as possible, and after that quick completion of reads is generally more

important than write completion.  However, there are also 4 read and 4 write state machines, one

for each CPU, which can produce identical accesses.  To order these, the arbiter keeps track of a
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round-robin priority scheme, so that each will get a turn at being the high-priority request owner

about a quarter of the time.

The required resource allocations within three different groups overlap for certain groups of arbi-

trations.  Conflicts caused by these overlaps are resolved through enforcement of priorities.  If any

arbitration from a given group is granted, the others will stall, while two arbitrations from different

groups may be granted on the same cycle.  The three groups of arbitrations are shown in Table 3-

11.  The priority enforced within each group is the order in which the arbitrations are listed.  Only

the specialized MemEI arbitration appears in more than one group, as it performs the jobs of arbi-

trations in more than one other group.

Table 3-10: Arbitrations and Allocations

Resource

Arbitration

Read 
Bus

Write 
Bus

L2 Tag 
Read 
Write

L2 Data 
Read 
Write

Mem 
Address 

Port

Mem 
Buffer

MemRB 0 - - - - -

MemRBL2 0 - - 1 - -

MemRWBL2 0 0 - 1 - -

MemEI 2,3 2,3 0,1 0,1 0,1 Get 1

ReadL2 2 - 0 0 - Get 1

WriteL2 - 1 0 2 - Get 1

Read/WriteMemClean - - - - 0 Get D*

Read/WriteMemDirty 2 0,1 - 0 0 Get D*

Table 3-11: Groups of arbitrations that may conflict

Group I MemEI, MemRB, MemRBL2, MemRWBL2

Group II MemEI, ReadMemClean, WriteMemClean, ReadMemDirty, Write-
MemDirty

Group III MemEI, ReadL2/WriteL2, WriteL2/ReadL2, MemEI
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There is one occasional exception to the “reads before writes” priority rule.  The priorities within

Group III are not completely fixed.  Instead, they are based on occupancy of the various buffers.

Normally the reads are allowed to bypass writes, so they are given higher priority.  But when any

of the write buffers in the system begins to fill up, the writes acquire higher priority in order to

clear out the buffer before it fills up and stalls the system.  This causes the write buffers to empty

quickly, which restores the normal priorities.

The arbiter is the home of one of the trickiest circuit design issues on the entire chip.  Most of our

complex circuitry can be distributed and simplified so that it may work at the required clock fre-

quencies — the primary problem is just driving long wires from one end of the chip to the other.

In the arbiter, however, it is necessary to have requests coming in from all of the state machines,

then to check all of the resources in parallel, and then to notify the state machines whether or not

they may continue — all in a single cycle.  Due to the large numbers of inputs and outputs, it is

impossible to avoid several large-fanin gate structures (that will actually probably be trees of

smaller gates in the final circuits).

3.4.4 The Operation of the System

This section gives an overview of how the different state machines coordinate the series of steps

responsible for all of the different types of memory accesses.  Each of the four subsections

describes the operation of one of the three types of state machines in detail, by fully describing its

key access pattern.  Table 3-12 through Table 3-16 describe full state summaries for the state

machines.  These are provided to allow the reader to examine key details of the control on a state-

by-state level.  It should be noted that the memory state machine controls all responses from mem-

ory, so the other three flowcharts do not cover the final stages of an access that must recover data

from main memory.
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3.4.4.1 The Read State Machines

Each CPU has a designated “read” state machine, which is responsible for handling that CPU’s

read accesses to the L2 cache and initiating access to lower memory.  The read state machine is

roughly pipelined into two multicycle pipe stages to allow high throughput and minimum occu-

pancy of resources shared among the processors using only a relatively simple controller. The first

pipeline stage controls the L2 access, while the second controls the transfer of the access to the

external interface so it may be sent to main memory.  If an access hits in the L2, the access com-

pletes without ever proceeding to memory access pipeline stage.  Otherwise, the read continues on

into the second pipeline stage in order to be sent to memory.  If the read is to an uncached line, the

L2 cache stage is bypassed, and the read proceeds directly to main memory.  This mechanism

allows for up to two read accesses to be in progress in any state machine at any time.

The pipelined state machine is best viewed as two cooperating state machines, each with a desig-

nated “idle” state that watches for conditions that will start it on its way.  A state machine stage

takes a read access, and moves it through a series of arbitrations and associated stalls that sequence

through the protocol required by the resources controlled by that stage.  As the state machine stage

sequences though its states, it drives control lines that direct the read access through the data path

of the controlled resource.  If the read access hits in the L2, the state machine completes the

access.  Otherwise, the access passes to the memory interface and its associated state machine, and

the read state machine starts processing the next access.

The state machine is best understood by enumerating the possible states, and describing the func-

tion of each state.  The complete state transition table is shown for each stage of the state machine

after the stage has been described.  The state transitions described are summarized in Table 3-12.

Note that the input and output names in that table are not formal names of signals, but rather abbre-

viated statements of circuit conditions.  The following list fully describes the states of the first

stage of the state machine:
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RL2Idle: This is the “standby” state of the first stage.  The machine monitors the read buffer and

the jam buffer, looking for an access that needs processing.  If an access is found in one of the

queues, the state machine fires an “Output Enable” line going to that queue.  The jam queue is

given priority over the read queue because the accesses residing there are presumably older.

The OE signal that goes to each queue only facilitates book keeping.  In reality, the queue is

always driving the next access on its port, waiting for the state machine to grab it.  When the

OE signal goes high, the access is latched into the state machine, and the queue can deallocate

an entry and drive the next access onto its port.  Meanwhile, the state machine puts the address

of the access that it is beginning to process onto its L2 address bus.  If that access is cacheable,

the machine proceeds to “RL2ReadArb.”  Otherwise, it goes to “RL2MissStall.”

RL2ReadArb: The state machine raises the arbitration request line that tells the arbiter that it

intends to read the L2 cache.  The machine remains in this state, with the request line raised,

until the arbiter responds with a corresponding grant signal.  When the grant signal for this

state machine goes high, it causes many things to happen in the system.  The address that the

state machine has been driving on its designated L2 address bus is muxed to the L2 address

port.  The L2-address-valid strobe fires.  The same address is muxed to the input of the address

jammer, and the jam-address-valid strobe fires.  These two events initiate the L2 access and an

address jam check.  The machine then goes on to “RL2ReadA.”

RL2ReadA: This is the first cycle of the L2 read access. The next state is “RL2ReadB.”

RL2ReadB: In this cycle, the tag compare of the L2 is complete, and the L2 asserts the L2-hit line

if any of the lines in the cache hit.  The data from all four sets of the L2 are available, and are

latched in the internal data buffer at the end of the cycle.  If the L2-hit line is high at the end of

the cycle, the next state is “RL2Hit.”  If the access is a cache miss, then the address jammer,
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which is accessed in parallel with the L2, is consulted to see which state is next.  If the address

jammer jams the access, the machine returns to “RL2Idle,” temporarily forgetting the current

access. The dropped access will be added to the jam queue after its jam clears, which will

allow it to be retried. If the address is unjammed (the common case), the machine proceeds to

“RL2Miss.”

RL2Hit: In this cycle, the state machine drives the L2-buffer-enable line, which causes the L2

state latched in the previous cycle to update the L2 tag array.  It also drives the L2-data-output-

enable line, which causes the contents of the L2 line to be gated onto the 512-bit section of the

read-bus.  The data is grabbed off the bus by the resources that need it, and the L2 access is

complete.  Meanwhile, the external interface buffer reserved for this access is released. The

state machine returns to “RL2Idle.”

RL2Miss: In this cycle, the state machine drives the L2-buffer-enable line, which causes the L2

state latched in the previous cycle to update the L2 tag array.  While the state machine has the

read bus for this cycle, the reservation is wasted.  If the state machine sees that a writeback is

generated, it sets a bit that makes it remember that the current L2 access generated a write-

back.  This bit is used in the following state machine stage.  The state machine also checks to

see whether the next pipe stage (the memory read) is ready.  If ready, the address is handed

over to the memory read stage, and this stage goes to “RL2Idle.”  Otherwise, the next state is

“RL2MissStall.”

RL2MissStall: This “state” is not really a state at all, but instead a small queue in which the access

can wait for the memory read stage to complete its current access.  When the memory stage is

ready, the address is handed over, and this stage goes back to “RL2Idle.”



Chapter 3: The Base Hydra Design 53

The second stage (memory read) of the state machine has an idle state during which it checks if the

first stage has an access ready for it.  An access becomes ready when the first stage processes an L2

miss, or when it finds an uncached access in one of its queues.  The memory read stage takes the

access from the first stage, and then the first stage is free to return to its “idle” state.  The following

is a listing of the memory stage states, with a brief description of each one.  Each is summarized in

Table 3-13, also.

RMemIdle: The memory stage is idle, waiting for the L2 read stage to pass down an access.

While in this state, the state machine monitors the L2-write-back strobe, as well as the dirty-

bit set by preceding stage.  If an access comes down while either of those is high, the next state

is “RMemDirtyArb.”  Otherwise it is “RMemCleanArb.”  The address of the access is driven

out onto the state machine’s memory address bus.

Table 3-12: State Transitions — L2 Read Stage

Current State Input Next State Output

RL2Idle nothing-valid RL2Idle

queue-valid & cacheable RL2ReadArb

queue-valid &
non-cacheable

RL2MissStall

RL2ReadArb !L2-rd-arb-grant RL2ReadArb L2-rd-arb-request

L2-rd-arb-grant RL2ReadA L2-rd-arb-request

RL2ReadA RL2ReadB

RL2ReadB L2-hit RL2Hit L2-buffer-latch

!jammed AND !L2-hit RL2Miss L2-buffer-latch

jammed AND !L2-hit RL2Idle

RL2Hit RL2Idle L2-buffer-drive, L2-data-
OE

RL2Miss mem-stage-idle RL2Idle L2-buffer-drive

!mem-stage-idle RL2MissStall

RL2MissStall !mem-stage-idle RL2MissStall

mem-stage-idle RL2Idle
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RMemCleanArb: The state machine must acquire access to the external memory address bus.  It

raises an arbitration request line, and waits for the arbiter to return a corresponding grant. The

next state is “RMemClean.”

RMemClean: The state machine memory address (from its memory address bus) is issued to the

external interface through the memory address port. The next state is “RMemIdle.”

RMemDirtyArb: This state is entered whenever the state machine is writing a memory line that

will take place of a dirty line in the L2.  The L2 must write back its dirty data to the external

interface buffer, and the arbiter, which controls the accesses to that buffer, must be notified of

the write-back.  The state machine notifies the arbiter that a write back has taken place by rais-

ing this arbitration line.  The machine waits in this state until the corresponding grant line is

raised by the arbiter. The next state is “RMemDirtyInv1.”

RMemDirtyInv1: The state machine memory address (from its memory address bus) and the

writeback address (from the writeback address bus) are issued to the external interface through

the memory address port.  Meanwhile, an invalidation to the first half of the dirty line being

removed is broadcast over the write bus to ensure that L1 inclusion in the L2 is maintained.

The system also starts a data read of the dirty line (see RMemDirtyInv2) during this state.  The

next state is “RMemDirtyInv2.”

RMemDirtyInv2: This state completes the invalidation process begun on the previous cycle.

Since every L2 line contains two L1 lines, two invalidations must be generated for every L2

write back.  A single bit is flipped in the memory address, and the second invalidation is broad-

cast. The system also concludes its data read of the dirty line during this state.  The next state

is “RMemDirtyWB.”
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RMemDirtyWB: During this stage, the dirty line is written to the external interface buffer using

the read bus.  The next state is “RMemIdle.”

3.4.4.2 The Write State Machines

Each CPU also has a designated “write” state machine, which is responsible for handling that

CPU’s writes to the L2 and lower memory.  The write state machine is very similar to the read state

machine in its implementation.  There are minor differences in the L2 cache access, since a write

operation is performed to merge data into the L2 cache instead of reading a line.  The second stage,

which initiates accesses to lower memory, is virtually identical to the read state machine.  Both just

initiate the read of a cache line from lower memory.  For a write, the system just has to remember

to perform the write after the line is returned from main memory, but this does not affect the struc-

ture of the write state machine since that part of the access is handled by the memory state

machine.

Table 3-13: State Transitions — Memory Read Stage

Current State Input Next State Output

RMemIdle nothing-valid RMemIdle

Access_ready & !dirty RMemCleanArb

Access_ready & dirty RMemDirtyArb

RMemCleanArb !Clean-grant RMemCleanArb Clean-arb-request

Clean-grant RMemClean Clean-arb-request

RMemClean RMemIdle

RMemDirtyArb !Dirty-grant RMemDirtyArb Dirty-arb-request

Dirty-grant RMemDirtyInv1 Dirty-arb-request

RMemDirtyInv1 RMemDirtyInv2

RMemDirtyInv2 RMemDirtyWB

RMemDirtyWB RMemIdle
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If the write is to an uncached line, the L2 cache stage is bypassed, and the write proceeds directly

to memory under the control of the external interface.

The following list, summarized in Table 3-14, describes the states of the first stage of the state

machine:

WL2Idle: This is the “standby” state of the first stage. When speculation has been added, it is

forced to sit idle by a control line from the L2 if the L2 buffers are not ready to accept more

writes during speculation. Otherwise, the machine monitors the write buffer and the jam

buffer, looking for an access that needs processing.  If an access is found in one of the queues,

the state machine fires an “Output Enable” line going to that queue.  The jam queue is given

priority over the write queue because the accesses residing there are presumably older.  The

OE signal that goes to each queue only facilitates book keeping.  In reality, the queue is always

driving the next access on its port, waiting for the state machine to grab it.  When the OE sig-

nal goes high, the access is latched into the state machine, and the queue can deallocate an

entry and drive the next access onto its port.  Meanwhile, the state machine puts the address of

the access that it’s beginning to process onto its L2 address bus.  If that access is cacheable, the

machine proceeds to “WL2WriteArb.”  Otherwise, it goes to “WL2MissStall.”

WL2WriteArb: The state machine raises the arbitration request line that tells the arbiter that it

intends to write the L2 cache.  The machine remains in this state, with the request line raised,

until the arbiter responds with a corresponding grant signal.  When the grant signal for this

state machine goes high, it causes many things to happen in the system.  The address that the

state machine has been driving on its designated L2 address bus is muxed to the L2 address

port.  The L2-address-valid strobe fires.  The same address is muxed to the input of the address

jammer, and the jam-address-valid strobe fires.  These events initiate the L2 access and an

address jam check.  The machine goes on to “WL2TagCheckA.”
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WL2TagCheckA: This is the first cycle of the L2 tag read access. The next state is

“WL2TagCheckB.”

WL2TagCheckB: In this cycle, the tag compare of the L2 is complete, and the L2 asserts the L2-

hit line if any of the lines in the cache hit.  The state machine drives its L2-buffer-select line

high.  If the L2-hit line remains low, the L2 access is a miss, and the address jammer, which is

accessed in parallel with the L2, is consulted to see which state is next. If the address jammer

jams the access, the machine returns to “WL2Idle,” temporarily forgetting the current access.

The dropped access will be added to the jam queue after its jam clears, which will allow it to

be retried.  If the address is not jammed (the common case), the machine proceeds to

“WL2Miss.” If the access is a hit, the L2-hit signal causes the data from the write queue to be

put on the write bus, which makes the write visible to the system.  The L1 caches see it, and

begin any necessary invalidations.  The write bus data in aligned and latched into the L2 input

buffer.  The write happens during the next state, which is “WL2WriteToCache.”

WL2WriteToCache: In this cycle, the state machine drives the L2-buffer-enable line, which

causes the L2 state latched in the previous cycle to update the L2 tag array.  The write that was

latched into the input buffer is put on the internal L2 write bus, and the appropriate byte-select

lines fire, causing the data to be merged “in-place” into the L2 array. Meanwhile, the external

interface buffer reserved for this access is released. At this point the write is considered com-

plete, and the state machine returns to “WL2Idle.”

WL2Miss: In this cycle, the state machine drives the L2-buffer-enable line, which causes the L2

state latched in the previous cycle to update the L2 tag array.  If the state machine sees that a

writeback is generated, it sets a bit that makes it remember that the current L2 access gener-

ated a writeback.  This bit is used in the following state machine stage.  The state machine
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checks whether the next pipe stage (the memory read) is ready.  If ready, the address is handed

over to the memory read stage, and this stage goes to “WL2Idle.”  Otherwise, the next state is

“WL2MissStall.”

WL2MissStall: This “state” is not really a state at all, but instead a small queue in which the

access can wait for the memory read stage to complete its current access.  When the memory

stage is ready, the address is handed over, and this stage goes back to “WL2Idle.”

The second stage (memory write) of the state machine has an idle state during which it checks if

the first stage has an access ready for it.  An access becomes ready when the first stage processes

an L2 miss, or when it finds an uncached access in one of its queues.  The memory write stage

takes the access from the first stage, and then the first stage is free to return to its “idle” state.  It

Table 3-14: State Transitions — L2 Write Stage

Current State Input Next State Output

WL2Idle nothing-valid WL2Idle

queue-valid & cacheable WL2WriteArb

queue-valid &
non-cacheable

WL2MissStall

WL2WriteArb !L2-wr-arb-grant WL2WriteArb L2-wr-arb-request

L2-wr-arb-grant WL2TagCheckA L2-wr-arb-request

WL2TagCheckA WL2TagCheckB

WL2TagCheckB L2-hit WL2WriteToCache L2-buffer-latch

!jammed AND !L2-hit WL2Miss L2-buffer-latch

jammed AND !L2-hit WL2Idle

WL2WriteToCache WL2Idle L2-buffer-drive

WL2Miss mem-stage-idle WL2Idle L2-buffer-drive

!mem-stage-idle WL2MissStall L2-buffer-drive

WL2MissStall !mem-stage-idle WL2MissStall

mem-stage-idle WL2Idle



Chapter 3: The Base Hydra Design 59

should be noted that this half of the write state machine is identical to the one for the read state

machine, since they’re performing the same jobs, except that it sends “Write…” requests to the

arbiter instead of “Read…” requests, since it is a part of the Write SM. The following, along with

Table 3-15, lists the states:

 

WMemIdle: The memory stage is idle, waiting for the L2 write stage to pass down an access.

While in this state, the state machine monitors the L2-write-back strobe, as well as the dirty-

bit set by preceding stage.  If an access comes down while either of those is high, the next state

is “WMemDirtyArb.”  Otherwise it is “WMemCleanArb.”  The address of the access is driven

out onto the state machine’s memory address bus.

WMemCleanArb: The state machine must acquire access to the external memory address bus.  It

raises an arbitration request line, and waits for the arbiter to return a corresponding grant. The

next state is “WMemClean.”

WMemClean: The state machine memory address (from its memory address bus) is issued to the

external interface through the memory address port. The next state is “WMemIdle.”

WMemDirtyArb: This state is entered whenever the state machine is writing a memory line that

will take place of a dirty line in the L2.  The L2 must write back its dirty data to the external

interface buffer, and the arbiter, which controls the accesses to that buffer, must be notified of

the write-back.  The state machine notifies the arbiter that a write back has taken place by rais-

ing this arbitration line.  The machine waits in this state until the corresponding grant line is

raised by the arbiter. The next state is “WMemDirtyInv1.”

WMemDirtyInv1: The state machine memory address (from its memory address bus) and the

writeback address (from the writeback address bus) are issued to the external interface through
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the memory address port. Meanwhile, an invalidation to the first half of the dirty line being

removed is broadcast over the write bus to ensure that L1 inclusion in the L2 is maintained.

The system also starts a data read of the dirty line (see WMemDirtyInv2) during this state.

The next state is “WMemDirtyInv2.”

WMemDirtyInv2: This state completes the invalidation process begun on the previous cycle.

Since every L2 line contains two L1 lines, two invalidations must be generated for every L2

write back.  A single bit is flipped in the memory address, and the second invalidation is broad-

cast. The system also concludes its data read of the dirty line during this state.  The next state

is “WMemDirtyWB.”

WMemDirtyWB: During this stage, the dirty line is written to the external interface buffer using

the read bus.  The next state is “WMemIdle.”

Table 3-15: State Transitions — Memory Write Stage

Current State Input Next State Output

WMemIdle nothing-valid WMemIdle

Access_ready & !dirty WMemCleanArb

Access_ready & dirty WMemDirtyArb

WMemCleanArb !Clean-grant WMemCleanArb Clean-arb-request

Clean-grant WMemClean Clean-arb-request

WMemClean WMemIdle

WMemDirtyArb !Dirty-grant WMemDirtyArb Dirty-arb-request

Dirty-grant WmemDirtyInv1 Dirty-arb-request

WmemDirtyInv1 WmemDirtyInv2

WmemDirtyInv2 WMemDirtyWB

WMemDirtyWB WMemIdle
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3.4.4.3 The Memory State Machine

The memory state machine is responsible for handling the last stages of any memory access that

goes to main memory.  Since the delay through main memory will be tens to hundreds of cycles, it

makes little sense to have the read or write state machines assigned to each CPU tied up waiting

for the response from memory.  Instead, they are allowed to continue operating on other accesses

during the main memory access.  When the access completes, the memory state machine, located

in the memory controller, is responsible for completing the duties performed by the read and write

state machines on other accesses — controlling the caches and internal chip buses.

Unlike the other state machines, the memory state machine does not have multiple, separate state

machines to handle more than one reference at once.  This is because each event handled can usu-

ally be handled by the state machine in only a few processor clock cycles, while events can only be

supplied to the state machine at the much slower speed of the off-chip memory interface.

All states of the memory state machine are summarized in Table 3-16.

MemIdle: The memory state machine is idle, waiting for an access to return from memory.  While

in this state, the state machine monitors the external interface.  Depending upon the type of a

returning access (line load after read, line load after write, or just an uncached word being

read) and the number of words from the request that have been returned, the state machine

may be advanced to “MemReadFirstA” (critical word read on load-after-read, or uncached

read), “MemReadL1A” (16 bytes read on load-after-read), “MemReadL2A” (32 bytes read on

load-after-read), or “MemWriteA” (32 bytes read on load-after-write, or uncached write).

Should one exist, any external intervention requests that might happen to be pending are

allowed to use the state machine before normal memory reference returns.  If one is found, the

state machine transfers to the “EIArb” state.  Any external interventions that are jammed by

the address arbiter are given priority over ones coming in from off-chip, if multiple interven-
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Table 3-16: State Transitions — Memory State Machine

Current State Input Next State Output

MemIdle nothing-valid MemIdle

!EI & Access_ready & Read & 
4_bytes

MemReadFirstA

!EI & Access_ready & Read & 
16_bytes

MemReadL1A

!EI & Access_ready & Read & 
32_bytes

MemReadL2A

!EI & Access_ready & Write 
& 32_bytes

MemWriteA

External_intervention
(highest priority)

EIArb

MemReadFirstA !MemRB-grant MemReadFirstA Read Bus-request

MemRB-grant MemReadFirstB Read Bus-request

MemReadFirstB MemIdle Mem buffer OE

MemReadL1A !MemRB-grant MemReadL1A Read Bus-request

MemRB-grant MemReadL1B Read Bus-request

MemReadL1B MemIdle Mem buffer OE

MemReadL2A !MemRBL2-grant MemReadL2A MemWB-request

MemRBL2-grant MemReadL2B MemWB-request

MemReadL2B MemReadL2C Mem buffer OE

MemReadL2C MemIdle

MemWriteA !MemRWBL2-grant MemWriteA MemWBW-request

MemRWBL2-grant MemWriteB MemWBW-request

MemWriteB MemWriteC Mem buffer OE, Write buffer 
OE

MemWriteC MemIdle

EIArb !MemEI-grant EIArb MemEI-request

MemEI-grant EIL2ReadA MemEI-request

EIL2ReadA MemEIL2ReadB L2-address-strobe

EIL2ReadB !jammed & L2-hit EIL2HitC L2-buffer-latch

!jammed & L2-miss EIL2MissC

jammed MemIdle
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tions are pending.  If none of these conditions are met, the state machine just stays in the

“MemIdle” state.

The “Read First” group of states is responsible for returning the critical word from a newly-loaded

cache line as soon as possible.  These states are only used for cached accesses if critical-word-first

memory operation is enabled.  They are also used to return uncached access words, which are

always the “critical” words of uncached accesses.

MemReadFirstA: The state machine must acquire access to the read bus.  It raises an arbitration

request line, and waits for the arbiter to return a corresponding grant.  When the grant line is

strobed, the state machine is allowed to progress into the “MemReadFirstB” state.  Otherwise,

the state machine busy-waits at this state.

MemReadFirstB: In this state, the state machine puts the critical first word of the returned cache

line on the read bus for early pickup by the CPU, if possible.  The word from memory is put on

the read bus in the position that it would normally occupy if the entire cache line were passed

over the bus, and latched directly through the receiving CPU into its pipeline.  The state

machine then returns to the “MemIdle” state.

EIL2HitC L2-hit (second) EIL2HitD L2-buffer-latch, L2-buffer-
drive, L2-data-OE

L2-miss (second) EIL2MissD L2-buffer-drive,L2-data-OE

EIL2MissC L2-hit (second) EIL2HitD L2-buffer-latch

L2-miss (second) EIL2MissD

EIL2HitD L2-hit (second) EIL2HitD L2-buffer-drive,L2-data-OE

EIL2MissD L2-miss (second) EIL2MissD

Table 3-16: State Transitions — Memory State Machine

Current State Input Next State Output
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The “Read L1” group of states is responsible for returning the critical 16 byte line of a cache

reload access for return to the L1 caches of the reading processor.  These states should only be

used if the memory system is capable of returning the correct 16-byte half of a cache line first.

MemReadL1A: The state machine must acquire access to the read bus.  It raises an arbitration

request line, and waits for the arbiter to return a corresponding grant.  When the grant line is

strobed, the state machine is allowed to progress into the “MemReadL1B” state.  Otherwise,

the state machine busy-waits at this state.

MemReadL1B: In this state, the state machine puts the first half of the returned cache line on the

read bus for pickup by the CPU and L2 buffers.  The line from memory is put on the read bus

and latched directly through the receiving CPU into its L1 cache and pipeline.  It is simulta-

neously latched into the L2 input buffers.  The state machine returns to the “MemIdle” state.

The “Read L2” group of states is responsible for returning the final, completed line to the L2 cache

and writing it there permanently for future use.

MemReadL2A: The state machine must acquire access to the read bus and data arrays of the L2

cache.  It raises an arbitration request line, and waits for the arbiter to return a corresponding

grant.  When the grant line is strobed, the state machine is allowed to progress into the

“MemReadL2B” state.  Otherwise, the state machine busy-waits at this state.

MemReadL2B: In this state, the state machine puts the critical half of the returned cache line on

the read bus for pickup by the CPU, if necessary (when the “Read L1” group of states is not

used).  The entire 256-bit line from memory is put on the read bus and latched into the L2

input buffers, in preparation for driving it into the L2 cache on the next cycle.  The state

machine hops ahead to the “MemReadL2C” state.
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MemReadL2C: In this state, the state machine initiates the write of the newly read cache line

from the L2 cache control buffers into the L2 cache data arrays. Meanwhile, the external inter-

face buffer reserved for this access is released. The state machine returns to the “MemIdle”

state.

The “Write L2” group of states is identical to the “Read L2” group, except for the fact that it also

enables the write bus to send the written word of data from the CPU so that it may be merged in

with the newly read line immediately.

MemWriteL2A: The state machine must acquire access to the read bus, write bus, and data arrays

of the L2 cache.  It raises an arbitration request line, and waits for the arbiter to return a corre-

sponding grant.  When the grant line is strobed, the state machine is allowed to progress into

the “MemReadL2B” state.  Otherwise, the state machine busy-waits at this state.

MemWriteL2B: In this state, the state machine puts the entire returned cache line on the full 256-

bit read bus for pickup by the L2 input buffers, in preparation for driving it into the L2 cache

on the next cycle.  Meanwhile, the data that was originally written by the CPU to this cache

line is sent over the write bus to be merged with the newly read line in the L2 input buffers.

The state machine hops ahead to the “MemReadL2C” state.

MemWriteL2C: In this state, the state machine initiates the write of the newly read cache line,

plus the written data from a CPU, from the L2 cache control buffers into the L2 cache data

arrays. Meanwhile, the external interface buffer reserved for this access is released. The state

machine returns to the “MemIdle” state.

Finally, the “EI” group of states is devoted to processing external intervention requests from the

off-chip interfaces.  These requests are designed to knock cache lines out of all caches on the chip,
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so that they may be accessed by the off-chip interface.  While Hydra currently only uses this func-

tion for I/O purposes, it could eventually be used as the basis for a multi-chip Hydra in the future,

since it allows external invalidations of lines in the on-chip cache.

EIArb: The state machine must acquire access to the read bus, write bus, and data arrays of the L2

cache for two cycles each — 1 for each half of the line being knocked out of the chip.  It raises

an arbitration request line, and waits for the arbiter to return a corresponding grant.  When the

grant line is strobed, the state machine is allowed to progress into the “EIL2ReadA” state.

Also, an L2 access is initiated.  The address that the state machine has been driving on its L2

address bus (for the first half of the line being evicted) is muxed to the L2 address port.  The

L2-address-valid strobe fires.  The same address is muxed to the input of the address jammer,

and the jam-address-valid strobe fires.  These two events initiate the L2 access and an address

jam check.  Otherwise, the state machine busy-waits at this state.

EIL2ReadA: This is the first cycle of the first L2 read access.  In a pipelined manner, the second

access is initated.  The address that the state machine has been driving on its L2 address bus

(for the second half of the line being evicted) is muxed to the L2 address port.  The L2-

address-valid strobe fires.  The next state is “EIL2ReadB.”  

EIL2ReadB: If the address jammer jams the access, the machine returns to “MemIdle,” tempo-

rarily forgetting the current access. The dropped access will be added to the jam queue after its

jam clears, which will allow it to be retried. If the address is unjammed (the common case), the

machine examines the results returned by cache.  In this cycle, the tag compare of the first L2

access is complete, and the L2 asserts the L2-hit line if any of the lines in the cache hit.  The

data from all four sets of the L2 are available, and are latched in the internal data buffer at the

end of the cycle.  If the L2-hit line is high at the end of the cycle, the next state is “EIL2HitC.”

If the access is a cache miss, then the next state is “EIL2MissC.”  
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EIL2HitC: In this cycle, the state machine drives the L2-buffer-enable line, which causes the L2

state latched in the previous cycle to update the L2 tag array, invalidating the first half of the

line.  It also drives the L2-data-output-enable line, which causes the current contents of the L2

line to be gated onto the 512-bit section of the read-bus.  The data is then grabbed off the bus

by the EIB assigned to this external intervention.  Meanwhile, an invalidation to the first half

of the dirty line being removed is broadcast over the write bus to ensure that L1 inclusion in

the L2 is maintained.  Finally, the tag compare of the second L2 access is complete, and the L2

asserts the L2-hit line if any of the lines in the cache hit.  The data from all four sets of the L2

are available, and are latched in the internal data buffer at the end of the cycle.  If the L2-hit

line is high at the end of the cycle, the next state is “EIL2HitD.”  If the access is a cache miss,

then the next state is “EIL2MissD.”

EIL2MissC: The tag compare of the second L2 access is complete, and the L2 asserts the L2-hit

line if any of the lines in the cache hit.  The data from all four sets of the L2 are available, and

are latched in the internal data buffer at the end of the cycle.  If the L2-hit line is high at the

end of the cycle, the next state is “EIL2HitD.”  If the access is a cache miss, then the next state

is “EIL2MissD.”

EIL2HitD: In this cycle, the state machine drives the L2-buffer-enable line, which causes the L2

state latched in the previous cycle to update the L2 tag array, invalidating the second half of the

line.  It also drives the L2-data-output-enable line, which causes the current contents of the L2

line to be gated onto the 512-bit section of the read-bus.  The data is then grabbed off the bus

by the EIB assigned to this external intervention.  Meanwhile, an invalidation to the second

half of the dirty line being removed is broadcast over the write bus to ensure that L1 inclusion

in the L2 is maintained.  When this cycle is complete, the system returns to the “MemIdle”

state.



Chapter 3: The Base Hydra Design 68

EIL2MissD: Nothing happens in this cycle, but we have reserved some resources that we will not

be using and this cycle holds the system during their “use.”  It may be possible to just return to

the “MemIdle” state, instead, with some small system optimizations.  When this cycle is com-

plete, the system returns to the “MemIdle” state.

Unlike all other memory accesses that use an EIB, no state machine step releases the EIB when it

is no longer needed after an external intervention or an uncached write.  Instead, the external I/O

interface itself is responsible for releasing any EIB used during either of these processes.

3.4.5 Instrumentation for Research Purposes

Here are a few techniques that can be used to instrument the memory system in order to gain

insight about the operation of the different parts of the system.  In our simulation or FPGA-based

implementations of Hydra, these may be added or deleted as needs demand.

3.4.5.1 State Counters on the State Machines

The “state counter” at the bottom of Figure 3-8 is an instrumentation mechanism.  With this mech-

anism hanging off of the state machines, it is possible to see exactly where the state machines are

spending their time — and by determining this it will be possible to see where the bottlenecks in

the memory system really are for a tested benchmark.  Not all states need to be instrumented —

just ones where delays may occur and the first state of each path after a “decision point” in the

state diagrams, to see the usage frequency of various “basic blocks” of states.

3.4.5.2 Total Latency Counters in the Address Check Buffers

In Figure 3-7, when a new address buffer is allocated the start time of the access is also recorded in

the address buffer.  When an event is done, its start time is subtracted from the current time and the

difference is added to the total memory latency register (or one of several sub-registers).  Mean-

while the total number of events is incremented by one.  When desired, both may be read, and the

total average memory latency may be obtained by division.  This is necessary even with the state
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machine instrumentation described in Section 3.4.5.1, since delays caused by main memory

accesses will not be noted by the state machine counters.  This is the case because no state machine

is cycling while the system waits for main memory access, since the access is just an entry in the

memory system queues.

3.4.5.3 Occupancy Accumulators on the Arbiter

For any particular resource in the arbiter, there is a shift register that records the cycles during

which the resource has been reserved.  As bits are shifted out of these registers, the contents will be

TRUE or FALSE depending upon whether or not the resource is to be used on that cycle.  By using

this signal to control a counter, it will be possible to determine the occupancy of a particular

resource.  In this manner, resources that are acting as bottlenecks to the system or underutilized

resources will become apparent.

3.4.5.4 Arbiter Success and Attempt Counters

The success percentage of various arbitrations could be determined from the state machine

counters described previously.  However, if those cannot be built then it may be desirable to imple-

ment small counters attached to the arbiter that just count the number of attempts that are made on

each arbitration request line, and also the number that are successful, so that arbitration success

statistics may be calculated.

3.4.5.5 Bus Monitors

In order to get very raw data it may be necessary to instrument the buses themselves with sets of

registers to record the contents of the buses at predetermined times, or spans of time.  These “snap-

shots” or “movies” of the bus activity may then be pulled out of the system at a low speed by the

user.  In essence, the monitors would act like a small logic analyzer built into the hardware.
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3.4.5.6 Event Queue Counters

In addition to the total latency counters (Section 3.4.5.2) as a means to determine the full access

time of events, it may be possible to put counters on the event queues to the memory state machine

that will indicate the total time each type of event sits in the queue.  Much like the total latency

counters, a running total and an event count may then be maintained in order to determine an aver-

age queue latency at any time.

3.5 The Level 2 Cache
This section describes the structure and interface of the Level-2 (L2) cache.  This large, on-chip

cache is responsible for acting as a large yet high-speed secondary cache for all four CPUs on the

chip.  In this respect, it is much like any of the other on-chip level-2 caches that have been used on

commercial systems in the past few years (such as the Alpha 21164  [22] and several Intel, AMD,

and IBM PC processors [34]).  However, our L2 cache also performs a critical function in accept-

ing all of the write-through traffic from the CPUs, preventing them from forcing performance-lim-

iting off-chip accesses.  In this function, it acts as the repository for the chip’s permanent state.

3.5.1 Address and Tag Buffering System

Figure 3-10 gives an overview of the L2 cache subsystem.  The top portion of the diagram focuses

on the address/tag resources, while the bottom part of the diagram details the connections between

the data memory and the data buses in the memory interconnection system. 

3.5.1.1 Tag Processing Loop

On each L2 access, the set of four tags selected by the index bit field in the address sent from the

CPU is read out of the tag array, using the dedicated read port in the tag memory, and latched into

the tag buffer (a short pipeline of physical buffers).  As it is latched into the tag buffer, the tags are

compared with the actual address, to determine whether or not there is a cache hit.  The way within

the associative set that hits is also recorded.  At this point, the controlling state machine can deter-

mine whether or not there has been a hit in the cache, and make its next state selection accordingly.
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After the tag is processed in the tag buffer, it is updated and written back into the tag array using

the write port into the tag RAM.  Any hit line within the set will have its “age” bits set to indicate

that it is the most recently used line within the set, as the other lines within the set are appropri-

ately aged.  The output line processor also performs other modifications to the line, as is appropri-

ate for the access:

Read Hit: No special processing occurs.

Write Hit:  The dirty bit for the hit line is set.

Read Miss: The read address is substituted for the LRU one, while the old LRU address (if valid)

is thrown out to the external interface over the L2 LRU address bus.  The line is validated and

marked as clean.

Write Miss:  The write address is substituted for the LRU one, while the old LRU address (if valid)

is thrown out to the external interface over the L2 LRU address bus.  The line is validated and

marked as dirty.

After all appropriate processing, the updated set of tags is written back into the tag RAM and the

system continues with the next access.  It should be noted that due to the multicycle nature of this

read-modify-write sequence, several tag updates will often be occurring at once in a pipelined

fashion.  However, these will never interfere with each other, since the address arbitration mecha-

nism will always ensure that only accesses to different sets within the L2 cache are allowed to pro-

ceed simultaneously.

When the system is reset, all valid bits in the L2 cache tag RAM are cleared using a special reset

counter that loops through all sets in the cache while writing lines with cleared valid bits.  Normal

cache functionality only starts after this clearing has occurred.

Table 3-17 summarizes the bits in the L2 tag field associated with each cache line and their func-

tions.  In each set there are 4 complete sets of these bits, for the assumed 4-way L2 cache.
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3.5.1.2 Data Processing Loop

For read accesses, the L2 data array is accessed in parallel with the read of the tag array.  The

address to the data array is also the index field from the address sent by the CPU.  Following the

read of all lines within a set, the correct line within the set is put on the read bus, as selected by the

hit way (for hits), the LRU way (for misses that discard dirty lines, which will be written back to

the external interface), or nothing at all (for misses that discard clean or invalid lines).

For write accesses, the L2 data array is accessed in parallel with the write of the tag array.  The

specific byte, halfword, or word written by a processor is selectively written into the cache array.

The address to the data array is composed of the index from the state machine’s address to select

the proper set, the hit way information from the tag buffer, the offset within the state machine’s

address to locate the correct position of the write within the line, and the byte-lane selects from the

write bus to activate writing on a byte-by-byte basis so the data can be merged into the cache “in

place.”  If a miss occurs and a dirty line must be discarded, the writeback address and the way of

the LRU line being discarded is recorded in a side buffer, as noted in Table 3-18.  There are 32 of

these buffers, which are assigned to accesses along with EIB entries.  During the memory stage of

Table 3-17: L2 Cache Tag Fields

Field Size Function

Tag Address 17* bits Holds the actual tags for the 4 cache lines in this set.  
*assumes 128K, 4-way cache

Valid Bit 1 bit Signals that this entry is valid

Dirty Bit 1 bit Signals that a writeback is occurring during this main memory 
access

Age Bits 2* bits Holds the "age" of this line (most recently to least recently 
used), relative to the others in the set.  The most recently used 
line has an age of 00, while the least recently used is 11.  
*assumes a 4-way cache

Speculative Lock Bits 8* bits Locks this line in the cache, regardless of LRU age status, if 
the speculative write buffers contain data to write to this line 
*the number of bits = the number of L2 write buffers
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the write access, the LRU way is then used to read out the dirty line and place it on the write bus,

exactly as it is done during a read access.

When a missed line is returned from the external interface, the index and the LRU way information

are also returned from the buffers at the external interface.  These are used to select the correct

place in the cache to write the line coming in from main memory.  In the case of write accesses, the

write merging mux slips the data from the original write into the middle of the new line being writ-

ten to the cache, using the offset bits from the cache and the byte selects on the write bus to prop-

erly place the new data.  No further tag access is necessary during this stage, since the tags will

have been properly updated during the original L2 cache access.

3.6 External Memory and Testing Interface

The final portion of the core Hydra chip is the unit that connects all of the on-chip resources to the

outside world — the external memory and test interface.  An overview of this portion of the chip is

given in Figure 3-11.  This portion of the chip is responsible for buffering data as it passes between

the zones controlled by the high-speed on-chip bus protocols and the slower, narrower off-chip

data communication protocols.  To accomplish this job, the interface actually connects four differ-

ent interfaces together through a mass of logic.  The following paragraphs describe the four inter-

faces:

Table 3-18: L2 Side Buffer Format

Field Size Function

Writeback Index 10 bits Holds index of the line being written back to main memory, if 
any

L2 Way of Miss 2 bits This remembers the way of the line being written out to mem-
ory, and the location where the line’s replacement will go
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Read and Address Bus Interface: The CPUs connect to the outside world using the external

interface, through the on-chip address and read buses.  The external interface buffers (EIBs,

see Section 3.4.1.2) are responsible for buffering address and data as they pass between the

off-chip and on-chip domains.  Data return from main memory to the central core of the chip is

controlled by the memory state machine, described in Section 3.4.4.3.  The read bus is used

both to write lines back from the L2 cache and read lines in from the external interface.

SDRAM Main Memory Interface:  Main memory for the Hydra system is attached directly via

an SDRAM interface located right on the chip.  With the current Hydra configuration, a 32-bit,

133 MHz interface would be a good target size and speed (see Chapter 4 for more details).

This interface is only responsible for the timing and signaling control required by the DRAM

Figure 3-10: The structure of the Hydra L2 cache
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chip interfaces.  As a result, it could easily be replaced with a different type of physical DRAM

interface, such as Rambus,, in order to attach those types of chips instead. The I/O interface

and CPUs are attached to this interface using the memory access arbiter/sequencer block.  This

piece of hardware is responsible for selecting the next access that will be allowed to use the

main memory DRAM from the two interfaces, and then for sequencing the DRAM access.

Meanwhile, any necessary completion signals are passed to the output queues of the appropri-

ate interface following each access.  On the CPU side, the EIB numbers of completed memory

read accesses are passed back to the memory SM to notify it when the accesses are ready to be

returned to the requesting CPU and caches.  On the I/O side, returned data is queued to be sent

out through the parallel interface.  Finally, the block may also act as a “short circuit” between

the CPU and I/O interfaces.  If an uncached write is made to a small, preset address range, the

write is passed to the I/O interface’s output queue as if it was data returning from memory.

This function allows the Hydra chip to “push” out I/O results when necessary.

Parallel I/O and Debug Interface: The secondary off-chip interface is logically a simple, bidirec-

tional parallel port used to connect to a host workstation to the Hydra chip during testing.  Like

the main memory interface, it could be transformed into another physical interface with addi-

tional hardware prior to long-distance transmission without affecting the basic specification of

the interface.  The use of this interface is described below.

Debug Registers: This “register file” is actually an interface to all of the on-chip debug and statis-

tics resources that happen to be included on any particular revision of the Hydra chip.  It may

be accessed only through reads and writes through the debugging interface.  Each “register” in

the “file” is actually an I/O port for a specific bit of on-chip hardware.  As the portions of the

chip visible using this interface may vary depending upon the chip revision, especially while

the chip is emulated on FPGAs, this document will not discuss the various debugging

resources accessible through this mechanism in detail.  However, all implementations of
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Hydra must have “register” #0 be an interrupt trigger.  Bits 0–3 send interrupts to their corre-

sponding processor when they are written with a 1.  This can be used to send interrupts from a

host workstation to emulate an I/O device.

While the bridge between the CPU and the SDRAM is the most important connection, all of the

lower-bandwidth connections to the I/O and debugging ports are critical to the overall functioning

of the Hydra system.  The I/O interface is complex enough to warrant its own subsection.

3.6.1 I/O Interface Command Description

The I/O interface is a simple, byte-wide parallel interface that teams up an 8-bit command word

(sent first) with one or two optional 32-bit data words following it.  If the physical medium is nar-

rower than 8 bits, the returning command word may be shorter, as it comes in only four varieties.

On input, the command word is primarily used to allow the user to send different kinds of

accesses: debug reads, debug writes, DRAM reads, DRAM writes, and external intervention

requests.  On the way back, the command word allows read returns to be differentiated, because

returns from different sources (DRAM vs. debug registers) may come back interleaved differently

from the order in which the requests were sent, as debug registers may be read faster than DRAM.

The return command also allows the processors on the Hydra chip to write data directly to the I/O

port using uncached writes.  The full interpretation of all command words and any data words that

may follow them is described in Table 3-19.  The current command word allows up to 64 debug

registers to be addressed, although this could be increased by adding commands which address

debug registers using an address encoded in a data word, instead of command word bits.  Finally,

should link synchronization ever be lost, it should be noted that the interface may be re-synchro-

nized at any time by sending 9 or more “no command” commands in a row.
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Figure 3-11: Overview of the external memory and testing interface.
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3.7 Design Analysis
Probably the most beautiful part of the Hydra design is how it eliminates the need for any form of

fancy cache or memory protocols.  With the judicious application of a pair of cross-chip buses, all

coherence traffic is simply broadcast to all processors and handled using simple, immediate invali-

dations.  The L2 cache maintains the current state of the machine at all times, so no transfers

between L1 caches ever need to even be considered.  Complex protocols such as MESI [60] [55]

— or worse — are simply eliminated.

Hydra almost offers as good a memory coherence protocol.  The basic design was targeted to pro-

vide a Total Store Ordering (TSO, [58] [59]) memory coherence protocol, that allows most inter-

processor communication to work without any explicit synchronization.  The atomicity of write

propagations provided by the shared write bus makes this relatively simple coherence model a pos-

sibility in Hydra.  Unfortunately, the “jamming” of references caused by the address arbiter breaks

this model whenever multiple references to the same address collide in the memory system, as

later writes from the processor that produced the “jammed” reference are allowed to pass the jam.

Table 3-19: The list of commands that may be used with Hydra’s parallel I/O port.

Command
Send / 
Return

Encoding Data Word 0 Data Word 1

No Command S / R 0x00 — —

External Intervention Request S 0x01 Invalidation Address —

DRAM Read S 0x02 Read Address —

DRAM Write S 0x03 Write Address Data to Write

Send Reserved S 0x04 to 0x7F — —

Debug Read S 0x80 to 0xBF — —

Debug Write S 0xC0 to 0xFF Data to Write —

Core-to-I/O Write R 0x01 Address Written Data to Write

Debug Return R 0x02 Data to Return —

DRAM Return R 0x03 Data to Return —

Return Reserved R 0x04 to 0xFF — —
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As a result, the end product is a Partial Store Ordering (PSO, [58] [59]) protocol that can be forced

to act as a TSO one with a SYNC instruction.  While this isn’t a bad memory model, TSO is better

— but probably not better enough to warrant stalling during every store jam.

Most of the specific parts of the design itself came out fairly well.  With the benefit of hindsight,

however, it is clear that there were an assortment of minor details that could have been done some-

what better.

First, the number of buffers scattered around the chip, as listed in Section 3.4.1.2, probably could

have been reduced somewhat with more design effort.  The large number of tables describing all of

the different kinds of buffers demonstrates how these multiplied rapidly throughout the chip.

However, most of these are necessary for one reason or another, given the current design.  One par-

ticular set of buffers that needs to be cut down is the collection of EIBs.  Currently, there are a

fairly large number of these because each access must allocate an EIB when it starts and keep it

until it completes.  This can be a fairly long time for an access that must get a reference from main

memory.  This is a problem because EIBs are fairly large buffers, with data sections sized to hold

entire cache lines, so they take up a non-trivial amount of die area.  An optimization to reduce the

dependence on large numbers of EIBs would be very helpful.

In Section 3.4.3.1, the state machines are probably a little too centralized.  While this made the

memory system design easier to conceptualize, it ended up resulting in too many signals that orig-

inated from a very small piece of control logic.  While we were able to distribute many control

lines by decoding state signals into control signals remotely, closer to where they were used, this

really only partially solved the problem, since there were still far too many wires to control.  For

example, as described in Section 3.4.2.2, each state machine must quickly control address drivers

onto an address bus dedicated to it, so that it can get its current address across the chip while it is
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still arbitrating for on-chip resources.  This saves a cycle or so from each reference, but results in a

mass of buses and lines that have to be controlled.

The worst part of the system is definitely the central arbiter, described in Section 3.4.3.3.  Unfortu-

nately, all systems like Hydra must have some sort of bus arbitration system.  However, it is

unlikely that they have such a complex one.  While it was possible to build the arbiter in a fairly

reasonable fashion using a few ROM tables and a large variety of other logic, the central arbiter is

ultimately just way too complex because of the way it tries to interleave arbitrations that use differ-

ent resources.  Aside from the obvious circuit design issues that occur because all of that logic

must actually work in a cycle, the arbiter itself often caused more protocol trouble than it was

worth.  Most of the trouble comes from the fact that the design actually goes back to the days when

Hydra had an L3 cache.  With just an L2 cache, it should be possible to make all accesses “look

alike” enough so that the arbiter can just arbitrate for cycle-long timeslices of all chip resources,

instead of trying to match collections of resource requests with resources.  With the L3, however,

the wide variety of utterly different access types made this totally impossible — so the resource-

by-resource arbiter was born.  Since then, the design has been plagued by problems like accidental

priority inversion — when a high-priority request that needs a lot of resources keeps getting put off

by lots of low-priority ones that only need a few — and other odd behavior that has required add-

ing and removing more than one “special case” situation to the arbiter over the years.  At the very

least, we should have switched to a simple, one-pattern arbiter when we eliminated the L3 cache.

Going back even further, we should have probably put the original L3 cache on its own bus with its

own “secondary arbiter” and moved its resource needs away from conflict with the L2 accesses.

Other than these particular regions that, for one reason or another, got stuck with a less-than-opti-

mal design, most of the design turned out quite well.  The cache memory interfaces, address arbi-

ter, read and write buses, and the off-chip interface control all turned out fairly well and could

definitely be considered models for building parts of future designs.
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4 The Performance of the Base Hydra

We have performed extensive simulation to evaluate the potential performance of the Hydra

design.  Once we had the basic design of Hydra established, we simulated it using LESS and

SimOS [2] (in the early stages of development).  This simulation regimen was used to pursue two

different broad categories of evaluation.  The first family of simulations attempted to execute a

fairly large family of benchmarks on Hydra in order to determine approximately how well it would

speed up code in general.  The other group of simulations was a set of “stress tests” performed on

key parts of the Hydra system with a pair of our most demanding benchmarks.  This allowed us to

evaluate some of the specific design tradeoffs made in the course of finalizing several parts of the

Hydra memory system design.  These two families of simulations are covered in the following two

sections.

4.1 Overall Performance
Using a model with the memory hierarchy summarized in Table 4-2, we compared the perfor-

mance of a single Hydra processor to the performance of all four processors working together.

This process allowed us to evaluate to what degree the additional processors were actually able to

contribute usefully to the execution of a single application.  While any multiprocessor can run mul-

tiple separate applications, the ability to “team up” the processors in Hydra and run single applica-

tions across the entire chip in a relatively easy fashion, thanks to the low-latency interprocessor

communication, is an important characteristic of our design.  We used the ten benchmarks summa-

rized in Table 4-1, primarily SPEC benchmarks, to generate the results presented in Figure 4-1.

The binaries were generated using GCC 2.7.2 with optimization level -O2  on an SGI workstation

running IRIX 5.3.

The results indicate that on multiprogrammed workloads and highly parallel benchmarks, such as

large, dense matrix-based floating point or multimedia applications, we can obtain nearly linear
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speedup by using multiple Hydra processors working together.  These speedups typically are much

greater than those that can be obtained simply by making a single large ILP processor occupying

the same area as the four Hydra processors [6].  Hence, with workloads like this a CMP like Hydra

would be an excellent replacement for a traditional ILP processor in the center of a system.  In

addition, these types of programs require little or no effort on the part of the programmer to obtain

such excellent results.  Multiprogrammed workloads such as databases are inherently parallel,

while today’s compilers can automatically parallelize most dense matrix Fortran applications [21].

Only  the MPEG benchmark took a large amount of work to parallelize, including making some

fundamental adjustments to the algorithm [44].  On the other hand, both of these categories of

applications also tend to work well on traditional multiprocessors [55], so these achievements are

not necessarily unique to a chip multiprocessor like Hydra.  Instead, they are a function of multi-

processors in general.

However, there is still a large category of less parallel applications, primarily integer ones that are

not easily parallelized (eqntott , m88ksim , and apsi , on this graph).  The speedups we

obtained with Hydra on these applications would be difficult or impossible to achieve on a conven-

tional multiprocessor, due to the long interprocessor communication latencies required by a multi-

chip design.  However, even with Hydra’s vastly improved communication latencies, the speed

improvement obtained after weeks or months of hand parallelization effort is just barely compara-

ble to that obtainable with a similarly sized ILP processor with absolutely no programmer effort

[6].  Even more troubling, compress  represents a large group of applications that cannot be par-

allelized at all using conventional techniques.  Before a CMP can really become a viable replace-

ment for conventional processors, these sorts of programs must be sped up and sped up in a way

that does not require undue amounts of programmer intervention.  This observation led us to the

research that will be discussed in part II of this document.
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4.2 Analysis of Sections of the Design
This section focuses on several key parts of the Hydra design and evaluates them quantitatively.

Some key numbers from the swim  and tomcatv  applications are used throughout the remainder

of the chapter to illustrate the rationale for key design features of Hydra.  The numbers of interest

are plotted in Figure 4-2 and Figure 4-3.  These two applications were chosen as targets for these

Table 4-1: A summary of the application benchmarks used during the evaluation of Hydra .

Application Source How Parallelized

General  compress SPEC95 [48] Not possible using conventional means

Integer eqntott SPEC92 [53] On inner bit vector comparison loop

m88ksim SPEC95 [48] Simulated CPU is pipelined across processors

apsi SPEC95 [48] Automatically by SUIF [21]

Multimedia and 
Matrix FP

mpeg-2 
(decoding)

MediaBench  
[46]

"Slices" in the input bitstream are distributed 
among processors

applu SPEC95 [48] Automatically by SUIF [21]

swim SPEC95 [48] Automatically by SUIF [21]

tomcatv SPEC95 [48] Automatically by SUIF [21]

Multiprogram OLTP TPC-B [54] Different transactions execute in parallel

Workloads pmake UNIX command Compilations of different files execute in par-
allel

Table 4-2:A summary of the cache hierarchy simulated during the evaluation.

L1 Cache L2 Cache Main Memory

Configuration Separate I & D SRAM 
cache pairs for each CPU

Shared, on-chip SRAM 
cache

Off-chip DRAM

Capacity 16KB each 2 MB 128 MB

Bus Width 32-bit connection to CPU 256-bit read bus + 32-bit 
write buses

64-bit bus at half of the 
CPU speed

Access Time 1 CPU cycle 5 CPU cycles at least 50 cycles

Associativity 4-way 4-way N/A

Line Size 32 bytes 64 bytes 4 KB pages

Write Policy Writethrough, no allocate 
on writes

Writeback, allocate on 
writes

"Writeback" (virtual 
memory)

Inclusion N/A Inclusion enforced by L2 on 
L1 caches

Includes all cached data
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focused tests because they stress the memory system with large numbers of accesses.  In contrast,

the Hydra memory system’s cache hierarchy easily handles the small data sets of the other SPEC

benchmarks.

4.2.1 The Caches

Hydra’s L1 caches allow each processor to have its own small and fast L1 cache that processes a

single access every cycle.  Such caches can be easily optimized to return data within a single cycle.

Our measurements have shown that in typical applications significantly more than 90% of loads hit

in these L1 caches and do not need to progress further down the memory hierarchy.

We found that in practice the large, on-chip L2 cache serves several functions.  First, it acts as a

larger on-chip cache to back up the small L1 caches with a nearby memory an order of magnitude

Figure 4-1: Performance of Hydra on a variety of applications from different domains.
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larger, but five or more cycles slower.  In practice, the L2’s access latency is so short that it has lit-

tle effect on the overall execution time.  With most applications, the L1 caches have already

exploited much of the locality present in memory accesses, so unless the application’s entire data

set fits into the L2 the local cache hit rate in the L2 tends to be poor — usually well under 50%,

and sometimes under 20%.  More importantly, the L2 cache serves as a sort of write buffer

between the processors and the outside world.  Since the L1 caches are write-through, the write

bandwidth generated by the four processors would easily overwhelm off-chip buses.  Using num-

bers from [15], a typical program can be expected to write about once every ten instructions, or

about once every five cycles from a 2-way processor executing at its peak rate.  With four proces-

sors executing at peak throughput, about 80% of cycles will produce a write from one of the pro-

cessors, on average.  Our simulations showed that after CPU stalls were considered, there were

Figure 4-2: The occupancy of L2 cache ports and buses during runs.
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writes in 40-60% of cycles, typically, supporting these estimates.  The L2 cache captures all writes

and collects them into dirty cache lines before passing them down to the lower levels of memory

via its writeback data handling protocol.  By doing this, it reduces the off-chip bandwidth caused

by writes to a manageable level.  The L2 also acts as a communication medium through which the

four processors can communicate using shared-memory mechanisms.  Since it always contains the

most up-to-date state for any line, it can supply shared data immediately to any processors that

need it.

Figure 4-2 shows the occupancies of the cache ports when the L2 cache is single-ported (the nor-

mal case) or a dual-ported variant, with dedicated read and write ports.  The occupancies from the

2-port case clearly show that most of the bandwidth in the L2 cache is used to absorb writes from

Figure 4-3: The % increase in execution time seen as a result of making several realistic 
architectural decisions, over “perfect” scenarios.
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the L1, while only a small percentage of the cycles are used to handle read accesses (L1 cache

refills).  Comparing caches of equal capacity, Figure 4-3 shows that the performance loss incurred

by using a single-ported L2 cache is at most about 4% over an infinitely-ported cache — or 2%

over a dual-ported cache — largely due to the fact that the small number of read accesses does not

disturb the stream of writes into the L2 much.   In reality, a single-ported design could have a

larger capacity in a given area, since it could be made using simpler, more compact SRAM cells.

Due to the negligible performance loss, we have chosen a single-ported implementation for Hydra.

4.2.2 The Buses

While the read bus performs many tasks, we have found that the bus is typically occupied less than

50% of the time, as shown in Figure 4-2, even with our most memory-intensive applications.  With

other applications it is even better.  Contention for this particular resource is thus not a problem.

As Figure 4-3 indicates, contention for both the read bus and the write bus slows performance by

only a few percent over a perfect crossbar, even in the worst cases.

Since the L1 caches do not filter write bandwidth, write bus traffic can be quite high — sometimes

exceeding 60% full, as is shown in Figure 4-2, even though each access only reserves the bus for a

single cycle.  It is even possible to saturate the bus at times of high write traffic.  Reasonably deep

write buffers are needed between the processors and the write bus to collect and feed stores onto

the bus one by one while not stalling the processors, as bursts of store instructions are not uncom-

mon.  Merging this bus with the read bus would typically result in a completely saturated bus and

significantly reduced performance, as Figure 4-2 and Figure 4-3 indicate.

4.2.3 The Control Mechanisms

In our simulations, most read accesses are handled by one of the L1 caches.  Thus, a single read

pipeline is sufficient to process the occasional cache misses.  On the other hand, due to the

writethrough L1 cache policy, every write made by each processor must pass through the write
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pipeline.  On average, typically a store will happen only about every 5-10 cycles [15], even with

the processor running at peak efficiency.  However, bursts of stores do appear frequently in real

code.  Hydra only includes one write pipeline, but this is usually sufficient because the bursts of

stores may simply be buffered without stalling the processor.  We have found that the store buffer

and write pipeline combination can be saturated by store-intensive code, but generally other sys-

tem resources such as the write bus or the L2 cache port are also approaching the saturation point

at these times, so the pipeline is not much of a bottleneck.  Therefore, short of making a much

more complex and expensive system, the single pair of control pipelines on each CPU appear to

form a reasonable design.

In the process of tuning Hydra, the “state machine” controllers were adjusted extensively to

improve performance.  Initially, the controllers had no pipelining at all — instead, they were just

state machines, that could only process a single access at a time.  The performance of this system

was surprisingly good.  On applications other than swim  and tomcatv , the limited number of

accesses that could be processed at once was never a problem.  These simple controllers became a

tremendous performance drag with the more memory-intensive applications, however.  We next

evaluated the opposite alternative — fully pipelined controllers that could start processing a new

access every cycle, no matter what.  As shown in Figure 4-3, performance improved, but not as

much as we had imagined.  In a later experiment, we reduced the degree of pipelining by eliminat-

ing the cycle-by-cycle pipelining in either just the memory half or both halves of the controller.

This allowed only a single access to be handled in each of these unpipelined stages at a time.  We

found that performance was normally almost unchanged from the fully pipelined case, eve n with

the most memory-stressful applications.  Handling more than two accesses per controller, there-

fore, turned out to be unnecessary — the coarser stages were sufficient.  We have discovered one

situation, however, where this is not the case.  Part of the reason that deeper pipelining in the con-

trollers is not effective is because four processors are normally trying to use the buses simulta-

neously.  Of course, if the user decides to only use a single processor at a time, then the buses will
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become much less occupied.  In this case, the L2 access pipeline of the WSM can become a limit-

ing factor during code performing large bursts of writes, such as memory copies, unless it is pipe-

lined to accept a new access every cycle, due to the large number of writes that can be produced by

a single processor.

We were also concerned about possible performance implications of the address arbiter, which

stops accesses from progressing to the L2 cache if they will access the same set as a reference that

is always in flight.  While this mechanism might appear to be rather heavy-handed, in reality it has

a negligible impact on performance, as is noted in Figure 4-3.  There are three basic reasons why it

is not a problem.  First, the mechanism is not invoked by reads that hit in the L1 cache, so the num-

ber of accesses “checking in” to the arbiter is limited. Because many more writes use the arbiter, it

is necessary for them to release address arbitrations quickly on L2 hits, in case all of the processors

are writing data to the same cache line.  However, this is not a problem because they can be easily

designed to release their address arbitrations after a single cycle.  Second, even 10-bit indices offer

1,024 different possible values.  Since there are typically nowhere near that many active references

reserving addresses at once in Hydra, odds of a random collision are reasonably small.  Finally, the

mechanism allows accesses to the same address to work together more efficiently.  When multiple

processors attempt to read the same cache line from the L2 cache and miss, an event that occurs

surprisingly often when processors are teamed up to work on the same code, the address arbiter

will allow only the first pipeline controller to actually see and process the miss.  The others are

stalled by the address arbiter, and not using any resources in the meantime, until after the first con-

troller reads the line into the L2 cache.  Any trailing processors then just hit in the L2 cache, effec-

tively riding on the coattails of the first access.

4.3 Conclusions
Chip multiprocesssors (CMPs) such as Hydra are an excellent way to build a microprocessor, even

today — unless your primary goal is to allow speedup on hard-to-parallelize integer benchmarks.
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On those programs, Hydra’s performance will probably not be competitive, although in some cases

it may be able to achieve parity with a focused effort at parallelizing code.  With all other applica-

tions, chip multiprocessors offer at least competitive performance, and can often be far superior to

other architectures by achieving nearly linear speedup with the four processor cores in the design.

Hydra is an example of a CMP which balances complexity and performance very well.  Some

results of our experiments show that while we have added resources to Hydra where they can do

some real good — such as pairs of buses running across the chip.  On the other hand, we have also

avoided the temptation to add too many features that can make the system harder to design, yet

provide little or no actual performance benefit.  Ideas for a dual-ported L2 cache, fully pipelined

controllers in all stages, and other essentially unnecessary frills were examined and discarded in

the course of developing the final, fairly svelte Hydra design.

There are a couple of possible weak points in the Hydra design that can become problems in very

unbalanced code that performs extremely large bursts of stores on a single processor.  While the

baseline system is good at dealing with average cases, its performance can drop significantly when

faced with these situations.  The first potential problem comes from the controller.  The write con-

troller for each processor (Section 3.4.4.2) is pipelined into two rough stages.  The first stage han-

dles L2 accesses, while the second hands off cache misses to main memory.  While these stages are

short enough (about 5 cycles) that a “normal” application rarely saturates them, one that performs

many stores in a row can saturate the first pipeline stage quite easily.  This situation results in a

noticeable slowdown on such code.  The other potential problem is the write bus itself.  It was not

a bottleneck for most of our benchmarks, but write buffers leading to it were often reasonably full

as they “smoothed out” the store traffic flowing to the write bus.  If the performance of the Hydra

system is scaled up, then the write bus will probably become the system bottleneck at almost all

times unless it is transformed into an alternate structure, such as multiple buses that can perform

stores simultaneously.  These potential weaknesses would probably have to be addressed before a
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commercial chip could be implemented so that programs that do occasional store-intensive tasks

like memory copies would still work well.
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5 The Design of Speculation Support for Hydra

A chip multiprocessor is clearly an excellent platform for executing code that has already been

parallelized into a form consisting of several explicit threads of execution.  Many types of compu-

tation tasks already lend themselves to this model, such as dense matrix scientific code and com-

mercial server applications.  However, the majority of computer application programs are not

already conveniently divided into parallel threads.  Unfortunately, without parallel programs, there

is no really compelling reason to implement a chip multiprocessor.  Hence, this is clearly a critical

area that must be addressed if chip multiprocessors may be used to replace conventional unipro-

cessors in many sectors of the commercial marketplace.

As described in Chapter 1, speculative thread-level parallelism is a promising technique for taking

existing uniprocessor programs and dynamically splitting them into threads that can run on a mul-

tiprocessor with very little programmer intervention.  Therefore, this technique can be used to

address the lack of parallel software in the marketplace.  However, it is only practical if it does not

add significant complexity to the hardware implementation of the Hydra design.

Most of this chapter details the additions to the baseline Hydra design and the low-level software

protocol handlers that allow Hydra to handle the speculative thread based parallelism.  This chap-

ter is largely divided into four major sections.  The chapter starts by describing what speculative

thread-level parallelization is, and what kinds of hardware support are required to make it work.

The second part details the hardware additions to the Hydra memory system that are necessary to

properly track and buffer speculative memory references while speculative threads are executing

on the processor cores.  The third section describes the speculative coprocessor that has been

added to Hydra’s cores using the MIPS CP2 coprocessor interface port in order to interface

between the speculative memory system hardware and the software described in the fourth portion
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of the chapter.  This largely assembly language-level software is responsible for sequencing the

speculative threads and controls how they interact with each other and other system resources.

5.1 What Additions Need to Be Made?
Hydra is a good architecture for the extraction of speculative TLP because it consists of a group of

four very tightly coupled processors already, with low interprocessor communication latencies.

This is the single most important architectural feature for the extraction of speculative TLP

because speculative threads are all generally taken from the same uniprocessor program, and will

therefore usually exhibit a large amount of poorly scheduled interprocessor communication.

While this requirement is the most critical one, several others must also be met.  Figure 5-1 shows

a high-level view of the hardware that must be added to Hydra in order to successfully execute

speculative threads.  This additional hardware, discussed in more detail in the remainder of this

chapter, must perform several jobs to correctly execute speculative threads.

Figure 5-1: An overview diagram of Hydra, with additions required to support speculative threads 
highlighted.
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5.1.1 Speculative Memory Support

In order to support speculation, special coherency hardware is required to monitor data shared by

the threads.  This hardware must fulfill five basic requirements.  These requirements are illustrated

in Figure 5-2, which show some typical data access patterns in two threads, i and i+1.  Figure 5-2

(a) shows how data flows through these accesses when the threads are run sequentially on a normal

uniprocessor.  Figure 5-2 (b-e) show how the hardware must handle the special memory system

requirements necessary to support speculative threads:

 1) Forward data between parallel threads: While good thread selection can minimize the data

shared among threads, there is typically a significant amount of sharing required simply

because the threads are generally very small.  Also, these threads were generated from a pro-

gram in which minimizing data sharing among the “threads” was not an original design con-

sideration — since the threads did not even exist when the program was first written.  As a

result, a speculative system must be able to forward shared data quickly and efficiently from

an “earlier” thread running on one processor to a “later” thread running on another.  This is

depicted in Figure 5-2 (b).

 2) Detect when reads occur too early: The speculative hardware must provide a mechanism for

tracking reads and writes to the shared data memory so that if a data value is read by a “later”

thread and subsequently written by an “earlier” thread, then the hardware will notice that the

earlier read retrieved incorrect data, since a true dependence violation has occurred.  Violation

detection allows the system to determine when threads are not actually parallel, so that the vio-

lating thread can be re-executed with the correct data values.  This is also depicted in Figure 5-

2 (b).

 3) Safely discard bad state after violations: As is depicted in Figure 5-2 (c), speculative mem-

ory must have a mechanism allowing it to be reset after a violation.  All speculative changes to

the machine state must be discarded after a violation, and no permanent machine state may be

lost in the process.
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 4) Retire speculative writes in the correct order: Once speculative threads have completed

successfully, their state must be added to the permanent state of the machine in the correct pro-

gram order, considering the original sequencing of the threads.  This may require the hardware

to delay writes from “later” threads that actually occur before writes from “earlier” threads in

the sequence, as Figure 5-2 (d) illustrates.

 5) Maintain multiple “views” of memory via renaming:  Figure 5-2 (e) depicts the case when

an “earlier” thread reads an address after it has already been written by a “later” processor.

The speculative hardware must ensure that the older thread cannot “see” any changes made by

later threads, as these would not have occurred yet in the original sequential program.

Viewed from another perspective, requirements 1, 2, and 5 can be illustrated by examining how

two memory references to the same address from two different processors running speculatively

will interact.  Table 5-1 (a) and (b) illustrate the effect of having these two memory references

occur in the correct order (a) or “backwards” from the original program execution (b).  Depending

upon the combination of references, forwarding, a RAW violation, or memory renaming can all

occur.

In some proposed speculative hardware, the logic enforcing these requirements monitors both the

processor registers and the memory hierarchy [28][10].  However, for implementation cost and

complexity reasons we chose to have the hardware in Hydra only enforce speculative coherence on

the memory system while register-level coherence is handled by software.

5.1.2 Speculative Thread Control

In addition to speculative memory support, any system supporting speculative threads must have a

way to break up an existing program into threads and a mechanism for controlling and sequencing

those threads across multiple processors at runtime.  This generally consists of a combination of
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                         A)                               B)

                       C)                                                D)

                                         E)

Figure 5-2: Diagrams illustrating the five critical requirements that must handled in a speculatively 
parallel memory system using a sample thread that can be broken into two speculative 
threads (a):  b) Forwarding and violation detection on each memory reference,  c) 
discarding of speculative state following a violation, d) reordering of writes following 
thread commits, and e) memory renaming among the threads.
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hardware and software that finds good places in a program to create new, speculative threads and

then sends these threads off to be processed by the other processors in the CMP.

While in theory a program may be speculatively divided into threads in a completely arbitrary

manner, in practice one is limited by the fact that initial program counter positions (and, for specu-

lative-memory-only architectures like Hydra, register states) must be generated when threads are

started.  Without some sort of oracle to determine the future state of a program in several places,

we must rely on heuristic methods to estimate future states of the program.  Two of the most rea-

sonable ways to divide a program into threads are at loops and subroutine calls.  For loops, several

iterations of the loop body can be started speculatively on multiple processors, as is depicted in

Figure 5-3.  As long as the number of loop-carried dependencies is reasonably small, the execution

of the loop bodies on different processors can be overlapped to achieve speedup.  With subrou-

tines, it is possible to start a new thread to run the code following the subroutine call while the

original thread actually executes the subroutine itself (or vice-versa, if desired), as is depicted in

Figure 5-4.  As long as the return value from the subroutine is predictable (most frequently, when

there is no return value at all) and side effects of the subroutine are not used immediately, then the

two threads will be able to run in parallel.  In general, achieving speedup with this technique is

Table 5-1: Summary of what happens when references to the same address from two speculative 
threads occur: (A) If the accesses occur in the original program order, or (B) if the 
accesses occur “backwards,” in the opposite order from the original sequential program.

A) B)

First: 
CPU i

Then: 
CPU i+1

Action
First: 

CPU i+1
Then: 
CPU i

Action

Read Read — Read Read —

Read Write Rename in i+1 Read Write Rename in i+1

Write Read Forward written data 
from i to i+1

Write Read RAW Hazard Violation: 
i+1  must restart

Write Write Forward occurs, but 
then i+1  overwrites its 

copy of the data

Write Write Rename in i+1 , so 
eventual forwarding 
from i is just ignored
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more difficult because thread sequencing and load balancing among the processors is significantly

more complicated with subroutines than loops.  Some of this relative complexity can be visualized

simply by comparing Figure 5-3 to Figure 5-4.  While the loop iterations can be evenly distributed

among the processors and clearly pipeline fairly well on individual processors, the varying sizes

and unpredictable start times of subroutine iterations occupy the processors only in a very uneven

manner.

Once threads have been created, the speculation runtime system takes up the job of selecting the

four least speculative threads available and allocating them to the four processors in Hydra.  The

system that actually performs the thread allocation among processors and controls proper handling

of all of the special cases in Hydra is a set of software routines that controls the Hydra speculative

memory system extensions using a special speculation coprocessor.  This system is fairly compli-

cated, and is described in considerable detail in the remainder of this chapter.

The design of the speculation runtime system is significantly complicated by the frequent viola-

tions that may occur and also by special events like system calls.  Many of these special cases are

handled by taking advantage of a simple observation.  It should be noted that the least speculative,

or “head,” thread is special.  This thread is actually not speculative at all, since all older threads

that could have caused it to violate have already completed.  As a result, it will never violate — and

will therefore always make forward progress — and it has the ability to handle events that cannot

normally be handled speculatively such as operating system calls, instruction exceptions, etc.

Since all threads eventually become the “head” thread, processing of these events can simply be

delayed until a processor becomes the head.

5.2 Earlier Work on Speculation
The speculation work described in this thesis is a direct descendant of the pioneering work on

speculative threads at Stanford by a collaboration between the SUIF and Hydra groups and
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Figure 5-3: A graphic example of loop iteration thread-level speculation in action.
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Figure 5-4: An example of post-subroutine-call thread-level speculation in action.
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described in [43].  In that work, the SUIF compiler was used to slice target programs into specula-

tive threads using both of the techniques described above.  The threads were then fed into an “ora-

cle” simulator to determine the maximum possible parallelism obtainable by overlapping

speculative threads and a more realistic, execution-driven simulator that was able to see how much

of this performance was actually obtainable.  A more detailed version of the latter study appeared

in [62].  The promising results seen in this study sparked the subsequent speculative thread revolu-

tion in the Hydra project, which had just been investigating traditional multiprocessing aspects of

CMPs up to that time.  Outside of Stanford and the Hydra project, three main groups have been

working on speculative thread-level parallelism over the course of the past decade.

The first and most influential of these architectures was the Wisconsin Multiscalar project [28].  It

proposed a CMP consisting of a dedicated ring of processors that distribute speculative threads

about the size of basic blocks around the ring.  Register-to-register communication and synchroni-

zation was achieved using the high-performance interprocessor ring connection.  While this inter-

connection offered high interprocessor communication bandwidth and a runtime system almost

entirely built in hardware, it was also expensive and essentially dedicated the system to finding

speculative thread-level parallelism, at the expense of discarding more traditional but still useful

mechanisms.  To support this speculative processor core design, two different speculative memory

systems were proposed.  The first was the ARB [35].  This was simply an L1 data cache shared

among all processing elements that had additional hardware to track speculative memory refer-

ences within the cache.  While a reasonable first concept, its centralized structure and the way it

added complex logic to an already difficult-to-implement multiported L1 cache made it an imple-

mentation nightmare.  More recently, the Multiscalar group introduced the speculative versioning

cache [36], a set of separate, writeback L1 caches distributed among the Multiscalar processor

cores, that maintain their speculative state within the caches using a complex and sophisticated

cache coherence protocol.  While it still has one centralized resource — the L1 cache tag control

unit — its hardware is much more distributed and therefore a much more realistic design.
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Concurrently with Hydra, the TLDS project at the University of Toronto and Carnegie-Mellon pro-

posed a considerably different scheme [14].  Instead of a complicated hardware core designed to

handle very small speculative threads, they chose to design a more Hydra-like CMP that had virtu-

ally all of its speculation control runtime system in software.  As a result, they were able to work

with much larger speculative threads, but were much less tolerant of threads experiencing many

violations.  To combat this, they proposed using sophisticated compiler technology to optimize the

code being executed on the TLDS machine in order to make it more parallel.  In the memory sys-

tem, they also chose to keep their protocol much simpler, at the expense of performance-limiting

bursts of bus traffic at the end of every speculative “epoch” and an inability to forward data from

one speculative iteration to another.  Instead, they added a special shadow memory for critical val-

ues that required early forwarding between epochs.  Once again, this relied upon sophisticated

compiler technology to pinpoint key memory locations that needed shadowing.  More recently,

they have optimized their hardware design somewhat [37] and extended the design to work in a

much larger-scale system consisting of up to 32 processors [38].  While effective, systems such as

this are useful only with a small collection of very parallel applications that cannot already be par-

allelized using traditional parallelizing compilers.

The third major thread-level speculation project has occurred at the University of Illinois.  They

originally started out with a Multiscalar-like design that used a special bus to communicate register

values among processors [10].  A unique innovation used by their processor design was to exploit

existing uniprocessor code binaries, without any modification whatsoever, in a thread-speculative

manner by defining loop-iteration threads when backward branches were taken in the code.  Such

tight and unplanned thread-level speculation required a very closely-coupled architecture that

maintained register coherency as well as memory coherency among their speculating processors,

much like the Multiscalar design.  Since then, their design has moved to a much looser structure,
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more closely resembling the TLDS design [39].  This led to competitive large-scale system design

proposal at virtually the same time as the TLDS group [40].

Unlike CMP technology, which is starting to achieve widespread acceptance in industry as this

thesis is being written, thread-level speculation is still largely confined to the domain of academia.

The only prominent commercial design using even a limited form of thread-level speculation is the

Sun MAJC architecture [25].  This architecture uses speculation in a way first proposed by our

group [41] to accelerate the processing of Java method calls, a variation of subroutine speculation

that works much better than subroutine speculation with most other computer languages, due to

the constraints imposed on programmers by Java itself.  However, this architecture uses a simpli-

fied version of our original protocol that takes advantage of Java’s memory usage characteristics to

implement most parts of the design in software — only a fast interrupt control mechanism is

implemented in hardware.  Other than this very limited beachhead, the use of thread-level specula-

tion in industry will probably only occur when microprocessor manufacturers start trying to sell

CMPs to markets other than the server and embedded multimedia markets, where programs are

already so multithreaded that thread-level speculation is largely unneccessary.

5.3 Hardware to Buffer Memory References

We took advantage of Hydra’s writethrough L1 caches and bus system to build a protocol that

should be easily implementable without impacting the CMP’s basic cycle time, as efficient as the

SVC [36], and requiring only relatively simple coherence protocols.  To add this speculation sup-

port, several key hardware elements have been added to the existing Hydra design.  Figure 5-1

showed the global placement of most of these additions.  Figure 5-5 expands upon some of the

details that are too small to see in the previous figure, such as the location of the interrupt screen-

ing mechanism and the L2 cache buffer controller.  The remainder of this section summarizes these

additions.
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5.3.1 L1 cache modifications

Ten bits must be added to the existing L1 cache state in order to properly maintain the state of the

cache during speculation and to detect RAW violations that force the processor to restart after a

load speculatively reads erroneous data. These bits and their functionality are summarized in the

following text and Figure 5-6.  Unlike other L1 cache bits, these bits must be designed to be gang-

clearable when threads complete or are restarted.  This functionality can be obtained through spe-

cialized tag SRAM cells or by manipulating the power lines to the cell array.

Figure 5-5: An overview of the speculation hardware added to Hydra
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The first two additional bits are responsible for modifying the basic cache coherency scheme that

invalidates an L1 cache line only when a write to that line from another processor is seen on the

write bus.

• Modified bit:  This bit acts like a “dirty” bit in a writeback cache. If any changes are written to

the line during speculation, this bit is set. These changes may come from stores by this proces-

sor or because a line is read in that includes speculative data from active L2 buffers. If a thread

needs to be backed up and restarted on this processor, then all lines with the modified bit set

are gang-invalidated at once.

• Pre-invalidate bit: This bit is set whenever another processor writes to the line, but it is running

a more speculative thread than this processor.  In this case, it marks a “future invalidation” that

we will need to take eventually, but not right away.  It is also set if a line is read from the L2

cache when more speculative processors’ L2 buffers already include writes to the line. In this

case “future” changes to the line have already been made by more speculative processors, yet

these changes will not be included in the line sent back from the L2 cache. The pre-invalida-

tion bit must be set so that the line will be properly updated after this CPU completes its cur-

rent thread. Since writes are only propagated back to more speculative processors, we are able

to safely avoid invalidating the line in either case until a different, more speculative thread is

assigned to this processor — which will inevitably happen after the current thread on the pro-

cessor is completed and the processor needs more work to do.  Thus, this bit acts as the oppo-

Figure 5-6: Speculation control bits supplementing the L1 cache tags.
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site of the modified bit — it invalidates its cache line when the processor completes a thread.

Another way of looking at this bit is as the “renamed” bit.  When set, it indicates that a later

processor has generated a renamed version of this line which can be ignored in the short term,

but must be updated after this thread completes.  Again, all lines must be designed for gang-

invalidation.

The other two sets of bits allow the L1 cache to detect true dependence violations using the write

bus mechanism. They must be designed to allow gang-clearing of the bits when a speculative

region is either restarted or completed.

• Read bit(s): These 4 bits, one for each 32-bit word in the line, are set whenever the CPU reads

from any part of the word they represent within the cache line, unless that region’s written bit

is set. If a write from a less speculative thread, seen on the write bus, hits an address in an L1

cache with a set read bit, then a true dependence violation has occurred between the two pro-

cessors.  A violation exception is then initiated to handle the problem.  Subsequent stores will

not activate the written bit for this line, since the potential for a violation has been established.

• Written bits:  These 4 bits, one for each 32-bit word in the line, prevent unnecessary violations

by renaming the memory locations used by multiple threads in different ways. If a processor

writes to an entire word, then the written bit for that word is set, indicating that this thread now

has a locally generated version of the address. Subsequent loads will not set the read bit for

this section of the cache line, and therefore cannot cause violations.  Unlike the other L1 cache

bits, these bits are technically optional, because all they do is prevent unnecessary violations,

but we found that they are almost essential for performance reasons.

It should be noted that all read bits set during the life of a thread must be maintained until that

thread becomes the head, when it can no longer cause violations.  Even if a cache line must be



Chapter 5: The Design of Speculation Support for Hydra 107

removed from the cache due to a cache conflict, the line may still cause a speculation violation.

Thus, if the L1 cache attempts to throw out a cache line with read bits set it must instead halt the

processor by invoking a processor hold runtime exception until the thread becomes the head, is

restarted, or is completely discarded.  This problem can largely be eliminated by adding a small

victim buffer [42] to the L1 cache.  This victim buffer only needs to record the address of the line

and the read bits in order to prevent processor halts until the victim cache is full.  For simplicity,

our simulations have always assumed that an infinite-size victim buffer, containing only read bits

and addresses, is attached to each L1 cache.

It should be noted that the read and written bits only need to be included in the L1 cache tag array

that is actively processing invalidations from the write bus. They are unnecessary and redundant in

the array used only for local hit detection.

5.3.2 Local L2 Buffer Tags

Each processor also keeps a duplicate copy of the CAM-array tags associated with its currently

active L2 memory buffer, as described in Section 5.3.3. Only the tags are necessary, and not the

auxiliary fields associated with the actual L2 memory buffer, because the local copy maintained by

each processor is simply to keep track of which lines are being kept in the speculative buffer.

The primary purpose of these local buffers is to notify the processor core when it will run out of

space in the L2 memory buffers during the actual store that would overflow the buffers. When an

overflow is detected, the coprocessor immediately generates a processor hold exception for the

store. This exception works much like any other exception that can be caused by an illegal memory

reference, such as a page fault, except that it runs the speculative hold handler, which waits until

the processor is the nonspeculative “head” processor before letting the offending store continue.
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A secondary purpose of the local buffers is to allow stores to be selectively converted into non-

speculative writes after the processor becomes the head processor, as described in Section 5.4.4.

5.3.3 Speculation Memory Buffers

Buffering of data stored by a speculative region to memory is handled by a set of buffers attached

to the L2 cache data array that collect speculative writes and hold them until they may be safely

committed to the permanent state of the machine in the L2 cache.  In Figure 3-10, most of the

structures described within this section are actually inside of the L2 Cache Data RAM block, along

with the SRAM banks themselves. During non-speculative execution, writes on the write bus

always write their data directly into the L2 cache.  During speculation, however, each processor

has an L2 buffer assigned to it by the L2 buffer controller, using a simple command sent over the

write bus.  This buffer collects all writes made by that processor during a particular speculative

thread.  If the thread is restarted or flushed from the system entirely, then the contents of the buffer

are discarded.  If the thread completes successfully, then the contents are permanently written into

the L2 cache.  Since threads may only complete in order, the buffers therefore act as a sort of reor-

der buffer for memory references.  This section describes the necessary additions.

5.3.3.1 LRU Enhancements

One enhancement must be made to the existing tag control bits in the L2 cache itself in order to

avoid a potential deadlock situation.  This is the addition of a set of “line locking” bits to each

cache tag that is only used during speculation.  Much like the additional L1 cache control bits, the

added bits must be gang-clearable in hardware when a thread completes execution.

Since the L2 cache cannot initiate accesses to read main memory lines itself, all L2 lines that are to

receive data waiting in the speculation buffers must be “locked down” so they will not be thrown

out on a cache line replacement.  If this requirement is not met, the system may become dead-

locked when the data actually tries to commit to a line that is no longer in the cache.  To control
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this locking, 8 bits (one per memory buffer in 7.1.3.2) must be added to the LRU information for

each line in the cache.  When a speculative buffer allocates space for a new dirty line within itself,

it locks down the permanent state of the line by setting the lock bit associated with itself and the

appropriate cache line.

In the event that a speculative memory buffer is cleared, or if it finishes committing its contents

back into the L2 data RAM array permanently, it gang-clears all of its locking bits at once, thereby

preparing the locking bits for the next iteration in a single machine cycle.

A write or read that misses in the L2 cache and attempts a replacement when all 4 lines within the

set are locked cannot be allowed to proceed, for it will throw out a line that is necessary for suc-

cessful retiring of a speculation memory buffer. In this case, the EIB number and the address of the

access are stored away in the speculative memory buffer entry associated with the least speculative

reference within the set (i.e. the one that will commit first).  Meanwhile, the memory block bit

within the EIB for the current access is set, and the L2 LRU address & way are put in the L2 side

buffer for this access. This will effectively suspend the overflowing access while keeping the criti-

cal information necessary to revive it present in the L2 cache system.  Later, when the buffer entry

is cleared following a commit or clearing of the buffer, the system must wait until it can use a free

cycle on the L2 tag array to re-execute the tag processing for the access. Simultaneously, the

access is sent to the main memory by clearing the block bit within its EIB with a remote signal,

and the access is freed to continue.

5.3.3.2 Speculative Data Buffers

Attached to the L2 data arrays are the speculation memory buffers, the largest single hardware

addition required to support speculation. These buffers hold the data from speculative writes made

by the processors until the threads that made the writes complete and are able to safely commit

their data.  There are 8 speculative memory buffers in the system, with a pair of buffers perma-
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nently assigned to each processor.  In a more optimal system, this number of buffers could be

reduced to 4 or 5 buffers, with no extra buffers or only a single extra “floating” buffer, but for sim-

plicity we chose to implement the fully double-buffered version.

The two halves of a buffer pair act to double-buffer each other. When a processor commits or dis-

cards a buffer, execution switches to the other buffer, allowing the first to commit or discard its

contents without stalling the speculative processor.  If fewer buffers had been implemented, the

processor would have to wait or switch and pick up the extra “floating” buffer before continuing,

but with full double-buffering it can simply switch to the other half of the pair of buffers.  Going

back from each buffer to the write state machine associated with the buffer’s processor is a signal

line indicating that a buffer is committing or draining.  If the processor requires a new buffer while

its backup buffer is still draining, then speculative writes from the processor will temporarily be

halted.  In this case, if the head of the queues into the write state machine for this CPU is a specu-

lative write, then the state machine will stop operating temporarily until the needed buffer drains

out and is ready for action.

Each individual buffer consists of an array of entries that hold a 32-byte cache line of data,  control

fields associated with it (as summarized in Table 5-2, and including a byte-by-byte valid mask for

the entire line), and a tail pointer to indicate how full the buffer is (there is effectively also a “head”

pointer, but it is always 0). A block diagram of one of these buffers is given in Figure 5-7. The pri-

mary function of these buffers is to intercept writes to the L2 cache and reads from the L2 cache

during speculation in such a way that speculatively written state may be stored, yet may also be

safely discarded at any time.  It should be noted, however, that nonspeculative reads and writes

may bypass these buffers at any time, even during speculation.
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Table 5-2: L2 Speculation Buffer entry structure

Field Size Function

Tag-Index 
Address

27 bits Holds the tag and index for the cache line held in this buffer entry.  This is 
a CAM entry, so that it may be addressed directly by later accesses.

Data Field 32 bytes Holds speculative write data

Valid Bits 32 bits Indicate which bytes in the data field contain valid written data, so that 
only these bytes will be merged into the L2 cache

Lock used? 1 bit Indicates that there is a locked access that should be freed when this entry 
is cleared or committed

Lock EIB 
Entry

5 bits Holds the external interface buffer number associated with an L2 cache 
access that is stalled since its set is locked up by previous speculative 
writes

Lock Tag-
Index Address

17* bits Holds the tag associated with the locked access, if any *assumes 128K, 4-
way cache

Figure 5-7: Block diagram of a single write buffer (1 of 8)
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Write operations occur for each speculative store coming from the processors. For each write, the

address array in the write buffer is checked for a hit. On a hit, the active data bytes for the write are

written directly into the appropriate portion of the line already allocated in the buffer, overwriting

any data previously written there. Meanwhile, the bits corresponding to the location of the new

write are set in the write mask for the buffered line. On a miss, these same updates occur at the

buffer entry selected by the tail pointer.  Along with the usual updates, the tail buffer’s address

entry is set to the address of the write for future reference. In parallel, the tail pointer itself is incre-

mented to point to the next entry in the buffer in preparation for the next miss. The buffer can never

overflow thanks to the duplicate CAM arrays maintained in each processor’s speculative coproces-

sor that cause the processor to stall first, as described in Section 5.3.2.

The buffers also help read operations for any cached load coming from the processors. Each read

(speculative or not) causes all speculative buffers to attempt to read the line from within them-

selves in parallel with the L2 data array read. When these reads are complete, the most recently

written version of each byte in the line must be selected and returned to the processor. 16 5-input

priority encoders working in parallel, one for each byte in the 16-byte L1 cache lines, perform the

selection using the byte masks stored with each L2 buffer entry. The lowest priority input to each

encoder is set to 1 automatically, since it represents the default — using the data returned from the

L2 cache as a data source. The next lowest priority belongs to the buffer for the head, nonspecula-

tive processor.  The middle priority belongs to the first speculative processor, and the pattern con-

tinues up to and including the processor actually making the read. At the same time, the byte mask

inputs from all processors less speculative than the processor that initiated the read are ORed

together and sent back along with the data to set the “speculatively modified” bit there correctly, as

was described in Section 5.3.1. This is done by setting the inputs for processors more speculative

than the one making the read are set to 0, since more speculative data cannot travel “upstream” to a

less speculative processor. However, the inputs from these more speculative processors are also

ORed together and sent back to the reading processor so that it may set its “pre-invalidation” bit



Chapter 5: The Design of Speculation Support for Hydra 113

correctly. Once the most recently written data for each byte is chosen by the priority encoders, 16

byte-by-byte muxes select the most recent data and put all 16 bytes out on the read bus in parallel.

While this prioritization, byte assembly, and control bit generation process is reasonably complex,

it may be done in parallel with each L2 cache read, which is normally a multicycle operation

already.

5.3.3.3 Speculative Data Buffer Control

The speculative write bus commands described below in Section 5.4.2 also cause effects among

the L2 cache buffers.  These effects are the way that the speculation software handlers control the

buffers. A small central control unit among the L2 buffers snoops the write bus at all times for

accesses to 0xAFFF0000. When such a write is seen, the command in the 4 low-order bits of the

data is extracted and the L2 buffers respond accordingly, as is described in Table 5-3.

Two basic things can happen in response to these commands. First, the L2 buffer associated with

the processor issuing the command may initiate a clearing or committing cycle. In these cases, the

controller switches the active buffer from among the processor’s pair of buffers while the other one

commits or clears, as described in Section 5.3.3.4. Second, the sequencing of the 4 processors may

be rearranged. The control unit has to track the processor sequencing so that it may properly merge

lines from the different buffers together on reads of the L2 cache, as described in Section 5.3.3.2. It

keeps a simple 0 (least speculative) to 3 (most speculative) sequence of the buffers at all times, that

corresponds to the order listing of the speculation states in the various processors (see Section

5.4.2).

5.3.3.4 Speculative Buffer Clearing and Committing

When a processor finishes using a buffer, it sends a command to the L2 buffer controller that ini-

tiates either a clearing operation, discarding the contents of the buffer, or a committing operation,

causing the contents of the buffer to be permanently merged into the L2 data array.  Both of these



Chapter 5: The Design of Speculation Support for Hydra 114

operations require the buffer to cycle through all of its current entries and process them.  To per-

form this, each pair of buffers is supplied with a counter that can iterate from the head to the tail of

the speculative buffer that is clearing or committing.  When an L2 command initiates a clear or

commit operation, this counter is cleared to 0 and then runs through the buffers up to but not

including the one pointed to by the tail pointer. At this point, the tail pointer is reset to 0 and the

buffer is ready for re-use. Also, the processor associated with the pair of buffers is notified that the

alternate buffer in its pair is ready for use (as described in Section 5.3.3.2).  

When clearing a buffer, generally each entry is ignored and discarded.  However, if the entry has

an EIB and address locked into it (as described in Section 5.3.3.1) because the L2 set associated

with the line has filled up completely, then the clearing processor waits for a cycle when the tag

array is not being used. At this point, it re-runs the formerly blocked write through the tag proces-

Table 5-3: L2 buffer effects caused by speculative write bus commands

# Command Buffer Response Sequence Change

0 Clear Buffer — Sequence is reset to 0, 1, 2, 3 (same ordering as 
processor IDs)

1 Kill Buffer Clear L2 buffer —

2 Commit Buffer Commit L2 buffer —

3 – 4 N/A — —

5 Kill Clear L2 buffer —

6 Kill and Halt Commit L2 buffer —

7 Commit and 
Head

Commit L2 buffer Sender is moved to end of sequence (#3), and oth-
ers are rotated down one position

8 Kill Others — —

9 Fork — Nothing if the sender is at end of sequence (#3). 
Otherwise, the #3 buffer moves down to the 

sequence number of the sender + 1. Any buffers 
originally from sender + 1 to #2 are incremented 

up in position by 1.

10 Start Loop — —

11 – 14 N/A — —

15 Free — —
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sor, so that the tag replacement may be properly handled. Simultaneously, the EIB number of the

blocked access is sent to the external interface unit, freeing the EIB entry and allowing it to con-

tinue on its way through main memory.

When committing a buffer, processing of stalled tag/EIB pairs may also occur.  These occur just as

they do while clearing a buffer. In addition, however, the committing processor also looks for

cycles when the data array is free so that the now-committed data may be properly written into the

L2 cache array. It should be noted that this is not as difficult as it sounds, since any speculative

writes occurring at the time (the most common form of reference that the L2 will be processing

during speculation) are not allowed to use the L2 cache data array directly. The committing pro-

cessor just needs to use a few of the many cycles that avoid reads and non-speculative writes,

which always need to use the L2 data array directly.

5.3.4 An Overall View of the Speculative Memory System

To end this section, a brief example of how the various buffers and bits actually work together is

helpful.  Figure 5-8 and Figure 5-9 illustrate the operation of the various components in the specu-

lative memory system during the execution of a speculative load or store, respectively.

5.4 Speculative Thread Control Hardware

The speculative coprocessor, attached to each CPU as MIPS coprocessor CP2, is the key hardware

mechanism for controlling the operation of speculative memory when the Hydra system is used to

execute speculatively parallelized threads of control. It performs four basic functions: it provides

direct control of the speculation features of the L1 caches, it controls and screens speculative inter-

rupts caused by messages from other processors, it holds key data to speed up speculative software

handlers, and it provides hardware support for maintaining runtime statistics with speculation.
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5.4.1 The CP2 Registers

In order to allow relatively easy assembly-language coding of the speculative software control rou-

tines, CP2 is designed so that it can be used with MTC2 (move to coprocessor 2) and MFC2 (move

from coprocessor 2) instructions, which any MIPS assembler should be able to generate. Table 5-4

summarizes the functions of the important CP2 registers. Some registers are read-only or write-

only, while others are read-write.  A few are just normal registers, with no special hardware func-

tionality. These are used by the software speculation handlers for long-term storage of key values

that would otherwise have to be constantly loaded to and from main memory.

The command register, register 0, is designed to allow several commands to be issued to the spec-

ulative coprocessor at once, based on which bits in the word moved to the register happen to be set.

Table 5-5 summarizes the function of the various command bits.

1. A CPU first reads from its data cache. The read bit for the word is set, if the written bit for the
word does not indicate that it is already a local copy.

2. In the event of an data cache miss, the L2 cache and write buffers are all checked in parallel.
The newest bytes written to a line are pulled in by pri-ority encoders on each byte, according
to the indicated 1–5 priorities (1 = highest priority, 5 = lowest). This line is then returned to the
CPU using the read bus. The requested word is delivered to the CPU (a), while the line is
delivered to the data cache (b). The read bits for the word just read and the modified bits are
set. A possible optimization would be to not set the modi-fied bit if the line only came from the
L2 cache, without any speculative additions from the buffers, but we chose not to implement
this.

Figure 5-8: The operation of speculative loads in Hydra
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The state statistics control register, number 19, performs various functions associated with statis-

tics measurements.  While this register could be merged with the command register, we currently

have left it separate. Table 5-6 summarizes the function of the various command bits.

5.4.2 Speculative State Tracking

A key feature of Hydra’s speculative execution is that it forces sister threads to behave as if they

had been executed serially, even when they are actually run in parallel. In order to do this, it needs

to keep track of the current ordering of the threads currently running on the different processors in

hardware.  To maintain the ordering, each processor has a hardware “speculative state” counter

1. On a store, each CPU writes to its data cache, if the line is present there, and its assigned
write buffer, using the write bus. The modified bit of any hit lines in the data cache are set. If
the read bit of the word stored to is cleared, then the written bit is set to indicate that this word
is now a local copy. The data from the store is recorded in the store buffer in a newly-allo-
cated line or included in an existing line.

2. Earlier CPUs invalidate data cache lines directly, if they write to a cache line present in the
data cache. Also, these writes cause dependence checks. If they write to a location in the
data cache or victim buffer with the read bit set, a true dependence violation has been
detected, and the pro-cessor is forced to restart.

3. Later CPUs just cause the pre-invalidate bits in our data cache lines to be set, so that the lines
will be invalidated when a new thread is allocated to this CPU.

4. When the contents of a write buffer are no longer speculative, the buffer is allowed to drain out
into the L2 cache on free cycles.

Figure 5-9: The operation of speculative stores in Hydra
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that records two things: whether or not it is running a speculative thread, and its current ordering in

the list of processors. This state is accessible to software using CP2 register #1, and its interpreta-

tion is given in Table 5-7.

While it is possible to set a processor’s speculative state using direct writes to CP2 register #1, in

practice this is only used when starting up or ending speculation. During speculation, special

memory writes made by the speculative software handlers cause the speculative state in all 4 pro-

cessors to be updated simultaneously, as the writes pass out over the write bus. These special

writes are to address 0xAFFF0000, out in the middle of uncached kernel memory.  When these

writes pass over the write bus, the CP2s attached to all four of Hydra’s processors snoop the data

sent with the write and interpret the lower 4 bits of the data as a command.  The L2 cache control-

ler also snoops for this address, as some of these commands are directed at it also, as was

explained in Section 5.3.3.3. If multiple simultaneous speculative processes are allowed to execute

simultaneously, the upper 28 bits of the word are the PID of the speculative process that the com-

mand applies to, so that processors running different speculative processes are able to ignore mes-

sages that don’t apply to them. Table 5-8 summarizes these commands and the state changes that

these commands may cause in the various processors. “Order,” a term used in the table, is equal to

the ((CPU state – 1) % 4) + 1, so that free and running processors together are numbered from 1 to

4.

In practice, each CP2 must know the state of the other processors in order to properly handle the

state transitions described in the previous table. This can be accommodated by either having

redundant copies of the state machines for all 4 processors in each CP2 or by having the state

machines in all 4 processors cross-wired to each other. Either way is acceptable, but the redundant

technique is probably easier to build.
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Table 5-4: The CP2 Registers

# Name Use Function

0 Command W Causes various coprocessor operations to be initiated if bits are 
written to it (see below)

1 State R/W Allows the current state of this CPU’s speculation state machine to 
be read or modified

2 Master Pointer Reg. Storage place for pointer to the global speculation data structures

3 Speculation PID R/W Storage place for the OS process identifier that "owns" this specu-
lative thread. If we allow multiple speculative contexts, this is used 
to differentiate between them at runtime. The lower 4 bits MUST 
be 0.

4 Head Flag R Flag that is 1 when we’re the "head" nonspeculative processor, 0 
otherwise

5 CPU Pointer Reg. Storage place for pointer to this processor’s local speculation data 
structures

6 Current Vector R Following an interrupt, the interrupt vector that should be taken is 
read out of here by the CPU and JR’ed to [NOTE: This isn’t 
present in LESS, since it’s not necessary.]

7 Restart Vector Reg. Sets the speculative restart vector at the beginning of the currently 
executing region of code

8 Interrupt Vector W Sets the address of the normal OS interrupt handler [NOTE: This is 
used for an internal function by LESS.]

9 Violation Vector W Sets the location of the speculative violation handler, called when 
the L1 cache detects a speculative RAW hazard

10 Hold Vector W Sets the location of the speculative hold handler, called when a line 
with read bits set is about to be thrown out of the L1 or if the L2 
buffers for this CPU fill up

11 Exception Vector W Sets the location of the routine called when exceptions are gener-
ated by code executing speculatively

12 Total Kill Vector W Sets the location of the routine called by cancelled speculative 
threads after a loop ends (label loops) or when threads are 
squashed after a violation (slow loops and procedures)

13 Quick Kill Vector W Sets the location of the routine called when threads are squashed in 
mid-loop (label or quick loops)

14 LTB Violation 
Time

R Time recorded off of the violation time counter (register 24) when 
the last violating load actually was issued, on an LTB hit (0 other-
wise). Valid from the time of the violation until the next specula-
tive region is started.

15 LTB Violating 
Load PC

R PC of load that caused a violation, on an LTB hit (0 otherwise). 
Valid from the time of the violation until the next speculative 
region is started.
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5.4.3 Speculative Interrupts

For some of the commands listed in Section 5.4.2, software speculation handlers may also need to

be invoked in order to properly handle the situation. When this is necessary, the coprocessor raises

the interrupt line to its processor. This is possible because the external interrupt line for the proces-

sor is re-routed into the processor’s CP2, instead. The CP2 screens external interrupts and adds

speculative interrupts, in order to generate the interrupt line that is passed to the processor core.

When any interrupt occurs, CP2 makes the “current vector” register (#6) equal to the appropriate

16 Violating Store PC R PC of store that caused a violation. Valid from the time of the vio-
lation until the next speculative region is started.

17 Violation Address R Address of the load/store pair causing the most recent speculative 
violation. Valid from the time of the violation until the next specu-
lative region is started.

18 Receive Fork Vec-
tor

W Sets the location of the routine called when this processor is start-
ing a new procedure, under procedure speculation

19 State statistics con-
trol

R/W Controls state statistics (see below) [NOTE: This register is not 
implemented in the LESS simulator, since these values can be set 
directly in C.]

20 "Bad" Statistics 
Flag

R/W For writing. When read, returns the "running-discarded" state 
accumulator contents.

21 "Good" Statistics 
Flag

R/W For writing. When read, returns the "waiting-discarded" state accu-
mulator contents.

22 "Run" Statistics 
Flag

R/W For writing. When read, returns the "running-used" state accumu-
lator contents.

23 "Idle" Statistics 
Flag

R/W For writing. When read, returns the "waiting-used" state accumula-
tor contents.

24 Violation Count R/W Returns the time since the L1 cache was last advanced or backed 
up if read. If written, this timer is cleared. [NOTE: not in LESS]

25 "Wait" Statistics 
Flag

R/W For writing. When read, returns the "overhead" state accumulator 
contents.

26 "Clear" Statistics 
Flag

R/W For writing. When read, returns the "idle" state accumulator con-
tents.

27–
31

N/A — 5 unused registers

Table 5-4: The CP2 Registers

# Name Use Function
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vector that was previously stored into its interrupt vector registers. This way, the primary interrupt

handler can quickly determine what handler needs to be executed with a single MFC2 instruction.

Table 5-9 summarizes how the speculative commands may cause interrupts on the various proces-

sors in the system. The “Interrupts Who?” column indicates how CP2 must selectively pass inter-

rupts into the processor core based on the current speculative state of the processor and the source

of the bus command.

The “Quick Kill” vector allows optimized thread squashing routines during label-based and quick

loops (as described in Section 5.5). During subroutine speculation and slow loops, however, it is

set equal to the Total Kill vector by software, which processes all kills at those times.

In addition to the interrupts caused by bus commands, some speculative interrupts are caused by

conditions determined within the processor that demand software attention. Table 5-10 summa-

rizes these exceptional conditions.

Table 5-5: CP2 Command Register (#0) Bit Definition

# Name Function

0 Enable Speculative 
Exceptions

Turns normal screening of speculative exceptions on and causes the 
"current vector" register to return the appropriate vector for any neces-
sary speculative exception

1 Disable Speculative 
Exceptions

Causes the processor to ignore all speculative exception causing events, 
and the "current vector" register will always return the Interrupt Vector

2 Enable Speculative 
Memory References

Switches system so that loads and stores will now be speculative

3 Disable Speculative 
Memory References

Switches system so that loads and stores will be nonspeculative

4 - 5 N/A —

6 Advance L1 Cache Causes all speculative bits in the L1 cache to be cleared. Meanwhile, all 
lines with the "pre-invalidate" bit set are invalidated.

7 Backup L1 Cache Causes all speculative bits in the L1 cache to be cleared. Meanwhile, all 
lines with the "modified" bit set are invalidated.

8 - 31 N/A —
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Finally, the command register bits 0 and 1 may be used to turn speculative interrupt processing on

or off. When it is off, then only “normal” interrupts and exceptions that could occur in the unmod-

ified IDT core are allowed. This feature should be used to protect any threads running nonspecula-

tively from receiving spurious interrupts, in case their speculation state is erroneously set to

something other than “dead,” which normally deactivates all speculative exceptions.

Table 5-6: State Statistics Control Register (#19) Bit Definition

# Name Function

0 Read Head State When set, causes registers 20-23, 25, and 26 to be read as state accumu-
lators from the "head" (nonspeculative) speculative state

1 Read First Specu-
lative State

When set, causes registers 20-23, 25, and 26 to be read as state accumu-
lators from the second (first speculative) speculative state

2 Read Second Spec-
ulative State

When set, causes registers 20-23, 25, and 26 to be read as state accumu-
lators from the third (second speculative) speculative state

3 Read Third Specu-
lative State

When set, causes registers 20-23, 25, and 26 to be read as state accumu-
lators from the fourth (third speculative) speculative state

4 Counter State RUN Causes the "running" counters to be the actively incrementing ones

5 Counter State 
WAIT

Causes the "waiting" counters to be the actively incrementing ones

6 Accumulate State 
RUN

Switches the state accumulation hardware to "running" mode

7 Accumulate State 
IDLE

Switches the state accumulation hardware to "idle" mode

8 Sliding Violation 
Tracking ON

The violation tracking mechanism tracks the last 32 (could vary) specu-
latively loaded addresses

9 Sliding Violation 
Tracking OFF

The violation tracking mechanism tracks only the first 32 (could vary) 
speculatively loaded addresses

10 Read Lower Half 
of Accumulators

When set, causes registers 20-23, 25, and 26 to read the lower 32-bit 
halves of the 64-bit state accumulators

11 Read Upper Half 
of Accumulators

When set, causes registers 20-23, 25, and 26 to read the upper 32-bit 
halves of the 64-bit state accumulators

12–31 N/A —
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5.4.4 Speculative Memory Accesses

While threads are running speculatively on the processors in Hydra, their memory accesses must

be made in a special “speculative” mode, which causes special behavior for both reads and writes

in order to allow hardware simulation of “sequential” program behavior even when speculatively

executing threads are running in parallel. Speculative reads are tracked in the processor’s L1

cache, so that RAW violations between “later” threads and “earlier” threads in the system may be

properly resolved. Speculative writes are buffered at the L2 cache using the special speculative

buffers described in Section 5.3.3, so that the writes associated with a speculative thread may be

discarded or permanently committed, depending upon whether the speculative thread is restarted

or successfully completes. This section discusses the functionality that has to be in the speculative

coprocessor to allow these accesses to work correctly.

If speculative memory accesses are enabled for a processor using bits 2 & 3 in the command regis-

ter, then the coprocessor will set the “speculative reference” bit for most accesses going to mem-

Table 5-7: Speculative States

# Name Function

0 Dead This processor is not currently running a speculative thread. It may be run-
ning something unrelated to speculation, however.

1 Free — Head This state is not possible

2 Free — Third This processor is waiting for a speculative thread, and is third in the queue 
for threads

3 Free — Second This processor is waiting for a speculative thread, and is second in the queue

4 Free — First This processor is waiting for a speculative thread, and will be the next to 
receive one

5 Running — Head This is the most fundamental state. It represents the "head" speculative pro-
cessor, that is actually non-speculative. When only one thread is running, it 
is this one.

6 Running — Second This processor is running a speculative thread. It is the least speculative pro-
cessor, just after the "head" processor.

7 Running — Third This processor is running a speculative thread. It is the middle speculative 
processor.

8 Running — Fourth This processor is running a speculative thread. It is running the most specu-
lative thread.
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ory, so that they are handled properly by the speculative hardware in the L1 and L2 caches. The

mechanisms used to handle these accesses are described in Section 5.3.1 and Section 5.3.3. How-

ever, not all loads and stores made while speculative memory accesses are enabled will actually be

speculative.  There are two major exceptions.

Table 5-8: Speculative Write Bus Commands and the state changes they may cause

# Command Function State Change

0 Clear Buffer Resets L2 buffers to default positions. For 
use at speculation startup only.

—

1 Kill Buffer Discards this processor’s current L2 buffer. —

2 Commit 
Buffer

Commits this processor’s current L2 buffer. —

3 N/A — —

4 N/A — —

5 Kill Kill L2 buffers for this processor and all of 
higher order.

—

6 Kill and Halt The head processor has finished a loop, so 
everyone must drop loop iterations and 

jump ahead to post-loop code.

—

7 Commit and 
Head

The head processor has finished a thread, so 
everyone must rotate around to the next 

position

Source processor goes to state 8, 
while other processors all have 

their state decreased by 1.

8 Kill Others Same as kill, but this processor’s buffer is 
not affected by the kill.

—

9 Fork Start a new speculative set of subroutine 
completion code, grabbing the most specu-
lative processor and starting it on the thread 

if possible.

Nothing if the source is in state 
9. Otherwise, the processor of 

order 4 goes to the state 1 greater 
than the source processor’s. Any 
other processors with an order 

higher than the source are incre-
mented up in state by 1.

10 Start Loop A processor is starting a loop, so all more 
speculative processors should join it and get 

loop iterations.

All free processors get their state 
incremented by 4, so they are 

now running.

11–
14

N/A — —

15 Free The processor has discovered that it has no 
work to do, so it declares that it is going 

idle.

Source processor goes to state 4. 
All processors of higher order 
than the source have their state 

decreased by 1.
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The first exception occurs in the interpretation of the MIPS LL (load locked) instruction.  Since

there is no need to use traditional MIPS LL/SC synchronization during speculation, the LL opcode

is free for other use.  Hydra remaps it during speculation to produce normal non-speculative loads,

instead. This allows a user speculative thread to load data without enabling RAW violation detec-

tion, when this is desired. For example, this mechanism may be used to do spinlock synchroniza-

Table 5-9: Speculative Write Bus Commands and the interrupts they can cause

# Command Interrupts Who? Vector

0 Clear Buffer — —

1 Kill Buffer — —

2 Commit Buffer — —

3 N/A — —

4 N/A — —

5 Kill All more speculative processors. Quick Kill Vector

6 Kill and Halt All more speculative processors. Total Kill Vector

7 Commit and Head — —

8 Kill Others All more speculative processors. Quick Kill Vector

9 Fork State 4 or 8 processor, whichever is running. Receive Fork Vector

10 Start Loop All more speculative processors. Total Kill Vector

11–14 N/A — —

15 Free — —

Table 5-10: Internal conditions that can cause speculative interrupts.

Cause of Interrupt Vector

RAW Violation detected by L1 cache logic Violation Vector

L1 line with read bits set being thrown out of L1 cache by a line replacement Hold Vector

A store attempts to overflow the L2 buffer for this processor, and the local copy of 
the L2 speculation buffer tags detects this condition

Hold Vector

An instruction executing in this processor’s speculative thread causes a normal OS-
handled exception

Exception Vector

External Interrupt Line is raised Interrupt Vector
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tion between speculative threads in order to “protect” critical variable references that commonly

cause RAW violations. This is described fully in Section 6.2.1.

Unlike LL instructions, SC instructions are illegal during speculation.  If one would attempt to use

them in their “normal” manner, erratic and unpredictable results would occur as the speculation

system interfered with the limited “speculation” performed by LL/SC.  Also, there is no compel-

ling reason to remap SCs to any special type of store, such as a non-speculative form, during spec-

ulation.  A store that bypasses the speculation logic can never be “undone,” which could result in

odd behavior if a thread making the store were to be restarted. Similarly, uncached reads and

writes performed speculatively will cause unpredictable behavior, since these references will avoid

all of the speculative mechanisms by their very nature.

The second exception occurs when the thread running on a processor becomes the head, nonspec-

ulative thread. At this point in time, some stores are made nonspeculatively. When each speculative

store is issued, the local L2 buffer tags (Section 5.3.2) are consulted. If the store hits in a write

buffer line already contained within those tags, then it continues to issue in a speculative manner.

However, if the store misses in those tags, and would therefore require the allocation of another L2

write buffer entry, then the store is converted to a non-speculative one that writes directly to the L2

cache. This technique minimizes the unnecessary use of the L2 buffers that would otherwise occur

after the originally speculative thread became non-speculative. This trick has three advantages

over letting references pass out speculatively. First, fewer write buffer entries are required, saving

memory and commit time (see Section 5.3.3.4). Second, if a processor runs out of L2 buffer space

and must stall using a “hold” exception, it will automatically work correctly after it is restarted as

the head processor. Finally, fewer L2 cache lines will be locked down by speculative writes (as

described in Section 5.3.1).
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Overall, each memory reference may be modified by 3 control lines that indicate if the reference is

uncached, LL/SC, and/or speculative. While CP2 doesn’t affect the uncached line, it may modify

the other two lines according to the following equations:

• LL/SC  = (LL && !SpeculativeReferences) || SC

• Speculative = SpeculativeReferences && !LL && !SC && !(store && HeadThread &&

!LocalL2TagHit)

5.4.5 Statistics Mechanisms

Simple timing of speculative threads may be done with the existing CP0 count register (#9), which

counts at 1/2 the clock rate. However, this mechanism generally requires a fair amount of software

support to keep track of statistics, since it is so primitive.  As a result, we have added some special-

ized hardware statistics registers to calculate many critical speculation timing statistics while

incurring minimal software overhead.

5.4.5.1 State-Time Accumulators

CP2 adds a set of state-time accumulators that add up the amount of time spent by speculative

threads in overhead, useful work, discarded work, and waiting (for useful and discarded threads).

Idle time (i.e. useless time between speculative regions) is also tracked. Each of the individual

accumulators is actually maintained as a set of 4 separate 64-bit registers that sort the time spent in

each of these states into 4 subcategories, by speculative processor order number (see Section

5.4.2). These accumulators work with only a small amount of overhead added to the speculation

software handlers.

Internally, two sets of four counters are maintained — a “running” counter set and a “waiting”

counter set. During speculation, one counter is always incrementing, depending upon whether the

system is in “running” or “waiting” state and which speculative processor order number this pro-
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cessor has. The only time that a counter is not incrementing is when the speculative order state is

“dead” (i.e. not speculating at all). On any cycle, the single counter selected by the processor’s

state and the processor’s speculative order number increments by one. The counters and the single

incrementer that they share are depicted in the top half of Figure 5-10.

The system is also always in one of two accumulation states — “idle” or “running.” All of these

states may be manipulated manually using the CP2 state statistics control register (#19), if desired.

During normal operation, MTC2 operations to the 6 accumulator registers cause specific actions to

be taken with the counter contents, depending upon the accumulation state, as noted in Table 5-11.

The groups of adders in the lower half of Figure 5-10 are responsible for actually accumulating the

counters with the accumulators selected by the particular MTC2 command. Simply by inserting

the appropriate MTC2 commands into the software speculative handlers, statistics may be taken to

get a reasonable picture of how the system is spending its time.

Figure 5-11 shows a couple of typical scenarios that are used by the speculation software handlers

to get approximate timing information from the execution of a speculative program.  The “Idle”

accumulator is used to track the time that a particular processor is waiting in the “free” speculative

states, waiting for a thread. When speculation is actually occurring, the “Overhead” accumulator

collects the time spent in the speculation software handlers while the four “Runnning/Waiting”

accumulators track the amount of time spent actually running speculative threads, or waiting to

become the head processor.

5.4.5.2 Violation Tracking

Another statistic mechanism included in CP2 is a violation time counter, which tracks the time

since the L1 cache was last advanced or backed up using the appropriate command register com-

mands. This may also be cleared by writing CP2 register #24, or may be read by reading that reg-

ister.
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In order to track the instructions that cause violations, the coprocessor maintains a circular Load

Tracking Buffer (LTB) that tracks the 32 most recent unique speculative load addresses in the cur-

rent speculative thread, if “sliding tracking” is enabled using the statistics control register (#19). If

Figure 5-10: A schematic overview of the state-time accumulator system
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“sliding tracking” is not enabled, the LTB just buffers the first 32 load addresses only. This buffer

is cleared, along with the violation time counter, at the beginning of each speculative thread. As the

thread progresses, each speculative load with a unique load address is noted in the LTB by storing

its PC, memory address, and violation time count, as is noted in Table 5-12. If the LTB overflows

in “sliding tracking” mode, then the oldest entries are discarded as new ones write over them. The

load address fields in the buffer are maintained as a block of CAM memory, and this CAM is

checked before each load is entered into the LTB. If a load’s memory address has already been

entered into the LTB by a previously executed load, then the later one is not recorded.

Table 5-11: Responses to any writes to speculative state transition registers

Reg. Transition Action if "Idle "Action if "Running"

20 Bad Work Adds running counter to "idle time" 
accumulator. Switches to "Running" 
state. Counters are cleared and run-
ning counter is started.

Adds running counter to "running-dis-
carded" accumulator and waiting 

counter to "waiting-discarded" accumu-
lator. Counters are cleared and running 

counter is started.

21 Good Work Adds running counter to "idle time" 
accumulator. Switches to "Running" 
state. Counters are cleared and run-
ning counter is started.

Adds running counter to "running-
used" accumulator and waiting counter 

to "waiting-used" accumulator. 
Counters are cleared and running 

counter is started.

22 Run Adds running counter to "idle time" 
accumulator. Switches to "Running" 
state. Counters are cleared and run-
ning counter is started.

Adds running counter to "overhead" 
accumulator. Counters are cleared and 

running counter is started.

23 Idle Adds running counter to "idle time" 
accumulator. Counters are cleared 
and running counter is started.

Adds running counter to "overhead" 
accumulator. Switches to "Idle" state. 

Counters are cleared and running 
counter is started.

25 Wait No action. Causes the internal "waiting" counters 
to be the actively incrementing ones, 
switching off the "running" counters.

26 Clear Clears all of the statistics counters 
and accumulators, resetting the state 
statistics system. Also, initially sets 
the processor to the "Idle" accumula-
tion state.
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When the L1 speculation bits detect a violation with a store passing over the write bus, then the

CAM array is used in an attempt to find the load that incorrectly read speculative data too early. If

found, the PC, address, and time count from the load’s LTB entry and the store PC from the write

bus are made available in CP2 registers 14–17, so that a software statistics handler may use them.

Figure 5-11: A state-time statistics operation example
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5.5 Speculative Thread Control Software
The Multiscalar [28] and TLDS [14] speculative architectures take radically different approaches

to finding speculative threads within an application.  The Multiscalar architecture breaks a pro-

gram as a sequence of arbitrary “tasks” to be executed, and then allocates tasks in order around its

ring of processors.  While the division of a program into basic block-sized “tasks” is done at com-

pile time, all dynamic control of the threads is performed by ring management hardware at runt-

ime.  On the other hand, the TLDS architecture is based on a less tightly coupled chip

multiprocessor and ends up near the opposite end of the spectrum.  All thread control is handled by

multiprocessor software routines that are automatically added to a program at the beginning and

end of speculative “epochs” by a compiler, with only minimal hardware support.

We have used a combined hardware/software approach, similar to TLDS but with more hardware

support from our CP2 coprocessor, to divide programs into threads and then to spread the resulting

threads among our CPUs.  While the CP2 coprocessor provides significant help in the form of spe-

cial instructions and registers, the core of the control system is contained in the small assembly-

language software handlers, listed in Table 5-13.  These handlers attempt to divide applications

using the two techniques introduced in Section 5.1.2.  First, subroutine calls can cause a light-

weight “fork” to occur that branches off a speculative thread.  Afterwards, the original CPU imme-

diately takes a checkpoint of the CPU state and makes the subroutine call itself, while the

execution of the code following the subroutine return is handled speculatively by another CPU.

Table 5-12: Load Tracking Buffer fields

Buffer Entry Section Size Function

Load PC 30 bits Holds the address of a speculative load that may potentially 
cause a violation.

Load Address 30 bits Holds the address of the word that was read during the load. 
This entry must be a CAM memory.

Violation Time Count 32 bits A set of lines that indicate which state machine is using the 
write bus, so that snooping CPUs will access the proper 
address bus.  Alternately, an entire 30-bit address bus can be 
placed here, to avoid muxing from the address buses.
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Second, when specially marked loops are found in the course of running a program, the loop itera-

tions are spread out across all of the CPUs in the system.

5.5.1 Subroutine Threads

Subroutine speculation is initiated with a “fork” message to other processors when a subroutine

call is detected in the portion of the program working on the head processor.  Figure 5-12 depicts

the sequence of actions in a typical fork.  When a subroutine call is detected, the processor imme-

diately notifies a free processor that it should start working on the code in the original routine fol-

lowing the subroutine being called.  Most of the forking processor’s register state is passed along

with the fork command.  That processor then starts executing the post-call continuation code spec-

ulatively.  Meanwhile, the original processor tries to execute the subroutine itself, non-specula-

tively.  Functions that return a result cause a predicted return value to be used by the speculative

thread.  While more complex schemes are possible, we just predict the last value returned by the

function, which works fine in the common case of a function that doesn’t actually return anything.

This prediction is later checked against the actual result returned.  If they are different, or if a

memory violation is detected, the instructions from the continuation code after the subroutine call

are re-executed with the correct return value.

A single subroutine fork is fairly simple, but when multiple forks start happening in quick succes-

sion the situation gets much more complicated.  Subroutine speculation is actually controlled

using complex assembly-language handlers that form what is essentially a miniature thread-OS

system.  This system tracks speculative threads using a linked list of active threads ordered from

least-to-most speculative. When a thread is created, it is inserted into this active list. The head pro-

cessor is always running the thread at the beginning of the active list, while more speculative pro-

cessors try to execute the next three threads — the least speculative ones — from the list.

When a subroutine call is detected, several steps must occur during the actual forking operation:
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1. The processor allocates a register passing buffer (RPB) for the thread it is creating by allocat-

ing one from the free buffer list maintained by the speculation control support software. Since

our design does not incorporate direct interconnections between the processors, a buffer in

B is a subroutine called within the A/a routine.

1. The call is intercepted during normal execution and the a thread is sent out to CPU 1, along
with a newly created RPB containing its starting state and the guess for the return value of B.

2. The original caller continues by executing the B subroutine, staying the head processor as this
happens.

3. Meanwhile, CPU 1 picks up the a thread, the caller’s continuation code, and executes it spec-
ulatively. Upon completing this speculative thread, it must wait to become the head proces-
sor. During both the execution and the waiting time, its speculation mechanisms watch stores
from B to ensure that no true dependencies between the threads are violated. The a thread is
restarted immediately when such a violation is detected.

4. Upon becoming the head, CPU 1 completes and returns (or restarts and re-executes the a
thread if the original return value prediction was wrong).

Figure 5-12: An example execution pattern over time of a simple subroutine fork and return, with 
a key for the notation used here and in Figure 5-14.
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memory is necessary to temporarily hold a processor’s registers during the register passing

communication from processor to processor. In addition, since these registers may need to be

reloaded if a thread is restarted following any sort of speculation violation, it makes sense to

allocate a buffer once that can hold a thread’s starting (or restarting) state throughout the

thread’s lifetime.

2. The new buffer is filled with all registers that may be saved across subroutines (9 integer and

12 floating point using standard MIPS software conventions), the current global and stack

pointers, the PC following the subroutine call, and a prediction of the subroutine’s return

value. For this paper, we used the simple repeat last return value prediction mechanism used

in [43]. While more complex schemes are possible, this technique works well because most

functions tend to either return the same thing continuously (void  functions and functions that

only return error values are good examples), or they are completely unpredictable, and there-

fore should not be selected for speculative execution at all. These unpredictable functions are

pruned off and marked as unpredictable after a few mispredictions have been detected by the

mechanisms described in Section 5.5.4.

3. The new buffer is then inserted into the list of active buffers, immediately after the current pro-

cessor’s, as depicted in Figure 5-13 (a). This allows the list of active RPBs to also act as the

active thread list, since any child thread created will always be the next-most-speculative

thread. The thread list must be maintained in memory for two reasons. First, thread may be

assigned to multiple processor over the course of its lifetime, so it is necessary to keep the

thread list in a central location that all may access. Second, since there are frequently more

threads available than processors, it is convenient to simply leave the RPBs for these “extra,”

very speculative threads lying in memory at the end of the active list until a processor can be

assigned to them.

4. The processor finishes by notifying a free processor  that it should load the registers in the

newly created RPB and continue working on the code after the subroutine call.  If no free pro-
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cessors are available, then most speculative running processor will drop its thread and pick up

the new one.

These steps are currently performed by an exception handler that is executed when a subroutine

call is detected, so that we could use commercially available compilers to compile our bench-

marks. While we have vectored exceptions for speculation that avoid the normal OS exception

A)

B)

C)

Figure 5-13: Managing the register passing buffers (RPBs).  A) During a subroutine fork.  B) 
During a “slow” loop.  C) During a “quick” loop.
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overhead, inlining the forking code using a speculation-aware compiler would definitely be more

efficient, since only the live registers would need to be saved in the RPB. At the processor receiv-

ing the fork, another vectored exception handler gets a pointer to the new buffer from the active

list, reads in the contents of the buffer into its registers, and starts executing the continuation code

following the procedure call. Due to the overhead inherent in allocating a new buffer and then sav-

ing, communicating, and loading most of a processors’ registers, very short subroutines cannot be

handled by this mechanism without incurring excessive amounts of overhead.

When a subroutine completes after forking off its continuation code, it returns to the speculation

support software, which performs several more steps to complete the forked subroutine:

1. It waits until it becomes the head processor. This is necessary because the processor must

maintain its L1 speculation bits intact for this thread until after it becomes the head, since it

may be restarted by dependence violations up until this point.

2. The actual return value of the subroutine is compared with the one predicted during the last

fork. If a misprediction is detected, the return value is corrected in the RPB allocated during

the last fork, and then all of the speculative processors are restarted so that they will execute

using the new, correct return value.

3. The RPB of the current thread is returned to the free list as the next thread becomes the head.

4. The old head processor becomes the most speculative processor. At this point, it checks to see

if there is a fourth RPB that is not assigned to any processor in the active list. If so, it starts

running the thread associated with that RPB. Otherwise, it is freed until another fork occurs.

5.5.2 Loop Iteration Threads

Two different sets of control code are used for executing specially-marked loops (see Chapter 6) in

speculative programs. When starting a large loop, in which the forking of subroutines within a

loop is desirable, a circle of RPBs pointing to the loop body subroutine is inserted into the active
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Table 5-13: A summary of the software handlers required to support speculation.

Group Handler Use What it does
Overhead 

(instr.)

Subrou-
tines

Fork Exception, generated 
upon execution of a 
jump-to-subroutine 
(JALR) instruction

Allocates an RPB, saves necessary pro-
cessor state into the RPB, and then 
sends a FORK command out to the 
most speculative (or free) processor.

~70

Subroutine 
Comple-

tion

Routine returned to 
after a forked subrou-
tine completes, instead 
of the normal return 
address

Waits to become the head, commits 
speculative data, checks the guessed 
return value from the last fork against 
the actual one, kills speculative proces-
sors if necessary, and then continues 
with a "Start Buffer" command to get a 
new thread.

~40 + full 
"Start Buffer"

Start 
Buffer

Jumped to by comple-
tion commands or an 
exception triggered by a 
FORK or STARTLOOP

Selects one of the first 4 RPBs on the 
active list, deletes any old children 
generated by this thread during any 
restarted earlier executions, reads in its 
contents, and begins executing the sub-
routine or loop thread.  If insufficient 
threads are available, the processor is 
freed.

Full: ~60 
(loop) or ~75 

(fork)
Short: ~25 

(loop) or ~40 
(fork)

Loops Start
Specula-
tive Loop

Called by spec_begin() 
in original program 
code

Sets up a ring of RPBs for "slow" loop 
operation, configuring their buffers 
correctly, then sends out a START-
LOOP bus command to other proces-
sors.

~75

Start
Specula-
tive Loop 

(quick
version)

Called by 
spec_begin_quick() in 
original program code

Sets up 4 RPBs for "quick" loop opera-
tion, configuring their buffers cor-
rectly, then sends out a STARTLOOP 
bus command to other processors.

~70

End-of-
Iteration / 
Terminate

Routine returned to 
after a speculative loop 
iteration completes

Waits to become the head, commits 
speculative data, moves its RPB to the 
end of the loop, making adjustments to 
it if it was used for a fork during the 
loop iteration, and claims the next 
available iteration with a COMPLETE 
command, or commits its speculative 
data, discards all of the RPBs within 
the entire loop, and kills all other loop 
iterations with a KILL command 
before picking up the buffer following 
the loop with a "Start Buffer" com-
mand.

~45 + short 
"Start Buffer"

End-of-
Iteration /
Terminate 
(quick ver.)

Routine returned to 
after a speculative loop 
iteration completes

Same as slow version, except without 
RPB manipulation and adjustments 
during the end of every iteration.

16 (on EOI) 
or ~45 + short 
“Start Buffer” 
(on terminate)
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thread list when the loop is started, as is depicted in Figure 5-13 (b). Subsequently, when a loop

iteration completes on the head thread, its RPB is recycled to the end of the loop, as the figure indi-

cates. Aside from the RPB recycling and the fact that fewer registers must be saved and restored

when starting a loop subroutine, the system works much like it does with procedure forks. Since

the active RPB list works the same at all times, this model allows speculative thread forks from

within a loop or even a loop within a loop to work correctly. However, a loop within a loop is

impractical, even if it works correctly, because enough loop RPBs are always inserted into the

active list when any loop is started so that all processors will always be working on the innermost

loop or subroutines inside of it. Hence, RPBs from outer loop iterations will always be far enough

back on the active list that they will never execute until the inner loop completes. As a result of this

processor allocation scheme, if nested loops are encountered, we must choose which loop is the

best choice for speculative execution. Only a system with a very large number of processors could

practically consider dividing up the free processors among several different parallel or nested

Support Violation:
Initiate

Exception, initiated by 
a RAW hazard detec-
tion in the L1 cache 
speculation logic

Causes speculative data to be discarded 
and the iteration to be restarted, and 
sends out a KILL bus command to fol-
lowing CPUs.

~30 (20 if ina 
quick loop)

Violation: 
Receive

Exception, initiated by 
KILL bus command

Causes speculative data to be discarded 
and the iteration to be restarted.

8 + full “Start 
Buffer” (11 if 
in quick loop)

Hold: 
Buffer Full

Exception, initiated by 
buffer-management 
hardware within each 
CPU, due to a full L2 
buffer or the possible 
loss of read-bit infor-
mation due to an L1 
replacement

Causes the CPU to stop until it 
becomes the head CPU, when it is 
allowed to continue non-speculatively, 
bypassing the full buffer.

15

Hold:
Exception

Exception, initiated in 
place of a “normal” 
instruction exception or 
system call trap 
encountered during 
speculation

Causes the CPU to stop until it 
becomes the head CPU, when it is 
allowed to continue non-speculatively 
with the SYSCALL or instruction 
exception.

25 + OS time

Table 5-13: A summary of the software handlers required to support speculation.

Group Handler Use What it does
Overhead 

(instr.)
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loops in order to run speculative iterations from more than one at a time. The second set of control

code is faster, but less flexible. For loops that do not contain subroutines that need to be forked,

this quick set of routines allocates a set of four RPBs for the loop, one per processor, and then

locks each processor into an RPB, as is depicted in Figure 5-13 (c). The overhead of the control

routines associated with these loops is much lower because it does not have to manipulate the

active RPB list after every loop iteration to perform RPB recycling or deal with forks or nested

loops inside of the loop, because these are simply executed inline. Table 5-14 shows a comparison

of the dramatic overhead savings that are possible using this technique.  While we have not cur-

rently implemented this feature, it would be possible for a compiler to generate code that could

first use the slow but sophisticated loop control routines to dynamically measure a loop’s contents,

including that of any inner loops, and then select the quicker routines for loops that do not need the

flexibility of the full loop handler based on its initial measurements.

If the loop is a good candidate for speculation, a modified version of the loop body, transformed

into a self-contained function using the techniques described in Section 6.1, is executed repeatedly.

Loop iterations are executed on all available processors. They are distributed among processors so

Table 5-14: A comparison of typical handler overheads for “slow” and “quick” loops.

Routine Use
"Slow" 

Overhead
"Quick" 
Overhead

Start Loop Prepares the system to speculatively execute loop 
iterations, and then starts execution

~75 ~70

End of each loop 
iteration

Completes the current loop iteration, and then 
attempts to run the next loop iteration (or specula-
tive procedure thread, if present)

~80 16

Finish Loop Completes the current loop iteration, and then 
shuts down processing on the loop

~80 ~80

Violation: Local Handles a RAW violation committed by this pro-
cessor

~30 20

Violation: Receive 
from another CPU

Restarts the current speculative thread on this pro-
cessor, when a less speculative processor requires 
this

~80 11
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that when loop iteration i, running on the head processor, completes, that iteration’s results are

committed to memory.  Afterwards, the processor starts running the next loop iteration that has not

yet been allocated to a processor, usually i+4 , becoming the most speculative processor in the pro-

cess. Meanwhile, the i+1  iteration becomes the head iteration and is allowed to repeat the cycle.

This pattern continues until one of the loop iterations detects a loop terminating condition, and

notifies the speculation system. When this processor becomes the head, all processors executing

loop speculation are cancelled and execution returns to normal. A simple example of this execution

sequence is depicted in Figure 5-14.

A possible problem with loop speculation is that it may increase the amount of memory traffic and

the instruction count during the loop. The speculative version of the loop cannot register allocate

variables that are shared across loop iterations, because Hydra’s data speculation mechanisms can-

not protect against true dependency violations in registers.  We chose not to make these modifica-

tions because, unlike our L2 memory system, the register files are an integral part of each

processor’s pipeline, and modifications to allow communication between them would likely

decrease each processor’s core cycle time.

5.5.3 Loop-only Speculation

By limiting speculation to loops alone, we can completely eliminate the RPB system and thereby

dramatically simplify the control routines so they require many fewer instructions. Table 5-15

shows the overhead reductions we were able to obtain by simplifying several key loop-control rou-

tines so that they would only work in an environment without procedure speculation. Table 5-16

emphasizes this point further with a side-by-side comparison showing the performance of all three

types of loop speculation side-by-side.  The savings obtained by simplification of the routine that

must be called at the end of each loop iteration and the violation-processing routines have the most

impact on overall performance.
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Making this system better yet, the programming API for loop-only speculation can be optimized,

since it no longer has to be compatible with the RPB system dictated by procedure speculation.  As

is described in Section 6.1.3.2, the loop bodies must be encapsulated within a function call so that

they can be speculatively executed.  To maintain compatibility with procedure speculation, the

1. A loop is started — all processors respond, and start executing loop iter-ations in the order of
their current state. The initiating processor also gets an iteration as it completes the A thread.

2. When the head processor (speculative state 0) completes a loop iteration, it notifies the other
processors and starts a new loop iteration while its buff-ers are committed to permanent
memory. This message causes the spec-ulative states of the looping processors to shuffle.
Each is decremented by 1, except the head, which now becomes the most speculative of the
loop-ing processors as it starts a new loop iteration.

3. When an iteration completes after detecting the end-of-loop condition, it sends a termination
message out to all of the processors. All other proces-sors will now be running iterations
“beyond the end of the loop” that shouldn’t actually execute, so they are simply cancelled,
and are freed to execute any threads after the end of the loop.

4. The terminating processor picks up the a thread, immediately following the loop, and com-
pletes it.

Figure 5-14: An example execution pattern over time for a simple speculative loop.  This example 
uses the same notation as the subroutine example in Figure 5-12.
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loop body encapsulation function for “slow” and “quick” loops must be called on every loop itera-

tion, since the encapsulation function holds only a single loop body that is pretending to be a “sub-

routine” that can be speculatively forked off into a thread.  On the other hand, the encapsulation

functions for loop-only speculation hold a modified form of the original loop that executes a quar-

ter of the original loop.  This allows each processor executing speculation to only call the encapsu-

Table 5-15: A comparison of “label” and conventional speculative handlers.

Routine Use
Procedure 
and Loops 
Overhead

Loop-only 
Overhead

Procedures Start Procedure Forks off the code following a 
procedure call to another proces-
sor, speculatively

~70 —

End Procedure Completes processing for a pro-
cedure that has forked off its 
completion code, and starts run-
ning another speculative task on 
the CPU

~110 —

Loops Start Loop Prepares the system to specula-
tively execute loop iterations, 
and then starts execution

~70 ~30

End of each loop iter-
ation

Completes the current loop itera-
tion, and then attempts to run the 
next loop iteration (or specula-
tive procedure thread, if present)

~80 12

Finish Loop Completes the current loop itera-
tion, and then shuts down pro-
cessing on the loop

~80 ~22

Support Violation: Local Handles a RAW violation com-
mitted by this processor

~25 7

Violation: Receive 
from another CPU

Restarts the current speculative 
thread on this processor, when a 
less speculative processor 
requires this

~80 7

Hold: Buffer Full Temporarily stops speculative 
execution if the processor runs 
out of primary cache control bits 
or secondary cache buffers

15 12

Hold: Exception Pauses the processor following a 
SYSCALL instruction, until it is 
the non-speculative, "head" pro-
cessor

25 + OS 
time

17 + OS 
time
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lating function once per speculative loop, instead of once per loop iteration — a significant

savings.

5.5.4 Thread Size & Runtime Selection

Serious consideration must be given to the size of the threads selected, for several reasons:

• Limited buffer size: Since we need to buffer state from a speculative region until it commits,

threads need to be short enough to avoid filling up the buffer space allocated for data specula-

tion too often.  An occasional full buffer can be handled by simply stalling the thread that is

storing too much data until it becomes the head processor, when it may continue to execute

while writing directly to the L2 cache.  However, if this occurs too often performance will suf-

fer because of the constant thread stalling.

Table 5-16: Comparison of the most important handlers in all three looping schemes.

Routine Use
"Slow" 

Overhead
"Quick" 
Overhead

"Improved" 
Overhead

Start Loop Prepares the system to specula-
tively execute loop iterations, 
and then starts execution

~75 ~70 ~30

End of each loop 
iteration

Completes the current loop itera-
tion, and then attempts to run the 
next loop iteration (or specula-
tive procedure thread, if present)

~80 16 12

Finish Loop Completes the current loop itera-
tion, and then shuts down pro-
cessing on the loop

~80 ~80 ~22

Violation: Local Handles a RAW violation com-
mitted by this processor

~30 20 7

Violation: Receive 
from another CPU

Restarts the current speculative 
thread on this processor, when a 
less speculative processor 
requires this

~80 11 7
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• True dependencies: Excessively large threads will exhibit more dependencies with later

threads, since they issue more loads and stores.  With more true dependencies, more violations

and restarts occur.

• Restart length: A late restart on a large thread will cause much more work to be discarded,

since a checkpoint of the system state is only taken at the beginning of each thread.  Having

shorter threads results in more frequent checkpoints being made, with more efficient restarts as

a result.

• Overhead: Very small threads are also inefficient, because of the speculation software handler

overhead.  Programs that are broken up into large numbers of small threads will waste more

time on these overheads.

In order to amortize the speculation software overheads while still keeping threads short enough to

avoid the long-thread problems, we have found that threads on the order of 100–1000 instructions

are optimal.

Unfortunately, not all loop bodies and subroutines are in this “perfect” size range for most efficient

speculation.  Also, many of these possible threads have too many true dependencies across loop

iterations or with their calling routines to ever effectively achieve speedups during speculative exe-

cution.  With an infinite number of processing nodes, it is possible to attempt to run every loop iter-

ation and subroutine in parallel.  However, many processors would be wasted achieving negligible

speedups on the “bad” routines while others sped up usefully.  However, we only have a finite

number of processing units.  As a result, care must be taken to allocate these units among specula-

tive threads that will actually produce helpful speedups.
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Under the fastest, “label” loop variant, the loops that will be speculated are completely predeter-

mined by the compiler or programmer, but it is possible to experiment a bit and vary the loops and

subroutines chosen for speculation while executing the less efficient but more flexible varieties of

speculation.  In these modes, simply attempting to speculate on every subroutine call and loop will

not typically result in selection of “good” threads.  These tactics would just tend to clog up the pro-

cessors with outer loops and the outermost subroutines of nested sets of routines.  These usually

are not the best choices.  As a result, “bad” subroutines or loops must be determined and cancelled

as quickly as possible to free up space for any “good” routines that can be found.

There are several heuristics that we use based on various CP2 statistics registers to find and control

the cancellation of “bad” threads: the violation counters, to eliminate threads with many dependen-

cies, thread timers, to eliminate threads that are too short or long, and stall timers, to find threads

that are stalled too long waiting to become the “head” processor.  Once “bad” threads are discov-

ered, we note their poor performance using a mechanism similar to a branch prediction table.  This

table is consulted before the forking of each speculative thread to determine whether or not the

thread is a poor target for speculative execution.  If the thread has been marked as being poor, we

back off and run it sequentially, instead.  We currently maintain a “hardware” prediction table in

our simulator, but in a real implementation it would be necessary to implement this table as a soft-

ware table accessed by instructions within the handling routines. This table is currently an infinite

buffer that records loops based on the address of a “check loop” call made before each loop and

subroutines based on the address of the called subroutine.

5.5.5 Handling Speculative Violations

The speculation software handlers are also responsible for handling the inevitable case of a specu-

lation that goes wrong — a violation.  A graphical example of one of these events is depicted in

Figure 5-15.  In the example, the head processor writes out some data after the first speculative

processor has read the old data value from that address too early, causing a violation.  The “Viola-
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tion: Initiate” handler listed on Table 5-13 is invoked on the first speculative processor after the

read bits in its L1 cache notice that the data written by the head processor has unfortunately

already been read.  In this case, the speculative exception is internally triggered through the pro-

cess described in Section 5.4.3.

After cleaning up and restarting the violated thread, the handler also has to restart all more specu-

lative threads by sending out a KILL write bus message using the protocols defined in Section

5.4.2 and Section 5.4.3.  This is required because the threads may have performed computation

based on incorrect results already produced by the violating thread, propagating the effects of the

violation further.  While this is a very conservative mode of operation, tracking the passage of all

data through all speculative threads is just too complex a task to realistically consider.  The write

bus message is passed through the coprocessors of the two most speculative processors, and the

“Violation: Receive” handler is invoked.  At this point, the speculative threads on these speculative

processors are restarted and the system is ready to try executing the threads again, but with the cor-

rect data being read by the speculative processors.

5.5.6 Support for Precise Exceptions

If a speculative thread requires operating system services through a system call or an exception,

the thread is simply stalled until it becomes the head processor.  At that time, the operating system,

which is not compatible with speculative execution, may be safely entered.  If a thread violates or

is cancelled while waiting, the operating system call or exception is simply discarded.  This is a

particular concern because it is quite easy for a speculative loop to start executing extra iteration or

two before they are cancelled, and these iterations often will try to access nonexistent array entries

after the actual end of the arrays being accessed.
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5.6 Design Analysis
Taken as a whole, we feel that our implementation of thread-level speculation offers a good

tradeoff between capability and hardware implementation costs.

We are unable to speculate on extremely small threads (less than 50-80 instructions long) without

incurring so much overhead that we cause slowdowns.  An architecture with tight coupling

between the various processor cores such as the Multiscalar [13] should be able to get higher per-

formance on code that breaks up more efficiently into smaller threads, but only at the expense of

some form of high-speed logic connecting the various cores together.  In contrast, the Hydra spec-

ulation architecture requires very little adjustment to the design of the processor cores — just the

addition of a few bits to the primary caches and the simple CP2 hardware — and no high-speed

connections other than the existing bus structure.  Even with this significantly reduced hardware

support, we are still capable of successfully running some rather small speculative threads, but not

the smallest ones.  We feel that this is a reasonable limitation to accept.

Figure 5-15: The sequence of events during a typical speculative violation

Time

0
1 reads address X

0 writes address X

1 notices the data hazard,
starts the VIOLATION 
exception handler

1 2 3

ST X

LD X

The handler sends out 
a KILL message to 
more speculative 
processors

They respond by 
executing the KILL 
handler

All 3 CPUs restart

Lines indicate a write broadcast to all processors 

data hazard

LD X

The correct value is now read
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 Another tradeoff in the design that we made has to do with scalability.  While some recent specu-

lative systems have been designed to be scalable to large numbers of processors [38] [40], we have

chosen to focus on relatively small-scale systems that only scale to 4-8 processors, maximum.  In

our design, the main limiting factor comes from the fact that our speculation algorithm requires

writethrough primary caches and a shared, broadcast write bus between the various processors.  In

other words, we take advantage of the basic Hydra design for fault detection and with the structure

of the grouped speculation write buffers attached to the L2 cache, as described in Section 5.3.3.2.

The algorithm for synthesizing “current” cache blocks from the contents of several per-thread

speculative buffers is also a problem in scalable systems, because it requires that all of the buffers

for all of the threads be present at one physical location.  On a large-scale system, structures like

these would be difficult or impossible to implement, and there would be a strong impetus to build

writeback caches to avoid sending extraneous writes everywhere over a network.  Given that

Hydra is a fairly small-scale MP to begin with, however, it is generally better for us to stick with a

simpler protocol in order to increase performance and decrease the potential for protocol errors.

This also allowed us to use most of the existing Hydra design with little or no modification.  Since

many of the programs we were targeting were integer ones that would not have scaled up to higher

numbers of processors anyway, this design choice was a good one for us.

We found that software control, described in Section 5.5, had some definite advantages and disad-

vantages.  The primary advantage was that it allowed the speculation coprocessor hardware (CP2,

Section 5.4) to be very limited, since the hardware did not need to have any “brains.”  It just needs

a few registers, some connections to the outside world for interrupt control, and an a coprocessor

interface to the rest of the processor core.  Software also allows the easy development and modifi-

cation of speculation thread control protocols over time.  We were able to implement all of the dif-

ferent speculation techniques (3 loop speeds plus procedures) on essentially the same hardware,

just by changing the control routines.  Unfortunately, the cost of software control is the inability of
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our system to speed up threads that require complex control, most notably subroutine forking.  In

general, losing this ability is probably a reasonable constraint to avoid the complexity of building

all of these control routines into the hardware itself.  However, a potential middle ground might be

achieved between these two extremes by adding a few extra hardware features such as hardware

support for a small number of key tasks.  In particular, fast register saving / restoring and a hard-

ware locking mechanism that connected the processors with a specialized path other than the write

bus could be helpful.  However, with any additional processor interconnections, one would have to

worry about synchronizing changes that might be made over the new bus with changes made over

the existing write bus.  This tricky problem is a large part of the reason we decided to let all com-

munication go through the write bus, where any communication is inherently ordered with respect

to all speculative memory references.

Finally, the speculative cache array hardware incorporates very elegantly into the existing cache

design, but it has a couple of potential drawbacks.  The extra L1 bits from Section 5.3.1 need to be

gang-clearable and have extra logic functions to selectively clear the “valid” bits in each line.  As a

custom block, this should be no problem to design.  However, if one was to attempt to synthesize

Hydra from an existing selection of standard library parts, no off-the-shelf memory would proba-

bly be able to support these features.  The design of the L2 cache interface and the speculation

write buffers in Section 5.3.3 is very good, with one glaring exception.  The locking bits that can

“lock down” parts of a cache set were a bug fix to handle a rare case.  In the original design, it was

possible for a speculative thread to complete, start to flush its buffers, and then discover that a buff-

ered line doesn’t exist in the cache itself because it has been forced out of the L2 cache.  Unfortu-

nately, they are an ugly fix.  The best solution would be to have a “pseudo-processor” at the L2

cache that is able to re-fetch the line from memory itself.  However, redesigning the controllers and

arbiter to handle an extra state machine controller was deemed too difficult so late in the design

process, so we are stuck with a stitched-together solution.  Thankfully, hacks like the locking bits

were not common in the design.
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6 Programming with Speculation

Loop speculation may be used to split virtually any sequential program with loops of any kind into

arbitrary threads that can be parallelized across several processors.  However, before the system

can successfully exploit loops it must know where they occur in the code.  It is actually possible to

find loops as existing code executes, simply by looking for backward branches.  Wherever one is

encountered, the hardware may assume that a loop has been found and begin forking off specula-

tive threads with the program counter set to the target of the backward branch in all speculative

threads.  This approach has actually been evaluated in [10].  However, finding loops “on the fly”

like this with legacy code requires the hardware to speculatively track references to registers as

well as memory.  Because we judged this high-bandwidth sharing to be too expensive an addition

to Hydra, it was necessary to add a compiler pass to isolate the loops in such a way that all com-

munication between speculative threads would be forced through memory.

This chapter describes the API used to isolate and mark loops for speculative execution.  The struc-

tures required by the API may be generated manually to modify loops for speculative execution, or

may be automatically generated by our HydraCAT source-to-source compiler tool.  Later parts of

the chapter describe ways that we have enhanced the parallel execution of speculative programs

using further modifications of the loop source code.  Some of these are simply involve slight mod-

ifications of the existing loops, while others utilize enhancements to the API designed specifically

to aid in performance tuning.

At the end of the chapter, Section 6.3 briefly addresses the software interface to subroutine specu-

lation.  Unlike the loop interface, this interface adds nothing new to C code, as subroutines are

already fairly self-contained and well marked in C code and the binaries generated from them.
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6.1 Simple Loop Isolation
This section describes how a programmer would modify loops for use with speculation.  Two ver-

sions are provided, for use with loops + subroutines and loop-only speculation.  Modifications to

force registers out to memory are essentially identical between the two specifications, but the

method used to mark loops has been significantly optimized in the loop-only speculation version

of the system.  With HydraCAT, all modifications but the global ones described in Section 6.1.1

will be done automatically to C for  or while  loops with a “p” typed in front of them, making

them pfor  or pwhile  loops.

6.1.1 Global Additions

The simplest changes are just text additions or replacements necessary to modify the program for

use with LESS and to tell LESS that speculation is being used.  The list of modifications is fairly

short:

1. The name of the main  function must be changed to mainX , to allow it to be used with LESS.

2. Calls to spec_startup();  and spec_cleanup();  must be added to enable speculation.

These should be located where they will be called before and after all speculative loops have

executed in the program (the beginning and end of mainX  is a good spot, for example).  Dur-

ing loops+subroutine speculation, these indicate where subroutine speculation will start and

end.

3. The following speculation header information must be added to source files that call specula-

tive handlers:

extern bool sInSpeculation;

extern void *sSpecDataPointer;

extern void *sSpecFuncPointer;
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void spec_startup();

void spec_cleanup();

void spec_begin(void *loopbody, void *nonlocals);

void spec_begin_label(void *spec_start, void *spec_end, void 

*spec_last_end);

void spec_eoi_label();

void spec_terminate_label();

typedef unsigned int Reg;

int spec_checklock(Reg iteration, Reg *lock, int count);

These adjustments are all fairly automatic and straightforward, and require no special knowledge

of the code within the application.

6.1.2 Per-Loop Declarations

Next, several customized declarations must be made to encapsulate the variables used by a loop

and provide a location where they can be forced into memory so that all speculative processors can

access them.  While any naming convention may be used, the following bits of example code use

the word NAME with various single-letter suffixes to generate a family of unique names for the var-

ious structures and functions being declared.  Here’s the list of declarations that then need to be

made:

 1) Declaration of a struct  containing globalized variables from the loop.  Section 6.1.4

describes how to define globalized variables in more detail:

typedef struct NAMES

{

   << globalized variables, as defined in Section 6.1.4.1 >>

}

NAMET;
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 2) Declaration of global NAMET *NAMEV; at the beginning of the file where the loop is located.

 3) Declaration of the encapsulating function in the form  void NAME(NAMET *nonlo-

cals);  (loop-only speculation) or int NAME(NAMET *nonlocals);  (for loops + sub-

routines speculation).

6.1.3 Marking the Speculative Loops

Rewriting the loops for speculation consists of two parts: rewriting the loop code in the middle of

the loop and adding an encapsulated version of the loop code in at the end of the loop.  This added

code should be in the same file, so that it shares globals, declarations, and so on with the original

function.

6.1.3.1 Modifications to the Loop Itself

The loop itself needs to be replaced with a fairly straightforward block of code.  The additions to

the code for the loop-only version of speculation are as follows:

if (!sInSpeculation)

{

/* Load non-local values struct */

<< variable packing, as defined in Section 6.1.4 >>

  

/* Execute the speculative loop */

sSpecDataPointer = (void*)NAMEV;

sInSpeculation = 1;

sSpecFuncPointer = &NAME;

NAME(NAMEV);

sInSpeculation = 0;

  

/* Unload the modified non-local values */

<< variable unpacking, as defined in Section 6.1.4 >>

}

else



Chapter 6: Programming with Speculation 156

{

<< existing loop body >>

}

For the loops + subroutines form of speculation, the central part of this code needs to be modified

slightly:

/* Execute the speculative loop */

sInSpeculation = 1;

spec_begin(NAME, NAMEV);

sInSpeculation = 0;

With these blocks of code, the speculative version of the loop is launched if possible.  Otherwise,

the original uniprocessor code in the << existing loop body >>  clause of the if  state-

ment is executed normally.  This is generally used to prevent re-entering of loop speculation on the

inner nest of a nested loop.

6.1.3.2 The Encapsulation Functions

The “encapsulation” functions that contain the loop bodies for speculation should be placed some-

where in the same file as the original routine.  The format of the functions in both the loop-only

and loops + subroutines of the simulator is fairly similar, but the way the functions work is radi-

cally different, and are therefore described separately.

The loop-only encapsulation function runs a quarter of the loop being parallelized.  This function

is called by all four processors simultaneously so that each will execute its assigned quarter.  It

contains a specially modified version of the loop that calls low-overhead speculation functions on

every loop iteration to notify the hardware what is happening during that iteration.  When the loop

completes, the function completes on all four processors and execution resumes following the loop

solely on the main processor.
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void NAME(NAMET *nonlocals)

{

/* Purely local variables, copied from original program */

<< declare purely local variables >>

/* Local copy of localizable variables */

<< declare local copies of localizable variables >>

 

/* Localize variables */

<< perform localization >>

 

spec_begin_label(&&spec_start,&&spec_terminate);

while (1)

{

spec_eoi_label();

spec_start:

/* WHILE/FOR loop termination transformation */

<< optional FOR localization >>

if(!( << WHILE/FOR end test >> ))

spec_terminate_label();

     

/* Existing loop body */

<< rest of loop >>

/* DO-WHILE loop termination transformation */

if(!( << DO-WHILE end test >> ))

spec_terminate_label();

}

spec_terminate_last:

<< any unnecessary packing, but probably nothing >>

spec_terminate:

}
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The loops+subroutine encapsulation function only runs a single iteration of the loop body.  The

low-level speculation routines automatically call it multiple times on the different processors as the

loop executes.  This incurs the overhead of a subroutine call during every loop iteration, but makes

the loop iterations speculative-thread compatible with subroutines so that the same low-level rou-

tines can handle both interchangeably.  Within the routine, however, it is very similar to the loop-

only version.  The primary difference is in how the low-level routines are notified about loop ter-

mination.  Instead of calling termination or end-of-iteration routines directly, the return value indi-

cates continuation.  When the loop should continue, the encapsulation function returns a value of

0, while when it should terminate, it returns a value of 1.

void NAME(NAMET *nonlocals)

{

/* Purely local variables, copied from original program */

<< declare purely local variables >>

/* Local copy of localizable variables */

<< declare local copies of localizable variables >>

 

/* Localize variables */

<< perform localization >>

 

/* WHILE/FOR loop termination transformation */

<< optional FOR localization >>

if(!( << WHILE/FOR end test >> )) return 1;

     

/* Existing loop body */

<< rest of loop >>

/* DO-WHILE loop termination transformation */

if(!( << DO-WHILE end test >> )) return 1;

return 0;

}
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6.1.3.3 The Loop Transformations

For , while , and do-while  loops can all be transformed into speculative versions.  Each loop

must be stripped off of its body before it may be placed into the encapsulating functions from the

previous section.  The “test” clause of the loop is preserved in the spots noted in the sample code

there. For  and while  tests are done at the beginning of the loop body and do-while  tests are

done at the end, just as in the original loop.

 

The “test” clause may just be copied right out of the existing loop and put into position right where

the template indicates.  These clauses control an if  statement that triggers a

spec_terminate();  call or return 1;  which causes the loop to end.  Since the clauses

normally return TRUE when we want the loop to continue, the result must be inverted with a !

before it is actually used.

Transformation and movement of the “initialization” and “increment” clauses of for  loops are

discussed below with the other variable manipulations.

In addition, break  and continue  statements need to be modified to work correctly in the spec-

ulative loops.  Continue  statements become spec_eoi_label();  with loop-only specula-

tion or return 0;  statements with loops + subroutines.  Break  statements become

spec_terminate_label();  under loop-only speculation while they become return 1;

statements with both loops and subroutines active.

Finally, some further adjustments must be made to handle return  statements in the middle of

speculative loops.  See Section 6.1.5 for more information on this.
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6.1.4 The Variables

The most complex adjustment is the moving of all shared variables into a globalized structure in

memory that can be shared by all speculative threads.  Essentially, all stack-allocated variables

within a function used by the loop are put into a shared struct  out on the heap or a global vari-

able.  Then, instead of using a stack-based version, all four processors use the same heap-based or

global copy.  This section summarizes how to process a single loop.

6.1.4.1 Classification

The first step to sorting variables is to list all of the variables used within the loop and then sort

them out by how they are declared and/or used.  The following five classification categories are

useful for deciding the proper way to process any particular variable:

 1) Global variables: Ignore these.  They will work fine without modification, since they are

already global and accessible by all processors.  Any changes to globals will seen by everyone,

while read-only globals will be cached by each processor and processed fairly efficiently.

 2) Loop-carried stack variables: Stack-based variables that may be modified within the loop

are the trickiest ones to handle.  Every read or write must be made to or from the heap-based

struct , so that the speculation hardware will be able to detect any violations caused by ille-

gal changes of the variables.

 3) Localizable stack variables: Stack-based variables that are initialized before the loop, but not

modified within the loop, may be localized within each processor.  Since these variables are

never written, value changes do not need to be propagated through the heap stack.  While these

may just be treated as #2 variables, for performance purposes it may be better to have local

copies of the variables initialized from the global value when the encapsulated loop function is

started.

 4) Pure local variables: Stack-based variables that are always initialized within each loop itera-

tion before being used, and that are never read again in the code following the loop may be
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localized completely within the loop encapsulation function.  For example, loop iteration

counters for smaller loops nested within the speculative loop are typically initialized by the

smaller loop’s for  statement, and ignored after that loop terminates.  While these variables

may be globalized as #2 variables, performance can be significantly enhanced by leaving them

localized within each of the processors.  By privatizing these variables, false-sharing conflicts

can be minimized, and code can be made more efficient, since these variables may be register-

allocated.

 5) FOR loop iteration counters: If the speculative loop is a for  loop, then it is in a unique cat-

egory.  The variable is treated like a hybrid between a #2 and a #4, but is handled in a some-

what different manner.

6.1.4.2 Structure declarations

Once the variables used in the loop have been classified, all #2, #3, and #5 variables used by the

function must be constructed must be inserted in the struct  defined in Section 6.1.2.  Here is the

basic pattern:

typedef struct NAMES

{

/* Loop-carried variable */

long int ent; /* type code_int */  <<< EXAMPLE of #2

 

/* Existing, precomputed variables that can be localized */

int hshift;                        <<< EXAMPLE of #3

/* Loop iteration variable */

int i;                             <<< EXAMPLE of #5

}

NAMET;
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This is basically just a matter of writing out all of the variables into the struct  list.  Note that

variables from categories #1 and #4 do not need to be in the struct  at all.

6.1.4.3 Loading & unloading the struct in the original function

Third, the program needs to “load” and “unload” the structure before speculatively executing the

loop.  The correct locations for this code are noted in Section 6.1.3.1’s example.  The following

code shows the loading and unloading of the previous struct :

    /* Loading */

    NAMEV.ent = ent;               <<< EXAMPLE of #2

    NAMEV.hshift = hshift;         <<< EXAMPLE of #3

    NAMEV.i = 0;                   <<< EXAMPLE of #5

Variables from categories #2 and #3 are simply copied into the struct , item by item, moving the

variables from the stack of the original function to the struct  for the encapsulated loop.  The

for  loop variable is initialized here during the loading stage, using the initialization clause from

the for  loop itself (in this case, for (i=0; . . . ).

    /* Unloading */

    ent = NAMEV.ent;               <<< EXAMPLE of #2

    i = NAMEV.i;                   <<< EXAMPLE of #5 (maybe!)

Only variables from category #2 normally need to be “unloaded” back into their original stack

locations.  Variables from category #3 will still be correct, since they were not written during the

loop.  For  loop variables are rarely used after a loop, but for safety one should write them back.

As a further optimization, some or all of the unloading may be eliminated if the translator is smart

enough to hunt through the rest of the original routine and see which variables are actually read

and used by code, later part of the routine.  Any variables that are not used again do not need to be

unloaded.
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6.1.4.4 Setting up at the beginning of the encapsulated loop

Similar struct  unpacking code must also be put in the function that encapsulates the loop itself.

All #3 type variables need to be localized, and the local variables (type #4) need to be declared.  #5

type variables are declared, too, so that for  loop counters may be localized.  Using the locations

noted in Section 6.1.3.2, the following code continues the previous example:

 /* Purely local variables, copied from original program */

 int j;                             <<< EXAMPLE #4

 /* Local copy of localizable variables */

 int hshift;                        <<< EXAMPLE #3

 int i;                             <<< EXAMPLE #5

 

 /* Localize variables */

 hshift = nonlocals->hshift;        <<< EXAMPLE #3, continued

6.1.4.5 Changing the loop body

There are two variable-related modifications that may need to be made to the loop body.  The first,

and most straightforward, involves transforming all of the #2 type variables.  They must be

replaced using the following transformation:

X  becomes (nonlocals->X)  — where X is the old variable name.

The for  loop variable optimization is slightly more complex.  Just before the for  loop escape

test, the “optional for  localization” is noted in the Section 6.1.3.2 examples.  This optimization

attempts to make for  iteration counters act sort of like #3 type variables.  Just before the escape

test, the following code should be added:

X = nonlocals->X;
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<< FOR increment clause, with X in the clause becoming (nonlocals-

>X) >>;

Or, for the common ++ and --  increment clauses, the following one-line transformations will

work, too:

X = (nonlocals->X)++;      or    X = (nonlocals->X)--;

All of these methods establish the local X as the value X should have during this iteration, while

immediately incrementing the global value in the struct  to the proper count for the next itera-

tion, which may then pick it up from memory when it is ready to start that iteration.

The rare for  loops that write to their iteration counting variable within the loop itself cannot use

this optimization, and as a result may be rendered unfit for speculation.   Throughout the loop

body, these variables should just be treated like #2-type ones, turned into struct  references.

Then, at the very end of the loop body (the do-while  decision point in the Section 6.1.3.2 exam-

ples), the increment clause of the for  loop must be applied — so i++  would become (nonlo-

cals->i)++;  as the last line of the loop.  This late write will tend to completely serialize loop

operation, however, so it should be avoided if possible.

6.1.5 Return-in-the-Loop Transformation

One other case can cause serious problems for loop speculation, in either version: return s that

occur in the middle of the loops.  They are a real problem because they not only terminate the loop,

but also the function block that surrounds the loop.  If left alone, they will either permanently leave

the system “speculating” (with loops + subroutines) or just cause the current loop iteration to com-

plete erratically (with loop-only speculation, if a simple break  replacement is used).  This section

describes the additions necessary to handle them, under both versions of speculation.
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6.1.5.1 Modifications to the variable structure

The following two entries need to be included at the end of the struct  defined for any loop with

nested return s:

int __returnValueUsed;

<return type of original function> __returnValue;

For a void  function, the __returnValue  variable is obviously unnecessary.  All references to

it in the following sections may be omitted, also.

6.1.5.2 Modifications to the original function, around the loop

The program must initialize and process the new variables, which calls for the addition of a couple

of lines just before and after the existing spec_begin  calling code or loop subroutine caller:

__returnValueUsed = 0;

.

.  load other variables

.

Execute the speculative loop

.

.  unload variables

.

if (__returnValueUsed) return __returnValue;

6.1.5.3 Modifications to the encapsulated loop:

Finally, wherever a return -within-the-loop occurs, it must be replaced with the following block

of code:

{

nonlocals.__returnValueUsed = 1;
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nonlocals.__returnValue = <expression from original return>;

spec_terminate_label();

}

The entire middle line may be eliminated for functions that return void .

6.1.6 An Example Transformation

To illustrate how all of these optimizations look on an entire loop, the following example shows

how loop-only parallelization converts a rather complex loop into its loop-only speculation specu-

lative form.  Loops + subroutines speculation results in a similar, but slightly simpler output.  For

space reasons, the sInSpeculation  clause that allows the unmodified loop to execute in case

of a loop nest has been omitted.  The extra while  in the encapsulated loop has also been omitted,

since it is only necessary to keep the SGI compilers working properly with the modified code.

The first stage of the conversion, transforming and encapsulating the loop, is illustrated in Figure

6-1.  This example demonstrates several key features of the transformation process:

 1) The loop itself is replaced with the loop-only starting template that invokes the loop encapsu-

lation function on the main processor after signaling the other processors to start it as well.

 2) The loop body is encapsulated within the new ThisLoop  encapsulation function.  In the pro-

cess, the necessary spec_  marking lines are added.  The names of these have been simplified

a bit to allow for easier reading.

 3) The three clauses of the for  loop are distributed appropriately.

Once the basic loop transformations are complete, the loop’s variables need to be globalized and

their use should be optimized.  This second stage of the transformation process is illustrated in Fig-

ure 6-2 and described below.
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Figure 6-1: An example of speculation loop transformations.
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 4) A struct  containing all of the variables that need globalization is generated and placed near

the beginning of the C source file containing the loop.

 5) Variables are packed and unpacked before starting the speculative loop and after returning

from it.  A pointer to the struct  is also added to the encapsulated loop function call so that it

may be accessed within the loop.

 6) Local copies of the for  loop counter and all localizable variables are declared within the

encapsulation function.

 7) The for  loop counter increment is moved to the beginning of the encapsulated loop body to

avoid creating an unnecessary dependence between the end of one speculative iteration and the

beginning of the next one.  This will allow the loop to be much more parallel.

 8) All references to globalized variables are modified to use the struct  containing them.

While this example was fairly simple, the techniques demonstrated scale up in a straightforward

fashion to much larger loops which may modify many different variables of different types.

When run, the transformed loop will execute in parallel using speculation.  After all four proces-

sors start executing the encapsulating function, the  spec_begin  call starts the actual specula-

tion control handlers and sets up the initial sequencing of threads, with the four processors in

Hydra each being allocated one of the first four iterations of the loop.  The loop body executes nor-

mally on each processor except for additional loads and stores to loop-carried variables that were

forced out of registers by the addition of nonlocals  dereferencing.  At the end of each loop iter-

ation, the spec_endofiteration  call triggers a handler that waits to make sure it is running

on the head processor.  When the thread is safely nonspeculative, the handler commits the contents

of its L2 cache buffer with a write bus command (see Section 5.3.3.4), triggers the clearing of its

primary cache speculation bits with a CP2 command register write (see Section 5.4.1), invalidating

any “pre-invalidated” lines in the process, and then jumps back into the user code to start another

loop iteration as the most speculative processor.  Meanwhile, violations may be detected by the
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Figure 6-2: An example of speculation variable transformations.
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read bits in speculative processors and cause interrupts that vector the processor to the

spec_violation  handler.  This handler flushes the contents of the secondary cache buffer,

clears primary cache speculation bits and invalidates any “modified” lines, sends a message to

“later” processors telling them to restart too (using a write bus command), and finishes by restart-

ing the loop body.  Finally, when the loop completes, the spec_terminate  call is triggered by

the loop body instead of spec_endofiteration .  This call acts just like

spec_endofiteration , except that when it is complete it jumps to the fall-through code after

the loop and sends a message to the other processors (again, using a write bus command) telling

them to shut down using the spec_killandhalt  handler.

6.2 Optimizing the Basic Loops

Our simulator produces output that explicitly identifies loads and stores in the application that

cause violations. In a real system, similar feedback could be obtained first by adding memory to

each processor that records the address of each executed speculative load instruction, next by

broadcasting store instruction program counters along with data on the write bus, and finally by

interpreting the results from these hardware structures using instrumentation code built into the

speculation software routines.  This code would only be needed at profiling time, so normally the

overhead imposed by such code could be eliminated. We developed a tool to translate the load and

store addresses produced by our simulator to source code locations, for easier analysis. Armed

with this information, we attempted to reduce the number of violations caused by the most critical

dependencies using several different techniques.

While we used the feedback information from the violation statistics to make manual modifica-

tions to our benchmarks, many of these modifications could be performed using a feedback-

directed compiler targeted to a speculatively parallel architecture.  In fact, one of the key features

of a speculatively parallel architecture is that it allows programmers — or compilers — to execute
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their programs in parallel quickly, without a full static analysis of data dependencies that may exist

between threads in the program, while still maintaining proper program execution.  As a compiler

is normally required to do both a fully static analysis of dependencies and to produce correctly

executing object code, this can greatly aid the design of a compilation system.  Also, once code has

been compiled, the feedback hardware can automatically determine the amount of parallelism

present in the program and find potential trouble spots where true data dependencies frequently

occur simply by executing the code and noting when dependencies exist.  Armed with this infor-

mation, it is possible for programmers or compilers to concentrate their efforts on just the most

critical portions of programs being parallelized.

6.2.1 Explicit Synchronization

The first technique we used to minimize effects from these critical data dependencies was to add

explicit synchronization, causing any dependent threads to stall instead of causing a dependency

violation. This was achieved simply by adding a way to issue a non-speculative load instruction

even while the processor is executing speculatively. As depicted in Figure 6-3, this special load

may be used to test lock variables that protect the critical regions of code in which pairs of loads

and stores exist that cause frequent dependency violations. Before entering a critical region, syn-

chronizing code spins on the lock variable until the lock is released by another processor. Because

the special load is non-speculative, a violation does not occur when the lock is released by a store

from another processor. Once the lock is freed, the speculative processor may perform the load at

the beginning of the critical region. Finally, when a processor has performed the store at the end of

the region, it updates the lock so that the next processor may enter the critical region. This process

eliminates all restarts caused by dependent load-store pairs in the critical region, at the expense of

forcing the speculative processors to serialize through the critical regions, eliminating any possi-

bility of finding parallelism there.  As a result, this technique should only be used for small critical

regions which are the source of very frequent violations. The lock handling code also adds a small

software overhead to the program.
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The following code example shows how this might be inserted into an actual program:

// Start of speculative region

threadNumber = (globals->threadNumber)++;

. . .

// Spin-lock to protect variable “X”

while (LL(globals->lockThread) < threadNumber);

// First read of variable “X”

y = x + 1;

Figure 6-3: The timing of explicit synchronization

Thread #n+1
T

IM
E

Thread #n

write X
write LOCK

sync read LOCK
sync read LOCK
sync read LOCK
 sync read LOCK 

read X

write X
write LOCK

Non-critical speculative execution

Critical region in speculative execution

Spinlock on explicit synchronization

to #n+2
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. . .

// Last write of variable “X”

x = a + b + c;

// Release the lock for the next processor

(globals->lockThread)++;

. . .

The current thread number is loaded early in a speculative thread using a normal load that is fully

synchronized using the speculative memory system. The global thread number is initially 0 and is

incremented by each processor as it acquires a local copy of the thread number, as is shown. In the

middle of the loop, the region between the first read and last write of the x  variable forms a critical

region. This region is outlined by adding two bits of code. The spinlock loop at the top uses a non-

speculative LL to test a lock variable, which specifies the number of the thread that may safely use

the variable. At the bottom of the region, a simple increment of the global variable releases the

lock for the next processor.  Figure 6-4 shows the critical region of an example program, with the

while  loop from the previous example pulled into a small assembly-language routine.

Similar synchronization mechanisms have been proposed before. In [14], special loads and stores

were used to pass data between processors directly and perform explicit synchronization at the

same time. This method avoided the overhead of extra synchronization code, but required more

complex hardware synchronization mechanisms to handle the special loads and stores. An all-

hardware data dependence prediction and synchronization technique was explored in [13] for use

with the Multiscalar architecture. Special hardware structures tracked dependencies and then auto-

matically used synchronizing hardware to prevent restarts due to dependent load-store pairs. This

hardware-based technique allows a limited degree of automatic synchronization even without pro-

grammer intervention, and it would be adaptable for use on a Hydra-like architecture. An alterna-
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Figure 6-4: Example showing the insertion of synchronization code.
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tive design for a superscalar architecture that tracks sets of stores that commonly supply data to a

following, dependent load was proposed in [11]. Finally, we presented some preliminary results on

the use of synchronization with the compress benchmark in [12].

6.2.2 Code Motion

While explicit synchronization prevents critical dependencies from causing violations, it also

forces the speculative processors to serialize their execution. For small critical regions, this is per-

fectly acceptable, but for large ones it can easily eliminate all of the parallelism that speculative

threads are attempting to exploit. To avoid this situation the second technique we have used to

improve speculation performance is to manually move source code lines with dependent loads and

stores in order to shrink the critical path between frequently violating load-store pairs. This makes

it possible to reduce the number of violations and often increases the inherent parallelism in the

program by lengthening the sections of code that could be overlapped on different processors with-

out causing violations.

This works in two ways. At the tops of critical regions, loads can sometimes be delayed by rear-

ranging code blocks in order to move code without critical dependencies higher up in the loop

body. However, this is usually only possible in large loops built up from several non-dependent

sections of code that can be interchanged freely. More significant changes came from moving

stores.  We were frequently able to rearrange code to make stores to shared variables occur earlier.

Induction variables are an obvious target for early stores. Since the store that updates the induction

variable is not dependent upon any computation within the loop, these can safely be moved to the

top of the loop body. When this is done, a “local” copy of the old value is made at the same time,

with a small amount of additional code, and this local copy is used throughout the remainder of the

loop body while the “global” variable is used by other processors starting their own loop iterations.

The optimization performed on the loop induction variable in Figure 6-2 showed an example of

this type of optimization.  Other variables, that do depend upon results calculated in a loop itera-
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tion, will not be improved as dramatically by scheduling their critical stores early, but performance

can often still be improved significantly over unmodified code using these techniques.  Figure 6-5

shows an example of this type of optimization as it might be performed in the middle of a large

loop body.

We have done all code motion by hand based on violation statistics provided by our simulator.

However, while synchronization may easily slow down a program if implemented in an improper

fashion, code motion will rarely degrade performance. Hence, a feedback-directed compiler could

perform this job almost as well as a human programmer by aggressively moving references that

frequently cause violations within speculative code, up to the limits imposed by existing data and

control dependencies, in order to reduce the critical path between dependent load-store pairs.

6.2.3 Early Computed Value Prediction

Code motion on a speculative processor is somewhat different from that on a conventional multi-

processor, since the hardware is constantly checking to see if dependencies exist among the non-

synchronized variables.  As a result, code motion can just be considered a way of decreasing the

probability of restarts, while not eliminating them.  This view can be taken further by treating vari-

ables that often — but not always — act a lot like induction variables, with a very predictable

update being the common case, just like induction variables at the top of the loop. Should they

later act differently, the variable may be re-written, probably causing restarts on the more specula-

tive processors. However, as long as the value computed and written early is used most of the time,

the amount of available parallelism in the program may be vastly increased.  Figure 6-6 shows an

example of this optimization at work.

6.2.4 Loop Body Slicing and Chunking

More radical forms of code motion and thread creation are possible by breaking up a loop body up

into smaller chunks that execute in parallel or its converse, combining multiple speculative threads
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Figure 6-5: Example showing code motion within a loop body.
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Figure 6-6: Example showing value prediction within a loop body.
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together into a single thread. With the former technique, loop slicing, a single loop body is spread

across several speculative iterations running on different processors, instead of running only as a

single iteration on a single processor. In the latter case, loop chunking, multiple loop iterations

may be chunked together into a single, large loop body. Loop bodies that were executed on several

processors are combined and run on one. This generally only results in better performance if there

are no loop-carried dependencies besides induction variables, which limits the versatility of loop

chunking. However, if a parallel loop can be found, chunking can allow one to create speculative

threads of nearly optimal size for the speculative system. Figure 6-7 shows conceptually how slic-

ing and chunking work, while Figure 6-8 shows a code examples from sample loops using both

techniques.

Figure 6-7: Graphical view of loop body chunking and slicing.
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Figure 6-8: Example showing loop body chunking and slicing.

F
in

al
 s

pe
cu

la
tiv

e 
lo

op
 b

od
y,

 w
ith

 s
lic

in
g:

w
h
i
l
e
 
(
1
)

{
.
 
.
 
.
 
f
i
r
s
t
 
b
i
g
 
c
o
d
e
 
b
l
o
c
k
 
.
 
.
 
.

.
 
.
 
.
 
s
e
c
o
n
d
 
b
i
g
 
c
o
d
e
 
b
l
o
c
k
 
.
 
.
 
.

i
m
p
o
r
t
a
n
t
G
l
o
b
a
l
 
=
 
C
a
l
c
u
l
a
t
e
M
e
(
)
;

.
 
.
 
.
 
t
h
i
r
d
 
b
i
g
 
c
o
d
e
 
b
l
o
c
k
 
.
 
.
 
.

}

.
 
.
 
.

s
t
a
r
t
_
o
f
_
l
o
o
p
_
l
a
b
e
l
:

/
*
 
l
o
c
a
l
i
z
a
t
i
o
n
 
a
n
d
 
i
n
c
r
e
m
e
n
t
 
o
f
 
s
l
i
c
e
 
v
a
r
i
a
b
l
e
 
*
/

s
l
i
c
e
 
=
 
(
g
l
o
b
a
l
s
-
>
s
l
i
c
e
)
+
+
;

i
f
 
(
s
l
i
c
e
 
=
=
 
2
)
 
g
l
o
b
a
l
s
-
>
s
l
i
c
e
 
=
 
0
;

s
w
i
t
c
h
(
s
l
i
c
e
)

{
c
a
s
e
 
0
:
.
 
.
 
.
 
f
i
r
s
t
 
b
i
g
 
c
o
d
e
 
b
l
o
c
k
 
.
 
.
 
.

b
r
e
a
k
;

c
a
s
e
 
1
:
.
 
.
 
.
 
s
e
c
o
n
d
 
b
i
g
 
c
o
d
e
 
b
l
o
c
k
 
.
 
.
 
.

b
r
e
a
k
;

c
a
s
e
 
2
:
/
*
 
i
m
p
o
r
t
a
n
t
G
l
o
b
a
l
 
i
s
 
“
p
r
e
c
o
m
p
u
t
e
d
”
 
n
o
w
 
*
/

i
m
p
o
r
t
a
n
t
G
l
o
b
a
l
 
=
 
C
a
l
c
u
l
a
t
e
M
e
(
)
;

.
 
.
 
.
 
t
h
i
r
d
 
b
i
g
 
c
o
d
e
 
b
l
o
c
k
 
.
 
.
 
.

b
r
e
a
k
;

} /
*
 
n
o
r
m
a
l
 
e
n
d
 
o
f
 
l
o
o
p
 
i
t
e
r
a
t
i
o
n
 
*
/

s
p
e
c
_
e
n
d
_
o
f
_
i
t
e
r
a
t
i
o
n
(
)
;

.
 
.
 
.

.
 
.
 
.

s
t
a
r
t
_
o
f
_
l
o
o
p
_
l
a
b
e
l
:

/
*
 
l
o
c
a
l
i
z
a
t
i
o
n
 
a
n
d
 
i
n
c
r
e
m
e
n
t
 
o
f
 
f
o
r
 
v
a
r
i
a
b
l
e
 
*
/

i
 
=
 
(
g
l
o
b
a
l
s
-
>
i
)
;

u
n
r
o
l
l
_
i
 
=
 
(
g
l
o
b
a
l
s
-
>
i
)
 
+
=
 
U
N
R
O
L
L
_
F
A
C
T
O
R
;

/
*
 
“
u
n
r
o
l
l
i
n
g
”
 
f
o
r
 
l
o
o
p
 
*
/

f
o
r
 
(
;
 
i
 
<
 
u
n
r
o
l
l
_
i
;
 
i
+
+
)

{
/
*
 
o
r
i
g
i
n
a
l
 
f
o
r
 
l
o
o
p
 
t
e
r
m
i
n
a
t
i
o
n
 
c
l
a
u
s
e
 
*
/

i
f
 
(
!
(
i
 
<
 
N
)
)
 
s
p
e
c
_
t
e
r
m
i
n
a
t
e
(
)
;

/
*
 
o
r
i
g
i
n
a
l
 
l
o
o
p
 
b
o
d
y
 
*
/

.
 
.
 
.
 
s
m
a
l
l
 
a
m
o
u
n
t
 
o
f
 
w
o
r
k
 
.
 
.
 
.

} /
*
 
n
o
r
m
a
l
 
e
n
d
 
o
f
 
l
o
o
p
 
i
t
e
r
a
t
i
o
n
 
*
/

s
p
e
c
_
e
n
d
_
o
f
_
i
t
e
r
a
t
i
o
n
(
)
;

.
 
.
 
.

f
o
r
 
(
i
=
0
;
 
i
 
<
 
N
;
 
i
+
+
)

{
.
 
.
 
.
 
s
m
a
l
l
 
a
m
o
u
n
t
 
o
f
 
w
o
r
k
 
.
 
.
 
.

}

B
) 

O
rig

in
al

 lo
op

:
A

) 
O

rig
in

al
 lo

op
:

F
in

al
 s

pe
cu

la
tiv

e 
lo

op
 b

od
y,

 w
ith

 c
hu

nk
in

g:



Chapter 6: Programming with Speculation 181

While loop chunking only needs to be performed if the body of the loop is so small that the execu-

tion time is dominated by speculation overheads, the motivation for loop slicing are more complex.

The primary reason is to break down a single, large loop body, made up of several fairly indepen-

dent sections, into smaller parts if they are more optimally sized for speculation. In a very large

loop body a single memory dependence violation near the end of the loop can result in a large

amount of work being discarded. Also, the large loop body may overflow the buffers holding the

speculative state. Buffer overflow prevents a speculative processor from making forward progress

until it becomes the head, non-speculative processor, so this should normally be avoided whenever

possible. Loop slicing is also a way to perform code motion to prevent violations. If there is code

in the loop body that calculates values that will be used in the next loop iteration and this code is

not usually dependent upon values calculated earlier in the same loop iteration, then this code may

be sliced off of the end of the loop body and assigned to its own speculative thread. In this way, the

values calculated in the sliced-off region are essentially “precomputed” for later iterations, since

they are produced in parallel with the beginning of the loop iteration. The advantage of slicing over

normal code motion is that no data dependency analysis is required to ensure it is legal to perform

the code motion, since the violation detection mechanism will still enforce all true dependencies

that may exist.

Loop chunking may be implemented in a compiler in a similar manner to the way loop unrolling is

implemented today, since both are variations on the idea of combining loop iterations together. In

fact, the two operations may be merged together, so that a loop is unrolled as it is chunked into a

speculative thread. As a result, adding this capability to current compilers should not be difficult.

Effective slicing, however, will require more knowledge about the execution of a program than

loop unrolling, although the ability to analyze the control structure of the application combined

with violation statistics should be sufficient. Slicing should not be performed indiscriminately

because it may allow speculative overheads to become significant and/or it may result in signifi-

cant load imbalance among the processors if some slices are much larger than others. The former
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problem will obviously slow the system down, while the latter problem will degrade performance

in the current Hydra design, since a speculative processor that completes its assigned thread must

stall until it becomes the head processor, wasting valuable execution resources in the process. This

problem can only be overcome by making the speculation system allow multiple speculative

regions within each CPU, so that a processor that completes a speculative region may immediately

go on to another while it waits to commit the results from the first. However, implementing this

capability has significant hardware overheads since bits and/or buffers in both the L1 and L2

caches will need to be replicated for each thread that may be waiting on each processor.

6.3 Subroutine Speculation
A subroutine speculation API is not strictly necessary, and therefore not discussed in this thesis.

On most processors, subroutine calls must follow a predetermined protocol of register saving and

restoring that eliminates the possibility of most register-register dependencies.  As a result, the

low-level subroutine speculation handlers can quite easily handle all register-register dependencies

that may occur between threads simply by passing registers from one processor to another during

thread forking and then watching for changes in a few key registers at thread completion.  On the

MIPS architecture, checking the result-value returning register(s) is sufficient.

As a result, the only API enhancements that might be included would be performance-enhancing

hints about which subroutines to target for speculation and suggestions for return values that they

might produce.  While we did not pursue optimized subroutine execution enough to develop a spe-

cialized source-code API, we added a feature to LESS to preselect one or more routines as subrou-

tine speculation targets.  With this modified version of LESS, we were able to speed up the

execution of eqntott , a program dominated by a recursive series of quicksort()  calls.

More recently, we have achieved similar or better speedups by converting similar trees of recursive

calls into iterative loops and using high-speed loop processing on the resulting loop [reference to

Manohar’s current work or delete this].
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6.4 Analysis of the Speculative Programming Model
The design of the software interface for speculation was a great success.  With it, we were able to

parallelize programs much more quickly and easily than with any conventional parallelization tool.

For example, ijpeg  was parallelized in only three days by a single person, without a single error.

Many other applications were also parallelized in a fraction of the time that a conventional paral-

lelization effort would have taken.  With aid from hydracat , these times could be cut even fur-

ther.  Most optimizations that we developed were fairly simple to implement, although

determining the best places to use the various optimizations often took some analysis, even with

our automatic tools to find “hot spots” where loads and stores frequently cause faults.

In the future, the basic API for speculation should stay essentially the same.  However, the tools

supporting programming for speculation will need to develop.  Hydracat  or a successor to it

needs to be more robust and able to support features such as automatic insertion of common opti-

mizations and automatic profiling-based feedback.  With a profiling compiler, it should be possible

to determine which loops are the best targets for speculation automatically, since loops may be

converted to speculative loops automatically.  Also, a compiler should be able to take feedback

information on the location of “hot spots” in the code and automatically insert simple optimiza-

tions like synchronization to automatically handle them.  With these additions, a speculative com-

pilation system could be truly powerful.
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7 The Performance of Speculation

This chapter gives an overview of our evaluation of the speculative Hydra system.

7.1 Benchmarks and Simulation Methodology
To evaluate our speculative system and identify potential areas for improvement, we used eleven

representative benchmarks that cover a significant portion of the general-purpose application

space. These benchmarks are listed in Table 7-1. The speculative versions of the benchmarks were

created using Hydracat. The binaries were generated using GCC 2.7.2 with optimization level -O2

on an SGI workstation running IRIX 5.3. Currently, Hydracat only works on C programs. This pre-

vents us from experimenting with any of the SPEC95 floating-point benchmarks, which are all

written in FORTRAN. However, from the point of view of extracting parallelism, the C SPEC92

floating point benchmarks are more challenging than the SPEC95 floating point benchmarks, so

we would expect the performance on SPEC95 benchmarks to be similar or better.

All the performance results we present are obtained by executing the benchmarks on the LESS

simulator described in Chapter 2.  For the most part, this simulation properly modeled the specula-

tive Hydra memory system described in Chapter 3 and Chapter 5.  However, the sizes of some of

the memories were enlarged to more properly simulate a future high-end processor.  These differ-

ences are summarized in Table 7-2.  The execution time of the speculative binaries includes the

time spent in the run-time system. Even though we used the capability of LESS to fast-forward

through large sections of the benchmarks, code representing at least 95% of the original sequential

execution time has been simulated to ensure that the simulations are representative.

7.2 Baseline Performance
The performance of the base speculative Hydra CMP running the more flexible but slower loops +

subroutines speculation is shown in Figure 7-1 (speedups obtained) and Figure 7-2 (how proces-
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sors spent time during speculation). The speedups represent the execution time of one of the pro-

cessors in Hydra running unmodified C code divided by the execution time of the speculative

Table 7-1: A summary of the application benchmarks used to evaluate speculative threads.  Ones 
that were also used with the baseline system are noted in italics.

Application Source Input Data Set

General compress SPEC95 [48] train

Integer eqntott SPEC92 [53] reference

grep UNIX utility [51] 190 line file

m88ksim SPEC95 [48] test

vortex SPEC95 [48] test, simplified

wc UNIX utility 10,000 character file

Multimedia ijpeg (compression) SPEC95 [48] train

Integer mpeg-2 (decoding) MediaBench  [46] test.m2v

Floating alvin SPEC92 [48] reference

Point cholesky Numeric Recipes [52] 100 x 100

ear SPEC92 [53] reference

simplex Numeric Recipes [52] 40 variables

Table 7-2:The Hydra memory hierarchy characteristics used for these evaluations.  These are 
identical to those used previously for the non-speculative simulations.

L1 Cache L2 Cache Main Memory

Configuration Separate I & D SRAM 
cache pairs for each CPU

Shared, on-chip SRAM 
cache

Off-chip DRAM

Capacity 16KB each 2 MB 128 MB

Bus Width 32-bit connection to CPU 256-bit read bus + 32-bit 
write buses

64-bit bus at half of the 
CPU speed

Access Time 1 CPU cycle 5 CPU cycles at least 50 cycles

Associativity 4-way 4-way N/A

Line Size 32 bytes 64 bytes 4 KB pages

Write Policy Writethrough, no allocate 
on writes

Writeback, allocate on 
writes

"Writeback" (virtual 
memory)

Inclusion N/A Inclusion enforced by L2 on 
L1 caches

Includes all cached data
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Hydra CMP running speculatively parallelized C code, to show the effect of using the speculative

threads to allow the other three processors in Hydra to help speed up program execution. We see

that the performance is highly dependent on the application and varies from 0.6 to 3.4. To under-

stand the performance profile in more detail, we explain how each benchmark was parallelized and

what limits the speculative parallel performance on the benchmark.

compress (compression): This benchmark compresses an input file using entropy encoding. The

core of compress  is fairly small loop — about 100 instructions or 140 cycles per iteration —

that has complex control flow but is large enough so that the speculation and communication

overheads, while drastically limiting the amount of parallelism usable in the code, do not com-

pletely overwhelm its execution time.  As observed in [63], and contrary to the analysis in [14]

there is a loop-carried dependency in variable ent  that limits the parallelism in this loop.

Figure 7-1: Baseline speculation system performance, in speedup of 4-processor system over a 
single processor executing the original uniprocessor benchmark.
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Figure 7-2: Speculative processor usage breakdown for five of the benchmarks.  This graph shows 
the distribution of work and wasted time on speculative processors, from the least 
speculative (0) to the most speculative (3).
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When we left this critical loop-carried variable alone, performance was essentially equal to the

uniprocessor version, because enough parallelism was exploited through the overlap of the I/O

routines from separate loop iterations to balance out the speculation overheads. 

eqntott: This benchmark performs logic minimization on a set of input equations. Unlike the other

benchmarks, we did not parallelize the loops in this application, because the only good candi-

date loop (in the cmppt  function) is too small to be effectively parallelized on Hydra without

significant programmer help. As a result, we used procedure-call based speculation. Despite a

reasonable amount of parallelism in the large, recursive quicksort  procedure, the specula-

tion software overheads and squashing of non-parallel procedures limit speedup.

grep: This benchmark is the well-known regular expression tool that matches a regular expression

to each line of an input file and prints those lines that contain matching strings. The main loop

of the program iterates over all the lines of the input file. The speculative thread version of this

loop performs very well because the only dependencies that occur are during file input and

when a match is found. However, most lines do not match the expression and so once they

have been read from the input file they are processed completely in parallel.

m88ksim: This program performs simulates a Motorola 88000 RISC CPU on a cycle-by-cycle

basis. The loop in m88ksim  is very large for a speculative loop, running for about 5000 cycles

and executing an average of 4500 dynamic instructions during each iteration. With such a long

loop, the overhead associated with speculation control and inter-processor communication had

a minimal impact on the overall execution time. Instead, some of m88ksim’ s global variables

are read and written at various locations in the loop, some inside subroutines, that severely cur-

tail the amount of parallelism that may be exploited. The first speculative processor can use

about 15% of its time usefully by overlapping the beginning of each loop iteration with the end

of the previous one, but most of this time is simply spent overcoming the communication inef-
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ficiencies, limiting speedup to 3.5%. Meanwhile, the second and third processors contribute

nothing, as they must work on iterations two or more ahead that cannot overlap with the head

iteration at all due to true dependencies. Previous work has shown that an actual parallelizing

compiler, designed from the start to divide code into threads and optimize the inter-thread

communication, might expose more parallelism and thereby allow more speedup by moving

loads of shared data as late as possible in threads and stores of shared data as early as possible

[43][14].  However, in the baseline case we were just using a standard compiler to generate

code that could not make these distinctions.

vortex: This is a SPEC95 benchmark that simulates a small database server designed in a pseudo-

OOP variant of C and running on a pseudo-OS. vortex  indicates that subroutine parallelism

is very difficult to utilize due to control software overhead and a lack of parallelism between

the code in subroutines and the continuation code following them. Our simple last value return

value prediction mechanism was able to obtain a 96.6% successful prediction accuracy when

speculating on the pseudo-OOP vortex  code, thanks to the large number of functions that

return nothing or rarely-raised error flags. However, the severe misprediction penalty for the

remaining 3.4% of the predictions — complete flushing of the system’s speculative state —

combined with frequent memory dependence violations originating from the side effects of the

functions made parallelism virtually impossible to find.  Increasing the amount of parallelism

exploitable would require a very sophisticated compiler that performed interprocedural opti-

mizations to increase the distance between loads and stores that might be communicated

between processors running different subroutines in parallel.

Another significant problem demonstrated by vortex  is load imbalance.  Unlike eqntott ,

whose subroutine behavior mostly consists of very large and balanced calls to its quicksort

routine, vortex  calls a wide variety of different routines, all of different sizes.  Most of the

speculative processors get stuck with relatively small routines and then spend their time wait-
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ing to become the head, since long subroutines tend to move up quickly and then tie up most

of the time of the head processor.  To improve performance, a compiler would be forced to

break up longer subroutines into smaller parts to help solve load balancing problems.

It should also be noted that the overhead associated with software control of speculation is

exceptionally high because vortex  is parallelized only using speculative procedure continu-

ation, which must use the full subroutine control protocol instead of the low-overhead looping

protocols. As a result, the overhead is comparable to that associated with fairly small loops

like wc or compress  even though the subroutines are generally much larger than the loops in

those benchmarks, since small subroutines are simply pruned off and avoided by our specula-

tive thread selection mechanisms.

wc: This is the UNIX word count utility, which counts the number of characters, words, and lines

in an input file. Our results demonstrate that the software control overheads associated with

our implementation of speculation can severely limit speculation performance. The core of wc

is a single loop that takes an average of only 27 cycles per iteration with fully-optimized uni-

processor code, other than the occasional iterations when the call to getchar()  within the

loop must request more characters from the OS. Even using the “quick” version of the loops +

subroutines runtime system, the speculation control software requires approximately 40% of

the time on all of the processors just to handle the frequent iteration completions (on the head

and #3 processor) and dependency violations (on processors 1-3), since the 10-15 instruction

overhead of these operations is about half of the entire loop time! Even with this overhead, the

parallelism that speculation is able to expose in the loop still allows about 40% of the system’s

processor time to work on the actual code. If all of this time could be exploited productively, a

speedup of 1.6 could be obtained. However, an entire processor’s worth of performance is lost

to two factors related with interprocessor communication. First, wc has two critical loop car-

ried-dependencies that cannot be avoided — the buffer pointer in the getchar()  library
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call, and the local in a word variable that is used to count words. While the uniprocessor hits in

its data cache when accessing these variables, a speculative processor must devote ten or more

cycles to handling the data cache misses associated with this communication. Additionally,

this communication forces the compiler to insert loads and stores to move the values to and

from the nonlocals  memory during every iteration to facilitate communication, preventing

the register allocation of these commonly-used variables that may be used in the uniprocessor

code. The combined effect of these two communication-related inefficiencies consumed a pro-

cessor’s worth of execution time on this small loop.

ijpeg (compression): This is an integer, multimedia benchmark that compresses an input RGB

color image to a standard JPEG file, using a lossy algorithm consisting of color conversion,

downsampling, and DCT steps. The multiple loops in these steps possess a large amount of

inherent parallelism, but were originally coded so that the parallelism is often obscured by

existing program semantics, such as numerous pointers, poor code layout, and odd loop sizes.

The speculatively parallel version of ijpeg  exposes much of the available parallelism, but

performance is limited by the coding of the loops, parallel loop coverage, and speculation soft-

ware overheads.  This benchmark clearly indicates that our loop speculation mechanisms are

able to exploit parallelism in code when that parallelism exists, even without extensive com-

piler optimizations. At the same time, it also emphasizes the need for aggressive optimizations,

as these results should be even better.

mpeg (decoding): This is a benchmark from the Mediabench suite [46] that decodes a short

MPEG-2 video sequence to an RGB frame buffer. Parallelization occurs at the macro block

level, where the variable-length decoding (VLD) is performed. The VLD step is completely

serial, but speculation is able to overlap the processing performed during the other, more paral-

lel stages of decoding (IDCTs and motion estimation) with the serial VLD step of later mac-

roblocks. This parallelization technique is described in greater detail for a hand-parallelized
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version of mpeg in [44]. Despite a significant amount of potential parallelism, MPEG-2

decoding slows down because of a loop-carried dependency that unnecessarily serializes exe-

cution.

alvin:  This is a neural network training application for autonomous land vehicle navigation. It is

composed of four key procedures which are dominated by doubly-nested loops. Although

these loops are parallel, the parallelism is obscured by the way in which the application is

coded with pointer variables. However, these loops are easily speculatively parallelized and

result in good parallel performance. 

cholesky: Cholesky decomposition and substitution is a well-known matrix kernel. The multiply

nested loops in the decomposition procedure have significant amounts of parallelism, but they

also contain loop-carried dependencies that occur infrequently. In conventional parallelization,

these dependencies would have to be detected and synchronized, but with speculation we can

obliviously parallelize them. The loops in the substitution routine are also parallel, but here

each loop is written in so that a loop-carried dependency serializes the speculative loop. Fortu-

nately the decomposition procedure dominates the sequential execution time and speedup is

still quite good. 

ear: This benchmark simulates the propagation of sound in the human inner ear. The conventional

wisdom is that the structure of this program is a sequential outer loop and a sequence of paral-

lel inner loops [47]. The parallel inner loops are extremely fine grained and therefore are not

good candidates for speculative threads on the Hydra CMP. However, the outer loop can be

speculatively parallelized and achieves very good speedup. The dependent outer loop pipelines

across the processors quite well because each iteration is only dependent on the previous itera-

tion in a way that allows much of the computation to be overlapped. Memory renaming
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ensures that, even though each iteration of the outer loop uses the same data structures, each

processor dynamically gets a private copy.

simplex: This kernel solves problems in linear programming. The three procedures in this kernel

have a number of small loops. The dependences between the iterations of these loops are not at

all obvious. The speculative parallelization of these loops achieves good speedup, but less than

the other numerical benchmarks. This is mainly due to the speculation software overheads that

dominate the short running loops.

The memory buffering system described in Section 5.3 worked very well in our simulations. We

found that the memory system added very little latency beyond the basic L2 cache hit time

required after every communication invalidation. Also, some test simulations that we performed

showed that the full per-word sets of write bits in the L1 cache proved to be essential.  All of our

simulations done without them resulted in the useful work done by the speculative processors

dropping to nearly zero in virtually all cases due to false violations on WAW hazards.

7.3 Write Buffer Requirements
A key architectural metric is the size of the speculative write state in the buffers described in Sec-

tion 5.3.3. This metric is important because it indicates the feasibility of implementing a Hydra

CMP architecture with reasonably sized speculative write buffers that achieves good performance.

Figure 7-3 shows the numbers of 64 byte L2 buffers filled during each successful speculative

thread on several of our integer benchmarks. Similarly, Table 7-4 lists the number of 32 byte cache

line buffers required to hold the maximum size write state for the benchmarks after the loop-only

speculation handlers are used. Both sets of results clearly indicate that a buffer of 24-32 lines (1.5

KB – 2 KB) per processor is sufficient to handle even fairly large loop iterations or subroutines in

most cases. Even the huge m88ksim  loop iterations would have fit in a 21-line buffer.
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The only two loop-oriented benchmarks that might have trouble with these limits were the alvin

and ear  benchmarks. These two applications would require 8KB write buffers for maximum per-

formance. However, it would be possible to reduce the memory requirements of the alvin  bench-

mark to an arbitrary degree simply by using loop iteration chunking on the inner loop of alvin ,

as described in Section 6.2.4, instead of our original scheme of speculating on the outer loop.

It should also be noted that a small number of the subroutines speculated on in vortex  and

ijpeg  required more buffer space, but these routines were infrequent enough that simply halting

them and then completing the iteration non-speculatively after becoming the head processor would

probably have little impact on performance.  For that matter, most of these routines would be run-

ning on the head processor by the time they had managed to fill up a 2 KB buffer anyway.  As a

result, the write-through head-processor buffers described in Section 5.4.4, which were not used

during these simulations, might eliminate the need to halt at all.

These results indicate that the basic Hydra memory system lends itself well to speculative opera-

tion. Even allowing for full double-buffering with pairs of processors, the system requires only

about 19KB of extra on-chip memory — or 13KB without full double buffering.  This is about the

same size as an extra pair of L1 caches. Even allowing for a fair amount of control logic overhead,

it seems reasonable to believe that all of the hardware we propose would not be larger than a single

simple processor, each of which is only a small fraction of the total die area.

7.4 Improved Performance Results
After switching to loop-only speculation (from Section 5.5.3) and applying the various software

optimizations described in Section 6.2 and Section 6.3 to the benchmarks, we collected a new set

of performance results for all benchmarks except vortex .  As a conceptual experiment, we also

tested the performance of the fully optimized applications on a hypothetical version of Hydra with

optimal, and virtually impossible to build, restart behavior after violations.  Instead of following
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the normal Hydra violation protocol described in Section 5.5.5, the test version of Hydra with

“Hardware Checkpoints” could back up just to the load that actually caused the violation.  This

would allow it to keep all of the work that it had managed to complete before the offending load,

potentially saving a lot of time when the violating loads occur late in speculative threads.  Of

course, more speculative processors behind the violating processor still had to do full restarts after

receiving KILL messages, so the overall savings potential was limited.

The results of these simulations are shown in Table 7-3 and Figure 7-4. From these results it is

clear that the lower overheads of loop-only speculation provide significant performance improve-

ments for most benchmarks. The most dramatic improvement is seen with the wc benchmark,

whose performance more than doubles. This is consistent with wc’ s small loop body, that was

completely dominated by the speculation software overheads in the base run-time system.

Figure 7-3: Speculative store buffer size requirements for some benchmarks.
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Table 7-4 shows some key performance characteristics that we obtained from the loop-only ver-

sions of the benchmarks (except for eqntott , since loops were not used there) and used as a

guide for directing our software optimizations.  Except for the ijpeg  and simplex  benchmarks,

more than 90 percent of each benchmark can be speculatively parallelized. However, high cover-

age does not guarantee good performance when there are a significant number of violations. The

number of restarts per committed thread (restart rate) gives a good indication of the inherent paral-

lelism in an application. As expected, the benchmarks fall into two main classes: integer bench-

marks with restart rates that are much greater than one and numerical benchmarks with restart

rates less than one. The combination of the coverage, the restart rate, the amount of work that is

lost due to the restarts, and the speculation software overheads determines the fraction of the time

the processors are doing useful work (CPU utilization), which ultimately determines performance.

Table 7-3: Performance of the system with various enhancements.

Application
Procedures 
and Loops

Loops 
Only

After 
Software 

Optimization

With 
Hardware 

Checkpoints

General compress 1.00 1.42 1.57 1.71

Integer eqntott 1.15 — 1.75 1.8

grep 2.65 2.86 — 2.85

m88ksim 1.05 1.13 1.45 1.56

wc 0.62 1.57 — 1.64

Multimedia ijpeg (compression) 1.31 1.56 — 1.6

Integer mpeg (decoding) 0.90 0.96 2.14 2.14

Floating alvin 2.79 3.02 — —

Point cholesky 2.71 2.85 3.16 3.25

ear 3.44 3.87 — 3.88

simplex 1.83 2.67 — 2.72
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We were able to optimize the software for five (compress , eqntott , m88ksim , mpeg, and

cholesky ) of the eleven benchmarks using the optimizations described in Section 6.2 and Sec-

tion 6.3.

compress: Synchronization was added to compress  to prevent the key loop-carried dependency

from causing violations. This reduced the number of restarts by a factor of 3 (to 2.1 per itera-

tion), allowing a greater speedup.

eqntott: The optimization of eqntott  was actually performed using the more selective specula-

tion software described in Section 6.3. Instead of speculating on all procedure calls, we modi-

fied the system so that only calls to the recursive quicksort  procedure generate new

speculative threads. This eliminates the performance losses from procedure speculation of

other procedures which have little or no parallelism.

Table 7-4: Loop-only speculative performance characteristics summary.  The speculative write 
state is presented in units of 32-byte cache lines.

Application
Coverage 

(%)

Restarts 
per 

thread

CPU 
utilization (%)

Maximum 
Speculative 
write state

General compress 100 6.4 28 24

Integer eqntott 93 12.1 32 40

grep 90 1.1 75 11

m88ksim 94 15.5 29 28

wc 100 4.6 69 8

Multimedia ijpeg (compression) 60 2.35 42 32

Integer mpeg (decoding) 92 1275 25 56

Floating alvin 96 0.31 81 158

Point cholesky 91 0.88 74 4

ear 96 0.32 97 82

simplex 86 0.14 60 14
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Figure 7-4: A performance comparison of the baseline and enhanced systems.
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m88ksim: The large loop body in m88ksim  was sliced to expose parallelism within the loop

body and to allow code motion for a data value that is read early in each iteration, but is nor-

mally computed late in the previous iteration. This code motion decreased the number of

restarts by a factor of 5 (to 3.1 per iteration), as the amount of available parallelism was dra-

matically increased.

mpeg: The performance of the MPEG-2 benchmark is improved substantially by moving an

induction-like variable update from the end of the loop body to before the time-consuming

DCT step. This code motion makes it possible for DCTs of multiple macroblocks to overlap.

The same performance improvement was also achieved with loop slicing. As with m88ksim ,

the additional parallelism exposed by these modifications reduced the number of restarts by a

factor of 5 (to 280 per iteration). Our speculatively parallel version of this code was actually

faster than the macroblock-based hand-parallelized version in [44], because the speculative

system does not have to synchronize between processors in a conservative fashion.

cholesky: In the Cholesky substitution program stage, the direction of the inner loop is reversed so

that the loop carried dependency occurs on the last loop iteration, instead of the first. This

allows the inner loop iterations from consecutive outer loop iterations to overlap.

These modifications resulted in significant performance improvements in these benchmarks, as is

shown in Table 7-3. In particular, we were able to achieve a speedup of 2.14 on mpeg, whereas the

baseline system slowed down.

The performance improvements from the more optimal “hardware checkpointing” scheme execut-

ing with the optimized software are quite modest.  Not enough work was saved by the smaller

backups to make a noticeable impression on the speedup figures.  Furthermore, we found that mix-

ing explicit software synchronization and hardware checkpointing is not useful, based on our
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observations with the compress  benchmark. In effect, the optimized violation behavior in our

“hardware checkpointing” scheme is essentially an inherent form of synchronization, since the

violating processor is just pulled back to the “synchronization point” formed by the violating load.

As explained in Section 6.2.1, software synchronization is essentially a way to prevent violations

that result in a large amount of needlessly lost work — the same goal of hardware checkpointing.

As a result, software synchronization just added some additional overhead to compress , slowing

down the system while supplying little or no benefit.

Table 7-5 summarizes the gains from these improvements for each of the major application classes

using the harmonic means.

7.5 Conclusions
Speculation proved to be a very effective technique for extracting available parallelism out of our

benchmarks with a minimum of programmer intervention.  However, it is not a magic wand.  If

there is limited parallelism in the way a program is coded, then no significant speedup is possible.

However, at least speculation cannot cause code to run incorrectly, unlike a lot of manual parallel-

ization techniques.  Also, it can be turned off, so it cannot hurt performance.

We had originally hoped to use speculation primarily on integer benchmarks that are difficult to

parallelize, in an effort to parallelize them with little or no programmer intervention.  In reality, we

were usually able to get competitive performance, but often only after the application of one or

Table 7-5: Harmonic mean summaries of the performance results.

Category
Procedures 
and Loops

Loops Only
After Software 
Optimization

With Hardware 
Checkpoints

General Integer 1.04 1.45 1.73 1.81

Multimedia Integer 1.07 1.19 1.80 1.80

Floating Point 2.56 3.04 3.12 3.15

Total 1.33 1.71 2.10 2.14
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more manual optimization techniques to improve the usable parallelism of our loops.  Explicit syn-

chronization, code motion, and adjustment of the loop structure itself were found to be useful to a

greater or lesser degree with a variety of benchmarks.  If these optimizations could be automated

more in the future, then the use of speculation to help bridge between current uniprocessors and

the CMPs of the future may become reality.

We also attempted to use speculation with a selection of applications that were known to have sig-

nificant amounts of parallelism, generally dense matrix-oriented floating point and multimedia

benchmarks.  Our selection focused on ones that do not lend themselves to conventional matrix-

oriented parallelization because they are coded in such a way that they are difficult to statically

analyze.  While we occasionally had to apply an optimization to extract the parallelism, in general

we were much more successful at achieving very good speedups with little intervention.  The

speedups obtained were usually not quite as good as the conventionally parallelized versions of

these programs, due to some of the inherent overheads of the speculation process, but they were

still significantly better than efforts to find parallelism in these tasks using techniques such as ILP

extraction in a superscalar.

Interestingly enough, when we compare our results with what has been published by other groups,

we find that we are in agreement more often than we differ.  While individual architectures may

vary somewhat, the general trend among speculative architectures is to achieve speedups of 1.1 – 2

on most integer applications, almost regardless of the number of processors thrown at the problem,

and more linear-with-processor-count results on the applications with more fundamental parallel-

ism in their algorithms. [13] [14] [10?]  This indicates to us that while we may not have thrown as

much hardware [13] or compiler technology [14] at the problem than other groups working in the

field, we are all doing a fairly effective job of finding the extractable parallelism with our tech-

nique, which attempts to balance the use of hardware and software in order to speculate.  Another

interesting point of comparison is the results we obtained with a highly optimal speculation tech-



Chapter 7: The Performance of Speculation 202

nique that effectively checkpointed the system at every load and only backed up the work that was

absolutely necessary.  Even though this system allowed us to achieve nearly optimal memory sys-

tem behavior under speculation, speedups increased only slightly.  These observations lead us to

conclude that available parallelism in the code was the limit, and not limitations caused by artifacts

in our design.  These results tend to validate the fact that  our design for a speculation system is

fairly reasonable.

Finally, we checked the L2 buffering requirements associated with speculation, as described in

Section 7.3.  By and large, reasonable thread sizes produced write states of about 1-2 kilobytes.

Since the occasional large iteration can be handled by stalling a processor until it becomes the

“head” processor, there is little reason to have more than about 2K per processor of buffer space

(i.e. we can size buffers for the average, not the extreme).  In a system where the typical L1 cache

is already 16K, a handful of 2K buffers will not contribute significantly to the overall area of the

processor core design.
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8 Overall Conclusions and Future Directions

As more transistors are integrated onto larger dies, single-chip multiprocessors integrated with

large amounts of cache memory are becoming a feasible alternative to the large, monolithic uni-

processors that dominate today’s microprocessor marketplace.  The earlier work of the Hydra

group [5][6][7][8] has clearly shown that CMPs are an excellent alternative to other single-chip

microprocessor architectures, such as conventional superscalars, as integration densities of chips

continue to increase.

The work in this thesis describes and evaluates the design of the Hydra architecture itself [50],

instead of CMPs in general, although many of the opinions that we have been able to draw from

Hydra can be generalized to other CMPs.  Hydra offers a promising way to build a small-scale

MP-on-a-chip with a fairly simple design while maintaining excellent performance on a wide vari-

ety of applications.  Simple buses are used to connect several optimized, single-ported caches

together.  With the write bus based architecture, no sophisticated coherence protocols are neces-

sary to keep the on-chip caches coherent.  Arbitration of key resources and addresses is accom-

plished with two custom mechanisms that have been highly tuned, although their design could

have probably been simplified somewhat while still maintaining good performance.  With this bal-

ance between cost, complexity, and performance, we believe Hydra offers a promising model for

future MP-on-a-chip designs.

However, the baseline design is limited by the fact that there is still only a limited amount of paral-

lel code available that allows an explicitly multithreaded architecture like a CMP to function at

maximum effectiveness.  Hydra has one major advantage over conventional multiprocessors that

we can exploit to make parallelization of code easier.  It has very low interprocessor communica-

tion latencies of approximately 10 cycles or so, even though there are no special and expensive

interprocessor communication links.  Thanks to this simple and effective L2 cache communication
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mechanism, we were able to consider a much simpler parallelization technique that programmers

of conventional multiprocessors could never dream of using with the long interprocessor commu-

nication delays they must contend with: the nearly automatic parallelization afforded by thread-

level speculation.

8.1 Thread-Level Speculation
We have demonstrated that by judicious use of hardware and software mechanisms it is possible to

add data speculation capability to a CMP [12][49]. Our results indicate that a data speculation sys-

tem similar to ours can extract “hidden” parallelism from loops (and occasionally from proce-

dures) in uniprocessor code. It does this by allowing compilers to obliviously parallelize loops that

cannot be fully analyzed for dependencies at compile time due to problems such as C pointer dis-

ambiguation. If there is parallelism already inherent in the way that the program has been coded,

as in ijpeg  or many of the floating-point benchmarks, then the application can speed up signifi-

cantly. Even if there is not, the application is still guaranteed to work, even though speculation may

provide little or no benefit. While there is a potential for speculation to slow down the system, it

can be deactivated completely in Hydra, unlike some competing designs [28].

Our first implementation of thread-level speculation attempted to extract parallelism from both

procedures and loops, sometimes simultaneously. This architecture is effective at exploiting specu-

lative parallelism when large amounts of parallelism are already present in the application, as our

results in Section 7.2 for the floating point benchmarks demonstrate. However, it has difficulty

extracting parallelism from conventional integer applications. A key problem with Hydra while it

is using our original set of protocol handlers, capable of speculating on loops and procedures, is

the high overhead incurred by the speculation software to properly handle procedures. This prob-

lem is especially acute with integer applications because the number of overhead-incurring restarts

during the speculative parallelization of these applications is higher due to a larger number of

dependencies between loop iterations and among procedures. Lastly, procedures typically degrade
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performance because too much time is spent starting speculative threads for procedures that turn

out to have little parallelism.

We have also shown that a few simple optimization techniques can dramatically improve the per-

formance of speculative threads extracted from loops. With all optimizations, we achieved a 60

percent overall performance improvement on eleven benchmarks and a 75 percent performance

improvement on several general integer benchmarks.  As an initial optimization technique, we

eliminated procedures and focused on loop-only speculation, to make our loop iteration threads

run as quickly as possible, with much lower speculation software overheads. This effort was very

successful and resulted in significant speedups on most of our applications. Violation statistic gath-

ering mechanisms allowed us to identify data-dependent pairs of loads and stores in the bench-

marks that frequently resulted in violations. On half of our applications, we were able to use this

information to guide several software optimization techniques that modified parts of the original

source code. These modifications also improved performance significantly. Finally, we simulated a

“hardware checkpointing” scheme that provides nearly optimal performance by eliminating most

of the delay caused by frequently violating loads. The performance gains that we were able to

achieve with this technique were fairly small, considering the hardware investment that would be

necessary to actually implement it, and indicate that our more realistic implementations of Hydra

are already able to handle violations fairly quickly and efficiently.

While our experiments to improve loop-based threads worked well, our mechanisms to extract

subroutine parallelism were hard to improve.  We were hindered by the previously noted high soft-

ware overhead of the complex control code, the load imbalance caused by running a mix of sub-

routines of varying sizes, and frequent memory dependencies caused by the side effects of

subroutines.  Eqntott  was the only benchmark that achieved significant speedup using proce-

dure speculation. Much of the execution time in eqntott  is dominated by a recursive quick-

sort()  procedure call instead of any sort of iterative loop of reasonable size. By manually
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limiting procedure speculation to this key quicksort()  routine, instead of speculating on sub-

routines blindly, we were able to get a significant improvement. This strongly indicates that proce-

dure speculation is still a viable alternative, but only for environments where it can be used very

judiciously.  Another example is the Java virtual machine, as we showed in [41].  Also, our results

clearly indicate that software control of subroutine speculation only makes sense if the control pro-

tocols are extremely simple. Instead, more complex thread-generation and control algorithms

clearly demand more sophisticated hardware support, such as that included in the Multiscalar

architecture [28].  Except on this particular family of applications, however, our simpler hardware

support often did just as well as more sophisticated architectures like Multiscalar.

Overall, our results demonstrate two main conclusions.  First, speculation is a viable technique for

parallelizing code in a relatively automatic fashion.  Our performance results indicate that it is a

very sound technique for finding a large amount of the “hidden” parallelism that may exist in

sequential programs — when that parallelism actually exists, of course.  On many programs, its

speedups are comparable to those obtainable by simply building a large superscalar uniprocessor

using the same die area [6], while on ones with significant amounts of loop-level parallelism the

speedups can be much better.  Because of this, a CMP with speculative support is potentially a via-

ble alternative as a replacement for conventional processors.  Also, it is always possible to simply

deactivate speculation on architectures such as Hydra and run them as conventional multiproces-

sors when a multitude of non-speculative threads are naturally available. Therefore, the CMP

should be able to achieve higher performance on inherently parallel applications, such as floating

point numerical code and multimedia applications, than a comparable cost superscalar architec-

ture.  Second, there is a promising migration path from our current, simple sequential-to-specula-

tively parallel conversion tools, such as Hydracat, to more sophisticated compilation tools that can

tune and optimize code for a speculatively parallel architecture. Today, these optimizations still

require programmer intervention, but it should be relatively easy to automate them significantly,

possibly using feedback mechanisms.
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8.2 Future Directions
Several directions for follow-on work have been identified as this thesis was written.  Some of

these involve improving some of the techniques that we already have used in a limited fashion in

order to make the use of technologies like speculation much more powerful and increasingly auto-

matic.  Others make use of some of the technology in Hydra and extend upon it in new and some-

times unusual ways.

The most obvious area for further development is in the design of the compilers that target Hydra.

While we have made tools for automatically parallelizing loops that have been identified by the

programmer as good speculation targets, it would be advantageous if the compiler could automati-

cally find loops — and possibly subroutines — by itself.  With a profiling compiler, it would seem

reasonable to make a system that could “speculatively” speculate on every important loop in a pro-

gram, obtain statistics on the speedups obtained by various loops, and then deactivate speculation

on all but the most promising loops.  Unlike most parallelization techniques, speculation lends

itself to this type of automatic analysis because it does not require that data be pre-distributed

among processor nodes, a task that is notoriously difficult to automate.

A logical extension on the automatic parallelization idea would be to develop new and more pow-

erful parallelization enhancements, and have those applied automatically as well.  Many potential

enhancements are possible, such as optimizations to speed up routines that are dependent upon

recursion or other techniques that the current implementation of speculation does not handle well.

Like speculation itself, a large number of these optimizations might potentially be added automat-

ically by the compiler wherever possible and then selectively whittled down via some sort of pro-

filing and performance analysis process.
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On the hardware side, logical extensions might look at scaling the Hydra architecture to take

advantage of larger numbers of base CPU cores.  For a small design (8-16 processors), this would

probably only involve re-optimizing the memory system design to deal with the larger number of

processors.  The write bus would probably need replication — the splitting up of the bus into mul-

tiple lanes that could all work simultaneously, allowing each reference to effectively only take a

fraction of a clock cycle.  These would have to feed into a multi-banked L2 cache to avoid conflict.

Some of the centralized control mechanisms like the central arbiter might also need to be distrib-

uted more.  However, much of the design could remain very similar or essentially identical.  For a

larger design, however, things would have to change considerably.  Many of the techniques applied

to earlier distributed shared memory machines such as DASH [56] or FLASH [57] might be

applied in these instances.  Scalable speculation such as that proposed by the TLDS [38] or Illinois

[40] groups might also be used with such a system, too.

Further extensions on the Hydra design could be even more exotic.  One proposal being investi-

gated by the Hydra group is to adapt the speculative memory hardware structures in Hydra to build

a more general purpose transactional memory system.  This can then be used for a variety of pur-

poses such as backing up and restarting code when exceptional conditions or errors are discovered

during the execution of the code at runtime.  For example, it may be possible to execute threads

redundantly on more than one processor and compare the results as they sit in the L2 write buffers,

before committal, to ensure that no dynamic runtime errors occurred on either of the processors.

Other technologies may be developed based on Hydra, as well.  These brief summaries only offer

views of a few of the near-term projects that are taking advantage of possibilities that Hydra has

opened up for investigation.
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